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ABSTRACT

TWO-POINT STATISTICS FOR TESTING MODELS OF COSMIC STRUCTURE

Yuedong Fang

Bhuvnesh Jain

Two-point statistics can be used to probe various types of cosmic structures. We perform

a cross-correlation measurement using ∼ 160, 000 red satellite galaxies in SDSS redMaPPer

clusters and find evidence that subhalo correlations do persist well beyond their tidal radius,

suggesting that many of the observed satellites fell into their current host less than a dy-

namical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ∼ 3−5 Gyr

and SED fitting results for the time at which satellites stopped forming stars, tquench ∼ 6

Gyr, we infer that for a significant fraction of the satellites, star formation quenched before

those satellites entered their current hosts. In addition to cross-correlation measurement,

galaxy-galaxy lensing is another powerful two-point statistic in cosmology analysis. We

introduce and perform a number of tests of systematics on the DES Science Verification

shear catalogs and photometric redshifts. We estimate the covariance matrices for the DES

Year 1 galaxy-galaxy lensing measurement using the Jackknife approach. We validate the

estimation using a suite of log-normal mock surveys. After testing the pipeline of our weak

lensing measurement, we perform comprehensive measurements of weak lensing and galaxy

clustering around voids in DES Year 1 data. We get heretofore the highest signal-to-noise

void lensing measurements for voids identified by two different void finding algorithms. Us-

ing data from the MICE simulation, we study the impact of photo-z scatter on watershed

types of void finder. We show that the photo-z scatter has introduced a selection bias

which results in a boosting of the negative lensing signal. We also combine our observables

of void lensing and void-galaxy cross-correlation to test the linear bias of redMaGiC galaxies

distributed around voids. We see no evidence of departure from linearity.
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CHAPTER 1 : Introduction

Large scale structure is defined as the inhomogeneity of the Universe on scales larger than

that of a galaxy. It has long been believed by people that galaxies are distributed uniformly

in space. In 1932, after analyzing a catalog of bright galaxies created by Shaply and Ames,

it was first noticed by Edwin Hubble that on angular scales less than ≈ 10◦ there is an

excess in the number density of galaxies. Therefore, the Universe is found to be clumpy on

small scales, while it appears to be homogeneous on large scales.

The first maps of the sky revealing details of large scale structure were made by Seldner and

his collaborators ([96]) using data from the Lick survey. The maps not only confirmed that

the projected distribution of galaxies on the plane of sky is not uniform but also displayed a

foam-like pattern. This pattern consists of filaments with long strands of galaxies, clusters of

galaxies, and empty regions which are referred as voids. It was Peebles and his collaborators

who first analyzed the spatial distribution of galaxies in a statistical way (eg. [83]). They

found that the two-point correlation function of galaxies can be described by a simple power

law over a substantial range of distances.

The physical origin of the observed large scale structure is the initial fluctuations in the

energy density filed of the early Universe. The current observations of anisotropy of cosmic

microwave background enable us to see directly the initial conditions. The initial fluctu-

ations grow throw gravitational instability into the patterns we saw today in the galaxy

density field. The properties of the observed large scale structure is thus a consequence of

the physics of the early Universe; measurements of them can therefore be useful constraining

cosmological parameters.

1.1. Correlation Functions and Linear Bias

A commonly used statistic for studying large scale structure is the two-point galaxy corre-

lation function, ξ(r), which is defined as a measure of the excess probability, relative to a
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random Poisson distribution, of finding a galaxy in a volume element dV1 at a distance r

from another galaxy in a volume element dV2:

d2P = 〈n1〉〈n2〉[1 + ξ(r)]dV1dV2 (1.1)

where 〈ni〉 is the mean density of the galaxy in each sample ([84]). If the galaxies are of the

same population, then the ξ is referred to as the auto-correlation function, otherwise the

ξ is referred to as the the cross-correlation function. To measure ξ(r), one counts pairs of

galaxies as a function of separation and then normalized by the expected number of pairs

from an randomly distributed sample with no clustering, which occupies the identical 3D

volume as the data and with same redshift distribution. The random catalog should also

be large enough to not introduce Poisson error in the estimator. The normalization using

random catalog is introduced to correct for the issue caused by the fact that no galaxies can

be observed beyond the survey boundaries. Several estimator for ξ(r) has been proposed

and two of them are widely used: the Davis & Peebles estimator ([23]):

ξDP(r) =
NR

ND

DD(r)

DR(r)
− 1 (1.2)

and the Landy & Szalay estimator ([59]):

ξLS(r) =
1

RR
[DD(

NR

ND
)2 − 2DR(

NR

ND
) +RR] (1.3)

where DD, DR, and RR are the counts of pairs of galaxies as a function of separation in the

data catalog, between data and random catalogs, and in the random catalog, respectively.

ND and NR are the mean number densities of galaxies in the data and random catalogs.

The distribution of baryons need not trace exactly the underlying distribution of mass.

This concept of biasing was first introduced by Kaiser ([54]) in an attempt to explain the

observed relation between the correlation functions of galaxies and galaxy clusters, which

could not both be unbiased tracers of mass. Using the high-peak approximation to a
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Gaussian density field, he showed that the two correlation functions were proportional. In

fact, this biasing is expected to be a nontrivial function on small scales due to complicated

non-gravitational process during galaxy formation. However, on very large scales, since the

density fluctuations are small, a linear relation between matter and luminous tracers can

be assumed. Their ratio is referred to as the linear bias:

b = ξtm/ξmm (1.4)

or

b =
√
ξtt/ξmm (1.5)

where ξtm is the tracer-matter cross-correlation function, ξmm is the matter auto-correlation

function and ξtt is the tracer auto-correlation function.

1.2. Weak Lensing Basics

According to General Relativity, the gravitational field of cosmic structure can deflect the

path of a light ray. This process is called gravitational lensing in analogy with the deflection

of light by optical lenses. The deflection is described by geodesic which follows the curvature

of spacetime. The bending of light ray towards deeper gravitational potential gives rise to

a few possible observational effects:

1. the image of a background source galaxy will typically appeared to be distorted, either

stretched or compressed; and can be magnified or shrunken.

2. if the lens is very massive and the source is close enough to it, the light from the

source can possibly take different path, which will result in the observer see multiple

images of a single source. In some special cases, the observer can see arcs or ‘Einstein

rings’.

3. since the number of photons is conserved, the images of sources can appear brighter

or fainter.
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4. in case of multiple images, the paths that light travel along are with different lengths.

Thus if the source varies with time, multiple images will vary accordingly but with

different timing.

‘Weak lensing’ refers to the cases that the light from sources are only weakly deflected by

lenses, where no multiple images, arcs or Einstein rings can be formed. Most importantly,

It is a promising way to study the underlying dark matter distribution, which makes it

a useful probe of cosmic structure. Below, we summarize some basic formalism of weak

gravitational lensing.

1.2.1. Weak Lensing Geometry

With ‘weak lens’, we mean the Newtonian potential Φ of the lens is much smaller than c2,

Φ/c2 � 1. In this case, we can assume a locally flat Minkowski metric that is only weakly

perturbed by the Newtonian potential of the lens.

ηµν → gµν =




1 + 2Φ
c2

0 0 0

0 −(1− 2Φ
c2

) 0 0

0 0 −(1− 2Φ
c2

) 0

0 0 0 −(1− 2Φ
c2

)




where the line element is given by:

ds2 = gµνdx
µdxν = (1 +

2Φ

c2
)c2dt2 − (1− 2Φ

c2
)(d~x)2 (1.6)

since the light propagates along the null geodesic, we have:

c′ =
|d~x|
dt

= c

√
1 + 2Φ

c2

1− 2Φ
c2

≈ c(1 +
2Φ

c2
) (1.7)
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where Φ/c2 � 1 by assumption. Thus we got the effective ‘index of refraction’ for the lens’

gravitational field:

n =
c

c′
=

1

1 + 2Φ
c2

≈ 1− 2Φ

c2
(1.8)

Then the Fermat’s principle can be applied, which says the light will travel between two

points along the path that requires the least time. By solving a variational problem, we can

get the total deflection angle:

α̂ =
2

c2

∫ λobserver

λsource

~∇⊥Φdλ (1.9)

where λ is used to parameterize the trajectory and ~∇⊥ is the gradient perpendicular to the

path. Since we are only interested in the case where the deflection angle is small, instead

of integrating along the actual deflected light path, we can integrate over the unperturbed

one. Thus the deflection angle is given by:

α̂ =
2

c2

∫
~∇⊥Φdrlos (1.10)

Figure 1 from [5] shows a sketch of a typical weak lensing system. The photon emitted at

ηηη takes a trajectory moving toward the observer is deflected by an angle α̂. If θθθ, βββ, and α̂

are all small angles, they can simply be related by the lens equation:

θθθDS = βββDS + α̂DLS (1.11)

where DS and DLS are the angular diameter distances from the source to the observer and

from the source to the lens, respectively. And the impact parameter is given by:

ξξξ = DLθθθ (1.12)

where DL is the angular diameter distance between the source and observer and θθθ is the

observed angular distance between the lens and source.

5



we can further define the reduced deflection angle:

ααα ≡ DLS

DS
α̂ (1.13)

then Equation 1.11 can be simplified as:

βββ = θθθ −ααα (1.14)

1.2.2. Distortion and Magnification of Observed Images

As mentioned earlier, the image of a background source galaxy will typically appeared to

be distorted and magnified. Galaxies are usually intrinsically extended objects with non-

negligible apparent sizes. The fact that light emitted at different position are deflected

differently causes the distortion and magnification of the observed image. To study this,

we can relate the observed image with the true image by asking the question: how small

changes in the observed position, θθθ, relate to small changes in the true position βββ? With

small angle assumption, this can be described by the Jacobian matrix:

A ≡ ∂βi
∂θj

=
∂

∂θj
(θi − αi)

= δij −
∂αi
∂θj

≡ δij −
∂

∂θj
(
∂φ

∂θi
)

(1.15)

where φ is the effective lensing potential defined by:

~∇φ ≡ ααα (1.16)

6



Figure 1: A sketch of weak lensing system from [5]. The photon emitted at ηηη is deflected
by an angle α̂ because the presence of the lens. The observed photon will be at an angle θθθ
from the center, which should be at an angle βββ if there is no lensing effect. All these angles
can be related to each other by the angular diameter distances between source, lens, and
observer.
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Thus we obtain:

φ(θθθ) =
2

c2

DLS

DLDS

∫
Φ(DLθθθ, rlos)drlos (1.17)

Equation 1.15 shows that the change in shape of observed source galaxy is govern by a

linear combination of second derivatives of effective lensing potential φ. We can split off an

isotropic part from the Jacobian:

(A− 1

2
TrA · I)ij =



−1

2(φ,11 − φ,22) −φ,12

−φ,12
1
2(φ,11 − φ,22)




This is called the shear matrix which describes the distortion. We can define the shear

~γ = (γ1, γ2):

γ1 =
1

2
(φ,11 − φ,22)

γ2 = φ,12 = φ,21

(1.18)

which is a pseudo-vector on the lens plane. In reality, we often consider tangential coordinate

systems defined on every lens-source pairs. The tangent component of the above shear in

this system is given by:

γt(θθθ) = −γ1(θθθ) cos(2φ)− γ2(θθθ) sin(2φ) (1.19)

where φ is the angle between the x-axis of the ‘global’ Cartesian coordinate system and the

line joining this lens-source pair. And the cross component is given by:

γ×(θθθ) = γ1(θθθ) sin(2φ)− γ2(θθθ) cos(2φ) (1.20)

describes the shear component that is at 45◦ to the tangential line. Gravitational lensing

can only generate the tangential component γt of the shear. The cross component is thus

usually serves as a test of systematics in the measurement.
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The reminder part of the Jacobian matrix is given by:

1

2
TrA = [1− 1

2
(φ,11 + φ,22)]δij = (1− κ)δij (1.21)

this isotropic part describe the convergence of gravitational lensing: it only rescales the

image by a constant factor.

1.2.3. Stacked Measurement

The intrinsic ellipticity of individual source galaxy is in general much larger than the shear

induced by weak lensing. In real observation, it is usually necessary to average over a large

number of lens-source pairs.

For example, in galaxy-galaxy lensing, we calculate the average shear in angular bin as our

estimator, which is given by:
〈
γlens
i (θθθ)

〉
=

∑
j w
′
jγt,j∑

j w
′
j

(1.22)

where i is either t or ×, and the weight w′j is usually given by:

w′j =
1

σ2
shape + σ2

m,j

(1.23)

where σshape is the intrinsic shape noise for each source galaxy, and σm,j is the measurement

error. ,
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CHAPTER 2 : Tidal Stripping as a Test

of Satellite Quenching1

2.1. Introduction

Clusters of galaxies – composed of tens to hundreds of satellite galaxies orbiting within a

dark matter halo – are the most massive virialized objects in the Universe. Their average

dark matter profiles and halo masses have been measured in great detail (e.g., [65, 53, 63,

99, 89, 67]). Recent work has measured finer features of the mass distribution within and

around cluster halos. The splashback radius predicted by [28] and [2] was recently detected

by [74]. Halo assembly bias [101, 37, 113, 22] has also been detected by the same group

[71, 74]. Evidence for cluster ellipticity from weak lensing has been measured on small

samples of ∼ 20 clusters [80, 30] as well as large samples of several thousand clusters [32,

12]. Similarly, filaments between individual pairs of massive clusters [29, 52] and thousands

of group and cluster pairs [14] have recently been detected using weak gravitational lensing,

supplementing similar measurements with the cluster galaxy distribution [116].

While this work has been accomplished with existing data such as the Sloan Digital Sky

Survey2 (SDSS), the next generation of surveys including the Dark Energy Survey3 (DES;

[70, 79, 93]), Hyper Suprime-Cam4 (HSC, [72]) and the Kilo Degree Survey5 (KiDS, [111])

have also begun producing results on galaxy clusters. Within a few years these new surveys

will provide much larger cluster samples than were previously available.

Compared to their massive host clusters, the properties of cluster subhalos are less well-

studied. Subhalos were once isolated dark matter halos, each with their own central galaxy,

1This work is based on the paper [33], I led or jointly did all the analysis.
2http://www.sdss.org
3http://www.darkenergysurvey.org
4http://www.naoj.org/Projects/HSC/
5http://kids.strw.leidenuniv.nl
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before gravitational forces pulled them inside much larger neighboring halos. Many such

accreted halos are tidally destroyed and become indistinguishable as distinct entities, but

subhalos are the survivors that persist as satellites of the larger cluster halo. Since the

lensing and clustering signals of subhalos are dwarfed by their massive host clusters, it is

more difficult to study their detailed mass distributions. Recent progress in determining

weak lensing masses of subhalos has been made by [62] using CFHT Stripe-82 data [31]

and by [102] with KiDS data [57]. While simulation studies of subhalos predict that tidal

forces from the host cluster will strip mass from the subhalo outskirts [43, 38], the recent

lensing studies were not able to identify a tidal radius beyond which mass was stripped.

However, the [62] measurements hinted that subhalos closer to the cluster center – where

tidal forces are strongest – may be less massive, which would provide indirect evidence for

tidal stripping.

Given the insufficient signal-to-noise (S/N) of weak lensing, correlations between subhalos

within the same host provide a promising alternative way to measure tidal stripping, as

demonstrated by [10] using subhalos in N-body simulations. [16] and [17] had shown the

existence of such correlations and discussed a variety of consequences in physical and ve-

locity space. [10] pointed out that subhalo-subhalo correlations can be used to address an

important open question in galaxy formation: did the star formation of satellites galaxies

end upon accretion? The striking color difference between galaxies in cluster and field en-

vironments – satellites are mostly “red and dead” while field galaxies are mostly blue and

actively forming stars – has prompted a search for the mechanisms within clusters that end

star formation in satellites. These include accretion shocks [3, 26], strangulation [60], ram-

pressure stripping [41, 1], and the effect of many high-speed encounters with other satellites

[34, 73] – all of which act to either forcibly remove gas from the subhalo or prevent it from

cooling enough to form stars.

It is possible to reproduce many observed statistics of quiescent galaxies using models relying

upon quenching of star formation caused by intra-cluster processes. For example, [114] used
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a galaxy group catalog from SDSS Data Release 7, combined with the quiescent fractions

from COSMOS survey, and a cosmological N-body simulation to study the star formation

histories of satellite galaxies at z ≈ 0. They found that satellite quenching is consistent

with the statistics of quiescent galaxies if quenching is a ‘delayed-then-rapid’ process: the

satellites remain actively star forming for 2− 4 Gyr after their first infall, unaffected by the

host halo, after which the quenching occurs rapidly with an SFR e-folding time < 0.8 Gyr.

Alternatively, it is also possible that other processes besides satellite quenching may be

dominant in determining quiescent fractions in clusters. For example, the age-matching

model of [44] can reproduce many measurements of galaxy luminosity, color, clustering,

and weak lensing [45, 112] without relying on satellite quenching processes. By placing the

reddest galaxies in the oldest dark matter halos – which tend to be the ones that formed

in denser environments – the [44] model naturally reproduces the large red fraction seen in

observations.

Possible mechanisms that can quench galaxy star formation while do not necessarily depend

on intra-cluster processes include: virial shock heating of intergalactic gas falling into galac-

tic haloes, that is, as the gas falling in, gravitational energy converts to heat that cannot

be balanced out by radiative cooling; Heating by the active galactic nucleus (AGN), simply

put, the supermassive black hole at a galaxy center injects energy into its surroundings

while accreting material, supplying the energy to heat up or expulse cold gas.

However, recently [117] showed that the original age-matching model of [44] is in tension

with measurements of the halo mass of isolated blue galaxies [68]. [117] study two quenching

models and show that a model in which halo mass alone determines quenching fits the SDSS

measurements [118, 68] better than a hybrid model which depends on stellar mass and host

halo mass (for satellites). While both models do well at fitting red galaxy clustering and

lensing, the halo quenching model is much better at modeling the halo mass for massive

blue central galaxies. [117] show that the color dependence of the 〈Mh|M∗〉 relation in the

publicly available mock galaxy catalogs of [45] is inconsistent with SDSS measurements,
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since this mock tends to place blue and red centrals of similar M∗ in halos of similar

mass, which is heavily disfavored by the data. It is unclear whether this conclusion can be

generalized to the broader class of age-matching models, or if it is specific to the original

construction of [44], since [8] argue that a slightly modified parametrization of age-matching

fits the measurements of [117].

The detection of the splashback feature by [74] provides additional insight into quenching

processes in clusters. More et al. detect the splashback feature in both red and blue galaxies.

This shows that galaxies can complete at least one full orbit within their host clusters while

remaining unquenched (i.e. blue). Given that orbital times in the outskirts of halos can be a

large fraction of the Hubble time (e.g., 6 Gyr), this result may pose a challenge for the model

of [114]. More et al. also find that the red fraction of cluster galaxies exhibits a pronounced

feature at the splashback radius rsp. While the naive interpretation of this sharp feature

at the splashback radius is that crossing rsp modifies galaxy colors (i.e. host-quenching),

similar behavior also naturally arises in age-matching models without host-quenching. In

those models, the sharp feature in the red fraction is a consequence of the sharp transition

at the splashback radius from the 2-halo region to the 1-halo region.

In light of these conflicting models, we carry out the subhalo-subhalo clustering measure-

ments proposed in [10] in order to provide model-independent constraints on the relationship

between subhalo infall and quenching times. Alternative models of galaxy formation may

then be distinguished based on their predictions for the fraction of quiescient satellites that

quenched upon accretion, rather than while isolated. We assume a flat universe and Ωm

= 0.3. In Section 2.2 we describe our SDSS data samples. In Section 2.3 we describe our

method of the measurement. In Section 2.4 we describe measurement results of subhalo cor-

relations and compare infall, dynamical, and quenching timescales for red SDSS satellites.

In Section 2.5 we discuss possible systematics as well as implications of our measurements

for models of galaxy formation.
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2.2. redMaPPer and redMaGic Catalogs

For our subhalo sample we use members of SDSS redMaPPer clusters [92, 91]. We use

clusters with redshift 0.15 < z < 0.41 and more than ten member galaxies, i.e., we require

the richness λ > 10 (note that the public catalog only goes down to λ = 20). These cuts

reduce the number of clusters to 11,800. In addition to the cuts on cluster properties, we only

use satellites with a membership probability Pmem > 0.8, ensuring that our satellite sample is

pure. [91] has shown that the photometric cluster selection done by redMaPPer is effectively

as good as a spectroscopic selection for those satellites with a high membership probability.

We will be interested in studying the satellite clustering as a function of distance from the

center of the cluster, rc, so for this purpose we define three bins rc = 0.1 − 0.3 Mpc/h,

rc = 0.3−0.6 Mpc/h, and rc = 0.6−0.9 Mpc/h. The range in rc for each bin was chosen to

obtain sufficient signal-to-noise (S/N) in all three bins: each bin of increasing rc has 110144,

42742, and 6728 galaxies.

We cross-correlate these subhalos with the redMaGiC galaxy catalog [90]. We use redMaGiC

because many of these bright red galaxies are members of the redMaPPer clusters and may

compose infalling groups with the redMaPPer members we study. We do not simply use the

redMaPPer satellites because redMaPPer imposes a spatial selection around each cluster,

rejecting all galaxies outside a radius Rλ = 1 Mpc/h (λ/100)0.2. This might introduce edge

effects in our measurement so we use the spatially uniform redMaGiC sample for cross-

correlations (see Sec. 2.4 for details). The redMaGiC algorithm selects only red galaxies

with good photometric redshifts with a median bias zspec − zphoto of 0.005 and scatter

σz/(1 + z) of 0.017. When performing cross-correlations we select only redMaGiC galaxies

within 0.02 of the cluster redshift.

For each redMaPPer member, we use SED fits to the broadband photometry to determine

the age, or time since the onset of star formation. The prior on star formation history is

taken to be delayed tau models [69], which produce a continuous but exponentially declining

star formation history. We are most interested in when the subhalo quenched, or stopped
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Figure 2: A sketch demonstrates geometry of the “mirror” point subtraction method that
used to remove the clustering signal from the host halo. We first measure the number
density of redMaGiC galaxies in annuli centered on the satellite galaxy as a function of the
distance R. Then we measure the same quantity around the “mirror” point reflected about
the cluster center. Our final estimator is the difference between these two number densities.

forming stars. Due to the exponential decline, it is not a bad approximation to take this

measure of age as the quenching time, tquench ≡ (
∫

dt t SFR(t))/
∫

dt SFR(t), where we

have used the star formation rate (SFR)-weighted age. The initial mass function is taken

from [94] over the range 0.1− 100M�. See Appendix A of [75] for more details on the SED

modeling. In Sec. 2.5.2 we discuss how this definition of tquench connects with definitions

used in galaxy formation models.

2.3. Isolation of Subhalo Clustering Signal

[10] used simulations to split subhalos between those that were recently accreted and those

accreted more than one dynamical time ago. The dynamical time was estimated as the

period for a circular orbit at radius equal to the distance from satellite to its central galaxy.

The results are shown in their Figure 2: the oldest subset showed no significant correlation at

large radii. In contrast, the subhalos which infell recently did show large-scale correlations.

15



10-2 10-1 100

R [Mpc/h]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
u
m

b
e
r 

d
e
n
si

ty
 (

M
p
c/
h
)−

2

rc = 0.30−0.60 Mpc/h

subtracted
satellite
opposite

Figure 3: Number density of redMaGiC galaxies around redMaPPer members (blue points)
and around their opposite positions relative to the cluster center (black points). The dif-
ference (red points) isolates the subhalo clustering signal.
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This means the measurement of large-scale correlations can be used to determine when

subhalos fell into their hosts. We have also tested that we recover similar results as [10],

but using a larger simulation. These results are shown in Appendix A.1.

We seek to detect these large-scale correlations in data by cross-correlating subhalos (redMaP-

Per members) with the redMaGiC sample by counting the number of redMaGiC galaxies

in annuli centered on each redMaPPer subhalo. However, since subhalos are by definition

always part of a larger halo, the raw number counts measured around subhalos will be dom-

inated by the host. In order to remove this host signal, we follow the method of [82] and

[10], subtracting the counts around the subhalo’s “mirror” point reflected about the cluster

center. The geometry of this method is shown in Fig. 2. Since this point is at the same

distance rc from the cluster center, if the host cluster profile is spherically symmetric it will

have the same contribution from the host. This method is illustrated in Fig. 3, which shows

the counts around the redMaPPer satellite and the opposite point. Both are dominated by

the mis-centered host signal, but after subtraction the subhalo clustering signal is clearly

visible at small scales and falls smoothly to zero at large scales.

This subtracted signal is our estimator used in all remaining plots: we count redMaGiC

galaxies in annuli centered on each redMaPPer subhalo, subtract the counts of redMaGiC

galaxies around each mirror point, and divide by the number of subhalos. For all measure-

ments, we divide the SDSS data into 200 spatially uniform patches and estimate a jackknife

covariance by removing each patch in turn [78]. All figures show the diagonal 1σ jackknife

errors while our signal-to-noise (S/N) estimates incorporate the full jackknife covariance.

Note that we measure correlations in 2D, projected bins of cluster-centric distance rc. This

is in contrast to Figure 2 of [10], which shows 3D correlations. In Sec. 2.5.1 we argue that

the qualitative conclusions we draw from the 2D correlations should be similar to those

based on 3D correlations. Moreover in future work we intend to present correlations in

deprojected 3D cluster-centric distance bins to compare more directly with [10].
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Figure 4: Projected number density of redMaGiC galaxies stacked around subhalos, for all
3 bins of cluster-centric distance rc. Note the data points have been shifted slightly along
the x-axis for clarity. Above ∼ 0.1 Mpc/h there is a clear trend of increasing correlations for
larger cluster-centric distance. Vertical lines show the estimated tidal radius for each subhalo
sample: all measurements show signficant correlations with unbound material beyond the
tidal radius.

2.4. Results

2.4.1. Correlations Beyond the Tidal Radius

In Fig. 4 we show the results for three cluster-centric radius bins, 0.1 < rc < 0.3, 0.3 < rc <

0.6, and 0.6 < rc < 0.9 Mpc/h. The correlations are clearly detected in each case, and fall

as ∼ 1/R with increasing scale. Note there is an increase in correlations for larger rc bins

which may be due partly to the positive correlation of rc with stellar mass (see Fig. 5). We

also tested measurements in bins of rc/R200, where R200 is the host’s virial radius. These

results were qualitatively similar. In order to interpret the measurements of Fig. 4, we next
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Figure 5: Normalized stellar mass distributions for the three cluster distance bins.
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estimate the subhalos’ tidal radius, beyond which unbound material can be stripped by

tidal forces from the host.

Measuring correlations well beyond the tidal radius would indicate that at least some of

the subhalos were recently accreted, since otherwise unbound material would have been

stripped. The ”Hill” radius, which can be used to estimate the tidal radius, is roughly

the radius where ρsubhalo ∼ ρhost [10], where the dynamical time for particles orbiting the

subhalo becomes comparable to the dynamical time for the subhalo to orbit its host. To

obtain ρsubhalo we use the results of [62], which measured lensing masses for a subset of our

subhalos, those which overlap with the CFHT Stripe-82 Survey. [62] found best-fit subhalo

masses 1011.3, 1012.0, and 1012.5M�/h for increasing distance from the cluster, using the

same three rc bins as our measurements.

In Fig. 6 we show NFW density profiles [76] for the three bins using these masses.

To obtain the average local host density at the satellite locations, we use the mass-richness

relation of [103]:

M200 = 1014.344M�/h× (λ/40)1.33 . (2.1)

We then estimate ρhost(r) using this host mass and an NFW profile, and plot the result in

Fig. 6. Here r is the 3D cluster-centric distance. By assuming the host halo is spherically

symmetric, and the distribution of satellites follows an NFW form, r can be estimated by

r(rc) =

∫√R200
2−r2c

0 ρnfw(
√
r2
c + x2)×

√
x2 + r2

c dx
∫√R200

2−r2c
0 ρnfw(

√
r2
c + x2) dx

. (2.2)

The host and subhalo density profiles cross at rtidal ∼ 0.03, 0.07, and 0.15 Mpc/h for the

three bins of increasing rc. A rough comparison to the simulation results of [10] shows that

our results are comparable: for their 0.4 < rc < 0.6 Mpc/h bin, the local host density

and subhalo density match at ∼ 0.045 Mpc/h (see Fig. 1 of that work). This is slightly

smaller but close to the tidal radius ∼ 0.07 Mpc/h that we find for subhalos between
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Figure 6: The subhalo profile (solid lines) and background host density (dashed lines) for
each rc bin. The estimated rtidal is the radius where the two density profiles cross.

21



0.3 < rc < 0.6 Mpc/h; exact agreement is not expected since we have not attempted a

comparison with matched host halo masses.

Material at larger radii should be unbound, so we look for correlations beyond rtidal ∼ 0.03,

0.07, and 0.15 Mpc/h, for each of the three rc bins. Comparing these scales to Fig. 4, we

do see correlations well beyond rtidal in each case. We find the S/N using points in the

range rtidal to rc/2 is 11.1, 10.3, and 6.1 corresponding to the three bins of increasing rc.

Thus all show significant detections. This implies that some of the subhalos recently fell

into their hosts and there has not been enough time for unbound material to be torn away,

i.e., tinfall < tdyn, where tinfall is the infall time and tdyn is the dynamical time. In Table 1

we also show the S/N using a wider range of scales rtidal < R < rc, but note that points

close to rc may be subject to several systematics discussed in Section 2.5.1. In the following

section we estimate the dynamical time and compare it to the quenching timescale for the

subhalos.

rc (Mpc/h) S/N

[rtidal, rc/2] [rtidal, rc]

0.1 - 0.3 11.1 14.7

0.3 - 0.6 7.1 8.8

0.6 - 0.9 6.1 6.8

Table 1: Signal-to-noise of the correlations beyond the tidal radius shown in Fig. 4. The
measurement is significant regardless of cluster-centric distance rc.

2.4.2. Dynamical and Quenching Timescales

We can estimate the dynamical time for each subhalo using its distance from the cluster

center r and the host density profile. As in Sec. 2.4.1, we estimate the host density using

the redMaPPer mass richness relation and assume an NFW profile. The dynamical time is

then

tdyn = 2π
√
r3/(GM(< r)) , (2.3)

where M(< r) is the host mass contained within the 3D radius r, which is estimated by

Eq. (2.2). In Fig. 7 we show histograms of the resulting dynamical times, for the three rc
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Figure 7: Distribution of dynamical times of the subhalos for each rc bin. The dynamical
time is estimated using Eq. (2.3). Here we use the redMaPPer relation and assume an NFW
profile to estimate the host mass. It can be seen that the dynamical time is increasing with
rc with the mean value for the outer most bin tdyn ∼ 6 Gyr.
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tdyn < tquench.
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bins. The mean is small for the innermost bin, ∼ 3 Gyr, increasing to ∼ 6 Gyr for the

galaxies farthest from the cluster center. This is expected due to the smaller density at

larger distances from the cluster center.

We next compare these dynamical times to the quenching time determined from SED fits

(see details in Sec. 2.2). In Fig. 8, we show the distribution of tquench using the mean of

the posterior for each subhalo. The distribution peaks at ∼ 6 Gyr, a value greater than the

dynamical times ∼ 3-4 Gyr (see Fig. 7) for subhalos with rc < 0.6 Mpc/h. Thus many of

our subhalos have tinfall < tdyn < tquench, implying that these galaxies ceased star formation

long before being accreted by their hosts.

This would be inconsistent with models of star formation in which these subhalos were

actively forming stars up until the time they fell into their current hosts. In such models,

infall into the cluster leads to stripping of the gas and quenching of star formation. Hence

such models require that tquench < tinfall for a large fraction of our subhalos.

2.4.3. Other Tests

As an additional test of the quenching scenario, we have redone the measurement using the

older half of subhalos in Fig. 8, most of which have tquench > 6 Gyr. The results are shown

in Fig. 9, and again we see strong correlations well beyond the tidal radius. For a more

model-independent test of age we split the subhalos into halves based on color, a proxy for

age since the reddest, deadest subhalos are the ones that ceased forming stars long ago.

In Fig. 10 we show the correlations measured around the “redder” subhalos, defined as those

which are redder than the redMaPPer red sequence model at that redshift. Again we see

strong correlations beyond the tidal radius, for all rc bins. Thus, many of these subhalos

recently fell into their hosts, long after they had ceased forming stars.

We also tested the dependence of our results on the specific galaxy samples by measuring

the auto-correlation of redMaPPer satellites. This gave similar results with correlations

25



10-2 10-1 100

R [Mpc/h]

10-2

10-1

100

N
u
m

b
e
r 

d
e
n
si

ty
 (

M
p
c/
h
)−

2

rc = 0.10−0.30 Mpc/h

younger half
older half

10-2 10-1 100

R [Mpc/h]

10-2

10-1

100

N
u
m

b
e
r 

d
e
n
si

ty
 (

M
p
c/
h
)−

2

rc = 0.30−0.60 Mpc/h

younger half
older half

10-2 10-1 100

R [Mpc/h]

10-2

10-1

100

N
u
m

b
e
r 

d
e
n
si

ty
 (

M
p
c/
h
)−

2

rc = 0.60−0.90 Mpc/h

younger half
older half

Figure 9: Comparison between correlations of older (red circles) and younger (blue triangles)
subhalos, as determined from SED fit results for tquench. Each panel shows results for
subhalos at different distances rc from the host cluster. Subhalos with rc < 0.6 Mpc/h
show correlations well beyond the tidal radius (vertical dashed line). These long-range
correlations are present for both the young and old samples.
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Figure 10: Same as Fig. 9 but showing subhalos split by color: those redder (red circles) and
bluer (blue triangle) than the red sequence model. Since redder galaxies have been quiescent
for longer, these results are similar to the tquench split but less dependent on detailed SED
modeling.
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persisting well beyond the tidal radius. The redMaPPer satellites are dimmer than red-

MaGiC with a cut at L > 0.2L∗ instead of L > 0.5L∗. But redMaPPer also enforces a

spatial selection around the cluster center, which may bias the redMaPPer auto-correlation

for the larger rc bins. For this reason we did not choose the auto-correlation for our fiducial

measurements.

2.5. Discussion

We have shown that redMaGiC galaxies are significantly correlated with redMaPPer satel-

lites, on angular scales exceeding the estimated tidal radii for satellites at small cluster-

centric distances. This result holds even when we subselect the reddest satellites, or those

believed to have been quenched for the longest times. Our measurements can be compared

with the simulation results of Chamberlain et al (2015), and suggest that a significant frac-

tion of the massive satellites in our sample were quenched prior to infall into their host

cluster halos. Future studies with ongoing surveys using the clustering of satellite galaxies

and their weak lensing signal can shed light on galaxy formation models and probe possible

interactions of dark matter. Below, we discuss potential systematics in our measurements,

and then discuss implications for satellite quenching models.

2.5.1. Possible Systematics

First, we discuss possible systematics in our measurement of correlations beyond the tidal

radius. Two effects which we have neglected will become increasingly important at projected

distances ∼ rc, i.e., near and beyond the cluster center. The first is over-subtraction of the

subhalo profile. When we measure correlations around the mirror point (see Sec. 2.3 and

Fig. 3) there will be some positive contribution from the subhalo, the magnitude of which

will become important at scales R ∼ 2 rc when the annulus R contains the subhalo. Note

that this systematic contributes with negative amplitude due to the subtraction and so does

not weaken our case for the detection of subhalo correlations beyond the tidal radius.

A second effect could result from systematic cluster miscentering. If the true cluster cen-
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ter is on average closer to the subhalo than redMaPPer’s most probable center, then the

subtraction of the mirror point signal will imperfectly remove correlations due to the host

cluster. This would contribute most strongly at larger scales R ∼ rc: as seen in Fig 3, the

cluster signal as measured around the opposite point is roughly flat within R ∼ rc/2, then

begins rising to peak at R ∼ rc before decreasing again. Thus residuals of the subtracted

cluster signal could cause a roughly constant systematic below rc/2 and increase in magni-

tude at larger scales. We found no evidence of such a trend in our measurements. Note that

we only use clusters with a center that is both (i) the most likely center for that cluster and

(ii) truly looks like a central: these are galaxies which are bright, red, and near the center of

the spatial distribution of cluster members. See [92] for more information on the redMaGiC

centering filter and [88] for further tests of redMaPPer centering, including comparison to

X-ray centers for a subset of clusters.

Due to imprecise line-of-sight information on galaxy positions, some fraction of the redMaP-

Per members may lie outside the halo. Assuming this interloper component has a constant

spatial density, it will be most important at large rc since the profile of actual cluster galaxies

drops with distance from the cluster center. According to [91], the fraction of such interlop-

ers is estimated to be 6% averaged over the whole cluster. If interlopers were responsible

for much of the signal we detect, the measured angular correlation for neighbors around

redMaPPer galaxies at small rc would be ∼ 16× smaller than the analogous correlation

function at rc � rvir. We do not find this, so conclude that interlopers are not a significant

factor in our analysis.

The previous paragraph discussed the effect of projections of distant interlopers, next we

discuss the effect of two types of less catastrophic projections. First, we measure correlations

with redMaGiC galaxies in 2D projected distance (i.e., the x-axis of Fig. 4 is a projected

quantity). [10] showed that results for subhalo-subhalo correlations in 3D and in projection

are qualitatively similar. For example, in their Figures 3 and 4, they show that 3D and

projected correlations show the same features between different cluster-centric distance
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bins. Thus, we do not worry further about this type of projection effect. Second, we use 2D

cluster-centric bins rc, meaning that each rc bin contains subhalos over a range of larger 3D

distances. In this paper, we have partially accounted for this effect by estimating the average

3D cluster-centric distance via Eq. (2.2), and using that mean 3D quantity to estimate rtidal

and tdyn. In addition, we have carried out a deprojection of our angular correlations for the

two lower rc bins; preliminary results suggest that the long-range correlations persist. We

will present a quantitative comparison of our deprojected correlations with galaxy formation

models in a separate study.

2.5.2. Implications for Models of Galaxy Formation

We have argued that the absence of tidal stripping favors isolated quenching of a significant

fraction massive galaxies, prior to their infall into galaxy clusters. Here we compare our

results to host-quenched fractions predicted by more specific models of galaxy formation.

The model of [114] predicts a strong dependence of the host-quenched fraction with subhalo

stellar mass and host halo mass. Our clusters have mass & 1014M�/h, comparable to the

most massive cluster bin studied by [114]. In Fig. 5 we show our subhalo stellar mass

distributions: all three bins have similar distributions with mean mass ∼ 1011M�, with a

very slight shift to larger stellar mass for larger rc. For this host mass and subhalo stellar

mass, Fig. 10 of [114] indicates that 55% of quiescent satellites quenched as satellites (40%

in the current host and 15% as satellites of a prior host; 45% quenched while isolated).

This estimate appears to be consistent with our findings that a large fraction of redMaPPer

satellites quenched prior to entering their current hosts. It will be interesting, therefore, to

perform the same measurement for satellites with lower stellar masses, where the Wetzel

et al. model predicts nearly ∼ 100% quenched as satellites. Such measurements should be

possible with ongoing imaging surveys like DES, HSC or DECALS, or future surveys like

LSST. Within the range of satellite stellar masses in our data (see Figure 8), we have split

the sample into two with median stellar masses of about 4.6 × 1010 and 1.7 × 1011M�/h.

The results are shown in Fig. 11; it is evident that deeper imaging data that obtains cluster
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satellites with lower stellar mass is needed to explore possible trends.

Another reason it will be interesting to pursue similar measurements for lower-mass galaxies

is that the [114] model requires a delay between the time when star forming satellites fell

into their first host and the time when their star formation began to exponentially decay.

Their Figure 8 shows that this delay time is ∼ 2.5 Gyr for our subhalos. Since our SED fits

imply that tquench ∼ 6 Gyr, the [114] model would predict that first infall occured ∼ 8.5 Gyr

ago (i.e. at z > 1) in order for satellites to be host-quenched. We see no evidence for such

high redshifts of infall. For satellites with M? ∼ 1011M�, a large fraction are predicted to

quench as centrals, so our measurements are not inconsistent with the model’s predictions.

However, if we find similar results for satellites with M? ∼ 1010M�, it will be difficult to

reconcile that behavior with host quenching models like the Wetzel et al. model in which

nearly 100% of objects quenched as satellites. One possible solution to this problem is if

a significant fraction of the red satellites quenched as satellites of previous (smaller) hosts,

rather than their current hosts. For the host-satellite properties that match our data, [114]

estimate that only ∼ 15% of such galaxies quenched as satellites in hosts different than

their current hosts, and it is unclear whether this small fraction would be sufficient to

account for the correlations observed in our sample. We intend to address some of these

open questions in a future study that includes the use of deprojected, 3D correlations of

satellites for quantitative comparisons with theoretical models.
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Figure 11: Projected number density as in Fig. 2, but split by satellite stellar mass: higher
(upper panel) and lower (lower panel) than 1011M�/h .
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CHAPTER 3 : Galaxy-galaxy Lensing1

3.1. Introduction

Weak gravitational lensing refers to the subtle distortions in the shape of images of dis-

tant galaxies by intervening structures along the line of sight. The measurement of cross-

correlation between foreground (lens) galaxy positions and the lensing shear of background

(source) galaxies is referred to as galaxy-galaxy lensing ([109], [6], [27]). The component of

the shear that is tangential to the line connecting the lens and source galaxies are binned in

annuli on the sky centered on lens galaxies to get a measurement as a function of angular

separation, which is a measure of the average, projected, excess mass profile around the

lens galaxies.

Galaxy-galaxy lensing at small scales can be used to infer the mass distribution within

the dark matter haloes where the lens galaxies reside, while at large scales it measures

the galaxy-mass cross-correlation. It has many applications, ranging from fitting Navarro-

Frenk-White (NFW) halo mass profiles ([76]) to constraining large-scale galaxy bias and

cosmological parameters ([7], [64], [74], [58]). Recent surveys such as CFHTLenS ([46],

[31]) have used galaxy-galaxy lensing to study properties of dark matter haloes that host

galaxies ([39], [110], [48]). The galaxy-mass connection has been studied in [100] and [66]

using galaxy-galaxy lensing.

In this work, we introduce methodology of measuring galaxy-galaxy lensing signal from

both Science Verification (SV) and Year one (Y1) data of the Dark Energy Survey (DES).

DES is an ongoing wide-field multi-band imaging survey that will cover 5000 sq. deg. of

Southern sky over five years of observation. We focus on several tests of systematics of our

measurement pipeline and validation of estimating the covariance matrix. The detailed tests

1This work is based on the paper [15], My contribution to the paper was primarily in sections 5.1 and
5.2 about the tests of systematics. This work is also based on the [87], My contribution to the paper was
primarily in section C about the validation of the covariance estimation.
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and validation presented in this work will serve as a foundation for future work relying on

galaxy-galaxy lensing measurements, such as the cosmological analysis and Halo Occupation

Distribution (HOD) analysis.

The plan of this chapter is as follow. In Section 3.2 we present details of the measurement

methodology with our estimator of galaxy-galaxy lensing. Several tests of potential sys-

tematic effects on the measurement are shown in Section 3.3. Section 3.4 describes a set of

log-normal simulations and how it be used to validate our estimation of covariance matrix.

We conclude in Section 3.5.

3.2. Measurement Methodology

Here we describe the details of the tangential shear measurement 〈γt〉. Similarly, we can

measure the cross-component of the shear 〈γ×〉, which can be used as a useful test of possible

systematic errors in the measurement as it can not be produced by gravitational lensing. For

a given lens-source galaxy pair j, we define the tangential (et) and cross (e×) components

of the ellipticity of the source galaxy as

et,j = −Re[eje
−2iφj ], e×,j = −Im[eje

−2iφj ] (3.1)

where ej = e1,j + ie2,j , with e1,j and e2,j being the two components of the ellipticity of the

source galaxy measured with respect to a Cartesian coordinate system with its origin set

on the lens galaxy, and φj being the position angle of the source galaxy with respect to the

horizontal axis of the Cartesian coordinate system. Assuming the intrinsic ellipticities of

individual source galaxies are randomly orientated, we can obtain the mean weak lensing

shear 〈γt/×〉 by averaging the ellipticity measurements for each component over many such

lens-source pairs. However, note that the assumption about the randomness of orientations

of source galaxies can be broken by intrinsic galaxy alignments (IA), which will lead to non-

lensing shape correlations (e.g. [108]), which are included in the modeling of the combined
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probes cosmology analysis. Then:

〈γα(θ)〉 =

∑
j wjeα,j∑
j wj

(3.2)

where θ is the angular separation, α = t or × denotes the two possible components of the

shear, and wj = wlwswe is a weight associated with each lens-source pair, which will depend

on the lens, on the source weight assigned by the shear catalog and on a weight assigned

by the estimator. These estimates need to be corrected for shear responsivity (in the case

of METACALIBRATION shear catalog) or multiplicative and additive bias (in the case

of IM3SAHPE catalog). Also note that in this work we set we = 1 because we are using

the γt estimator, which weights all sources uniformly. Another option would be to choose

an optimal weighting scheme that takes into account the redshift estimate of the source

galaxies to maximize the lensing efficiency, as it is the case of the ∆Σ estimator. In the

context of a cosmological analysis combining galaxy-galaxy lensing and cosmic shear, using

uniform weighting for the sources has the considerable advantage that nuisance parameters

describing the systematic uncertainty of shear and redshift estimates of the sources are the

same for both probes.

In all measurements in this work, we average the shears for galaxy pairs in 20 log-spaced

angular separation bins between 2.5 and 250 arcmin. We use TreeCorr2 ([50]) to compute

all galaxy-galaxy lensing measurements in this work.

3.2.1. METACALIBRATION Responses

In the METACALIBRATION shear catalog ([49], [98]), shears are calibrated using the

measured response of the shear estimator to shear, which is usually the ellipticity eee =

2https://github.com/rmjarvis/TreeCorr
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(e1, e2). Expanding this estimator in a Taylor series about zero shear

eee = eee|γ=0 +
∂eee

∂γγγ

∣∣∣∣
γ=0

+ . . .

≡ eee|γ=0 +RRRγγ + . . . ,

(3.3)

we can define the shear response RRRγ , which can be measured for each galaxy by artificially

shearing the images and remeasuring their ellipticity:

Rγ,i,j =
e+
i − e−i
∆γj

, (3.4)

where e+
i , e

−
i are the measurements made on an image sheared by +γj and −γj , respectively,

and ∆γj = 2γj . In the Y1 METACALIBRATION catalog, γj = 0.01. If the estimator eee is

unbiased, the expected response matrix 〈Rγ,i,j〉 will be equal to the identity matrix.

Then averaging Equation. 3.3 over a sample of galaxies and assuming the intrinsic ellipitc-

ities of galaxies are randomly oriented, the mean shear can be expressed as:

〈γ〉 ≈ 〈RRRγ〉−1〈eee〉 (3.5)

It is important to note that any shear statistic will be effectively weighted by the same

responses. Therefore, such weighting needs to be included when averaging over quantities

associated with the source sample.

Besides the shear response correction described above, in the METACALIBRATION frame-

work, when making a selection on the original catalog using a quantity that could modify

the distribution of ellipticities, for instance a cut in S/N, it is possible to correct for se-

lection effects. This is performed by measuring the mean response of the estimator to the

selection, repeating the selections on quantities measured on sheared images. Following on
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the example of the mean shear, the mean selection response matrix 〈RRRs〉 is

〈RS,i,j〉 =
〈ei〉S+ − 〈ei〉S−

∆γj
, (3.6)

where 〈ei〉S+ represents the mean of ellipticities measured on images without applied shear-

ing in component j, but with selection based on parameters from positively sheared images.

〈ei〉S− is the analogue quantity for negatively sheared images. In the absence of selection

biases, 〈RRRs〉 would be zero. Otherwise, the full response is given by the sum of the shear

and selection response:

〈RRR〉 = 〈RRRγ〉+ 〈RRRS〉 (3.7)

The application of the response corrections depends on the shear statistics that is being

calibrated; a generic correction for the two point functions, including the tangential shear,

which is our particular case of interest, is derived in [98]. In this work we make use of two

approximations that significantly simplify the calculation of the shear responses. First, in

principle we should take the average in Equation. 3.7 over the sources used in each bin of θ,

but we find no significant variation with the angular separation θ and use a constant value.

Therefore, the correction to the tangential shear becomes just the average response over the

ensemble, with no spatial dependence. Second, we assume the correction to be independent

of the relative orientation of galaxies, so that we do not rotate the response matrix as we do

with the shears in Equation. 3.1. Overall, our simplified estimator of the tangential shear

for METACALIBRATION, which replaces the previous expression from Equation. 3.2 is:

〈γt,mcal〉 =
1

〈Rγ〉+ 〈RS〉

∑
j wl,jet,j∑
j wl,j

, (3.8)

summing over lens-source or random-source pairs j and where wl,j are the weights associated

with the lenses.
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3.2.2. IM3SHAPE Calibration

For the IM3SHAPE shear catalog, additive and multiplicative corrections need to be im-

plemented in the following manner, replacing the previous expression from Equation. 3.2:

〈γt,im3shape〉 =

∑
j wl,jws,jet,j∑

j wl,jws,j(1 +mj)
, (3.9)

summing over lens-source or random-source pairs j, where mj is the multiplicative correc-

tion and the additive correction cj has to be applied to the Cartesian components of the

ellipticity, before the rotation to the tangential component, defined in Equation. 3.1, has

been performed. wl,j are the weights associated with the lenses and ws,j the ones associated

with the source galaxies in the IM3SHAPE catalog.

3.2.3. Random Points Subtraction

One advantage of galaxy-shear cross-correlation over shear-shear correlations is that additive

shear systematics (with constant γ1 or γ2) will average to zero in the tangential coordinate

system. However, this cancellation only occurs when sources are distributed isotropically

around the lens and additive shear is spatially constant, two assumptions that are not

accurate in practice, especially near the survey edge or in heavily masked regions, where

there is a lack of symmetry on the distribution of source galaxies around the lens. To

remove this additive systematics robustly, we also measure the tangential shear around

random points: such points are randomly distributed with neither net lensing signal nor

clustering, yet they sample the survey edge and masked regions in the same way as the

lenses, and they are with high number density to make sure not introducing considerable

shape noise at small scales. Our full estimator of tangential shear can then be written as:

〈γα(θ)〉 = 〈γα(θ)Lens〉 − 〈γα(θ)Random〉 (3.10)

Besides accounting for additive shear systematics, removing the measurement around ran-
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dom points from the measurement around the lenses has other benefits, such as leading to

a significant decrease of the uncertainty on large scales, as was studied in detail in [104].

This measurement, using a set of random points with 10 times as many points as lens

galaxies, is shown in Fig. 12. Even though this is a correction included in the measurement,

it is nonetheless useful to confirm that it is small at all scales used in the analysis. The

measurement tests the importance of systematic shear which is especially problematic at the

survey boundary, and allows us to compare the magnitude of the systematic shear with the

magnitude of the signal around actual lens galaxies. We find the tangential shear around

random points to be a small correction, consistent with the null hypothesis, as it is seen in

the left panel of Fig. 13.

Even though the random point subtraction is a mild correction to the signal, it has an

important effect on the covariance matrix. Subtracting the measurement around random

points removes a term in the covariance due to performing the measurement using the

overdensity field instead of the density field, as it was studied in detail in [104]. As seen

in Fig. 13, we observe this effect on scales larger than 20 arcmin., where the covariance is

no longer dominated by shape noise. When subtracting the measurement around random

points, we detect both a significant decrease on the uncertainty of the tangential shear (top

right panel) and a reduction of the correlation between angular bins (lower panels).

Finally, another argument that strongly favors applying the random points subtraction is

the following. In Sec. 3.4 we validated the jackknife method using log-normal simulations,

showing that the uncertainties on the tangential shear are compatible when using the jack-

knife method and when using the true variance from 1200 independent FLASK simulations

(Fig. 17). We have performed this comparison both with and without the random point

subtraction, finding that where is only agreement between the different methods when the

tangential shear around random points is removed from the signal.
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3.3. Systematic Tests

In this section, we demonstrate methods for testing different kinds of systematics in galaxy-

galaxy lensing measurements. All figures shown in this section are using Dark Energy

Survey (DES) Science Verification (SV) data. In order to quantify the comparison of the

data tests in this section with the null hypothesis, we compute the null χ2 for each of them

in the following way:

χ2
null =

∑

i,j

yT(Cstat)y (3.11)

where yi corresponds to γi, and Cstat is the corresponding covariance matrix. A list of null

χ2 value for each of the tests can be found in Table 2. While χ2 is a helpful statistic, it

is possible that two tests, each with the same χ2 values, could indicate different levels of

systematic error. Thus, we also perform a single parameter, constant fit to the data for

each test.

Lens NGMIX IM3SHAPE
Test redshift χ2/ndf Systematic uncertainty χ2/ndf Systematic uncertainty
Cross-component Medium 8.3/13 (6.7± 5.1)× 10−5 10.9/13 (6.0± 7.8)× 10−5

PSF leakage Medium 16.4/13 (0.1± 3.5)× 10−5 13.3/13 (1.5± 1.1)× 10−5

Random points Medium 16.4/13 (0.4± 2.8)× 10−5 7.2/13 (2.0± 3.6)× 10−5

Flip lens-source High 12.0/13 (0.6± 1.8)× 10−5 8.7/13 (1.2± 1.9)× 10−5

Table 2: Summary of all test results described in Section 3.3. We show reduced χ2 and
constant fit for all tests.

3.3.1. Cross Component and PSF Leakage

In the cross component test, we measure the stacked lensing signal of γ×(θθθ) defined in

Equation. 1.20, which describe the shear component at 45◦ to the axis that is tangential to

the line connected the lens and source galaxy. Since gravitational lensing can only generate

the tangential component γt of the shear, the cross component should be compatible with

zero if there is no systematic error in the shape measurement.

The observed shapes can be seen as convolutions of the true shape and the PSF, so it

is important for any shape measurement pipeline to accurately model the PSF pattern.
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Figure 14: Cross component of the shear(purple) and measured tangential shear signal
using interpolated PSF at source positions(red). In the white region, both tests pass with
constant fits consistent with zero. The PSF leakage result shown here is multiplied by 100.

However, this process is imperfect: based on tests in [51], ∼ 1 per cent of the PSF shape

may ’leak’ into the measured galaxy shape for NGMIX shear pipeline ([97]). To test the PSF

leakage, we measure the stacked lensing signal of tangential shear of the PSF interpolated

to the source galaxy locations.

In Fig. 14, we show the results for the both tests described above. They are measured

around the DES SV redMaGiC galaxies, and are consistent with a constant fit equal to

zero.

3.3.2. Random Point Shear and Flip Lens-source Sample

The signal around random points is subtracted in our estimator of galaxy-galaxy lensing

defined in Eq. 3.10, in order to remove additive systematics near the edge of the survey. It
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Figure 15: Tangential shear signal around random points(purple) and tangential shear of
foreground sources measured around background lenses (red). In the white region, both
tests pass with constant fits consistent with zero.

is nonetheless useful to confirm this correction is small and to compare its magnitude to

the magnitude of the signal around actual lens galaxies.

Only background source galaxies will be lensed by the foreground lens galaxies. However,

for photometric survey like DES, in the presence of errors in redshift estimation, some low

redshift sources will mistakenly be put behind the lenses, and vice versa. To test how

bad the photo-z error can affect our galaxy-galaxy lensing measurement, we measure the

tangential shear by using sources with lower redshift (0.2 < zS < 0.5) and lenses at higher

redshift (0.5 < zL < 0.8).

In Fig. 15, we show the results for the both tests described above. We find they are consistent

with the null hypothesis.
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3.4. Covariance Estimation and its Validation

3.4.1. Log-normal Simulation

Log-normal random fields are widely used in cosmology to model the distribution of matter

in the Universe. It has been shown to accurately reproduce two-point statistics such as

galaxy clustering and galaxy-galaxy lensing on sufficiently large scales. [19] was among the

first to study how usual statistic quantities would behave if the density fluctuations were

described by log-normal random field. [47] showed that the log-normal approximation yields

realistic covariances in N-body simulations of weak lensing. Moreover, it is significantly less

expensive in terms of computational time to generate log-normal mock catalogs than to

perform N-body simulations.

In this work, we use the publicly available code FLASK (Full-sky log-normal Astro-fields

Simulation Kit, [115]), to generate mock catalogs for both lens galaxies and source fields.

The maps are pixelated on a HEALPix grid with resolution set by an Nside parameter

of 4096, which corresponds to pixel size of 0.73 arcmin2. We have generated 150 full-sky

shear and density catalogs. For each full-sky mock, we mask out regions of the grid to then

produce 8 DES Y1 footprint. After matching the number density of the mock tomographic

bins to those of the data and adding shot noise, we get a total of 1200 mock surveys that

mimic our observed sample.

3.4.2. Validate Jackknife Covariance

Galaxy-galaxy lensing measurements are generally correlated across angular bins. The

correct estimation of the covariance matrix is crucial not only in the usage of these mea-

surements for cosmological studies but also in the assessment of potential systematic effects

that may contaminate the signal. While a validated halo-model covariance is used for the

DES Y1 multiprobe cosmological analysis [56], in this work we use jackknife (JK) method

to get the covariance matrices. A set of 1200 log-normal simulations, described in Sec-

tion 3.4.1, is used to validate the jackknife approach in the estimation of the galaxy-galaxy
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lensing covariances. We estimate the JK covariance using the following expression:

CJK
ij (γi, γj) =

NJK − 1

NJK

NJK∑

k=1

(γki − γ̄i)(γkj − γ̄j) (3.12)

where the complete sample is split into a total of NJK regions, γi represents either γt(θi) or

γx(θi), γ
k
i denotes the measurement from the kth realization and the ith angular bin, and

γ̄i is the mean of NJK resamplings.

Jackknife regions are obtained using the kmeans3 algorithm run on a homogeneous random

point catalog with the same survey geometry and, then, all split in NJK = 100 subsamples.

Specifically, kmeans is a clustering algorithm that subdivides n objects into N groups (See

Appendix B in [105] for further details).

In the upper panels of Fig. 16 we present the different covariance estimates considered in this

work, namely the jackknife covariance in the data (Data JK), the mean of 100 jackknife

covariances measured on the log-normal simulations (FLASK JK) and the true covariance

from 1200 log-normal simulations (FLASK True), for a given lens-source redshift bin

combination (0.3 < zl < 0.45 and 0.63 < zs < 0.90). On the lower panels of this figure,

we show the differences between them normalized by the corresponding uncertainty. The

lower left panel shows the distribution of these differences and its agreement with a normal

distribution with µ = 0 and σ = 1, as expected from a pure noise contribution, using all

possible lens-source bin combinations, and the lower middle and right panels show the same

quantity element-by-element for the redshift bin combination used in the upper panels.

The uncertainty on the data jackknife covariance comes from the standard deviation of the

jackknife covariances measured on 100 log-normal simulations. The uncertainties on the two

other covariance estimates are significantly smaller; in the mean of 100 jackknife covariance

it is
√
N times smaller, where N = 100 in our case. On the other hand, the uncertainty

on each element of the true covariance from 1200 log-normal simulations is calculated using

(σCi, j)
2 = (CiiCjj + CijCij)/(N − 1), where N = 1200 in our case. The lower left panel

3https://github.com/esheldon/kmeans_radec
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Figure 16: Correlation matrices obtained from the jackknife method on the data (top-left
panel), from the mean of jackknife covariances using 100 FLASK realizations (top-middle
panel) and from the 1200 log-normal simulations FLASK (top-right panel), for an example
redshift bin (0.3 < zl < 0.45 and 0.63 < zs < 0.90). In the bottom-middle and bottom-right
panels, we show the differences between the covariance matrices shown in the upper panels
normalized by the uncertainty on the differences, for the same example redshift bin. On
the bottom-left panel, we display the normalized histograms of these differences (20×20 for
each covariance, corresponding to 20 angular bins) for all the 5× 4 lens-source redshift bin
combinations, compared to a Gaussian distribution centered at zero with a width of one.
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Figure 17: Comparison of the diagonal elements of the covariance obtained from the jack-
knife method on the data (Data JK), from the mean of jackknife covariances using 100
FLASK realizations (FLASK JK) and from the 1200 log-normal simulations FLASK
(FLASK True), for all the lens-source combinations.

shows an overall good agreement between the covariance estimates, even though the larger

tail of the orange histogram with respect to a normal distribution indicates a potential

slight overestimation of the covariance obtained with the jackknife method.

In Fig. 17 we compare the diagonal elements of the covariance for the 20 lens-source redshift

bin combinations, obtaining good agreement for all cases and scales. As in Fig. 16, the

uncertainty on the data jackknife covariance comes from the standard deviation of the

jackknife covariances measured on 100 log-normal simulations. The uncertainties on the

two other error estimates are also shown on the plot, but are of the same order or smaller

than the width of the lines.
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Overall, we have validated the implementation of the jackknife method on the data by com-

paring this covariances to the application of the same method on 100 log-normal simulations

and to the true covariance obtained from 1200 log-normal simulations, and finding good

agreement among them, both for the diagonal and off-diagonal elements.

3.5. Conclusions

Galaxy-galaxy lensing is one of the key ingredients in DES cosmology analysis. This cross-

correlation is expected to have lower systematic uncertainties than the shear auto-correlation

as additive errors in the shear do not contribute at lowest order. However, a number of

sources of systematic uncertainty must still be tested for and quantified.

In this work, we focus on ways to validate galaxy-galaxy lensing measurements made with

DES data. To that end, we have performed a number of null tests on the DES SV shear

catalogs and photometric redshifts. First, we show that the cross-component of the shear is

compatible with zero, which should be the case if the shear is only produced by gravitational

lensing. Second, we characterize the PSF leakage by measuring tangential shear signal

using interpolated PSF at source positions. Next, we show that the tangential shear signal

measured by stacking on random points is consistent with null hypothesis up to a certain

scale, which validates the usage of this correction to remove additive systematics near the

edge of the survey. Finally, we test how bad the scatter in photometric redshift can affect

the galaxy-galaxy lensing measurements by measuring tangential shear of foreground source

galaxies around background lens galaxies. We show that the DES SV data passed all our

tests.

In addition to the systematics testing, we estimate the covariance matrices for the DES

Y1 galaxy-galaxy lensing measurement using the jackknife approach. We validate the es-

timation using a suite of log-normal mock surveys. We compare the jackknife covariance

in the data, the mean of 100 jackknife covariances measured on the log-normal simulations

and the true covariance from 1200 log-normal simulations. We find good agreement among
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them, both for the diagonal and off-diagonal elements. In Section 3.2.3, we show that the

random point subtraction can remove a term in the covariance which is significant on scales

larger than 20 arcmin.

The detailed tests of measurement systematics and validation of covariance estimation are

not just a crucial foundation for other work relying on tangential shear measurements with

DES data, but also serve as a useful pipeline for validating future galaxy-galaxy lensing

measurements.
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CHAPTER 4 : Void Lensing

4.1. Introduction

Cosmic voids are the most underdense regions that constitute the dominant volume frac-

tion of the Universe. Unlike galaxies clusters - which are strongly affected by non-linear

gravitational effects and galaxy formation physics, cosmic voids are alternative probes for

constraining cosmological parameters ([61], [106], [42]). Meanwhile, the intrinsic underdense

environments of cosmic voids make them ideal testbeds for modified gravity theories. For

example, [11] showed that chameleon models predict the fifth force is repulsive and stronger

inside voids, and the abundance of large voids in modified gravity can be much greater than

in ΛCDM. [4] suggested that lensing by voids is a promising tool to test modified gravity

theories.

However, ‘generic low-density regions in the Universe’ is far from a precise definition of

cosmic voids. For example, there is no commonly accepted way to determine the boundary

of such regions. Thus, a considerable number of void finding algorithms, using different

void definition with different tracers, exist in the literature. For example, [81] introduced

a method to find voids by identifying spherical volumes where the overall density contrast

satisfies a particular threshold. Another series of popular methods involve Voronoi tessella-

tion combining with watershed transform ([85], [77], [107]). And most recently, void finders

which identify circular underdensities in 2D projected galaxy map are widely used in the

lensing studies of voids ([13], [95]). There are literatures compare properties of voids in

different void finders: [18] compared a total of 13 void finders identifying voids from Mil-

lennium simulation, while [9] compared 5 void finders focusing on their potential power to

test a particular class of modified gravity theory - chameleon f(R) gravity.

Most of the above void finders were applied to simulations where the precise 3D positions

were available, or galaxy survey data with spectroscopic redshifts (spec-z). However, spec-
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troscopic surveys like 2dF ([20]) or BOSS ([24]) are expensive in terms of time. The resulting

galaxy catalogs are usually smaller than the product of photometric surveys and also may

suffer from selection effects, incompleteness and limited depth. Conversely, photometric

surveys like KiDS ([25]) or DES([105]), which are more efficient, bias free, more complete

and deeper, can only provide photometric redshifts (photo-z) that are less precise. Thus, in

order to use photo-z galaxies as tracers, the dispersion along the line-of-sight must be dealt

with very carefully. The void finder in [95] circumvented this issue by splitting galaxies

into tomographic photometric redshift bins with width larger than the photo-z scatter. In

this work, we study how photo-z scatter affects 3D watershed type of void finder in both

void-galaxy two-point correlation and lensing measurements.

Recent work by [86] showed that in hydrodynamical simulation the void-tracer cross-correlation

can be described by a linear bias relation: the tracer-density contrast around voids can be

related to the void matter-density profile by a multiplicative constant that coincides with

the linear tracer bias from theoretical calculation. Thanks to the state of art Dark Energy

Survey Year 1 (DES Y1) shear catalog ([49], [98]), we get the lensing signal by both 2D and

3D (VIDE) voids with heretofore highest significance. This enable us to test the linearity

of tracer bias around voids by comparing the lensing and galaxy-density profiles.

In Section 2 we describe the data and simulation used in this work. In Section 3 we briefly

introduced both 2D and 3D void finding algorithms. Section 4 explains our measurement

methods for both galaxy-density and lensing profiles. Section 5 presents our measured

signal, comments on how photo-z scatter affects the 3D void finder. In Section 6, we make

the comparison of profiles in order to test the linearity of tracer bias. Finally, we discuss

our results in Section 7.

4.2. Data and Simulations

The Dark Energy Survey is a photometric survey that will cover 5000 sq. deg. of the

southern sky to a depth of r > 24, imaging about 300 million galaxies in 5 broadband filters
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(grizY) up to redshift z = 1.4. In this work, we use data from a large contiguous region

of 1321 sq. deg. of DES Year 1 observations, reaches a limiting magnitude of ≈ 23 in the

r-band (with a mean of 3 exposures out of the planned 10 for the full survey).

4.2.1. Void Tracer Galaxies: RedMaGiC

The tracer galaxies used to identify voids in this work is a subset of the DES Y1 Gold Catalog

selected by RedMaGiC ([90]), an algorithm used to select a sample of luminous red galaxies

(LRGs) with excellent photo-z performance (with a median bias (zspec − zphoto ≈ 0.5%),

and a scatter of σz/(1+z) = 0.0166). The RedMaGiC algorithm select galaxies above some

luminosity threshold based on how well they fit a red sequence template which calibrated

using redMaPPer ([91]) and a subset of galaxies with spectroscopic redshifts. The cutoff in

the goodness of the fit to the template is imposed as a function of redshift and adjusted

such that a constant comoving density of galaxies is maintained.

4.2.2. Lensing Source Catalog: METACALIBRATION

METACALIBRATION ([49], [98]) is a recently developed method to accurately measure

weak lensing shear without using any prior information about galaxy properties or calibra-

tion from simulations. The method involves distorting the image with a small known shear,

and calculate the response of a shear estimator to that applied shear. It can be applied to

any shear estimation pipeline. For the catalog used in this work, it has been applied to the

NGMIX shear pipeline ([97]).

4.2.3. Simulation: MICE

Aside from the data catalogs presented above, the RedMaGiC algorithm has also been run

on a mock catalog from MICE ([21], [35]) simulation. The MICE Grand Challenge (MICE-

GC, [36]) is an all-sky lightcone N-body simulation using 40963 dark-matter particles in

a (3Gpc/h)3 comoving volume, and assuming a flat concordance ΛCDM cosmology with

Ωm = 0.25,ΩΛ = 0.75,Ωb = 0.044, ns = 0.95, σ8 = 0.8 and h = 0.7. The galaxy mock
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catalog includes extensive galaxy and lensing properties for ∼ 200 million galaxies over

5000 sq.deg. up to a redshift z = 1.4.

4.3. Void Finders

In the following, we introduce two void finding algorithms that will be applied to the same

set of data used in this work. One is to identify voids in 2D redshift slices, the other works

in 3D.

4.3.1. 2D Voids

We are using the same 2D void finding algorithm as in [95], which is similar to that of [13].

The void finder works by searching for underdensities in 2D galaxy fields, which constructed

from projecting galaxies onto redshift slices. The motivation for using thick(100 Mpc/h)

redshift slices is to minimize the effects of photo-z scatter.

Basically, the algorithm can be described by the following steps:

1. It projects tracer galaxies in a redshift slice of some thickness onto a HEALpix ([40])

map.

2. For each slice, it computes the mean tracer density in the map, and convert the tracer

density map to a density contrast map. Then it smooths the density contrast map

with a Gaussian filter.

3. For a particular slice, it starts with the most underdense pixel in the smoothed map

by considering the pixel as the first void center. Then it grows a circular shell around

that pixel until the density in the shell reaches the mean density.

4. All pixels within the circular shell are removed from the list of potential void centers.

Repeat the previous step until all pixels which are below some density threshold have

been removed (assigned to a void).

5. Pruning the resulting void catalog by joining voids in neighboring slices that are
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angularly close.

4.3.2. 3D VIDE Voids

To identify voids in 3D, we use the publicly available void finder VIDE([107]). VIDE is a

wrapper for ZOBOV ([77]), and it provides a functionality for identifying voids from real

observation while ZOBOV was originally intended for void-finding in simulation.

Basically, the algorithm can be described by the following steps:

1. Assign each tracer a cell using a Voronoi tessellation technique. It guarantees that a

cell assigned to a tracer is the region which is closer to that tracer than to any other

tracer. Thus the inverse of the volume of a cell is an estimator of density in that sell.

2. Identify the density minima in the density field established in step 1. A density

minima is a Voronoi cell with a density lower than all its adjacent cells.

3. Starting from a density minima, join together adjacent cells with increasing density

until no surrounding higher density cell can be found. The resulting groups are called

basins.

4. A watershed transform is performed to join together basins in order to form larger

voids. The ridge between basins needs to be lower than 20% of the mean density of

the Universe.

5. The void-center is defined as the volume-weighted barycenter, and the effective radius

of the void is computed from the total volume and spherical shape assumption.

4.3.3. Final void catalogs

Applying the void finding algorithms on the DES Y1 redMaGiC catalog, we find a total

of 533 2D voids and 7387 3D VIDE voids. Figure. 18 shows the void radius distribution

for both void catalogs. We divide each void catalog into 3 subsamples based on the void

radius: for 2D voids we define three bins Rv = 20 − 40 Mpc/h, Rv = 40 − 60 Mpc/h, and
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Rv = 60− 120 Mpc/h, each bin of increasing Rv has 291, 121, and 85 voids. For 3D VIDE

voids we also define three bins Rv = 10−20 Mpc/h, Rv = 20−30 Mpc/h, and Rv = 30−60

Mpc/h, each bin of increasing Rv has 3555, 2902, and 918 voids.

4.4. Methodology

With the void catalogs constructed from the algorithms described earlier, we are ready to

measure the tangential shear as well as the galaxy density contrast around these voids. By

measuring the lensing signal, we not only can validate the void finding algorithms but also

be able to compare these algorithms more fundamentally: probing the underlying mass

profile of the detected voids.

In this section, we present our procedure of lensing measurement, covariance estimation,

and the observables for galaxy density contrast.

4.4.1. Lensing measurements

The excess surface mass density ∆Σ is defined as

∆Σ(R/Rv) = Σ(R/Rv)− Σ(R/Rv) = Σcritγt(R/Rv) (4.1)

where Σcrit is the critical surface mass density describing the lensing strength

Σcrit =
c2

4πG

DA(zS)(1 + zL)−2

DA(zL)DA(ZL, ZS)
(4.2)

where zL and zS are the lens and source redshifts, respectively. And we have Σ−1
crit(zL, zS) =

0 for zS < zL. All the distances are in comoving units and a flat ΛCDM with Ωm = 0.3 is

assumed. Following the method in [64], our stacked lensing observable is given by

∆Σk(R/Rv; zL) =

∑
j [wjγk,j(R/Rv)Σcrit,j(zL, zS)]∑

j wj
(4.3)
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Figure 18: Distribution of comoving void radius of the DES Y1 void catalogs. The upper
panel shows the 2D voids identified using redshift slices of thickness 100 Mpc/h, and the
lower panel shows the 3D VIDE voids. The vertical dashed lines corresponding to the cuts
we used in this work to divide our void samples.
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where k denotes the two possible components of the shear: the tangential and cross com-

ponents, the summation
∑

j runs over all void-source pairs in the radial bin R/Rv, and the

optimal weight for the j-th galaxy is given by [100]

wj =
[Σ−1

crit,j(zL, zS)]2

σ2
shape + σ2

m,j

(4.4)

Here σshape is the intrinsic shape noise for each source galaxy, and σm,j is the shape mea-

surement error.

Note that for the DES Y1 data, we are also using the MetaCALIBRATION shear catalog

([49], [98]), so we are applying the response corrections to the shear statistics as described

in section 3.2.1.

4.4.2. Covariance estimation

Due to the small number of voids in the catalogs (especially in the 2D void catalog), we

perform a void-by-void jackknife in the same way as in [95]: we perform the measurement

multiple times with each void omitted in turn to make N (the number of voids in our sample)

jackknife realizations. The covariance of the measurement is thus given by [78]:

C[∆Σi,∆Σj ] =
N − 1

N
×

N∑

k=1

[(∆Σi)
k −∆Σi][(∆Σj)

k −∆Σj ] (4.5)

where (∆Σi)
k denotes the measured value from the k-th JK realization and the i-th radial

bin, and the mean value is

∆Σi =
1

N

∑

k=1

N(∆Σi)
k (4.6)

4.4.3. Galaxy density contrast

People have investigated the linearity of tracer bias around voids in simulations ([86]). They

found the tracer-density profile of voids can be related to their matter-density profile by

a single number which coincides with the linear tracer bias extracted from the large-scale
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auto-correlation function and from theoretical calculation.

Since our void lensing results are with pretty high signal-to-noise ratio, it would be inter-

esting to test this linearity (or constrain the scale of the linear regime) of tracer bias in real

data.

In [86], they measure the 3D overdensity of tracers around void centers by

ξ3D(r) =
nvt(r)

〈nt〉
− 1 (4.7)

In real observations, especially for photometric surveys, we don’t have precise information

along the line-of-sight direction. One way to bypass this is: instead of measuring the 3D

correlation function; we can project all tracers along the line of sight and measure the 2D

correlation function. And equation (4.7) thus can be written as:

ξ2D(rp) =
Σvt(rp)

〈Σt〉
− 1 (4.8)

where Σvt is the measured 2D number density of tracers around voids and 〈Σt〉 is the mean

number density of tracers.

Cosmic voids are extended structures typically with radius Rv greater than 10 Mpc/h, and

our measurements go as far as a few Rv. According to [86], as the void radius surpasses

a critical value, the estimated bias bslope stabilizes asymptotically to a constant value. So

we are potentially more interested in larger voids. Thus we need to be very careful dealing

with voids near the survey edge since no galaxies are observed beyond the boundary.

For uniformly-distributed 2D points, the correlation function is zero. Thus we can use

a random catalog generated by applying the same survey mask as the tracer catalog to

‘normalize’ the 2D number density of tracers. Meanwhile, we make sure the mean density

is equal to the number density of random points around those voids. That is, we apply a
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Figure 19: Measured ‘2D’ overdensity of RedMaGiC galaxies around 2D voids in DES Y1
data with Rv = 60 − 120 Mpc/h. The error bars are 1σ jackknife errors calculated by
omitting one single void each time.

Davis & Peebles estimator ([23]) and Equation 4.8 becomes:

ξ2D(rp) =
Nr

Nt

Σvt(rp)

Σvr(rp)
− 1 (4.9)

where Nt is the size of tracer sample, Nr is the size of random sample, and Σvr(rp) is the

projected 2D number density of random points around voids.

For 2D voids in DES Y1 data with Rv = 60 − 120 Mpc/h (85 voids are of this size), the

result is shown in Fig. 19. And we also perform the 2D measurement for 3D watershed

voids (918 voids are of this size). The result for Rv = 30 − 60 Mpc/h sample is shown in

Figure 20
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Figure 20: Measured ‘2D’ overdensity of RedMaGiC galaxies around VIDE voids on DES
Y1 data with Rv = 30 − 60 Mpc/h. The error bars are 1σ jackknife errors calculated by
omitting one single void each time.
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Another widely used estimator for measuring the two-point correlation function and can

incorporate the edge-correction is the Landy & Szalay estimator ([59]), which are shown to

have the best noise properties, writing in the void case:

ξ2D(rp) =

NvrNr

NvNt
Σvt(rp)− 2Nvr

Nv
Σvr(rp) + Σvrr(rp)

Σvrr(rp)
(4.10)

where Σvrr(rp) is the projected 2D number density of random-void and random-point pairs.

The randomized void catalog can be produced such that it mimics the Rv and redshift

distribution, and follows the same survey mask (see Appendices C in [95] for further infor-

mation).

We implement the Landy & Szalay estimator for the 3D VIDE voids in MICE2 simula-

tion. Figure 21 is a comparison of two estimators. It turns out they agree quite nicely.

Thus we stick to Equation 4.9 for all our later galaxy profile measurements because it is

computationally easier and the randomized void catalog is not needed.

4.5. Results

In this section, we present our measured tangential shear signal of VIDE voids in both

MICE simulation and DES Y1 data. We show the lensing results of 2D voids but just in

DES Y1 data. We comment on how photo-z scattering affects the void identification using

the results from simulation.

4.5.1. Test effects of photo-z scattering in simulation

To validate our procedure, and also test how the uncertainty in the redshift estimation

affects the void finding algorithms, we first perform the void lensing measurements on

MICE2 simulation. Figure 22 shows the lensing profile of a subset of 3D VIDE voids

(Rv = 30 − 60 Mpc/h) which use MICE2 RedMaGiC high density sample as tracers. The

cross component is strictly consistent with zero at all scale as we expected.

In the simulation, we know the precise 3D information. So we can also run the void finding
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Figure 21: Compare the measured ‘2D’ overdensity of RedMaGiC galaxies around VIDE
voids on MICE2 simulation using Davis & Peebles and Landy & Szalay estimators.
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Figure 22: Lensing profile for VIDE voids traced by MICE2 RedMaGiC high density sample.
This subsample of voids is with Rv ranging from 30− 60 Mpc/h
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algorithms based on the true redshifts of the tracer galaxies. We call the resulting catalog

the ‘spectroscopic’ void sample. Then we repeat the lensing measurement on it. Figure 23

shows a comparison of lensing profiles of voids identified by tracers with photometric and

true redshifts. It can be seen the two tangential profiles are quite different: the signal for

photometric voids is actually much stronger! One possible explanation is: in the photometric

void sample, the uncertainty of positions of tracers is only in the line-of-sight(LOS) direction.

This ‘smearing’ of tracers makes the 3D watershed void finder more likely to pick out voids

that are elongated along the LOS, which are having stronger lensing signal. In order to

testify our guess, we compare the galaxy density contrast profiles for these two void samples,

which is shown in Fig 24. Indeed we can see the photo-z voids are emptier in terms of tracers

within the cylinder along the LOS, which can cause more negative lensing signal. Thus we

come down to a interesting conclusion: for a void finder that works in 3D, photo-z scattering

can potentially bias the identified void sample, which results in a boosting of lensing signal.

4.5.2. Tangential shear profiles in data

Figure 25 shows the stacked lensing profile around 2D voids in DES Y1 data. The significant

negative tangential component indicates these voids are indeed underdense regions in the

universe. It is also evident that two dips exist, which is a sign that this sample is mixing

up different void types.

We further divide our 2D void sample into three void radius bins. Their lensing profiles are

shown in Figure 26. The negative tangential components are significant in all 3 Rv bins.

The 2-dips feature is most evident in the largest void bin. This fact may imply a scenario

that merging is an on-going process in larger voids.

Figure 27 shows the lensing profiles for 3D VIDE voids in DES Y1 data. Since the total

number of identified 3D voids is much greater than 2D voids, the signal-to-noise ratio for

VIDE samples are even higher.
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Figure 23: Test how the scattering of tracer redshift affects the lensing profiles of VIDE
voids on MICE2 simulation. The black points are the tangential signal for photometric
voids and the red points are for the spectroscopy voids.
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Figure 25: Stacked lensing profile of 2D voids in DES Y1 data. The black points are
the tangential components and the red crosses are the cross components. The errorbars
represent 1σ jackknife errors. The cross components are consistent with null hypothesis.
The tangential components are significantly negative imply the detected 2D voids are indeed
correspond to the underdense regions in the matter field.
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Figure 26: Lensing profiles for 2D voids in DES Y1 data, binning by void radius Rv.
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Figure 27: Lensing profiles for VIDE voids in DES Y1 data, binning by void radius Rv.
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4.6. Test of Linearity

[86] measured both stacked overdensity profiles of tracer galaxies and matter particles

around voids in a hydrodynamical simulation. They found that the tracer profile can be

linked to the matter profile of voids with a simple linear relation, and the slope coincides

with the linear tracer bias estimated from theoretical calculation. In observation, we can

only infer the overall mass distribution from stacked lensing signal. In what follows, we

present our formalism and show a qualitative test of this linear relation with voids found

in DES Y1 data.

4.6.1. Observables and theory validation

From the Equation.12 in [86]:

nvt
〈nt〉

− 1 = bslope(
nvm
〈nm〉

− 1) + coffset (4.11)

where nvt is the measured 3D tracer-density profiles around voids, 〈nt〉 is the mean 3D

tracer density, nvm is the measured 3D matter-density profile around voids, 〈nm〉 is the

mean 3D matter density of the Universe, and bslope and coffset are the two free parameters

to be fitted. They found that the fitted value of coffset is always consistent with zero and

for sufficiently large voids bslope = linear bias. To incorporate this equation with our 2D

observables, we can first perform an Abel transform on the 3D quantity ξvt = nvt
〈nt〉 − 1:

ξ2D,vt(rp) = 2

∫ ∞

rp

ξvt(r)
r

(r2 − r2
p)

1/2
dr (4.12)

where rp is the projected distance from the void center, ξ2D,vt(rp) is the projected 2D

number density profile of the tracer around voids. From Equation 4.11, we know ξvt(r) =
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bslopeξvm(r). We can substitute it into Equation 4.12:

ξ2D,vt(rp) = 2

∫ ∞

rp

bslopeξvm(r)
rdr

(r2 − r2
p)

1/2

= 2bslope

∫ ∞

rp

ξvm(r)
rdr

(r2 − r2
p)

1/2

= bslopeξ2D,vm(rp)

(4.13)

where the bslope can be taken out from the integral since it does not depend on r.

In practice, it could be hard to get the 2D mass profile Σ directly from lensing ∆Σ in a

model independent way. However we can do this comparison in an opposite way. We convert

the galaxy profile to a ‘differentiate’ galaxy profile and compare it with lensing ∆Σ directly.

Since ∆Σ(R) = Σ(< R)− Σ(R), we can define an operator ∆ such that ∆(Σ) = Σ̄− Σ. It

is easy to show:

∆(bΣ) = bΣ− bΣ = b∆(Σ)

∆(Σ + c) = Σ + c− (Σ + c) = Σ̄− Σ = ∆(Σ)

where b and c are constants. This operator can be applied to Equation 4.13

∆Σg(rp) ≡ ∆(ξ2D,vt(rp)) = bslope∆(ξ2D,vm(rp))

= bslope∆(
Σ(rp)

〈Σ〉 − 1)

= bslope
∆Σ(rp)

〈Σ〉

(4.14)

Thus we show that the linear relation between the 3D overdensity profiles (Equation 4.11)

which has been found in the simulation should also hold for the 2D differentiate profiles

∆Σ and ∆Σg, where the galaxy profile ∆Σg is computed by interpolating the measured 2D

tracer overdensity profile ξ2D,vt(rp) (Equation 4.9) over the projected distance from the void

center, and then apply the ∆ operator introduced earlier. Our final data vector consists of

both lensing profile ∆Σ and galaxy profile ∆Σg. We can estimate its covariance using a
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30 − 60 Mpc/h identified in the MICE simulation. The ratio fitting was performed by
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errors. The first data point of ∆Σg has been fixed to equal to zero.

void-by-void Jackknife method introduced in Section 4.10.

We then calculate the ratio of the two profiles. Since both of them are noisy quantities,

instead of taking the ratio directly and applying a constant fitting, which is potentially

biased, we use an MCMC fitting to fit for a constant β and a vector ααα simultaneously such

that:

β ∗ αi = ∆Σg,i

αi = ∆Σi

(4.15)

Then the β is simply the ratio
bslope
〈Σ〉 and αi are just a set of nuisance parameters to be

marginalized over.
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We first run this pipeline on 3D VIDE voids identified in the simulation. In Figure 28, we

show both galaxy profile ∆Σg and the fitted β multiplying the lensing profile ∆Σ. The

ratio fitting was performed by omitting the first 3 data points at small scales. Note that

there is no errorbar shown for the first data point of the galaxy profile since it has been

fixed to equal to zero. This is because it is the starting point for interpolation, but we

don’t have any information at scales smaller than that point; thus we assume a flat profile

beyond that. It can be seen that both profiles agree with each other quite well at almost

all scales, except at the very inner region where the shot noise dominated. In Figure 29,

we show how the MCMC fitting is working. The left panel shows the distribution of the

ratio β after marginalizing over all other parameters αi. It can be seen that β has been

very tightly constrained. The right panel shows the corresponding random walkers, where

β is labeled ‘0’. The first three data points at small scales were removed from the fitting

process to avoid the shot noise dominated region.

Thus we have validated our observables and methodology with 3D VIDE voids in MICE

simulation. By just looking at both differentiate profiles, we can check the linearity quali-

tatively. With the fitted ratio β, we can further infer the bslope, which is shown in [86] to

coincide with the tracer bias.

4.6.2. Linearity of voids in DES Y1 data

In Figure 30 we show the results for three void radius Rv bins, 10 < Rv < 20 Mpc/h,

20 < Rv < 30 Mpc/h, and 30 < Rv < 60 Mpc/h, of 3D VIDE voids identified in DES Y1

data. The left panels show the comparison of galaxy profile ∆Σg and fitted β times the

lensing profile ∆Σ. For the smaller two Rv bins, the agreements are quite impressive. At a

few data points, the profiles slight deviate from each other for the largest Rv bin. The right

panels are the corresponding distributions of fitted β after marginalizing over all nuisance

parameters αi. We repeat this analysis on the 2D voids of radius 20 < Rv < 40 Mpc/h,

40 < Rv < 60 Mpc/h, and 60 < Rv < 120 Mpc/h, found in DES Y1 data. The results

are shown in Figure 31. However, the agreements in the 2D voids are not as good as in
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Figure 31: The left panels show the comparison of galaxy and lensing profiles for 2D voids
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right panels show the corresponding distribution of fitted β.
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the 3D VIDE voids. Note that the sparsity of 2D voids leads to much noisier signal for

both lensing and clustering measurements. Meanwhile, the theoretical model 4.11 which

established in [86] could be void finder dependent. Both of them could potentially bias the

linearity analysis.

With the fitted ratio β, we can infer the bslope, which is found to coincide with the tracer

bias, using Equation 4.11. We present our estimation of tracer(redMaGiC) bias in Figure 32.

In both cases, it is clear that the estimated bias depends on the void radius. For this work,

we use the RedMaGiC high density sample as tracers to identify voids. Comparing to the

galaxy bias estimated from weak lensing ([87]), which is ≈ 1.6, our results are systematically

higher in all Rv bins for both 3D and 2D voids. According to [86], we might need to go to

even larger voids for bslope to converge to the linear tracer bias.

4.7. Summary and Discussion

With MICE N-body simulation and DES Year 1 data, we have done comprehensive analysis

and measurements of weak lensing and galaxy clustering around voids, identified using two

different void finding algorithm. We summarize our work as follows:

1. We have made heretofore the highest signal-to-noise lensing measurements for voids

identified using different void finding algorithms. Remarkably, we have got significant

lensing signal for 3D VIDE voids on observational data, where there has only been

marginal detection in the past. Most importantly, we were able to divide both of our

void samples into 3 different void radius bins for each, and still got significant lensing

signals from all subsamples.

2. In the lensing results for 2D voids, we can clearly see double dips in the tangential

shear profile for the largest Rv bin, and this indicates there could be on-going merging

in those large voids. It is also possible that the 2D void finder was mixing up different

void types, i.e. the stopping threshold for the circular growth need to be considered

with caution for large voids.
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3. In the 10 < Rv < 20 Mpc/h bin of 3D VIDE voids, a positive tangential shear signal

is clearly detected beyond the void radius. It suggests that these small 3D voids are

likely to be reside in high density environment.

4. With the MICE simulation, we have studied the impact of photo-z scatter on 3D

watershed types of void finding algorithms (VIDE). We ran the void finder using

the same RedMaGiC sample as tracers, but we were separately using their true and

photometric redshifts to identify two different void samples. We did the lensing and

void-galaxy correlation measurements on both samples. It turns out the lensing signal

for voids identified using photometric redshifts is more significant compared to the

voids identified using true redshifts, as well as the galaxy profile for photo-z voids

is more negative. It suggests that the photo-z scatter has introduced a selection

bias which is helping the 3D void finder to pick out the voids that are emptier and

potentially elongated along the line-of-sight direction, which results in a boosting of

the negative lensing signal.

5. We have also studied the linear bias relation between mass and galaxy density profiles

found in [86], in both simulation and observation. Starting from their Equation.12,

we derived the formalism to show that this linear relation should also hold for the

2D differentiate quantities ∆Σ and ∆Σg. We then performed an MCMC fitting to

constrain the ratio β of these two profiles. By comparing ∆Σg and β∆Σ, we can

qualitatively check if this linearity holds. We validated our analysis pipeline with a

subsample of 3D VIDE voids on MICE simulation. Then we performed this analysis

on both 2D and 3D VIDE voids identified in the DES Year 1 data. We found that for

3D VIDE voids, the two profiles agree with each other quite well, although there are

slight deviations in the 30 < Rv < 60 Mpc/h bin. For the 2D voids, the signals were

noisier while the agreements were not as good as for the 3D VIDE voids case. This

is the first analysis of voids in data that tests for linear bias of galaxies distributed

around voids. We see no evidence of departure from linearity, though our results for
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2D voids inside Rv have significant uncertainty.

6. We have further inferred the galaxy-bias using the fitted ratio β. We find evidences

for the presence of systematics in the bias estimation: there is a dependence on the

void radius, and the values in all of our subsamples are significantly higher than the

estimated bias from lensing and clustering measurements ([87]). Thus further studies

on the potential systematics is needed for this galaxy-bias inference using voids.
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APPENDIX

A.1. Subhalo clustering in N-body simulations

We briefly show results from N-body simulations to demonstrate the effects of tidal stripping

exhibited by subhalos that have been in their host for more than a dynamical time. We

use the MultiDark Planck 2 simulation [55], available from the CosmoSim database1. In

Fig. 33 we plot correlations from subhalos within hosts of comparable mass to [10]. The

left panel shows subhalos accreted long ago, with accretion redshifts range chosen to be

longer than a dynamical time for all the bins. As expected, these subhalos have been in

their hosts sufficiently long that long range correlations have completely decayed. The right

panel shows subhalos accreted recently: less than a dynamical time ago. These profiles are

consistent with no tidal stripping.

1https://www.cosmosim.org
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Figure 33: Subhalo correlations in a simulation 64 times bigger than that used in [10]. The
left panel shows the measured correlations for subhalos accreted 5 Gyr ago. Thus these
subhalos have been in their hosts longer than a dynamical time. From this we conclude
that there are no correlations outside rtidal after a dynamical time. The right panel shows
the correlations for subhalos accreted more recently, which are consistent with no tidal
stripping.
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