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ABSTRACT 

	  

LIGHT-ENABLED IDENTIFICATION OF THE NEURONAL SUBSTRATES OF 

ALKYLPHENOL ANESTHETICS 

Brian P. Weiser 

Roderic G. Eckenhoff 

 

General anesthetics are a critical class of drugs in modern medicine; however, the precise 

mechanisms by which they cause unconsciousness and unwanted side effects are largely 

undefined. In order to understand pharmacologic mechanisms of anesthetic action, drug 

interactions with macromolecular substrates and the subsequent functional consequences 

must be characterized. Analogs of general anesthetics that function as photolabels have 

been developed to assist in the identification of molecular targets. One such photolabel, 

meta-azi-propofol (AziPm), is an analog of the clinically used alkylphenol anesthetic 

propofol. In this work, AziPm is employed in a variety of experiments that aim to identify 

molecular substrates of propofol. Two proteins identified as propofol targets are more 

thoroughly examined: (1) the sirtuin deacetylase SIRT2 and (2) the mitochondrial 

voltage-dependent anion channel (VDAC). The binding sites of propofol on these 

proteins, and the in vitro functional consequences of propofol binding, are determined. 

Also described are the molecular interactions of VDAC with a separate ligand, 

cholesterol, which shares a binding site with propofol. In addition to molecular studies, a 

novel in vivo photolabeling technique, called optoanesthesia, that utilizes AziPm is 

introduced, and the behavioral phenotype induced by optoanesthesia in Xenopus laevis 
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tadpoles is characterized. Finally, optoanesthesia is demonstrated with other ligands, 

including a photoactive analog of an anthracene anesthetic, and mechanistic insight into 

the pharmacology of this anthracene is revealed.
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CHAPTER 1: INTRODUCTION TO GENERAL ANESTHETICS AND 

ANESTHETIC PHOTOLABELING 

1.1 Relevance of General Anesthetic Pharmacology 

 General anesthetics are united by their ability to cause the clinically important 

endpoints of reversible unconsciousness and amnesia. These drugs enable over 230 

million surgeries to be performed worldwide every year (Weiser et al., 2008). Despite 

this widespread use in medicine, the mechanisms by which general anesthetics act remain 

undefined on both the molecular and systems neuroscience levels. 

 As a class of drugs, general anesthetics are chemically diverse and include both 

injectable and volatile compounds. Small organic molecules, halogenated alkanes and 

ethers, and even the gaseous element xenon can be efficacious anesthetics. The Meyer-

Overton hypothesis (Meyer, 1901; Overton, 1901) that general anesthesia is caused by 

non-specific perturbation of cellular membranes has largely been supplanted by research 

focusing on interactions of anesthetics with proteins. Considerable attention has been 

devoted to hypotheses suggesting that different classes of anesthetics elicit their effects 

through proteins localized within distinct neuronal circuits; however, the efficacies of 

different anesthetic chemotypes likely arise from modulating different molecular and 

neuronal targets. Most current theories of anesthetic action emphasize additive or 

synergistic interactions with multiple targets, each contributing variably to a given 

anesthetic endpoint. Thus, bulk partitioning or strong binding to a target does not imply 

relevance, as a high concentration of ligand may be required for a small contribution to 

an endpoint and vice versa, on both the molecular and physiologic levels.  
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 The potencies of general anesthetics vary over at least five orders of magnitude, 

yet the drugs exhibit similarly steep Hill slopes in population studies; for example, the 

dose response curves for human unconsciousness have Hill slopes of ~15 and ~6 for 

sevoflurane and propofol, respectively (Katoh and Ikeda, 1987; Smith et al., 1994). 

Population Hill slopes statistically quantify pharmacodynamic variability. A plausible 

explanation for the homogeneity of general anesthetic response in populations is that the 

compounds act on a highly conserved target with a highly conserved function. In general, 

however, drugs that act on a single molecular target in vivo typically produce broader 

population dose response curves with a Hill slope of ~1 due to genetic or physiologic 

variability (Eckenhoff and Johansson, 1997). Coupled with the fact that complete 

resistance to any general anesthetic has not been imposed on an organism through genetic 

or pharmacologic manipulations, it seems likely that multiple molecular targets each 

contribute partially to the cellular and systematic pathways that regulate the state of 

consciousness and are disrupted by anesthetics.  

In addition to causing unconsciousness with a change of concentration less than a 

factor of 1.6 (Franks, 2008), general anesthetics have narrow therapeutic indices 

(LD50/ED50) (for example, 6-12 for propofol and 2-4 for sevoflurane (James and Glen, 

1980; Baxter International Inc., 2013). Thus, the medical specialty of anesthesiology is 

needed to ensure the safe administration of these drugs. Further, along with the intended 

“on-pathway” endpoint- that is, the state of general anesthesia- the promiscuous nature of 

these small compounds leads to a plethora of undesired “off-pathway” effects. These 

include both acute (Patel et al., 2003; Wickley et al., 2009; Whittington et al., 2011) and 
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chronic effects, with the latter including neurodevelopmental and neurodegenerative risks 

(Zhang et al., 2009; Papon et al., 2011). 

 

1.2 General Anesthetic Photolabeling 

To ensure optimal administration of current anesthetics and to rationally develop 

new drugs for clinical use, a comprehensive understanding of their modes of action is 

required. At clinical concentrations, general anesthetics affect the function of certain 

proteins. Injectable general anesthetics are typically of higher potency than the volatile 

type, suggesting higher affinities for protein targets that influence consciousness; 

however, micromolar dissociation constants are common for all anesthetic-

macromolecule interactions. Micromolar dissociation constants indicate rapid ligand 

unbinding, and one experimental approach that overcomes these dissociation kinetics is 

photolabeling. 

 Photolabeling specifies that a ligand undergoes photolysis upon light exposure, 

generating chemically unstable intermediates that covalently attach to macromolecules. 

This adduct provides a tag in a site that can be identified with mass spectrometry, or else 

traced if the ligand is radiolabeled. General anesthetic photolabeling experiments have 

previously been performed with purified proteins, enriched subcellular fractions, and 

tissue sections, with variations on each biological system, and anesthetic photolabeling 

has been used to identify protein binding sites, to study functional effects of ligand 

binding, and for discovery-based proteomic or distribution studies.  

 

1.3 Development and Detection of Anesthetic Photolabels  
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 With ~254 nm exposure, halothane undergoes photodecomposition, primarily to 

reactive chlorotrifluoroethyl and bromine radicals, which permits its use as a photolabel 

(Bösterling et al., 1982; el-Maghrabi et al., 1992). An advantage of halothane 

photolabeling is the use of an unmodified clinical compound; however, the high energy 

UV that induces photolysis can be destructive to biological macromolecules. The 

chlorotrifluoroethyl radical, the distinguishing label, also demonstrates reaction 

selectivity towards aromatic residues, and the released bromine atom can propagate 

further radical reactions (Eckenhoff, 1996a; b; Eckenhoff et al., 2000; Tang et al., 2000; 

Ishizawa et al., 2002; Chiara et al., 2003). 

 To overcome these problems, photoactive anesthetic analogs containing diazirine 

or aryl azide moieties have been synthesized for multiple anesthetics. The chemotypes 

represented by these photolabels include haloalkanes (RG Eckenhoff et al., 2002), long 

chain alcohols (Husain et al., 1999; Addona et al., 2002), etomidate (Husain et al., 2003, 

2006, 2010; Bright et al., 2007), neurosteroids (Darbandi-Tonkabon et al., 2003), 

haloethers (Xi et al., 2006; Eckenhoff et al., 2010), anthracene (Emerson et al., 2013), 

alkylphenols (Hall et al., 2010; Stewart et al., 2011; Yip et al., 2013), and barbiturates 

(Savechenkov et al., 2012) (Figure 1). Incorporated photoactive groups undergo 

photolysis at lower energy wavelengths than halothane (~300-375 nm), limiting damage 

to biological samples upon irradiation. The chemical and pharmacologic properties of 

these analogs, including general anesthetic efficacy, are initially characterized to ensure 

reasonable mimicry of the parent compounds. Photolabeling studies with analogs are 

strengthened by confirmation that pharmacologic activity is conserved with the parent 

compound through parallel functional assays or competition experiments. Photolabeling 
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competition experiments hint at specificity or saturability of target binding sites, easing 

subsequent experimental investigations, but not necessarily designating a relevant role for 

the functional effects of the compounds.      

 
 
Figure 1. Chemical structures of general anesthetics and their photoactive analogs. With 
the exception of halothane, a diazirine or azido group serves as the photoactive moiety.  
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 The diazirine moiety has generally been favored in anesthetic photolabel design. 

When placed adjacent to an electron-withdrawing group, especially a trifluoromethyl 

group, diazirine photolysis results in a single reactive intermediate, a singlet carbene, and 

an inert by-product, dinitrogen. This carbene intermediate simultaneously displays 

carbocation and carbanion characteristics, allowing both electrophilic and nucleophilic 

reactions, and enabling covalent attachment to proteins orders-of-magnitude faster than 

carbon-centered radicals (e.g., chlorotrifluoroethyl radical) (de Frémont et al., 2009; 

Gerbig and Ley, 2013). The promiscuous reactivity of singlet carbenes is desired to 

reliably photolabel equilibrium binding sites, which can consist of chemically diverse 

side chain and backbone atoms, and photolabel promiscuity is suggested by adducting a 

broad range of residues, including aliphatic amino acids. Because general anesthetics can 

favorably assume multiple orientations in sites where interactions are mediated primarily 

by hydrophobic or van der Waals forces, photolabel attachment to multiple residues 

lining a pocket indicates a considerably dynamic ligand in the site.  

 

1.4 Experimental Approach for the Discovery of Anesthetic Targets  

 An underlying theme throughout this thesis work is the experimental approach 

that utilizes general anesthetic photolabels. This approach proceeds with the following 

steps: (1) Photolabel development, which includes the design, synthesis, characterization, 

and pharmacologic validation of photoactive anesthetic analogs; (2) Use of photolabels to 

identify protein targets of anesthetics through unbiased proteomic approaches, followed 

by the identification of molecular binding sites; (3) Association of anesthetic binding 

with the alteration of a characteristic in vitro function of the identified protein; (4) 
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Demonstration of the relevance of altering protein function in organism physiology while 

an animal is anesthetized with a specific compound. 

 The primary aim of this work is to identify and implicate protein targets in 

anesthetic mechanisms, with primary focus on the anesthetic propofol and, to a lesser 

extent, 1-aminoanthracene. The unbiased proteomic approach in step (2) dictated that the 

proteins interrogated in step (3) and onwards were not defined at the start of this project. 

As target identification is dependent on ligand-protein binding, and is largely independent 

of protein function, the relevance of identified targets for on- or off-pathway 

pharmacologic mechanisms was also not predetermined. With this in mind, the initiation 

of the experimental approach and the pursuit of target relevance are described herein.
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CHAPTER 2: PROPOFOL AND ALKYLPHENOL ANESTHETICS 

2.1 Alkylphenol Anesthetic Pharmacology 

Propofol (2,6-diisopropylphenol) is one of the most commonly used intravenous 

general anesthetics. In addition to propofol, other molecules of the same alkylphenol 

chemotype are also efficacious and potent general anesthetics (James and Glen, 1980; 

Krasowski et al., 2001; Hall et al., 2010; Stewart et al., 2011). For example, 2-

isopropopylphenol and the disubstituted compounds 3,5-dipropylphenol and 2,4-di-sec-

butylphenol produce loss of righting reflex in tadpoles and/or mice within a 6-fold 

concentration range of propofol (James and Glen, 1980; Krasowski et al., 2001). It is 

likely that the alkylphenol anesthetics share molecular binding partners and cause 

hypnosis through conserved mechanisms, and continuing to characterize the 

pharmacology of this chemotype should ultimately improve their use and development.  

Central nervous system (CNS) depression by propofol is partially attributable to 

GABAA receptor potentiation (Jurd et al., 2003); however, other ion channels that control 

neuronal excitability are modulated during alkylphenol anesthetic-induced hypnosis. 

Electrophysiological studies have demonstrated propofol inhibition of neuronal nicotinic 

acetylcholine receptors (Flood et al., 1997; Violet et al., 1997), suppression of sodium 

channel currents (Rehberg and Duch, 1999), and well-documented potentiation of glycine 

receptors, including evidence for their involvement in propofol hypnosis (Nguyen et al., 

2009). Additionally, propofol can alter G-protein coupled receptor signaling (Murasaki et 

al., 2003), and propofol inhibits neurotransmitter release through SNARE-associated 

proteins (Herring et al., 2011). With the exception of serum albumin and apoferritin 
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(Bhattacharya et al., 2000; Vedula et al., 2009), studies involving propofol binding to 

soluble proteins have thus far been limited.  

 

2.2 Meta-Azi-Propofol (AziPm) 

Similar to other general anesthetics, propofol has relatively low affinities for 

protein targets, with the reported highest affinity propofol-protein interactions having low 

micromolar dissociation constants (Vedula et al., 2009). To aid the identification of 

propofol targets and binding sites, the Eckenhoff lab has developed a photoactive 

propofol analog called meta-azi-propofol (AziPm) (Figure 2) (Hall et al., 2010). This 

compound contains a 2-isopropyl group and a trifluoromethyl-diazirine incorporated at 

the meta position of the phenol ring, and the peak absorbance of the diazirine, as 

measured with UV-Vis spectroscopy, is at ~370 nm. AziPm and propofol also have 

similar physicochemical properties (Table 1). As a validation that AziPm and propofol 

share conserved protein binding sites, the photolabel has been demonstrated to adduct 

residues within crystallographically-determined propofol sites on horse spleen apoferritin 

(Hall et al., 2010), the Gloeobacter ligand-gated ion channel (GLIC) (Chiara et al., 

2014), and human serum albumin (unpublished data). Also, this ligand binds intersubunit 

transmembrane sites on GABAA receptors that are conserved with propofol and other 

anesthetics (Jayakar et al., 2014), and AziPm potentiates GABAA receptor anionic current 

(Hall et al., 2010). Importantly, similar to other alkylphenol analogs of propofol, AziPm 

is also a potent general anesthetic, producing anesthesia in tadpoles and mice within a 

two-fold concentration of propofol. 

 



	  
	  

10	  

 
 

Figure 2. Chemical structures of propofol and AziPm. 
 
 

Table 1. Physicochemical properties of propofol and AziPm 
Compound MW (Da) Density (g/ml)a LogPa Dipole (D)a Volume (Å3)b 
Propofol 178 0.96 3.79 1.70 192.5 
AziPm 244 1.12 3.93 2.12 196.5 

aValues derived from Hall et al., 2010. 
bCalculated with ChemAxon’s MarvinSketch, v14.7.14.0. 

 

2.3 AziPm Binding to Whole Brain  

 Alkylphenol general anesthetics are approximately two orders of magnitude more 

potent than volatile anesthetics. This could be due to higher affinities of the alkylphenols 

for drug targets and/or higher efficacies for modulating the function of critical substrates. 

One implication of higher affinity interactions is more selective binding to targets. To test 

the selectivity of binding, we characterized the macroscopic distribution of an 

alkylphenol anesthetic in its presumed target, the brain. Brain sections equilibrated and 

photolabeled with 0.1 µM [3H]AziPm were exposed to x-ray film for autoradiography. 

We quantified binding to nine distinct brain regions (Figure 3A, Figure 3B, and Table 2). 

AziPm binding was widespread but heterogeneous, with the most heavily labeled regions 

approximately twice as intense as the least labeled. We compared the selectivity of 
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alkylphenol binding to that of the volatile anesthetic halothane (Table 2) (Eckenhoff and 

Eckenhoff, 1998). Overall, the relative selectivity of these chemically distinct anesthetics 

for each brain region was similar, and the largest differences were less than two-fold 

(Table 2).  

 
 

Figure 3. (A) Heavily contrasted autoradiograph of a sagittal brain section photolabeled 
with 0.1 µM [3H]AziPm. Regions of interest are indicated: CC, corpus callosum; Hpc, 
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hippocampal pyramidal cell layer; Hml, hippocampal molecular layer; Dgc, dentate 
granule cell layer; Dml, dentate molecular layer; Cx, cortex; Cml, cerebellar molecular 
layer; Cgl, cerebellar granular cell layer; Cwm, cerebellar white matter. (B) Brain section 
photolabeled with 0.1 µM [3H]AziPm or (C) [3H]AziPm + 300 µM propofol. The insets 
depict (B) AziPm and (C) propofol. The sections in (B) and (C) were exposed to the same 
film and contrasted identically after development, and hence accurately portray relative 
levels of [3H]AziPm binding.   
 
 
 
Table 2. [3H]AziPm binding to rat brain regions  

 
 

Brain region 

0.1 µM 
[3H]AziPm 

(mO.D. ± SE)a 

0.1 µM [3H]AziPm 
+ 300 µM propofol 

(mO.D. ± SE) 

AziPm 
selectivity 

ratiob 

Halothane 
selectivity 

ratioc 
Cortex 215 ± 9 199 ± 11 0.14 0.13 
Corpus 

callosum 
147 ± 11 151 ± 7 0.10 0.12 

Hippocampal 
molecular layer 

199 ± 12 190 ± 11 0.13 0.13 

Hippocampal 
pyramidal layer 

168 ± 7 157 ± 7 0.11 0.10 

Dentate 
molecular layer 

212 ± 12 198 ± 7 0.14 0.12 

Dentate granule 
cell layer 

145 ± 7 141 ± 6 0.10 0.07 

Cerebellar 
molecular layer 

182 ± 6 178 ± 6 0.12 0.14 

Cerebellar 
granular layer 

118 ± 5 125 ± 2 0.08 0.07 

Cerebellar 
white matter 

100 ± 7 97 ± 5 0.07 0.12 

aMilli-optical density (mO.D.) data is from (n = 4) brain sections for [3H]AziPm and (n = 
8) sections for  [3H]AziPm + propofol.  
bSelectivity ratio calculated as region mO.D./sum of mO.D. from all the regions. 
cData for halothane derived from Eckenhoff and Eckenhoff, 1998. 

 

 The quantified brain regions can be combined into three compositions: (1) 

synapse-dense, (2) primarily cell bodies, and (3) primarily white matter (Table 3) 



	  
	  

13	  

(Eckenhoff and Eckenhoff, 1998). Comparing combined data from each compositional 

class revealed that AziPm preferentially binds synapse-dense regions as compared to cell 

bodies or white matter (Table 3). Preferential binding suggests a general concentration of 

higher affinity substrates for alkylphenol anesthetics in these protein-rich areas. Maximal 

binding to synapse-dense regions was also seen for halothane, but halothane bound to 

white matter more strongly than did AziPm (Eckenhoff and Eckenhoff, 1998). Although 

binding does not necessarily imply functional association with the anesthetic endpoint, 

concentrated binding at synapses for both drugs is consistent with the consensus that the 

primary effect of general anesthetics is on transmission rather than conduction.  

 

Table 3. [3H]AziPm binding to rat brain by primary composition of regions  
Brain region 0.1 µM [3H]AziPm (mO.D. ± SE) 

Molecular layers 202 ± 8a 
     Cortex  
     Hippocampus  
     Dentate gyrus  
     Cerebellum  
Cell body layers 144 ± 15 
     Hippocampus pyramidal  
     Dentate gyrus granule cell  
     Cerebellar granular/Purkinje  
White matter 124 ± 24 
     Corpus callosum  
     Cerebellum  
aSignificantly greater binding in the molecular layers compared to cell body or white 
matter regions was determined with one-way ANOVA ( p = 0.01) followed by 
Bonferroni post-hoc tests comparing all means and testing for significance with a family-
wise error rate of 0.05. Values represent averages from 0.1 µM [3H]AziPm binding in 
Table 2.    
 
 
 Pharmacologic specificity of alkylphenol sites on neuronal substrates can be 

indicated by inhibition of photolabeling by propofol. Therefore, we photolabeled brain 
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sections with 0.1 µM [3H]AziPm while co-incubating with increasing concentrations of 

propofol (3-300 µM). We did not detect any significant change in total binding in any 

brain region, even with propofol concentrations 3000 fold higher than [3H]AziPm (Table 

2 and Figure 3C). We hypothesized that a high non-specific component of binding to 

lipid reduced the ability to detect saturable binding to protein in the whole brain section 

preparation, so we separately analyzed the specificity of alkylphenol anesthetic binding to 

both protein and lipid.  

 

2.4 AziPm Binding to Synaptosomal Protein  

 Because [3H]AziPm most selectively bound synapse-dense regions, we 

photolabeled rat synaptosomes in vitro with [3H]AziPm ± propofol to test the specificity 

of  binding to protein. SDS-PAGE and autoradiography revealed numerous targets, but 

selectivity was evident in that binding of [3H]AziPm did not correlate with abundance as 

reflected by Coomassie intensity (Figure 4A). We also observed binding specificity, with 

inhibition of [3H]AziPm protein photolabeling by only 100-fold higher concentrations of 

propofol (Figure 4A). Based on optical density measurements of the entire lanes, 400 µM 

propofol decreased 4 µM [3H]AziPm binding to synaptosomal protein an average of 31%, 

with a maximum decrease of 57% in any individual band (Figure 4A). This suggested 

broad applicability for AziPm in examining propofol-protein interactions.    

 The autoradiograph signal normalized to the Coomassie intensity throughout the 

lanes revealed that, per amount of protein, higher molecular weight proteins were 

considerably more photolabeled than those of lower molecular weight (Figure 4B). Using 
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protein standards, molecular weight could reliably be estimated between 10-250 kDa. In 

the absence of competing propofol, [3H]AziPm photolabeled 115-250 kDa protein 

proportionally with only a small dependence on protein molecular weight (Figure 4C). 

Less than 115 kDa, however, this trend was intermittently disrupted, presumably by 

abundant proteins without specific binding sites. Our interpretation is that larger 

polypeptides, because of larger surface area and folds (Liang et al., 1998), are statistically 

more likely to contain the structural features that constitute a specific binding site for the 

small alkylphenol anesthetics, whereas these features become progressively less likely as 

the proteins become smaller. A similar dependence of chain length on the creation of 

specific halothane binding sites has previously been demonstrated with model 

polypeptides (Johansson and Eckenhoff, 1996).      

 
 
Figure 4. (A) Coomassie-stained PVDF membrane and corresponding autoradiograph of 
synaptosomal protein photolabeled with 4 µM [3H]AziPm or 4 µM [3H]AziPm + 400 µM 
propofol, with the latter indicated as +p. On the right, the optical density (O.D.) profiles 
of the lanes are shown, with [3H]AziPm shown in black, and [3H]AziPm + propofol 
shown in red. Between the arrows in the lanes, propofol inhibited [3H]AziPm 
photolabeling by an average of 31%. (B) Autoradiograph O.D. normalized to Coomassie 
O.D. for the membrane and autoradiograph shown in (A). Data for [3H]AziPm and 
[3H]AziPm + propofol are again shown in black and red, respectively. (C) The 10-250 
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kDa portion of the [3H]AziPm (black) and [3H]AziPm + propofol (red) traces from (B) 
are shown. Linear regression was used to fit straight lines (shown in green and blue) 
through the data between 115-250 kDa, and the traces were extended with the dashed line 
to 10 kDa. R2 was 0.38 and 0.00 for the green and blue fits, respectively. 
 
 
 

 
 

Figure 5. Coomassie-stained membrane and corresponding autoradiograph of mouse 
brain fractions (Dunkley et al., 2008) photolabeled with [3H]AziPm: 1, miscellaneous 
cellular membranes; 2, myelin; 3, synaptosomes; 4, mitochondria; 5, brain homogenate. 

 

  In brain sections, high affinity binding to few proteins could have manifested as a 

highly selective drug distribution that mimics the expression of those targets. For 

example, if alkylphenols uniquely bound GABAA receptors, a presumed functional target 

for these drugs, we would have expected greatest AziPm photolabeling in the cerebellar 

granule layer where functional GABAA receptors are most abundant (Palacios et al., 

1981; Bowery et al., 1987). This would also have manifested as peak [3H]AziPm 

intensity only at ~60 kDa on the SDS-PAGE autoradiograph. However, the brain sections 

and SDS-PAGE gel together demonstrate the presence of many proteins that selectively 

and specifically bind alkylphenol general anesthetics, and there are also numerous AziPm 

targets not present in synaptosomes (Figure 5). Identification of these many photolabeled 



	  
	  

17	  

proteins will require purification of photolabeled protein or comprehensive protein 

sequencing to detect AziPm covalent adducts.  

 

2.5 AziPm Binding to Neuronal Lipids   

 To characterize alkylphenol anesthetic binding to rat brain lipids, we isolated the 

major phospholipid species and cholesterol after photolabeling brain homogenate with 1 

µM [3H]AziPm. [3H]AziPm exhibited statistically significant selectivity for photolabeling 

phosphatidylethanolamines (PE) as compared to the other lipids (Table 4). [3H]AziPm 

binding to PE also increased in the presence of 400 µM propofol, in contrast to the other 

lipids, which showed no change in binding (phosphatidylcholines (PC) and cholesterol) 

or a 50% decrease (phosphatidylserines/phosphatidylinositol/sphingomyelin (PS/PI/SPH) 

combined). Because of the abundance of PE, it seems clear that the inability of propofol 

to displace [3H]AziPm binding from brain slices was likely due to this over-abundance of 

non-specific sites, and that competition of labeling from proteins in brain sections is 

compensated for by this cooperative effect in the lipid fraction.  

 

Table 4. [3H]AziPm binding to major rat brain lipids 
 

Lipids 
 

Rf value 
pmol [3H]AziPm binding 

per µmol lipid 
Fold change with 400 µM 

propofol co-incubation 
PE 0.7 ± 0.1 102.1 ± 24.1a 1.7 ± 0.2 
PC 0.4 ± 0.1 36.5 ± 10.6 0.9 ± 0.2 

PS/SPH/PI 0.2 ± 0.1 27.0 ± 10.8 0.4 ± 0.1 
Cholesterol 1 0.8 ± 0.1 1.2 ± 0.2 
aSignificantly greater [3H]AziPm binding to PE compared to PC, PS/SPH/PI, and 
cholesterol was determined with one-way ANOVA (p = 0.002) followed by Bonferroni 
post-hoc tests comparing all means and testing for significance with a family-wise error 
rate of 0.05. Mean values are from (n = 4) experiments per lipid.  
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  Of the dominant lipid fractions, PE is charged and polar and is thought to 

hydrogen bond to membrane proteins. Because the alkylphenols distribute in the 

headgroup region of lipid bilayers (Hansen et al., 2013; Arcario et al., 2014), the phenol 

hydroxyl may better hydrogen bond to PE, explaining the selectivity of binding. In 

separate experiments, we determined that 16 ± 3% of [3H]AziPm that covalently bound to 

PE had incorporated into the polar headgroup, as compared to only 5 ± 1% for both PC 

and PS/PI/SPH. Thus, at least in the absence of propofol, alkylphenols partially distribute 

to different membrane depths that are dependent upon adjacent phospholipid species. The 

cooperativity of AziPm photolabeling of lipids in the presence of excess propofol might 

arise from displacement of [3H]AziPm from adjacent protein sites, or through alterations 

in bilayer structure or dynamics that permit greater access of the photolabel to these 

headgroup regions (Tsuchiya, 2001; Bahri et al., 2007; Hansen et al., 2013). The 

implications of this complex shifting of ligands between macromolecular pools are not 

clear, but emphasize that ligand-ligand interactions and the concentration-dependence of 

ligand actions could be far more complex than conventionally modeled.
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CHAPTER 3: PROPOFOL INTERACTIONS WITH SIRT2 DEACETYLASE 

3.1 Rationale and Introduction to SIRT2 

 Proteins involved in neurotransmission are among the pharmacologic targets that 

are affected by propofol to cause hypnosis (Jurd et al., 2003; Kretschmannova et al., 

2013), and characterizing the interactions between propofol and these proteins should 

allow the rational design of new hypnotics that specifically target relevant binding sites. 

Designing ligands with greater selectivity for specific sites should also alleviate side 

effects caused by propofol binding to off-pathway protein targets that do not contribute to 

hypnosis. As previously noted, propofol has been reported to cause multiple adverse 

neurological side effects in mammals (Patel et al., 2003; Zhang et al., 2009; Whittington 

et al., 2011; Creeley et al., 2013); however, the molecular targets underlying their causes 

are not clear. Therefore, comprehensive knowledge of propofol substrates in all CNS 

tissue types is necessary to improve drug action. 

 In this chapter, we used AziPm to investigate alkylphenol-anesthetic binding in a 

myelin-enriched fraction from rat brain. We identified the sirtuin protein SIRT2 as a 

specific target of propofol and AziPm. There are seven mammalian sirtuins (SIRT1-7) 

that are traditionally known as Class III histone deacetylases (HDACs), although this 

class of proteins is evolutionarily and structurally unrelated to the classical HDAC 

proteins (HDAC1-11). During enzymatic catalysis, SIRT2 couples deacetylation of 

acetyl-lysine with NAD+ hydrolysis, which results in the formation of O-acetyl-ADP-

ribose and nicotinamide; nicotinamide is also a feedback inhibitor of the enzyme. We 

found that clinical concentrations of propofol inhibit this enzymatic function of SIRT2, 
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and we characterized the allosteric protein site that propofol binds. Possible physiological 

implications for SIRT2 inhibition by propofol are also discussed.  

 

3.2 Identification of SIRT2 as a Propofol Target 

 We isolated a myelin-enriched fraction from rat brain for photolabeling with 4 

µM [3H]AziPm, a concentration that approximates the EC99 dose for anesthetizing 

tadpoles. To measure the specificity of anesthetic binding, we also photolabeled with 4 

µM [3H]AziPm while co-equilibrating with 400 µM propofol or 180 µM (non-tritiated) 

AziPm, which are concentrations that approach their maximum aqueous solubility. The 

protein was separated by SDS-PAGE and transferred to a membrane for autoradiography. 

Based on optical density from the radioactivity (Figure 6B), propofol and AziPm 

inhibited [3H]AziPm binding to myelin proteins an average of 41% and 53%, 

respectively, throughout the lanes. [3H]AziPm incorporation was concentrated in four 

bands shown as peaks at (1) >250 kDa, (2) 80-95 kDa, (3) 55-70 kDa, and (4) 35-40 kDa, 

and propofol decreased [3H]AziPm labeling of these peak regions by 50-69%.  

 The >250 kDa band did not enter the resolving gel and was likely aggregated 

protein; however, the high selectivity of photolabeling in the remaining bands suggested 

strong binding to few proteins. To identify these proteins, we photolabeled myelin with 4 

µM AziPm and excised the bands from a separate SDS-PAGE gel (Figure 6C). We then 

employed a mass spectrometry-based approach whereby we first identified all the 

proteins in the bands, then searched for an AziPm mass adduct (~216 Da) on those 

proteins. Six unique peptides from trypsin- and chymotrypsin-digested samples of the 35-
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40 kDa band were identified as photolabeled by AziPm (Table 5 and Appendix A2.1), 

and these peptides were all assigned to SIRT2. With this approach, we did not identify 

adducts on proteins from the other bands and therefore pursued the relevance of propofol 

binding to SIRT2. 

 
 

Figure 6. (A) Chemical structures of propofol and AziPm. (B) Coomassie-stained 
membrane and corresponding autoradiograph of 50 µg myelin protein separated with 
SDS-PAGE after photolabeling with 4 µM [3H]AziPm ± 400 µM propofol (+p) or 180 
µM AziPm (+A). Optical density (O.D.) quantification from the autoradiograph lanes is 
shown in the aligned traces. (C) Coomassie-stained gel of 50 µg myelin protein separated 
with SDS-PAGE after photolabeling with 4 µM (non-tritiated) AziPm. The boxed gel 
regions were excised for LC-MS/MS and processed with either trypsin or chymotrypsin 
digestion as described in the text.    
 
 
 
Table 5. SIRT2 peptides photolabeled by AziPm 

 
Photolabeled peptide 

Peptide 
charge 

Observed 
MH+ 

Calculated 
MH+ 

Enzyme 
used 

131F.FALAKELY#PGQF.K144 +2 1599.8101 1599.8069 chymo 
132F.ALAKELY#PGQF.K144 +2 1452.7406 1452.7385 chymo 

134L.AKELY#PGQF.K144 +2 1268.6200 1268.6173 chymo 
136K.ELY#PGQFK.P145 +1 1197.5819 1197.5802 trypsin 

172L.ERVAGLEPQDLVEAHGTF#Y.T192 +3 2347.1260 2347.1216 chymo 
202K.EYTM#SWMK.E211 +1 1291.5378 1291.5349 trypsin 

#Indicates a 216.0762 Da modification was detected. Amino acid numbering is according 
to full-length rat SIRT2.  
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3.3 Conformation-Specific Propofol-SIRT2 Binding  

After photolabeling separate myelin samples, we confirmed that propofol 

concentration-dependently inhibited 4 µM [3H]AziPm photolabeling of the ~37 kDa 

SIRT2 band (Figure 7A). We then photolabeled purified recombinant human SIRT2 with 

4 µM [3H]AziPm ± propofol to test the specificity of binding in solution. Human and rat 

SIRT2 are highly conserved and share 88% sequence identity, and thus it was surprising 

when our initial attempts to inhibit [3H]AziPm photolabeling of human SIRT2 with 

propofol were unsuccessful (Figure 7B). 

 
 
Figure 7. (A) Representative Coomassie-stained gel lane of myelin protein separated 
with SDS-PAGE after photolabeling with 4 µM [3H]AziPm ± 3, 30, or 100 µM propofol. 
Each gel lane was cut horizontally into 1 mm pieces, and the radioactivity content in each 
slice is shown in the aligned graph. (B) Shown are the levels of covalent [3H]AziPm 
binding to human SIRT2 in solution. In this experiment, SIRT2 was photolabeled with 4 
µM [3H]AziPm ± the indicated concentrations of propofol, and no additional substrates 
were added. Each mean was derived from 3-6 values from separate photolabeling 
experiments.  
 

 To investigate these contrasting results, we analyzed the AziPm binding site on 

high-resolution structures of SIRT2, which are also derived from recombinant human 

protein. The crystal structures of human SIRT2 represent two enzymatic conformations. 

The first is an inactive conformation, with SIRT2 bound only to its structural, non-
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catalytic cofactor zinc (Finnin et al., 2001; Moniot et al., 2013). The second 

conformation represents an active enzyme bound to zinc, acetate, and ADP-ribose, with 

the latter in the cleft occupied by NAD+ during enzymatic catalysis (Moniot et al., 2013). 

When active, the helical domain containing the zinc subdomain is rotated over the NAD+ 

cleft, hinging on loops that connect to the Rossmann-fold domain (Moniot et al., 2013). 

AziPm photolabeled Tyr139, Phe190, and Met206 on the helical domain of rat SIRT2, 

and these residues converge in the folded protein at a single site (Figures 8A and 8B). 

AziPm photolabeling of multiple SIRT2 residues suggests that the ligand is somewhat 

mobile in the site. The portion of the cavity containing Tyr139 is also dynamic, being 

part of the flexible loop that connects the Rossmann-fold domain to the helical domain 

(Moniot et al., 2013).  

 Although the photolabeled residues are similarly positioned in both SIRT2 

conformations, the protein topology revealed that these amino acids surround a cavity 

that is present in the active conformation, but that is absent in the inactive conformation 

(Figures 8A, 8B, and 8C). The volume of this cavity is ~360 Å3 and should therefore 

accommodate propofol and AziPm, which have van der Waals volumes of 192 Å3 and 

197 Å3, respectively. Residues that line this cavity are identical in rat and human SIRT2, 

with the exception of rat Met206, which is a leucine in the human protein (Figure 8D).   

 This suggested that [3H]AziPm and propofol might bind specifically only to the 

active conformation of SIRT2. To test this experimentally, we photolabeled recombinant 

human SIRT2 while co-incubating with >10 fold concentration (mol to mol) of acetylated 

human histones, which are protein substrates of SIRT2, and excess ADP-ribose and 

nicotinamide, which together mimic the co-substrate NAD+ (Figure 9A). Simultaneous 
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binding of these substrates should increase the equilibrium fraction of SIRT2 that 

assumes the active conformation without allowing for enzymatic catalysis (Avalos et al., 

2004). As predicted with modeling, [3H]AziPm photolabeling of SIRT2 significantly 

increased when the enzyme was co-equilibrated with these substrates, and propofol 

readily displaced [3H]AziPm from active human SIRT2 (Figure 9B). 

 
 
Figure 8. (A), (top) The positions of SIRT2 residues that are photolabeled by AziPm are 
shown in the structure of the inactive conformation. The Rossmann fold of SIRT2 is 
colored dark blue, zinc is colored orange, and the indicated photolabeled residues are 
shown as red sticks outlined by a transparent surface topology. (bottom) Enlarged view of 
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the photolabeled residues on the SIRT2 structure, but with the solid surface topology of 
the protein shown. (B) Identical views as in (A), but with the structure of the active 
SIRT2 conformation. ADP-ribose is colored yellow. (C) The cavity in the structure of the 
active conformation of SIRT2 is shown with a black surface representation, which has a 
volume of 364 Å3. (D) Part of the human and rat SIRT2 sequences, which were derived 
from the indicated UniProt codes, are aligned. Identical residues are indicated by the 
asterisks, residues photolabeled by AziPm are underlined in red, residues lining the 
anesthetic cavity in active SIRT2 are underlined in green, and boxed residues form the 
protein C-pocket.   
 
 
 

 
 
Figure 9. (A) Chemical structures of NAD+, ADP-ribose, and nicotinamide. (B) The 
levels of covalent [3H]AziPm binding to human SIRT2 in solution are shown, as in 
Figure 7B. However, in this experiment, SIRT2 was photolabeled with 4 µM [3H]AziPm 
± propofol and also ± substrates (acetylated histones, ADP-ribose, and nicotinamide). 
Each mean was derived from 3-6 values from separate experiments. 2-way ANOVA 
determined a significant effect of propofol and substrates on the means and their 
interaction (p < 0.001 for all comparisons). Bonferroni's post hoc tests comparing the 
indicated means determined that the substrates significantly increased [3H]AziPm binding 
(p < 0.001), and that this binding was inhibited by propofol (p < 0.001).    
     
 
3.4 Inhibition of SIRT2 by Propofol  

To test whether propofol affects SIRT2 enzymatic activity, we measured SIRT2 

deacetylation of acetylated α-tubulin that was derived from mammalian tissue (North et 

al., 2003; Borra et al., 2004). For this, we first prepared a soluble extract from rat brain 

that contained only a small amount of native SIRT2 (Figure 10A). Deacetylation of α-
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tubulin in this soluble extract was accelerated by the addition of recombinant human 

SIRT2 and 1 mM NAD+, and enzymatic activity was prevented by the sirtuin inhibitor 

nicotinamide (Figure 10B). The inability of other sirtuins to deacetylate α-tubulin (North 

et al., 2003), and the addition of the histone deacetylase inhibitor trichostatin A to all 

reactions, ensured deacetylation was SIRT2-dependent.   

 
 
Figure 10.  (A) Western blot showing relative amounts of SIRT2 in rat brain fractions: 
SE, soluble brain extract; b, brain homogenate; my, myelin. The Coomassie-stained 
membrane is shown for loading. (B) Western blot demonstrating deacetylation of 
acetylated α-tubulin from rat brain by recombinant human SIRT2 (hSIRT2). In this 
assay, SIRT2 activity was pronounced with the addition of 3 µg SIRT2 and 1 mM NAD+, 
and deacetylase activity was inhibited by the SIRT2 inhibitor nicotinamide; the HDAC 
inhibitor trichostatin A was added to all reactions. 3 µg soluble extract protein from the 
assay was loaded in each lane for this blot. (C) Propofol concentration-dependently 
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inhibited SIRT2 deacetylation of acetylated α-tubulin. Assays were performed similar to 
(B) with the indicated substrates ± propofol. (D) Representative standard curve from a 
western blot used to determine absolute levels of acetylated α-tubulin deacetylation by 
SIRT2 in the absence and presence of propofol. For this, increasing amounts of soluble 
brain extract protein were separated via SDS-PAGE, and alongside this, 1 µg of protein 
from SIRT2 deacetylase assays that contained no inhibitor, 0.3 µM propofol, or 3 µM 
propofol. Densitometry from the standards allowed generation of the standard curve, 
from which absolute levels of deacetylase activity in the assay samples were determined.     
 

 With this assay, we observed concentration-dependent inhibition of SIRT2 

activity by propofol (Figure 10C), including at the anesthetic concentration of 3 µM (Hall 

et al., 2010). To quantify the absolute inhibition of SIRT2 activity by propofol, we 

accounted for the nonlinearity of the western blot chemiluminescent signal intensity. We 

generated internal standard curves by loading increasing amounts of soluble extract 

protein on a gel, and alongside this, we loaded the soluble extract from enzymatic assays 

(Figure 10D). In the absence of an inhibitor, 70 ± 2% of total acetylated α-tubulin was 

deacteylated in the assay, and 3 µM propofol inhibited SIRT2 deacetylase activity by 33 

± 4%.  

 Finally, because general anesthetics can affect tubulin polymerization (Emerson et 

al., 2013), and because acetylation of α-tubulin is used as a surrogate for microtubule 

stability, we confirmed that propofol inhibition of SIRT2 was independent of tubulin 

polymerization state. The microtubule stabilizing agent epothilone D (Ballatore et al., 

2012) was added to separate assays at a concentration of 2 µM, which is sufficient to 

increase microtubule stability in vivo (Emerson et al., 2013). Epothilone D did not affect 

SIRT2 deacetylation of α-tubulin, nor did it affect propofol inhibition of SIRT2 (Figure 
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11). This is consistent with observations that SIRT2 deacetylation of α-tubulin is not 

affected by co-incubation with taxol (North et al., 2003). 

 
 

Figure 11. SIRT2 deacetylase assay western blot and quantification, as in Figure 10C, 
but with the microtubule stabilizing agent epothilone D added to some reactions. 
Epothilone D did not affect SIRT2 deacetylase activity or propofol inhibition of SIRT2. 
 

3.5 A Unique Sirtuin Inhibitory Site 

          Despite the allosteric nature of this site, three residues that line the propofol site 

(Ile169, Asp170, and Thr171) also line the protein "C-pocket" that is highly conserved 

across sirtuins (Figure 8D) (Avalos et al., 2004, 2005). Ile169 and Asp170 specifically 

contact the nicotinamide moiety of NAD+ during enzymatic reactions (Avalos et al., 

2004, 2005), and mutagenesis of Asp170 reduces enzymatic activity (Finnin et al., 2001). 

These residues are also adjacent to the acetyl-lysine substrate site (Avalos et al., 2002; 

Moniot et al., 2013). When bound, propofol is therefore suitably positioned to perturb the 

stability of the contacts that are critical for enzymatic catalysis. An alternative inhibitory 

mechanism is that propofol might inhibit enzyme cycling from the active conformation 
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back into the inactive conformation. Inhibition through binding to the active 

conformation is consistent with uncompetitive inhibition. Propofol does not bind within 

the C-pocket itself, in contrast to other sirtuin inhibitors such as nicotinamide (Avalos et 

al., 2005) and Ex-527 (Napper et al., 2005; Gertz et al., 2013). The uniqueness of the 

propofol site was first demonstrated by the lack of competition between AziPm and 

nicotinamide for SIRT2 binding (Figure 9B). This can also be modeled by aligning the 

SIRT2 C-pocket to those of sirtuins co-crystallized with nicotinamide and Ex-527 (Figure 

12). The residues photolabeled by AziPm are ~7-14 Å from nicotinamide and Ex-527, 

and the ligands are separated from these residues by a tunnel that constricts to ~4 Å in 

diameter in the SIRT2 protein.  

 
 

Figure 12. In (A) and (B), the active SIRT2 structure is shown in cyan, zinc is colored 
orange, ADP-ribose is colored yellow, and residues photolabeled by AziPm are shown as 
red sticks. The propofol binding cavity is filled with the black surface representation. For 
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(A), the C-pocket residues of SIRT2 were aligned to the C-pocket residues of Sir2Tm 
(PDB code 1YC5). The alignment root mean square was 0.75 Å, and the Sir2Tm C-
pocket residues are traced in the transparent magenta cartoon. In 1YC5, Sir2Tm is bound 
to nicotinamide, and the position of this inhibitor, which binds to a separate site than 
propofol, is shown as green sticks. (B) The C-pocket residues of SIRT2 were aligned to 
those of SIRT3 (PDB code 4BV3). The alignment root mean square was 0.26 Å, and the 
SIRT3 C-pocket residues are traced in the transparent magenta cartoon. In 4BV3, SIRT3 
is bound to the inhibitor Ex-527, which binds to the same site as nicotinamide, and is 
shown as green sticks.  
 

3.6 Relevance of SIRT2 Inhibition by Propofol  

 As a soluble protein that is not known to directly affect neuronal excitability, it 

seems unlikely that propofol-SIRT2 interactions would contribute to hypnosis; therefore, 

the relevance of SIRT2 binding and enzymatic inhibition in myelin and elsewhere is 

likely as an off-pathway target of the drug. Although we used acetylated α-tubulin as a 

model substrate in our assays, there are numerous other proteins and cellular processes 

that are regulated by SIRT2, and essentially any cellular event regulated by acetylation 

state might therefore be influenced by propofol. For example, as a major deacetylase in 

oligodendrocytes (Li et al., 2007; Southwood et al., 2007; Werner et al., 2007), SIRT2 

activity regulates the development of myelin and also re-myelination of axons after crush 

injury (Beirowski et al., 2011). In other cell types, SIRT2 deacetylates transcription 

factors (Liu et al., 2012) and histones (Vaquero et al., 2006, 2007; Vempati et al., 2010) 

to regulate transcription and chromatin structure, and SIRT2 regulates metabolic enzyme 

function (Jiang et al., 2011). Specific propofol binding only to active SIRT2 in solution 

also raises intriguing questions about the conformation of the enzyme in myelin. In order 

for [3H]AziPm to bind strongly and specifically to myelin SIRT2 (Figure 6B), there must 
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be a significant fraction of SIRT2 in adult myelin that is complexed with substrates or is 

otherwise induced into a conformation more similar to the active form than the inactive.  

 In addition to SIRT2, there remain other proteins in myelin and other CNS tissue 

fractions that bind to propofol and have not yet been identified. In the approach taken in 

this chapter, identification of photolabeled protein was contingent on identifying AziPm 

mass adducts on peptides. The advantage of this strategy is that most proteins are retained 

in the SDS-PAGE gel and can potentially be identified, which is in contrast to other 

approaches such as IEF/SDS-PAGE that aim to purify photolabeled protein (see Chapter 

4). However, adduct identification is also contingent on extensive sequencing of proteins. 

Soluble peptides are favored with LC-MS/MS sequencing, hindering detection of 

presumed hydrophobic propofol sites, and extensive sequencing becomes more 

challenging for larger proteins. Therefore, although our approach was successfully 

implemented for SIRT2 identification, this work also demonstrates the challenges 

associated with unbiased identification of unknown anesthetic protein targets.  
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CHAPTER 4: ALKYLPHENOL ANESTHETIC BINDING AND MODULATION 

OF MITOCHONDRIAL VDAC 

4.1 The Tadpole as a Model Organism  

The tadpole is typically used as a model for measuring general anesthetic potency. 

Anesthetics can be dissolved in the pond water, from which they are passively absorbed 

into the CNS, and passage across the gills and skin and the blood brain barrier are 

determined by the same physicochemical parameters (Downes and Courogen, 1996; 

Krasowski et al., 2001). An equilibrium is achieved between the drug in the water and the 

drug in the plasma, and concentrations needed to anesthetize tadpoles are on the same 

order of magnitude as plasma concentrations needed to anesthetize humans (Downes and 

Courogen, 1996). 

 Several unambiguous phenotypic endpoints can be quantified when tadpoles are 

equilibrated with an anesthetic and become anesthetized. These endpoints include 

immobility (i.e., the tadpoles stop swimming) and loss of response to noxious stimuli. 

These endpoints can be measured during induction, when the anesthetic is administered 

to the tadpoles, and also emergence, when the tadpoles are placed into fresh water and the 

general anesthetic diffuses out from its body.  

We performed experiments in which we photolabeled Xenopus laevis tadpoles in 

vivo. Photolabeling live, anesthetized organisms ensured that the proteins were in a 

functional state, and also that the ligand concentrations were aligned to the anesthetic 

endpoint. These experiments were performed for two purposes: (1) to investigate in vivo 

targets of alkylphenol anesthetics in the neuronal tissue of the tadpoles, and (2) to 

develop a technique called “optoanesthesia” that causes a light-dependent behavioral 
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phenotype. The results of optoanesthesia experiments are presented in Chapter 6, and in 

this chapter, I will present experiments on the identification of AziPm targets in the 

tadpole brain.     

 

4.2 AziPm Binding to Tadpole VDAC In Vivo  

In initial experiments, tadpoles were anesthetized with 4 µM [3H]AziPm, which is 

a dose that approximates the EC99 for causing tadpole immobility. The tadpoles were then 

photolabeled in vivo, the brains and spinal cords dissected, neuronal membranes isolated, 

and the protein solubilized for SDS-PAGE. After staining the gel with Coomassie, the 

entire lane was cut horizontally into 1 mm slices, and then the slices were dissolved in 

H2O2 before scintillation counting (Figure 13). This experiment demonstrated that 

multiple neuronal protein targets were selectively photolabeled by [3H]AziPm in vivo.    

 
 
Figure 13. Coomassie-stained SDS-PAGE gel of tadpole neuronal tissue and 
radioactivity content in each 1 mm gel slice after in vivo photolabeling with 4 µM 
[3H]AziPm. For this gel, 70 µg of protein was separated on a 16 cm 4-20% gel poured 
with a homemade exponential gradient maker (Domingo, 1990). 
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Figure 14. (A) Representative Coomassie stained gel of tadpole neuronal membrane 
protein. (B) Mean dpm of spots excised from gels of neuronal membrane protein isolated 
immediately after in vivo [3H]AziPm ± long-wave ultraviolet light (UVA) treatment. 
Dpm values were arranged in ascending order, with measurements from select spots 
indicated. The dashed line indicates background mean from +UVA gels with the dotted 
line indicating two standard deviations. 

 

To identify individual protein targets of [3H]AziPm, protein must be further 

purified, as each SDS-PAGE band contains many proteins, thereby creating difficulties 

for the unambiguous identification of the photolabeled protein(s) in each band. Therefore, 

as an alternative approach, tadpoles were anesthetized and photolabeled in vivo as above 
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and after isolation of neuronal membranes, protein was solubilized for separation with 

isoelectric focusing (IEF) followed by SDS-PAGE (IEF/SDS-PAGE) (Figure 14A). This 

experiment was duplicated, and after staining the gels with Coomassie, 100 spots were 

excised from the gels, dissolved in H2O2, and scintillation counted. Mean background 

radiation in the gel was 18.0 dpm, and the mean radiation content for all 100 spots was 

18.8 dpm. Seven spots contained dpm greater than two standard deviations from the 

background mean (Figure 14B). No protein spots from control tadpoles incubated with 

[3H]AziPm but not exposed to the lamp contained counts that exceeded this background 

threshold.      

In vitro photolabeling of neuronal homogenates with 4 µM [3H]AziPm  ± 400 µM 

propofol was performed to investigate the specificity of protein binding. Protein spots 

identified as photolabeled in vivo were analyzed, and all contained dpm above 

background. Propofol decreased [3H]AziPm content in the each spot by 2-75% (n = 3 and 

n = 2 for each spot (-) and (+) propofol, respectively) (Table 6). Displacement of 

[3H]AziPm binding by propofol suggests conserved binding of the alkylphenols to some 

saturable protein site(s). A separate gel was run for protein identification. Six spots were 

unambiguously identified as containing a single protein, while two high confidence 

identifications were possible in the seventh (Table 6).  

Of the identified proteins, published evidence suggested that anesthetic 

interactions with synaptosomal-associated protein 25 (SNAP-25) might contribute to 

drug-induced hypnosis. SNAP-25 is a component of the ternary SNARE complex that is 

involved in vesicular neurotransmitter release, and that binds volatile anesthetics at 
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physiologically relevant concentrations (Nagele et al., 2005). Isoflurane and propofol 

inhibit neurotransmitter release through interactions with SNARE complex proteins 

(Herring et al., 2009, 2011), and mutagenesis in SNARE proteins (including SNAP-25) 

alters organism sensitivity to general anesthetics (Van Swinderen et al., 1999). 

Mammalian studies suggest SNAP-25 may be predominantly expressed in excitatory 

neurons (Verderio et al., 2004; Garbelli et al., 2008), and this protein negatively regulates 

voltage-gated calcium channels independent of its role in exocytosis (Wiser et al., 1999; 

Condliffe et al., 2010). Gβ (as part of Gβγ) can also directly inhibit presynaptic voltage-

gated calcium channels (Herlitze et al., 1996; Ikeda, 1996) and binds to SNAP-25 and 

syntaxin to inhibit neuronal exocytosis (Blackmer et al., 2005; Gerachshenko et al., 

2005).  

 

Table 6. Analysis of [3H]AziPm-photolabed protein from tadpole brain  

Spot 
% 

dispa 
 Protein 

ID 
 NCBI 

accession # 
Theorb 

MW  
Obsc 

MW  
 Theorb 

pI 
Obsc  

pI 
% seq 

coverage 
Spectra 
count 

4 40.1 VDAC2 gi|62826006 30183 27937 8.36 8.99 29 18 
6 52.0 VDAC2 gi|62826006 30183 27448 8.36 8.27 23 14 

12 46.5 VDAC1 gi|28302268 30627 28671 6.85 6.71 20 11 
22 74.5 VDAC1 gi|28302268 30627 29160 6.85 6.21 26 16 
33 3.4 SNAP25 gi|33416802 23172 26468 4.74 4.89 30 15 
41 1.7 Gβ4 gi|49257618 37504 33084 5.70 5.78 20 11 
85 26.6 PDIA3 gi|28302197 56086 54992 5.72 5.91 30 25 

 26.6 VHA-55 gi|28436920 56411 54992 5.56 5.91 20 21 
a [3H]AziPm displacement by propofol from in vitro photolabeling experiments. 
bTheoretical values were computed with ExPASy Compute pI/Mw tool 
(http://web.expasy.org/compute_pi/). Monoisotopic molecular weights (Da) are shown. 
cObserved values were estimated from molecular weight markers and IEF resolving 
estimations published by the manufacturer of the gels. 
 
 
 
 The lack of [3H]AziPm displacement by propofol on SNAP-25 can be interpreted 
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in several ways. Although protein binding may be specific to AziPm but not propofol, it 

is more likely that binding sites are not saturable at propofol concentrations that can be 

achieved in solution. For example, it has been shown that isoflurane and halothane both 

bind to the SNARE complex in a non-competitive and non-saturable manner (Nagele et 

al., 2005). This suggests the presence of multiple sites of varying affinities, each capable 

of binding ligands with low occupancy, in the hydrophobic interior of the SNARE 

complex.  

Of the identified targets, [3H]AziPm most selectively bound mitochondrial 

voltage-dependent anion channels (VDACs), and substantial displacement of photoactive 

ligand by the parent propofol was most evident with these proteins. VDACs can be post-

translationally modified (Kerner et al., 2012), which can alter protein migration during 

IEF, hence the presence of multiple spots for each isoform. Although VDAC has not been 

proposed to contribute to anesthetic hypnosis, VDAC isoforms critically regulate a 

variety of cellular processes related to energetics and apoptosis. Coupled with the fact 

that every general anesthetic appears to bind VDAC (evidence cited below), further 

investigation of alkylphenol-VDAC binding was warranted, specifically in the context of 

VDAC as an off-pathway target of general anesthetics.    

 

4.3 Introduction to VDAC  

VDACs are integral membrane proteins in the mitochondrial outer membrane. 

VDACs are related to ancient porin proteins commonly seen in bacteria, and the 

functional properties of VDAC proteins are remarkably conserved across eukaryotic 

species. These channels regulate ion and metabolite passage between the cytosol and the 
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mitochondrial intermembrane space (Colombini, 1980). Crystallographic and NMR 

structures of mammalian VDAC revealed a β-barrel with nineteen strands connected by 

loops, and an N-terminal helix inside the channel (Bayrhuber et al., 2008; Hiller et al., 

2008, 2010; Ujwal et al., 2008). The channel remains open under low voltage and has 

two-fold selectivity for anions relative to cations; however, applied voltages greater than 

30-40 mV cause VDAC to change conformations to various "closed" states. VDAC 

closure (also referred to as "gating") is characterized by a decrease in channel 

conductance and a reversal in ion selectivity (Colombini et al., 1996).    

 In addition to voltage, VDAC function is modulated by proteins that include Bcl-

xL (Vander Heiden et al., 2001), tBid (Rostovtseva et al., 2004), hexokinase (Azoulay-

Zohar et al., 2004), and tubulin (Rostovtseva et al., 2008; Gurnev et al., 2011), and the 

interactions of these proteins with VDAC critically regulate apoptosis and cellular 

respiration (Rostovtseva et al., 2005; Rostovtseva and Bezrukov, 2008; Maldonado et al., 

2013). Lipids can also affect channel activity by altering the properties of the surrounding 

membrane (e.g., lipid packing stress), or through direct interactions with the protein 

(Rostovtseva et al., 2006; Mlayeh et al., 2010). In addition to endogenous regulators, 

VDAC binds drugs that include erastin (Yagoda et al., 2007) and general anesthetics, 

although modulators for specific isoforms and/or specific VDAC properties are not 

available.  

 

4.4 General Anesthetic-VDAC Binding  

VDACs are ubiquitous targets of general anesthetics. VDAC isoforms bind 

halothane (Xi et al., 2004; Pan et al., 2007), neurosteroids (Darbandi-Tonkabon et al., 
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2003, 2004; Chen, Manion, et al., 2012), long-chain alcohols (Husain et al., 1999; Pratt et 

al., 2000), alkylphenols (Stewart et al., 2011), and etomidate (Husain et al., 2003, 2006, 

2010; Ziebell et al., 2004; Hamouda et al., 2011). Saturable, competitive binding has 

been demonstrated for all chemotypes, and VDAC has been photolabeled in tissue 

originating from mammals (including humans), amphibians, insects, and fish. Anesthetic 

effects on VDAC function had not previously been reported. VDAC and Cys-loop 

receptors associate in vitro (Bureau et al., 1992; Darbandi-Tonkabon et al., 2003, 2004; 

Gergalova et al., 2012), although the in vivo relevance of this is unclear, and knockout of 

VDAC isoforms 1 and 3 does not affect rodent sensitivity to neurosteroids (Darbandi-

Tonkabon et al., 2004). The necessity of VDAC2 for cellular viability has thus far 

rendered in vivo knockout studies of these channels difficult to interpret, as the isoforms 

compensate for the loss of each other. 

 

4.5 Sites and Functional Consequence of VDAC-Alkylphenol Anesthetic 

Interactions 

 To further investigate alkylphenol-VDAC interactions, specifically the binding 

sites and functional consequences, we transitioned our experiments to mammalian 

systems. We confirmed alkylphenol anesthetic binding to mammalian VDAC by first 

enriching and identifying VDAC protein. We purified rat brain mitochondria then 

separated the protein with IEF/SDS-PAGE. Initially guided by protein molecular weight 

and isoelectric point, and subsequently confirmed with LC-MS/MS, we identified five 

spots that contained VDAC as the major component (Figure 15). 64-91% of total spectra 

per spot were assigned to VDAC (Table 7), and each spot contained multiple isoforms.  
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Figure 15. IEF/SDS-PAGE gel of rat brain mitochondria. Spots 1-5 primarily contain 
VDAC isoforms, and spot "m" contains malate dehydrogenase 2 (MDH-2). 
 
 
 
Table 7. Relative protein abundance in rat VDAC spots from IEF/SDS-PAGE 

Spot Isoelectric pointa Protein % of total spectra 
1 9.5 VDAC1 48 
  VDAC2 10 
  VDAC3 6 
  MDH-2 36 
2 9.3 VDAC1 61 
  VDAC2 10 
  VDAC3 12 
  MDH-2 16 
3 8.5 VDAC1 44 
  VDAC2 13 
  VDAC3 5 
  MDH-2 38 
4 6.9 VDAC1 54 
  VDAC2 27 
  VDAC3 5 
  MDH-2 13 
5 5.9 VDAC1 37 
  VDAC2 29 
  VDAC3 25 
  MDH-2 9 

m 9.4 VDAC1 10 
  VDAC2 2 
  VDAC3 N/A 
  MDH-2 88 

aThese experimental values were calculated based on the migration distance of each spot 
between the two electrodes during IEF, and are based on published recommendations by 
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the gel manufacturer. We also calculated the theoretical isoelectric points for each 
protein: 8.63 (VDAC1), 7.44 (VDAC2), 8.91 (VDAC3), and 8.55 (MDH-2). These 
theoretical values are based on sequence only and exclude post-translational 
modifications, and these were calculated with the ExPASy Compute pI/Mw tool. 
 
 
 
 With VDAC identified, we then photolabeled mitochondria with 10 µM 

[3H]AziPm ± 100 µM propofol, again separated the protein with IEF/SDS-PAGE, and 

dissolved the VDAC gel spots in H2O2. Scintillation counting of the VDAC spots after 

[3H]AziPm photolabeling revealed cpm significantly above background (>4 fold each 

spot), with no selectivity for any spot after normalizing for protein amount. After 

confirming that [3H]AziPm did not bind to the major contaminant in the spots (malate 

dehydrogenase 2), we determined that 100 µM propofol decreased 10 µM [3H]AziPm 

binding to VDAC by approximately 30%. This is in reasonable agreement with the ~50% 

displacement of 4 µM [3H]AziPm from X. laevis VDAC by 400 µM propofol (Table 6).   

 To identify alkylphenol site(s) on mammalian VDAC, we photolabeled 

mitochondria with 10 µM (non-radioactive) AziPm and sequenced VDAC with LC-

MS/MS. Residues photolabeled by AziPm were identified by searching VDAC peptides 

for a 216 Da modification, which corresponds to the mass adduct of photo-reacted 

AziPm. With trypsin digest, we identified Gly56 on VDAC1 as photolabeled in all five 

spots (Appendix A2.2). To increase sequence coverage, we also digested the most intense 

spot (spot 2) with chymotrypsin; Val184 on VDAC1 and the homologous residue on 

VDAC2 (Val196) were identified as photolabeled (Appendix A2.2). Combining trypsin 

and chymotrypsin digestions, and combining the five spots, we sequenced 95.7% of 

VDAC1, 51.9% of VDAC2, and 41.3% of VDAC3 (Figure 16). Detection with LC-
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MS/MS is dependent on protein abundance in the samples, which contributed to the 

variability in sequence coverage, as relative spectra counts for VDAC1:VDAC2:VDAC3 

were approximately 10:3:1. Relative abundance may have also contributed to the lack of 

identified adducts on VDAC3 and a site on VDAC2. The photolabeled glycine and valine 

of VDAC1 are conserved in all three isoforms, which each share ~70% sequence identity, 

and are believed to adopt identical folds (Komarov et al., 2005; Amodeo et al., 2014; 

Schredelseker et al., 2014); therefore, alkylphenol binding to these residues on all 

isoforms remains possible and perhaps likely. 

 
 

Figure 16. Residues that were sequenced with mass spectrometry are highlighted yellow, 
and residues that were photolabeled by AziPm are bolded in red. Residues highlighted 
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gray are removed during protein maturation and were not included in sequence coverage 
calculations. Total protein sequence coverage for each protein is: 95.7% (VDAC1), 
51.9% (VDAC2), 41.3% (VDAC3), and 87.6% (MDH-2). 
 
 
 To investigate the locations of the residues that alkylphenols bind, we first used 

the crystal structure of recombinant rat VDAC1 (PDB code 3EMN) (Ujwal et al., 2008). 

We oriented this VDAC structure in a hypothetical membrane to calculate the 

hydrophobic boundaries of the protein (Lomize et al., 2012). Both residues were on the 

cytosolic half of the protein within the predicted bilayer (Tomasello et al., 2013), with 

Gly56 and Val184 at the periphery of β-strands 3 and 12, respectively. The backbone α 

carbons of Gly56 and Val184 were 3.2 Å and 2.3 Å, respectively, from the predicted 

hydrophobic-hydrophilic interface of the protein (Figure 17). The membrane depths of 

these residues are consistent with the predicted distribution of propofol in a bilayer, i.e. at 

the interface of lipid phospho-headgroups and acyl chains (Hansen et al., 2013; Arcario 

et al., 2014). The topology of an alternatively-folded VDAC1 has also been proposed 

(Song et al., 1998; Colombini, 2004, 2009), and interestingly, this model also places 

Gly56 and Val184 at the hydrophobic-hydrophilic interface. However, in contrast to the 

crystal structure, the residues in this model are placed near the membrane surfaces of 

opposite leaflets. Regardless, these binding sites should be readily accessible to free 

ligand dissolved in lipid, assuming that propofol binds the VDAC residues at the lipid-

facing channel surface and not inside the pore.  

 After demonstrating conserved binding of the alkylphenol anesthetics to rat 

VDAC, we tested whether the clinical compound propofol affects its basic 

electrophysiological properties. For these experiments, we used native VDAC isolated 
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from rat liver mitochondria, which also contains a mixture of the three VDAC isoforms. 

We first measured the conductance of open VDAC reconstituted in a planar bilayer of 1:1 

DOPC:DOPE (Figure 18A). The measured single channel conductance of ~4 nS in a bath 

of 1 M KCl, pH 7.4, is in agreement with previously published values (Colombini et al., 

1996). Addition of propofol (1-18 µM) to the bath did not affect open channel 

conductance, further suggesting that it is unlikely propofol binds inside the open channel 

lumen (Figures 18A and 18B) (Table 8). 

 
 

Figure 17. The location of VDAC1 residues Gly56 and Val184, which are photolabeled 
by AziPm, are indicated in red spheres on the crystal structure of recombinant rat VDAC. 
(Left), the protein surface is shown in mesh, and the view through the barrel is from the 
cytosolic side. (Right), the blue lines indicate the predicted hydrophobic-hydrophilic 
interface of membrane lipids. Here, the cytosolic side is on the left. 
 

 We therefore tested whether propofol affects the most characteristic VDAC 

property, its voltage gating. For these experiments, we used identical lipid and bath 

conditions as before, but reconstituted multiple channels into the planar membrane and 

applied a slow symmetrical triangular voltage wave with amplitude ±60 mV (Thomas et 

al., 1993; Vander Heiden et al., 2000; Rostovtseva et al., 2006; Teijido et al., 2014). At 

clinically relevant concentrations (1-10 µM), propofol concentration-dependently 

decreased VDAC conductance at high negative voltages (Figure 19). Because VDAC 
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inserts unidirectionally into these membranes (Rostovtseva et al., 2006), channel gating 

at positive and negative voltages can be dissociated.  

 
 

Figure 18. (A) Current trace from a single VDAC channel reconstituted in a planar 
bilayer. Negative and positive voltages were alternately applied as indicated. Typical 
VDAC gating was seen, and the open channel conductance in this experiment was 4.1 nS 
at each voltage ± propofol. (B) Current-voltage relationship for a single VDAC channel 
in the open state. The same channel was used for the entire experiment, with consecutive 
additions of propofol. 
 
 
 
Table 8. Conductance (nS) per VDAC channel with propofol under low voltagea  

Propofol concentration (µM)  
Applied voltage 0 0.9 2.7 ± 0.1 9.0 ± 0.1 18.8 ± 0.5 

(-)10 mV 3.8 ± 0.2 3.9 ± 0.3 4.0 ± 0.2 4.0 ± 0.2 3.9 ± 0.3 
(+)10 mV 3.8 ± 0.2 3.9 ± 0.3 3.9 ± 0.2 4.0 ± 0.2 3.9 ± 0.2 

 aMean conductance values from 2-3 experiments are shown with SD. 
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Figure 19. (Left), VDAC conductance (G) at each voltage normalized to the maximum 
conductance for each experiment (Gmax), which occurs when all channels are open at low 
voltage. Normalizing by Gmax accounts for the variable number of channels in the 
membrane, which ranged between 8 and 22 per experiment. The means ± SD from four 
(control, 0 µM propofol), three (2.8 µM and 8.6 µM propofol), or two (17 µM propofol) 
experiments are shown (SD not shown for 17 µM). (Right), the mean G/Gmax ± SE is 
shown for select voltages. At -45 mV, G/Gmax decreased by 8% and 17% with 2.8 µM 
and 8.6 µM propofol, respectively, compared to the control.    
  

 After VDAC closure, and in response to decreasing transmembrane voltage, re-

opening of channels is fast (sub-milliseconds) (Colombini, 1979), and can be measured as 

an increase in channel conductance. With a two-state model of VDAC gating, where the 

channel is either open or closed, the conformational equilibrium of channel re-opening 

can be quantitatively described by the gating parameters V0, which is the voltage at 

which half the channels are open, and n, which is the effective gating charge and 

describes the steepness of the voltage dependence (Thomas et al., 1993; Rostovtseva et 

al., 2006). At negative voltage, propofol did not significantly affect either gating 

parameters V0 or n relative to control experiments (Table 9), suggesting that propofol 

might specifically influence initiation of VDAC gating as opposed to the dynamics 

associated with channel re-opening.  
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Table 9. Calculated VDAC gating parameters at negative voltages with propofola  
Propofol concentration  

Gating parameter 0 µM 2.8 ± 0.2 µM 8.6 ± 0.2 µM 
V0 -20.7 ± 1.5 mV -23.1 ± 2.3 mV -24.1 ± 3.2 mV 
n 2.6 ± 0.4 2.9 ± 0.2 2.9 ± 0.5 

aMean values from 3-4 experiments are shown with SD. 

 

As an alternative to enhancing closure rate of VDAC, it is possible that propofol 

binds within the pore of the channel only when it is closed at negative voltages. VDAC 

still conducts ions when gated, and therefore channel blockage would further decrease the 

conductance of these channels. The specificity for voltage polarity could arise 

considering that the structures of closed VDAC at positive and negative voltages are 

believed to be different (Rostovtseva et al., 2006). Hence, decreased conductance at high 

negative voltages could occur through a conformation specific binding site in the lumen 

that is only present at that polarity.    

 Interestingly, a similar decrease in VDAC conductance under high voltage of the 

same (negative) polarity has been previously observed by increasing the mole fraction of 

non-lamellar lipids in the membrane (Rostovtseva et al., 2006). This initially suggested 

that propofol might be affecting VDAC by changing the properties of the surrounding 

membrane. However, in contrast to propofol, membranes of non-lamellar lipids clearly 

affect channel re-opening, as the voltage at which half the channels open, V0, decreases 

while n remains constant (Rostovtseva et al., 2006). Non-lamellar lipids likely affect 

VDAC through increased lipid packing stress on the membrane-embedded channel at the 

depth of lipid acyl chains. In the proposed model (Rostovtseva et al., 2006), VDAC 

conformational transitions are sensitive to the pressure in the hydrophobic core of the 
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lipid bilayer, and upon gating at negative voltages, the external shape of the channel can 

relieve elevated pressures that derive from that depth in the membrane (Rostovtseva et 

al., 2006; Rostovtseva and Bezrukov, 2008).  

 Therefore, to further differentiate the effects of propofol from those of non-

lamellar lipids, we performed experiments with gramicidin A, an ion channel with 

properties known to be modulated by lipid bilayer mechanics. This channel is a sensitive 

molecular probe of, e.g., lipid packing stress (Lundbaek and Andersen, 1999; Suchyna et 

al., 2004; Rostovtseva et al., 2006; Weinrich et al., 2009). Gramicidin A forms shorter-

lived channels as the fraction of non-lamellar lipid in the membrane increases 

(Rostovtseva et al., 2006; Weinrich et al., 2009); however, propofol (1-40 µM) did not 

affect gramicidin A channel lifetime or conductance in DOPC/DOPE membranes (Figure 

20).  

 The absence of a propofol effect on gramicidin A strongly suggests that the 

general anesthetic acts directly on VDAC through protein binding. The measured effect 

of propofol is enhanced VDAC closure at negative potentials. The physiological role of 

VDAC gating itself is a matter of conjecture (Lemasters and Holmuhamedov, 2006), and 

future work will aim to determine the relevance of enhanced closure. While it is unlikely 

that VDAC modulation contributes to anesthetic hypnosis (Darbandi-Tonkabon et al., 

2004), potentiation of gating could potentially modulate neuronal apoptosis or 

metabolism (Lemasters and Holmuhamedov, 2006).  
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Figure 20. Propofol does not affect the conductance (A) or lifetime (B) of gramicidin A 
channels. The applied voltage was +100 mV. R2 for conductance is 0.11, and R2 for 
lifetime is 0.04. Data from two separate experiments are combined, and error bars 
represent standard deviation. 
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CHAPTER 5: INVESTIGATION OF VDAC-CHOLESTEROL BINDING WITH 

MOLECULAR DYNAMICS SIMULATIONS 

5.1 Experimental Rationale and Introduction to VDAC-Cholesterol Binding 

 After identifying VDAC residues that were photolabeled by AziPm, an extensive 

literature search was performed to identify whether other ligands, substrates, or 

metabolites bind to the same sites as the anesthetic. We recognized that, as determined 

with NMR chemical shift mapping (Hiller et al., 2008), cholesterol binds residues 

adjacent to the propofol site containing Val184 (Figure 21). We therefore decided to 

study how the larger, endogenous ligand cholesterol affects the structural dynamics of 

VDAC before potentially investigating how propofol affects VDAC dynamics through 

occupancy of the same site.  

	  
	  

Figure 21. VDAC is shown as the cyan surface topology, and the calculated membrane 
boundaries (specifically, the phosphorous atoms of membrane lipids) are shown as the 
transparent orange spheres. The red residues were published to bind cholesterol, and the 
yellow residue (Val184) binds AziPm. 
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 Cholesterol is known to bind mammalian VDAC in vivo (de Pinto et al., 1989; 

Hulce et al., 2013). In vitro, cholesterol functions to enhance the structural integrity of 

isolated VDAC (Pfaller et al., 1985; de Pinto et al., 1989; Popp et al., 1995), and 

cholesterol promotes uniformity of open channel conductance (de Pinto et al., 1989; Popp 

et al., 1995). Cholesterol has also been suggested to affect VDAC interactions with other 

proteins (Pastorino and Hoek, 2008). Together, these effects suggest VDAC function 

might be modulated when mitochondrial outer membrane cholesterol content increases 

such as in certain disease states (Rouslin et al., 1982; Baggetto et al., 1992; Montero et 

al., 2008; Pastorino and Hoek, 2008).   

 

5.2 Cholesterol-Bound VDAC Model 

  Published NMR chemical shift mapping experiments revealed resonances of nine 

VDAC backbone amides that had a significant chemical shift induced by the presence of 

cholesterol, with the structure of the protein essentially unchanged (Figure 22) (Hiller et 

al., 2008). This indicated a change in the chemical environment surrounding the 

backbone amides and suggested specific binding by cholesterol. In that experiment, 

cholesterol was dissolved in a hydrophobic micellar phase and interacted with VDAC 

from the channel exterior, analogous to membrane cholesterol approaching the protein. 	  

 With binding demonstrated experimentally, we aimed to identify the effects of 

cholesterol site occupancy on VDAC. To initiate this, we began a combined docking and 

molecular dynamics approach targeting cholesterol to the specific VDAC backbone 

atoms implicated in binding. The topology of the protein and initial docking calculations 

suggested a model in which five cholesterol molecules with unique orientations were 
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required to simultaneously occupy all residues that bind cholesterol. A 5 to 1 mole ratio 

of cholesterol to protein also reflected conditions under which the chemical shift mapping 

experiments were performed, and is consistent with the number of cholesterols that bind 

VDAC in detergent (de Pinto et al., 1989; Hiller et al., 2008). For simplicity, the targeted 

cholesterol sites are referred to numerically with ascending residue composition (site 1: 

Lys96, Thr116, Gly117, Asp128; site 2: Phe169, Ala170; site 3: Gly172; site 4: Lys236; 

site 5: Ser260) (Figure 22).  

	  
	  

Figure 22. The location and identity of residues experimentally determined to bind 
cholesterol are shown as red sticks. N-terminal helix residues 2-25 are colored dark blue, 
and residues 26-283 are colored cyan. 
	  

 We docked cholesterol to each site using AutoDock, which gave multiple poses 

and reasonable docking scores for each site (∆G ≈ -6.0 to -8.3 kcal/mol). With cholesterol 
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docked, we inserted VDAC into DOPC membranes. Fifteen atomistic molecular 

dynamics simulations, averaging 37.3 ns each, were computed in an iterative approach. 

We sampled multiple starting poses in each site with the goal of optimizing a cholesterol-

bound VDAC model (Figure 23). The primary criterion for selecting favorable poses was 

sustained residency of cholesterol in the sites. Unbinding of cholesterol oriented 

unfavorably, and subsequent diffusion into the membrane, was observable on these 

timescales.   

 
 

Figure 23. Shown in different colored sticks are the starting orientations for cholesterol 
during preliminary simulations that were used to build the final cholesterol-bound VDAC 
model shown in Figure 24. Each starting pose was a docking result that was returned 
from AutoDock. Residues that comprise each site are colored red. 
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Figure 24. (A) Optimized cholesterol-bound VDAC model, with cholesterol colored 
magenta. The N-terminal helix is colored dark blue, and the residues within each site are 
colored yellow. (B) Minimum distance between cholesterol and an amide atom (N or H) 
of a residue within that site throughout five 100 ns simulations. A running average of 25 
data points was used to reduce noise.  
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 The final cholesterol-bound VDAC model used for subsequent production 

simulations is shown in Figure 24A. The consistency and fidelity of the model were 

measured in five 100 ns simulations. As a correlate to chemical shift mapping, we 

measured the distance between cholesterol and the backbone amide atoms in the sites 

throughout the trajectories (Figure 24B). In each 100 ns simulation, cholesterol 

maintained a ~3-6 Å intermolecular distance to an amide atom from at least three sites. 

Additionally, each site was essentially occupied for the full 100 ns in at least three 

simulations (Figure 24B). The unsustained binding we observed in some simulations, 

however, suggested low affinity interactions, and simultaneous occupation of these five 

sites cannot be determined at the NMR timescale at which the sites were initially 

identified (Hiller et al., 2008).  

 Multiple intermolecular contacts contributed to stable binding in each site (Table 

10). The cholesterol molecules primarily oriented in grooves defined by ridges of 

hydrophobic and sometimes aromatic side chains that alternately project into the 

membrane from adjacent β-strands; sites 2 and 3 are defined by a common ridge, as are 

sites 4 and 5. While we docked cholesterol to the protein in vacuo, we anticipated 

favorable binding in simulations would be enhanced by the sterol hydroxyl forming 

hydrogen bonds. The hydroxyls of sites 4 and 5 cholesterols extended into the membrane, 

contacting water and lipid headgroups, and the cholesterol in site 1 formed significant 

hydrogen bonds with Tyr153. Cholesterol in sites 1 and 3 were also accessible to water 

funneling from the edge of the protein.  
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Table 10. Residues that cholesterol contacts in VDAC sites 
 

Site 
 

Side chain contacts 
 

Backbone contacts 
H-bond 

partner(s)a 
1 Leu95, Leu97, Thr116, Tyr118, Leu125, Cys127, 

Leu142, Met155 
Gly117, Gly126, 
Gly140, Ala141 

Tyr153, H2O 

2 Ile123, Leu142, Leu144, Ala151, Tyr153, Phe169, 
Val171, Thr182, Val184, Phe190, Trp210 

Gly152, Ala170, 
Asn183, Gly191 

N/A 

3 Ile123, Leu144, Tyr146, Trp149, Ala151, Val171 Gly145, Leu150, 
Gly172 

H2O 

4 Leu202, Ile221, Ala223, Tyr225, Phe233, Ala235, 
Val237, Ile243, Leu245 

Lys236, Ser234 H2O, DOPC 

5 Phe233, Leu245, Tyr247, Leu259, Ala261, Leu263, 
Leu275 

Gly246, Ser260 Asn269, H2O, 
DOPC 

aSite 1 cholesterol hydrogen bonded with Tyr153 for 40-50 ns in separate simulations, 
while site 5 cholesterol hydrogen bonded with Asn269 for 12 ns in one simulation. 
 
 	  

 In contrast to the above, cholesterol bound the protein parallel to the membrane 

with the hydroxyl among lipid tails in site 2, stably wedged between side chains, and 

inaccessible to bulk water and lipid headgroups. The initial coordinate of this cholesterol 

hydroxyl was 1.3 Å from the bilayer midplane. Membrane cholesterol commonly 

assumes an upright orientation in membranes of saturated phospholipids, with the 

hydroxyl at the hydrophilic interface ~16 Å from the bilayer midplane (Harroun et al., 

2006). However, in the presence of polyunsaturated fatty acids, membrane cholesterol 

can assume a flat orientation in the middle of the bilayer (Harroun et al., 2006, 2008; 

Kucerka et al., 2010), not unlike cholesterol in site 2; therefore, cholesterol could assume 

this orientation and bind protein without initial placement, especially in more complex 

membranes.        

 Our initial simulations were designed to identify favorable orientations of 

cholesterol in the experimentally identified sites. Validating our approach, we observed 

replacement of a docked cholesterol by a randomly placed membrane cholesterol, which 
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assumed an identical orientation in site 4. This should theoretically be observed at all 

sites; however, measuring multiple unbinding and re-binding events at each site is 

beyond these experimental timescales and comes at an uncertain computational cost. 

While cholesterol potentially binds in other orientations or sites with physiologically 

relevant affinities, the present model identifies several binding modes that reasonably and 

reproducibly satisfy experimental binding data.   

 

5.3 Effects of Cholesterol on VDAC Dynamics 

 We used the cholesterol-bound VDAC model to investigate the effects of the 

sterol on the protein. Five 100 ns simulations with an identical mole fraction of 

cholesterol in the system, but not docked to the protein, were computed (the protein in 

these simulations is referred to as “apo-VDAC” as opposed to “cholesterol-bound 

VDAC” using our model). As a reference, the lipid composition of all systems included 9 

mole percent cholesterol, comparable to the 8-11 mole percent measured in the 

mitochondrial outer membrane (Colbeau et al., 1971; Cheng and Kimura, 1983). 

Cholesterol did not achieve binding poses in apo-VDAC simulations that were equivalent 

to cholesterol-bound VDAC. Our experimental approach therefore provided comparable 

systems that dissociated the effects of cholesterol as a ligand, which was investigated 

here, from its influence on the membrane. Five 100 ns replicates of VDAC with and 

without bound cholesterol allowed for a measure of reproducibility and biased our 

sampling towards the intended apo- or cholesterol-bound states.     

 The protein backbone equilibrated rapidly and remained stable in the presence or 

absence of bound cholesterol (Figure 25), and the RMSD of backbone α carbons from 
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averaged structures of apo- or cholesterol-bound VDAC was 0.6 Å. We calculated the 

average RMSF of the residue α carbons throughout the trajectories (Figure 26A and 

Figure 26B). With cholesterol-bound, 64 ± 7% of residues per simulation had decreased 

RMSF compared to the average from apo-VDAC simulations. Residue stabilization by 

cholesterol was generally global but not absolute, e.g. residues 130-138 (between β-

strands 8 and 9) were consistently more dynamic (Figure 26C). For any individual 

residue, however, the absolute difference in averaged RMSF (i.e., the average RMSF 

from cholesterol-bound simulations minus that from apo-VDAC simulations) was 

quantitatively small and between -0.63 Å and +0.55 Å. 	  

 
 

Figure 25. RMSD of cholesterol-bound and apo-VDAC backbone atoms for each of ten 
simulations, showing the protein is both equilibrated and stable throughout the 
simulations. The trajectories were aligned to the backbone of the first frames (essentially, 
the humanized structure of PDB code 3EMN). These traces represent production runs 
following a short (0.725 ns) equilibration. 
 
 
 Generally, the loops that connect β-strands were most dynamic (Figure 26A and 

Figure 26B), as previously observed (Villinger et al., 2010; Krammer et al., 2011). In an 

aqueous environment, these loops lack the structural support provided by the membrane 
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and inter-residue electrostatic interactions. Even without direct cholesterol binding, the 

dynamics of the loops were most susceptible to change. The ability of distant loops to be 

affected by changes in global protein dynamics has been well characterized in soluble 

proteins (Kurkcuoglu et al., 2012; Zimmermann and Jernigan, 2012; Wood et al., 2013). 

Here, VDAC residues that bind cholesterol might form networks with adjacent amino 

acids that relay the presence of cholesterol to the loops. Across these loops, the largest 

percent increases in averaged RMSF were seen in residues Ala134 and Lys274, and the 

largest percent decreases were seen in residues Pro105, Gly187, and Asn269 (Figure 

26D).  	  

 
 
Figure 26. (A) The average RMSF value for each residue from five simulations of apo-
VDAC and (B) cholesterol-bound VDAC systems. When not visible, the error was 
smaller than the size of the point. (C) The number of simulations (out of 5) that each 
residue from cholesterol-bound VDAC simulations had increased α carbon RMSF 
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relative to the average from apo-VDAC simulations. (D) Percent change in RMSF 
averaged across five cholesterol-bound and five apo-VDAC simulations. Points below 
the dotted lines indicate that the residue was less dynamic in cholesterol-bound VDAC 
simulations relative to apo-VDAC simulations.  
 

 We investigated further the effects of cholesterol on the N-terminus, as the helix 

and cholesterol bind the same wall of the β-barrel, but inside and outside of the pore, 

respectively (Figure 22). Bonding pairs between helix residues 2-25 and the barrel wall 

were variable both within and between the two groups (with or without bound 

cholesterol) (Table 11), and this variability extended to residues that hydrogen bond in 

the crystal structure (Ujwal et al., 2008). However, the helix maintained 3.1 ± 0.1 and 2.9 

± 0.1 hydrogen bonds per frame with the barrel wall throughout apo-VDAC and 

cholesterol-bound VDAC simulations, suggesting a dynamic network maintained helical 

stability. Separate from hydrogen bonding, channel stability is also both dependent on 

and indicated by a hydrophobic contact between helix residue Leu10 and barrel residue 

Val143 (Schneider et al., 2010; Zachariae et al., 2012). The average distance (~3 Å) and 

maximum distance (~5 Å) between these residues throughout simulations were further 

consistent with a constitutively open channel for both apo- and cholesterol-bound VDAC. 

Interestingly, we detected a cholesterol-induced increase in the average minimum 

channel radius from 5.5 ± 0.1 Å (apo-VDAC) to 5.8 ± 0.1 Å (cholesterol-bound VDAC) 

using an algorithm that fits spheres inside the channel along the z axis (comparison of 

minimum channel radii: p < 0.05, two-tailed t-test, n = 5 simulations each group) (Smart 

et al., 1993). The increased channel radius with cholesterol bound does not necessarily 
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imply greater area for water and ion accessibility; however, it does suggest larger circular 

or less elliptical constriction sites.  	  

 
 
Table 11. Percent of simulation frames in which VDAC residue pairs hydrogen bonda 

Simulation 
A2-

H122 
P4- 

N124 
F18-
K236 

G25-
T49 

G25- 
L275 

G23- 
S260 

K20-
K224 

G23- 
L26 

Y7- 
N168 

V3-
K119 

1 56.3 49.8 44.8 52.5 7.1 30.4 0.0 9.1 0.0 0.0 
2 53.1 43.6 43.4 7.5 29.4 27.2 51.5 5.8 0.0 0.0 
3 52.9 50.3 38.8 15.9 3.8 20.4 59.9 11.2 0.0 0.0 
4 43.6 50.7 44.9 44.2 42.6 29.9 3.3 9.5 0.0 0.0 
5 57.5 46.8 46.8 42.5 37.8 29.2 3.0 7.3 0.0 0.0 
6 52.1 50.3 43.4 41.1 37.7 23.7 47.9 8.9 0.1 0.0 
7 50.1 46.8 50.2 20.6 46.8 34.7 0.4 7.0 0.0 0.0 
8 37.1 52.1 34.9 67.8 19.2 23.5 30.9 9.0 0.1 0.0 
9 54.7 50.5 46.2 40.3 40.4 32.5 2.3 6.1 11.8 0.0 

10 52.9 41.1 48.9 33.0 35.2 35.7 34.7 8.7 0.6 0.0 
Median 52.9 50.0 44.8 40.7 36.4 29.5 17.1 8.8 0.0 0.0 

aThese pairs are specific to the N-terminal helix (residues 2-25) hydrogen bonding with 
the remainder of the protein (residues 26-283), and include polar atoms from side chains 
and the protein backbone. These have >10% occupancy in at least one simulation. Red 
indicates >10% difference from the median for that specific pair, and blue indicates 
>25% difference. The crystal structure from PDB code 3EMN contains hydrogen bonds 
between P4-N124, G25-T49, G25-L275, G23-S260, and V3-K119. 	  
	  
	  
 
5.4 Effects of Cholesterol on Open VDAC Ion Permeability 

 We generated averaged electrostatic potential maps from the simulations, which 

revealed entirely positive net potentials inside the anion channel. Cholesterol-induced 

protein rigidity resulted in larger regions of strong positive potential, with the strongest 

potentials in the channel arising from residues with decreased positional fluctuation in 

cholesterol-bound VDAC (Figure 27). Mutagenesis of multiple residues in these 

positions modulates ion permeability under low voltage in silico (Lee et al., 2011; 

Krammer et al., 2013) and in vitro (Blachly-Dyson et al., 1990). Similarly, negatively 



	  
	  

62	  

charged residues that were also stabilized by cholesterol are located along the barrel wall 

opposite the N-terminal helix, providing a path for K+ ions through cholesterol-bound 

VDAC. This was seen adjacent to Glu84 (Figure 28), previously shown to influence K+ 

permeability through VDAC in silico (Krammer et al., 2011; Rui et al., 2011). 	  

	  

 
 
Figure 27. Electrostatic potential maps showing positive potential inside apo-VDAC and 
cholesterol-bound VDAC. Blue electrostatic potential maps correspond to (A) +64 kT/e 
and (B) +38 kT/e. The N-terminal helix is colored green, and the protein backbones 
correspond to the averaged α carbon structures from the simulations with or without 
bound cholesterol. The N- and C-termini are at the left entrance (in lateral structures) or 
on the near side of the channel (when looking into the barrel). In lateral structures, the 
orange spheres correspond to the α carbons of Leu69 and Ser101 which, for reference, 
are located at approximately z ≈ -8 and z  ≈ 8, respectively. In (A), Lys12, Lys20, and 
Lys236 are shown in blue sticks, and are the charged residues that predominantly 
contribute to the electrostatic field. Arg15, Lys32, Lys119, Lys174, and Lys224 are also 
shown in (B). All of the mentioned residues are stabilized by cholesterol (i.e., have a 
decreased average RMSF). 
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Figure 28. K+ ions concentrate around negatively charged residues inside the channel on 
the opposite side of the barrel from the N-terminal helix. The cyan and red correspond to 
the aggregate volumetric densities of K+ and Cl- ions, respectively, at 3*10-5 amu/Å3. (A) 
Apo-VDAC and (B) cholesterol-bound VDAC are shown, with the trans pore entrance to 
the left, and the panels representing a 360˚ rotation around the channel viewed from the 
within the membrane. Shown in black spheres are the sidechain atoms of Asp30, Glu40, 
Glu59, Glu84, Glu88, Asp100, and Glu280, all of which have decreased average RMSF 
in cholesterol-bound VDAC. Note the confluence of K+ density across the entire channel 
(from left to right) and surrounding the negatively charged residues, particularly adjacent 
Glu84, in cholesterol-bound VDAC. In contrast, Cl- density is concentrated around the N-
terminal helix (colored green); this is increasingly evident in cholesterol-bound VDAC 
compared to apo-VDAC.  
 
 
 Despite changes in charge distribution, there was no significant change in the 

average number of Cl- or K+ ions that diffused through the channel in each simulation 
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(number of ions that translocate per simulation: Cl-: 26 ± 3 (cholesterol-bound) and 23 ± 

1 (apo-VDAC); K+: 10 ± 2 (cholesterol-bound) and 7 ± 1 (apo-VDAC)). The Cl-/K+ 

permeability ratios from apo- and cholesterol-bound VDAC were 3.3 ± 0.4 and 2.8 ± 0.7, 

in reasonable agreement with the experimental value of ~2 for the open channel 

(Colombini et al., 1996). We estimated the potential of mean force for Cl- and K+ as a 

function of the ion height z in the channel (Figure 29). Free energy wells for Cl- were 

observed inside the channel on either side of the N-terminal helix, which is the source of 

the strongest positive potentials (Figure 27). The free energy well at -10 Å < z < -2.5 Å 

coincided with the location of the minimum pore radius, which was also the location of 

the free energy maxima for K+. The averaged magnitude and shape of the K+ profiles are 

similar to previous computational work despite variability between simulations at 0 Å < z 

< 10 Å, possibly due to under-sampling of K+ inside the anion channel (Krammer et al., 

2011, 2013).	  

 

5.5 Conclusions, Cholesterol Binding to VDAC	  

 Cholesterol can stably bind and modestly alter the dynamics of open 

mitochondrial VDAC; however, ion diffusion through the channel was unaffected by 

cholesterol. This is not surprising because, similar to propofol, cholesterol binds open 

VDAC from the lipid-exposed channel surface and does not interact with the channel 

lumen. Only a conformational change that modifies the structure of the channel lumen 

should be sufficient to modulate ion permeability; however, this would then correspond 

to a closed channel.  
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Figure 29. Potential of mean force for (A) Cl- ions and (B) K+ ions along the z axis, with 
and without bound cholesterol. 
	  

 Although we observed replicable cholesterol binding, it is unclear from our 

simulations whether the five investigated sites would be simultaneously occupied in vivo. 

Computationally, in addition to modifying the starting positions of molecules, the 

stoichiometry of site occupancy can be modulated by the replacement rate of vacated 

sites by cholesterol from the membrane, which in turn is affected by membrane content. 

Mitochondrial outer membrane cholesterol content varies in disease states to potentially 

modulate VDAC function, with 2-10 fold increases in cholesterol per mg of protein 

observed (Rouslin et al., 1982; Baggetto et al., 1992; Montero et al., 2008), suggesting 

higher site occupancy under these conditions. However, varying membrane cholesterol 

content might also affect VDAC through membrane-mediated mechanisms in addition to 

direct effects of specific protein binding, which was investigated here. Regulation of 

membrane protein function by lipid composition can likely occur by exerting the physical 

properties of the membrane and its components through specific protein sites. 	  
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 Although we observed modest effects of cholesterol on the open channel, our 

model will be particularly useful in experiments that investigate how cholesterol affects 

VDAC function under applied electrochemical forces. We did not investigate the effects 

of cholesterol on closed VDAC either computationally or electrophysiologically. Because 

cholesterol and propofol bind to at least one conserved site, and because cholesterol 

affects gramicidin A properties similar to lipids that enhance VDAC closure (Weinrich et 

al., 2009), it is reasonable to hypothesize that cholesterol would also promote VDAC 

closure at high voltages. It is therefore possible that cholesterol and propofol would 

additively affect VDAC gating, or alternatively, cholesterol could mitigate the effects of 

propofol by displacing the ligand from critical sites or through currently undefined 

membrane-mediated mechanisms.   
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CHAPTER 6: OPTOANESTHESIA 

6.1 Optoanesthesia in X. laevis Tadpoles 

With the exception of demonstrating anesthetic efficacy in tadpoles and rodents, 

general anesthetic photolabels have not been utilized in in vivo studies. Ex vivo 

photolabeling of GABAA receptors with azi-etomidate demonstrated that covalent 

attachment of ligand to binding sites can irreversibly modulate the ion channel (Zhong et 

al., 2008). This included potentiation of GABA currents after washout of unattached 

compound, as well as increased receptor sensitivity to direct activation by etomidate and 

propofol (Zhong et al., 2008). We therefore hypothesized that in vivo photolabeling of 

tadpoles equilibrated with AziPm would prolong the immobility endpoint of anesthesia, 

as anesthetic sites on relevant targets, likely including the GABAA receptor, become 

irreversibly occupied.  

Albino tadpoles anesthetized with 3 µM propofol or 4 µM AziPm (approximate 

EC99 doses) recovered on similar time scales following transfer to fresh pond water 

(Figure 30A, left); recovery under these conditions is largely a function of drug diffusion 

back into the water. In contrast, albino tadpoles immobilized with AziPm and exposed to 

long-wave ultraviolet light (UVA) before transfer to fresh water exhibited prolonged 

immobility that was not observed when tadpoles were treated with UVA after being 

anesthetized with propofol, which lacks a photoactive moiety (Figure 30A, right). A 

relationship between lamp exposure time and recovery time was also evident, suggesting 

progressive covalent occupancy of AziPm in functionally relevant sites. Premature death 

or differences in body mass were not observed between tadpoles treated with either 



	  
	  

68	  

alkylphenol anesthetic ± UVA following emergence (measured up to ten days). 

 

 
 

Figure 30. (A) Time course of recovery for tadpoles following anesthetic equilibration 
and (left, black) sham treatment or (right, blue) UVA exposure. 3 µM propofol (open 
symbols) or 4 µM AziPm (closed symbols) was used. Treatment times were 3 minutes 
(diamonds), 10 minutes (circles), or 20 minutes (triangles), and the water was changed at 
time 0. Data shown is from 3-4 experiments per group. (B) In vivo photolabeling for 10 
minutes after equilibration with a sub-EC99 dose of 3 µM AziPm increased the immobile 
fraction of tadpoles. The water was changed at time 0, with photolabeling from -10 to 0 
minutes. A one-way ANOVA found a significant difference between the three means (p < 
0.01), and Bonferroni's post-hoc found a significant decrease in the percent of mobile 
tadpoles after lamp exposure and water change (blue bar, p < 0.01). Data is from three 
experiments per treatment (± UVA). After equilibration, the tadpoles were randomly 
assigned to sham or UVA treatment, with the data at -10 minutes representing both 
groups, and sham-treated animals represented by the black bar. (C) Induction and 
recovery of tadpoles treated with (left) 2 µM propofol or (right) 0.8 µM propofol 20 
hours after the indicated treatments.  
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Covalent adduction should concentrate ligand into protein sites by decreasing off-

rates, thereby increasing the apparent potency of the molecule. In vivo photolabeling for 

ten minutes after equilibration with a sub-EC99 AziPm dose markedly increased the 

population of immobilized tadpoles (Figure 30B). Further, we hypothesized that retained 

attachment of AziPm in functionally relevant targets after washout and emergence would 

manifest as a decrease in the effective concentration of propofol for immobility. Thus, 20 

hours after emergence, tadpoles treated as above were exposed to 2 µM or 0.8 µM 

propofol. Animals photolabeled in vivo displayed increased sensitivity (more rapid 

induction, slower emergence, and induction with a lower dose) relative to controls 

(Figure 30C).  

Lastly, 4 µM AziPm in pond water was photolysed for a period corresponding to 

twice the diazirine half-life (i.e., to a final concentration of ~1 µM plus whatever the 

product(s) of photolysis are). Tadpoles were then placed in this solution, and after 30 

minutes, immobility was not observed, ruling out the possibility that a caged anesthetic 

that is more potent than AziPm and/or has slower washout kinetics was created with 

UVA. Together, these data suggest prolonged anesthetic influence due to photoadduction 

of ligand in vivo, and interestingly, in vivo mechanisms for terminating covalent drug 

action exist.  

 

6.2 In Vivo Covalent Attachment of [3H]AziPm to Proteins Over Time 

 The in vivo photolabeling technique that prolonged the behavioral phenotype 

caused by the anesthetic is called “optoanesthesia”. Because general anesthetics are 
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assumed to exert their effects through CNS targets, we measured retention of 

photoactivated AziPm in neural tissue following optoanesthesia. Brains and spinal cords 

from control tadpoles and those photolabeled in vivo with [3H]AziPm were isolated to  

 
 

Figure 31. (A) Quantification of dpm normalized to protein amount in CNS tissue of 
tadpoles treated with AziPm ± UVA for ten minutes. Data is from 3 experiments per 
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treatment (10 tadpoles per experiment). Data was analyzed by one-way ANOVA with 
Bonferroni’s post-hoc comparing dpm within each time point (p < 0.01). (B) 
Representative Coomassie-stained gel of tadpole neuronal membrane protein. (C) Mean 
dpm of spots excised from gels of tissue isolated immediately after in vivo [3H]AziPm ± 
UVA treatment. Dpm values were arranged in ascending order, with measurements from 
select spots indicated. The dashed line indicates background mean from + UVA gels with 
the dotted line indicating two standard deviations. (D) Identities of proteins in the 
indicated spots. A detailed analysis can be found in Table 6. (E) Coomassie stain 
intensity quantified from in vivo gel spots. Spot 4 was found to decrease with a two-tailed 
student t-test (p < 0.05). (F) The ratio (dpm/intensity)165 min divided by (dpm/intensity)0 

min shows the change in the fraction of photolabeled protein over the emergence period. 
Standard deviation is shown, and a ratio of 1 would indicate no change. 
 

quantify radioactivity after recovery in fresh water (Figure 31A). Following [3H]AziPm 

induction, without washout, no difference was seen between groups treated ± UVA. 

However, approximately eight-fold more radioactivity was measured in the neuronal 

tissue of photolabeled animals at 165 minutes, the point of emergence for all tadpoles 

exposed to 4 µM AziPm and 10 minutes of UVA.  

The optoanesthesia-induced prolongation of tadpole immobility indicated that 

neuronal substrates photolabeled in vivo were relevant targets of AziPm and possibly 

propofol. To identify specific proteins photolabeled in vivo, neuronal membrane protein 

from tadpoles equilibrated with [3H]AziPm and photolabeled for 10 minutes was 

subjected to IEF/SDS-PAGE. Duplicate gels were stained, and one hundred random spots 

were excised for scintillation counting (Figure 31B). (Note that this experiment was first 

described in Chapter 4, and Figures 31B and 31C are also shown in Figure 14.) Seven 

spots contained dpm greater than background, and covalent attachment of [3H]AziPm was 

dependent on lamp exposure. The analysis of protein in the spots can be found in Table 6, 

and the identities of the spots are repeated in Figure 31D.  
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 We coupled this behavioral phenotype with time-resolved gel proteomics. The 

temporal aspects were designed to specifically identify critical facilitators of the general 

anesthetic state. We hypothesized that for tadpoles to emerge, the cellular components 

contributing to mobility must adapt by degrading photolabeled proteins whose activity is 

altered, and/or by replacing these photolabeled macromolecules with newly synthesized 

proteins. An alternative hypothesis, not tested here, is that the activities of proteins that 

are not targets of AziPm are altered to compensate for the covalent modification of the 

alkylphenol binding partners. To test the former hypothesis, neuronal membranes were 

isolated 165 minutes after tadpoles were photolabeled (when all had emerged) as above 

for IEF/SDS-PAGE, and the previously identified spots from duplicate gels were assayed 

for dpm. The mean from three spots contained dpm within 10% of the initial value, while 

decreases of 46%, 35%, 42%, and 28% were noted in spots 4, 6, 41, and 85 respectively. 

Coomassie intensity was quantified to assess changes in protein expression, and with the 

exception of spot 4, little variation was observed (Figure 31E).  

 Spot dpm was normalized to corresponding Coomassie intensities for these in 

vivo experiments. We proposed that proteins with decreased radioactivity content 

coincident with emergence gained additional credibility as functionally important. Thus, 

we calculated the ratio of normalized photolabel incorporation at 165 minutes to that at 

the 0 time point for each spot (Figure 31F). A ratio of 1 would indicate that the fraction 

of adducted protein did not change over the 165 minutes. We found that the ratio from 

spots 6, 33, 41, and 85 were less than 1, suggesting potential relevance in emergence 

from optoanesthesia-induced immobility. 
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6.3 Expanding the Optoanesthesia Technique  

 In addition to AziPm, it has been confirmed by K. A. Woll (University of 

Pennsylvania) that other alkylphenol anesthetic photolabels can be used for tadpole 

optoanesthesia experiments (Figure 32). Included in these is a photoactive ligand that 

contains a terminal alkyne functional group (Figure 32, right). After in vivo or in vitro 

photo-attachment of the ligand to protein substrates, this alkyne group can be used for 

conventional click-chemistry reactions whereby, e.g., an azide-linked conjugate such as 

biotin can be covalently attached to the photolabel-protein complex for purification with 

column chromatography. This specific enrichment of photolabeled protein should allow 

for photolabeled target identification beyond the depths achievable with IEF/SDS-PAGE 

or shotgun mass spectrometry methods (the latter, for example, used in Chapter 3).     

 
 
Figure 32. Tadpole optoanesthesia experiments with photoactive alkylphenol anesthetics 
other than AziPm. (Left) methyl-AziPm, (right) a terminal alkyne-containing AziPm 
analog. Experiments were performed essentially as in Figure 30A. 
 

 Other technical challenges should be considered when exploring mechanisms that 

underlie the behavioral phenotypes induced by optoanesthesia in tadpoles. For example, 
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each stage 45-47 X. laevis tadpole has a mass of 19.8 ± 3.6 mg (mean ± SD, n = 66), and 

the presumed target of general anesthetics, the brain, constitutes only 1.2% of this body 

mass. Assuming covalent binding of ligand to protein underlies the optoanesthesia-

induced state, large-scale tissue harvesting for proteomic experiments is challenging 

albeit possible, although mass spectrometry experiments are hindered by an incompletely 

sequenced genome. To emphasize this issue, the sequences of X. laevis GABAA receptor 

β subunits are currently unavailable; β subunits are photolabeled by AziPm in 

mammalian receptors (Jayakar et al., 2014) and presumably contribute to immobility 

(Jurd et al., 2003). In contrast to X. laevis, the genome of the related Xenopus tropicalis is 

fully sequenced and annotated (Hellsten et al., 2010). X. tropicalis is generally favored 

by geneticists because its cells are diploid, which simplifies mutagenesis approaches, as 

compared to the tetraploid cells of X. laevis. Use of X. tropicalis as a model organism 

could therefore ease any investigation that relies on genetic alteration of general 

anesthetic targets; however, this organism has yet to be established as a model to study 

general anesthesia.          

 Translating optoanesthesia to mammals is also of interest, and in addition to 

AziPm, azi-etomidate (Liao et al., 2005) and other anesthetic photolabels (Yip et al., 

2013) have been demonstrated to be efficacious in rodents, suggesting the applicability of 

this technique to other anesthetic chemotypes. We have successfully photolabeled 

defined anatomic coordinates with [3H]AziPm in vivo in a live mouse (Figure 33). This 

was achieved by threading a fiber optic cable, connected to a 375 nm laser, through 

cannulas implanted in the brain, and illuminating the laser after an IV bolus of 

[3H]AziPm. This spatial control allows for photolabeling of precise brain structures in 
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order to test their functional relevance to specific anesthetic endpoints, and dissection of 

brain tissue surrounding cannula termini can theoretically be used for identification of 

photolabeled targets. Similar to this approach is the localized photolabeling of X. laevis 

tadpole brain regions using confocal microscopy lasers, which was performed in 

experiments that are further described in Chapter 7. 

 
 

Figure 33. Two mice were each implanted with four cannulas targeting arbitrary 
locations. One week later, mice were anesthetized with 9% desflurane and 0.1 mg/kg 
[3H]AziPm was administered as a bolus via the tail vein; immediately after the injection, 
desflurane concentration was adjusted to 5%. The coronal brain section micrograph in 
(A) was from a mouse that received no further treatment, and the brain section 
micrograph in (B) was from a mouse that immediately received 375 nm laser illumination 
(5.9 mW/mm2) through a fiber optic threaded through the cannula; the laser was on for 0, 
30, 60, or 150 seconds at each location. Desflurane administration ceased, and two hours 
after the injection, the mice were euthanized, perfused, and the brains were sectioned. 
After drying, the sections were exposed to autoradiography film; in (C) and (D), the 
autoradiographs (shaded red for clarity) are overlaid over the respective micrographs in 
(A) and (B). The autoradiograph intensity in (C) represents background. In (D), the 
intense spheres indicate the location of 60 second laser illumination (left sphere) or 150 
second laser illumination (right sphere) (the locations of 0 and 30 second laser 
illumination are not visible). 
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CHAPTER 7: TUBULIN AS A TARGET OF ANTHRACENE GENERAL 

ANESTHETICS 

7.1 1-Aminoanthracene (1-AMA) and 1-Azidoanthracene (1-AZA) 

 Previously, the Eckenhoff and Dmochowski laboratories identified 1-

aminoanthracene (1-AMA) (Figure 34) as a fluorescent, GABAergic general anesthetic 

that reversibly induces immobility in X. laevis tadpoles (Butts et al., 2009). The 

fluorescence of 1-AMA is enhanced when the ligand is shielded from an aqueous 

environment; thus, when occupying hydrophobic protein cavities, 1-AMA exhibits a 

pronounced increase in fluorescence intensity (Butts et al., 2009). This characteristic of 

the molecule has been exploited to develop a high-throughput screen that aims to identify 

novel general anesthetics by, among other assays, exploring a chemical library for 

compounds that displace 1-AMA from the conserved anesthetic site on apoferritin (Butts 

et al., 2009; Lea et al., 2009). The fluorescence of 1-AMA has also enabled imaging of 

the distribution of the anesthetic in vivo (Butts et al., 2009; Emerson et al., 2012).            

 The efficacy of 1-AMA as an anesthetic, combined with optical and biochemical 

advantages of fluorescent probes over radiolabels, prompted investigation of its protein 

targets. To facilitate target identification, we synthesized a photoactive analog, 1-

azidoanthracene (1-AZA), by replacement of the amino group with an azide. 1-AZA was 

synthesized from 1-AMA in two steps (Figure 34) and purified by column 

chromatography (Paolini et al., 1998). Replacement of the amine with an azide increased 

the molecular weight of the otherwise isostructural compound by 26 Da. The UV-Vis 

spectrum of 1-AZA displayed a pronounced triple absorption peak (λabs = 350-400 nm), 

corresponding to the azido moiety. Complete photolysis of the azide with our UVA lamps 
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and lasers occurred rapidly with a half-life less than 1 minute, which is consistent with 

previous studies on aryl azides (Lehman and Berry, 1973). The transient product contains 

a reactive nitrene that is capable of protein attachment, and therefore 1-AZA was useful 

as a photoactive anesthetic analog (Paolini et al., 1998).  

 
 

Figure 34. Synthesis of 1-AZA from 1-AMA. 
 

7.2 In vivo Tadpole Photolabeling with 1-AZA 

Global photolysis of 1-AZA in vivo revealed a similar fluorescence distribution 

profile to 1-AMA in the tadpole CNS (Figure 35) (Butts et al., 2009). As a measure of 

specific binding, fluorescence intensity in the forebrain relative to the area between the 

forebrain and eye was quantified for 1-AZA (3.2 ± 0.8 (n = 7)) and 1-AMA (5.6 ± 1.8 (n 

= 5)). In contrast to 1-AMA, 1-AZA was found to be ineffective as a tadpole 

immobilizer. The amino group of 1-AMA hydrogen bonds with water, and replacement 

increases the hydrophobicity of the anthracene (calculated LogP of 1-AZA: 5.4; 1-AMA: 

3.7) (Cheng et al., 2007). This results in low water solubility at pH 7 (1-AZA: 7 ± 3 µM; 

1-AMA: ~33 µM), which should significantly reduce target site occupancy assuming that 

1-AZA and 1-AMA have similar binding affinities. However, because in vivo 

photolabeling increased the apparent potency of AziPm (Figure 30), we hypothesized that 
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in vivo photolabeling of tadpoles equilibrated with sub-anesthetic doses of 1-AZA would 

result in anesthesia by enhancing occupancy of molecular binding sites.  

 
 
Figure 35. (A) Brightfield image (4x magnification) of tadpole brain after the organism 
was incubated with 15 µM 1-AZA. (B) 4x fluorescent image of tadpole brain with 15 µM 
1-AZA. (C) Overlay of fluorescent and brightfield images. Scale bar is 200 µm. 
 

After equilibrating albino tadpoles with 5 µM 1-AZA, we photolyzed 1-AZA in 

the forebrains of tadpoles using a UVA laser and confocal microscope; whole body 

labeling was found to be lethal, and the forebrain provided an explicit and isolable target 

for replicate experiments. Upon 1-AZA photolysis in the forebrain, 29/35 tadpoles 

became immobilized, although 19 of the immobilized animals subsequently died. The 

narrow therapeutic ratios of anesthetics and their steep dose-response Hill slopes suggest 

that significant changes in target binding converted 1-AZA-induced immobility into 

lethality. This was likely due to the rapid photolysis rate of 1-AZA and high levels of 

adduction to targets, whereas less photoreactive molecules such as AziPm provide greater 

occupancy tuning to avoid this toxicity. For example, AziPm has a photolysis half-life of 

102 ± 9 min (mean ± SD) with the lamp used for AziPm tadpole optoanesthesia (Figure 

30), during which tadpoles were photolabeled for 3-20 minutes, while essentially all of 

the 1-AZA underwent photolysis in these experiments.  
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Figure 36. Time course for tadpole recovery after forebrain UVA exposure following 30 
minutes equilibration in 5 µM 1-AZA or 8 µM 1-AMA.  

 

Of the 16 (out of 35) tadpoles that survived photolabeling of the forebrain, 63% 

became reversibly immobilized for 54.5 ± 35.4 minutes (mean ± SD) (Figure 36). 

Tadpoles anesthetized with an EC60 dose of 1-AMA, which lacks a photoactive moiety, 

completely recovered within 31.2 ± 9.4 min whether or not they were treated with UVA 

in the forebrain (n = 13 tadpoles). Together, these in vivo tadpole photolabeling 

experiments with 1-AZA proved an immobility effect that relied on photolysis, and 

suggested an effect attributable to in vivo photolabel attachment. Thus, we hypothesized 

that protein targets covalently labeled by 1-AZA may be conserved substrates of 

anthracene anesthetics and might contribute to immobility.  

 

7.3 Tubulin as a Target of 1-AZA 

 Protein from enriched tadpole neuronal membranes photolabeled in vitro with 1-

AZA was separated by IEF/SDS-PAGE and scanned for fluorescence (Figure 37). 

Photolabeled spots were excised after Coomassie staining, and the major components 
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were identified with LC-MS/MS. Spot 1 was identified as β-tubulin and α-tubulin 

isoforms (Table 12). Note the absence of fluorescence in spot 2, which consisted mostly 

of ATP synthase subunit β, a protein with peptides also identified in spot 1. Spots 3 and 4 

contained VDAC2, identified previously as a binding partner of other general anesthetic 

analogs (See Chapters 4 and 5), and LC-MS/MS analysis of labeled spots at ~45 kDa 

with isoelectric points of ~7.2-7.9 yielded multiple high-confidence identifications.   

 
 

Figure 37. IEF/SDS-PAGE gel of tadpole neuronal membranes photolabeled with 1-
AZA. The gel image on the left is after Coomassie staining, and the aligned fluorescence-
scanned gel image (taken prior to Coomassie staining) is on the right.   

 
 

 

Table 12. Analysis of 1-AZA-photolabeled protein from tadpole brain 
 

Spot 
 

Protein ID 
NCBI 

accession # 
Theora 
MW  

Obsb 
MW  

Theora 
pI 

Obsb 
pI 

Spectra 
count 

Unique 
peptides 

1 tubulin β-4 gi|28461386 49718 55714 4.82 5.01 62 14 
 ATP synth β gi|28436792 56338  5.25  26 11 
 tubulin α-1 gi|28422169 49847  4.96  24 12 
 tubulin β-3 gi|54311209 50309  4.79  22 7 
 tubulin β-6 gi|33417142 50299  4.98  19 5 
 tubulin β-2 gi|27696463 49692  4.81  19 5 
 tubulin β-5 gi|29124413 49696  4.78  10 3 

2 ATP synth β gi|28436792 56338 51429 5.25 4.92 75 18 
 tubulin β-4 gi|28461386 49718  4.82  3 2 

3 VDAC2 gi|62826006 30183 31750 8.36 8.59 c c 
4 VDAC2 gi|62826006 30183 32500 8.36 9.23 c c 

aTheoretical values were computed with ExPASy Compute pI/Mw tool 
(http://web.expasy.org/compute_pi/). Monoisotopic molecular weights (Da) are shown. 
bObserved values were estimated from molecular weight markers and IEF resolving 
estimations published by the manufacturer of the gels. 
cSpot analysis can be found in Table 6.  
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Figure 38. B. taurus peptides photolabeled by 1-AZA are shown, and these are aligned to 
the homologous X. laevis peptides. Residues colored red were determined with LC-
MS/MS to be adducted by 1-AZA. 

 

 Disruption of microtubule dynamics as a contributor to anesthetic hypnosis has 

previously been suggested (Hameroff et al., 2002). We therefore focused on the 

relevance of tubulin as a target of 1-AMA. To investigate anthracene-tubulin binding, 

commercially available bovine brain tubulin was used; X. laevis and Bos taurus tubulins 

share ≥95% sequence homology between respective isoforms. We photolabeled bovine 

tubulin with 1-AZA and, after SDS-PAGE, processed the tubulin samples for LC-

MS/MS. We identified 1-AZA adducts on peptides that correspond to tubulin-β2/β3, 

tubulin-β5, and tubulin-α1D sequences (Figure 38 and Appendix A2.3). The β isoform 

residues were located on the S10 β sheet, and the photolabeled tryptophan of tubulin-α1D 

was on the H11’ helix (Figure 39A). Structural evaluation revealed that the nearest atoms 

on labeled/homologous residues of tubulin-β2/β3 (I368) and tubulin-β5 (T366) were 3.3 

and 6.7 Å, respectively, from the nearest colchicine atoms in the X-ray co-crystal 

structure of colchicine and bovine tubulin (PDB code 1SA0) (Figure 39B) (Ravelli et al., 

2004). The tubulin-α1D residue is located at the interface of an α-β heterodimer, though 

sterically shielded from the binding pocket by the tubulin-β H8 helix (Figure 39C). 
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Interestingly, previous photolabeling studies had identified tubulins as binding partners of 

the photoactive neurosteroid 6-azi-pregnanolone, which also binds in the tubulin-β 

colchicine binding site (Figure 39D) (Chen, Chen, et al., 2012). 

 
 
Figure 39. For all images (when applicable): tubulin β-2B is colored pale green, tubulin 
α-1D is colored brown, GTP and GDP are shown as spheres colored light gray and dark 
gray, respectively, and colchicine is colored red. 1-AZA photolabeled amino acids are 
also shown as sticks: tubulin-β2/β3 I368 (blue), tubulin-β5 T366 (magenta), and tubulin-
α1D W406 (orange). All structures are adapted from PDB code 1SA0, and the stathmin-
like domain of RB3 was removed for clarity. (A) Location of residues photolabeled by 1-
AZA at the interface of β and α subunits on bovine tubulin. (B) and (C), Enlarged views 
of the colchicine site, with the steric shielding of W406 from the site especially visible in 
(C). (D) Similar view as in (B) but with C354, which is the residue photolabeled by 6-azi-
pregnanolone, shown as the green stick. 
 

 To further confirm conserved anthracene binding to the colchicine site, we 

photolabeled tubulin with 1-AZA in vitro and measured fluorescence intensity. Similar to 
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1-AMA (Butts et al., 2009), 1-AZA displayed a four-fold increased fluorescence intensity 

when bound to protein, which was indicative of considerable shielding from the aqueous 

environment. Colchicine effectively inhibited 1-AZA photolabeling of tubulin (Figure 

40A). We then used a similar fluorescence-competition experiment to demonstrate that 1-

AMA also binds to the same site through dose-dependent displacement of 1-AMA from 

tubulin by colchicine (Figure 40B). 

 
 
Figure 40. (A) Competition between 1-AZA and colchicine for binding to tubulin. All 
samples were exposed to UVA for 1.5 minutes before scanning with fluorescence using 
400 nm excitation. (black) 8 µM 1-AZA, (blue) 15 µM bovine tubulin and 8 µM 1-AZA, 
and (cyan) 15 µM tubulin equilibrated with 20 µM colchicine before addition of 8 µM 1-
AZA. (B) Competition between 1-AMA and colchicine for binding to tubulin. 100 µM 
tubulin was equilibrated with 33 µM 1-AMA, then colchicine (5–645 µM) was titrated 
into the cuvette. For (B), fluorescence was scanned using 425 nm excitation. 

 

Finally, we investigated the effects of anthracenes on tubulin function through in 

vitro polymerization assays. 1-AZA was a potent inhibitor of tubulin polymerization, and 

this effect was significantly potentiated by covalent attachment of 1-AZA to tubulin 

(Table 13); the effect of 1-AZA was comparable to colchicine. 1-AMA was less 
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efficacious at inhibiting tubulin polymerization compared to 1-AZA, but still decreased 

the polymerization rate compared to control experiments by 20%.  

 

Table 13. Tubulin polymerization rates with and without anthracenes and colchicine 
Polymerization conditiona Vmax (mO.D./min) b 

Control (no inhibitor) 7.8 ± 0.9 
14 µM Colchicine 3.1 ± 1.0 

14 µM 1-AZA (pre-photolysis) 3.7 ± 1.0 
14 µM 1-AZA (post-photolysis) 2.0 ± 1.5 

14 µM 1-AMA 6.3 ± 0.9 
aAll assays contained 10 µM tubulin, 10% glycerol, and 2 mM GTP. 
bVmax was calculated from the initial slope of the increasing absorbance at 450 nm after 
initiating microtubule formation. 
 
 
 

 
 

Figure 41. Increased polymerization of microtubules in vivo, caused by treating tadpoles 
with EpoD, was confirmed by western blotting for stabilized microtubule marker 
(acetylated α-tubulin) and soluble tubulin marker (tyrosinated α-tubulin) from isolated 
tadpole brains. Coomassie stained membranes are shown below for loading control. A, 
tadpoles treated with 1-AMA; A+E, tadpoles treated with 1-AMA + EpoD.  
 

7.4 Shifting Sensitivity of Tadpoles to 1-AMA 

Our in vitro data indicated that the anthracenes bind tubulin and decrease 

polymerization efficiency and/or stability. To test whether this contributes to the tadpole 
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immobility endpoint, we equilibrated X. laevis tadpoles with 1-AMA for 30 minutes with 

or without 1 hour prior treatment with 2 µM epothilone D (EpoD), a potent microtubule 

stabilizing agent that binds near the taxol site (Nettles et al., 2004; Ballatore et al., 2012). 

We validated the intended pharmacologic effect of EpoD in vivo with western blot 

(Figure 41); acetylation of tubulin-α Lys40 is a surrogate marker for polymerized tubulin, 

and tyrosination of tubulin-α indicates soluble protein (Brunden et al., 2012; Magiera and 

Janke, 2014). For 1-AMA, the dose-response induction curve shifted to the right with 

EpoD-stabilization of microtubules, increasing the 1-AMA EC50 from 8 µM to 16 µM 

(Figure 42). 

 6-Azi-pregnanolone, which binds in the colchicine site, was also shown to inhibit 

tubulin polymerization (Chen, Chen, et al., 2012). To investigate further the significance 

of neuronal tubulin as target of neurosteroid anesthetics, we incubated stage 40-47 

tadpoles with allopregnanolone with and without 1 hour prior treatment with 2 µM EpoD. 

The immobility endpoint was assessed after 3 hours of 3 µM allopregnanolone treatment, 

and EpoD decreased the percentage of immobilized tadpoles from 34 ± 20% to 10 ± 7% 

(five experiments per treatment, 8-10 tadpoles per experiment; p < 0.05 with two-tailed t-

test comparing the percent of tadpoles immobilized ± EpoD). 

 

7.5 Implications of Tubulin as a Target of 1-AMA 

 The combined in vivo and in vitro approaches suggest that alteration of 

microtubule polymerization dynamics can change the effective concentration of certain 

general anesthetics, including 1-AMA and allopregnanolone. The aggregate effects of the 
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anthracenes on tubulin are consistent with those of structurally related compounds, such 

as anthracen-9-yl esters and substituted anthracen-9-ones, that potently inhibit 

microtubule polymerization and also compete with colchicine for tubulin binding (Zuse 

et al., 2007; Prinz et al., 2009). If tubulin polymerization state can modulate response to 

general anesthetics, it is possible that microtubule destabilizing compounds such as these 

anthrone derivatives and colchicine would increase the sensitivity of organisms to 

anesthetics.  

 

 
 

Figure 42. 1-AMA induction dose-response curve after 30 minute incubation with 1-
AMA (red) or 1-AMA + 2 µM EpoD (purple). For 1-AMA alone, EC50 = 16 ± 0.5 µM 
with a Hill slope of 4.4 ± 1.1; for 1-AMA + 2 µM EpoD, EC50 = 8 µM ± 0.5 µM with a 
Hill slope of 5.4 ± 2.7. 
 

The pharmacologic relevance of anesthetic-tubulin interactions, however, should 

not be over-simplified. For example, the volatile anesthetic halothane has been shown to 

bind tubulin but has little effect on microtubule polymerization in vitro, trending towards 

a stabilizing influence (Xi et al., 2004; Pan et al., 2007; Craddock et al., 2012); 
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preliminary in vitro data with propofol and isoflurane also indicated that these anesthetics 

do not inhibit tubulin polymerization (data not shown). Thus, it is likely that microtubule 

destabilization per se may not be a unitary mechanism for achieving general anesthesia. 

This also suggests that tubulin stabilization by an anesthetic itself could antagonize the 

susceptibility of an organism to an anesthetic endpoint, and that other molecular targets 

influence systematic processes that control consciousness to a higher degree.   

Finally, exactly how microtubule stability modulates susceptibility of an organism 

to anesthesia has yet to be determined. It is possible that tubulin binding can indirectly 

influence neuronal activity, based on the role of microtubules in supporting the 

trafficking of membrane proteins to the neuron cell surface, as well as providing a 

scaffold for functional ion channels such as the GABA and NMDA receptors (Passafaro 

and Sheng, 1999; Wang and Olsen, 2000; Eriksson et al., 2010; Kapitein et al., 2011). 

Microtubule status is intricately linked to the complement of transmembrane proteins 

found at the cell surface and can impact physiological ion transport (Lei et al., 2012). 

Alternatively, although it will not be further discussed here, microtubules and the 

cytoskeleton have been proposed to directly underlie consciousness itself (Hameroff and 

Penrose, 1996), and therefore perturbation of microtubules by general anesthetics could 

disrupt conscious activity.   
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CHAPTER 8: CONCLUSIONS 

 The work presented in this thesis advances several aspects of general anesthetic 

pharmacology research. It has been demonstrated that, similar to volatile anesthetics (MF 

Eckenhoff et al., 2002), propofol binds a multitude of proteins with both selectivity and 

specificity. Assuming that propofol modulates the function of even a fraction of these 

proteins, this implies that numerous cellular processes are modulated by the anesthetic. 

 Certainly, the off-pathway pharmacology of propofol is complex. Both a protein 

integral to the mitochondrial outer membrane (VDAC) and a soluble cytosolic/nuclear 

protein (SIRT2) were determined in this work to be functionally affected by propofol 

binding; however, these are only two of the many targets of propofol. It may be 

ambitious to comprehensively identify all of the substrates of propofol and to determine 

the functional effects of binding in order to develop a framework for the side effects of 

propofol in each cell type. This "bottom-up" approach taken here– from identification of 

molecular targets to demonstration of physiologic relevance– contrasts the more common 

"top-down" approach in anesthetic research, whereby observations made at the cellular or 

organism levels are rationalized as being caused by known anesthetic targets. The 

incremental merging of the information gathered with each approach should ultimately 

reveal which proteins underlie the most critical drug side effects. 

 Both bottom-up and top-down approaches have limitations. As an example, the 

most pronounced results are the most likely to be identified; however, the size of a result 

is not necessarily related to its importance. For instance, the identification of VDAC and 

SIRT2 as propofol targets was partially related to their abundance in tissue fractions that 

enabled high levels of radioactive photolabel binding. However, the relative contribution 
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of a protein to a cellular endpoint is not necessarily related to the abundance of the 

protein, and similarly, the magnitude of a change in protein function does not necessarily 

correlate with contribution to a pharmacologic effect. The dynamic range of molecular 

target identification, as well as the breadth of endpoints investigated on the organism 

level, must both increase.  

 Should modulation of VDAC or SIRT2 function be demonstrated to contribute to 

a deleterious side effect of propofol, it is possible that this knowledge could be 

incorporated into clinical practice. As an example, SIRT2 promotes re-myelination of 

nerve axons after crush injury; therefore, because propofol inhibits SIRT2, crush injury 

patients that require anesthesia might have a better outcome if propofol is avoided. This 

approach to clinical practice, however, would require in depth knowledge about how 

every general anesthetic affects SIRT2 and crush injury outcome, and also would 

necessitate that every side effect from every general anesthetic be considered during 

patient care. As an alternative example, an analog of propofol could be developed that 

does not bind to SIRT2 and is therefore suitable for crush injury patients; however, other 

side effects of this compound would also have to be examined and considered during 

treatment. To comprehensively understand the causes of drug side effects of any single 

anesthetic or chemotype will be challenging, especially as research naturally transitions 

to currently used clinical compounds.  

The above examples stress optimizing current general anesthetics in order to 

improve clinical drug use. The alternative approach is to rationally develop new drug 

chemotypes that bind on-pathway targets with higher affinities and/or selectivity, thereby 

mitigating off-pathway side effects. In order to achieve this, the comprehensive set of 
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proteins that are affected by a general anesthetic to produce hypnosis must first be 

identified; no pharmacologic or genetic modulation has thus far produced complete 

resistance of an animal to any general anesthetic, which suggests that this full set of 

affected proteins has not yet been identified for any drug. As alluded to in Chapter 1, and 

as seen with our work on 1-AMA, the elucidation of on-pathway mechanisms is similar 

to that of off-pathway mechanisms, and both bottom-up and top-down approaches pose 

similar challenges. Novel on-pathway targets of propofol were not identified in this thesis 

work; however, anesthetic photolabeling and proteomic experiments are continually 

being refined in the Eckenhoff lab, and new strategies are being developed to avoid 

limitations confronted in this project. In addition, the introduction of optoanesthesia as a 

technique provides a powerful tool to identify not only molecular targets of anesthetics, 

but also targets of the drugs at the neural systems level. The work presented in this thesis 

should therefore facilitate the unraveling of general anesthetic mechanisms on multiple 

levels with the endpoint of advancing and improving anesthetic pharmacology. 
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APPENDIX 

A1. Experimental Procedures 

A1.1 Materials and Instrumentation 

With the exception of compounds that were custom synthesized, chemicals and 

reagents were commercially available, and the sources of chemicals that are highly 

relevant to results are noted. 2,6-diisopropylphenol (propofol) was purchased from 

Sigma-Aldrich, and AziPm was synthesized by W. P. Dailey (University of 

Pennsylvania) through published methods (Hall et al., 2010). AziPm was radiolabeled by 

AmBios Labs (Boston, MA) by iodinating the phenolic ring and reducing with tritium 

under catalytic conditions. The final product ([3H]AziPm) was purified with HPLC. For 

scintillation counting, Ecolite(+) liquid scintillation cocktail (MP Biomedicals) was used 

with a PerkinElmer Tri-Carb 2800TR instrument; a Varian Cary 300 Bio UV-VIS 

spectrophotometer was used for spectroscopy. All protein assays were performed with a 

BCA assay kit from Thermo Fisher Scientific. First and second dimension gels, 

electrophoresis apparatuses, molecular weight markers, and PVDF were from Bio-Rad. 

[3H]-sensitive film was from Amersham/GE Healthcare. Glass-backed thin layer 

chromatography plates were from Whatman, and these 20 cm plates were coated with a 

250 µm silica gel solid phase of 60 Å porosity. Purchased lipids were PC (Sigma-

Aldrich), PS (Avanti Polar Lipids), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

(Avanti Polar Lipids), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (Avanti 

Polar Lipids), and cholesterol (Sigma-Aldrich). The anti-SIRT2 antibody was from 

Abcam (Cambridge, England), and the immunogen was the synthetic peptide 
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LEDLVRREHANI corresponding to amino acids 341-352 of rat SIRT2; the anti-

acetylated α-tubulin antibody, clone 6-11B-1, was from Sigma-Aldrich and recognizes 

acetyl-lysine-40; the anti-tyrosinated α-tubulin antibody, clone TUB-1A2, was also from 

Sigma-Aldrich. For AziPm photolabeling experiments, UVA was generated from two 

sources: (1) Newport lamp: a 100 W arc mercury lamp was filtered through colored glass 

UV-visible broadband (~340-615 nm) and UV bandpass (~250-375 nm) filters (lamp and 

filters from Newport, Stratford, CT). Light intensities (measured with an optical power 

meter from Thorlabs) were 28.1 µW/mm2 and 27.7 µW/mm2 at 350 nm and 375 nm, 

respectively. (2) Rayonet lamp: a Rayonet RPR-3500 lamp (Southern New England 

Ultraviolet Company, Branford, CT) with a 350 nm bulb was used (Hall et al., 2010).  

Animal protocols were approved by IACUC of the University of Pennsylvania or 

the equivalent committee from the institutions of collaborators. Albino X. laevis tadpoles 

(stage 45-47) were purchased from Nasco (Fort Atkinson, WI) and housed in supplied 

pond water for at least 24 hours prior to experiments. Adult female Sprague-Dawley rats 

(~300 g) that were purchased from Charles River Laboratories were used for all rat 

experiments. C57BL/6 mice (15-25 g) from Charles River Laboratories were used for all 

mouse experiments. 

 

A1.2 Methods 

Gel, membrane, and film scanning and quantification: Developed 

autoradiographs, Coomassie-stained membranes, and Coomassie-stained gels were 

scanned with a Bio-Rad GS-800 Calibrated Densitometer, and the Quantity One software 
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(version 4.6.3) that accompanies the instrument was used for optical density 

quantification. Western blots were scanned with a Kodak Image Station 4000MM Pro, 

and band quantification was performed with the accompanying Carestream Molecular 

Imaging Software.  

Isolation of rat synaptosomes, myelin, and mitochondria: Rats were briefly 

anesthetized with isoflurane, decapitated, and the brains were removed. The brains were 

briefly washed in isolation buffer (0.32 M sucrose and 5 mM Tris, pH 7.6, supplemented 

with protease and phosphatase inhibitors) then transferred to fresh isolation buffer. Brains 

were minced and homogenized by hand with a Teflon/glass Potter-Elvehjem tissue 

grinder. Synaptosomes, myelin, and mitochondria were prepared essentially as described 

without detergent (Sims and Anderson, 2008). The purified fractions were washed three 

times to remove residual Percoll by pelleting and resuspension in excess isolation buffer. 

The fractions were then resuspended in isolation buffer and aliquots were stored at -80°C. 

Preparation of rat soluble brain extract: A rat was briefly anesthetized with 

isoflurane before decapitation. The brain was removed and washed in ice-cold assay 

buffer (25 mM Tris, pH 7.6, 2 mM MgCl2, 50 mM NaCl, 2 µM trichostatin A (from 

Sigma-Aldrich), and Roche complete protease inhibitor cocktail). The brain was 

transferred to ~5 ml of fresh assay buffer and homogenized by hand. The homogenate 

was centrifuged at 15,000 x g for 15 minutes and the supernatant was set aside. The pellet 

was resuspended in 1 ml of fresh isolation buffer, and after another 15,000 x g 

centrifugation, the supernatants were combined. This was centrifuged at 30,000 x g for 15 

minutes, and the final supernatant was used as the soluble brain extract. 
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IEF/SDS-PAGE: Enriched or fractionated neuronal membranes, myelin, 

synaptosomes, or mitochondria, typically corresponding to 100-250 µg of protein, were 

centrifuged for 15 minutes at 15,000 x g. Following removal of the supernatant, the pellet 

was dissolved in 125 µl 7 M urea, 2 M thiourea, 4% CHAPS, 20 mM dithiothreitol, and 

0.2% carrier ampholytes. IEF and SDS-PAGE proceeded according to the manufacturer’s 

instructions, with 3-10 non-linear pH strips (7 cm) and 4-15% SDS-PAGE.  

 Western blotting: Detergent solubilized protein was separated by SDS-PAGE then 

transferred to PVDF. Membranes were blocked with 1.5% bovine serum albumin 

solubilized in TBS-T (Tris buffered saline with 0.1% Tween-20). A 1:1000 dilution of 

primary antibody was applied overnight in TBS-T at 4°C on a shaker. After removing the 

primary antibody, the membrane was washed with TBS-T, and a secondary antibody 

conjugated to horseradish peroxidase was applied for one hour. After washing with TBS-

T, the blots were developed with Amersham ECL Select reagent and imaged with the 

Kodak Image Station. Typically, the blots were then washed briefly in TBS-T followed 

by water before staining with Coomassie R250 and drying before scanning. 

 Tissue preparation for section photolabeling: Rats were briefly anesthetized with 

halothane before perfusion with ice cold PBS, pH 7.4, via the left ventricle of the heart. 

The brains were quickly removed and cut into hemispheres with a sterile razor blade. The 

hemispheres were frozen in stirred isopentane cooled on dry ice, then stored at -80°C. 

The brains were mounted in Tissue Tek O.C.T. compound (Sakura Finetek USA, Inc.) 

and cut into 12 µm sagittal sections on a cryostat at -21°C. Sections were mounted on 
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chromium potassium sulfate and gelatin subbed glass slides, and the slides were stored at 

-80°C until photolabeling. 

 Brain section photolabeling. Slides were thawed to room temperature and rinsed 

in PBS to remove residual O.C.T. compound and any remaining halothane. The tissue 

sections were photolabeled with the Rayonet lamp in custom, gas-tight quartz cuvettes 

with 1 mm path length. The cuvettes contained 2.4 ml of 0.1 µM [3H]AziPm in PBS for 

binding distribution experiments with or without propofol (3-300 µM) for competition 

experiments. The cuvettes were equilibrated for 15 minutes in the dark then exposed to a 

350 nm lamp for 15 minutes. The slides were then rinsed for 5 minutes in PBS before 

consecutive washes for 20 minutes each with fresh PBS, two washes with PBS containing 

1 mg/ml bovine serum albumin, two washes with PBS, and one wash with distilled water. 

These washes removed unbound photolabel and salt. In pilot studies, these washes 

effectively removed detectable radioactive ligand from slides incubated with 0.1 µM 

[3H]AziPm without UVA exposure, tested by prolonged (60 day) exposure on 

autoradiography film. Sections were dried over desiccant then placed on autoradiography 

film for 18 days. After development, the films were scanned with the densitometer, and 

the mean optical density of each region was quantified after subtracting background. 

 Synaptosome photolabeling, SDS-PAGE, and autoradiography: Synaptosomes 

corresponding to 200 µg of protein, as determined with protein assay, were diluted to 1 

mg/ml in isolation buffer. 4 µM [3H]AziPm was added with 400 µM propofol or the 

DMSO vehicle for the control; the final DMSO concentration was 0.5%. After briefly 

vortexing and 3 minutes incubation on ice, the samples were photolabeled with the 
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Rayonet lamp for 20 minutes in a quartz cuvette (pathlength 1 mm). The samples were 

then placed in a clean tube and pelleted at 14,000 x g, and the pellet was washed twice 

with 800 µl 25 mM Tris, pH 7.6. After pelleting, the supernatant was discarded and the 

pellet was dissolved in 5% glycerol, 1% Triton X-100, 0.5% SDS, and 20 mM Tris, pH 

7.6. The insoluble pellet was removed by centrifugation, and after protein assay, 50 µg of 

each sample was separated via SDS-PAGE. After SDS-PAGE, photolabeled protein was 

transferred to PVDF and exposed to film for 31 days. After development of the film, the 

membrane was stained with Commassie R-250, and both the film and membrane were 

scanned. Lane optical density was quantified from the film after subtracting background.  

 Preparation of brain homogenate for lipid photolabeling: Rats were anesthetized, 

decapitated, and the brains were removed as described above. The brains were washed in 

isolation buffer then transferred to fresh buffer for mincing and homogenizing. After 

homogenization, the homogenate was centrifuged at 1,000 x g for 10 minutes, the pellet 

was discarded, and the supernatant was re-centrifuged at 1,000 x g. After discarding the 

pellet, the supernatant was centrifuged at 13,000 x g for 10 minutes. The supernatant was 

discarded, and the pellet was resuspended in isolation buffer. This brain homogenate 

fraction is devoid of most nuclei, connective tissue, and red blood cells, and was used for 

experiments characterizing lipid photolabeling. 

 Photolabeling of brain homogenate and lipid isolation: Brain homogenate was 

diluted to 1.25 mg protein/ml in isolation buffer. For each lipid isolation experiment, 

brain homogenate corresponding to 1.5 mg protein was photolabeled with the Rayonet 

lamp for 20 minutes with 1 µM [3H]AziPm in the presence of 400 µM propofol or the 

DMSO vehicle for the control; the final DMSO concentration was 0.25%. After 
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photolabeling, the homogenate was centrifuged for 10 minutes at 14,000 x g. The 

supernatant was discarded, and the pellet was resuspended to 1 mg/ml in 5 mM Tris, pH 

7.4. This was re-centrifuged at 14,000 x g, the supernatant was discarded, and the pellet 

was resuspended to 10 mg/ml in 2 mM Tris, pH 7.4. From this, lipids were isolated with 

a Folch extraction (Folch et al., 1957). Briefly, after transfer to a glass vial, chloroform 

and methanol were added to achieve a final ratio of 8:4:3 chloroform:methanol:H2O. 

After thorough mixing, the samples were centrifuged at 1,000 x g for five minutes and 

the lipid-containing organic layer was isolated.    

 Thin layer chromatography and plate analysis: Lipid samples were concentrated 

to ~150 µl under N2 gas before spotting on silica gel plates. The following standards were 

dissolved in methanol and were spotted in individual lanes adjacent the photolabeled 

samples: 250 µg PC, 250 µg PS, 250 µg DOPE, 250 µg cholesterol, and 500 nmol 

AziPm. Passive separation was achieved with a mobile phase of 64:25:4 

chloroform:methanol:(28.5%) ammonium hydroxide until the migrating front was ~1 cm 

from the top of the plates. 

 After separation, the plates were dried overnight then stained in a glass box with 

iodine vapor. Lipid spots were marked in pencil, and the plates were scanned. The 

scanned plates were used to determine spot Rf (retardation factor), which was measured 

from the center of the spots. The spots were scraped off the silica plates into scintillation 

vials for lipid elution and subsequent analyses.  

 Phospholipid scintillation counting and phosphorous assay: Phospholipids were 

eluted from the scraped silica spots by adding 1 ml of 1:1 chloroform:methanol into the 
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scintillation vials and incubating overnight with gentle agitation. 100 µl of the eluates 

were added to separate scintillation vials for scintillation counting. 

 The remaining 900 µl (excluding the silica) were placed in glass test tubes for 

measuring total phospholipid via a phosphorous assay (Fiske and Subbarow, 1925). The 

solvent was evaporated with N2, and 450 µl of 8.9 N H2SO4 was added to each tube. This 

was heated to >200°C for 40 minutes or until the lipid was dark yellow. This was then 

cooled to room temperature before 150 µl of 30% H2O2 was added. This was heated for 

30 minutes or until clear, then cooled to room temperature. 3.9 ml of H2O and 500 µl of 

2.5 % ammonium molybdate tetrahydrate were added to each tube before mixing. 500 µl 

of 10% ascorbic acid was then added, and the samples were mixed then incubated at 

room temperature for 30 minutes. Absorbance at 820 nm was measured with the UV-

visible spectrophotometer. Parallel with processing samples, a standard curve was 

generated with known amounts (0 to 0.65 µmol) of PC, and a linear (R2 = 0.99) 

relationship between absorbance and total phosphorous was reproducible.  

 Phospholipid hydrolysis and scintillation counting: After elution of phospholipids 

from scraped silica, samples were dried with N2 and resuspended in 1 ml of 9:1 

acetonitrile:0.5 N HCl. This was heated to 100°C for forty-five minutes, then 3.2 ml of 

5:1 chloroform:H2O was added. This was centrifuged at 3,000 x g for five minutes, and 

the organic layer (containing acyl chains) and the aqueous layer (containing polar 

headgroups) were isolated separately (Aveldaño and Horrocks, 1983). An additional 0.5 

ml of H2O was added to the organic layer for a second extraction, and after 

centrifugation, the aqueous fractions were combined. 100 µl each of the organic and 
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aqueous fractions were scintillation counted, and relative cpm in each layer was 

determined after adjusting for the total extraction volumes.             

 Cholesterol scintillation counting and cholesterol assay: Similar to 

phospholipids, cholesterol was eluted from the scraped silica into 1 ml of 1:1 

chloroform:methanol. Before quantifying [3H]AziPm binding to cholesterol, it was 

essential to first remove non-cholesterol bound [3H]AziPm, which migrated with 

cholesterol on the chromatography plates. To achieve this, the eluted samples were dried 

with N2 then dried under vacuum overnight. To each sample, 150 µl of isopropanol was 

added, and the samples were incubated at room temperature for 2.5 hours with mild 

agitation. Samples were briefly sonicated for 60 seconds, then centrifuged at 14,000 x g 

for 20 minutes. The supernatant was extracted, and an aliquot was used to determine the 

cholesterol concentration using a cholesterol quantitation kit (Sigma-Aldrich). A separate 

15 µl of the supernatant was then separated by reverse phase-high performance liquid 

chromatography with a C18 analytical column. An isocratic gradient of 60:35:5:0.1 

ACN:isopropanol:H2O:TFA with a 1 ml/min flow rate at room temperature was used, and 

analytes were detected using UV-Vis absorbance at 373 nm and 210 nm. Processed in 

parallel with brain homogenate, pure [3H]AziPm and cholesterol controls were analyzed 

and resolved peaks at 3.4 and 8.5 minutes, respectively. Within brain homogenate 

samples, the cholesterol peak remained clearly distinct from [3H]AziPm and unbound 

photolysis products, which eluted within the first 5 minutes. The cholesterol fraction, 

photolabeled and otherwise, was collected from 6-20 minutes and dried to 2 ml with N2. 

To this, scintillation fluid was added for counting.                      
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 Myelin photolabeling with [3H]AziPm and SDS-PAGE: After thawing, myelin 

samples were diluted to 1 mg/ml with isolation buffer. 4 µM [3H]AziPm was added with 

180 µM non-radioactive AziPm, the indicated concentrations of propofol, or DMSO 

vehicle (all contained 0.5% DMSO). After transferring to a quartz cuvette (1 mm 

pathlength), samples were photolabeled for 20 minutes with the Rayonet lamp. 

Subsequently, the sample was pelleted and the supernatant was removed. The pellet was 

gently resuspended in 300 µl of 25 mM Tris, pH 7.4, the sample was centrifuged, and the 

supernatant was discarded. The pellet was washed again by resuspension in 300 µl 25 

mM Tris, pH 7.4, and after re-centrifugation, the supernatant was discarded and the pellet 

was dissolved in buffer with detergent (5% glycerol, 1% Triton X-100, 0.5% SDS, and 20 

mM Tris, pH 7.6). Detergent solubilized protein was separated on 4-15% polyacrylamide 

gels. For autoradiography, protein was transferred to PVDF, and after drying, the 

membranes were exposed directly to film for 31 days at 4°C. After developing the films, 

the membranes were stained with Coomassie R-250, and the membranes and films were 

scanned.  For scintillation counting, the gels were stained with Coomassie G-250, and 

after vertically separating the lanes, these were sliced horizontally into 1 mm pieces. The 

gel slices were dissolved overnight in sealed scintillation vials containing 350 µl 30% 

H2O2. After cooling, scintillation fluid was added for counting 

 Myelin photolabeling and SDS-PAGE for mass spectrometry: Myelin diluted to 1 

mg/ml with isolation buffer was photolabeled with the Rayonet lamp for 20 minutes with 

4 µM non-radioactive AziPm. After photolabeling, the sample was centrifuged and 

washed twice, as described above, with 25 mM Tris, pH 7.4, and the final pellet was 
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solubilized. 50 µg of protein was separated by SDS-PAGE in adjacent lanes. The gel was 

stained with Coomassie G-250, and the three gel pieces indicated in Figure 6 were 

excised from each lane for either trypsin or chymotrypsin digestion. After digestion, mass 

spectrometry analysis was performed by microcapillary reverse-phase UPLC nanospray 

tandem mass spectrometry (LC-MS/MS) on a Thermo LTQ-Orbitrap XL mass 

spectrometer. Raw data were acquired with Xcalibur, and the spectra were searched with 

Sequest against either a full-tryptic or partial-chymotryptic rat proteome database for 

protein identification. Methionine oxidation was permitted, and filters for protein 

identification included 10 ppm parent ion tolerance, 1 amu fragment ion tolerance, Delta 

CN of 0.05, and 2 unique peptides. The sequences from the proteins identified from all 

three bands were then compiled into a new database. With Sequest, we searched the 

spectra against this new database for an AziPm mass modification (216.07620 amu) on 

any amino acid of every full-tryptic or partial-chymotryptic peptide; only three residue 

modifications, including methionine oxidation, were allowed on each peptide. Filters for 

identification of modified peptides included 10 ppm parent ion tolerance, 1 amu fragment 

ion tolerance, Delta CN of 0.05, and Xcorr scores of 1, 2, and 3 for +1 ions, +2 ions, and 

+3 ions, respectively. All spectra were then inspected manually for verification.                    

 Structural analysis of SIRT2: For SIRT2 structures, chains A from PDB codes 

3ZGO and 3ZGV where used (Moniot et al., 2013). 3ZGO corresponds to the inactive 

conformation of SIRT2, the structure of which was re-refined from the dataset of PDB 

code 1J8F, also a SIRT2 structure in the inactive conformation (Finnin et al., 2001; 

Moniot et al., 2013); 3ZGV represents SIRT2 bound to ADP-ribose in an active 
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conformation (Moniot et al., 2013). Hydrogen atoms were removed, and both structures 

were loaded into SWISS-MODEL via the ExPASy web server (Arnold et al., 2006; Guex 

et al., 2009; Kiefer et al., 2009; Biasini et al., 2014). Models of human SIRT2 were re-

built using the original structures (i.e., 3ZGO and 3ZGV) as the templates. This 

procedure built missing side chains in the structures while keeping all other atoms in the 

exact coordinates as the available crystal structures. The structure of human SIRT3 bound 

to the inhibitor EX-527 was from PDB code 4BV3 (Gertz et al., 2013), and the structure 

of Thermotoda maritima Sir2 (Sir2Tm) bound to nicotinamide was from PDB code 1YC5 

(Avalos et al., 2005). For analysis of protein cavities, the program fpocket was used (Le 

Guilloux et al., 2009). Visual Molecular Dynamics (VMD) (Humphrey et al., 1996) and 

PyMOL were used for other structural analyses and preparation of structural images, and 

sequence alignments were performed with ClustalW2 (Larkin et al., 2007; Goujon et al., 

2010; McWilliam et al., 2013).  

 Photolabeling recombinant human SIRT2: Recombinant human SIRT2, 

representing residues 13-319, was purchased from Sigma-Aldrich, and its identity was 

confirmed with mass spectrometry. 50 µg/ml of recombinant SIRT2 was photolabeled 

with 4 µM [3H]AziPm ± propofol with and without 2 mM ADP-ribose, 100 mM 

nicotinamide, and 250 ng/µl of core histones purified from HeLa cell chromatin (histones 

were purchased form Active Motif, Carlsbad, CA). Prior to these experiments, histone 

acetylation was confirmed by western blot with an acetyl-lysine antibody (Cell Signaling 

Technology). The substrates and ligands for photolabeling were mixed in buffer (10 mM 

KCl and 10 mM Hepes, pH 7.6), briefly vortexed, and samples were photolabeled in a 1 
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mm quartz cuvette with the Newport lamp. After photolabeling, the substrates were 

separated with SDS-PAGE, and the SIRT2 band was excised, dissolved in 350 µl 30% 

H2O2, and scintillation fluid was added for counting.     

 SIRT2 deacetylase assays: For tubulin deacetylase assays, 30 µg of the soluble 

brain extract protein was used, and the final assay volume was 30 µl. All components 

were dissolved in the assay buffer described above, and the assays were performed in 0.2 

ml PCR tubes. When added to the reaction, final concentrations of 1 mM NAD+, 100 mM 

nicotinamide, and 3 µg human recombinant SIRT2 were used. After briefly vortexing the 

assay mixture, the tubes were incubated at 37°C for 3 hours with brief mixing every 30 

minutes. The reaction was terminated by adding Laemmli buffer then placing the tube in 

boiling water. SDS-PAGE gels and western blots for acetylated α-tubulin were typically 

performed with both 1 µg and 3 µg of soluble extract protein.      

Mass spectrometry analysis of tadpole protein. Trypsin digested samples were 

separated on a nanoLC column before online electrospray into a Thermo LTQ linear ion 

trap. Raw data was acquired with Xcalibur, and a database downloaded from NCBI 

(November, 2011) with the search term ‘Xenopus’ was searched with Sequest. 

Parameters were 1 amu parent ion tolerance, 1 amu fragment ion tolerance, and 1 missed 

cleavage. The search result files were combined with Scaffold 3 and filtered with the 

criteria: Xcorr scores (+1 ion) 1.7, (+2) 2.3, (+3) 2.8; protein identification confidence 

99.9%; peptide identification confidence 95%; 2 peptide minimum. Spectra were 

manually inspected to ensure quality and confidence. 
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 Rat VDAC identification and LC-MS/MS: Rat mitochondria were pelleted, and 

after removing the isolation buffer, pellets were washed twice with ice-cold 2 mM Tris, 

pH 7.4. Mitochondrial protein was separated by IEF/SDS-PAGE then stained with 

Coomassie G-250. Protein spots that were candidates for containing VDAC were 

identified based on molecular weight and isoelectric point. These were excised for LC-

MS/MS. Cysteines were alkylated, and after trypsin digestion, samples were injected into 

a nanoLC column with online electrospray into a Thermo LTQ linear ion trap. XCalibur 

acquired raw data, and Sequest searched b and y ions. For protein identifications, a 

database was downloaded from www.uniprot.org with the search term "rattus 

norvegicus". Search parameters were 1 amu parent ion tolerance, 1 amu fragment ion 

tolerance, full tryptic digest, one missed cleavage, variable methionine oxidation, and 

fixed cysteine carboxyamidomethylation. Filter parameters were Xcorr scores (+1 ion) 

1.5, (+2 ion) 2.0, (+3 ion) 2.5, deltaCn 0.08, peptide probability >0.05, and two unique 

peptides.  

 Mitochondria photolabeling: Rat mitochondria were diluted to 1 mg/ml in 

isolation buffer before adding ligand(s). Samples were incubated at room temperature in 

the dark for 10 minutes before photolabeling in a quartz cuvette (pathlength 1 mm) for 15 

minutes with the Newport lamp. After photolabeling, mitochondria were pelleted and 

washed with ice-cold isolation buffer, pelleted again, then washed twice with 2 mM Tris, 

pH 7.4. Subsequently, the pellet was dissolved in IEF/SDS-PAGE buffer for two-

dimensional electrophoresis. 

 Scintillation counting of VDAC spots: After IEF/SDS-PAGE of mitochondrial 

protein photolabeled with [3H]AziPm, gels were Coomassie stained and scanned, and 
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spot intensity was quantified. VDAC protein spots were then excised, dissolved in H2O2, 

and scintillation counted. Scintillation counts were normalized to spot intensity (i.e., 

protein abundance) for quantitative analyses. 

 Identification of AziPm binding sites on VDAC: Mitochondria photolabeled with 

AziPm were separated with IEF/SDS-PAGE, the gels were stained, and protein spots 

were excised and processed for LC-MS/MS as above after either trypsin or chymotrypsin 

digestion. After LC-MS/MS, the spectra were searched against rat sequences of VDAC1, 

VDAC2, VDAC3, and malate dehydrogenase 2. The search parameters and filters 

described above were used along with a maximum of three post-translational 

modifications per peptide and a variable AziPm modification (+216.08 Da) on any 

residue. To sequence the N-terminus of VDAC1, however, a specific search for alanine 

acetylation with partial tryptic digest was required (Kayser et al., 1989). This procedure 

confirmed that the N-terminal methionine of VDAC1 is removed during protein 

maturation in vivo, and also that the second coded residue (alanine) is acetylated (Kayser 

et al., 1989); however, we included the coded methionine (Met1) in the numbering of 

amino acids. For protein sequencing, only the highest scoring peptide assignment for 

each spectrum was considered, and spectra of peptides containing AziPm adducts were 

manually confirmed.  

 Structural analyses of VDAC-propofol binding sites: For structural analyses of rat 

VDAC1, we used PDB code 3EMN, which represents a crystal structure of recombinant 

rat VDAC refolded from inclusion bodies (Ujwal et al., 2008). This was oriented in a 

hypothetical membrane with the PPM server of Orientation of Proteins in the Membrane 

(Lomize et al., 2012), and PyMOL was used for generating structural images. In addition 
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to the 3EMN structure, we referenced a proposed, alternatively-folded VDAC protein 

with a structural topology that was deduced from experimental studies and has been 

described elsewhere (Song et al., 1998; Colombini, 2004, 2009). This protein is proposed 

to contain an integral transmembrane helix and 13 β-strands (Song et al., 1998; 

Colombini, 2004, 2009); however, a high-resolution structure of VDAC that is folded in 

this manner is not available.   

 Reconstitution of rat VDAC into planar lipid bilayers: Frozen mitochondrial 

membranes from rat liver were kindly provided by Marco Colombini (University of 

Maryland, College Park). VDAC was isolated from the membranes by the standard 

method (Blachly-Dyson et al., 1990) and purified on a 2:1 hydroxyapatite:celite column 

following a previously described protocol (Palmieri and De Pinto, 1989). Purified VDAC 

was stored at ~0.2 mg/ml in 10 mM Tris, pH 7.0, 50 mM KCl, 1 mM EDTA, 2.5% Triton 

X-100, and 15% DMSO at -80°C.  

 Planar lipid bilayers were formed from a lipid mixture of 1:1 DOPC:DOPE in 

pentane from two opposed preformed lipid monolayers as described previously 

(Rostovtseva et al., 2006; Teijido et al., 2014). Channel reconstitution was achieved by 

adding 0.1-0.2 µl of purified VDAC to the ~1.2 ml aqueous solution of 1 M KCl buffered 

with 5 mM Hepes, pH 7.4, in the cis compartment while stirring.      

 Electrophysiological recordings of VDAC: All electrophysiology experiments 

were performed essentially as described (Rostovtseva et al., 2006; Teijido et al., 2014). 

Membrane potential was maintained by Ag/AgCl electrodes with 3 M KCl and 15% 

agarose bridges. Potential was defined as positive when it is greater on the cis side, i.e. 
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the side of VDAC addition. An Axopatch 200B amplifier (Axon Instruments, Inc.) was 

used in voltage clamp-mode. Single-channel currents were filtered by the amplifier low-

pass Bessel filter at 10 kHz. Data were acquired with a Digidata 1440A board (Axon 

Instruments, Inc.) at a sampling frequency of 50 kHz for single-channel recordings, 

which were analyzed with pClamp 10.2 software (Axon Instruments, Inc.).  

 For multichannel experiments, a symmetrical 5 mHz triangular voltage wave with 

amplitude ± 60 mV was applied with a Hewlett Packard 33120A waveform generator 

(Rostovtseva et al., 2006; Teijido et al., 2014), and data was saved with a 1 Hz sampling 

frequency. Current responses to 5-10 periods of triangular voltage waves were recorded. 

For subsequent analyses, the parts of the wave in which VDAC re-opens (i.e., -60 mV to 

+10 mV, and +60 to -10 mV) were used. Relative multichannel conductance and open 

probability plots were calculated based on a previously described approach to gating 

analysis (Rostovtseva et al., 2006; Teijido et al., 2014). The gating parameters V0 and n 

were calculated from the open probability plots as extensively discussed elsewhere 

(Colombini, 1989; Thomas et al., 1993; Rostovtseva et al., 2006).  

 After collecting control data (0 µM propofol), both in single and multichannel 

experiments, propofol diluted in 1 M KCl, 5 mM Hepes, pH 7.4, was then added to the 

bath in both the trans and cis compartments while stirring, and measurements were again 

collected. After each experiment, the cis and trans aqueous solutions were collected and 

the volumes were measured to determine exact propofol concentrations, which were then 

confirmed with UV spectroscopy. 

 Gramicidin A experiments: Planar bilayers of 1:1 DOPC:DOPE were formed as 

described above in 1 M KCl with 10 mM Hepes, pH 7.2. Gramicidin A from 10-9 M 
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ethanol stock solution was added to both aqueous compartments at the amount sufficient 

to give a single channel activity (~1 µl) (Gramicidin A was a generous gift of O.S. 

Andersen, Cornell University Medical College). For gramicidin A channel lifetime and 

conductance, the records were digitally filtered at 2 Hz using Bessel algorithm and 

analyzed using Clampfit 10.2 software as described previously (Rostovtseva et al., 2006). 

After control recordings were obtained, propofol dissolved in 1 M KCl and 10 mM 

Hepes, pH 7.4, was added in increasing concentrations to both compartments. Mean 

channel conductance was calculated from Gaussian fits to current amplitude histograms, 

and channel lifetimes were calculated from fits to logarithmic single exponents of at least 

250 channel events (Rostovtseva et al., 2006).    

 Docking cholesterol to human VDAC in silico: Four residues in the mouse crystal 

structure of VDAC1 (PDB code 3EMN) (Ujwal et al., 2008) were mutated in PyMOL to 

humanize the protein (Asp55→Thr55, Val129→Met129, Ser160→Ala160, 

Val227→Ile227). The N-terminal methionine (Kayser et al., 1989), water, and detergent 

were removed before loading the structure into AutoDockTools (Sanner, 1999; Morris et 

al., 2009). To the protein, hydrogens were added, non-polar hydrogens merged, and 

Kollman charges were added. Molecular coordinates for cholesterol were downloaded 

from the CHARMM small molecule library (MacKerell et al., 1998; Foloppe and 

MacKerell, Jr., 2000); in AutoDockTools, Geisteiger charges were added, non-polar 

hydrogens merged, and 6 torsions were allowed (i.e., cholesterol was fully flexible). For 

docking, grid boxes targeted the specific cholesterol sites and biased the exterior, 

membrane side of the β-barrel. Residue side chains in the site of interest and projecting 



	  
	  

109	  

outside the barrel were flexible during docking runs with AutoDock Vina (Trott and 

Olson, 2010). AutoDock was programmed to return six docking results with search 

exhaustiveness of 100. The highest scoring poses were generally chosen for simulations. 

Multiple docking calculations with different grid centers were performed on some sites to 

increase heterogeneity in the starting poses.    

 VDAC MD Simulation System Setup: After docking, PDB files of VDAC, the 

docked cholesterol molecules, and corresponding flexed residues were created. The 

protein pore was oriented along the z-axis, normal to the membrane, using the PPM 

server of Orientations of Proteins in the Membrane (Lomize et al., 2012), and the output 

models were loaded into the CHARMM-GUI Membrane Builder (Woolf and Roux, 

1996; Jo et al., 2007, 2009). In all simulations, the N-terminal residue (Ala2) was 

oriented to place it at z < 0. Ala2 was acetylated (Kayser et al., 1989), and residues were 

protonated according to their standard states at pH 7.4. The water thickness (minimum 

height on the top and bottom of the system) was 15.0 Å.  

 For some simulations, 5 cholesterols were docked to the protein, and 160 DOPC 

molecules (80 in each leaflet) and 11 randomly distributed cholesterols comprised the 

membrane. For other simulations, 160 DOPC and 16 cholesterols comprised the 

membrane with no cholesterols docked to VDAC. As a reference, phosphatidylcholines 

are the most abundant mitochondrial outer membrane phospholipids at 43-50 mole 

percent, with cholesterol 8-11 mole percent (Colbeau et al., 1971; Cheng and Kimura, 

1983). 23 K+ and 25 Cl- ions were randomly placed by the CHARMM-GUI to neutralize 

each system and provide a salt concentration of 0.15 M KCl. Systems were separately 

generated with the CHARMM-GUI server, hence system details (number of atoms, 
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starting coordinates, etc.) differed between simulations. Systems were approximately 87 

Å, 87 Å, and 74 Å in x, y, and z dimensions, respectively, with about 56000 total atoms 

that included about 9100 TIP3P waters. 

 VDAC MD simulation details: Atomistic molecular dynamics simulations were 

run with NAMD v2.9 (Phillips et al., 2005). The CHARMM36 model was used for 

protein (MacKerell et al., 1998, 2004; Best et al., 2012) and phospholipid (Klauda et al., 

2010, 2012) parameters, and the modified (CHARMM) 36c model was used for 

cholesterol (Lim et al., 2012); parameters for TIP3P waters (Jorgensen et al., 1983) and 

ions (Beglov and Roux, 1994) are well established. All simulations used periodic 

boundary conditions and particle mesh Ewald (PME) electrostatics. Interactions between 

non-bonded atoms were cutoff at 12 Å, and bonds involving hydrogen were constrained 

using the SHAKE/RATTLE algorithm. A Langevin thermostat and barostat were used to 

maintain a temperature and pressure of 303.15 K and 1 atm, respectively, and no surface 

tension was imposed. The simulation timestep was 2 fs. Prior to production, 20000 

minimization steps and a 0.725 ns equilibration protocol detailed elsewhere (Jo et al., 

2007) were performed on each system to gradually release restraints on the protein.  

VDAC MD Trajectory Analyses: Production simulations were analyzed with 

VMD (Humphrey et al., 1996). Every 20 ps snapshot was used for all quantitative 

analyses. Generally, the trajectories were aligned to and centered around the backbone of 

the crystal structure before performing the following analyses: RMSF: Root mean square 

fluctuation was measured for residue α carbons and describes the fluctuation of the atom 

relative to its average position throughout each simulation. Ion diffusion: Cl-/K+ 

permeability ratios were determined after normalizing the number of ions that diffused 
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through the pore to the total number of that type of ion in the system (23 for K+ and 25 

for Cl-). Diffusion was defined as traversing the membrane through the channel pore from 

-20 Å to 20 Å, or vice versa, along z. The protein spanned these coordinates in every 

frame of every simulation, as detected with the HOLE software (Smart et al., 1993). 

Channel radius: The minimum channel radius for each frame was measured with the 

HOLE software, which fit consecutive spheres inside the channel with the centers spaced 

every 0.5 Å along the z axis. Hydrogen bonds: Hydrogen bonds were calculated with the 

Hydrogen bond plugin of VMD with a 3.3 Å and 20° donor-acceptor cutoff. 

Electrostatics: The protein, membrane, and water contribution to the electrostatic 

potential was generated with the PME electrostatics plugin (PMEPot) using 88 x 88 x 80 

grid position counts (~1 Å spacing) (Aksimentiev and Schulten, 2005). The generated 

maps contained an identical number of data points from each simulation (the dimensions 

of the systems were also essentially identical). Potential of mean force: Averaged multi-

ion potential of mean force plots were made for each trajectory. For each frame, we 

measured both the number of ions and the number of water molecules in a cylinder of 

radius 15 Å that ran parallel to the z-axis through the center of the channel. This was used 

to calculate the concentration of ions, C(z), in 1 Å bins, and the relative free energy was 

estimated with the equation:  

 

where R is the gas constant, T is the temperature, and Cbulk is the concentration of ions in 

the bulk water (Rui et al., 2011). Ionic density: Ionic density maps for entire trajectories 

were generated with the VolMap tool plugin of VMD. 

! 

"G = #RT ln[C(z) /Cbulk ]
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Tadpole immobility studies for alkylphenol anesthetics: Tadpoles were placed in 

Petri dishes with propofol or AziPm dissolved in pond water. In some experiments, after 

30 minutes equilibration, tadpoles were transferred to fresh water; in others, after 

equilibration, tadpoles remained on the bench for a sham control or were exposed to 

UVA before transfer to fresh water. Immobility/anesthesia was defined (and scored) as 

the percentage of tadpoles that did not swim, twitch, or right themselves throughout a 

thirty-second time window preceding every ten-minute interval. Alternative causes of 

immobility in our study (e.g., muscular toxicity) were not ruled out, but should have had 

additional and toxic features that would have been observed (e.g., cardiac muscle 

dysfunction, etc). The water temperature was 21-22°C for experiments and changed < 

0.5°C throughout any experiment.  

 In vivo tadpole photolabeling for isolation of neuronal membranes: Tadpoles 

were incubated for 30 minutes with 4 µM [3H]AziPm and photolabeled for 10 minutes 

with the Newport lamp. After transfer to fresh water, tricaine methanesulfonate (500 

mg/L) was added immediately for the 0 time point or at 165 minutes for the emergence 

time point, and the tadpoles were placed on ice. After decapitation, brains and spinal 

cords were removed with forceps under a dissecting microscope, and placed in ice-cold 

0.32 M sucrose, 5 mM Tris, pH 7.4 supplemented with protease inhibitors. Tissue 

isolation required less than 15 minutes following each time point; CNS tissue was 

homogenized every 3-5 minutes using a Teflon/glass homogenizer.   

 CNS homogenates were centrifuged at 100,000 x g for 10 minutes, washed with 

isolation buffer, and re-centrifuged. The pellet was homogenized in 5 mM Tris, pH 7.4 
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and centrifuged at 100,000 x g for 10 minutes, washed, and centrifuged again before 

resuspension in 2 mM Tris, pH 7.4. An aliquot was removed for a protein assay prior to 

freezing at -80°C. 

 In vitro photolabeling of tadpole neuronal tissue: Unexposed tadpoles were 

anesthetized with tricaine methanesulfonate and neuronal tissue, dissected as above, was 

homogenized in sucrose buffer, centrifuged at 100,000 x g for ten minutes, washed, and 

re-centrifuged. The pellet was suspended in isolation buffer, protein concentration 

determined, then diluted to 1 mg/ml in a microcentrifuge tube. 4 µM [3H]AziPm ± 400 

µM propofol was added and, after a brief vortex,  was incubated at 21°C in the dark for 

10 minutes. After transfer to a quartz cuvette (pathlength, 1 mm), the tissue was 

photolabeled for 10 minutes using the same light source as above. The homogenates were 

then centrifuged at 100,000 x g, homogenized in 5 mM Tris, re-centrifuged at 100,000 x 

g, washed, and stored at -80°C in 2 mM Tris. 

 Scintillation counting of tadpole neuronal tissue: Dissected CNS tissue from 

tadpoles treated with 4 µM [3H]AziPm with and without photolabeling with the Newport 

lamp was placed in 1 ml ice-cold 2% SDS, 1% Triton X-100, 5 mM Tris, pH 7.4 

supplemented with protease inhibitors. Following homogenization, the protein 

concentration was determined. 5 and 10 µl of the homogenates were added to separate 

vials in scintillation fluid. The disintegrations per minute (dpm) from each vial were 

normalized to the corresponding protein amount, and the mean of the two values was 

used for a single experimental measurement. 

 Spot intensity quantitation and scintillation counting from tadpole tissue gels: 
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Gels were washed with water and fixed overnight in 15% trichloroacetic acid before 

staining with Coomassie G-250. After destaining, the gels were scanned and 

quantification performed with Quantity. Background was subtracted with a box drawn 

between the 50 and 75 kDa molecular weight markers, and mean optical density 

multiplied by spot area was recorded from contoured spots.  

 Spots were excised with a 1.5 mm cylindrical hole punch and placed into 

scintillation vials. 400 µl of 30% H2O2 was added and the sealed vials were incubated 

overnight at 65°C to dissolve the polyacrylamide. These were cooled to room 

temperature before adding scintillation fluid.  

 Microscopy methods for 1-AMA and 1-AZA: Fluorescence experiments were 

performed with an Olympus Fluoview FV1000 confocal laser scanning microscope 

equipped with inverted IX81 microscope with visible laser (488 nm Ar ion) for 1-AMA 

and 1-AZA imaging and UVA lasers (351, 364 nm, Enterprise II system) for in vivo 

photolabeling. Tadpoles incubated with 1-AZA in pond water were irradiated with both 

UVA lasers (100% power) by rastering over the forebrain using an Olympus air objective 

UPLSAPO 10x (NA: 0.40) with dwell time of 2 µs per pixel. Images for Figure 35 were 

collected with a hyperspectral CCD (CRi Nuance FX) camera with collection window 

centered at 520 nm (bandwidth FWHM: 20 nm), coupled to an inverted fluorescence 

microscope (Olympus IX81). Samples were excited with a mercury lamp with a CFP 

filter set (excitation filter BP400-440, dichroic mirror DM455, emission filter BA475).  

An Olympus air objective UPLSAPO 4x (NA: 0.16) was used to collect images.   
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Synthesis of 1-azidoanthracene: A solution of sodium nitrite (0.088 mg, 1.3 

mmol, 1.2 eq.) in water (0.5 ml) was added dropwise at 0 °C over 10 minutes to a 

solution of 1-AMA (0.201 mg, 1.04 mmol, 1.0 eq.) dissolved in 20% HCl (3 ml). The 

reaction mixture was stirred at 0 °C for 30 minutes before sodium azide (0.085 g, 1.3 

mmol, 1.2 eq.) in water (0.5 ml) was added dropwise over 10 minutes. The solution was 

slowly warmed to room temperature and stirred for 4 hours. Extraction with diethyl ether 

gave the crude product as brown solid, which was purified by silica gel flash column 

chromatography (hexane: CH2Cl2, 20:80, v/v) to yield 0.081 g (0.37 mmol, 35% yield) of 

1-AZA as a red solid. TLC and NMR data on the final product can be found elsewhere 

(Emerson et al., 2013). 

Localized in vivo photolabeling with 1-AZA: Tadpoles were incubated for 30 

minutes in 5 ml artificial pond water (3.15 mM CaCl2, 30.36 mM NaCl and 0.59 mM 

NaHCO3 in deionized water) with 0.5% ethanol containing 15 µM 1-AZA. Tadpoles 

were briefly washed with fresh water and directed into a Delta T culture dish (Bioptechs). 

The Delta T culture dish consisted of a coverslip at the bottom with a tapered agarose 

channel (solidified 1% w/v in water) to restrict movement. Once here, the tadpoles 

forebrains were photolabeled as described above in Microscopy methods for 1-AMA and 

1-AZA.   

In quantifying anesthetic emergence after anthracene and UVA treatment, 

individual tadpoles were incubated with for 30 minutes with 1-AMA or 1-AZA ± 

localized UVA exposure. Subsequently, each tadpole was placed in 5 ml fresh pond 

water to assess anesthetic endpoints. Tadpoles scored as ‘immobile’ did not swim, twitch, 
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or right themselves for 30 seconds, nor did they respond to a gentle tail stroke manually 

administered with the blunt end of a sterile cotton swab. Death was determined by 

cessation of heartbeat, visible by microscope through the organism. 

Induction assays, 1-AMA: Ten tadpoles per dish were equilibrated with 1-AMA 

(5‒60 µM) for 30 minutes before assessing immobility as described above. The pond 

water contained 0.5% ethanol for 1-AMA solutions below 30 µM and 1% ethanol above 

30 µM. For some experiments, tadpoles were incubated with 2 µM EpoD for 1 hour 

before addition of 1-AMA. Pond water samples were assayed by UV-Vis spectroscopy 

immediately after experiments to ensure soluble 1-AMA concentrations were maintained. 

The tadpoles were then placed into fresh pond water for recovery.  

Induction assays, allopregnanolone: Tadpoles were equilibrated with the 

neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one) in pond water. 

Allopregnanolone was added from a 6 mM stock solution in DMSO such that DMSO 

volume was negligible (<0.06%). Tadpoles were transferred to fresh allopregnanolone 

solution after 1.5 hours to ensure a stable anesthetic concentration. Tadpole 

immobilization was recorded after 3 hours. 

Preparation of tadpole tissue for post-translationally modified tubulin western 

blotting: Tadpoles were treated with 60 µM 1-AMA in pond water for 30 minutes with or 

without prior incubation with 2 µM EpoD for 1 hour (similar to the Induction assay 

method, except here 15 tadpoles were used for each treatment). After treatment, the 

dishes containing the tadpoles were placed on ice. Individually, the brains were removed 

with forceps under a dissecting microscope after decapitation behind the hindbrain. 
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Tissue was placed directly in 20 mM Tris, pH 7.6, 5% glycerol, 1% Triton X-100 and 

0.5% SDS supplemented with protease inhibitors; after homogenization the samples were 

frozen at -80 °C. The two groups of tadpoles (± EpoD) were treated with the same stock 

of 1-AMA, but not simultaneously to ensure timely removal of neuronal tissue following 

treatment. Less than 5 minute was required to isolate tissue from each group following 

the 30 minute 1-AMA equilibration. 

 After thawing, the insoluble pellets were removed by centrifugation, and a protein 

assay was performed on the supernatants containing solubilized neuronal protein. This 

protein was then separated via SDS-PAGE for acetyl-tubulin and tyrosinated-tubulin 

western blots.  

 In vitro tadpole photolabeling: Following tricaine methane sulfonate anesthesia, 

tadpoles were dissected with brains isolated, homogenized in sucrose isolation buffer, 

and washed.  Photolabeling of the isolated neuronal membranes proceeded with an 

oversaturated solution of 1-AZA (~200 µM). After 5 minutes incubation in the dark, the 

homogenate was photolabeled for 1 minute in a quartz cuvette (pathlength 1 mm) with 

the Rayonet lamp. The photolabeled membranes were washed and prepared for IEF/SDS-

PAGE. After separation, the gel was washed with water and scanned with the Kodak 

Image Station with 400 nm excitation and 535 nm emission filters. The gel was 

subsequently stained with Coomassie G-250 and reimaged. Spots excised from the gel 

were analyzed with LC-MS/MS, as described below. 

Mass spectrometry analysis of AZA-photolabeled samples: Following IEF/SDS-

PAGE and staining, spots excised from the AZA-photolabeled tadpole neuronal gel were 
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trypsin digested and processed by nanoLC-MS/MS with a Thermo LTQ linear ion trap. 

Raw data were acquired with Xcalibur, and Sequest was used to search b and y ions from 

a Xenopus protein sequence database downloaded from the National Center for 

Biotechnology Information website. Search parameters were 1.5 amu parent ion mass 

tolerance, 1 amu fragment ion mass tolerance, and 1 missed cleavage. Cysteine 

carbamidomethylation and methionine oxidation were permitted as variable 

modifications, and search result files were filtered with the following criteria: 99.9% 

protein identification confidence with 2 peptide minimum, and peptide Xcorr scores of 

(+1 ion) 1.7, (+2 ion) 2.3, (+3 ion) 2.8. 

 In addition, bovine tubulin (from Cytoskeleton, Inc.) was used for mass 

spectrometry sequencing experiments. The protein was incubated with an oversaturated 

1-AZA solution (200 µM) for 20 minutes under polymerizing conditions (see 

Polymerization assay method) before irradiating with the Rayonet lamp for 1 minute. 

SDS was added to the solution, and covalent attachment was confirmed via fluorescence 

after SDS-PAGE by scanning the gel. After Coomassie staining, the ~50 kDa monomer 

band was excised for analysis. Samples were processed as above, but spectra were 

searched against a database composed of thirteen B. taurus tubulin isoforms (six α- and 

seven β-tubulin sequences). Search parameters and filters described above were used, but 

with the additional permission of a variable 191.24 amu modification on each amino acid 

(corresponding to a 1-AZA photolabel adduct). High scoring spectra were manually 

inspected to ensure quality and confidence. 
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Polymerization assay: Bovine tubulin (>99% purity) purchased from 

Cytoskeleton, Inc. (Denver, CO) was resuspended in ice-cold 1x BRB80 buffer (1 mM 

MgCl2, 1 mM EGTA, 80 mM PIPES, pH 6.9) at 6 mg/ml, and aliquots were snap frozen 

in liquid nitrogen. As needed, these were thawed on ice, and diluted to achieve final 

concentrations of 1x BRB80, 10% glycerol, 1.7% DMSO, 10.9 µM tubulin and 14 µM 

test compound (colchicine, 1-AMA, or 1-AZA). In some 1-AZA experiments, this 

mixture was initially irradiated with UVA for 20 seconds. The mixed reagents were 

added to a cuvette that was temperature controlled at 37 °C. This was blanked, and GTP 

was added to achieve a final concentration of 2 mM. Absorbance was recorded at 450 nm 

in order to avoid potential absorption from colchicine, 1-AZA, and 1-AMA.   

Anthracene-colchicine competition: For 1-AZA experiments, 15 µM tubulin was 

incubated for 10 minutes in 1x BRB80 with 8 µM 1-AZA and 50 µM colchicine at 4 °C. 

Irradiation with UVA then proceeded for 1.5 minutes to ensure complete 1-AZA 

photolysis. Fluorescence spectra were recorded with 425 nm excitation. For 1-AMA 

experiments, 100 µM tubulin in 1x BRB80 was incubated with 50 µM 1-AMA for 10 

min before varying colchicine concentrations were added at 4 °C. Tubulin was 

maintained in the depolymerized state for both 1-AZA and 1-AMA experiments.  

Binding/covalent labeling was monitored by fluorescence intensity at 4 °C. The 

fluorimeter PMT was set to 800 V, with excitation and emission slit widths of 5 nm. The 

peak for 1-AZA corresponding to labeled tubulin was recorded at 500 nm and around 520 

nm for 1-AMA. Upon colchicine addition, loss of binding was seen with 1-AMA 
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(intensity reduction with red-shifted emission). When 1-AZA was titrated into tubulin 

pre-incubated with colchicine, loss of labeling was also seen through signal reduction. 

 

A1.3 Figures and Statistics 

Data analysis and figure preparation: Where applicable, mean values are 

reported with standard error unless otherwise noted. Data analysis and graphical figures 

were generally performed with either GraphPad Prism or KaleidaGraph software; 

detailed statistical tests and procedures are generally noted in the text or legends were 

applicable. Structural figures were generated with VMD and PyMOL. For the SIRT2 

western blot standard curves, the net intensities from acetylated α-tubulin blots of known 

amounts of soluble brain extract were plotted and curve-fit according to a one phase, 

exponential decay, and the resulting coefficients of determination (R2) were equal to 

0.9999. For VDAC MD trajectory analyses, the mean from each simulation was 

considered a single experimental unit; therefore, where applicable, values are reported as 

the mean measurement from multiple simulations with standard error. Tadpole dose-

response curves were generated by fitting a sigmoidal curve with variable slope to the 

equation:  

€ 

y =
100

1+ (10logEC 50−X )n
 

where n is the Hill slope. 
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A2. Mass Spectra  

A2.1 SIRT2 Peptides Photolabeled by AziPm  

For all spectra, hypothetical fragment ions are listed in the tables, and their predicted 
positions are indicated on the spectra. Fragment ions that were identified on the spectra 
are colored in the ion tables. Only +1 fragment ions are shown. #Indicates a 216.0762 Da 
modification was detected; amino acid numbering is according to full-length rat SIRT2.     

Peptide: 131F.FALAKELY#PGQF.K144 
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Peptide: 132F.ALAKELY#PGQF.K144 
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Peptide: 134L.AKELY#PGQF.K144 
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Peptide: 136K.ELY#PGQFK.P145  
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Peptide: 172L.ERVAGLEPQDLVEAHGTF#Y.T192 

 

note: the peaks at m/z =  902.0 and 1083.5 are b17 and b18 +2 fragment ions. 
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Peptide: 202K.EYTM#SWMK.E211  
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A2.2 VDAC Peptides Photolabeled by AziPm 

Spectra of peptides that contain an AziPm adduct are shown below, along with the 
VDAC spot from which that spectra derived. Identified b and y ions are colored red and 
blue, respectively. Adducted residues are colored green. The value to the right of an 
identified ion corresponds to the delta mass (the deviation of the identified ion from the 
mass of the hypothetical value). Where applicable, # indicates the residue contained a 
+216.08 Da (AziPm) modification and * indicates a +15.99 (methionine oxidation) 
modification. +1 fragment ions are shown. 

VDAC1 peptide, spot 1, trypsin digest 

 
 V  100.08           -  
 N  214.12 0.13 964.46 0.19 
 G# 487.22 -0.01 850.42 0.13 
 S  574.25 0.27 577.32 0 
 L  687.33 0.14 490.29 -0.02 
 E  816.37 0.22 377.2 -0.13 
 T  917.42 0.14 248.16 0.01 
 K           -  147.11  
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VDAC1 peptide, spot 1, trypsin digest 

 
 V  100.08           -  
 N  214.12 0.06 964.46 0.17 
G# 487.22 -0.06 850.42 0.11 
 S  574.25 0.03 577.32 -0.02 
 L  687.33 0.17 490.29 0.04 
 E  816.37 0.19 377.2 -0.01 
 T  917.42 0.24 248.16 0.04 
 K           -  147.11  
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VDAC1 peptide, spot 2, trypsin digest 

 
 V  100.08  -  
 N  214.12 -0.08 964.46 -0.03 
 G# 487.22 -0.07 850.42 -0.05 
 S  574.25 -0.10 577.32 -0.08 
 L  687.33 -0.14 490.29 -0.09 
 E  816.37 -0.02 377.2 -0.16 
 T  917.42 -0.05 248.16 -0.12 
 K  -  147.11  
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VDAC1 peptide, spot 2, trypsin digest 

 
 V  100.08           -  
 N  214.12 -0.07 964.46 0.01 
 G# 487.22 -0.21 850.42 0.00 
 S  574.25 0.09 577.32 -0.11 
 L  687.33 -0.11 490.29 -0.05 
 E  816.37 0.19 377.20 -0.14 
 T  917.42 0.06 248.16 -0.07 
 K           -  147.11  
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VDAC1 peptide, spot 3, trypsin digest 

 
 V  100.08  -           
 N  214.12 -0.02 964.46 -0.06 
 G# 487.22 -0.1 850.42 -0.05 
 S  574.25 0.01 577.32 0 
 L  687.33 -0.27 490.29 -0.13 
 E  816.37 0.06 377.20 -0.06 
 T  917.42 0.15 248.16 -0.14 
 K            - 147.11  
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VDAC1 peptide, spot 4, trypsin digest 

 
 V  100.08           -  
 N  214.12 0.11 964.46 0.08 
 G# 487.22 -0.1 850.42 0.07 
 S  574.25  577.32 -0.06 
 L  687.33 0.03 490.29 0.08 
 E  816.37 0.22 377.2 -0.09 
 T  917.42 0.36 248.16 0.01 
 K           -  147.11  
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VDAC1 peptide, spot 5, trypsin digest 

 
 V  100.08           -  
 N  214.12 0.06 964.46 0.09 
 G# 487.22 0.02 850.42 0.03 
 S  574.25 0.07 577.32 0.1 
 L  687.33 0.23 490.29 -0.05 
 E  816.37 0.18 377.2 -0.07 
 T  917.42 0.26 248.16 0.02 
 K           -  147.11  
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VDAC1 peptide, spot 2, chymotrypsin digest 

 
 

V# 316.15 0.03 -  
N 430.19 0.06 1159.49 0.22 
D 545.22 -0.11 1045.45 0.20 
G 602.24  930.42 0.25 
T 703.29 0.03 873.4 0.15 
E 832.33 -0.02 772.35 0.09 
F 979.40 0.22 643.31 0.06 
G 1036.42 0.05 496.24 0.04 
G 1093.44 0.11 439.22 -0.04 
S 1180.48 0.13 382.2 -0.30 
I 1293.56 0.09 295.17 -0.05 
Y -  182.08  
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VDAC1 peptide, spot 2, chymotrypsin digest 

 
V# 316.15 0.08 -  
N 430.19 -0.01 1159.49 0.28 
D 545.22 -0.02 1045.45 0.17 
G 602.24  930.42 0.24 
T 703.29 0.15 873.40 0.07 
E 832.33 0.08 772.35 0.16 
F 979.40 0.05 643.31 0.07 
G 1036.42 -0.06 496.24 0.03 
G 1093.44 0.24 439.22 -0.03 
S 1180.48 0.02 382.20 -0.05 
I 1293.56 0.20 295.17 0.18 
Y -  182.08  
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VDAC2 peptide, spot 2, chymotrypsin digest 

 
V# 316.15  -  
N 430.19  1158.51  
N 544.24 -0.01 1044.46  
G 601.26 0.11 930.42 -0.05 
T 702.31 0.08 873.40 0.14 
E 831.35 0.20 772.35 0.07 
F 978.42 0.07 643.31 -0.02 
G 1035.44 0.08 496.24 0.06 
G 1092.46 0.11 439.22 0.09 
S 1179.49 0.32 382.20 -0.20 
I 1292.58 0.27 295.17 -0.06 
Y -  182.08  
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VDAC2 peptide, spot 2, chymotrypsin digest 

 
V# 316.15  -  
N 430.19 0.23 1158.51  
N 544.24 -0.01 1044.46  
G 601.26  930.42 0.15 
T 702.31 0.08 873.40 0.07 
E 831.35 0.13 772.35 0.13 
F 978.42 0.16 643.31 0.18 
G 1035.44 0.19 496.24 0.04 
G 1092.46 0.19 439.22 -0.08 
S 1179.49 0.22 382.20 0.13 
I 1292.58 0.14 295.17 0.11 
Y -  182.08  
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A2.3 Tubulin Peptides Photolabeled by 1-AZA 
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