
06DHM-49

Automated Analysis of Human Factors Requirements

Jan M. Allbeck and Norman I. Badler
University of Pennsylvania

Copyright © 2006 SAE International

ABSTRACT

Computational ergonomic analyses are often laboriously
tested one task at a time. As digital human models
improve, we can partially automate the entire analysis
process of checking human factors requirements or
regulations against a given design. We are extending
our Parameterized Action Representation (PAR) to store
requirements and its execution system to drive human
models through required tasks. Databases of actions,
objects, regulations, and digital humans are instantiated
into PARs and executed by analyzers that simulate the
actions on digital humans and monitor the actions to
report successes and failures. These extensions will
allow quantitative but localized design assessment
relative to specific human factors requirements

INTRODUCTION

Recent improvements in computation speed and control
methods have allowed the portrayal of 3D digital
humans suitable for interactive, real-time
applications. Manually controlling them, however, is an
undesirable burden to many designers and a bottleneck
in evaluating a large-scale designed environment such
as a ship. We have developed a Parameterized Action
Representation (PAR) that dramatically increases
access to the functionality of digital humans through a
simpler, task-oriented interface. The PAR specifies the
agent of the action, any relevant objects, and essential
action information concerning path, location, manner,
purpose and termination conditions.

Typically, textual task requirements or instructions lack
enough information to uniquely visualize a digital
human’s performance. PAR includes information to fill in
these gaps. The object representation includes
semantic tags that connect human manipulations to
actions that the object can perform and what state
changes they cause to all participants. The action is
spatially situated since the approach to the object, the
path taken, and poses and the arm reaches needed are
affected by the agent's size, starting location, and
obstacles. PARs may be stored in a re-usable and
extensible hierarchical database called an Actionary.

Building a database of parameterized actions and
semantically tagged virtual objects, and connecting the
PAR simulation system to them will allow CAD designs
to be automatically tested against a human model
population who virtually perform the required operational
tasks. PARs can check a design against prewritten
regulations, such as accessibility, clearance, and
operability. Such requirements can be represented as
instructions or predicates and stored in a database; they
can be iteratively executed against a range of agents
and object configurations. Execution failures can be
summarized and reported. Visual simulations and
analyses can also alert designers to areas of congestion
or inefficient layout. Using this tool to help automate as
well as encourage iterative engineering design will help
prevent costly hardware modifications or awkward task
corrections. Creating separable databases of
requirements and actions may encourage the digital
human modeling community to consolidate and
incorporate analysis capabilities and features through
high level programming interfaces.

In this paper we will give a short overview of our
Parameterized Action Representation and its software
system. We will also discuss extensions to our previous
work and how they can be used to automate
requirements checking. We will then present an
example and conclude with a summary and other
possible extensions and applications.

PARAMETERIZED ACTION REPRESENTATION

Our Parameterized Action Representation (PAR) was
designed as an intermediary between natural language
and animation. A software system for interpreting PARs
and animating them was designed and implemented.
Previous applications of the PAR software system
focused on the creation of virtual environments for
training [6]. The details of PAR and the PAR software
system can be found in previous publications [2, 3, 6, 7].
In this paper we will provide only a quick overview of the
representation and components and will focus on
developments needed to successfully use the PAR
framework for automatic testing of regulations.

ACTION AND OBJECT HIERARCHIES

PARs are stored in two hierarchical databases: an action
hierarchy called the Actionary and an object hierarchy.
The hierarchical nature of the databases facilitates the
addition of new actions and objects. Once the
databases are populated with base actions and objects,
new entries can be added by finding their proper
placement in the hierarchy and simply specifying their
distinguishing parameters. Inheritance will fill in all of
the other parameters. For example, fasteners may be
specified high in the object hierarchy. Bolts would then
be a child of fasteners inheriting properties such as the
object’s purpose to connect other objects. The bolt entry
would additionally specify tools that can operate on it
(e.g. wrenches) and actions that can be applied to it
(e.g., inserting, removing). A bolt would also include
parameters for tightening and loosening and be linked to
threaded holes, nuts and washers.

PARs come in two forms, uPARs and iPARs. uPARs
are uninstantiated PARs, lacking characteristics specific
to a particular scenario; think of them as patterns.
iPARs are uPARs that have been instantiated. For
example, a bolt might have its size parameters
instantiated with 3/4” head and 5/16” thread. An action,
such as tightening, should be instantiated with the digital
human performing the action and the specific object(s)
being tightened.

KEY FIELDS OF THE ACTION REPRESENTATION

Participants are the agent and object parameters of
PARs. The agent is the digital human executing the
action. For regulation testing, selected digital humans
from some population can be assigned as agents. The
object type is defined explicitly for a complete
representation of a physical object and is stored
hierarchically in a database. Each object in the
environment is an instance of this type and is associated
with a graphical model in a scene graph.

Some of the fields of PAR are designed to aid in or
short-cut the task planning process. The applicability
conditions of an action specify what needs to be true in
the world in order to carry out an action. These can
refer to agent capabilities, object configurations, and
other unchangeable or uncontrollable aspects of the
environment. The conditions in this boolean expression
must be true to perform the action. For walk, one of the
applicability conditions may be: Can the agent walk? If
these conditions are not satisfied, the action cannot be
executed.

Preparatory specifications are a list of <condition,
action> statements. The conditions are evaluated first
and have to be satisfied before the current action can
proceed. If the conditions are not satisfied, then the
corresponding action is executed; it may be a single
action or a complex PAR. In general, preparatory
specifications produce a limited form of automated
planning; e.g., to indicate explicitly that a handle has to

be grasped before it can be turned in order to open a
panel.

Termination conditions are a list of conditions that, when
satisfied, complete the action. Terminations may be due
to success or failure; these conditions are distinguished
as they are critical to a task analysis. Particularly in
applications dealing with mechanical devices,
termination conditions can be crucial. Actions such
loosening and removing a nut would result in similar
performances, but with one terminating before the nut
falls from the bolt and the other when the nut falls from
the bolt. This may be the difference between
successfully completing a maintenance task and
needing to completely rebuild a device.

OBJECT REPRESENTATION ENHANCEMENTS

To accomplish our simulation goals, we must enhance
the information content in the objects with which the
digital humans interact. We expect to use some portions
of a Product Data Management (PDM) system [16-18]
so that objects may possess and express information
essential to their function and use.

Existing components of the PDM include: properties
(e.g. steel, wood), status (e.g. broken, idle, operating),
posture (e.g. open, closed, tight, loose), location (e.g.
part of room2, part of pump3), contents (i.e. parts of the
object), relative directions (e.g. top, bottom, front, back),
and lower level graphics data such as bounding
volumes, coordinate system, position, orientation,
velocity, and sites (oriented points). Each object is also
associated with a graphical CAD model, currently linked
through a pointer to the corresponding object in the Jack
scene graph [13]. Note that much of this information is
or could be generated well in advance of any
ergonomics analysis.

We are adding parameters to the PDM to aid human
factors requirements analyses. These include both high-
level parameters for determining which regulations are
relevant to the objects and low-level parameters that can
be used by digital human motion generators (analyzers)
to evaluate the regulations. Since the PDM organization
may mirror the object assembly hierarchy rather than a
functional hierarchy, we can pre-process the PDM for a
specific design to build additional relations and tables.
For example, one can construct a hierarchy based on
object classification: e.g., all display objects would be
found in the sub-tree of displays and all control actuators
would be found in the sub-tree of actuators. In the
representation of regulations this allows us to specify
entire sub-trees instead of individual objects. Additional
parameters in the object representation are also
required to determine which requirements are
applicable. For example, different distance regulations
are specified for different frequencies of use, levels of
precision, and for emergency controls. Also, controls
should be grouped by function and distributed such that
an operator is not overworking one end-effector while
not utilizing another. An object’s function can easily be

stored in its PDM. For example, a toggle switch may
contain its function: operate(pump1).

Creating sophisticated analyzers and geometry checkers
that can test requirements must include object
parameters such as parts, purposes, access paths,
tools, default state, actions that can be performed on the
objects and actions that can be performed with the
objects. Many of these parameters can be specified in
the root of an object sub-tree and inherited by the
children. Some will need to be user- or designer-
specified, while others may be filled in by automated
preprocessors operating directly on the CAD model. For
example, walkable access paths may be automatically
generated and stored in the object representation. In a
ship design many parts such as pumps, consoles, and
panels are used in many places and even reused in
other ship designs possibly with minimal alterations.
The specification of useful parameters in the PDM will
allow the information to be re-used with minimum or no
further user input.

Previously, we considered agents to be a special kind of
object and stored them a separate sub-tree in the object
hierarchy. For this particular application, we are not
focusing on the representation of agents (digital
humans) except for their anthropometry which can easily
be stored as a table in the database. Future
applications, such as efficient manning evaluations, will
be aided by the inclusion of skills and roles in the agent
representation.

REQUIREMENTS REPRESENTATION

Requirements can be specified by linking actions with
object sub-trees. In looking at the ABS Guidance Notes
on the Application of Ergonomics to Marine Systems [1],
we found that many of the requirements deal with the
spacing of objects and their parts. A requirement
specifying the proper spacing of toggle switches can be
written as follows:

spacing(ToggleSwitches,[table2])

Where spacing is a PAR, ToggleSwitches is a sub-tree
of the object hierarchy, and table2 is a reference table
name specifying the required spacing. Note, that we do
not envision spacing requirements to be altered often, so
the table parameter is optional and may be specified if
different spacing requirements are desired for a design.
Otherwise, a default spacing table would be referenced.
Note also that entire sub-tree can be specified, so
checking the spacing of all control actuators could be
specified by simply replacing ToggleSwitches with
ControlActuators or, if only a portion of the toggle
switches needed to be checked, they could be
individually specified. This affords users considerable
control with minimum effort.

This is a particularly simple example and does not fully
illustrate the power of our representations. Another form
of requirements checking would be to ensure that all

necessary maintenance procedures can be successfully
performed on the design. The following is taken from a
NASA document for instructing the maintenance of a
piece of exercise equipment:

Raise Lift Bar until Lift Bar clears the Upper Stops, allow
the Lift Bar to come to rest on the Upper Stops.

This maintenance instruction would result in a complex
iPAR with two execution steps: one for lifting the lift bar
and another for setting the bar on the upper stops:

lift(dh1, liftBart, clear(liftBar1, upperStops1))

set(dh1, liftBar1, upperStops1, rests(liftBar1,
upperStops1)),

where dh1 is the digital human performing the actions,
liftBar1 and upperStops1 refer to objects found in the
object database, and the last parameters represent the
termination conditions. These requirements would then
be assigned to individuals representing a desired
population to determine the range of accommodation
that could lift the bar high enough to meet the
termination conditions of the actions. The next section
will discuss how these evaluations are performed and
how failures are reported.

FRAMEWORK FOR REQUIREMENTS TESTING

Figure 2 illustrates our framework and its components
for testing requirements. We demonstrate how a design
and ergonomic requirements would be processed.

A user would start with a CAD model of the design.
There are well established avenues for converting CAD
models from many standard systems into geometry
compatible with digital human modeling systems.
Semantic information about the objects and their
components might be available through a PDM, entered
by the user, generated automatically through
inheritance, or created by software procedures that
detect geometric features. Figure 1 shows an example
object hierarchy. The leaf nodes correspond to actual
geometric models in the design. The other nodes are
created to be reused elsewhere and to facilitate
inherence and thereby reduce data entry. For example,
another “standard” toggle switch could be added simply
by providing its name. Other critical semantic
information would be inherited from the parent node. As
with most inheritance schemes, inherited parameters
can be overwritten in the child if desired.

Table 1 shows a few of the parameters for the object
representation of a continuous rotary controller. The
object’s name both in the object database and the scene
graph is rotary1. It has two properties in its properties
list: its material, steel, and the level of control required
for operation, precise. Its status is operational, meaning
that it is a functioning device not currently being used.
Its posture is 5% open. It is located on console1. It has
no specified contents (parts). The top of the device is

specified by a site named topSite, which can be found in
the scene graph. To increase the device’s control
function, it can be rotated clockwise. The purpose of the
device is to control valve1. The only action that can be
applied to the device is rotate, and the controller is
frequently used relative to other controllers.

Name rotary1

Properties Steel, Precise

Status Operational

Posture 5%

Location console1

Contents none

Relative directions top(rotary1.topSite)

Functional directions increase(clockwise)

Purpose control(valve1)

Actions rotate

Frequency (of use) 8 (out of 10)

Table 1: Example of object parameters and values.

A database of anthropometrically scaled digital humans
can be generated and stored. We are currently using
5th, 50th, and 95th percentile male and female models [9].
The user may select which humans (all or a subset) to
use for requirements checking.

The Actionary will already be populated with many of the
actions required. Users will also be able to add
additional actions by using existing actions as templates;
the inheritance structure helps lessen the amount of
data entry necessary.

Similarly, many requirements will already exist in the
requirements database, allowing a user to re-use them
directly or as templates for constructing new
requirements. From the database of requirements a
user will be able to specify which requirements are
applicable to a given scenario.

The instantiator links the requirements, actions, objects,
and digital humans and generates iPARs. During this
process, simple checks will be done to ensure that the
necessary objects can be found in the scene graph and
the specified actions can be applied to those objects.

Figure 1: Example object hierarchy for ABS
guidelines.

Checking for required tags will also take place
(e.g.rotary1.topSite is in the scene graph). In our
example, one of the iPARs generated as requirements
could be: spacing(Control_Actuator). This will check for
the proper spacing requirements for all control actuators.
Another requirement might be rotate(dh1, rotary1,
clockwise), which would result in digital human dh1
performing a rotation of continuous rotary actuator
rotary1. Note, that these are extremely simplified
expressions of actual iPARs; iPARs are actually stored
in a MYSQL database with many additional parameters.

After the iPARs are instantiated by the Instantiator, they
are sent to an Agent Process. Each digital human in the
scene graph is linked to an Agent Process. There will
also be an additional Agent Process for processing
geometric or spacing requirements not requiring actual
digital human performance. Once in an Agent Process,
the iPARs are processed for execution. For applications
such as regulation checking, ordering of actions need
not be specified. An action queue holds the iPARs to be
performed and a process manager checks the
conditions of an action to determine whether or not it can
be performed in the current state of the agent and world
[7]. For example, in order for dh1 to rotate rotary1, he
needs to grasp it. In order to grasp it, he needs to reach
it. In order to reach it he needs to be within reaching
distance. In order to be within reaching distance, he may
need to walk and get into position. This pseudo-planning
process is conducted by the agent process using the
PAR parameters [7]. During this process the current
state of the world must be checked. For example, is dh1
grasping rotary1? To check this condition, the Agent
Process will send a logic expression such as,
grasping(dh1, rotary1) to the Predicate Manager. The
Predicate Manager then consults the current state of the
world as stored in World Model. If a geometric or spatial
check is required, such as reachable(dh1, rotary1), the
Predicate Manager will call the Geometry/Spatial
Checker which will do the necessary calculations based
on information from the Scene Graph.

Figure 2: PAR system diagram

The pseudo-planning process often results in additional
PARs being added to the agent’s action queue. These
actions are then processed in the same fashion. Once
an action meets requirements for execution, the iPAR is
passed by the agent to the registered Analyzer for that
action.

Analyzers are generally procedural animation routines.
They use the parameters specified in the iPAR and
associated PDM to perform the action using the
specified digital human. Action execution includes
determining when an action should terminate. As
outlined earlier, termination conditions are a PAR
parameter. Analyzers can use the Predicate Manager to
check for these conditions. For example, rotating
rotary1 may first require the execution of a walk PAR to
get within reaching distance of rotary1. The walk PAR
should terminate when dh1 is within reaching distance.
Our locomotion Analyzer queries the Predicate Manager
with distance(dh1, rotary1, reach). The Predicate
Manager in turn will ask the Geometry/Spatial Checker
to calculate the distance between dh1 and rotary1 and
then compare it to the stored reach distance in the
object representation of dh1, and respond to the
Analyzer.

In addition to performing the animations, Analyzers are
responsible for updating the World Model and reporting
failures. The Analyzers update the World Model
basically by informing the Predicate Manager of what

actions are being performed and on which objects. For
example, when the rotation of rotary1 is being
performed, it will send rotating(dh1, rotary1).
Additionally, it will send updates for other parameters of
the objects (e.g. posture(rotary1, 10)).

If an Analyzer cannot successfully complete an action, it
will report an error to the Reports Database. See [3] for
previously reported research on detecting errors. We
will be iteratively constructing a format for the Analyzers
to report errors such that it is readable by users.
Currently failure reports include the iPAR that failed, a
pointer to the previous iPAR executed and the parent
iPAR if it is a complex iPAR, and a reason for the failure
chosen from a set of previously constructed failure
conditions. For example, the locomotion Analyzer may
fail to get dh1 within reaching distance of rotary1. It may
then report the walk(dh1, rotary1) iPAR as failing with
reason no_path_found. From the other parameters of
the iPAR it would be determined that this iPAR was
generated from the preparatory specifications of the
rotate(dh1, rotary1) iPAR that was generated by the
Instantiator and that requirement would be marked as
failing. Additionally, upon failure, Analyzers report the
failure to the issuing Agent Process and update the
Predicate Manager in order to maintain a stable system
allowing other (or alternative) iPARs to be executed.

Analyzers can animate objects as well as digital
humans. For requirements checking they must also
perform calculations. In our example, one of the
requirements is to check for the proper spacing of all
control actuators: spacing(Control_Actuator). This does

not involve a digital human animation. It requires only
distance checks. An analyzer can be constructed just
for this purpose. According to [1], different control
actuators require different spacing. Spacing
requirements are given as tables in their document.
These tables can be stored in the Analyzer and
referenced during calculations. In our example, the
spacing Analyzer would reference the object database
for a list of all of the control actuators and begin
calculating distances between them by obtaining their
global locations from the scene graph. It would then
compare the calculated distances against the distances
in the table. For example, continuous rotary controls are
to be placed 19mm from toggle switches. Errors will be
reported just as with the Analyzers driving digital
humans.

Many requirements may specify ranges of preference for
locations of devices. For example, there are preferred
ranges of locations for actuators. In this case there may
be clear failures as well as warnings that would arise
when the actuator is within a secondary range, but not
the preferred range.

As the Analyzers report failures and warnings, they
accumulate in a Reports Database. A user interface to
the Reports Database enables viewing the reports as
well as sorting or searching them.

Currently our Analyzers build on the functionality of the
UGS Jack Toolkit [13] for a scene graph and for
animating the digital humans and objects. The toolkit is
connected to OpenGL for visualization [5].

CONCLUSION

Our goal for these action and object representations and
the accompanying system to interpret them is to provide
designers with an automated system for checking
requirements against designs. Although other action
representations have been developed, including [4, 8,
11, 15, 19], for the most part they have been applied to
social agents, not digital humans for human factors
analysis. Ianni has been working on creating an action
specification for human factors analysis for some time
[10, 11]. As he points out, if there is a strong enough
linkage between the digital humans (bodies) and
process models (minds), physical and non-physical
aspects of tasks could be evaluated concurrently. For
the most part, human factors analysis entails creating
analysis tools or simulators for a particular concern (e.g.
visibility, ingress and egress, reaching and grasping,
strength assessment, etc). Each analysis must be
crafted, set up, and run for each design being analyzed.
In this paper we have presented a framework that will
facilitate a range of testing on multiple designs. Such a
system would simplify the creation of simulations for
analysis while still providing detailed human simulation.

Other systems have been created that start to address a
more universal analysis approach. Micro Analysis and
Design has software systems that analyze timing of

many different tasks, but they do not provide lower level
analysis such as reachability [12]. Instruction agents like
Steve [14] have a model of the environment and
semantics of actions, but are not designed for human
factors analysis. Their human simulation system does
not provide the tools necessary for such analysis.

Ideally, there would be no user intervention needed
other than picking a model, anthropometric population,
and list of requirements. We are not there yet, but we
believe this framework is extensible and that the
Actionary, object (PDM) and requirements databases
will need less and less data entry from users as they are
populated.

We also believe that by using existing entries in the
databases as templates and well-designed user
interfaces, designers and other users without
programming backgrounds will be able to use this
system quickly and effectively. Furthermore, once the
databases are constructed for an application, multiple
designs or incremental design iterations can be readily
checked for requirements adherence.

There are several extensions possible. The most
pressing for this application is the continued construction
of geometry checkers. Geometry checkers examine the
“polygon soup” that often results from the conversion of
CAD models into 3D models used in human factors
analysis, and recognizes semantic information such as
holes, handles, tops, connectors, joints, access paths,
and the relationships between the parts. If more
semantic information can be gathered automatically,
then less data will have to be authored manually. PDMs
are extremely helpful, but presently do not appear to
contain all of the information required for effective
human factors analyses.

Another extension is the inclusion of more agent
properties with an application to manning evaluation. By
representing an agent’s skill level for various tasks (via
PARs) and their roles (jobs), entire agent crews could be
asked to perform their duties. They could report back
failures and timing information. Users (or computation)
could observe overcrowded spaces in the design, and
experiments could assess different manning
configurations by assigning different numbers of agents
and agents with differing skill levels and roles.

The creation and management of teams of agents is
another possible extension that is beyond the scope of
our current project. PARs could be assigned to teams of
agents as easily as to individual agents, but a team
manager would be required to coordinate the agents and
resolve any conflicts.

ACKNOWLEDGMENTS

This research was partially supported by grants NSF IIS-
0200983, NASA NRA 3-0BPR-01, Air Force FA8650-05-
2-6649 and Lockheed Martin. We also gratefully
acknowledge the support of Apple, Autodesk, NVIDIA,
PIXAR, and Tecnomatix.

REFERENCES

1. ABS Guidance Notes on the Application of

Ergonomics to Marine Systems. American
Bureau of Shipping, New York, NY, 1998.

2. Allbeck, J. and Badler, N. Representing and
Parameterizing Agent Behaviors. in Prendinger,
H. and Ishizuka, M. eds. Life-like Characters:
Tools, Affective Functions and Applications,
Springer, Germany, 2003.

3. Allbeck, J., Bindiganavale, R., Kipper, K., Moore,
M., Schuler, W., Badler, N., Joshi, A.K. and
Palmer, M., Authoring Embodied Agents'
Behaviors through Natural Language and
Planning. in Workshop on Key Problems for
Creating Real-time Embodied Autonomous
Agents at Autonomous Agents Conference,
(Barcelona, Spain, 2000).

4. Arafa, Y., Kamyab, K. and Mamdani, E.,
Character animation scripting languages: a
comparison. in Proceedings of the second
international joint conference on Autonomous
agents and multiagent systems, (Melbourne,
Australia, 2003), ACM Press, 920-921.

5. Badler, N., Allbeck, J., Lee, S.J., Rabbitz, R.J.,
Broderick, T.T. and Mulken, K.M., New
Behavioral Paradigms for Virtual Human
Models. in SAE International Digital Human
Modeling for Design and Engineering, (2005).

6. Badler, N.I., Bindiganavale, R., Allbeck, J.,
Schuler, W., Zhao, L. and Palmer, M.
Parameterized Action Representation for Virtual
Human Agents. in Cassell, J. ed. Embodied
Conversational Agents, MIT Press, 2000, 256-
284.

7. Bindiganavale, R., Schuler, W., Allbeck, J.M.,
Badler, N.I., Joshi, A.K. and Palmer, M.,
Dynamically Altering Agent Behaviors Using
Natural Language Instructions. in Autonomous
Agents, (2000), 293-300.

8. Coyne, B. and Sproat, R., WordsEye: An
Automatic Text-to-Scene Conversion System. in
SIGGRAPH 2001: Computer Graphics
Proceedings, (2001), ACM Press, 487-496.

9. Gordon, C.C. Anthropometric Survey of U.S.
Army Personnel: Methods and Summary
Statistics, 1988.

10. Ianni, J., Standardizing Human Model Queries.
in Society of Automotive Engineers (SAE),
(2001).

11. Ianni, J.D., A Specification for Human Action
Representation. in Society of Automotive
Engineers (SAE) Digital Human Modeling
International Exposition Proceedings, (1999).

12. MA&D. Micro Analysis & Design: IMPRINT,
http://www.maad.com/index.pl/crew_station_des
ign_tool, Last visited April 2006.

13. Raschke, U. UGS Jack,
http://www.ugs.com/products/tecnomatix/human
_performance/jack/, Visited Dec. 2005.

14. Rickel, J. and Johnson, W.L. Animated Agents
for Procedural Training in Virtual Reality:
Perception, Cognition, and Motor Control.
Applied Artificial Intelligence, 13. 343-382.

15. Swartout, W., Hill, R., Gratch, J., Johnson, W.L.,
Kyriakakis, C., LaBore, C., Lindheim, R.,
Marsella, S., Miraglia, D., Moore, B., J., M.,
Rickel, J., Thiébaux, M., Tuch, L., Whitney, R.
and Douglas, J., Towards the Holodeck:
Integrating Graphics, Sound Character and
Story. in Autonomous Agents, (2001), 409--416.

16. Szykman, S., Sriram, R.D., Bochenek, C., Racz,
J.W. and Senfaute, J. Design Repositories:
Next-Generation Engineering Design Database.
IEEE Intelligent Systems.

17. UGS. Open Product Lifecylce Data Sharing
using XML,
http://www.ugs.com/products/open/plmxml/docs/
wp_plm_xml_14.pdf, 2005.

18. Versprille, K. Dassault Systemes' Strategic
Initiative: 3D XML for Sharing Product
Information,
http://www.3ds.com/uploads/tx_user3dsplmxml/
3DXML_for_sharing_product_information.pdf,
2005.

19. Vosinakis, S. and Panayiotopoulos, T., A Task
Definition Language for Virtual Agents. in WSCG
2003, (2003).

