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Abstract. This paper considers the problem of checking whether amaga

tion conforms to a body of regulation. Conformance is cast &sce checking

guestion — the regulation is represented in a logic thatatuewed against an ab-
stract trace or run representing the operations of an argaon. We focus on a
problem in designing a logic to represent regulation.

A common phenomenon in regulatory texts is for sentencesfés to others for

conditions or exceptions. We motivate the need for a forreptesentation of

regulation to accomodate such references between statervéa then extend
linear temporal logic to allow statements to refer to oth&he semantics of the
resulting logic is defined via a combination of techniquesifrReiter's default

logic and Kripke's theory of truth.

This paper is an expanded version of [1].

1 Introduction

Regulations, laws, and policies that affect many aspectsuofives are represented
predominantly as documents in natural language. For exartifd Food and Drug Ad-
ministration’s Code of Federal Regulations [2] (FDA CFRygms the operations of
American bloodbanks. The CFR is framed by experts in the @iefdedicine, and reg-
ulates the tests that need to be performed on donationsad blefore they are used. In
such safety-critical scenarios, it is desirable to assassdlly whether an organization
(bloodbank) conforms to the regulation (CFR).

There is a growing interest in using formal methods to assgnizations in com-
plying with regulation [3-5]. Assisting an organizationdampliance involves a num-
ber of tasks related to the notion of a violation. For exanipls of interest to detect or
prevent violations, assign blame, and if possible, rectreen violations. In this paper,
we focus orconformance checkinghich involves detecting the presence of violations.

We cast conformance checking as a trace-checking questierregulation is trans-
lated to statements in a logic which are evaluated agaimata br run representing the
operations of an organization. The result of evaluationtieee an affirmative answer to
conformance, or a counterexample representing a subde¢ oferations of the orga-
nization and the specific law that is violated.

* This research was supported in part by NSF CCF-0429948, GI$5-0610297, ARO
W911NF-05-1-0158, and ONR MURI N00014-07-1-0907.
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There are two important features of regulatory texts thadrie be accomodated
by a representation in logic. First, regulations conveyst@ints on an organization’s
operations, and these constraints can be obligatory @edjudr permitted (optional).
Second, statements in regulation refer to others for cmmditor exceptions. An orga-
nization conforms to a body of regulation iff it satisfies #hlé obligations. However,
permissions provide exceptions to obligations, indiseaffecting conformance. Our
formulation of obligations and permissions follows thedheof Ross [6], and we will
discuss the relationship to other theories (cf. [7]) in #erB.1.

The central focus of this work is the function of regulatoeptences as conditions
or exceptions to others. This function of sentences malas ttependent on others for
their interpretation, and makes the translation to logfitadilt. We call this the problem
of references to other lawsn Section 2, we argue that a logic to represent regulation
should provide mechanisms for statements to refer to atNéesprovide motivation
using examples from the FDA CFR. We discuss how these serg@an be represented
in a logic without references, and conclude that this wouddtethe translation difficult.

We then turn to the task of defining a logic that lets statemesfier to and rea-
son about others. In Section 3.1, we define a trace or rurdbapeesentation for the
operations of an organization, and a predicate-basedr lteezporal logic (PredLTL)
to make assertions about runs. PredLTL is extended to expreskinds of normative
statements (obligations and permissions), leading toradbdefinition of conformance.

In Sections 3.2 and 3.3, we extend PredLTL to allow refersermetween laws
thereby making permissions relevant to conformance. Spalty, we introducean
inference predicatewhose interpretation is determined by inferences fronslalihe
justifications in default logic [8] can be cast as an instaoicthis predicate. Default
logic has been used in computing extensions to a theorygimanner of logic pro-
grams [9, 10]. In conformance checking, we need to sepansteises of statements:
(a) extending a theory (the regulation), and (b) deterngjffixets about an organization.
This separation is achieved using the inference predi€a¢ements are evaluated us-
ing the fixed points of an appropriate function, based on hrtiggie used in Kripke'’s
theory of truth [11].

An axiomatization is discussed in Section 4. And, Sectiomictudes with a dis-
cussion of related and future work.

2 Motivation

In this section, we argue that a logic to represent reguiatimuld provide a mechanism
for sentences to refer to others. We discuss shortenedwusrsi sentences from the
CFR Section 610.40, which we will use as a running exampleutinout the paper.
Consider the following sentences:

(1) Exceptas specified in (2), every donation of blood or Bloomponent must be
tested for evidence of infection due to Hepatitis B.

(2) You are notrequired to test donations of source plasmavidence of infection
due to Hepatitis B.
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Statement (1) conveys an obligation to test donations af@ir blood component
for Hepatitis B, and (2) conveys a permission not to test aation of source plasma
(a blood component) for Hepatitis B. To assess an organizatconformance to (1)
and (2), it suffices to check whether “All non-source plasroaations are tested for
Hepatitis B”. In other words, (1) and (2) imply the followimdpligation:

(3) Every non-source plasma donation must be tested foere&lof infection due
to Hepatitis B.

There are a variety of logics in which one can capture thapnétation of (3), as
needed for conformance. Now suppose we have a sentencefiratto (1):

(4) To test for Hepatitis B, you must use a screening test Kit.

The reference is more indirect here, but the interpretasiofif (1) requires a test,
then the test must be performed using a screening test kitloddbank is not prevented
from using a different kind of test for source plasma domegid4) can be represented
by first producing (3), and then inferring that (3) and (4) iynghe following:

(5) Every non-source plasma donation must be tested foepeilof infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directlnilogic. However, (5) has
a complex relationship to the sentences from which it waiveleyi.e., (1), (2) and (4).
The derivation takes the form of a tree:

5)
SR

af @

To summarize, if one wishes to use a logic with no support éberring to other
sentences, derived obligations must be created manualarguie that the manual cre-
ation of derived obligations is impractical in terms of theaunt of effort involved. We
give two (pragmatic) reasons. First, the derived obligatian become very complex.
The full version of statement (1) in the CFR contains six @xicms, and these excep-
tions in turn have statements that qualify them furthes Hifficult to inspect a derived
obligation, and determine if it captures the intended jmtetation of the sentences from
which it came. Second, references between laws are frecuraptifying the effort in
creating a logic representation. In [12], we discuss lebstatistics which suggest that
references are a common way of establishing relationshépgden sentences in the
CFR, and [13, 4] point out their frequency in other bodiesagfulation.

We advocate an approach that allows us to introduce refesento the syntax of
the logic, and resolve references during evaluation.

3 Representing Regulatory Documents in Logic

In this section, we extend linear temporal logic (LTL) totatiguish between obligations
and permissions, and allow references between staterifémtsegin, in Section 3.1, by
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representing a bloodbank as a run or trace. LTL is extendatistonguish between
obligations and permissions, leading to definitions of comiance. We then extend the
logic to allow sentences to refer to others. Section 3.2greinformal example-driven
account, and Section 3.3 provides a formal account. The ity of conformance
checking is examined in Section 3.4

Sections 3.1 is intended as background, in which we discesssral underlying
assumptions. Our goal is to focus on the problem of refeigrased to treat the repre-
sentation of obligations and permissions as an importaraogonal issue.

3.1 Predicate-based Linear Temporal Logic (PredLTL)

Representing regulated operationsGiven the need to demonstrate conformance to
the regulation in case of an audit, regulated organizatsuth as bloodbanks keep
track of their operations in a database, for example, darformation and the tests they
perform. Such a system can be thought of abstractly as aomdéstructure evolving
over time. At each point in time (state), there are a set acdatbj(such as donations and
donors) and relations between the objects (such as an assndietween a donor and
her donations). The state changes by the creation, remowabdification of objects.
We represent this as a run.

Definition 1 (A Run of a System).Given a setO (of objects) and countable sets
b1, ..., P, (Whered; is a set of predicate names of arify, a run of a systenR(O,
&4, ..., d,), abbreviated as, is a tuple(r, 7y, ..., 7, ) where:

— r: N — Sis asequence of state¥. is the set of natural numbers, arttlis a set
of states.

-7 ®; x S — 29 is a truth assignment to predicates of arjtyGivenp € &;,
we will say thatp(o1, ..., 0;) is true at states iff (o1, ..., 05) € 7;(p, s).

Given a runR and a timei € N, the pair(R, ) is called a point (statements in
linear temporal logic are evaluated at points). Given thegljmate namegpy, ..., &,,),
the corresponding space of runs is denote®i§®- , ..., &,,), abbreviated a&.

Conceivably, we could construct a state-transition diagrgpresenting all possible
behaviors of the system and explore conformance from theshobebcking perspective
(e.g., [14]). We chose to restrict our attention to tracedm reasons. First, checking
of traces is easier to explain, and all interesting thecabtind algorithmic aspects that
we explore in this paper manifest themselves in trace chgcl8econd, many parts
of the operations of an organization, such as a bloodbankptiinvolve computers.
A complete model of operations has to include a model of huosans, which is a
research problem in its own right that is well beyond the soofthis paper. However,
if a finite-state model of an organization can be createdptbpositional version of the
logic developed here can be adapted to work with availableéaihoheckers.
Representing the regulation:The logic that we define in this section is a restricted
fragment of first-order modal logic. The restriction is tha allow formulas with free
variables, but no quantification over objects. Formulatkhvélinterpreted using the uni-
versal generalization rule, i.e., over all assignmentsée ¥ariables. The restrictions
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are similar in spirit to the logic programing approachesaguiation [9, 10]. PredLTL
is less expressive than the variants of first-order logiduse[3, 5]. However, when
references are added, the logic becomes more expressivdirtstzorder logic (Sec-
tion 3.4).

Definition 2 (Syntax).Given set®, ..., &,, (of predicate names) and a set of variables
X, the languagd. (%, ..., 9,,, X ), abbreviated ad, is the smallest set such that:

- p(y1,...,y;) € L wherep € &; and(y1, ..., y;) € X7.
—Ifpe L, then-p e LandOp € L. If p,9) € L,thenp Ay € L.

Disjunctiony V ¥ = —(—¢ A =) and implicationy = ¢ = —p V ¢ are derived
connectives. The temporal operator is understood in thalwsay: Oy (¢ holds and
will always hold (globally)).< o (¢ will eventually hold) is defined asO—p.

We now extend the syntax to express normative statementsadyof regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation).Given a finite set of identifiersD, a body of
regulation Reg is a set of statements such that for eaére 1D, there existp, 1) € L
such that either:id.o: ¢ ~ ¢ € Reg, or id.p: ¢ ~ ) € Reg

id.o: ¢ ~ ¥ (id.p: ¢ ~ 1) is read as: “it is obligated (permitted) that the pre-
condition leads to the postcondition”. The distinction between preconditions and
postconditions corresponds to the distinction betweentiapd output in input-output
logic [15].

Definition 4 (Semantics).Given a runR = (r,m,...,m,), @ € N, ¢ € L, and an
assignment : X — O, the relation(R, i, v) |= ¢ is defined inductively as follows:

- (Ra 7;5 1}) ': p(yla (X3} y]) iff (015 (X3} Oj) € Trj(pa T(l)) Whereok = v(yk) if Yk € 0.
— The semantics of conjunction and negation is defined in thalwgay.
- (R,i,v) E Opliffforall k >i: (R, k,v) E ¢

We extend the semantic relation to regulatory statemergstalé= to stand for
“conforms to”:

- (R,i,v) Eid.o: o ~ ¢ iff (R,4,v) E ¢ = v (= is implication)
— (R,i,v) Eid.p: ¢ ~ 9. Runs vacuously conform to permissions. Permissions will
become relevant when references from obligations are ptéSection 3.2).

Consider again our example from Section 2. We use three qgatedi defined as
follows. d(x) is true iff « is a donationsp(x) is true iff x consists of source plama.
test(x) is true iff z is tested for Hepatitis B. Statement (3) is represented as:

3.0: d(z) A —sp(z) ~ Otest(x)

Statement (2) is be represented ag: 2(y) A sp(y) ~ —<test(y). However,
statement (1) cannot be represented directly.

We will now define conformance, and then discuss the vari@iimitions in the
context of related work. Given a ruR, let V' ( R) denote the set of variable assignments.
Conformance is defined using the notion of validity. A foraulis valid at the point
(R,i), denoted R, i) = o, iff forall v € V(R): (R,i,v) = ¢. Aformulay is valid
on R iffitis valid at all points, thatisR = piffforall i € N : (R,i) E .
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Definition 5 (Run Conformance).Given a body of regulatiof®eg and a runR rep-
resenting the operations of an organization, we say #atonforms to the regulation
iff for all obligations id.o: ¢ ~ ¢ € Reg, we haveR = id.0: ¢ ~ .

Discussion:The deontic concepts of obligation and permission aredteas properties
of sentences. Only obligations matter for conformancenifia-source plasma donation
is not tested, there is a problem. On the other hand, a blobdinay choose to test a
donation of source plasma or not. In assessing conform#meé,nction of a permis-
sion is to serve as an exception to an obligation, and in tidiseéct manner it becomes
relevant. We will give a semantics to this function of pemsiugs in Section 3.2. Such
a treatment of permissions has its basis in the legal thedRpss [6].

Ross’ approach to permission is by no means the only one.riHsloave distin-
guished between various kinds of permission (cf. [7]), thesttommon distinction
being that of positive and negative permission. We disclissahalysis by Makinson
and van der Torre [16]p is said to positively permitted iff it is explictly permitieby
the laws, andp is negatively permitted iff it is not forbidden. The key issis whether
positive permissions can give rise to violations. In regjales phrased exclusively in
terms of permissions, it is desirable to say thiap denotes a “relevant” condition
which is not explicitly permitted, then it should not holdaanforming implementa-
tions While this has been analysed as a property of permissitloniog Ross, we
take such violations as arising from an implicit obligati@e., the italicized clause.
This implicit obligation can be represented using the tégpimes we discuss in Section
3.2, provided that the relevance of the condition is known.

In the formulation here, obligations and permissions apeléwel operators and
cannot be negated. This restriction can be removed bynigatligation and permis-
sion as KD modalities (c.f. [17]), and using a many-valuddrpretation to decide if a
run belongs to the set of ideal runs. However, we avoid thirplify presentation. A
more crucial restriction is that iterated deontic congBwannot be expressed directly,
i.e., sentences of the form “required to allow x” or “allowdrequire x.”. One has to
decide what top-level obligations or permissions are ietphy these constructs. To our
knowledge, handling iterated constructs is an open problaieontic logic [18].

3.2 References to Other Laws — An Informal Description

In this section, we give an informal accountreference logiqRefL), which is used
to handle references. We extend the syntax of PredLTL waittinference predicate
by1a(¢), where Id is a set of identifierby1q(ip) is read as “by the laws in ld; holds”.
There are two restrictions: (g is a statement in PredLTL (Definition 2) and (b) the
predicatebyiq () can appear only in preconditions of laws. These restristare sim-
ilar to those that apply to justifications in default logig.[8

Consider again our example statements (1) and (2), whiclegresented in RefL
as follows:

— 1o d(z) A —bya (¢(x)) ~ Otest(x), and
— 2.p:d(y) A sp(y) ~ ~Otest(y)
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In the obligation above, the subformuig,, (¢(x)) is understood as “by the law (2)
the formulap(z) holds”. It remains to define the formulgx). Intuitively, this should
be the negation of the postcondition of (1). In other woris;dtest(z) follows from
(2), then the postcondition of (1) need not hold. This gives u

1.0 d(x) A —by (o) (—Otest(x)) ~ Otest(x)
We interpret the predicafiey (o) (—<test(x)), by letting formulas have output. In

other words, when the precondition of an obligation or pssioin is true at a point, the
point isannotatedvith the postcondition.

Time|ObjectsPredicates Annotations
1 o d(01), sp(o1), —test(o1) |2: ~Otest(o1)
2 o1 d(01), sp(o1), —test(o1) [2: ~Otest(o1)
02 d(02), ~sp(02), —test(o2)|1: Otest(o2)
3 o1 d(01), sp(o1), test(o1)  |2: ~Otest(o1)
02 d(02), ~sp(02), —test(o2)|1: Otest(o2)

Table 1. A run and its annotations

Table 1 shows a run of a bloodbank augmented with annotatitrst, an object
o1 is entered into the systeny, is a donation of source plasmé(¢;) andsp(o;) are
true). When a donation is added, its test predicate is ilyitialse. Then, an objeai,
is added, which is a donation but not of source plasma. Intting step, the objeat;
is tested. At this point, unless the run is extended todgss well, it does not conform
with the regulation. We now discuss how the annotations eneed at and used to
assess the regulation.

We begin by defining an annotation. Given a f®nan assignment € V(R), and
¢ € L,v(yp) is the formula obtained by replacing all variableby the unique name for
the objectv(x). We assume that all variables are free. Note tl{al) is equivalent to
a propositional LTL formula, as the variables have beeraegi by constant symbols.
An annotation, idv(y), is a propositional LTL formula associated with an identifie

Given a point R, i) and an assignmentc V (R), first we consider the permission
2p:d(y) A sp(y) ~ —Otest(y). If (R, i,v) E d(y) A sp(y), then(R, i) is annotated
with 2: v(—Otest(y)). Otherwise, there is no annotation.

Since the precondition of statement (2) is true for the assi@nt ofy to o1, we
have the annotation 2iCtest(oq) at all points. However, sincg is not a donation of
source plasma, there is no correponding annotation.

Now consider the formuly 5 (—Otest(z)). This is evaluated as follows. We eval-
uate 2p: d(y) A sp(y) ~ —Otest(y) at (R, 1) w.r.t. all variable assignments. Lét be
the conjunction of the annotations produced by the formald2).

(R,i,v) | by (—Otest(x)) iff = o = v(=Otest(x))
Notice that this requires a validity check in propositioliell, which can be decided
in space polynomial in the size of the formula [19].
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Returning to the run in Table 1, the states are annotatedwitt>test(o;) and=
~Otest(o1) = —Otest(o1), Sincep = ¢ is a propositional tautology. S@r, 4, v) =
by 21 (=Ctest(x)) whenv(z) = oy.

We can evaluate @ d(z) A —bygy (=Otest(x)) ~» Otest(x) similarly by an-
notating states witkbtest(z) if the precondition holds. In Table 1, this results in an
annotation of 10test(o2) on the appropriate states.df is never tested, the run will
be declared non-conforming (by Definition 5), but the antiotewill remain. This lets
a law which depends on (1) draw the correct inference.

3.3 Reference Logic (Refl)

The semantic evaluation outlined in Section 3.2 works onhemthe references are
acyclic, since an order of evaluation needs to be defined.ahalle cycles, we adopt
a fixed-point technique from Kripke’s theory of truth [11]hd@ idea is to move to a
three-valued logic where the third (middle) value standsuftgrounded|nitially, all
statements are ungrounded and there are no annotationg. &fsinflatonary function,
we add annotations until a fixed point in reached. In thisisactve define this in-
flationary function and show that it has least and maximaldfigeints. We begin by
extending the syntax described in Section 3.1:

Definition 6 (Syntax of Preconditions).Given set%,, ..., @,, (of predicate names), a
set of variablesX, and a finite set of identifie®D, the languagd.’ (?4, ..., @, X, ID),
abbreviated ad/’, is the smallest set such that:

- p(y1,...,y;) € L' wherep € ¢, and (v, ..., y;) € X7.
—lfpe L/, then-p € L'andOp € L. If b € L', thenp A € L'
—IfId CIDandy € L(Py, ..., P,, X) (Definition 2), therbyq(y) € L'

The syntax of regulatory statements (Definition 3) is modifie that the precondi-
tions of laws are statements frohl. We useid.x : ¢ ~» 1) to stand for a normative
statement (either obligation or permission). We now defmaranotation:

Definition 7 (Annotation). Given a runR, a set of identifiersd D, an assignment
v € V(R), and a body of regulatiorReg, an annotation is a statement idi(v))
such thatid € ID andid.x : ¢ ~ 1 € Reg. The set of annotations is denoted by
A(R,ID, Reg), abbreviatedA.

Definition 8 (Annotation Function). Given a runR, an annotation function. : N —
24 assigns a set of annotations to each point. We wdel(i) to denote the set of
annotations idw € «(i) such thatid € Id.

We will formalize the semantics using the fixed point teclueigputlined in [11].
Before we turn to the formal definitions, we sketch some ok#aeideas involved.

Let us assume as given a riih Statements i’ and Reg are divided into three
classes corresponding to tru€ (¢, v)), false (i, v)) and ungrounded (i, v)) w.r.t.
the timei € N and assignment € V(R). Intuitively, U(, v) is the set of statements
that are waiting for the evaluation of another statement.
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As we discussed in Section 3.2, to determine whellyer(¢) € T(i,v), we need
to check if there is a set of annotations which imp(y). We construct the annotation
functiona such that for all assignmentswe have idw(vy) € (i) iff ¢ € T(i,v) for
someid.x : ¢ ~ 1 € Reg andid € Id. We will say thatbyi4(p) € T(i,v) only if
a.1d(i) U {v(—p)} is not satisfiable.

To determine whethésyiq(¢) € F(i,v), we need to ensure that there is no un-
grounded statement that could make it true. To check thiglion, we construct the
annotation functiory’ such that idw(y) € o/ (¢) iff ¢ € T(i,v) U U(4,v) for some
idx : @~ 1 € Reg andid € Id. The condition for falsity w.r.to/ is simply the
negation of the condition for truth w.ra.. More formally,byq(p) € F(i,v) only if
o/ Id(i) U{v(—¢p)} is satisfiable.

When there are circular references, one cannot alwaysateadistatement to be true
or false. The Nixon-diamond problem (introduced in [8]) iwell-known example. We
rephrase it in “legalese”:

(6) Except as otherwise specified, Quakers must be pacifists.
(7) Except as otherwise specified, Republicans must not tigis.

These statements can be represented in RefL as follows:

6.0 q(x) A ~byj,7y (~p(2)) ~ p(x), and

7.0:7(x) A =by(e 73 (p(2)) ~ —p(x)

Suppose we are given a state with an individug@lor Nixon), who is both quaker
and republican, i.e¢(n) andr(n) hold. How should we evaluate the statements above?
[11] suggests two answers to this question: (A) The statésrae neither true or false
(they are ungrounded). This corresponds to skeptical néagm non-monotonic logic.
(B) Exactly one ofby g 73 (p(n)) andby e 73 (—p(n)) is true, which leads us to con-
cludep(n) (by (6)) or—p(n) (by (7)) resply. This corresponds to credulous reasoning
in non-monotonic logic.

In the semantics we give below, different answers corredgondifferent fixed
points. We refer the reader to [11] for examples and disoussf the various possi-
bilities with regard to fixed points. The choice of what to dbem there are multiple
fixed points depends on the application, and we discussdhimifurther at the end of
this section.

Definition 9 (Evaluation). Given a runk and a body of regulatioieg, an evaluation
isatupleE = (T,F,U), whereT, F and U are functions of the forrV x V(R) —
2.7 whereL™ = Reg U L. Furthermore, for alli € N andv € V(R), we have
T(i,v) NF(i,v) = ) andU(i,v) = 257 — (T(i,v) UF(i,v)).

Given an evaluatiol, o is the annotation such that for alle V andid € ID,
we have idw(¢) € ag(i) iff ¢ € T(i,v), whereid.x : ¢ ~ 1) € Reg. Similarly, o/
is the annotation such that idi(y)) € o'y (d) iff ¢ € T(¢,v) UU(,v).

Definition 10 (Consistent Evaluation).An evaluationZ is consistent iff for ali € N
andv € V(R), T(i,v) = F(i,v) = 0, or T(i,v) andF (i, v) are sets such that:

1. p(z1,...,x;) € T(i,v) .iff (v(z1), ..., v(x;)) € mj(p,r(9))
p(x1,...,x5) € F(i,v) iff (v(z1),...,v(z;)) & m;(p, (7))
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2. If ¢ € T(i,v) andy € T(i,v), thenp A € T(i,v)
If ¢ € F(i,v) or¢ € F(i,v), theng Ay € F(i,v)
and similarly for negation and temporal operators
3. Ifo =4 € T(i,v), then ido: ¢ ~ ¢ € T(i,v)
If o = ¢ € F(i,v), then ido: ¢ ~ ¢ € F(i,v)
id.p: ¢ ~ ¢ € T(4,v). Runs vacuously conform to permissions.
4. Ifbyia(p) € T(4,v), thenag.Id(i) U {v(—¢p)} is not satisfiable.
If byra(p) € F(i,v), thena/;.Id(i) U {v(—¢)} is satisfiable.

The set of all consistent evaluations for a réihand regulationReg is denoted by
E(R, Reg), abbreviated.

Observe that in consistent evaluationspifia(¢) € T(i,v), thenag.Id(i) U
{v(—¢)} is not satisfiable (Clause 4 in Definition 10). The converssinet be true.

Definition 11 (Partial Order). Given evaluationsZ; = (T1,F;,U;) and B> =
(T3, Fa,Us, as), we say thaty; < Es iff forall i € N andv € V(R), T1(i,v) C
Ty (Z, 1)) andFl(i, 1)) CFy (Z, 1)).

The pair (€, <), where€ is the set of consistent evaluations is a partially ordered
set (poset).

We now define the inflationary function whose fixed points wit lvé interested in.

Definition 12 (Inflationary function). Given(&, <), the functiorf : £ — £ is defined
as follows. Given a consistent evaluatiéh = (T,F;,U;), Z(E;) is the smallest
consistent evaluatiod’, = (T2, F9, Us) such thatk; < E,, foralli € N and
v € V(R), Ta(i,v) # 0, Fa(i,v) # 0, and F» extendsE; .

We say thaF, extendsF, iff forall i € N andv € V(R):

If ag, (1) U {v(—¢)} is not satisfiable, thehyq(¢) € T2 (i,v)

If o, (i) U {v(—yp)} is satisfiable, thebyiq(v) € Fa(i,v)

In the rest of the section, we show thais well-defined, and has maximal fixed
points and a unique least fixed point. We begin by observingrdaring relation be-
tween annotations that is useful in subsequent proofs:

Proposition 1. Given consistent evaluations; and £ such thatk; < F,, and a
set of identifiersld C ID, for all i« € N, we haveag,.Id(i) C ag,.Id(i) and
o'y, Id(i) D alg, . 1d(i).

The proof follows easily from Definitions 9 and 11. We now shibnat 7 is well-
defined:

Proposition 2. Given(€,<) and E; € &, let& C £ be the set of consistent evalu-
ations such that, € & iff By < Ey, foralli € N andv € V(R), Ta(4,v) # 0,
Fy(i,v) # 0, and E» extendsE; . Then &, has a smallest element.

Proof. Given E;, we construct the evaluatidt, such that for alf € N andv € V(R):
¢ € Ta(i,v) iff p € T1(4,v) or:
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— ¢ = by1a(¢) andag, .Id(i) U {v(—¢)} is not satisfiable.
— ¢ =¢ ANy ande,y € Ty(i,v). Similarly for propositions, negation and temporal
operators

F(i,v) is defined similarly. It is easy to see thiat < F», FE, extendsE; and the
non-emptiness condition follows from the existence of astene atomic proposition.
We claim thatE, is consistent and that it is the smallest evaluation withrdpiisite
properties.

Supposdr; is hot consistent. Consider the smallgswvhich violates Definition 10.
We obtain a contradiction for each clause in Definition 10e ©hly non-trivial case is
for ¢ = by1a(¢), for which there are two cases.

byia(¢) € Ta(i,v) and ag,.Id(i) U {v(—¢)} is satisifiable. By Proposition 1,
ap, 1d(i) C ag,.Id(i), and soag,.Id(i) U {v(—¢)} is satisifiable antbyia(p) ¢
T, (i,v) (since E; is consistent). It follows from the construction thagiq(¢) ¢
T, (i,v) giving us a contradiction.

by1a(¢) € Fa(i,v) andal, .Id(i) U {v(—¢)} is not satisifiable. By Proposition 1,
o'y, 1d(i) 2 o, 1d(i), and say, .Id(i) U {v(—=¢)} is not satisifiable antyq () ¢
F1(4,v) (sinceE; is consistent). It follows from the construction thatq () € Fa(i,v)
giving us a contradiction.

We now show thaf’; is the smallest element with the requisite properties,foe.
all B}, € &, we haveE, < E,. The proof is similar to that for consistency. Suppose,
for the sake of contradiction, there exidt§ € & such thatt, = (T%, F5, US) and
E, £ E}. Consider the smallegt € L™ such that there exisisc N andv € V(R),
andy € Tq(i,v) — Th(i,v) or ¢ € Fa(i,v) — F4(i,v). Again, the only non-trivial
case is forp = byiq(¢).

Supposdyia(¢) € Ta(i,v)—ThH(i,v). SinceEy < Eb, byra(¢) € T1(i,v). There
are two cases. W, .1d(i) U {v(—¢)} is not satisfiable, thebyq(¢) € T5(,v) (since
E!, extendsE,). This gives us a contradiction.dfg, . 1d(i)U{v(—¢)} is satisfiable, then
by1a(¢) € T4(i,v) (by construction). Again, we have a contradiction. Bpy (¢) ¢
Ts(i,v) — Th(¢,v). The other cases are similar. O

The existence of fixed points is established using Zorn’samwhich applies to
chain-complete posets. Given the poget<), a set€’ C £ is called a chain (totally
ordered set) iff for allE;, F5 € £, we haveE; < E; or E5 < Ej. A poset is chain
complete iff every chain has a supremum. We now show(that) is a chain-complete
poset:

Proposition 3. (£, <) is a chain-complete poset.

Proof. Given a chair€’ C &, consider the evaluation:
E, = (T, F,,Uy), where forali € N,v € V(R),andp € L*:

— ¢ € T4(s,v) iff there existsE = (T, F,U) € £ such thatp € T(i,v).
— ¢ € F(i,v) iff there existsEl = (T, F, U) € & such thaty € F(i,v).

U (i,v) = oLt _ (Ts(i,v) UF;(4,v)). Itisimmediate from the construction that
VE € £ : E < E,. ltis also easy to see thatH, is a consistent evaluation, then it
is the supremum of’. Thus, it suffices to show thdft, is consistent, and this can be
established by an argument similar to the proof of Propmsi2i. a
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Lemma 1 (Zorn (c.f. [20])). Every chain complete poset has a maximal element

The existence of maximal fixed points is immediate from Zetemma and the fact
thatZ is inflationary, i.e.,E < Z(F). Let E* be a maximal element ifi, sinceE* is
maximal andE™* < Z(E*) it follows that E* = Z(E™).

To show the existence of a least fixed point, as [11] notes, iNe@ed the obser-
vation thatZ is monotonici.e., if E; < E, thenZ(E;) < Z(E,). This can be shown
by an argument similar to the proof of Proposition 2. With rotmmicity, we obtain the
following corollary to Zorn’s lemma:

Corollary 1. GivenE; € &, leto(E;) be the smallest set such that: (&) in &, (b)
if E € o(E1) thenZ(E) € o(E1), and (c) ifC C o(E1) is a non-empty chain, then
E,. € 0(Ey), whereEy, is the supremum af w.r.t. £. Then:

— o(E,) is a chain whose supremum is a fixed point of

— o(FE1) contains a unique fixed point

— If By < Es, thenE,; < Eq, whereE; and E,, are the suprema of (E;) and
o(E9) resply., and

— 7 has a unique least fixed point.

Proof. The fact thatz(F1) is a chain is used to prove Zorn's lemma, and we refer the
reader to [20] for a proof.

Let&’ = o(F1) and letE; be the supremum d@'. Since&’ contains its supremum
E,, andZ(E;) € &' (by definition), we can conclude that, = Z(E;).

We now claim thatF is the unique fixed point ig¢’. Suppose not. LeE € £’ be
a fixed point. Sincel # E, andE is the supremum, we havé < E,. Consider the
set€” such that for allE’ € &', E' € £" iff B/ < E. But now,E; € £” and for all
E' € &", we haveZ(E') € £ (forif not E/ < E andZ(E) < Z(E’), contradicting
the monotonicity off). Given a chairC' C £”, since for allE” € C, we haveE” < E,
sup(C) < E (by defintion of supremum). Sing&’ C £’, we have a contradiction to
the minimality of€’. Hence,E; is the unique fixed point i&’.

Given E; < E», let E;; and E, be the suprema of (E;) ando(E») resply. We
claim thatF,; < E,3. Suppose not. Consider the €8t C o(E,) such thate] € £”
iff £{ < Es.Butnow,E; € £” and forallE’ € £”, we haveZ(E’) € &" (for if
not ] < Fg andF = Z(E) < Z(E}), contradicting the monotonicity &f). The
presence of suprema is similarly verified, giving us a catittéon to the minimality of
o(E1). HenceE,; < Eo.

Finally, let Ey = (To,Fo, Up), where for alli € N, v € V(R), To(i,v)
Fo(i,v) = 0, andUy(i,v) = 2&" . Observe that for all consistent evaluatidhsE
E and hencer,y < E, whereE,, andE, are the suprema ef(Ey) ando(E) resp
Since all suprema are fixed poinfs, is the least fixed point.

o< IA

We summarize the results in the following theorem, whichvjates a base for ex-
tending RefL with other inference predicates. We discussed for other predicates
below, and in Section 5.
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Theorem 1. Given the poset of consistent evaluati¢fis<) and a functiorf : £ — £
which is inflationary and monotoni€, has a least fixed point and a maximal fixed point.

Discussion:We now discuss some options in defining conformance, depgrudi the
needs of the application. The sections of the FDA CFR that ave lexamined can be
formalized so that there is a unique fixed point, and confaceas simply the satisfac-
tion of obligations at this fixed point.

However, examples discussed in the literature suggesittthmty not be desirable
to always have a unique fixed point. A well-known example & tf contrary-to-duty
(CTD) obligations [21]. CTD obligations are those that anghen other obligations
have been violated. Prakken and Sergot [17] point out anxibflgy in casting CTD
structures as an instance of non-monotonic reasoning. We@how this inflexibility
can be avoided, using alternate definitions of conformafioaesider the following ex-
ample from [15] (similar to one in [17])fhe cottage must not have a fence or a dog. If
it has a dog, then it must have both a fence and a warning Sige question is what
are the obligations when the cottage has a dog. We discugsasaible solutions.

The first solution is to treat the CTD norm as an exception éditist:

1.0: =byoy(f Vd) ~ =(f Vd)and 20: d ~ f Aw

The propositiong, d andw correpond to the cottage having a fence, dog and warn-
ing sign resply. Since there is a dog, the precondition ofsixond law is true, and
this leads to the precondition of the first law being falseifS6A w holds, there is no
violation. However, as [17] points out, it may be useful tded¢ that the situation is
worse than the one in which there is no dog. In the secondisn|uve represent the
laws as excluding each other, i.e., we conjelsy 13 (—(f A w)) to the precondition of
the second law. At the least fixed point, both obligationswargrounded, and we get
two maximal fixed points — one in which(f Vv d) is obligated, and one in whichA w
is obligated. Sincd holds, there is a violation w.r.t. the former fixed point. Iscgnario
where there is no dog, a unique fixed point is obtained.

Our analysis of CTD structures achieves the same effectasarnhlyses in [17,
15]. However, [17, 15] characterize the CTD norm as pressipgahe violation of the
other, and then revising the situation. In future work, wangto investigate predicates
that capture this presuppositional analysis more directly

3.4 Complexity

In this section, we discuss upper and lower bounds for theptmxity of conformance
checking w.r.t. the least fixed point. Given a rinand regulationReg, we say that

R E Rey iff all obligations are valid inR at the least fixed point? is assumed to be
finite in two ways: (a) The set of objects is finite, and (b) There exists, such that

forall j > n,r(n) = r(j), i.e., R eventually reaches a stable state.

Lemma 2 (Upper Bound).Given a finite runk and regulationReg, R = Reg can
decided in EXPSPACE (space exponential in the siZecgj

Proof. (sketch) Corollary 1 can easily be turned into a decisiorc@dore. Given an
evaluationF, it can be shown that’ andZ (E) agree on all regulatory preconditions iff
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E is a fixed point. So if£} is not a fixed point, there existsandv such thatZ(E) has
strictly fewer ungrounded preconditions. In the worst c#sere is at most one change,
andn x |Reg| x |V| steps are required to reach a fixed point, whéfes the number
of variable assigments. Note th&| = |O|* whereO is the set of objects anidis the
largest number of distinct variables appearing in a regujattatement.

To applyZ to an evaluation®, we need an explicit representation of the annota-
tion functionag (for the satisfiablity checks). The worst-case size of thisfability
instances i$Reg| x |O|*. Since testing satisifiablity for propositional LTL is PSPB-
complete [19], applying requires EXPSPACE (due to thé|* factor). We note that
for the fragment of LTL discussed in this paper (using onland <) satisfiability is
NP-complete [19], and for this fragmeRt= Reg can be decided in EXPTIME. O

Lemma 3 (Lower Bound).Given a finite runk and regulationReg, R = Reg is hard
for EXPTIME (time exponential in the size Bég)

Proof. (sketch) We encode formulas in first-order logic as regoifegti Letp(x1, ..., ., )
be a first-order formula, where, ..., x,,, are free variables. ip(x1, ..., z,,,) contains
no quantifiers, we represent it by a permission:

Ay pro(ze, .oy m) ~ qo(T1, ..., Tm ), Whereg,(z1, ..., T, ) is a predicate symbol
that doesn'tappear ip(z1, ..., z,). Itis easy to see that(g,(x1, ..., z,,,)) is available
as an annotation ifp(x1, ..., ,,) is true w.r.tw.

For quantified statements we proceed inductively. Gitgn ¢ (y, z1, ..., ), We
add two permissions:

Asy..P: by{AW}(qw(ywl, vy T ) ~ (X1 ey T

B3y P by(as, 3 (@ (215 Tm)) ~ 3y (T15 s Tm)

Observe thaby a3 (¢ (21, ..., m)) is true w.r.t. an assignmentff v(q' (x4, ...,
Zm,)) is available as an annotation. Andg’(z1, ..., ., )) is available as an annotation
iff byra(e) (@ (Y, 21, ..., 7)) IS true w.r.t.somevariable assignment that is identical
to v except fory. We can then argue inductively thatgs,.,(x1, ..., 2,,)) is available
as an annotation iffly : o(y, x1, ..., T ) IS true w.r.tw.

GivenVy : ¢, we use the equivalentg : ¢ = =3y : -y and proceed as before.
To complete the construction, giverizy, ..., z,, ), we add the obligation:

1.0: =byia, 3 (qp(T1, oy 2m)) ~ L.

It can be shown that a run with a single state conforms to thalagion iff ¢ is
valid at the state. Model-checking for first-order logic SHACE-complete (cf. [22]).
It follows that computing the least fixed point is PSPACEe¢har

In encoding first-order formulas, we constructed an acy@gulation. With cir-
cular references, one can encode reachability compugatitnich cannot be directly
expressed in first-order logic: @.0(z, z) V (0(z,y) A by13(07 (y, 2))) ~ 07 (z, 2)

Here, we assume that each pointin a run encodes a graph. Gaeaddtion is given
by 6, andd™ represents the transitive closurefoft can be shown that at the least fixed
pointv (3 (x, 2)) is available as an annotation iff there is a path fre@m) to v(z). We
can show an EXPTIME lower bound by a reduction from first-otdgic enriched with
a least fixed point predicate (the system YF in [22]). a0
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4 Axiomatization

As we discussed in the proof of Lemma 3, RefL contains firséplabic enriched with a
least fixed point predicate. It follows from results in [284t the validity problem i$77 -
hard, and as a result, it cannot be recursively axiomatiedfocus on axiomatizing
the propositional fragment.

We assume as given a fixed finite domain of quantification, hedvariables are
replaced by identifiers for domain elements. Given a set eftifiers/ D, a proposi-
tionalized body of regulation has one or more statementh@fdrmid.x : ¢ ~
for eachid € ID. For example, the presenceidfx : ¢1 ~ 11 andid.x : o ~> 1)y
corresponds to different assignments to the variables.

In the presence of multiple fixed points, we can define validit.t. all fixed points,
the least fixed point or maximal fixed points. Axiomatizindisy w.r.t. the least or
maximal fixed points complicates matters, because we neelistimguish between
those formulas that are proved using facts versus thosathatoved using inferences.
[24] provides an axiomatization of these three notions diflitg for default logic, by
translating the default rules into an autoepistemic loditiile it may be possible to
adapt the translation procedure for RefL, we focus on piogid more direct axioma-
tization. We axiomatize validity w.r.t. all fixed points, diteave open the proof theory
for other notions of validity.

This section is organized as follows. We begin, in Sectidnly discussing axioms
for the acyclic fragment of RefL. This lets us clarify the trahissues, while avoiding
complications introduced by three-valued reasoning. \ia tiarn to the general case.
Since we have a three valued logic, we will need a differeritonoof implication.
Section 4.2 gives the necessary extensions to the syntagraatlernate definition of
semantics to facilitate the proofs. In Section 4.3, we gtevan axiomatization using
Fitting’s sequent calculus [25]. Completeness is provesdation 4.4. We conclude, in
Section 4.5, with example derivations that help clarify tiedinition of conformance,
and show a prototype for the middle value.

4.1 The Acyclic Fragment

In this section, we discuss an axiomatization for the fraginoé RefL where the refer-

ences in the regulation are acyclic. This lets us obtain quenfixed point, and restrict
attention to two-valued reasoning. The following axiomd anes characterize propo-
sitional and temporal reasoning:

Al All substitution instances of propositional tautologjie
A2 O(p =) = (Bp = OY)

A3 Op = pAO0p

R1 Fromk- ¢ =« andt ¢, infert ¢

R2 Fromk ¢ infert Oy

We characterize the inference predicate by the laws it seti@r To axiomatize
by1d(), we need to reason about provability in the languégg@ropositional LTL).
We say thatp € L is is provable (denoteH, o) iff it is an instance of the axioms
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A1-A3, or follows from the axioms using the rules R1 and R2u&ally, we will use
the negation of provability in the premise of a rule. Simitagchanisms have been used
to axiomatize default logic, e.g., in [24], satisfiability iised in the premise of a rule,
and in [26], a modal language is augmented with an operataatisfiability.

We begin by developing some notation. Given a set of reguyla@atementd” =
{idix: o1~ Y1, .., idpXx: pp ~ Y}, let Fpre = {1, ..., 0, } be the set of pre-
conditions,Fy,qs: = {41, ..., ¥ } be the set of postconditions, adtl; = {ids, ..., id, }
be the set of identifiers. Given a finite set of formuldsve denote the conjunction by
A\ I'. The conjunction of the empty set is identified with(a tautology). We use two
rules for the inference predicate:

R3 ForallF' C Regwith F;q C Id,frombp A\ Fpost = ¢, infer A Fpre = by1a (o)
R4 For ally € L', if for all FF C Reg with Fiy C Id, eithert/, A\ Fpost = ¢, Or
F1p = = A Fpre, then infer- ¢ = =byq(¢).

Informally, R3 says thabyiq(¢) is true, if there exists a set of laws whose post-
conditions imply¢, and whose preconditions are true. R4 saysliat(¢) is false, if
one of the preconditions is false for all sets of laws whosgtqnditions implyg. In
particular, ift/r A Fpost = ¢ for all appropriate subsets, thenT = —bya(¢), and
using R1}- —byiq ().

The rules have an equivalent axiomatic characterizatitwghwis important in es-
tablishing completeness. Givenh € L, let 7(;44) be the set of subsetd’(C Reg
with F;q C Id) such thatF' € Fiff b A Fpost = ¢. Let I'(14,4) be the set such
that = A\ Fpre € I(1a,¢) iff F' € Fa,). Finally, let A4 4) be the set such that
/\Fpre S A(Id.,d)) iff ' e f(]d@).

Proposition 4. The following are provable:

1.+ /\F(Id,(b) = —'bYId(QS)
2. Fbyia(9) = V Aqra,e)

The first claim is an immediate consequence of R4. And, therskclaim follows from
the first by propositional reasoning. It is easy to show thataxioms A1-A3, together
with Proposition 4, and the rules R1 and R2 imply the rules RBR4. The inference
predicate behaves like a modality:

Proposition 5. F bya(¢ = ¢) = (byia(¢) = by ()

We will prove this property in the general setting, in Sect#b3 (Proposition 11). The
axioms and rules presented here extend naturally to the-tradeied setting. We begin
by extending the syntax with the appropriate implicationreective for a three-valued
logic. We give an alternate definition of the semantics, tdlifate the proofs.

4.2 Syntactic and Semantic Preliminaries

We will need two extensions to the syntaxiof . First, we add constants for truth values
(7 ={T,?,1}). The true values are totally ordered, i.€.>? > 1. Second, we add
the natural implication connective D ).
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We now give a different but equivalent definition of the setita) to facilitate the
proofs. ArunR = (r,7) is a pair, where- is a sequence of states, ands a truth
assignment to atomic propositions. Statements {propositional LTL) are evaluated
at points(R, 7). We defineval(y, R, ¢) inductively as follows:

val(p, R, 1) = T iff p € n(r(7)). Otherwise,L.

Conjunction and negation are defined in the usual way

val(p D 1, R, i) = t, wheret is the greatest truth value such thal(p, R, i) At <
val(y, R, ). Since statements ih are two valuedy D ¢ = ¢ = .

val(Og, R, i) = N{val(y, R, j) |j = i}

We say thatp € L is valid iff for all points (R, ), we haveval(y, R,i) = T.
For statements it. ™, in addition to a poin{R, i), we need two annotation functions
(o, ). We defineval ) as follows:

- val(a,a,)(t R, ’L) =tforteT

— val(q a1y (byra(e), R, i) = T if A a.ld(i) D pis valid
val(a,an) (by1a(p), R, i) = ?if Ao'.Id(i) D pis valid
val(q,ar) (by1a(®), R i) = L otherwise

— For all other formulas the definition is as before. In the ¢hvalued setting > v
andy = 1) are not identical.

We say thata, o) is a fixed poinfor arunR iff forall i € N andid.x : ¢ ~ 9.

— id:y e a( ) iff val(q 0y (0, R, i) =
— id: v € o/ (4) iff val(q,ay (0, R, 1) > 7

It follows that for alli € N, a(i) C &/(#). We now define satisfiability and validity
at a point:

- @ is satisfiable atR, i) iff val(,, o) (¢, R,i) = T for some fixed poinfa, o)
— pisvalid at(R, 1) iff val(q,q (v, R,i) =T for all fixed points(a, o)

Finally, we say thatpy is valid iff ¢ is valid at all points. We are now ready to
axiomatize RefL.

4.3 Sequent Calculus

We use Fitting’s sequent calculus [25]. A sequent is a statgrof the formI” —
A, whereI” and A are finite sets ofmplications A sequent is valid at a poiritR, i)
iff for all fixed points (o, o), eitherval, o (X, R,i) # T for someX ¢ I', or
val(q,0) (X, R,i) = T for someX € A. A sequent is valid iff it is valid at all points.
Following [25], we use lower case letters for truth values] apper case letters for
formulas.

We begin by reviewing the axioms and rules for propositi@mal temporal reason-
ing. All the rules are given in [25]. We introduce some adufitil axioms for negation
and the temporal operators.
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Basic Axioms and Rules
X —-X

I'— A
rur —Aua

(thinning)

I — AX rx—A

I— A (cut)

ADB,BOC—-ADC
Truth Value Axioms and Rules:

I''tbA— AtDOB (VteT)

t
T —AASB (t)

I'BO>t—AADE (VteT)

t
> AASB =0

—aDb ifa<bd
aD>b— ifadb
—-TDOp,pDL (for all atomic propositions p)

The last axiom ensures that LTL formulas are either true lsefarhe middle value
arises only due to the inference predicate.

Proposition 6. The following are provable:
—ADT
—-1DA
—ADA

Proof. We prove the first claim:

—tDT o
————(thinning)
tjA—»tDT(t )
— (D

—-ADT

In [25] and here, the proof of completeness makes cruciabtiaalerived rule:

Proposition 7 ([25]). The following is a derived rule:

INA>tt>A— A VteT)
Ir— A
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Proof. [25] gives a proof of this derived rule for any finite lattiddle use the fixed
lattice to give a simpler proof. We are giventhatd > T, T > A — A. By Proposi-
tion 6,— A D T. Using cut,we gef, T O A — A. We can now derive:

IN'TOA—- A TD?,?DA—»TDA( )
Ccu
I'—-ATD>?77DA TD27
I'—-A7DA

— (cut)

Similarly, we can derivd” — A, A D 7fromIAD 1,1 D A— A.Then, given
I’AD? 7> A— A, two applications of cut gives us — A. O

Conjunction Axioms:
—ANBDA

— AANBDB
COACDODB—-CDANANB

Negation Axioms

—-—-—ADA
ADB—-BD>-A
—aD-b (a =—b)
—-bDa (a =—b)

Implication Axioms: We treat implication as right associative, i.d.,D B D C =
AD(BDOQO).
ANBDC—-ADBDOC

ADBDC—-AANBDC

We now establish some useful facts about implications, whie useful in deriving
properties of modalities:

Proposition 8. The following are provable:
ADB—-tD>DADB

TODADB—ADB

tODOADB,tDA—tDB



20 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokglsk

Proof. For the first claim:

thNADAADB—-tNADB —tANADA
ADB—tNADB

(cut)

Now we can derive:

ADB—tNADB tNADB—=tD>DADB
ADB—=tD>DADB

(cut)

For the second claim, we need the observationthat > T A A is provable:

ADT,ADA—-ADTAA —ADT — AD
—ADTAA

A
(2 cuts)

ADTANATANADB—ADB —-ADTAA
TAADB—ADB

Now using the axioml’ > A D B — T A A D B, an application of cut gives us
TODADB—ADB.

Finally, for the third claim, we need the observation that(A > B)AA D B
is provable. By Proposition 6. A D A, and so— (A D B) D A D B. Using the
implication axiom(A > B) > A > B — (A D B) A A D B, an application of cut
gives us the desired result.

(cut)

tD(ADB)ANA,(ADB)ANADB—tDB —(ADB)AADB
tDO(ADB)NA—tDB

tDADBtDA—-tD(ADB)AA tDO(ADB)ANA—tDB
tODADB,tDA—tDB

Temporal Reasoning

a1 DA, ...,a, DA, —-bDB (n>

a1 D OAy,...,a, D OA, — bD OB

0)

(TNecc)

—OJADANCANDOA

We can now prove the distribution axiom:

Proposition 9. The following is provable:

—0OADB)DUADOB
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Proof. By Proposition 8¢ > A D B,t D A — t D B. Using TNecc, we get D
O(A D B),t D OA — t D OB. ltis easy to derive:

t>D0(ADB)AOA—tDOB

Using the rulgt D), we get— 0O(A D B) ADA D OB. The desired result follows
using the implication axiom. a

Rules for the Inference Predicate

We now introduce two rules for the inference predicate, @yals to the rules that
we discussed in Section 4.1. We begin with a semantic cteiaation.

Given a set of regulatory statemetits= {idy.x : A; ~ By, ...,idp.x : A, ~
B,}, let Fy.e = {A1,...A,} be the set of preconditions},,s; = {Bi, ..., By} be the
set of postconditions, ankl,; = {ids, ..., id, } be the set of identifiers.

Given a set of identifiersd, let Regrq be the set of subsets of regulatory statements
F such thatFi; C Id. GivenC € L, let Reg(1q,c be the setd” € Reg.Id such that
N\ Fpost O C'is valid. Given a pointR, i) and a fixed poinfa, o’):

val(aﬂ,)(byld(C’), ]’37 ’L) = \/ {V&l(m(ﬂ) (/\ Fp're7 R, Z)|F € Reg(ld,C)}

In other wordspy14(C) is true iff there is a set of lawsF{ with F;; C Id) such
that (a)C can be inferred from the postconditions, and (b) the preitonsl are true.
Similarly, by14(C) is false iff for all appropriate sets of laws such thatan be inferred
from the postconditions, one of the preconditions is false.

To axiomatizebyq(C), we need to reason about provability in the languége
(propositional LTL). We say that a sequent in the languags provable (denoted
I' — 1 A)iffitis provable using the axioms and rules introducedviyasly. As we
discussed in Section 4.1, we will need to use the negationcafbility in the premise
of arule. The rules are as follows:

F={idi.x: Ay~ By,...,id,.x: A, ~ B,} C Reg, F;q C Id
—r BiN..NB,D>C

RBy1
t5 A1yt D Ay — £ bya(C) (RBYD)

Forall F ={idy.x: Ay~ By,...,id,.x: A, ~ B,} C Reg, Fiy C Id
If - BiN..AB,DCthenl — A1 Dt,..., A, Dt

RBy2
T — bym(C) ot (RE¥2)

Informally, RBy1 says thaby1q(C) is true, if there existd” € Reg(q4,cy such that
the preconditions are true. RBy2 says thaty(C') is false, if one of the preconditions
is false (for allF" € Reg(;q,c)- In particular, if—,, By A ... A B, D C'is not provable
for all appropriate subsets, then by (C) D L, as the premise of RBy2 is vacuously
satisfied.

We now develop some notation that is useful in several sulesggroofs. Given
C € L, let Frq4,0) be the set of subsetd'(C Reg with F;y C Id) such thatF" € F
iff —r A\ Fpost O C.LetAq,c)(t) be the set such thato A Fpe € Aqra o (t) iff
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F € Fia,c)- Finally, letI' 14, c(t) be the set such that F,.. D t € I1q,c)(t) iff
F e .7:(1,170).

Proposition 10. The following are provable:
I1a,09(t) — byna(C) D't

t 2 by1a(C) — Agra,c)(t)

Proof. The first claim is immediate from RBy2. For the second claine, show the
proof fort = T. By propositional reasoning, the following is provable:

—TDAAD? (VA e L")
From the first claim/[=(?) — by1a(C) D 7, and it follows that:
T D byn(C), Ic(?) —
Foreachd D ? = X such thatX € I'c(?), we have— T D A, X. Using cut, we get:
T Dbyw(C),Ic(?)—{X}—-TDA
Sincel'¢(?) is finite, repeated applications of cut will give us:
T D byw(C) = Ac(T)
O

We can show that the inference predicate behaves like a ihodsl deriving a
weaker version of the necessitation rdle:

Proposition 11. The following is a derived rule:

—r DinN...ND,DC
— b}’Id(Dl) TANAN bYId(Dn) D) byId(C)

Proof. By Proposition 10t O by1a(D;) — A(sa,p,)(t) is provable forl <i < n. We
constructA such that for each> A; € A(z4,p,)(t), we havet 5 A; A ... A A, € A,
By propositional reasoning, it follows that:

tD byId(Dl), eyt D bYId(Dn) — A

Observe that eaclX € A is associated with a set of regulatory statemdrits
such thatF;y C Id and—p A Fpost O D; forall 1 < ¢ < n. Using the fact that

! The stronger version of the necessitation rule (schenigtiequivalent to TNecc) can be de-
rived by making use of the two valued restriction of LTL. Hmge we have not found an
appropriate generalization for a many-valued logic.



A Default Temporal Logic for Regulatory Conformance Checki 23

—r DiA...AD, D C,itis easy to show that>;, A F,,s: O C. Then RBy1 gives us
X —t D byn(C) forall X € A. Repeated applications of cut will give us:

tD bYId(Dl), et D bYId(Dn) —tD byId(C’)

The desired result follows using propositional reasonirtge distribution axiom, i.e.,
— by1a(4 D B) D by1a(4) D byia(B) follows easily using this derived rule, and the
factthat—, (A > B)AA D B. 0

4.4 Completeness

We now discuss the soundness and completeness of the tyeensy®oundness, as
usual, is straightforward, and we leave the details to thdee We begin by showing
completeness for the atemporal fragment. From the peiigpeaxfta temporal operator,
a formulaby4(C) is simply an atomic proposition which can have the middleieal
We use the pre-model construction in [27] to generalize thefio a temporal setting.
Given an implicationX, let sub(X) be the set of subformulas &f U Reg and their
negations. Note that the subformulasidg are the subformulas of the preconditions
and postconditions=—A is identified with A. Givensub(X), we construct the set of
implicationscl(X') such that for alld € sub(X)andt € T {A D t,t D A} C cl(X).

Definition 13. GivenI” C c/(X) andY € cl(X):

— I'is Y-consistent iffT — Y is not provable." is Y-inconsistent iff’ — Y is
provable.

— I'is maximalY-consistentiff " is Y-consistentand foral € ¢l(X)—I",'U{Z}
is Y-inconsistent

Theorem 2 ([25]).GivenI" C cl(X) andY € cl(X) such thatl" is maximalY -
consistent, for ali € ¢l(X), there is exactly onee 7 suchthat{t > A, AD ¢} C T

Proof. We first show that for eacH € cl(X) there is at most one truth value with the
requisite properties. Suppose not. The we have two trutreeauch thaft; > A, A D
t1} C I'and{t2 D A, A D ta} C I Itis easy to derive thaf’ — ¢; D t2 and
I' — ty D t1. Sincet; # tq, eithert; £ t; orts £ t1. So, by the truth value axioms
we have eithet; D o — orts D t; —. In either case, using cuf, — is provable, and
by thinning,I” — Y is provable. This contradicts thé-consistency of .

Now we show that there is at least one truth value with the isitguproperties.
Suppose not. SincE is maximal, we have:

NADt,tDO A=Y (VteT)
By Proposition 7, it follows thal” — Y, contradicting th& -consistency of . O

Lemma 4. GivenI" C ¢l(X) andY € cl(X) such thatl" is maximalY'-consistent and
by1a(C) € cl(X):
t D byra(C) € I'iffthere existd” € F 14,0y suchthatforalld € Fy,.,t D A€ I’
byra(C) Dt € Iiffforall F' € F14,cy, there existsA € Fy.c andA Dt € I
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For each part, one direction follows directly from the irfiece rules, and the other
direction follows directly from Proposition 10.

Given a maximalX -consistent sef’, we construct a state- such that for all atomic
propositions, p € sy iff {T D p,p D T} C I'. We also construct setsy anda/-
such that for eachd.x: A~ B € Reg:

—id:Beariff {TOAADT}CT
— id:Beqaliffid Bearor{?D>A AD?}C I

The completeness proof is finished in the usual wayis extended into a rum
with a single state. A single state suffices for the atempaseé (a1, /) are extended
to annotation functionéo, o). Itis easy to show thatal, o) (4, R, ) = t iff ¢ is the
unigue value such thgtd D ¢,t > A} C I'. Using Lemma 4 and the construction
of annotation functions, we can argue that the annotatiomespond to a fixed point.
Thus if — X is not provable, we can create a maxifiab X-consistent sef’, which
is extended to a run and fixed point such tiais not true.

Now, we consider the temporal case. GivEne L* and a body of regulation,
let Mx be the set of all maximal consistent sets, ile.c Mx iff " is maximalY -
consistent for som& € cl(X). We construct the relatiofiy C M x M such that
(I,I'") € dx iff for all temporal formulasdA € sub(X), if t D OA € I', then{t D
A,t D OA} C I". Intuitively, the graph of maximal consistent séts = (Mx,dx)
encodes a set or runs. The global formutas (O A) get the right interpretation, but not
so for eventual formulasTA D t). We will be interested in the set of paths which are
fulfilling [27]:

Definition 14. Given X € LT andGxy = (Mx,dx), a path inGx is an infinite
sequence of states; : N — Mx, such thatforalk € N, (r(i),7(: + 1)) € dx. A
pathpx is said to be fulfilling iff for all temporal formulaslA € sub(X) and for all
i€ N,if0A Dt e r(i), then there existg > i such thatd > ¢ € r(j).

We now prove the existence of fulfilling paths:

Lemmab. GivenX € Lt andGx = (Mx,dx), forall I' € Mx, 0A Dt € T iff
there exists a finite pattly, ..., [,) suchthatly = I',forall0 < i <mn, (I}, I41) €6
andA Dt e I,.

Proof. SupposélA D t € I', and no appropriate finite sequence exists.IelC Mx

be the smallest set such that @)e Tr, and (b) ifI1 € Tr and (11, 1%) € Jx,
thenls € Tr. In other wordsT is the set of states reachable frdm Observe that
forall IV € Tr, A D t € I". Since the sets i~ are maximal, there exists some
t' £ t, such that for alll” € Tr,t D A € I". Consider the set of implications
{t1 D OAy,....t, D OA,} C I'. We claim that:

t1 DOA, .., t, DOA,t1 DA, .. th DA, -1t/ DA

For if not, we can construct a maximal> A-consistent sef”’ such thatr™”’ € Tr-.
But, this contradicts the fact that > A € I’ for all I" € Tr. Assuming that the
sequent above is provable, using TNecc, we get:

t1 D O0Ay,....t, D O0OA,,t; D OAy,...,t, DOA, —t DOA
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Using the fact that- 0A D OOA, we can derive that:
t1 DOA,,..,t, DOA, -t DOA

Since allitems on the leftareif, ' > OA € I'.Howevert £ tand0A Dt e I,
from which we can contradict the fact thatis consistent. As a result, there exists
I'" e Tr suchthatd o t € I'. SinceMx is finite, there exists a finite path frofmto
I,

For the other direction, suppose we are given a finite path..., I,) such that
A Dt e I,,. We need to show th&l A D ¢t € I. The proof proceeds by induction
onn. Forn = 0, we havely; — A D t. Since— OA D A, we can derive that
Iy — O0A D t.Forn = 1, we havel} — A D t. SupposeélA Dt ¢ Iy, we have
Iy — t' D OAforsomet’ £ t. So,I1 — t' D A contradicting the consistency of
I. For the inductive set, sincB, — A D t, we havel} — OA D t (by induction
hypothesis). Again, supposeA D t ¢ I, we havel; — ¢’ D OA for somet’ £ t.
So,I1 — t’ D OA contradicting the consistency 63 . O

Completeness is established analogously to the atempatialgs GivenX ¢ L+
suchthat— X is not provable, we construty = (Mx, dx). Observe that there exists
I' € Mx suchthat"is T O X-consistent. Using Lemma 5, construct a fulfilling path
px : N — Mx such thapx (0) = I'. The path is extend to a ruR with fixed point
annotationga, o’), as discussed earlier. It is easy to show that, (A, R, i) = t iff
t is the unique value such thétl O ¢, O A} C I'. As aresultyal, o) (X, R,0) #

T, andX is not valid. We obtain the following:

Theorem 3. Given a body of regulatiofReg, for all implicationsX € L™
— X is provable iffX is valid
4.5 Example Derivations

We discuss two examples. The first example will be used tdfglaur definition of
conformance, and the second to show a prototype for the middle.
Example 1: Consider the propositionalized version of our regulagegtences:

— 1.0 d A —by gy (—Otest) ~» Otest
— 2.p: sp ~ =Otest

The following is provable:
— d A —sp D byy(Otest)

SinceT D —<Otest is satisfiables—, T D Otest is not provable. By Proposition 6, we
have— —Otest O =Otest. By Proposition 10, we get:

sp Dt — by (=Otest) Dt (%)
Since—, Otest D Otest, it follows from RBy1 that:

t O d A =by(=Otest) — t D bygy(Otest) (%)
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The result follows easily from propositional reasoningotfr(x), using(D t), we get
— by(g3 (—Otest) D sp. Using the negation axiom, we get:

— 25p D by (~Otest)

By Propositon 8, wehavda D B —-t>AD>Bandt D ADB,tDA—tD>B.
We can derive that:

t D —sp — t D by (—Otest) (% * %)

Now using(+*), we can deriveé D d,t D —byg)(=Otest) — t D by (Otest).
Using (* * x), an application of cut gives us:

tDd,t D —sp —t Dby (Otest)

It is easy to show that > (d A sp) — t D dandt D (d A —sp) — t D —sp. Two
applications of cut gives us> d A —sp — t D by 1} (Otest). Now applying(t D):

— d A =sp D bygy(Otest)

What does this tell us about conformance? Intuitively, tetions tell us nothing about
what actually holds. Given the regulation above,d A —sp D <test is not provable.
Conformance is a separate notion of inference, what is required is trueGiven

a body of regulation lefd,, be the identifiers of the obligations. The actual state of
affairs can be given by a run, or described declaratively bgteof LTL formulasi".
The idea is thaf” conforms to the regulation iff for all implications € L such that

I' — T D by, (X), we havel" — X.

Example 2 The following regulation gives us a prototype for the maldalue:

- Lo —byy(p) ~p

This obligation requirep when it doesn't require p and is always ungrounded. The
following are provable:

— byy(p) D7
— 7D bypy(p)

Using RBy1, RBy2 and Proposition 10, itis easy to show thaby 1} (p) O —by 1} (p)
and — —bygy(p) O byqiy(p). By propositional reasoning, it is easy to show that
AD-A-ADA— AD7andA D -A,-A D A — 7 D A. The provability of the
claims follows easily.

5 Conclusions and Future Work

We have motivated and described a logic (RefL) that accotesdaferences between
laws. RefL separates two uses of statements — drawing imdesdfrom regulation, and
determining facts about an organization. We believe thattiparation is crucial to the
application of conformance checking.
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The inference predicate blends two ideas from logic prognang. First, the Kripke-
Kleene-Fitting semantics [28], which uses three valuesiégyation in logic programs.
In RefL, we place the burden on a predicate, rather than oatiteg The advantage is
that connectives can behave as they do in a many valued Begond, contextual logic
programs [29] use operations to restrict the context froritivmferences are derived.
Referring to specific laws (via identifiers) gives us a finakged control of context.

RefL provides a staring point in bringing the advantagesosf-monotonic reason-
ing to systems such as [3, 5]. [3] represents business ataia SQL queries, and [5]
uses first-order logic augmented with real time operatadng. ihference predicate can
be added to these systems, provided that the existentiatifjoation is relativized to ei-
ther the preconditions or the postconditions. Howevetrict®ns are needed to ensure
that the satisfiability tests remain decidable. [4] disesgbe importance of anlayzing
references, but do not provide a formalization.

In this work, we have considered references to laws thatappereconditions.
There is also the need for references in postconditions. ioas case is for laws
that cancel obligations and permissions given by anothgr,ia donation is not used
for transfusion, exemption (3) no longer applidsmore speculative case can be made
for iterated deontic constructs [18], e.g., “required tmwlx”. We suggest that the
semantics will involve representing agents who introdaeeslthat reason about each
other, e.g.You are required to (introduce laws that) allow a patient é& $iis records

On the computational side, our goal is to be able to scale uprte with a large
number of objects, and incorporate RefL into a runtime checkamework for LTL.

In a companion paper [30], we identify a fragment of RefL mated by a case study
of the FDA CFR. The fragment assumes that; () can be evaluated by using at most
one of the laws referred to. This assumption allows us tcaepsatisfiability tests with
tests of lower complexity, and lets us scale up to runs witrgd number of objects. In
this paper, we have focussed on formally characterizing#imeantics and complexity
of RefL, and in [30], we focus on optimizations that are nekidepractice.
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