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Abstract 
Many tasks in active perception require that we 
be able t o  combine different information from 
a variety of sensors that relate to  one or more 
features of the environment. Prior to  combin- 
ing these data, we must test our observations 
for consistency. The purpose of this paper is to  
examine sensor fusion problems for linear loca- 
tion data models using statistical decision the- 
ory (SDT). The contribution of this paper is 
the application of SDT to obtain: (i) a robust 
test of the hypothesis that data from different 
sensors are consistent; and (ii) a robust pro- 
cedure for combining the data that pass this 
preliminary consistency test. Here, robustness 
refers to  the statistical effectiveness of the de- 
cision rules when the probability distributions 
of the observation noise and the a priori po- 
sition information associated with the individ- 
ual sensors are uncertain. The standard linear 
location data model refers to  observations of 
the form: Z = 8 + V, where V represents ad- 
ditive sensor noise and 9 denotes the "sensed" 
parameter of interest t o  the observer. While 
the theory addressed in this paper applies to 
many uncertainty classes, the primary focus of 
this paper is on asymmetric and/or multimodal 
models, that allow one t o  account for very gen- 
eral deviations from nominal sampling distribu- 
tions. This paper extends earlier results in SDT 
and multi-sensor fusion obtained by [Zeytinoglu 
and Mintz, 19841, [Zeytinoglu and Mintz, 19881, 
and [McKendall and Mintz, 19881. 

1 Introduction 
Our research in active sensing is based on the theory and 
application of multiple sensors in the exploration of en- 
vironments that are characterized by significant a priori 
uncertainties. In addition to  uncertainty in the envi- 
ronment, the sensors themselves exhibit noisy behavior. 
While good engineering practice can reduce certain noise 

components, i t  is impractical if not impossible t o  elim- 
inate them completely. Thus, all sensor measurements 
are uncertain. However, sensor errors can be modeled 
statistically, using both physical theory and empirical 
data. In developing these models, one recognizes that a 
single distribution is usually an inadequate description of 
sensor noise behavior. It is much more realistic and much 
safer to identify an envelope or class of distributions, one 
of whose members could represent the actual statistical 
behavior of the given sensor. This use of an uncertainty 
class (or equivalently: an envelope, set, or neighbor- 
hood) in distribution space, protects the system designer 
againit the inevitable unpredictable changes that occur 
in sensor behavior. Reasons for uncertainty in statistical 
sensor models include: sporadic interference, drift due 
to  aging, temperature variations, miscalibration, quan- 
tization, and other significant nonlinearities over the dy- 
namic range of the sensor. The purpose of this paper 
is t o  examine a sensor fusion problem for linear location 
data models using statistical decision theory (SDT). The 
contribution of this paper is the application of SDT to 
obtain: (i) a robust test of the hypothesis that data from 
different sensors are consistent; and (ii) a robust proce- 
dure for combining the data that  pass this preliminary 
consistency test. Here, robustness refers to  the statisti- 
cal effectiveness of the decision rules when the probabil- 
ity distrib~t~ions of the observation noise and the a priori 
~os i t ion  information associated with the individual sen- 
sors are uncertain. The standard linear location data 
model refers to  observations of the form: Z = 8 + V, 
where V represents additive sensor noise and 8 denotes 
the "sensed" ~a rame te r  of interest to  the observer. The 
parameter 9 is called a location parameter, since the dis- 
tribut,ion of Z is obtained from the distribution of V 
by a translation. While the location parameter fusion 
problem is only one of many possible fusion paradigms, 
it does provide a useful starting point for considering 
more colnplicated problems, e.g., nonlinear location sen- 
sor models of the form: Z = h(9) + V, where h denotes 
a given (nonlinear) function. I t  also provides a useful 
starting point for considering important generalizations 
of the location sensor model such as: Z = h(B + V). 
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nominal sampling distributions. This paper extends ear- 
lier results in SDT and multi-sensor fusion obtained by 
[Zeytinoglu and Mintz, 19841, [Zeytinoglu and Mintz, 
19881, and [McKendall and Mintz, 19881. 

In the sequel we: (i) delineate several paradigms for 
robust fusion of multi-sensor linear location data; (ii) 
introduce some essential nomenclature and definitions 
from SDT; (iii) state the decision-theoretic results that 
this paper is based on; and (iv) present and discuss a 
methodology for robust fusion of multi-sensor linear lo- 
cation data. 

Our presentation emphasizes the statement and ap- 
plication of the relevant theory. Proofs of theorems are 
omitted. The reader is referred t o  iournal articles and 
reports for these details. 

2 Paradigms for Sensor Fusion of 
Location Data 

In this section we delineate several paradigms for robust 
fusion of location data. We restrict our attention to  ob- 
servations of one-dimensional location ~arameters .  The 
results of this one-dimensional analvsis can be a ~ ~ l i e d  . . 
to  the multi-dimensional case by doing a component by 
component analysis. Alternatively, one can pursue a for- 
mal multi-dimensional extension of the methodology pre- 
sented in this paper. This extension is part of our &rent 
research in sensor fusion. 

The general one-dimensional paradigm is delineated 
as follows. We assume that we are given the sampled 
outputs of r sensor systems {Si : 1 5 i 5 r) .  We denote 
the k t h  sampled output of Si,  1 5 k 5 Ni by: 

where: 

ai 5 Bi < bi, denotes an unknown location param- 
eter with known bounds ai and bi. [The bounds ai 
and bi may assume infinite values.] In many appli- 
cations there is a common interval of location pa- 
rameter uncertainty for all sensors. However, there 
is no need to make this assumption in the following 
mathematical developments. 

pi ,  denotes a known constant (offset) associated 
with the position of sensor Si with respect to a com- 
mon origin. 

Kk ,  denotes the additive observation noise associ- 
ated with the kth observation (sample) from Si. The 
random variables {Kk : 1 < k < N , )  are assumed to 
be independent and identically distributed (i.i.d.). 
We further assume that the noise process associ- 
ated with Si is independent of the noise process as- 
sociated with s?., when i # j. Finally, we assume 
that the probability distribution of I/;.k belongs to a 
given uncertainty class of distributions, Ti. We do 
not assume that the noise processes associated wit,h 
different sensors are identically distributed. 

Wi, denotes the uncertainty in the position of sen- 
sor Si with respect to  a common origin. We con- 
sider two cases: (i) the position uncertainty of S, 
can be expressed by a known interval [li, ui] - with 

no a priori probabilistic description; or (ii) the po- 
sition uncertainty of Si can be expressed by an un- 
known probability distribution from a given uncer- 
tainty class P i .  In each case, we assume that the 
position uncertainty of Si is independent of the ob- 
servation noise {Kk : 1 5 k 5 Nil ,  and independent 
of the observation noise and position uncertainty of 
the other sensors. 

Remark 2.1 Without loss of generality, we can assume 
that the known offsets {pi : 1 5 i 5 r )  are each zero, 
since nonzero values can be subtracted from the obser- 
vations {Zik : 1 < k 5 Nil .  Further, if the known, 
generally asymmetric, interval of uncertainty [ai, bi] in 
Bi is finite, then the observations {Zit : 1 5 k 5 Ni) can 
be shifted and the interval of uncertainty [ai, bi] can be 
replaced by [-di, di], where di = (bi - ai)/2. Similarly, 
we can assume the interval of sensor position uncertainty 
(where applicable) is also symmetric. Thus, (2.1) can be 
replaced by: 

Zik = Wi + ei + ~ / ; . k ,  (2.2) 
where: 1 < k < Ni, ( Bi ( 5 di, and (where applicable) 
I W i I < q ; , l < i < r .  

The uncertainty classes Fi and (where applicable) Pi, 
1 5 i 5 r, denote subsets in the space of probability 
distributions that are deemed to characterize the uncer- 
tainty in the specifications of the sampling distributions. 
Models for several uncertainty classes are described in 
Sections 4 and 6. 

As stated in the introduction, the purpose of this pa- 
per is to examine a sensor fusion problem for location 
information using SDT. The contribution of this paper 
is the application of SDT to obtain: (i) a robust test of 
the hypothesis that data from different sensors are con- 
sistent, i.e., testing the hypothesis that Bi = B j ,  1 < i 
< j 5 r; and (ii) a robust procedure for combining the 
data that pass this preliminary consistency test. Again, 
robustness refers to the statistical effectiveness of the 
decision rules when the probability distributions of the 
observation noise and the a priori position information 
of the individual sensors are uncertain. 

In the following section, we introduce the notions of 
robust minimax decision rules and robust confidence pro- 
cedures. These concepts provide the basis for the devel- 
opments in the remainder of this paper. 

3 Noillenclature and Definitions from 
SDT 

The standard statement of a minimax location param- 
eter estimation problem includes as given: a parameter 
space R ;  a space of actions A; a loss function L defined 
on A x R ;  and a CDF F. If the underlying CDF is 
imprecisely known, then this standard minimax decision 
model must be reformulated to  account for this addi- 
tional uncertainty. Statistical decision rules that are ap- 
plicable in this more general problem setting are called 
robust procedures. 

This paper considers robust fixed size confidence pro- 
cedures for a restricted parameter space. These robust 
confidence procedures are based, in turn, on the solution 
of a related robust minimax decision problem: 



Basic Min imax  Decision P rob lem (MDP) :  Let Z 
denote a vector of N i.i.d. observations of a scalar ran- 
dom variable with CDF F(z  - O), where F € 3 ,  a given 
uncertainty class. Let 52 = A = [-d, dl ,  and define a 
zero-one loss function L on A x a: 

where e > 0, is given. Further, let R(6, 6, F )  = 
E[L(S, 6) I 6, F] denote the risk function of the decision 
rule 6 given 6 E R and F E 3 .  
Definition 3.1 An estimator 6* is said to be a robust 
minimax estimator for 6, if for all 6: 

sup R(6: 6, F )  5 sup R(6, 6, F ) .  
BER e ~ n  
F E F  F E F  

Based on these definitions and assumptions, we seek a 
robust minimax estimator 6' for 8. For brevity, we re- 
strict our consideration to  the case when dle  is an integer 
2 2. 
Observat ion 3.1 The connection between the robust 
minimax rule 6*(Z) and a robust fixed size confidence 
procedure is obtained by noting that: 

C* (Z) = [6*(Z) - e, S*(Z) + el 
can be interpreted as a robust confidence procedure of 
size 2e that has the highest confidence coefficient 
i n f e , ~  PB,F[~ E C*(Z)]. 
Sections 4,5,  and 6 of this paper are organized as follows: 

Sect ion 4 presents solutions of two related single- 
sample minimax estimation problems where F is given. 
These results provide the basis for the solutions to the 
robust minimax estimation problems where F E 3. 

Section 5 extends the results of Section 4 to the 
multi-sample case. 

Sect ion 6 develops a theory and methodology for ro- 
bust sensor fusion of location information based on the 
theory presented in Sections 4 and 5. 

4 Minimax and Robust Minimax Rules 

Throughout Section 4 we consider the single-sample de- 
cision problem MDP (N = 1). 

4.1 Minimax Rules 

Minimax problems are special cases of robust minimax 
problems in the sense that 3 contains a single CDF F .  
We begin with two minimax estimation problems that 
are defined by the zero-one loss function L (3.1). The 
solutions to these single-sample estimation problems pro- 
vide the basis for solutions to both the single-sample 
and multi-sample robust minimax estimation problems. 
These preliminary results require Definitions 4.1-4.2 and 
are summarized by Theorems 4.1-4.2. 
Definition 4.1 Let C, denote the class of nonrandom- 
ized, monotone nondecreasing decision rules 6 : El --+ A, 
where: A = [-d, dl .  Let A, c C, denote the set of 
rules S(t), defined for t E (-co, co) by (4.1), where: 
i = 1,2  , . . . ,  n and -oo < a_, 5 . . .  < a-2 5 a-1 5 
ao 5 a1 5 a2 < .. . 5 a, < co, d = (2n + l)e + c, and c 
equals zero (e) if d is an odd (even) multiple of e. Note 
that the parameter ao is relevant only when c equals e. 

Observat ion 4.1 Let L denote the zereone loss func- 
tion (3.1). If the CDF F is continuous, then for each 
6 E A,, the risk function R(6, 0, F )  is (4.2), where 
i = 1,2 , .  . . , n - 1. For each 6 E A,, R(6, 6, F )  is a 
piecewise constant function of 0 over the sets of a finite 
partition of R, and the maximum of R(6, 6, F )  occurs at 
one or more of the nondegenerate intervals. The risk ex- 
pression (4.2) can be readily modified to include CDF's 
F that are discontinuous. The generalized risk function 
R(6, 6, F) is again a piecewise constant function of 6 
over the sets of a finite partition of 52 expressed in (4.2). 
Theo rem 4.1 Let L denote the zero-one loss function 
(3.1), and T be a scalar random variable with given CDF 
F ( t  - 6). If F is absolutely continuous with respect to 
Lebesgue measure, has convex support, and possesses a 
(strictly) monotone likelihood ratio, then there exists a 
globally minimax (admissible) Bayes rule 6* E A, and a 
least favorable prior distribution A*. 

Proof: See [Kamberova and Mintz, 19901. 

R e m a r k  4.1 R(6: 6, F) and A* have the following 
characteristics: 

The minimax rule 6* is an "almost" equalizer rule, in 
the sense that the nondegenerate piecewise constant 
segments of the risk function are equalized to the 
minimax risk by a suitable choice of the parameter 
vector a = (a_,, . . . , an)T. 
The least favorable prior distribution A* is defined 
by a density function that is piecewise constant. 

R e m a r k  4.2 Theorem 4.1 extends the basic minimax 
results of [Zeytinoglu and Mintz, 19841 by allowing the 
inclusion of CDF's F that are asymmetric. 

Definition 4.2 A rule is (robust) V-minimax if it is (ro- 
bust) minimax within the class 2). A rule is V-Bayes if 
it is Bayes within the class V. A rule is V-admissible if 
it is admissible within the class V. 

In the following theorem we weaken the hypothesis of 
Theorem 4.1 by dropping the monotone likelihood ratio 
condition, and obtain a C,-minimax result. 
Theo rem 4.2 Let L denote the zero-one loss function 
(3.1), and T be a scalar random variable with given CDF 
F( t  - 6). If F is absolutely continuous with respect to 
Lebesgue measure and has convex support, then there 
exists a C,-minimax rule 6* E A,. 

Proof: See [Iiamberova and Mintz, 19901. 

R e m a r k  4.3 R(6: 6, F) has the following characteris- 
tic: 

The C,-minimax rule 6* is an "almost" equalizer rule 
in the sense of Remark 4.1. 

R e m a r k  4.4 Theorem 4.2 extends the basic C-minimax 
results of [Zeytinoglu and Mintz, 19841 by allowing the 
inclusion of CDF's F that are asymmetric and/or mul- 
timodal. 

4.2 Robus t  Minimax Rules 

In this section we define two uncertainty classes 3, and 
delineate the solutions to the corresponding robust rnini- 
max and robust C,-minimax estimation problems. These 
results require Definitions 4.3-4.4 and are summarized by 
Theorems 4.3-4.6. 



d - e ,  c + a n + 2 n e  < t ; 
t - ai, c + ai + 2(i - l)e < t < c + a; + 2ie; 
2(i - 1)e + c, c + 2(i - l)e + a;-l < t < c + a; + 2(i - 1)e; 
t -  ao, - c+ao  < t  < c + a o ;  
2 - 1 - c, -c + a_; - 2(i - 1)e < t < -c + a-i+l - 2(i - 1)e; 
t - a_;, -c + a_;  - 2ie < t 5 -c + a_; - 2(i - 1)e; 

, - d + e ,  t  < -c + a_, - 2ne; 

' F(an - e), d - 2 e <  8 I d ;  
F(an-1- e), 6' = d - 2 e ;  
F(ai  - e) + 1 - F(ai+i  + e), c + (2i - l)e < 6 5 c + (2i + 1)e; 
F(a-I+,/, - e) + 1 - F(a1 + e), 6 = c + e ;  
F(ao - e) + 1 - F ( a l +  e), - c + e <  6 < c + e ;  
F(a-1 - e) + 1 - F(a1 + e), 6 = -c+e ;  
F(a-1 - e) + 1 - F(a1 + e), c - e <  0 < - c + e ;  
F(a-2+cle - e) + 1 - F(a-  l+c/e + e), 0 = c - e ;  
F(a-I  - e) + 1 - F(a0 + e), - c - e <  6 < c - e ;  
F(a-2 - e) + 1 - F(a-i  + e),  6 = - c - e ;  
F(a-(i+l) - e) + 1 - F(a-i + e), -c - (2i + 1)e < 6 < -c - (2i - 1)e; 
1 - F(a-,+I + e), 6 = -d + 2e; 

, 1 - F(a-, + e), -d < 6 < -d+2e;  

Definition 4.3 Let 3 denote an uncertainty class with 
upper-envelope F, : 

3= { F :  F (z - )  5 F,(x), x 5 s ;  F(x)  2 F,(x), x > s), 
(4.3) 
\ ,  

where F, is absolutely continuous with respect to  
Lebesgue measure and has convex support. 

R e m a r k  4.5 The CDF F, defines the upper-envelope 
of 3 (4.3) in the sense that: F ( x )  5 F,(x) for all F E 3, 
and 3: < S. The upper-envelope CDF Fu is permitted to 
be substochastic, i.e., F, can have less than unit prob- 
ability mass. Thus, all €-contamination models can be 
represented by a simple generalization of 3 (4.3). 

The following theorem extends the results of Theorem 
4.1 to  the single-sample robust minimax estimation prob- 
lem. 

T h e o r e m  4.3 Let 3 denote the uncertainty class (4.3) 
with upper-envelope F,. Assume F, possesses a 
(strictly) monotone likelihood ratio. Let 6* denote the 
minimax rule obtained through Theorem 4.1 based on 
CDF F,. There exists a bound B(d/e, F,), such that if 
e 2 B ,  then 6* is a robust minimax (admissible) Bayes 
rule. 

Proof: See [Kamberova and Mintz, 19901. 

The following theorem extends the results of Theorem 
4.2 to  the single-sample robust C,-minimax estimation 
problem. 

T h e o r e m  4.4 Let 3 denote the uncertainty class (4.3) 
with upper-envelope F,. Let 6* denote the C,-minimax 
rule obtained through Theorem 4.2 based on CDF Fu. 
There exists a bound B(d/e, F,), such that if e 2 B ,  
then 6* is a robust C,-minimax rule. 

Proof: See [Kamberova and Mintz, 19901. 

Definition 4.4 Let 3 denote the uncertainty class: 

where: 11 > 0 and u, > 0 denote given bounds, and Fo 
denotes a given CDF that is symmetric about zero, and 
absolutely continuous with respect to  Lebesgue measure. 

R e m a r k  4.6 The uncertainty class 3 (4.4) models un- 
derlying uncertainty in both location and scale for a sym- 
metric distribution Fo. Without loss of generality, we 
can assume a, = 1. 

R e m a r k  4.7 The delineation of robust minimax rules 
and robust C,-minimax rules for the estimation problem 
defined by the zero-one loss function L (3.1), and the 
uncertainty class 3 (4.4) is obtained by determining the 
joint worst-case behavior of the parameters: 6,7, and a .  
By worst case, we mean those combinations of parameter 
values that lead to maximum risk. In carrying out this 
worst-case analysis, it is necessary to  consider two cases: 
dle  is odd, and d le  is even. For brevity, we restrict our 
analysis to the even case. The complete analysis appears 
in [I<amberova and Mintz, 19901. 

Observat ion 4.2 Let d = (2n+2)e, n >_ 0. There exist 
bounds Bl(d/e,  a,, Fa) and Bz(d/e,u,, Fo) such that if 
7 < B1 and e 2 Bz, then the joint worst-case behavior 
of 0 ,7 ,  and a is: T = -7 when 6 > 0; 7 = q when 0 < 0; 
and a = a, for all 0. 

Observat ion 4.3 As a consequence of the underlying 
even and odd symmetry in this decision problem, which 
is reflected by the worst-case analysis, we can restrict our 
attention to rules 6 E A, that possess odd symmetry 
about zero (a0 = 0 and a-i = -ai). We denote this 
subset of 4, by A. 
Observat ion 4.4 If the relation between the pararne- 
ters 8, T, and a is defined by the worst-case analysis of 
Observation 4.2, then for any 6 E A, the worst-case risk 
(for 0 > 0) is (4.5), where: a, = 1, and d = (2n + 2)e, 
n >_ 0. We can restrict our attention to  the domain 
6' > 0 due to the even and odd symmetry in this decision 
problem. 



I .  
Fo(an + 9 - e ) ,  d - 2 e <  e I d ;  
Fo(an-1 + 9 - el ,  0 = d - 2 e ;  
Fo(-an - 17 - e) + F ~ ( U , - ~  + 7 - e), d - 4e < 0 < d - 2e; 

Fo(-a2 - 9 - e ) +  Fo(a1 + q -  e), 2e < 0 < 4e; 
Fo(-a2 - 9 - e) + Fo(7 - e), 0 = 2e; 
Fo(-a1 - 9 - e) + FO(V - e), O <  e < 2 e ;  

L e m m a  4.1 If Fo is absolutely continuous with respect 
to  Lebesgue measure and has convex support, then there 
exists a choice of parameters {a; : 1 5 i 5 n) that equal- 
ize the nondegenerate piecewise constant segments of the 
risk function (4.5). The corresponding rule 6* is an "al- 
most" equalizer rule. 

The following theorem delineates the existence and 
structure for single-sample robust minimax rules in the 
case of the joint location-scale uncertainty class 3 (4.4). 

Theorem 4.5 Let 3 denote the location-scale uncer- 
tainty class (4.4) based on the symmetric CDF Fo. As- 
sume Fo possesses a (strictly) monotone likelihood ra- 
tio and has convex support. Let S* denote the rule 
obtained through Lemma 4.1. There exists bounds 
Bl(d/e, a,, Fo), and B2(d/e, a,, F o )  such that if 9 < B1, 
and e > B2, then 6* is a robust minimax (admissible) 
Bayes rule. 

Proof: See [Kamberova and Mintz, 19901. 

In the following theorem we weaken the hypothesis of 
Theorem 4.5 by dropping the monotone likelihood ratio 
condition, and obtain a robust Ca-minimax result. 

T h e o r e m  4.6 Let 3 denote the location-scale uncer- 
tainty class (4.4) based on the CDF Fo. Assume Fo has 
convex support. Let 6* denote the rule obtained through 
Lemma 4.1. There exists a bound B(d/e,a,, Fo) such 
that if e 2 B ,  then 6* is a robust Ca-minimax rule. 

Proof: See [Kamberova and Mintz, 19901. 

5 The Multi-Sample Case 
This section extends the robust minimax results of The- 
orems 4.3-4.6 t o  the multi-sample problem ( N  > 1) by 
restricting the class of estimators to  rules of the form 
S(T(Z)), where: 6 E C,, T is a real-valued function of Z, 
and T(Z)  possesses a CDF that depends on 0 as a loca- 
tion parameter, is absolutely continuous with respect to 
Lebesgue measure, and has convex support. Examples 
of candidate T statistics include: the sample mean, the 
sample median, and other linear combinations of order 
statistics. In the remainder of this section we consider 
the sample median. 

Definition 5.1 Let ZM denote the median of the N ob- 
servations Z. [If N is even, ZM = (Z[NI2] +Z[(N/2)+ 11)/2.] 
The decision rule 6*(ZM), defined by the composition 
6'0 ZM, is said t o  be a median-minimax estimator for 0 ,  
if 6' is a minimax rule in the usual sense. The respective 
definitions of robust median-minimax rules, Ca-median- 
minimax rules, and robust Ca-median-minimax rules are 
obtained as before. 

The median statistic T ( Z )  = ZM possesses several prop- 
erties that are used in obtaining Theorems 5.1-5.4. These 
properties are stated in Observations 5.1-5.2. 

Observat ion 5.1 The centered median statistic ZM-0 
preserves the upper-envelope of the uncertainty class 3 
(4.3). Further, the CDF of ZM - 0 preserves absolute 
continuity with respect to  Lebesgue measure and convex 
support. 

Observatioll  5.2 The median statistic ZM preserves 
location ordering for fixed scale, and scale ordering for 
fixed location in the uncertainty class 3 (4.4). Further, 
the CDF of ZM preserves absolute continuity with re- 
spect to Lebesgue measure and convex support. 

The following theorem extends the results of Theorem 
4.3 to the multi-sample robust minimax estimation prob- 
lem. 

Theo ren l  5.1 Let N > 1 and 3 denote the uncertainty 
class (4.3) with upper-envelope F,. Let FuM denote the 
CDF of the centered sample median ZM - 0, where the 
underlying common CDF is F,. Assume F,M possesses 
a (strictly) monotone likelihood ratio. Let 6* denote the 
minimax rule obtained through Theorem 4.1 based on 
CDF FuM. There exists a bound B(d/e, N, F,), such 
that if e 2 B, then S* is a robust median-minimax 
(median-admissible) median-Bayes rule. 

Proof: See [Kamberova and Mintz, 19901. 

The following theorem extends the results of Theorem 
4.4 to the multi-sample robust C,-minimax estimation 
problem. 

T h e o r e m  5.2 Let N > 1 and 3 denote the uncertainty 
class (4.3) wit>ll upper-envelope F,. Let FuM denote the 
CDF of the centered sample median ZM - 0, where the 
underlying common CDF is F,. Let 6* denote the C,- 
minimax rule obtained through Theorem 4.2 based on 
CDF FUM. There exists a bound B(d/e, N, F,), such 
that if e >_ B, then S* is a robust Ca-median-minimax 
rule. 

Proof: See [Kamberova and Mintz, 19901. 

The following theorem extends the results of Theorem 
4.5 to the multi-sample robust minimax estimation prob- 
lem. 

T h e o r e m  5.3 Let N > 1 and 3 denote the location- 
scale uncertainty class (4.4) based on the symmetric 
CDF Fo. Assume Fo has convex support. Let FOM 
denote the CDF of the sample median, where the un- 
derlying common CDF is Fo. Assume FOM possesses 
a (strictly) monotone likelihood ratio. Let 6' denote 



the rule obtained through Lemma 4.1 based on the 
CDF FOM. There exists bounds Bl(d/e, N, a,, Fo), and 
B2(d/e, N, a,, Fo) such that if q 5 B1, and e 2 B2, 
then 6* is a robust median-minimax (median admissible) 
median-Bayes rule. 

Proof: See [Kamberova and Mintz, 19901. 

The following theorem extends the results of Theorem 
4.6 to  the multi-sample robust &-minimax estimation 
problem. 

T h e o r e m  5.4 Let N > 1 and F denote the location- 
scale uncertainty class (4.4) based on the symmetric 
CDF Fo. Assume Fo has convex support. Let FoM de- 
note the CDF of the sample median, where the underly- 
ing common CDF is Fo. Let 6* denote the rule obtained 
through Lemma 4.1 based on the CDF FOM. There ex- 
ists a bound B(d/e, N ,  a,, Fo) such that if e > B ,  then 
6' is a robust C,-median-minimax rule. 

Proof: See [Kamberova and Mintz, 19901. 

6 Robust Fusion of Location 
Informat ion 

6.1 Pre l iminary  R e m a r k s  

In this section we develop a theory and methodology for 
robust fusion of multi-sensor location information based 
on Sections 4 and 5. Our approach contains two distinct 
phases: 

P h a s e  I provides a test of the hypothesis Bi = B j ,  
that the location data (2.2) from sensor Si are con- 
sistent with the location data from sensor Sj , where 
i < j. 
P h a s e  I1 provides a means of combining the loca- 
tion data from the individual data sets that "pass" 
the Phase I test, i.e., those deemed to be consistent. 

In both phases of this process, we seek procedures 
that are robust to  heavy-tailed deviations from the 
nominal sampling distribution, such as exhibited in t- 
contamination uncertainty classes. Our usage of "ro- 
bust" is also intended to imply that the procedures have 
satisfactory behavior when the actual sampling distribu- 
tion coincides with the nominal, e.g., a given Gaussian 
distribution. 

6.2 Sample  Sizes and Uncer ta in ty  Classes 

In developing suitable consistency tests, there are three 
domains of sample sizes to  address: (i) the single sample 
case, N = 1; (ii) the small sample case, 1 < N 5 20; 
and (iii) the large sample case, N > 20. In defining 
these classes, it is important to  observe that the tran- 
sition ( N  = 20) between the small sample and large 
sample cases is not a precise threshold value - the ap- 
propriate selection of this threshold is dependent on the 
uncertainty classes that define the given decision prob- 
lem. The sample size for each sensor Si is denoted by 
Nil 1 5 i 5 r. The sample sizes Ni and Ni can belong 
to different sample size domains. 

The selection of appropriate sensor noise uncertainty 
classes {Fj : 1 < i 5 r} is an important issue in 
the development of a methodology for robust fusion of 

multi-sensor location information. Since, a t  the min- 
imum, we seek to account for the occurrence of noise 
distributions with heavy tails, it is appropriate to  con- 
sider both €-contamination uncertainty classes as well as 
joint location-scale uncertainty classes. We consider two 
cases: 

C a s e  1: We adopt an r-contamination model FC, for 
each sensor Si, 1 < i < r; in particular, the ti- 

contaminated non-Gaussian model for sensor Si that is 
defined by: 

where: (i) Q denotes a given asymmetric, (possibly) 
multi-modal CDF that is absolutely continuous with re- 
spect to Lebesgue measure, and has convex support, and 
(ii) the CDF H is arbitrary, and 0 < t i  < 1. This uncer- 
tainty class is a simple generalization of the uncertainty 
class (4.3). 

C a s e  2: We adopt a joint location-scale uncertainty 
class for each sensor Si , 1 < i < r ;  in particular, the joint 
location-scale uncertainty class defined by (4.4), where 
Fo is the N(0 , l )  CDF, and the location-scale bounds are 
qi and au , . 

6.3 P h a s e  I - Robus t  Consis tency Tests 

Analysis of Case  1: The following procedure provides 
a robust test of the hypothesis that Bi = Bj, i < j. 

Let Mi denote the class of CDF's defined by the cen- 
tered sample median Z D ~ ,  of Ni i.i.d. samples with CDF 
F 6 Fe, (6.1), 1 < i < r. Let Mij denote the classof 
CDF's defined by the difference of the centered sample 
medians ( Z M ,  - Bi) - (Zhf,  - Bj), where the CDF's of 
the centered sample medians (ZM, - Bi) and (ZMi - Bj) 
belong, respectively, to M; and Mj, 1 5 i < j 5 r .  It 
follows from these definitions that the class Mij is a set 
of distributions of the form (4.3). Further, 

where: the CDF of v;i belongs to  M i j ;  and the a priori 
uncertainty in Bi - Bj 1s given by the interval [-dij, dijlI 
where dij = d, + dj. 

Hence, we can construct a robust fixed size (2e) confi- 
dence procedure for 0, - Bj. The parameter e is selected 
by the decision maker: (i) it defines the decision maker's 
tolerance to  small errors between Bi and Bj; and (ii) it is 
used to  select the size of the statistical test. The desired 
procedure [6* - e, 6' + el is obtained via Theorem 5.2. 
Finally, the test of the hypothesis Bi = Bj is obtained as 
follows: we reject Bi = Bj  if 0 [6* - e, 6' + el. From 
this test we also obtain the minimum probability that 
0; - Bj E [6* - e, 6' + el. Examples of applications of 
this class of robust consistency tests appears in [Kam- 
berova e t  al., 1990]. 

Analysis of Case  2: We follow the basic approach 
described in the analysis of case 1, but we replace the 
sample median statistics by the sample means. Here, the 
sample meail is useful, since the underlying uncertainty 
classes conta,in only Gaussian distributions. The robust 
consistency test is obtained via Theorem 5.3. The details 
appear in [I<amberova et al., 19901. 



6.4 P h a s e  I1 - Robus t  Fusion of Consis tent  [Zeytinoglu and Mintz, 19881 Mehmet Zeytinoglu and 
Mult i -  Sensor  Locat ion Informat ion  Max Mintz. Robust fixed size confidence procedures 

The following procedure provides a robust estimate of 
for a restricted parameter space. Ann. Statist., 

the common location parameter 0 of r sensor data sets, 16(3):1241-1253, September 1988. 

r > 3. We observe a t t h e  outset that,  when Vl and V2 
possess very heavy tails, in general, it is not useful to  
attempt to  combine two observations of the form: 

by convex combination. For example, if Vl and V2 are 
independent Cauchy C(0 , l )  random variables, then any 
convex corr~bination of Z1 and Z2 will be a C(0, 1) ran- 
dom variable. Further. there are random variables with 
continuous unimodal symmetric density functions whose 
sample mean, for any sample size N > 1, has greater 
variability then any of its N i.i.d. components. 

Analysis o f  C a s e  1: Let { Z M ,  : 1 5 i 5 r) denote the 
sample medians of r consistent data sets with common 
location parameter 8. To simplify the exposition, we 
further assume that  the r sample medians are identically 
distributed. Let ZMA denote the median of the { Z M ,  : 
1 5 i 5 r}. Let M A  denote the uncertainty class of the 
centered sample median ZMA - 0. The uncertainty class 
M A  is of the form (4.3). Thus, we can apply Theorem 
5.2 t o  obtain a robust fixed size confidence procedure 
[6* - e, 6' + e] for 0. Examples of applications of this 
class of confidence procedures for the robust fusion of 
consistent multi-sensor location information appears in 
[Kamberova et al., 19901. 

Analysis of Case  2: We follow the basic approach 
described in the analysis of case 1, but we replace the 
sample median statistics by the sample means. Here, the 
sample mean is useful, since the underlying uncertainty 
classes contain only Gaussian distributions. A robust 
estimate of location is obtained via Theorem 5.3. The 
details appear in [Kamberova et al., 19901. 
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