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ABSTRACT 

METAGENOMIC METHODS IN IDIOPATHIC AND IMMUNE DISEASES 

Erik Clarke 

Frederic D. Bushman 

Microbial involvement in disease has been long-established, but only recently has 

metagenomics–the study of entire microbial communities–been leveraged in disease 

research. Powered by advancements in sequencing technologies, metagenomics has been 

used to better understand a wide variety of diseases, especially in the gastrointestinal tract 

and other areas with high microbial activity. However, the extreme sensitivity of modern 

sequencing and lack of established best practices yields high error rates when used in 

settings with low microbial involvement. To realize the potential of metagenomic 

sequencing in disease research, we need new high-precision experimental and statistical 

methods that reach clinical standards of confidence. In this thesis, I describe our search 

for microbial signatures in sarcoidosis, an idiopathic disease with suspected microbial 

involvement. Through the use of novel experimental and statistical methods, we were 

able to eliminate confounding environmental factors and identify the enrichment of 

Cladosporiaceae fungi in sarcoidosis. I next describe a computational method to recover 

pathogen genomes from a sample containing mostly host DNA without the use of over-

sequencing or culturing. This method enables study of cryptic pathogen genomes and the 

ability to track genetic variants that may affect virulence or antibiotic resistance. Finally, 

I demonstrate the integration of metagenomic sequencing with immune repertoire 

sequencing in patients with severe combined immunodeficiency after gene therapy. This 
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study is the first to describe the changes in an immune-naïve microbiome that occur 

during the development of a new immune system. We see that the microbiome of these 

children shift from an abnormal state to one resembling healthy children in conjunction 

with their restored immunities. These studies lay out methods that improve the precision 

and utility of metagenomic sequencing for investigating idiopathic and immune 

disorders. 
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Chapter 1. Introduction  

1.1. A brief history of infectious disease 

The birth of germ theory 

The link between germs and disease seems obvious to us now, but it was actually a 

relatively recent (and contentious) development in human knowledge. For most of the 

last few thousand years, infectious disease was thought to be spread by miasma, or dirty 

air–a hypothesis that helped explain the transmissibility of disease in certain cases, but 

failed to translate into effective public health practices. As urbanization spread and 

diseases like cholera became more prevalent, water- or sewage-based transmission 

patterns played a large role in disease outbreaks. In a now-famous cholera outbreak in 

London, a physician named John Snow tracked each disease incident and concluded from 

their distribution that they originated from a public water pump. He correctly 

hypothesized that the water was contaminated and suggested the agent of contamination 

(what he termed “cholera poison”) had a cellular structure and was capable of 

reproducing (Snow, 1856).  

This hypothesis was part of an emerging “germ theory” of disease based on the 

groundbreaking work by Ignaz Semmelweis, Louis Pasteur and others that suggested that 

microorganisms, rather than miasma, were the source of infections and infectious disease. 

Joseph Lister’s adoption of this theory and promotion of antiseptic practices in surgery 

(and the consequent reduction in mortality) showed germ theory’s immediate 
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applicability to healthcare, but it was not until the work of Dr. Robert Koch that a 

conclusive link between a microbe and a human disease was first established. 

Establishing the germ-disease link 

Koch was the first to demonstrate the causative link between anthrax and Bacillus 

anthracis spores by purifying the bacteria from an affected sheep and using it to infect 

mice, who developed anthrax symptoms (Koch & Carter, 1987). Similar experiments 

using culture and reinfection lead him to uncover the cause of cholera (Vibrio cholerae) 

and tuberculosis (Mycobacterium tuberculosis) and conclusively demonstrate a link 

between microbes and infectious disease (Koch & Carter, 1987). This work also set the 

foundation for modern culture-based microbiology by improving culture and staining 

techniques, but most importantly it led to the development of what are now known as 

Koch’s postulates. 

Koch’s postulates are guidelines for establishing a causal link between an organism and a 

disease (Koch, 1876). They require a) the presence of the organism in all affected 

subjects and absence in unaffected subjects; b) the organism must be isolated and 

cultured from an affected subject; c) when introduced to an unaffected subject, the 

isolated organism should trigger the disease; and d) the identical organism must be 

cultured from the newly-diseased subject.  

Successes of Koch’s postulates 

The establishment of the germ-disease link and Koch’s postulates led to a revolution in 

medical microbiology as the causes of some of humanity’s most troublesome diseases 
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were uncovered. In this “Golden Age” of microbiology (Blevins & Bronze, 2010), 

bacteria causing diphtheria (1883), tetanus (1884), pneumonia (1886), plague (1894), and 

dysentery (1898), as well as many others (Table 1-1), were identified using the principles 

behind Koch’s postulates. These discoveries were essential in tracing disease vectors–

often involving fleas, rodents, or sewage–and establishing key elements of modern public 

health practices, sanitation, vaccines, and epidemiology. Later, the advent of antibiotics 

would provide the means to treat, rather than simply prevent, these diseases.  

Year Disease Organism Discoverer 

1877 Anthrax Bacillus anthracis Koch 

1878 Suppuration Staphylococcus Koch 

1879 Gonorrhea Neisseria gonorrhoeae Neisser 

1880 Typhoid fever Salmonella typhi Eberth 

1881 Suppuration Streptococcus Ogston 

1882 Tuberculosis Mycobacterium tuberculosis Koch 

1883 Cholera Vibrio cholerae Koch 

1883 Diphtheria Corynebacterium diphtheriae Klebs, Loeffler 

1884 Tetanus Clostridium tetani Nicholaier 

1885 Diarrhea Escherichia coli Escherich 

1886 Pneumonia Streptococcus pneumoniae Fraenkel 

1887 Meningitis Neisseria meningitidis Weischselbaum 

1888 Food poisoning Salmonella enteriditidis Gaertner 

1892 Gas gangrene Clostridium perfringens Welch 

1894 Plague Yersinia pestis Kitasato, Yersin 

1896 Botulism Clostridium botulinum van Ermengem 

1898 Dysentery Shigella dysenteriae Shiga 

1900 Paratyphoid Salmonella paratyphi Schottmüller 

1903 Syphilis Treponema pallidum Schaudinn, Hoffmann 

1906 Whooping cough Bordatella pertussis Bordet, Gengou 

Table 1-1 – Discoveries from the ‘golden age’ of bacteriology. 
Researchers who discovered the bacterial pathogens behind mankind’s most troubling diseases during the 

‘golden age’ of bacteriology. Adapted from Blevins and Bronze (2010). 
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1.2. Sequencing and its use in infectious disease 

Reaching the limits of culture-based investigations 

While the principles behind Koch’s postulates remain the gold standard for identifying 

pathogens, it became quickly evident that they were not universally applicable. Koch 

himself noticed the presence of M. tuberculosis and V. cholerae in subjects who did not 

demonstrate symptoms, violating the first postulate (and establishing the concept of an 

asymptomatic carrier). Another persistent complication is the fact that many organisms 

are not able to be grown in pure culture, and so the experimental design suggested by 

Koch (culture and experimental infection in an animal model) is inapplicable. 

There are any number of reasons why a pathogen might be unculturable. For instance, 

viruses require specific cellular machinery to reproduce, so culturing on cell-free medium 

is impossible. In other cases, the parasite may require coinfection with another organism 

for viability (Hepatitis D, for instance (Makino et al., 1987)). This lack of cultivability 

does not preclude these organisms from being pathogenic, however, so rigid adherence to 

Koch’s postulates would preclude investigators from understanding the diseases caused 

by these types of microbes. Adaptation around these limitations lead to the discovery of 

the viral causes of yellow fever (Sellards & Hindle, 1928), foot-and-mouth disease 

(Loeffier & Frosch, 1897), and polio (Landsteiner K, 1909), among many others. These 

advancements demonstrated a growing understanding of the range and diversity of 

pathogens. 
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One approach toward the investigation of uncultivable pathogens involves the use of 

nucleic acid sequencing. Sequence-based methods provide researchers with ways to 

identify pathogens regardless of their cultivability. Approaches such as PCR for specific 

marker sequences in target organisms are exquisitely sensitive and do not depend on the 

viability of the target organism (Josephson, Gerba, & Pepper, 1993). More complex 

methods, including whole-DNA shotgun sequencing, are able to recover the entire 

genome of a microbe (Anderson, 1981)–or even the genomes of all the microorganisms 

in a sample (Segata et al., 2013). These methods have revolutionized microbiology 

because they have allowed us to understand more fully the microbial world outside the 

petri dish. They have also advanced infectious disease research because their sensitivity 

enables us to uncover broad spectrums of pathogens that are not able to be cultured or 

otherwise identified. 

To formalize the use of sequencing methods in infectious disease research, Fredericks 

and Relman published an update to Koch’s postulates (Fredricks & Relman, 1996). The 

new guidelines were specifically crafted to avoid the requirement of cultivability in 

suspected microbes, as by the time that review was published, countless diseases had 

been linked to microbes that cannot be grown in pure culture, such as Whipple’s disease 

(the Tropheryma whippelii bacterium, (Relman, Schmidt, MacDermott, & Falkow, 

1992)) and Kaposi’s sarcoma (human herpesvirus 8, (Huichen Feng et al., 2007)). 

Notable differences between the Koch’s and Relman’s postulates, besides the de-

emphasis on cultivability, include reframing the presence or absence of the organism as 

the enrichment or depletion of nucleic acids from that organism; correlation between 
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sequence- and tissue-based methods such as staining or in situ hybridization; and 

identification of plausible methods of virulence (e.g. from related species or identified 

virulence factors). The Relman guidelines are significantly less rigid in their formulation 

than Koch’s postulates as well. For instance, the requirement of enrichment of nucleotide 

signals in affected tissues, rather than absolute presence/absence, reflects the 

understanding that many factors unrelated to the disease state may affect the appearance 

of microbial DNA, including environmental factors, presence as commensals, and 

reagent contamination. In total, Fredricks and Relman’s guidelines are given as flexible 

measures that should be assessed holistically, much as Koch’s postulates had to be later 

interpreted. The violation of multiple guidelines is possible even in established causal 

relationships and the authors emphasize that none of the rules are dogmatic. 

Successes using sequencing in etiologic agent detection 

Despite the incumbent difficulties in establishing microbe-disease links via sequencing, 

there have been a number of notable successes. In 1992, David Relman et al. established 

that Whipple’s disease was caused by a previously-unknown microbe by recovering 16S 

ribosomal RNA sequences from five patients with Whipple’s disease (Relman et al., 

1992). The organism, termed Tropheryma whippelii, had been seen in affected patients 

via microscopy since the first description of the disease but had resisted all culture 

efforts. Its association with the disease was thus well-known, and the target sequence was 

isolated from all five patients and none of the ten healthy controls. This long-term 

association of the cryptic microbe and the disease thus simplified the challenge of 

establishing causality. While the precise virulence mechanisms were not described in the 
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1992 paper, they noted that T. whippelii was related to other Actinomycetes bacteria 

including pathogenic mycobacteria, and potentially shared disease-causing 

characteristics. 

In 2008, Feng et al. (H. Feng, Shuda, Chang, & Moore, 2008) identified the virus that 

caused Merkel cell carcinoma (MCC) through the use of digital transcriptome subtraction 

(Huichen Feng et al., 2007). This technique uses a reverse transcription step to convert 

mRNA into cDNA prior to sequencing, and subsequently removes all human-related 

cDNA after sequencing. The remaining sequences are checked for homology to potential 

organisms of interest: in this case, they already suspected a viral etiology based on 

similarities between MCC and Kaposi’s sarcoma. The presence of a transcript with 

similarities to existing polyomavirus T antigen allowed the researchers to eventually 

uncover the complete viral genome using primer walking; this genome was then used to 

check transcripts from other MCC libraries and to design PCR assays to check other 

MCC samples. The rates of detection for the new polyomavirus (termed Merkel cell 

polyomavirus) were 80% in MCC tissue and 8% in healthy; this represents a significant 

shift from the strict presence/absence suggested by Koch’s postulates and a concordance 

with Fredricks and Relman’s more flexible guidelines. 

More recently, modern metagenomic sequencing was used to identify the pathogen in a 

case of neuroleptospirosis that had evaded diagnosis via normal methods (Wilson et al., 

2014). A patient that presented with severe but ambiguous symptoms that were initially 

suspected to be neurosarcoidosis after no pathogen was detected. Cerebrospinal fluid 
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(CSF) and serum was then shotgun sequenced and analyzed with SURPI, a rapid 

pathogen detection pipeline (Naccache et al., 2014). SURPI detected traces of 

Leptospiraceae bacteria in the CSF but not in the serum sample with coverage across 

3.8% of a leptospira genome. On this basis, the administering physicians decided to treat 

the patient for neuroleptospirosis and the symptoms resolved. Leptospiraceae is normally 

detected through a serological test for immune response, but due to peculiarities in the 

patient’s condition (severe combined immunodeficiency, immunoglobulin 

supplementation, etc), the serological challenge was negative. In many ways, the success 

in identifying the causative agent in this study was unusually fortuitous. Leptospira are 

uncommon enough in a hospital setting not to be likely environmental contaminants and 

pathological enough in nature to be a convincing agent. For diseases where the etiologic 

agent is uncharacterized, SURPI is not a valid option because it references existing 

databases- a flaw intrinsic to most of the current methods of sequence classification. If 

the organism was commonly commensal and pathogenic only by merit of a compromised 

immune system, it would also be difficult to discern from background levels of that taxa.  

Isolating microbial species for genomic analysis 

Identifying the etiologic agents in disease is rarely the final step in treatment and 

diagnosis. Virulence and pathogenicity of an agent is often linked to species- or strain-

specific variations that may be difficult to uncover using normal phylogenetic markers 

such as the 16S or ITS rRNA gene sequences (a method explained in more detail below). 

To fully understand the pathogenesis of an organism, the complete genome is desirable so 

that virulence mechanisms can be determined. However, genomes for most microbial 
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species are still missing or incomplete (Aggarwala, Liang, & Bushman, 2017; Brown et 

al., 2015; Hug et al., 2016).  

Traditionally the means to get a precise species- or strain-level genome is to isolate and 

culture the organism and sequence the isolate, but as described above, such culture-based 

approaches are frequently not applicable (Amann et al., 1990; Ghazanfar, Azim, & 

Ghazanfar, 2010; Schmeisser, Steele, & Streit, 2007). In the examples outlined 

previously, few of the etiologic agents were cultivable in pure culture. One way around 

this is to sequence the sample with sufficient depth to achieve complete coverage of the 

target genome (along with a large amount of background DNA) (Forde & O’Toole, 2013; 

Mardis, 2008). In cases where the genome is especially small, including viruses, 

enrichment using PCR techniques are viable options (Minot et al., 2013), but these 

techniques are difficult to scale up to normal prokaryotic and eukaryotic genomes. 

There have been significant improvements in the ability of shotgun metagenomic 

sequencing to identify strain-level variations in microbial communities (Alneberg et al., 

2014; Olm, Brown, Brooks, & Banfield, 2017; Scholz et al., 2016), but these efforts all 

face similar pitfalls. For some methods, the complete strain-level genome must be 

captured and added to the relevant databases. For instance, programs like StrainPhlAn 

(Truong, Tett, Pasolli, Huttenhower, & Segata, 2017) and PanPhlAn (Scholz et al., 2016) 

use strain-level reference genomes or species-wide “pangenomes” to profile 

metagenomic communities for those known strains. Other approaches that avoid the need 

for reference strains, such as CONCOCT (Alneberg et al., 2014) and MetaBAT (Kang, 
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Froula, Egan, & Wang, 2015), use pooled metagenomic libraries to construct strain-level 

genomes, but face challenges when the organism of interest is especially rare in the 

sample and are prone to chimeric misassembly of strain genomes. 

Methods such as selective whole-genome amplification (SWGA) (Leichty & Brisson, 

2014) allow the enrichment of a target organism in a sample by exploiting differences in 

certain sequence motifs along the target and host DNA. By using primers targeted to 

sequence motifs more frequently appearing in the target than the background, and a 

highly-processive polymerase such as phi29, a researcher can preferentially amplify the 

target genome above the background genome. The resulting product is directly 

sequenced, but the resulting depth of sequencing required to reach sufficient genome 

coverage is substantially reduced. In this way, SWGA makes it easier to get precise 

variant-level information about an organism and allows the sequence variants that 

underlie its virulence or pathogenicity to be identified. Implementing SWGA for arbitrary 

genomes is not trivial, however, as the method described in the original paper for  the 

selection of effective primer sets is complex and error-prone. 

1.3. Metagenomics and the role of the microbiome in disease 

The human microbiome 

Infectious disease research focuses on the single causative agents of a disease: isolating 

and understanding particular pathogens and how to combat them. But it has been known 

for some time that the body is home to a vibrant community of microbial life. In 1673, 

Antonie Philips van Leeuwenhoek, an acclaimed microscopist, described seeing a variety 
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of tiny “animalcules” in samples of pond water and wood–making him the first human to 

see a bacteria. In 1861, Joseph Leidy described a flourishing community of microbes 

inside the guts of many animals. His work “A flora and fauna within living animals,” is 

one of the first descriptions of the microbiome (Leidy, 1861). 

We know now that humans share our bodies with trillions of commensal microorganisms, 

most of them bacteria and bacteriophage. The exact makeup of these communities vary 

by body site and functional characteristics (The Human Microbiome Project, 2012). They 

also play key roles in maintaining normal health. For instance, microbes in the gut 

facilitate nutrient absorption and digestion (Shreiner, Kao, & Young, 2015), help regulate 

the immune system (Arpaia et al., 2013), and may even affect mental state (Rieder, 

Wisniewski, Alderman, & Campbell, 2017). Microbes on the skin feed off of shedding 

skin cells and help prevent infections (SanMiguel, Meisel, Horwinski, Zheng, & Grice, 

2017), and microbes in the genital tract can hinder the acquisition of sexually-transmitted 

diseases, such as HIV (Buve, Jespers, Crucitti, & Fichorova, 2014).  

The microbiome’s role in maintaining health is also supported by evidence linking 

disordered communities to diseases including inflammatory bowel diseases (Gevers et al., 

2014), obesity (Le Chatelier et al., 2013), cardiovascular disease (Z. Wang et al., 2011), 

as well as lung and skin disorders (Charlson et al., 2010; Hannigan, Pulos, Grice, & 

Mehta, 2015; Kalan et al., 2016; Young et al., 2015). Thus, it is essential to understand 

exactly what makes a microbiome “healthy”, what functions they perform in their 

respective body sites, and how to alter their composition to prevent or treat disease.  
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The advent of metagenomic sequencing 

Traditional culture-based techniques are inefficient for metagenomic studies both because 

of the relatively small fraction of microbes that are cultivable, and because of the slow, 

low-throughput nature of culturing. In addition, phylogenetic characterization using 

morphology rather than genetic sequence leads to significant issues: some microbes may 

be morphologically identical but separate species, while other microbes may have wildly 

different appearances based upon factors such as environment or lifecycle stage– some 

fungi belong to two different families depending on their sexual stage due to exactly this 

problem (Underhill & Iliev, 2014). 

The concept of metagenomic sequencing is basically the adaptation of modern 

sequencing technologies to perform surveys of all the microbes present in a sample. 

Generally, metagenomic sequencing falls into two approaches: tagged marker sequencing 

or whole-genome shotgun sequencing. Tagged marker sequencing uses the amplification 

of conserved genetic regions in the microbial targets of interest to gather a picture of the 

microbial community in a sample. Examples of this include 16S rRNA sequencing for 

bacteria (Weisburg, Barns, Pelletier, & Lane, 1991), and internal transcribed spacer (ITS) 

rRNA sequencing for fungi (Schoch et al., 2012). These regions, or “markers,” contain 

hypervariable loci flanked by conserved sequences; in bacterial 16S rRNA these are 

regions V1-V9, and in eukaryotic ITS rRNA they are ITS1 and ITS2. These 

hypervariable loci are under significantly less selective pressure than their surroundings, 

and thus accumulate mutations at a higher rate (Gray, Sankoff, & Cedergren, 1984). The 

similarity of these regions between two taxa can therefore be used as a proxy for how 
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related the taxa are to each other. This also enables the cataloging of these regions into 

databases, so that microbes can be linked to their respective version of each marker. 

Thus, the amplification and sequencing of these marker regions, followed by similarity 

searches in databases like GreenGenes for 16S (DeSantis et al., 2006) and UNITE for 

fungal ITS (Koljalg et al., 2005), results in a picture of the bacterial or fungal 

communities in a sample. Tagged sequencing is generally low-cost and computationally 

straightforward. However, the results are limited to the microbial kingdom of choice, and 

even the selection of the variable region in the marker sequence can influence how 

sensitive the assay is at retrieving certain families of microbes (Meisel et al., 2016).  

The alternative approach to tagged sequencing is known as whole-genome shotgun 

sequencing. In this approach, the total nucleic acids in a sample are fragmented and 

sequenced without an intermediate amplification step, and the sequencing reads are 

matched to a database of microbial sequences (Quince, Walker, Simpson, Loman, & 

Segata, 2017). The benefits of this approach are that it is markedly less biased as it can 

capture DNA from any organism in the sample, and that it allows partial reconstruction 

of the genomes of the organisms, enabling functional characterization. Shotgun 

sequencing thus provides a more complete picture of the microbiome, but suffers from 

both high costs and analytic difficulty. In many shotgun sequencing experiments, a large 

fraction of the reads cannot be assigned to an organism due to the true originator of the 

read being absent from databases. And while the sequencing itself is relatively less 

biased, the databases themselves are not– some microbial orders are much better 

characterized than others (e.g. bacteria versus viruses or fungi). 
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As well as helping characterize the function and dysfunction of our microbiomes, 

metagenomic sequencing provides a key advancement in germ theory and our ability to 

associate microbes with disease. Sequencing the total DNA from healthy and diseased 

subjects enables detection of differentially-abundant microbial signatures and potentially 

illuminates cryptic agents in diseases that had evaded culture-based detection. 

Furthermore, the ability to gather the actual genetic sequences from these microbes 

provides the means to understand their pathogenic capacity. Genes that influence 

virulence, toxicity and resistance to antimicrobial compounds can be recovered from the 

metagenome and may one day form the basis of rapid sequencing-based clinical tests.  

Successes linking the microbiome to disease state 

Because the gut is the most well-characterized component of the human microbiome, 

many of the disease links we’ve associated with changes in the microbiome have to do 

with intestinal disorders. In particular, inflammatory bowel diseases such as Crohn’s 

disease have been closely linked to dysbiosis in the gut (Huttenhower et al., 2014; Lewis 

et al., 2015). Crohn’s disease is a complex disorder involving immune-mediated 

inflammation of the gut, especially the proximal colon and ileum. Instead of a single 

causative bacterium, researchers have found that structural changes, such as the loss of 

certain classes of bacteria and outgrowths of others, can be predictors of Crohn’s disease 

onset (Gevers et al., 2014; Haberman et al., 2014). Antibiotic usage and a decrease in 

bacterial diversity were also associated with disease severity (Lewis et al., 2015). 

Correction of dysbiosis through the use of fecal microbiome transplantation has shown 

promising results for Crohn’s disease (Ruben J Colman, 2014).  
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Perhaps the most classic case of microbiome dysbiosis correlating with disease is in the 

case of Clostridium difficile infection. C. difficile is a commensal microbe in infants but 

rarely present in asymptomatic adults (Rousseau et al., 2012). Instead, infection is usually 

triggered by exposure to antibiotics, especially long-term use in chronic care facilities 

(Britton & Young, 2014). The alteration of the endogenous flora through antibiotics 

seems to provide an avenue for C. difficile colonization, and indicates that a “healthy” 

microbiome provides resistance to this pathogen. The exact mechanism by which the 

microbiome changes from being protective to permissive seems to be related to the 

production of bile salts and secondary bile metabolites (Britton & Young, 2014) (Britton 

2014). Certain bile acids trigger C. difficile spore germination, and their relative 

availability in the microbiome can be increased through the use of antibiotics. Thus, in 

the case of C. difficile, we observe a traditional infectious disease that is influenced 

strongly by the characteristics of the host gut microbiome. 

The use of the dysbiosis as a disease marker has also been demonstrated in preterm 

infants for necrotizing enterocolitis (NEC) (Pammi et al., 2017). In a systematic meta-

analysis, the authors found that increased levels of Proteobacteria and loss of 

Bacteroidetes and Firmicutes characterized a dysbiotic state that was a precursor to NEC. 

The correlation between gut bacteria and disease state indicate that microbiome 

monitoring and correction through the use of probiotics may be effective treatment for an 

otherwise difficult-to-treat disease. 
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Beyond disorders involving the gastrointestinal track, dysbiosis in the microbiome has 

also been linked to cardiovascular disease and mental health. In one study, Z. Wang et al. 

(2011) showed a link between the microbiome and production of phosphatidylcholine, a 

dietary metabolite correlated with heart disease. When the researchers dampened the 

abilities of the microbiome to produce this metabolite through the use of antibiotics, they 

saw a resulting reduction in disease rates, confirming the link between the metabolomic 

function of the microbiome and the disease. Recent studies have also linked the 

microbiome to mental health, mostly in animal models. For instance, in mice with a 

murine version of autism, researchers found they had abnormal microbiomes, and that 

addition of certain beneficial bacteria into their gut lead to less autistic-type behaviors 

(Hsiao et al., 2013). 

The microbiome and the immune system 

The links between microbiome structure and disease state often involve the immune 

system in some way (e.g. inflammation in IBD-type disorders). This is likely because the 

microbiome has been shown to have a regulatory and supplemental effect on the immune 

system itself (Arpaia et al., 2013; Atarashi et al., 2013; Kamada & Núñez, 2014). For 

instance, Arpaia et al. (2013) demonstrated that metabolites produced by the microbiome 

influence the development of pro- and anti-inflammatory regulatory T (Treg) cells. As 

these Treg cells are kept in balance in healthy individuals, it suggests that there is a 

homeostatic relationship governing the microbiome and immune system that can become 

disrupted in cases of dysbiosis.  
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The importance of the gut microbiota in maintaining immune homeostasis is in fact well 

documented (Guarner & Malagelada, 2003; Renz, Brandtzaeg, & Hornef, 2011; Walker, 

2013). For instance, hypersensitivity of the immune system to food-based allergens 

appears to be moderated by the gut flora (Guarner & Malagelada, 2003). This effect is 

determined by the co-development of the immune system with bacterial colonization of 

the gut in early life and takes place on the mucosal interfaces of the intestine and 

respiratory tract (Renz et al., 2011). In general, abnormal colonization or immune 

conditions early in life can lead to dysbiosis, allergy, or more dangerous immune 

disorders (Walker, 2013). 

Pitfalls in metagenomic sequencing 

Metagenomic sequencing thus has demonstrable clinical value in diagnosing and 

understanding a variety of diseases. However, there remain significant experimental and 

technological challenges associated with it that hinder clinical adoption. Perhaps most 

critical from a diagnostic or etiologic standpoint is modern sequencing’s susceptibility to 

false positives. This is partially due to the extreme sensitivity of sequencers and library 

preparation methods (Chin, da Silva, & Hegde, 2013). Consequently, both tagged and 

shotgun sequencing methods can retrieve extremely rare DNA molecules in a sample, 

including ones that are in fact environmental contaminants. Furthermore, sequencing is 

agnostic to the viability of the source material: it does not matter if the DNA came from a 

living or dead organism (Emerson et al., 2017). Because DNA is stable at room 

temperature, sterilization techniques kill contaminating microbes but allow their genetic 

material to persist. Microbial DNA has been regularly recovered from laboratory 
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reagents, for instance (Kim et al., 2017; Salter et al., 2014) and on sterilized hospital 

instruments. The combination of ambient DNA and the sensitivity of sequenced-based 

techniques means that it is extremely common to recover contaminant DNA in 

metagenomics.  

In studies where the goal is to find differentially-enriched microbes in disease, or to 

determine whether a pathogen is present or not, this contaminant DNA can be a 

significant confounder. A microbial signature may appear enriched in one disease state 

over another due only to differences in storage or handling of the samples. Similarly, 

sequences from a pathogen may appear in idiopathic disease samples, but only be leftover 

DNA clinging to sterilized hospital equipment. To prevent this, the researcher may 

employ methods of isolating only DNA from viable organisms such as those described in 

Emerson et al. (2017), but in many situations collection and storage procedures could kill 

all the microbes in the sample before workup (such as with formalin fixation). In 

addition, such methods may bias what is recovered through the metagenomic assay. 

Regardless of how the viability of the microbes is considered, it is critical to collect 

appropriate reagent and environmental controls to at least understand the contamination 

profile of the experiment. 

A number of recent studies have described microbial signatures (or even entire microbial 

communities) in parts of the human anatomy generally considered to be sterile in healthy 

individuals, including the brain, placenta and in semen (Aagaard et al., 2014; Branton et 

al., 2013; Hou et al., 2013). Without dismissing these results, it is highly possible that 
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these microbes came from any number of contaminating sources, including equipment, 

reagents, or nearby high microbial-load areas such as the mouth or genital tract. All too 

often, metagenomic studies do not include or show contamination controls, making it 

hard to assess the validity of their results. In a follow-up study to confirm the presence of 

microbes in placenta, for instance, Lauder et al. (2016) were unable to see any difference 

in microbial signatures between placenta samples and reagent controls. Significant work 

needs to be done from an experimental standpoint before metagenomic sequencing can 

reach clinically-acceptable levels of confidence. 

1.4. Motivations for this thesis 

In this thesis, I describe a series of studies that apply metagenomic sequencing to 

idiopathic and immunological diseases. My aim is to both provide insights into the target 

diseases and to demonstrate novel experimental methods that increase sequencing 

precision and sensitivity. 

New tools for the identification of etiologic agents 

In Chapter 2, I present our efforts to find an etiologic trigger for sarcoidosis, an extensive 

metagenomic study with broad clinical applications. This is the most comprehensive look 

at microbial signatures in sarcoidosis to date: we used 16S, ITS, and virome sequencing, 

as well as shotgun sequencing, in 732 distinct samples over three body sites. We 

uncovered signatures of a fungus in the Cladosporiaceae family that were enriched in 

sarcoidosis lymph nodes across two sample cohorts, suggesting a potential etiologic 

trigger. In addition, this study used a novel experimental design and statistical model that 
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allowed us to test for enrichment of a microbe in sarcoidosis both in relation to healthy 

controls and environmental background simultaneously. This experimental design is 

applicable to other clinical sequencing efforts and represents an advancement in low-

biomass metagenomic studies. 

Increasing sensitivity of pathogen genomics with swga 

In Chapter 3, I describe a new program called swga for designing primers for use in 

selective whole-genome amplification (SWGA). SWGA enables the recovery of a target 

microbe’s genome from a complex sample, such as a pathogen or parasite from a host-

derived sample. However, the effectiveness of the method relies on the selection of 

multiple primers that bind preferentially to the target’s genome over the background. 

Identifying an effective primer set is a computationally challenging task that originally 

involved a lot of manual trial-and-error. The program I describe in this chapter uses an 

approach derived from graph theory to establish compatible sets of primers for SWGA 

and evaluates their binding characteristics in arbitrary host/target genomes. I demonstrate 

how the program and method drastically reduce the sequencing costs for genome 

recovery of a variety of targets, including Mycobacterium tuberculosis and Plasmodium 

falciparum in humans and Wolbachia pipientis in Drosophila.  This program represents 

an advancement in infectious disease research by enabling researchers to recover the 

genomes of pathogens that are rare or uncultivable in primary samples. These recovered 

genomes can then be used to perform population genetics and understand disease 

outbreaks, or to model genetic variations that affect pathogenicity.  



 

21 

 

Characterizing immune system and microbiome dynamics in SCID 

Finally, in Chapter 4, I integrate metagenomic sequencing to characterize the 

development of the microbiome in children with severe combined immunodeficiency 

(SCID) after gene therapy. These children are born without an immune system, but are 

still colonized by microbes, free of interference from the immune system. After gene 

therapy, however, the immune system “comes online” and through longitudinal 

metagenomic sequencing, we can observe how the new immune system and microbiome 

interact. To characterize the developing immune system, we used sequencing of the CD3 

region of the TCR-beta locus in circulating T cells. This allowed us to see clonal 

outgrowths that suggested the immune system was responding to extant microbiota and 

correlate T cell dynamics with microbiome changes. Finally, sequencing of gene therapy 

vector integration sites in the same samples allowed us to estimate the minimum number 

of cell divisions required to progress from a lymphopoietic progenitor cell to a circulating 

T cell, increasing our understanding of human immune development. 

Taken together, these studies improve our understanding of microbes in disease, provide 

novel methods for identifying and characterizing pathogens, and help understand the 

interactions between the immune system and the developing microbiome.  
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Chapter 2. Microbial lineages in sarcoidosis: A metagenomic 

analysis tailored for low microbial content samples 

The contents of this chapter have been previously published as:  

Clarke, E. L., Lauder, A. P., Hofstaedter, C. E., Hwang, Y., Fitzgerald, A. S., 

Imai, I., Biernat, W., Rekawiecki, B., Majewska, H., Dubaniewicz, A., Litzky, L. 

A., Feldman, M. D., Bittinger, K., Rossman, M. D., Patterson, K. C., Bushman, F. 

D., & Collman, R. G. (2017). Microbial Lineages in Sarcoidosis: A Metagenomic 

Analysis Tailored for Low Microbial Content Samples. Am J Respir Crit Care 

Med. doi:10.1164/rccm.201705-0891OC 

2.1. Abstract 

Rationale: The etiology of sarcoidosis is unknown, but microbial agents are suspected as 

triggers.  

Objective: We sought to identify bacterial, fungal or viral lineages in specimens from 

sarcoidosis patients enriched relative to controls using metagenomic DNA sequencing. 

Since DNA from environmental contamination contributes disproportionately to samples 

with low authentic microbial content, we developed improved methods for filtering 

environmental contamination. 

Methods: We analyzed specimens from sarcoidosis subjects (n=93), non-sarcoidosis 

control subjects (n=72) and various environmental controls (n=150).  Sarcoidosis 

specimens consisted of two independent sets of formalin-fixed, paraffin-embedded lymph 

node biopsies, bronchoalveolar lavage (BAL), Kveim reagent, and fresh granulomatous 

spleen from a sarcoidosis patient.  All specimens were analyzed by bacterial 16S and 

fungal ITS rRNA gene sequencing.  In addition, BAL was analyzed by shotgun 
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sequencing of fractions enriched for viral particles, and Kveim and spleen were subjected 

to whole-genome shotgun sequencing.  

Measurements and Main Results: In one tissue set, fungi in the Cladosporiaceae family 

were enriched in sarcoidosis compared to non-sarcoidosis tissues; in the other tissue set, 

we detected enrichment of several bacterial lineages in sarcoidosis, but not 

Cladosporiaceae. BAL showed limited enrichment of Aspergillus fungi.  Several 

microbial lineages were detected in Kveim and spleen, including Cladosporium. No 

microbial lineage was enriched in more than one sample type after correction for multiple 

comparisons.   

Conclusions: Metagenomic sequencing revealed enrichment of microbes in single types 

of sarcoidosis samples, but limited concordance across sample types.  Statistical analysis 

accounting for environmental contamination was essential to avoiding false positives. 

2.2. Introduction 

Sarcoidosis is a multisystem disease characterized by an aberrant immune response that 

results in inflammation and granuloma formation.  Sarcoidosis is believed to have an 

antigenic or inflammatory trigger that initiates the immune reaction in a susceptible host 

(E. S. Chen & Moller, 2014, 2015; Dubaniewicz, 2013).  Several susceptibility genes 

have been identified (Fingerlin, Hamzeh, & Maier, 2015; Fischer et al., 2014) but the 

trigger remains obscure.  Granulomatous inflammation is commonly seen in responses to 

microbial agents, as are other features of sarcoidosis immunopathology such as 
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oligoclonal CD4 T cell expansion and TH1 polarization (E. S. Chen & Moller, 2014).  No 

microbial cause has been definitively established for sarcoidosis, but candidates include 

species of Mycobacterium (E. S. Chen et al., 2008; Drake et al., 2002; Dubaniewicz et al., 

2007; Song et al., 2005) , as well as fungi (Suchankova et al., 2015) and 

Propionibacterium acnes (Ishige, Usui, Takemura, & Eishi, 1999; Nishiwaki et al., 

2004), a common skin bacteria. 

The ability to detect rare or unculturable microbes has improved dramatically using deep 

DNA sequencing (H. Feng et al., 2008; Greninger et al., 2015; Kelly et al., 2016).  

Several studies have applied bacterial 16S rRNA gene sequencing to sarcoidosis, with 

differing results (Drake et al., 2002; Richter et al., 1996; Richter et al., 1999).  No prior 

studies have interrogated fungal lineages with tag sequencing, nor used shotgun 

metagenomic sequencing for comprehensive studies of total DNA or purified viral 

particles. 

We carried out an intensive metagenomic investigation of multiple sarcoidosis sample 

sets using 16S rRNA gene sequencing to capture bacteria, ITS sequencing for fungi, and 

whole-genome shotgun sequencing to characterize all microbes.  Samples (Table 2-1) 

include two independent sets of formalin-fixed, paraffin-embedded (FFPE) 

granulomatous tissue biopsies from newly-identified sarcoidosis patients and controls 

(sets A and B), bronchoalveolar lavage (BAL) from newly diagnosed untreated Stage 

II/III sarcoidosis patients and healthy controls (set C), We also interrogated a sample of 

the Kveim reagent (set D) (which is made from sarcoidosis-affected spleen and was used 



 

25 

 

historically for sarcoidosis diagnosis by intradermal injection and monitoring for 

granuloma formation (Klein et al., 1995; Siltzbach, 1961; Teirstein, 1998)), along with 

fresh granulomatous spleen from a sarcoidosis patient (set E). 

An often-underappreciated feature of sequence-based microbial detection is that at low 

levels of true signal, sequences can be dominated by microbial DNA from environmental 

sources introduced during sample collection, storage, DNA extraction or other steps 

(Lauder et al., 2016; Salter et al., 2014). This particularly confounds analysis of samples 

in which the authentic content of microbial DNA is low, such as lung bronchoscopies and 

tissue biopsies (Bittinger et al., 2014; Charlson et al., 2011; Robinson, Smith, Sengupta, 

Prentice, & Sandin, 2013; Salter et al., 2014). Even with the most careful preparation, 

however, there is often no way to eliminate environmental sequences completely, so 

further computational and statistical methods must be used to identify contamination.  

We thus used extensive environmental sampling and applied novel statistical modeling to 

minimize false positive calls.  By investigating several independent sample sets and 

tissue types, we were able to interrogate whether sarcoidosis-enriched sequences 

appeared consistently across sample sets. Some of the results of these studies have been 

previously reported in the form of an abstract (EL Clarke, 2015). 
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2.3. Methods 

2.3.1. Samples collected 

2.3.1.1. Archived tissue samples 

Two sets of FFPE sarcoidosis and control tissues were analyzed.  Set A (from Gdańsk) 

were mediastinal lymph nodes showing non-caseating granulomas typical of sarcoidosis, 

and negative by staining for acid-fast or fungal elements. Controls were mediastinal 

lymph nodes with normal or nonspecific reactive histology.  Set B (from Philadelphia) 

consisted of mediastinal nodes containing granulomas typical of sarcoidosis and negative 

by fungal and acid-fast stain.  Controls were histologically normal nodes from cancer 

staging procedures.  Stored specimens were retrieved and 10um cuts taken under aseptic 

conditions.  Paraffin block environmental controls were cut concurrently with tissue 

specimens.  For set A these were matched from the same block as tissue, while for set B 

they were not from the same block.  

2.3.1.2. Bronchoalveolar lavage (BAL)  

BAL fluid (set C) was obtained from subjects undergoing diagnostic bronchoscopy (from 

Philadelphia) for suspected new diagnosis of pulmonary sarcoidosis who had chest X-

rays consistent with parenchymal (Scadding stage II/III) involvement.  Subjects included 

here had sarcoidosis confirmed by standard criteria and exclusion of alternative 

diagnoses.  BAL was performed using standard clinical protocols.  Control BAL was 

obtained from healthy volunteers who underwent research bronchoscopy (Charlson et al., 

2011).  Prior to bronchoscopy, an environmental control (bronchoscope prewash) was 
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obtained as previously described (Charlson et al., 2011).  BAL and prewash were placed 

immediately on ice and stored at -80oC until analysis. 

2.3.1.3. Kveim and spleen tissue 

An aliquot of Kveim reagent ((Teirstein, 1998); set D) was analyzed that was prepared at 

Mt. Sinai Hospital (New York) for clinical diagnostic use as described (Chase, 1961) and 

stored under sterile conditions.  Sarcoidosis-involved spleen (set E) was obtained from an 

individual with longstanding disease (from Philadelphia), previously but not currently 

treated, who underwent splenectomy for symptomatic splenomegaly.  Tissue was freshly 

dissected from the organ and frozen at -80oC.  An aliquot of the saline used for tissue 

homogenization served as a matched environmental control.  

2.3.1.4. Human subjects  

Tissue samples were obtained from anonymized tissue archives. Bronchoscopy and 

spleen donor subjects provided written informed consent under IRB-approved protocols. 

2.3.2. Analysis 

2.3.2.1. Sequence analysis of 16S and ITS rRNA gene segments 

Details of extraction, amplification, Illumina sequencing and taxonomic assignment are 

in Supplement §2.7.1. The bacterial 16S ribosomal RNA gene was amplified using V1V2 

primers; this relatively short amplicon was chosen to maximize amplification efficiency 

for rare sequences from low microbial biomass samples (Charlson et al., 2011; Charlson 

et al., 2012). The fungal ribosomal RNA internal transcribed spacer ITS1 region was 

amplified using ITS1F/ITS2 primers (Bittinger et al., 2014; Charlson et al., 2012; Dollive 
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et al., 2012). Sequences were organized into Operational Taxonomic Units (OTUs) at 

97% identity. Statistical analysis was carried out at the individual OTU level, and at 

genus and family levels. 

2.3.2.2. Virome analysis 

Virome analysis was carried out on BAL and matched prewash specimens (Abbas et al., 

2016; Young et al., 2015). To enrich for viruses, fluid was pelleted and acellular material 

subject to size-exclusion concentration, followed by nuclease treatment to digest non-

encapsulated nucleic acids.  Nucleic acids were then extracted, and DNA subjected to 

whole genome amplification using GenomiPhi.  RNA was reverse transcribed to cDNA 

and PCR-amplified.  Resulting libraries were shotgun-sequenced, reads quality filtered, 

then annotated using a custom database we constructed that included all complete 

bacterial, fungal, archaeal and viral genomes in RefSeq release 79 (O'Leary et al., 2016).  

All non-viral reads were removed from consideration.  We found many reads annotated 

to viruses later determined to be either from reagents or mis-annotation of human reads 

(Abbas et al., 2016), which were therefore excluded.  Details are in Supplement §2.7.1.5. 

2.3.2.3. Whole genome sequencing 

DNA from sarcoidosis spleen tissue and Kveim reagent was subjected to whole genome 

sequencing (WGS) on an Illumina HiSeq.  Reads were quality-filtered, processed, and 

classified using Kraken (Wood & Salzberg, 2014) with our custom database (described 

above), with low-complexity regions masked before querying. Details are in Supplement 

§2.7.1.6.  The analytic pipeline is available at https://github.com/eclarke/sunbeam.  
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2.3.2.4. Accessing sequence data 

Sequence data are available in the NCBI SRA under BioProject ID PRJNA392272. 

2.3.2.5. Statistical analysis 

Code and a complete description are in Supplement §2.7.1.7. For sample sets A and C, 

which had paired environmental controls, we used the R package lme4 (Douglas Bates & 

Walker, 2015) to build a generalized linear mixed effects model (GLMM) to regress the 

number of reads of a taxa against the study group (sarcoid/healthy) and sample type 

(tissue/environmental control) (Supp. Figure 2-1).  Environmental levels of the taxa in 

each sample/control pair were captured as a random effect.  Enrichment was determined 

by the significance and directionality of the coefficient for the study group/sample type 

interaction term after fitting the model.  For sample set B, which did not have matched 

environmental controls, we used the R package DESeq2 (Michael Love, 2014) to 

determine enrichment.  

Because one could not predict a priori whether a putative sarcoidosis-associated 

microbial trigger would be a specific family, genus, species or even OTU, lineages were 

tested at the individual OTU level, then aggregated and tested at the species, genus, and 

family levels.  FDR correction was applied at each taxonomic level, and an FDR p-value 

cutoff of 0.1 was considered significant. While interrogating the data at each taxonomic 

level increased the risk of type I (false positive) errors, we considered this justified due to 

uncertainty over which taxonomic level might be linked to sarcoidosis and the 

exploratory nature of the study, and mitigated by the multiple independent sample sets.  
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Conversely, since requiring a lineage to reach FDR-corrected significance in multiple 

independent sample sets would increase the likelihood of type II errors, we also 

considered lineages that were significant after FDR correction in one sample set, but only 

significant before FDR correction in other sample sets. 

2.4. Results 

2.4.1. Sample sets studied 

We studied five sets of sarcoidosis samples and controls (Table 2-1). Two (sets A and B) 

were archival lymph node tissue from patients undergoing diagnostic biopsy, where the 

sarcoidosis tissue studied was histologically confirmed to show granulomas.  Set A 

included environmental control paraffin blanks matched to the individual tissue block and 

analyzed in parallel. BAL (set C) was from patients with untreated pulmonary sarcoidosis 

and healthy volunteers.  Reasoning that BAL would most likely reveal a microbial trigger 

early in the disease course with parenchymal lung involvement, we studied individuals 

newly presenting with radiological Scadding stage II/III.  Environmental controls 

matched to each sample were prewashes of the bronchoscope used to collect the BAL.  

We analyzed an aliquot of the Kveim reagent (set D), which is derived from sarcoidosis-

affected human spleen and used diagnostically by intradermal injection and monitoring 

for granuloma formation.  Since this suggests an immunological response to a triggering 

antigen (Klein et al., 1995), we hypothesized that Kveim reagent may contain DNA 

traces of an etiological microbe.  Finally, we tested fresh sarcoidosis-involved spleen (set 

E), paired with blank controls processed in parallel to model reagent contamination.  
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Sample 

Set Sample Type Study Group Samples Site Bacteria Fungi 

RNA 

viruses 

DNA 

viruses 

A 

Tissue Sarcoid 45 Gdansk 643 1180 N/A N/A 

Tissue Control 37 Gdansk 207 236 N/A N/A 

Paraffin only 
(paired) 

Environmental 
control 

82 Gdansk 465 1081 N/A N/A 

Blanks Reagent control 27 Gdansk 74 84 N/A N/A 

B 

Tissue Sarcoid 30 Philadelphia 5548 2136 N/A N/A 

Tissue Control 19 Philadelphia 2813 2703 N/A N/A 

Blanks Reagent control 5 Philadelphia 285 55 N/A N/A 

C 

BAL Sarcoid 16 Philadelphia 3105 25 1 85 

BAL Healthy subjects 12 Philadelphia 1604 13 1 40 

Prewash 

(paired) 

Environmental 

control 
24 Philadelphia 823 28 4 99 

Blanks Reagent control 4 Philadelphia 157 22 0 38 

D 
Kveim reagent Sarcoid 1 New York 1725 20 N/A 4 

Water 
Environmental 

control 
1 Philadelphia 1035 3 N/A 26 

E 

Spleen Sarcoid 1 Philadelphia 1156 19 N/A 3 

Saline wash of 

instruments 

Environmental 

control 
2 Philadelphia 408 2 N/A 31 

Water Reagent control 1 Philadelphia 1035 3 N/A 26 

Table 2-1. Sample sets studied. 

2.4.2. Set A: Lymph node tissue 

Microbial lineages detected in set A by bacterial 16S and fungal ITS rRNA gene 

sequencing are shown as stacked bar graphs (Error! Reference source not found.), with d

ominant taxa summarized in Supp. Figure 2-2.  Each tissue was paired with a control 

paraffin shaving from the same sample block. Lymph node and environmental control 

samples are thus plotted side-by-side.  In many cases, samples and paraffin controls 

appear similar. 

To investigate community structures in sarcoidosis and healthy lymph node samples, we 

calculated the UniFrac distance between each pair of samples and tested for clustering 

using PERMANOVA (Supp. Figure 2-3).  Bacterial communities were not significantly 
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different between sarcoidosis and non-sarcoidosis tissues (Supp. Figure 2-3A), but fungal 

communities were different (Supp. Figure 2-3B; p=0.027, R2=0.037).  We then asked 

whether community differences might be attributed to differential contamination. We 

performed the same PERMANOVA test on paraffin controls from sarcoidosis and non-

sarcoidosis samples.  No significant difference was detected in bacterial 16S data (Supp. 

Figure 2-3C), but we did detect a difference in fungal ITS data (Supp. Figure 2-3D; 

p<0.002, R2=0.091). Review of the specimen processing pipeline revealed that most 

sarcoidosis samples (31/45) were stored in a different building from non-sarcoidosis 

controls.  A PERMANOVA test of the effects of storage site on the paraffin 

environmental controls revealed a significant effect on fungi (p<0.00001) but not on 

bacteria.  The environmental fungi responsible for site-specific differences were mostly 

of the Aspergillaceae family (negative binomial test, FDR p-value=0.019; Supp. Figure 

2-2).  

To account for environmental admixture statistically, we designed a generalized linear 

mixed model (GLMM) that incorporated each sample’s matched environmental control 

(see Methods). In short, this approach uses the matched control to model the background 

levels of each taxa. Then, when testing for differential abundance of that taxa, the 

background levels are accounted for by a separate term in the regression rather than the 

study group term. We used this approach to test for differential abundance between 

sarcoidosis and healthy lymph node at the OTU, species, genus, and family level.  
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Among fungi, at the family level, Cladosporiaceae (within the Capnodiales order; Error! R

eference source not found.B) was significantly enriched in sarcoidosis (FDR p-

value=0.049). At the OTU level, no individual taxa were significantly enriched after FDR 

correction, but two Cladosporium OTUs were significant before FDR correction (p<0.05, 

FDR p=1).  The Cladosporiaceae fungal lineage is present both in tissue samples and 

paraffin blank controls, but is most abundant in sarcoidosis tissue (Error! Reference s

ource not found.C).  No bacterial lineages were significantly enriched in sarcoidosis 

after accounting for environmental contamination. 
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Figure 2-1. Dominant bacterial and fungal orders in lymph node (A). 
The major bacterial (A) and fungal (B) orders identified by 16S and ITS rRNA gene sequencing, 

respectively, are shown as proportions of total reads. Less common lineages are aggregated under “Other.”  

For each pair, the closed symbol (●) indicates the FFPE lymph node sample, while the open symbol (○) 

indicates a slice of blank paraffin cut from the same block to serve as an environmental control. Empty 

(white) bar charts indicate that the sample was either not available or had no detectable lineages. The 

difference in Cladosporiaceae reads between a sample and its environmental control are shown in (C). 

Closed circles represent samples with more Cladosporiaceae reads in the sample than the matched 

environmental control, while open circles represent samples in which the number of Cladosporiaceae reads 

were not greater than in the environment control. The abundances are shown as reads to more accurately 

reflect the input to the test, which used raw read counts as input. Normalization between differing 

sequencing depths was accounted for by modeling library size as a random effect for each sample (see 

Methods). 
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2.4.3. Set B: Lymph node tissue 

The dominant bacterial and fungal lineages in tissue set B are shown in Figure 2-2, with 

rank abundance plots in Supp. Figure 2-4. We compared community structure using 

UniFrac and PERMANOVA (Supp. Figure 2-5), and found differences in bacterial (but 

not fungal) populations between the sarcoidosis samples and healthy controls (p<0.05).  

We then tested for differentially abundant taxa at the OTU, species, genus, and family 

levels.  Numerous bacterial taxa were significantly enriched in sarcoidosis compared to 

control tissues, including three OTUs in the Corynebacterium (order Actinomycetales) 

genus (FDR p=1e-5, 0.064 and 0.067, respectively) and four OTUs in the 

Rhodocyclaceae family (order Rhodocyclales, FDR p=0.076, 0.003, 2e-05, and 0.005, 

respectively).  Other sarcoidosis-enriched bacteria were from the Sphinogomonadaceae 

family (order Sphingomonadales), the Comamonadaceaea and Oxalobacteraceaea 

families (order Burkholderiales), and the Moraxellaceae and Pseudomonadaceae families 

(order Pseudomonadales).  No fungal lineages were sarcoidosis-enriched in tissue set B 

after FDR correction, including Cladosporium (although fungi of this family do appear to 

be present in higher levels in the sarcoidosis samples; Supp. Figure 2-4).  Given the 

absence of paired environmental controls, these results are limited in isolation and serve 

mainly for comparison with other sample sets.  
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Figure 2-2. Bacterial and fungal lineages in lymph node (B). 
The major bacterial (A) and fungal (B) orders identified by 16S rRNA and ITS gene sequencing are shown 

as proportions of total reads. Less common lineages are aggregated under “Other.”  Seventeen samples 

failed to amplify any usable ITS sequences in B and are omitted. Blank paraffin controls matched to each 

tissue specimen were not available for these samples. 

2.4.4. Set C: Bronchoalveolar lavage 

We analyzed DNA from whole BAL for bacteria and fungi using 16S and ITS gene 

sequencing (Error! Reference source not found., Supp. Figure 2-6), along with 

matched bronchoscope pre-washes.  Analysis using UniFrac and PERMANOVA (Supp. 

Figure 2-7) showed no significant differences between sarcoidosis and control bacterial 
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communities.  To identify taxa enriched in sarcoidosis while accounting for 

environmental input, we employed the GLMM described above.  We found that the 

bacterial family Corynebacteriaceae (order Actinomycetales) was enriched in sarcoidosis 

before FDR correction, but no taxa were enriched after FDR correction.   

Fungal sequences in BAL were sparse (Error! Reference source not found.B), c

oncordant with previous reports on BAL fungal detections (Bittinger et al., 2014).  

However, the genus Aspergillus (within the Eurotiales order; Error! Reference source n

ot found.B) was enriched in sarcoidosis (FDR p=0.042). 

2.4.4.1. Virome analysis of sarcoidosis BAL 

We investigated the lung virome in sarcoidosis by generating virus particle preparations 

from acellular BAL and matched prewashes, and deep-sequencing both RNA and DNA.  

Initial inspection revealed abundant reads annotated as HHV6/HHV7.  These reads 

matched human simple sequence repeats (Abbas et al., 2016), and were therefore 

removed.  We also purged sequences that were present in blank controls and attributable 

to viral enzymes used as reagents, and thus likely reagent-derived.  Our approach was 

designed to detect both DNA and RNA viruses, but we did not recover any RNA viruses 

that did not likely originate from reagent contamination. 

The majority of remaining viral sequences were phages of the Siphoviridae and 

Iridoviridae lineages (Error! Reference source not found.C).  The data initially s

uggested a much richer population of viruses in sarcoidosis BAL than healthy controls.  

However, viral sequences in the sarcoidosis cohort’s prewash controls were also richer 
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than the control cohort’s prewash (Supp. Figure 2-8).  This difference is likely because 

sarcoidosis subjects underwent bronchoscopy in a clinical endoscopy suite, whereas 

healthy volunteers were sampled in a different facility used for research studies.  This 

suggests that each location contributed a different environmental background of virus 

sequences, likely originating in lavage saline or water used to rinse bronchoscopes after 

cleaning.  

We therefore used the same GLMM approach to account for environmental differences 

when testing for enriched viral species.  No viruses were sarcoidosis-enriched at any 

taxonomic levels tested.  Without accounting for environmental input, the enrichment 

analysis would have been confounded by differences resulting from bronchoscopy 

locations.  
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Figure 2-3. Bacterial, fungal and viral lineages in BAL. 
The major bacterial (A) and fungal (B) lineages identified by 16S rRNA and ITS gene sequencing, and 

viral (C) lineages identified by shotgun sequencing of all nucleic acids in virus particle preparations, are 

shown as proportions of the total reads.  Data are shown at the order level for A and B, and the family level 

for C.  Less common lineages are aggregated under “Other.”  For each pair, the closed symbol (●) indicates 

the BAL fluid, while the open symbol (○) represents the prewash fluid for that scope. Empty (white) bar 

charts indicate that the sample was either not collected or had no detectable lineages. Three sample pairs 

failed to amplify any ITS sequences and are omitted from B. 

2.4.5. Sets D and E: Kveim reagent and sarcoidosis spleen 

We analyzed Kveim reagent and fresh spleen from a patient with sarcoidosis.  Three 

separate pieces of spleen were tested, along with controls to capture sequences from the 

environment.  Kveim, spleen and controls were subject to 16S and ITS sequence analysis 

(Figure 2-4A and B) and also shotgun whole-genome sequencing (WGS) (Figure 2-4C).  

WGS yielded mostly human sequences, which were removed; the remaining sequences 

queried for microbial annotations.  
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The predominant bacteria found by both 16S and WGS were in the Propionibacteriaceae 

family (within the Actinomycetales order), and were detected across all samples 

including controls.  Other ubiquitous taxa included Corynebacteriaceae and 

Pseudomonadaceae (of the Actinomycetales and Pseudomonadales orders, respectively).  

Some differences were seen between 16S and WGS analysis for other taxa, likely 

resulting from the relative representation of sequences within 16S and WGS databases.  

No taxa were present only in sarcoidosis samples and not environmental controls.  

Fungal detections were sparse in both ITS sequencing and WGS, and inconsistent 

between methods. Cladosporiaceae (order Capnodiales) was detected by ITS in one 

spleen sample, but not by WGS.  This may be due to a paucity of database genomic 

sequences for Cladosporiaceae, limiting detection in WGS annotation.  There was no 

consistent fungal detection in sarcoidosis samples versus controls. 

In the WGS data, we initially detected alignments annotated as Toxoplasma gondii in the 

Kveim and spleen samples. We also detected reads annotating to an unfinished 

Mycobacteria genome. However, these sequences were found to match human 

microsatellite simple repeats, and so were judged to be false-positives and removed 

(detailed in Supplement §2.7.1.5). This is an issue for WGS data but not for 16S or ITS 

analysis, as the untargeted approach allowed capture of low-complexity repeat DNA. The 

only viral reads detected were from bacteriophages and were also found in the controls, 

and thus inferred to be environmentally-derived. 
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Figure 2-4. Microbial lineages in Kveim and sarcoid spleen. 
The major lineages in sample sets D (Kveim) and E (sarcoidosis spleen) shown by sequencing. (A) Shows 

results from 16S sequencing, (B) shows ITS sequencing, and (C) shows results from whole-genome 

shotgun sequencing, after filtering as described in Supplemental Methods §2.7.1.6.  Less common lineages 

are aggregated under “Other”, including fungal detections in (C). 

2.4.6. Shared lineages 

No bacterial or fungal lineages were significantly enriched after FDR correction in more 

than one sample set.  To broaden our search, we examined lineages that were 

significantly enriched in one sample set after FDR correction, and queried their 

abundance in the other sets. Enriched lineages are summarized in Table 2-2. 
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Sample Set Kingdom FDR p < 0.1 non-FDR p < 0.05 

Tissue Set A 
Bacteria None None 

Fungi Cladosporiaceae OTU6408 (genus Cladosporium), Cladosporiaceae 

Tissue Set B 
Bacteria 

Many (113), including 

Corynebacterium and 

Rhodocyclaceae 

Many (252) 

Fungi None Many (149), including one Cladosporium OTU (OTU7142) 

BAL Set C 

Bacteria None 
OTU 104987 (Family Rhodocyclaceae), OTU 4301737 

(genus Porphyromonas), Corynebacterium, Neisseria 

Fungi Aspergillus Aspergillus 

Viruses None None 

Table 2-2. Summary of taxa enriched in sarcoidosis. 
Microbial taxa enriched in sarcoidosis lymph node and BAL over healthy controls. 

In tissue set A, fungi from the Cladosporiaceae family (order Capnodiales) were 

significantly enriched in sarcoidosis when tested as a group.  A single Cladosporium 

OTU (OTU7142) was enriched in tissue set B before multiple testing correction 

(p=0.042), though not the Cladosporiaceae family overall.  Cladosporiaceae were 

detected but not enriched in sarcoidosis BAL.  Finally, abundant Cladosporium reads 

were detected in one of three replicate spleen samples via ITS sequencing and not in the 

environmental controls, although it was not in WGS of spleen or Kveim. 

In tissue set B, three OTUs belonging to the Corynebacterium bacterial genus (order 

Actinomycetales) were significantly enriched in sarcoidosis.  While no individual 

Corynebacterium OTUs were enriched in other sample sets, the Corynebacterium genus 

was enriched in sarcoidosis BAL before FDR correction (p=0.02).  Corynebacterium 

were detected but not sarcoidosis-enriched in tissue set A, and also detected in Kveim 

and spleen, as well as environmental controls. 
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Also in tissue set B, multiple OTUs in the Rhodocyclaceae (order Rhodocyclales) 

bacterial family were significantly enriched.  A single Rhodocyclaceae OTU was 

enriched in BAL before FDR correction (OTU104987, genus Hydrogenophilus, 

p=0.009).  No Rhodocyclaceae lineages were detected in tissue set A, but appeared in 

both Kveim and spleen as well as controls from sets D and E. 

In BAL (set C), fungi in the Aspergillus genus (order Eurotiales) were significantly 

enriched in sarcoidosis.  Aspergillus was detected in tissue set A, but was not sarcoidosis-

enriched.  Numerous Aspergillus lineages were also detected but not sarcoidosis-enriched 

in tissue set B.  Aspergillus species were not detected in Kveim or spleen in sets D and E, 

but were found in the environmental and blank controls by WGS. 

2.5. Discussion 

This is the first study to interrogate microbial agents in sarcoidosis using a metagenomic 

approach combining bacterial and fungal sequence tag analysis, virome shotgun 

sequencing, and whole genome sequencing. We anticipated that a causal microbe would 

be present in low abundance, so rigorous consideration of potential contamination would 

be critical for distinguishing authentic from environmentally-derived sequences.  Our 

findings were inconsistent across the five sample sets analyzed (Table 2-1, Table 2-2), 

but do provide candidates for further validation, and strongly emphasize the importance 

of assessing environmental contamination.   
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Cladosporiaceae was significantly enriched in sarcoidosis specimens in tissue set A after 

adjustment for environmental admixture and multiple comparisons, and also appeared in 

several other sample sets, though not with comparable statistical enrichment. Fungi in the 

Cladosporiaceae family are extremely common in the environment (Ezike, Nnamani, 

Ogundipe, & Adekanmbi, 2016; Peternel, Culig, & Hrga, 2004), can trigger 

hypersensitivity pneumonitis and asthma (Chiba et al., 2009; Tham et al., 2017), and are 

capable of eliciting granulomatous inflammation (Robinson et al., 2013; Silva & 

Ekizlerian, 1985). This finding may warrant further investigation. 

In tissue set B, we detected multiple sarcoidosis-enriched taxa, but interpretation is 

limited by the lack of matched environmental controls.  Enriched taxa included several 

Corynebacterium OTUs, which were also sarcoidosis-enriched before FDR correction in 

BAL (set C).  Similarly, OTUs annotated as Rhodocyclaceae were significantly enriched 

in set B, and enriched before FDR correction in set C.  Corynebacterium are particularly 

interesting because they are known to elicit granulomatous responses in vivo (Nureki et 

al., 2007; Taylor, Paviour, Musaad, Jones, & Holland, 2003), although the association 

with sarcoidosis in this study was weak. 

In addition to histopathological similarities, mycobacteria have been linked to sarcoidosis 

by immunological responses and/or sequence-based detection (E. S. Chen et al., 2008; 

Drake et al., 2002; Dubaniewicz et al., 2007; Song et al., 2005). However, we did not find 

enrichment of mycobacteria in sarcoidosis.  Mycobacteria are difficult bacteria to isolate 

DNA from due to tough cell walls.  To ensure our methods were robust, we confirmed 
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detection via sequencing in known mycobacteria-infected tissue samples, and biological 

specimens spiked with avirulent M. tuberculosis (not shown).  We also found low levels 

of mycobacteria in many samples and environmental controls. This suggests that our 

methods are not inherently insensitive to mycobacteria, but that mycobacteria as a group 

were not enriched in these sarcoidosis specimens.  However, the 16S variable region 

amplified, V1V2, cannot distinguish between mycobacterial species, which precludes 

detection of species-level differences.  We also found that Propionibacterium acnes was 

a ubiquitous environmental agent, concordant with other studies (Mollerup et al., 2016), 

with no evidence of enrichment in sarcoidosis.  

Environmental admixture is an issue in any metagenomic survey and becomes 

increasingly important as the amount of authentic microbial content decreases (Salter et 

al., 2014).  Such sequences can be introduced from specimen collection and storage, 

DNA extraction kits, the processing pipeline, or even “barcode error” inherent in Illumina 

deep sequencing platforms that can allow low-level bleed-over in the sequencing process 

(Lauder et al., 2016). Most importantly in studies comparing subject groups, clinical 

samples collected at different times or locations may be contaminated with different 

environmental sequences.  This is especially problematic when taxa of interest may also 

be environmentally present, so simple subtraction of background lineages is 

inappropriate.  For example, sarcoidosis and healthy BALs were acquired in different 

locations and showed different background viromes.  For tissue set A, specimen storage 

location differed between study groups, which led to enrichment of environmental fungi 

in one group and not the other.  
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A key component of our approach is the generalized linear mixed model, which enabled 

us to capture and control the effects of differential environmental admixture without 

losing the ability to test for differential abundance in environmental taxa.  In tissue set A, 

without accounting for environmental input, a naïve enrichment analysis would have 

identified fungal species within the Aspergillus and Penicillium genera as sarcoidosis-

enriched.  The same is true for viruses in BAL (set C), which would have incorrectly 

identified greater phage populations in sarcoidosis.  The GLMM approach presented here 

would enable handling of potential confounding effects of environmental admixture in 

microbiome studies generally, and is particularly critical for specimens with low 

authentic microbial content, when coupled with appropriate matched environmental 

controls for each clinical sample. 

Our study has several limitations. We investigated microbes that might be enriched in 

sarcoidosis at time of diagnosis, which is the earliest time point feasible, but the time 

from actual disease onset is unknown, so an etiological trigger may no longer be present.  

Conversely, it is conceivable that microbial enrichment associated with sarcoidosis could 

be a consequence of the disease, rather than a cause.  Use of samples from distinct 

geographic locations would reveal shared lineages, but sarcoidosis triggers may differ 

geographically.  Additionally, any triggers may not be enriched in sarcoidosis subjects at 

all, but may be ubiquitously present, with disease determined mainly by host 

susceptibility factors.  Although we examined a total of 93 sarcoidosis and 72 non-

sarcoidosis specimens, plus 150 environmental controls (for a total of 738 sequencing 

reactions) the number of samples in any one set was modest. For the FFPE samples, 
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sensitivity may be lessened by damage DNA incurred by during the de-crosslinking step 

necessary to undo the formalin fixation (Campos, 2011). For our DNA virus methods, 

Genomiphi amplification may introduce bias towards short circular DNA due to rolling-

circle amplification, although this bias should be consistent across study groups. Finally, 

any primers chosen for tagged sequencing also have inherent biases and may be more 

sensitive to some microbes than others (such as with the V1V2 primers and 

Mycobacterium species, as discussed previously). 

In summary, application of metagenomic sequencing and analytic approaches tailored to 

low microbial-biomass samples did not identify a single causative agent but identified 

several candidate agents as sarcoidosis-enriched.  These include the Cladosporiaceae 

fungal family and Corynebacterium bacterial taxa.  The modest enrichment and limited 

concordance of these candidates in the sample sets precludes our ability to assert any 

causal relationship with sarcoidosis, but we believe these candidates may be of interest in 

future studies. More broadly, the model we present here increases the power of 

metagenomic studies in low microbial biomass samples, such as lung and tissue 

specimens, by allowing researchers to account for and test environmental admixture, thus 

avoiding potential spurious identifications. 
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2.7. Supplemental Material 

2.7.1. Supplemental Methods 

2.7.1.1. Specimens analyzed 

Formalin-fixed paraffin-embedded (FFPE) sarcoidosis and control tissues in set A were 

from the Medical University of Gdansk (Gdansk, Poland) and tissue set B were from the 

Hospital of the University of Pennsylvania (Philadelphia, PA, USA).  Paraffin block 

environmental controls targeted a region of the block that did not contain tissue, and were 

cut at the same time as the tissue specimens.    

Bronchoalveolar lavage (BAL) fluid (set C) was obtained from subjects with Scadding 

stage II or III chest X-rays undergoing diagnostic bronchoscopy for a suspected new 

diagnosis of pulmonary sarcoidosis.  Subjects included here are those in whom 

sarcoidosis was confirmed based on standard criteria including transbronchial biopsy 

with noncaseating granulomas and exclusion of alternative diagnoses by culture and 

stains for fungi and mycobacteria. All subjects were newly-diagnosed and not previously 

treated. Non-sarcoidosis control BAL was obtained from healthy volunteers who 

underwent research bronchoscopy and have been described previously (Charlson et al., 
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2011).  An environmental control (bronchoscope prewash) was obtained prior to each 

bronchoscopy by suctioning 10 ml of lavage saline through the scope channel as 

previously described (Charlson et al., 2011).  

An aliquot of Kveim reagent (set D) was analyzed that was previously prepared at Mt. 

Sinai Hospital and validated for clinical diagnostic use as described (Siltzbach, 1961; 

Teirstein, 1998).  

A specimen of sarcoidosis-involved spleen (set E) was obtained from an individual with 

sarcoidosis who underwent splenectomy for symptomatic splenic enlargement.  

Histological examination subsequently confirmed granulomatous involvement of the 

spleen. Immediately following surgical removal, subcapsular tissue was dissected from 

the organ under aseptic conditions, transported in a sterile container on ice, cut into 0.1g 

pieces with sterile scissors and forceps under sterile conditions, then snap-frozen and 

stored at -80ºC. For analysis, one 0.1g piece of tissue was thawed, cut in thirds with a 

sterile scalpel, and each fragment subject to independent DNA extraction and analysis in 

parallel. To obtain an appropriate environmental control that reflected both specimen 

processing and sequencing steps, prior to tissue dissection an aliquot of saline (that later 

served as a vehicle for tissue processing) was used to gently rinse the scalpel that was 

subsequently employed for tissue dissection, and this was carried through the DNA 

extraction and sequencing pipeline.   
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2.7.1.2. DNA purification 

DNA from paraffin-embedded, formaldehyde-fixed tissue samples (10um slices) was 

extracted using the Qiagen GeneRead DNA FFPE Tissue kit following manufacturer’s 

recommendations, except with the addition of a 10 minute, 95ºC incubation step during 

proteinase digestion to maximize DNA yield from hard-to-lyse fungi and other microbes, 

and increase DNA yield. For 16S and ITS sequencing, DNA from 1.8 ml of 

unfractionated BAL fluid and the corresponding scope prewashes was isolated using the 

PowerSoil DNA kit (MoBio, Carlsbad, CA), and included an additional 10 min, 95ºC 

incubation step as above. DNA and RNA isolation for virome sequencing is described 

below. For spleen, three sections of approximately 0.03g each were dissected from a 

larger 0.1g piece under sterile conditions, and DNA was isolated using the Qiagen 

QIAamp Pathogen UCP Mini kit. For Kveim reagent, 200ul aliquots of material were 

spun down at 10,000 RPM in a tabletop centrifuge for 10 minutes and the supernatant 

was discarded. The pellet was resuspended in SM buffer and extracted using the Qiagen 

QIAamp Pathogen UCP Mini kit. All extractions were performed in a BSL2+ hood after 

the workspace was treated with DNA remover and UV irradiation to remove 

environmental contamination. DNA was stored at -20oC. 

2.7.1.3. Sequence analysis of 16S and ITS rRNA gene segments  

Bacterial 16S ribosomal DNA was amplified using primers for the V1V2 16S region 

(Supp. Table 2-1) and PCR conditions as described previously (Charlson et al., 2012; 

Lauder et al., 2016). Each PCR reaction was carried out in duplicate or triplicate in 25ul 

reactions and pooled before sequencing. The PCR reactions were conducted using 
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AccuPrime Taq DNA Polymerase from Invitrogen and the pooled amplicons were 

sequenced on an Illumina MiSeq. Resulting sequence reads were processed using the 

QIIME 1.91 workflow (Caporaso, Kuczynski, et al., 2010). In brief, the reads were 

clustered into OTUs with 97% sequence similarity using UCLUST (Edgar, 2010) and 

aligned to full-length 16S sequences using pyNAST (Caporaso, Bittinger, et al., 2010). 

Taxonomic ranks were assigned using RDP Classifier (G. P. Wang, Ciuffi, Leipzig, 

Berry, & Bushman, 2007) with minimum 50% confidence. 

The fungal ITS1 region was amplified using ITS1F and ITS2 primers ((Dollive et al., 

2012; Gardes & Bruns, 1993), Supp. Table 2-1), with each sample individually barcoded 

using Golay barcodes. The PCR reactions were carried out in duplicate or triplicate with 

4ul of template, 0.4 ul AccuPrime Polymerase, 3ul of 10uM forward primer, 3ul of 10uM 

reverse primer, 2.5 ul Buffer II, and 12.1 ul PCR-grade water. The reactions were 

conducted using cycling parameters as follows: 94oC initial denaturation for 3 minutes; 

94oC for 45s, 56oC for 60s, 72oC for 90s (35 cycles); 72oC final extension for 10 minutes. 

The individual replicates were bead purified using Agencourt AMPure XP beads (1:1 

ratio), and then purified a second time with a 0.8 ratio to remove excess primer dimers. 

Amplicon concentration was assessed using Picogreen and product size checked on a 

BioAnalyzer. The final products were pooled for sequencing and bead-purified again at a 

0.8 ratio to remove further primer dimers. The sequencing was performed on an Illumina 

Miseq. After sequencing, the reads were processed using PIPITS (Gweon et al., 2015). 

Taxonomy was assigned using BROCC (Dollive et al., 2012) and all subsequent analysis 
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was performed in R. All synthetic DNA sequences used in this study are in Supp. Table 

2-1. 

2.7.1.4. Virome analysis 

To enrich for viruses in BAL and matched prewash specimens, the following steps were 

used: 1.8ml of BAL fluid was pelleted at 960g for 10 min and the acellular supernatant 

material then subjected to size exclusion concentration (100 kDa; Amicon). The filtered 

material was then nuclease treated to digest non-encapsulated nucleic acids.  Nucleic 

acids were extracted, DNA subjected to whole genome amplification using GenomiPhi, 

and RNA was transcribed to cDNA and PCR-amplified.  Details of these methods have 

been previously described (Abbas et al., 2016).  The resulting libraries were shotgun 

sequenced on an Illumina HiSeq 2500 using the Nextera XT DNA Library Preparation 

Kit (Illumina, San Diego, CA) with dual-indexed barcodes, and reads were quality 

filtered using Trimmomatic (Bolger, Lohse, & Usadel, 2014).  

Human reads were filtered by removing any that mapped to the human genome 

(GRCh38). Remaining reads were annotated using Kraken (Wood & Salzberg, 2014) 

using a custom database that included all complete bacterial, fungal, archaeal and viral 

genomes available in RefSeq release 79 (O'Leary et al., 2016). All non-virus reads were 

removed from consideration. We found many reads annotated to viruses later determined 

to be either from reagents or otherwise spurious, including mis-annotation of human 

reads, as we have previously reported (Abbas et al., 2016).  We excluded the following 

species: Enterobacteria phage M13, Enterobacteria phage T7, Enterobacteria phage phiX-
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174 sensu lato, Bacillus phage phi29, and Pseudomonas phage phi6, human herpesvirus 6 

and 7, and Shamonda virus. 

 

2.7.1.5. Additional quality control issues 

To minimize the impact of batch effects (Salter et al., 2014), a single lot of DNA 

extraction kits were used for all samples of a given type (including sarcoidosis, non-

sarcoidosis, and evironmental controls), and all samples of each set were combined and 

sequenced in a single sequencing run.  Because fixation can partially degrade DNA and 

subsequent downstream analysis (Campos, 2011), we used the Qiagen GeneRead FFPE 

kit, which includes an enzyme to correct C->T mutations that may occur. This kit does 

not address increased DNA fragmentation from fixation, but we expect these effects to be 

minimal due to the small length of the target V1V2 and ITS1 regions in 16S and ITS 

sequencing. 

2.7.1.6. Whole genome sequencing 

Sarcoid spleen tissue and Kveim reagent were analyzed using metagenomic whole 

genome shotgun sequencing. DNA was extracted using the Qiagen Ultraclean Pathogen 

(UCP) Mini kit following its recommendations for DNA isolation from tissue samples. 

Metagenomic sequencing was carried out on an Illumina HiSeq 2500 using the Nextera 

XT DNA Library Preparation Kit (Illumina, San Diego, CA) with dual-index barcodes. 

The reads from the metagenomic sequencing were then processed in the following steps: 

1) reads were quality-filtered, paired and adapter-trimmed using Trimmomatic (Bolger et 
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al., 2014); 2) human and phiX reads (used in sequencing library prep) were removed 

using bwa (Li & Durbin, 2009), and 3) reads were classified using Kraken (Wood & 

Salzberg, 2014) with a custom database built from all genomic sequences from RefSeq 

(release 79, (O'Leary et al., 2016)), with low-complexity regions masked before 

querying. The complete pipeline is available at https://github.com/eclarke/sunbeam.  

In initial analysis, reads containing short sequence repeats from human DNA were 

annotated to various species including Toxoplasma gondii and Mycobacterium spp. The 

short repeat sequences in these reads were also present in some draft genomes used to 

build our database, and were sufficiently complex to avoid masking by the NCBI dust 

program (Camacho et al., 2009) used on all database sequences. These annotations were 

judged to be false positives based on their presence in the human genome and the lack of 

any other reads aligning to Toxoplasma gondii and Mycobacterium spp.. To prevent 

further false positives, we used the RepeatMasker program (Smit, 2013-2015) to mask 

these repeat regions and re-ran the classification. The results presented here reflect 

classification after repeat masking. 

2.7.1.7. Statistical analysis 

In order to compare study group samples while accounting for the environmental 

controls, we developed a generalized linear mixed effects model (GLMM) with the 

following design. The presence or absence of a taxa was modeled using a binomial link 

function, and the fixed effects were study group (sarcoidosis or healthy) and sample type 

(BAL vs prewash, or FFPE vs blank paraffin). The random effects were the grouping pair 

https://github.com/eclarke/sunbeam
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(i.e. the sample with its matched control) plus random effect for each individual sample. 

The inclusion of this latter random effect helped control overdispersion (Harrison, 2014) 

and account for varying library size between samples. The model was built using the 

‘glmer’ function in the R package lme4 (Douglas Bates & Walker, 2015). To determine if 

a taxon was significantly enriched, we looked at the significance and directionality of the 

coefficient on the study group and sample type interaction term. Specifically, the 

coefficient had to be positive in the sarcoidosis and non-environmental direction to be 

considered enriched in sarcoidosis over both the healthy and environmental background. 

The significance of the interaction coefficient was measured both by testing the model 

with and without the interaction term via ANOVA. The significance of the interaction 

coefficient was measured by ANOVA, comparing to an alternative model without the 

interaction term. Taxa appearing in less than 10% of the samples, for which the model 

failed to fit, or which had a negative interaction coefficient after fitting were discarded 

from further consideration. P-values from the remaining taxa were subjected to multiple 

testing correction using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). 

We set our FDR-corrected p-value threshold at 0.10 to prioritize finding potential hits. 

For tissue cohort B, we did not have matched environmental controls, and so the GLMM 

specified above was unnecessary. Instead, we used the R package DESeq2 (Michael 

Love, 2014) to assess enrichment of a taxa in sarcoidosis samples over healthy controls. 

DESeq2 uses a negative binomial distribution to fit taxon abundance in samples in a 

generalized linear model, but cannot model random mixed effects. The package provides 

p-value and multiple testing correction automatically, and for consistency we used the 



 

56 

 

same FDR threshold of 0.1. DESeq2 is one of the currently recommended methods for 

testing for differentially abundant taxa by the QIIME developers (Caporaso, Kuczynski, 

et al., 2010). 

In both the GLMM or the DESeq2 approach, we tested at a hierarchy of taxonomic ranks. 

After testing each individual OTU, we collapsed the counts according to species so that 

the reads of all OTUs belonging to the same species were summed together. We then 

tested each species from the same model, and repeated this process for genus and family 

level ranks. Our rationale for this was that etiologic agents may be multiple species or 

taxa within a higher group- e.g. a family of molds, or a number of closely related 

bacterial species. 

2.7.1.8. Data availability 

The code used for all analysis, including the specific model formulation, is available 

online at https://github.com/eclarke/sarcoid-microbiome-paper. Post-processed sequence 

data (after quality control, OTU formation, and taxonomic assignment) is archived at 

https://zenodo.org/record/825276. Raw sequence reads are archived with NCBI under 

BioProject PRJNA392272. 

https://github.com/eclarke/sarcoid-microbiome-paper
https://zenodo.org/record/825276
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2.7.2. Supplemental Figures 

 

Supp. Figure 2-1. Illustration of statistical approach. 
Each taxa is considered individually. Background reads of the taxa from its environmental control (blue) 

are considered with the reads detected in the paired sample (red). The reads from a taxon are modeled using 

a binomial distribution link function in a generalized linear mixed model, and enrichment is determined by 

the magnitude and direction of the regression term corresponding to sarcoidosis samples when contrasted 

with healthy samples and environmental controls. A positive coefficient for the sarcoidosis + sample type 

interaction term indicates enrichment of that taxa relative to environment and healthy controls; statistical 

significance is assessed via ANOVA with a model lacking the interaction term between sample type and 

study group. The code describing the model exactly is available online at 

https://github.com/eclarke/sarcoid-microbiome-paper.  
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Supp. Figure 2-2. Dominant taxa in tissue samples (Set A). 
The dominant bacterial taxa (A) and fungal taxa (B) in sample set A are shown in the form of their median 

abundance in all samples (white lines) and 95% median confidence intervals (surrounding boxes). Lineages 

are grouped by their most specific taxonomic rank available. A differential enrichment of Aspergillus fungi 

is visible in the sarcoidosis samples and environmental controls, and enrichment of Cladosporiaceae is 

apparent in sarcoidosis lymph node.  
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Supp. Figure 2-3. Community differences in tissue samples (Set A). 
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Distances between all pairs of samples were generated using generalized UniFrac (J. Chen et al., 2012; 

Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011) with an alpha parameter of 0.5.  Principle 

Coordinate Analysis (PCoA) plots show relationships between bacterial communities in lymph nodes (A), 

fungal communities in lymph nodes (B), bacterial communities in blank paraffin (C), and fungal 

communities in blank paraffin (D). There were no significant differences in bacterial communities between 

sarcoid and healthy lymph node samples or their matched paraffin controls. There were significant 

differences in the fungal communities of sarcoid and healthy lymph node samples (p < 0.05), but these 

differences were also present in the matched paraffin controls (p < 0.01). 

 

Supp. Figure 2-4. Dominant taxa in tissue samples (Set B). 
The dominant bacterial taxa (A) and fungal taxa (B) in sample set B are shown in the form of their median 

abundance in all samples (white lines) and 95% median confidence intervals (surrounding boxes). Lineages 

are grouped by their most specific taxonomic rank available. 
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Supp. Figure 2-5. Community differences in tissue samples (Set B). 
Distances between all pairs of samples were generated using generalized UniFrac (alpha=0.5). Principle 

Coordinate Analysis (PCoA) plots showing relationships between bacterial communities (A) and fungal 

communities (B) in lymph node samples in sample set B. Significant differences were found in the bacterial 

communities of sarcoidosis and healthy lymph node (p < 0.05). 
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Supp. Figure 2-6. Dominant taxa in BAL samples (Set C). 
The dominant bacterial taxa (A), fungal taxa (B) and viruses (C) in sample set C are shown in the form of 

their median abundance in all samples (white lines) and 95% median confidence intervals (surrounding 

boxes). Lineages are grouped by their most specific taxonomic rank available.  
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Supp. Figure 2-7. Community differences in BAL samples (Set C). 
Distances between all pairs of samples were generated using generalized UniFrac (alpha=0.5). Principle 

Coordinate Analysis (PCoA) plots showing relationships between bacterial communities in BAL and 

prewash samples from set C. No significant differences were found between sarcoidosis and healthy BAL 

(panel A) or their corresponding prewash (panel B). 
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Supp. Figure 2-8. Differences in prewash viral populations. 
Viral populations differ between bronchoscope prewash samples taken just before bronchoscopy of healthy 

volunteers (left panel) and sarcoidosis subjects (right panel). Rows indicate the viruses detected, columns 

are separate samples. 
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2.7.3. Supplemental Tables 

Supp. Table 2-1. Oligonucleotide sequences used in Chapter 2. 

 Name Sequence Components 

Illumina 

MiSeq 16S 

V1-V2 

Amplification 

and 

Sequencing 

Primers 

Forward 

PCR 

amplification 

primer 

5'-

AATGATACGGCGACCACCGAGATCTACAC-

XXXXXXXXXXXX-TATGGTAATT-GT-

AGAGTTTGATCCTGGCTCAG-3' 

5' Illumina 

adapter, 12-base 

Golay barcode 

(X's), forward 

pad*, linker**, 

27F forward 

primer 

Reverse 

PCR 

amplification 

primer 

5'-CAAGCAGAAGACGGCATACGAGAT-

XXXXXXXXXXXX-AGTCAGTCAG-CC-

TGCTGCCTCCCGTAGGAGT-3' 

Reverse 

complement of 3' 

Illumina adapter, 

12-base Golay 

barcode (X's), 

reverse pad, 

linker, 338R 

reverse primer 

Forward 

sequencing 

primer 

5'-TATGGTAATT-GT-

AGAGTTTGATCCTGGCTCAG-3' 

Forward pad, 

linker, 27F 

forward primer 

Reverse 

sequencing 

primer 

5'-AGTCAGTCAG-CC-

TGCTGCCTCCCGTAGGAGT-3' 

Reverse pad, 

linker, 338R 

reverse primer 

Illumina 

MiSeq ITS1F 

and ITS2 

Amplification 

and 

Sequencing 

Primers 

Forward 
PCR 

amplification 

primer 

5'-
AATGATACGGCGACCACCGAGATCTACAC-

XXXXXXXXXXXX-TGCGGCCTGC-GT-

CTTGGTCATTTAGAGGAAGTAA-3' 

5' Illumina 

adapter, 12-base 
Golay barcode 

(X's), forward 

pad*, linker**, 

ITS1F primer 

Reverse 

PCR 

amplification 

primer 

5'-CAAGCAGAAGACGGCATACGAGAT-

XXXXXXXXXXXX-AGTCAGTCAG-CC-

GCTGCGTTCTTCATCGATGC-3' 

Reverse 

complement of 3' 

Illumina adapter, 

12-base Golay 

barcode (X's), 

reverse pad, 

linker, ITS2 

primer 

Forward 

sequencing 

primer 

5'-TGCGGCCTGC-GT-

CTTGGTCATTTAGAGGAAGTAA-3' 

Forward pad, 

linker, ITS1F 

primer 

Reverse 

sequencing 

primer 

5'-AGTCAGTCAG-CC-

GCTGCGTTCTTCATCGATGC-3' 

Reverse pad, 

linker, ITS2 

primer 
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Chapter 3. Swga: A primer design toolkit for selective whole 

genome amplification 

The contents of this chapter have been previously published in: 

Clarke, E. L., Sundararaman, S. A., Seifert, S. N., Bushman, F. D., Hahn, B. H., 

& Brisson, D. (2017). swga: a primer design toolkit for selective whole genome 

amplification. Bioinformatics, 33(14), 2071-2077. 

doi:10.1093/bioinformatics/btx118 

3.1. Abstract 

Motivation: Population genomic analyses are often hindered by difficulties in obtaining 

sufficient numbers of genomes for analysis by DNA sequencing. Selective whole-

genome amplification (SWGA) provides an efficient approach to amplify microbial 

genomes from complex backgrounds for sequence acquisition. However, the process of 

designing sets of primers for this method has many degrees of freedom and would benefit 

from an automated process to evaluate the vast number of potential primer sets. 

Results: Here, we present swga, a program that identifies primer sets for SWGA and 

evaluates them for efficiency and selectivity. We used swga to design and test primer sets 

for the selective amplification of Wolbachia pipientis genomic DNA from infected 

Drosophila melanogaster and Mycobacterium tuberculosis from human blood. We 

identify primer sets that successfully amplify each against their backgrounds and describe 

a general method for using swga for arbitrary targets. In addition, we describe 

characteristics of primer sets that correlate with successful amplification, and present 

guidelines for implementation of SWGA to detect new targets. 
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Availability and Implementation: Source code and documentation are freely available on 

https://www.github.com/eclarke/swga. The program is implemented in Python and C and 

licensed under the GNU Public License. 

3.2. Introduction 

Selective whole-genome amplification (SWGA) provides a means of obtaining sufficient 

numbers of genomes from a target organism to perform whole-genome sequence 

analysis, even in the presence of overwhelming DNA from other organisms (Leichty & 

Brisson, 2014). Difficulties in isolating a target of interest are common in microbial 

population genomics, which requires acquiring adequate genomic DNA from a target 

while limiting the amount of non-target DNA (Mardis, 2008). Often, the genomes of 

interest represent only a fraction of a percent of the total nucleic acids in a sample, and so 

direct sequencing is inefficient and expensive. Laboratory culture of the target microbe is 

the traditional solution, but many microbes replicate poorly or not at all in in vitro 

conditions (Amann et al., 1990; Ghazanfar et al., 2010; Schmeisser et al., 2007). 

SWGA allows sequence acquisition without culture of the target organism or extensive 

purification of target DNA. It achieves this by preferentially amplifying the target 

genome using a set of selective primers and phi29 polymerase-based multiple 

displacement amplification (MDA) (Dean et al., 2002; Leichty & Brisson, 2014). Since 

its introduction, this method has been used to study Wolbachia pipientis in Drosophila 

melanogaster (Leichty & Brisson, 2014), and to understand the evolution and drug 

resistance of Plasmodium falciparum (Guggisberg et al., 2016; Oyola et al., 2016; 
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Sundararaman et al., 2016) and Plasmodium vivax (Cowell et al., 2017). Further 

applications of SWGA to population genomics may help reconstruct epidemic 

transmission patterns, characterize patterns of inter-host viral transmission, detect escape 

from antimicrobial agents, and delineate the evolutionary dynamics of immune escape 

(Hume, Lyons, & Day, 2003; Luikart, England, Tallmon, Jordan, & Taberlet, 2003; 

Martínez et al., 2012; Nelson et al., 2008; Nunes et al., 2012; Stack, Murcia, Grenfell, 

Wood, & Holmes, 2012). 

Implementation of SWGA has been complicated by the difficulty in identifying an 

effective set of selective primers, as there are many constraints and degrees of freedom in 

the composition of potential primer sets. These primers must reflect DNA sequence 

motifs common in the target genome but rare in the background DNA. They also must 

have binding sites sufficiently near each other to enable the branching and displacement 

actions of the phi29 polymerase that are essential for MDA. A previously published 

method used a set of Perl scripts (Leichty & Brisson, 2014) to identify primers with the 

highest ratio of binding frequencies in the target genome versus the background DNA. 

However, choosing a set by the above method is suboptimal: for one, the primers may 

form heterodimers with each other or homodimers with themselves; they may be 

individually selective but in aggregate bind too frequently to the background DNA; or, 

they may bind to the target’s telomeric or mitochondrial DNA, and not be sufficiently 

evenly distributed across the genome. There are aspects of the primer sets that have an 

unknown effect on the efficiency of the reaction, including the annealing and melting 

temperature of the primer sequences, the evenness of the binding sites across the target 
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genome, and the density of binding sites. The Perl scripts mentioned above are unable to 

evaluate many of these criteria, requiring extensive manual effort and trial-and-error to 

create workable designs. 

Here we present swga, a program that identifies selective primer sets for a given target 

genome and background. swga evaluates all potential primer sequences and forms sets of 

valid primers that meet the above criteria. It automatically calculates a variety of metrics 

for each set that potentially affect the efficacy and selectivity of the reaction. These sets 

are then are ranked and presented to the user, enabling the selection of primer sets most 

likely to succeed. Nearly all operating parameters of the program are user-specifiable but 

initialized with reasonable defaults based on the target and background genomes selected, 

reducing the work needed to get started. 

We demonstrate the use of swga to design primer sets and test them on two biological 

systems: Wolbachia pipientis from infected Drosophila melanogaster, and 

Mycobacterium tuberculosis DNA spiked into human blood. For each system, we 

designed multiple primer sets to explore the effect of various aspects of the primer sets on 

reaction efficacy, such as primer melting temperature, binding density on the target 

genome, and the evenness of binding sites. These experimental results clarify the relative 

importance of each and allow us to describe an effective workflow for using swga. 
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3.3. Methods 

3.3.1. Program overview 

The swga program can be divided into four modules (Fig. 1). The user starts by defining 

the target and background sequences using swga init. At this point, a set of sequences 

can be supplied that define a priori where primers should not bind, such as a 

mitochondrial genome or plasmids (the ‘exclusionary sequences’). The swga count 

command then uses DSK (Rizk, Lavenier, & Chikhi, 2013) to identify all nucleotide 

sequences in the size range specified by parameters min_size and max_size that exist in 

the target genome and do not exist in the exclusionary sequences (if provided). These 

primers are used to populate a local SQLite database for later retrieval. The selectivity of 

these primers is determined by their frequency in the target genome versus the 

background DNA, so swga count saves the frequency that each primer appears in the 

target and background as well. Primers that appear extremely rarely in the target and 

overly frequently in the background (as defined by user-editable parameters, with 

defaults set by swga init), are not saved to help speed up downstream steps. Additionally, 

primers that would form internal hairpins or homodimers with themselves are omitted. 
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Figure 3-1. An overview of the swga workflow. 
An overview of the swga workflow. The program begins by counting all nucleotide sequences of length k 

(k-mer) in both the target and background genomes for a given range of k (e.g. 8–12 bp). The k-mers are 

then filtered by criteria that include the binding frequencies in the background and target genome, their 

melting temperatures, and the likelihood of hairpin or homodimer formation. The best k-mers are then used 

to form compatible sets, in which no k-mer would likely form a heteroduplex with any other in the set. 

These sets are then evaluated for multiple criteria including binding frequencies and evenness. The results 

can be exported into common formats for downstream use and visualization. 
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3.3.2. Primer filtering 

The command swga filter ranks and filters potential primers by their melting 

temperature, selectivity, and evenness of binding in the target genome. First, primers that 

bind too sparsely to the target genome (lower than parameter min_fg_bind) or too 

frequently to the background (max_bg_bind) are removed. Next, the melting temperature 

is approximated using nearest-neighbor thermodynamics (Allawi & SantaLucia, 1997) 

with corrections for mono- and divalent cations. Primers with melting temperatures 

outside the range defined by min_tm and max_tm are removed. The evenness of binding 

then is calculated by finding the Gini index (Gini, 1912) of the distances between each 

primer binding site on the target. The Gini index varies between 1 and 0, where 1 

represents extremely uneven and 0 represents perfectly even. A primer with a low Gini 

index has binding sites that are each separated by similar distances, whereas a primer 

with a high Gini index may reflect one where many of the primer binding sites are 

clumped together (e.g. on tandem repeat regions). Primers with Gini indices higher than 

max_gini are removed. Finally, primers are ranked by the ratio of target binding 

frequency to background binding frequency and those primers with the highest ratio are 

identified for downstream use (by default, this identifies the top 200 primers, and is 

modifiable via the max_primers parameter). The thresholds for each filter are user-

editable, and the swga filter command caches results so that it can be quickly re-run to 

explore different results. 
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3.3.2.1. Primer set evaluation 

The swga find_sets command is then used to find sets of compatible primers from the 

ones identified in the last step of swga filter. Brute force evaluation of all primer sets is 

computationally infeasible: given n primers and a set size of k, the total number of 

possible sets is (n choose k). With the default parameters of n=200 and  k=2−7, there are 

over 2.4×1016 possible sets. Fortunately, not all of these sets are usable for swga. A pair 

of primers are incompatible if they form heterodimers (calculated by the number of 

consecutive complimentary bases), or if one primer is a subsequence of another. swga 

find_sets calculates the pairwise compatibility of all selected primers and stores the 

results as a graph. In this graph, primers are vertices and compatible primers are 

connected with edges. The problem of finding compatible sets then reduces to a problem 

of finding sets of vertices in the graph that are all interconnected (a ‘clique’ in graph 

theory). swga also stores the average distance between binding sites on the background as 

a ‘weight’ on each vertex. This allows the program to prioritize cliques that have higher 

total weights, representing sets of primers that bind infrequently to the background. 

To find these cliques, the swga find_sets command uses a modified version of the 

program cliquer (Niskanen & Östergård, 2003). The branch-and-bound algorithm in 

cliquer is a computationally efficient way of finding cliques in a graph. We have 

extended the algorithm to find only cliques that meet certain criteria. By specifying the 

desired criteria a priori the algorithm can skip sets that do not meet the requirements and 

save computation time. These criteria include the minimum distance between binding 

sites in the background (min_bg_bind_dist) and maximum distance between binding sites 
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on the target (max_fg_bind_dist). In addition, the algorithm can explore a range of set 

sizes (min_size and max_size) in order to find valid sets. By specifying a broad range of 

set sizes, the algorithm is able to find sets with a broad range of characteristics 

independent of the number of primers. 

Primer sets that meet these criteria are further evaluated on metrics including the average 

and maximum distance between primer binding sites on the target genome and the Gini 

index of all binding sites in the set. These sets and their accompanying metrics are then 

saved. Even with the above optimizations, the number of valid sets can be quite large. For 

this reason, swga find_sets can be safely stopped after evaluating and storing a sufficient 

number of sets. In our usage, we generally stop after 1–5 million sets have been saved. 

3.3.2.2. Primer set output and visualization 

The saved primer sets can be explored and exported using swga export. This command 

allows the user to order the sets by any of the evaluated metrics, export all or some of the 

sets of interest to Excel-compatible formats, or export a set to a BedGraph or BedFile 

format for visualization in a genome browser (Kent et al., 2002) 

3.3.3. Empirical primer set testing 

To evaluate swga, we used it to design primer sets for amplification of W. pipientis DNA 

against a background of D. melanogaster and of M. tuberculosis against a background of 

H. sapiens. We evaluated primer sets on their ability to selectively and evenly amplify the 

target genome. 
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3.3.3.1. Designing primer sets for W.Pipientis 

We created four primer sets for W. pipientis against D. melanogaster, varying each by 

melting temperature range, selectivity, and evenness of binding sites on the target 

genome. We first initialized swga on the W. pipientis genome with D. melanogaster as 

the background, and ran swga count to store all potential primers. 

For the first two sets, we used swga filter with the ‘standard’ temperature range 

established in Leichty and Brisson (2014), and default in swga, of 15–45°C. This range 

we named Tm Low, or TmL. After running swga find_sets and storing 1 million sets, we 

used swga export to output the set with the lowest target to background binding distance 

ratio, which we called Set TmL/Selective. We then used swga export again to output the 

set with the lowest Gini index, which we called Set TmL/Even. 

The next two sets were designed with a higher melting temperature range. We re-ran 

swga filter with a Tm range of 35–55°C, which we named Tm High, or TmH. As above, 

we then re-ran swga find_sets on the new primers and chose the most selective and most 

even sets from the results. These are called TmH/Selective and TmH/Even, respectively. 

The complete parameter listing is included in Section §3.7.3. The primers belonging to 

each set are given in Supp. Table 3-1. 

3.3.3.2. Designing primer sets for M. tuberculosis 

We created ten primer sets for M. tuberculosis using swga. Our target genome was M. 

tuberculosis strain H37Rv (NC_000962.3) and our background was the human genome, 

version GRCh38. For this system, we ran swga filter with a temperature range constant 
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at 15–45°C, and imposed a maximum per-primer Gini index of 0.6. We stopped swga 

find_sets after storing five million sets and exported all of them to CSV format using 

swga export. The sets were filtered to only sets with mean distance between target 

binding sites <5000 bases. We selected ten sets with the most extreme combinations of 

mean target binding distance and evenness (via the metrics fg_dist_mean and 

fg_dist_gini, respectively). These sets we named Mtb1 through Mtb10. The distribution 

of these sets in the pool is visualized in Supp. Figure 3-1. In addition, we selected from 

the original five million the set with the highest Gini index (most uneven) and highest 

mean target binding distance as negative comparisons, named MtbUneven and 

MtbSparse, respectively. The full parameter listing is included in Section §3.7.3.2. The 

primers belonging to each set are given in Supp. Table 3-2. 

3.3.4. Selective whole-genome amplification and sequencing 

The Wolbachia-specific primer sets were tested on pooled genomic DNA extracted from 

10 Wolbachia-infected D. melanogaster (strain  Dmel\w118). Pooling was performed to 

eliminate inter-fly variability in Wolbachia infection levels, and each primer set was 

tested in triplicate using 40 ng of input DNA per reaction, except as noted for additional 

tests of the TmL/Even Wolbachia primer set. For consistency with the approach used in 

Leichty and Brisson (2014), the pooled genomic extract was digested with NarI (NEB, 

New England Biolabs, Inc., Ipswich, MA, USA) at 37°C for 30 minutes, in order to 

suppress mitochondrial amplification. This step is likely unnecessary in the general case 

because swga includes an option to omit mitochondrial sequences from primer formation. 
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Mycobacterium primer sets were tested on purified M. tuberculosis DNA (strain H37Rv, 

ATCC 27294D-2), diluted to 1% in human genomic DNA extracted from cultured 

CD4+ T cells. Primer sets were tested in triplicate. 

Selective whole-genome amplification was performed as previously described 

(Sundararaman et al., 2016), with slight modifications. Reactions were performed in a 

volume of 50 μL using input DNA, 3.5 mM total of SWGA primers, 1× phi29 buffer 

(New England Biolabs), 1 mM dNTPs and 30 units phi29 polymerase (New England 

Biolabs). Amplification conditions included a 1 h ramp-down step (35–30°C), followed 

by a 16 h amplification step at 30°C. Phi29 was then denatured for 10 min at 65°C. 

Amplified samples were purified using AmpureXP beads (Beckman Coulter), prepared 

for Illumina sequencing as described in (Kryazhimskiy, Rice, Jerison, & Desai, 2014), 

and sequenced on an Illumina MiSeq (150 bp, paired end). We also sequenced the 

unamplified pool to establish a baseline for amplification efficiency. Illumina-specific 

adapter and primer sequences were removed from the reads using cutadapt (Martin, 

2011). In both systems, reads were first aligned to the background (D. melanogaster or 

human) using smalt (Ponstingl & Ning, 2010). Unmapped reads were then mapped to the 

target genome (W. pipientis or M. tuberculosis, respectively), also using smalt. Analysis 

of sequence coverage of the target genome and sequencing rarefaction analyses were 

performed using R (R Core Team, 2017). All code used in the analysis and to generate 

the figures is available online at https://github.com/eclarke/swga_paper. 
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3.4. Results 

We used swga to design four primer sets for amplifying Wolbachia against a background 

of D. melanogaster, which tested the effect of melting temperature ranges, selectivity, 

and evenness. We designed twelve primer sets for amplifying M. tuberculosis against a 

background of human DNA with varying primer binding evenness and density on the 

target. Ten sets tested were various combinations of high density and evenness. Two, for 

comparison, were the most uneven and most sparse. For M. tuberculosis, we compared 

amplification using random hexamers (e.g. standard MDA) to the swga-designed primer 

sets. 

3.4.1. Evaluation of primer sets for W.pipientis 

The four primer sets for W. pipientis were designed with two different temperature ranges 

(TmL: 15–45°C, TmH: 35–55°C). From the sets identified in each temperature range, we 

chose the set with the highest selectivity, defined by the lowest target to background 

binding distance ratio (TmL/Selective and TmH/Selective). We also chose the sets with 

the most even distribution of binding sites (TmL/Even and TmH/Even). As a control, we 

included the primer set from Leichty and Brisson (2014). The composition and metrics 

for each of these five sets is shown in Table 3-1. 
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Table 3-1. Primer sets for Wolbachia. 

  Ratio  # Primers  Gini  Mean target dist  Mean bg. dist  

TmL/Selective  0.0544  9  0.654  5.33E+03  9.78E+04  

TmL/Evena  0.1050  7  0.537  6.85E+03  6.53E+04  

TmH/Even  0.0075  2  0.537  1.31E+04  1.73E+06  

TmH/Selective  0.0005  2  0.66  1.21E+04  2.43E+07  

Leichty 2014  0.0163  2  0.712  5.31E+03  3.25E+05  
 

Characteristics of primer sets chosen for selective whole-genome amplification of Wolbachia from infected 

Drosophila DNA. ‘Ratio’ is the ratio of average distance between binding distances in the target and 

background. aThe set that most effectively amplified Wolbachia. 

The pooled genomic DNA contained 4.7% W. pipientis DNA, as determined by 

sequencing of the unamplified control. We recovered ∼200 Mbp of sequence for each 

amplicon. The proportion of sequencing reads that were derived from W. pipientis was at 

least 2.5 times greater in all amplified samples than the sequencing reads from the 

unamplified genomic extract (Supp. Figure 3-2). We found that the primer sets with the 

higher melting temperatures (TmH/Selective and TmH/Even) yielded more Wolbachia 

reads as a total percentage, with some replicates as high as 77.8%. However, these primer 

sets failed to reach 10× coverage on even 10% of the W. pipientis genome (Figure 3-2). 

This was most likely due to uneven amplification of the target genome, as shown in 

Supp. Figure 3-3. 



 

80 

 

 

Figure 3-2. Sequencing effort required to cover Wolbachia genome. 
Selective whole genome amplification reduces the sequencing effort necessary to achieve at least ×10 

coverage across the W. pipientis genome. Each color represents an individual technical replicate; dashed 

lines represent the unamplified control. Lines above the unamplified control represent better sequencing 

efficiency in that they yielded greater coverage of the target genome with less sequencing effort. 

Sequencing 100 million bases from unamplified genomic DNA extracted from 10 flies resulted in 10-fold 

or greater sequencing coverage in only 2.8% of the W. pipientis genome. In contrast, the TmL/Even primer 

set resulted in 10-fold or greater coverage of 60–75% of the W. pipientisgenome with similar sequencing 

effort. This fraction was increased further to 72–91% when the TmL/Even primer set was used to 

amplify W. pipientis from 20 ng (rather than 40 ng) of total fly extract DNA (empirically, using lower total 

starting DNA can yield higher relative amplification when using phi29). The TmL/Selective primer set and 

the manually chosen set (Leichty & Brisson, 2014) improved W. pipientis sequence coverage relative to the 

unamplified sample. However, both of these sets failed to improve sequencing efficiency due an 

unevenness of coverage. The high Tm sets enriched only small portions of the genome and thus did not 

improve the genome coverage relative to the control. 

In contrast, the sets designed with the standard, lower melting temperature range (TmL) 

yielded more even coverage across the genome (Supp. Figure 3-3). The TmL/Even 

primer set, selected for having the most even distribution of primer sites across the 
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Wolbachia genome, gave high, even coverage across the target (Figure 3-3; Supp. Figure 

3-3). Moreover, the TmL/Even set reduced the sequencing effort required to achieve 10× 

coverage across 90% of the genome by 10-fold relative to the unamplified control (Figure 

3-2), extrapolating from the still-rising unamplified control’s rarefaction curve. While the 

final two sets—TmL/Selective and the Leichty set—provided more even coverage of the 

genome than the TmH sets, they ultimately did not outperform the unamplified control. 

The previously-published primer set from Leichty and Brisson (2014) yielded low total 

amplification efficiency (12.1–27.7%) and uneven coverage, while the TmL/Selective set 

had high amplification efficiency (50–60%) but similarly uneven coverage. 

We had originally expected that high numbers of primer binding sites in local regions of 

the genome would provide better coverage of that region. This was not seen in any of the 

sets tested (Supp. Figure 3-4). In each of the five sets tested, we did not detect a 

correlation between the number of primer binding sites and coverage. However, in primer 

sets with an overall higher density of binding sites on the target (as measured by a low 

average distance between binding sites), we had generally higher coverage across more 

of the Wolbachia genome (compare Figure 3-2 and Table 3-1). 
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Figure 3-3. Genome coverage by primer sets. 
Sequencing coverage of two swga-chosen sets, and the set from Leichty and Brisson (2014), across the W. 

pipientis genome. The depth of sequencing coverage per 1 Mb of sequencing effort (1 Mb * coverage 

depth/total bp sequenced) is shown for representative replicates of TmH/Even and TmL/Even (red lines) 

relative to the unamplified control (black lines). SWGA using the TmL/Even primer set improves depth of 

coverage across the majority of the W. pipientis genome by 10- to 100-fold, relative to the unamplified 

control. SWGA using the Leichty and Brisson (2014) (top panel) or TmH/Even (middle panel) sets also 

improve depth of coverage but over smaller regions of the genome, with the TmH/Even set resulting in high 

but localized amplification. Depth of coverage plots for all primer sets and replicates are shown in Supp. 

Figure 3-3. 

In summary, the primer set with the lowest Gini index and standard melting temperature 

(TmL/Even) was the best at selectively and evenly amplifying Wolbachia. While other 

sets provided a higher percentage of Wolbachia DNA (Supp. Figure 3-3), the overall 

coverage of these sets was low and amplification mostly occurred in specific regions 

(Figure 3-3). This suggests that evenness of primer binding sites on the target is a major 

factor in the efficacy of the primer set. 

3.4.2. Evaluation of primer sets for M. tuberculosis 

For M. tuberculosis, we restricted the primer pool to only those with a low Gini index 

(<0.6). We let the program identify five million primer sets and then selected only those 
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sets whose mean distance between binding sites on the M. tuberculosis genome was <5 

kb. From the resulting pool of primer sets, we selected ten sets with the most extreme 

combinations of primer set binding evenness and density to test the contributions of each. 

These ten will be referred to as our positive tests (Mtb1-10), and the distribution of these 

points on the total pool of sets is shown in Supp. Figure 3-1. We also selected the least 

selective set and the most uneven set from the five million set pool as negative controls 

(MtbSparse and MtbUneven, respectively). The composition and metrics for each of 

these 12 sets is shown in Table 3-2. 

Table 3-2. Primer sets for M. tuberculosis. 

  Ratio  # Primers  Gini  Mean target dist.  Mean bg. dist.  

Mtb6a  0.0057  7  0.501  1.95E+03  3.41E+05  

Mtb9a  0.0058  7  0.538  1.78E+03  3.05E+05  

Mtb4a  0.0062  7  0.512  1.88E+03  3.04E+05  

Mtb8a  0.0062  7  0.533  1.80E+03  2.92E+05  

Mtb7  0.0066  7  0.499  2.03E+03  3.09E+05  

Mtb2  0.0095  7  0.484  3.29E+03  3.45E+05  

Mtb5  0.0155  6  0.480  5.00E+03  3.22E+05  

Mtb1  0.0171  7  0.476  4.97E+03  2.90E+05  

Mtb3  0.0172  7  0.478  4.99E+03  2.90E+05  

Mtb10  0.0181  7  0.479  4.29E+03  2.37E+05  

MtbUneven  0.0140  2  0.623  1.14E+04  8.10E+05  

MtbSparse  0.0387  3  0.505  2.60E+04  6.71E+05  
 

Characteristics of primer sets chosen for selective whole-genome amplification of M. tuberculosis from 

human DNA, ordered by ratio. ‘Ratio’ indicates the ratio between the average distance between binding 

distances in the target and background. Primer sequences are listed in Supp. Table 3-2. aThe sets that most 

effectively amplified Mycobacterium using SWGA. 

The four sets with the lowest mean binding distance (sets Mtb4, Mtb6, Mtb8 and Mtb9) 

on the M. tuberculosis genome performed better than the unamplified controls, six other 

positive tests, both negative tests and the random hexamers (Figure 3-4 and Table 3-2). 
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These sets reached 1× coverage across 38–60% of the M. tuberculosis genome with 200 

megabases of sequence, while the remaining six positive tests did not perform better than 

the negative controls (Figure 3-4; Supp. Figure 3-5). These four sets yielded higher 

coverage across most of the Mycobacterium genome than the unamplified controls, while 

the remaining sets either only amplified certain regions or did no better than unamplified 

(Supp. Figure 3-6). Deeper sequencing of these four sets’ amplicons showed that the sets 

reached 10× coverage over 29–50% of the target by 1.5 Gbp of sequencing effort, with 

the unamplified controls only reaching 10× coverage on 2.5% of the target for the same 

sequencing effort (Figure 3-5). 
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Figure 3-4. Genome coverage using a range of set designs. 
Selective amplification of Mycobacterium using swga-designed sets that prioritized primer-level evenness 

and set-level binding density and selectivity. Curves indicate the percent of the target covered at 1X depth. 

Sets are ordered by the ratio of average distance between primer binding sites on the target to average 

binding distance on the background. The coloring indicates individual replicates, and the black dashed line 

indicates the unamplified control. The sets with the lowest ratios returned greater coverage of the target 

genome compared to unamplified controls than those with higher ratios, as shown by the rarefaction curves 

of these sets being higher than the dashed lines. 
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Figure 3-5. Deeper sequencing of M. tuberculosis. 
Deeper sequencing of four primer sets yields greater coverage of M. tuberculosis genome. The colored 

lines indicate individual replicates and the green dashed line is the pooled total. All four sets yield ∼10-fold 

increases in efficiency over the unamplified samples (black dashed line). The primer sets reach ×10 

coverage on between 28 and 50% of the target genome while the unamplified controls were at < 2.5% ×10 

coverage with 1.5 Gbp of sequencing. 

For Mycobacterium, we found that sets with smaller distances between primer binding 

sites on the target genome outperformed those optimized for lower Gini index. Nine out 

of the ten positive test Mycobacterium sets, including the four best sets, had lower Gini 

indices than the sets for Wolbachia. This suggests that after a certain threshold the Gini 

index becomes secondary to the primer binding site density. Therefore, pre-selecting 

primers with a low Gini index during swga filter and then choosing sets with high 

binding density in swga export allows the optimization of both attributes, and should 

yield effective primer sets. 
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3.5. Discussion 

Selective whole-genome amplification provides a way to preferentially amplify a target 

genome from a complex background. However, implementation of the SWGA method 

has been limited due to the difficulties in designing an effective set of primers. 

Assembling a primer set where all of the primers are compatible with each other, 

selective for the target genome, and rare in the background is a problem with many 

degrees of freedom. The swga program addresses this difficulty by automatically 

identifying and evaluating primer sets by specified criteria, allowing the user to select 

only those sets most likely to succeed in selective amplification of the target. 

We used swga to design primer sets for W. pipientis and M. tuberculosis that selectively 

amplified each in the presence of their host’s genome. These sets had varying binding 

evenness and selectivity for the target genome, allowing us to compare these attributes to 

the performance of each set. In addition, we demonstrated potential clinical utility of the 

swga program by amplifying DNA from the M. tuberculosis pathogen spiked into human 

blood. While in these experiments we used target/background pairs with clearly defined 

genomes, there is no reason the background cannot be a heterogenous mixture of DNA, 

such as stool or soil. In this case, the background could be approximated by whole-

genome shotgun sequencing of the mixture, and subtracting any reads belonging to the 

target, if present. 

Based on these results, it appears that primer binding evenness (as measured by the Gini 

index), primer set binding selectivity, and the density of binding sites on the target 
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genome each play an important role in the set’s efficacy. In the W. pipientis study, we 

established that the temperature range of 15–45°C for the primers and prioritizing 

evenness of binding led to more even amplification of the target genome. In addition, the 

swga-designed sets performed better at selectively amplifying the target than the hand-

designed set in (Leichty & Brisson, 2014). In fact, the Leichty primer set was not 

generated by swga because the maximum distance between primer sites on the Wolbachia 

genome was greater than the specified cutoff. In M. tuberculosis, by starting with a pool 

of primers that bind relatively evenly to the target, we constrained the range of set 

binding evenness by removing primers that cluster on repeat regions. After controlling 

the range of binding evenness at the primer level, the sets with the highest target binding 

density (i.e. lowest mean distance between binding sites) achieved highest coverage, 

suggesting that further refinements of the sets for evenness is not necessary. These sets 

consequently had the lowest ratio of target to background average binding distances. This 

ratio, as a more complete representation of the set’s selectivity than just the binding 

density on the target, had a strongly inverse correlation with the amount of the genome 

covered after sequencing (Figure 3-6). Because both attributes are closely related, it is 

difficult to disentangle the effects of binding density from the effects of a low ratio, and it 

may be that either or both of these attributes contribute to the success of these primer 

sets. Furthermore, some sets had relatively similar ratios (e.g. Mtb7 versus Mtb8), but 

Mtb8 yielded greater genome coverage. This indicates that there are likely other set 

attributes not considered here that also contribute to set efficacy. To compensate for this, 
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we suggest selecting five to ten sets with low ratios to test experimentally, and then 

selecting the best-performing of those sets. 

 

Figure 3-6. Coverage is related to set selectivity. 
The percentage of the Mycobacterium genome covered by each set at ×1 coverage after 50 Mbp of 

sequencing is inversely correlated to the set’s target to background binding distance ratio (e.g. selectivity). 

The smoothed line of best fit (LOESS) is shown by the dotted line. The points and whiskers represent the 

median and standard deviation of the technical replicates. Positive tests are in blue, while negative controls 

are in orange. The random hexamers did not have a definable ratio and are not displayed. 

The swga program does not consider a specific number of primers for each set. Instead, 

swga considers primer sets of different sizes, and reports suggested sets. By exploring a 

range of sizes, the swga program allows the user to find sets with desirable attributes 

without having to guess what the ideal set size will be in advance. 

SWGA is best suited to large scale population genomics studies and may not be cost 

effective in some smaller studies. Developing the SWGA primer set requires up-front 
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costs that need to be recovered in later applications for the method to be cost effective. A 

detailed cost-benefit analysis over multiple applications is presented in Section §3.7.4. 

SWGA is most useful when large numbers of samples are to be sequenced, when the 

target genome is rare in the unamplified sample, and when higher sequencing coverage of 

the target genome is desired. 

Our experiments so far suggest a general workflow that can be used to design primer sets 

for other systems. In particular, we recommend the following guidelines: 

• During swga filter, set the max_gini parameter as low as possible while still yielding 

200 or more primers. 

• For swga find_sets, set the max_sets to 1–5 million to explore a wide range of set 

attributes. 

• Use swga export to export the sets ordered by the distance between binding sites on 

the target (attribute fg_mean_dist). 

• Pick the five to ten sets with lowest fg_mean_dist to test experimentally. Barcode 

each amplicon separately, then pool and sequence with low depth to assess 

performance. Once a high-performing set is identified, sequence that amplicon more 

deeply. This set is now usable in any samples that have similar target/background 

combinations. 

We expect best practices to evolve as SWGA is used more frequently. To facilitate this, 

we have set up a web page on the project’s source repository and a user mailing list. A 
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tutorial on the program’s operation and more extensive documentation on each parameter 

and module is available on the web page as well. 
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3.7. Supplemental Material 

3.7.1. Supplemental Figures 

 

Supp. Figure 3-1. 
The sets identified for Mycobacterium tuberculosis with a mean binding distance on the target less than 5kb 

are shown as a hexplot, where the color intensity represents the number of sets within that range of binding 

density (x-axis) and evenness (y-axis). We used the ‘chull’ function in R to detect the inflection points of 

this distribution. These points (red dots) were the sets that were used for selective amplification. They 

represent various extreme combinations of primer binding evenness and density. Where there were multiple 

points close together, we picked one at random. 
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Supp. Figure 3-2. 
Selective whole-genome amplification increases the proportion of sequencing reads that map to the target 

genome. Direct sequencing of total DNA of 10 flies (column labelled ø) resulted in more than 93% of reads 

mapping to Drosophila while only 4.7% mapped to Wolbachia. By contrast, at least 15% of the reads 

mapped to Wolbachia after select whole genome amplification with the worst performing primer set. All 

primer sets identified by the swga program performed substantially better than primer sets chosen manually 

(Leichty, 2014). Results from each of three replicate SWGA reactions (using 40 ng total DNA per reaction) 

per primer set are shown. The TmL/Even primer set was also run in triplicate with 20 ng total DNA per 

reaction. Results were more similar for replicates within a set than between sets, indicating that SWGA 

performs consistently when using the same primer set. 
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Supp. Figure 3-3. 
The depth of sequencing per 1Gb of sequencing effort (1 Gb * coverage depth / total bp sequenced) is 

shown for all replicates of all primer sets chosen for Wolbachia against Drosophila. Colored lines indicate 

technical replicates, while the black line indicates the unamplified control. The TmL/Even set was re-

sequenced with 20ng of total fly extract DNA in addition to the 40ng used for the other sets. The 

TmL/Even amplicons consistently achieved higher coverage of the Wolbachia genome than the 

unamplified control. 
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Supp. Figure 3-4. 
Variation in the local density of primer binding sites does not account for variation in select whole 

amplification across the Wolbachia genome. The normalized mean sequencing coverage (1 Mb * coverage 

depth / total bp sequenced) across 5 kb windows after amplification is shown relative to the number of 

binding sites within a 20 kb window. Smoothed (LOESS) best fit lines (blue lines) are plotted for each 

technical replicate. Within each primer set, normalized mean coverage did not correlate with the number of 

binding sites in a 20 kb window. However, coverage did vary between primer sets and was generally higher 

for primer sets with a higher number of primer binding sites (Table 1). 
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Supp. Figure 3-5. 
10x coverage of the Mycobacterium genome was limited without additional sequencing effort. Colored 

lines indicate technical replicates, while black dashed lines indicate the unamplified control. 
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Supp. Figure 3-6. 
The depth of sequencing per 1Gb of sequencing effort (1 Gb * coverage depth / total bp sequenced) is 

shown for all replicates of all primer sets chosen for Mycobacterium against the human genome. The first 

four sets yielded higher coverage of the Mtb genome than the unamplified control, as indicated by each the 

colored line for each replicate being higher than the unamplified control (black line). For each set, a density 

histogram of the ratio between the average set coverage and the unamplified control is shown on the right. 

Peaks to the right of the dashed line (indicating a ratio greater than 1) represent overall enrichment. 
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3.7.2. Supplemental Tables 

Supp. Table 3-1. Wolbachia primer sets 

ID Ratio Size Gini Max target dist Mean target dist. 

TmL/Selective 0.0544 9 0.65 3.11E+04 5.33E+03 

TmL/Even 0.1050 7 0.54 3.47E+04 6.85E+03 

TmH/Even 0.0075 2 0.54 1.13E+05 1.31E+04 

TmH/Selective 0.0005 2 0.66 1.28E+05 1.21E+04 

Leichty and Brisson 

2014 0.0163 2 0.71 1.13E+05 5.31E+03 

 

ID 

Target 

dist (sd) 

Mean bg. 

dist Primers 

TmL/Selective 7.00E+03 9.78E+04 

AACATAGATC,AAGAGATACC, AATGTTCGTA, 

ACGTGTTAG, AGAAATTTACTA, 

ATCTAGAGAT, ATCTATGTTAAG, 

TACGTCATAC, TATGCAAGAA 

TmL/Even 7.00E+03 6.53E+04 

AATGTTCGTA, ATAAGCTGAA, TAAAGACATA, 

TACGTCATAC, TATGCAAGAA, TGAGATACC, 

TTTCTGGATC 

TmH/Even 1.55E+04 1.73E+06 CACTGGAATCC, CGCTACTTGTTA 

TmH/Selective 1.80E+04 2.43E+07 CTACGTGTTAGC, CTACTTGTTAGC 

Leichty and Brisson 

2014 1.01E+04 3.25E+05 ATCCAAGTAG, CGGTATCTC  
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Supp. Table 3-2. Mycobacterium primer sets. 

Name ID Ratio Size Gini Max target dist Mean target dist. 

Mtb1 1130935 0.0171 7 0.476 3.27E+04 4.97E+03 

Mtb2 1236643 0.0095 7 0.484 2.75E+04 3.29E+03 

Mtb3 1482488 0.0172 7 0.478 3.77E+04 4.99E+03 

Mtb4 1558358 0.0062 7 0.512 1.49E+04 1.88E+03 

Mtb5 1951361 0.0155 6 0.480 3.44E+04 5.00E+03 

Mtb6 4690256 0.0057 7 0.501 1.50E+04 1.95E+03 

Mtb7 4715948 0.0066 7 0.499 1.39E+04 2.03E+03 

Mtb8 5192056 0.0062 7 0.533 1.87E+04 1.80E+03 

Mtb9 5194179 0.0058 7 0.538 1.87E+04 1.78E+03 

Mtb10 5699436 0.0181 7 0.479 3.12E+04 4.29E+03 

MtbUneven 70336 0.0140 2 0.623 9.21E+04 1.14E+04 

MtbSparse 146196 0.0387 3 0.505 1.00E+05 2.60E+04 

 

Name 

Target 

Dist (sd) 

Mean bg. 

dist Primers 

Mtb1 4.56E+03 2.90E+05 

ACGATCA*A*C,CCGATAT*G*G,CGCGAA*T*A,CGCG

AT*T*A,CGTCGT*A*G,CGTCGT*A*T,TAGTCGA*T*G 

Mtb2 3.12E+03 3.45E+05 

ATTCGT*C*G,CGCGAA*T*A,CGGTAT*C*G,CGTCGT*

A*A,CGTCGT*A*T,GATTGTC*G*A,TACGAA*C*G 

Mtb3 4.69E+03 2.90E+05 

ATCGGAT*T*C,CGATAC*G*T,CGCGAT*A*A,CTACGA

*C*G,CTCGATA*C*C,GATCGAC*T*C,TCGATCA*A*C 

Mtb4 1.92E+03 3.04E+05 

ATCGACA*A*C,CGAATC*C*G,CGTTAC*G*G,CTACG

A*C*G,GACGAT*C*G,GATCGAC*T*C,TCGACG*A*A 

Mtb5 4.71E+03 3.22E+05 

ATATCGG*T*G,CCGAAT*C*G,CGGTTA*C*G,GACGA

CT*A*C,GATGATC*G*A,TGGATAT*C*G 

Mtb6 1.95E+03 3.41E+05 

CCGAAT*C*G,CGCGAA*T*A,CGCTAT*C*G,CGGTAT*

C*G,CGGTTA*C*G,CGTCTA*C*G,TCGACG*A*A 

Mtb7 1.99E+03 3.09E+05 

ATCGACA*A*G,CCGAAT*C*G,CGCGAA*T*A,CGCTA

T*C*G,CGGTAT*C*G,CGTCTA*C*G,TCGACG*A*A 

Mtb8 1.96E+03 2.92E+05 

ACGATCA*A*C,CGAATC*C*G,CGACGA*A*A,CGACG

A*T*A,CGATAC*C*G,TACGAC*G*A,TCGACG*A*A 

Mtb9 1.96E+03 3.05E+05 

CGAATC*C*G,CGACGA*A*A,CGACGA*T*A,CGATAA

*C*G,CGATAC*C*G,TACGAC*G*A,TCGACG*A*A 

Mtb10 4.09E+03 2.37E+05 

CGAAAC*G*A,CGATATC*C*A,CGATTC*G*G,CGGTA

TT*G*A,CGTAGT*C*G,CGTTAC*G*T,TGTAGTC*G*A 

MtbUneven 1.45E+04 8.10E+05 CGATATT*G*C,CGTTAC*C*G 

MtbSparse 2.48E+04 6.71E+05 CGTTCG*T*A,TGATATC*G*C,TTCGACT*A*C 
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3.7.3. Supplemental Data 

3.7.3.1. Swga settings for Wolbachia pipientis against Drosophila melanogaster 
 

[count] 

min_size = 5 

max_size = 12 

min_fg_bind = 20 

max_bg_bind = 10000 

max_dimer_bp = 4 

exclude_threshold = 1 

 

[summary] 

bg_length = 145523498 

fg_length = 1285894 

 

[filter] 

max_primers = 200 

bg_length = 145523498 

fg_length = 1285894 

min_fg_bind = 41 

max_bg_bind = 474 

min_tm = 15 

max_tm = 45 

 

[find_sets] 

min_size = 2 

max_size = 12 

max_dimer_bp = 4 

min_bg_bind_dist = 30000 

bg_genome_len = 145523498 

max_fg_bind_dist = 36000 

max_sets = 1 

workers = 3 

 

[score] 

bg_genome_len = 145523498 

score_expression = (fg_dist_mean * fg_dist_gini) / (bg_dist_mean) 

 

[export] 

window_size = 10000 
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3.7.3.2. Swga settings for Mycobacterium tuberculosis against Homo sapiens. 
 

[count] 

min_size = 5 

max_size = 12 

min_fg_bind = 44 

max_bg_bind = 21770 

max_dimer_bp = 3 

exclude_threshold = 1 

 

[export] 

window_size = 10000 

 

[filter] 

max_primers = 200 

min_fg_bind = 50 

max_bg_bind = 21770 

min_tm = 15 

max_tm = 45 

max_gini = 0.6 

 

[find_sets] 

min_size = 2 

max_size = 7 

max_dimer_bp = 3 

min_bg_bind_dist = 60000 

max_fg_bind_dist = 100000 

max_sets = -1 

workers = 4 

score_expression = (fg_dist_mean * fg_dist_gini) / (bg_dist_mean) 

 

[score] 

score_expression = (fg_dist_mean * fg_dist_gini) / (bg_dist_mean) 

 

3.7.3.3. Code used in this project 

For code used in analysis and figures, please refer to 

https://github.com/eclarke/swga_paper 

3.7.4. Cost analysis for SWGA 

The SWGA method improves the efficiency of genomic sequencing when targeting the 

genome of a specific organism in the presence of contaminating DNA. However, 

implementing SWGA itself incurs costs, and so not all applications will benefit from its 

use. In particular, SWGA is generally more cost effective studies that require sequencing 

a large fraction of the target genome from multiple samples. For experiments 

necessitating new primer design, as described in this study, either the depth of sequencing 

coverage or number of samples must be large enough to offset initial cost of purchasing 

https://github.com/eclarke/swga_paper
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and testing primer sets. For these reasons, SWGA, using newly designed primer sets, is 

not necessarily cost effective for applications with very small target genomes, low 

coverage depth , or small numbers of samples. 

Here we present a cost analysis, including the cost of de novo primer set design and 

testing. To highlight the areas where SWGA is most cost effective, we have performed 

this analysis across range of sequencing depths for three target organisms: 

Mycobacterium tuberculosis in humans, Plasmodium vivax in humans, and Wolbachia 

pipientis in fruit flies. The cost of implementing and performing SWGA is compared 

directly to achieving the same depth and coverage of sequencing by direct sequencing of 

the sample without SWGA amplification. 

For each target, we compare the cost of SWGA sequencing for a given number of 

samples, including primer set design and testing, to that of sequencing directly from the 

starting DNA mixture. We calculate the cost of sequencing samples at 1X and 10X 

coverage and with the goal of covering 50%, 75%, and 80% of the target genome, thus 

illustrating how the cost effectiveness of SWGA varies with depth and breadth of 

sequencing. 

The following is a breakdown of the costs associated with sequencing and the SWGA 

process. All costs are in US dollars, and reagent prices are accurate as of the time of 

writing (Feb 2017). 

Supp. Table 3-3. One-time costs associated with SWGA. 

Step Unit Cost 

Primer design Computation time* $5.88 

Primer testing Miseq (reagents + sequencing) $1,500.00 
 

Computation time measured as the cost of running swga on the Penn High Performance Computing cluster 

on one node for one week at $0.035/hr/node. 
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Supp. Table 3-4. Per-sample costs associated with SWGA. 

Step Unit Cost/sample 

Primer Set (average for 10 primers) Primer oligos $0.02 

SWGA Reaction Phi29 + Buffer $5.70 

SWGA Reaction DNTPs $0.41 

Sequencing (Nextera - Hiseq) Kit reagents $65.00 

Cost per base on an Illumina Hiseq using Nextera: $0.000000094. 
 

Total cost is $71.13/sample. Costs per sample were estimated from the cost of and number of uses yielded 

by the reagent (for specific reagent catalog numbers, see the main text). 

To calculate the cost of sequencing some number of samples 𝑛 with SWGA, we added 

the fixed costs (𝐶𝑓) and multiplied the variable costs 𝐶𝑣 by the number of samples. We 

then empirically determined the number of bases required to achieve the required depth 

of coverage (𝑁𝑏𝑝, see Table 2 at end of document). This was multiplied by the above cost 

per base (𝐶𝑏𝑝)and the number of samples: 

CostSWGA(𝑛) = 𝐶𝑓 + (𝐶𝑣 × 𝑛) + (𝑁𝑏𝑝 × 𝐶𝑏𝑝 × 𝑛) 

The cost of directly sequencing a sample (without SWGA) is the cost of the sequencing 

reagents (𝐶𝑟) and the sequencing itself: 

CostUnamplified(𝑛) = (𝐶𝑟 × 𝑛) + (𝑁𝑏𝑝 × 𝐶𝑏𝑝 × 𝑛) 

In each plot, the intersection point between the two lines (SWGA vs unamplified) 

represents the point at which the SWGA method becomes more cost efficient. This is 

heavily influenced by the relative efficiency gains yielded by SWGA, which itself is a 

function of the target and host genomes. For some applications, like sequencing W. 

pipientis at low coverage depth and breadth, SWGA is not cheaper than conventional 

sequencing. 
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Ex. 1: M. tuberculosis at 10X depth o ver 80% of the genome
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Ex. 2: M. tuberculosis at 10X depth o ver 75% of the genome
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Ex. 3: M. tuberculosis at 10X depth o ver 50% of the genome
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Ex. 4: M. tuberculosis at 1X depth o ver 80% of the genome
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Ex. 5: M. tuberculosis at 1X depth o ver 75% of the genome
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Ex. 6: M. tuberculosis at 1X depth o ver 50% of the genome
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Ex. 7: P. vivax at 10X depth over 80% of the genome
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Ex. 8: P. vivax at 10X depth over 75% of the genome
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Ex. 9: P. vivax at 10X depth over 50% of the genome
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Ex. 10: P. vivax at 1X depth over 80% of the genome
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Ex. 11: P. vivax at 1X depth over 75% of the genome
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Ex. 12: P. vivax at 1X depth over 50% of the genome
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Ex. 13: W. pipientis at 10X depth over 80% of the genome
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Ex. 14: W. pipientis at 10X depth over 75% of the genome
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Ex. 15: W. pipientis at 10X depth over 50% of the genome
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Ex. 16: W. pipientis at 1X depth over 80% of the genome

$0

$2,500

$5,000

$7,500

0 25 50 75 100

Number of samples

C
o

s
t

SWGA

Unamplified

Ex. 17: W. pipientis at 1X depth over 75% of the genome
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Ex. 18: W. pipientis at 1X depth over 50% of the genome
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Supp. Table 3-5. Sequencing required to achieve desired coverage. 

Example Organism Depth Coverage SWGA (bp) Unamplified (bp) 

1 M. tuberculosis 10 80 3,091,559,998 5,527,190,382 

2 M. tuberculosis 10 75 2,520,410,974 5,262,496,048 

3 M. tuberculosis 10 50 1,223,345,194 4,267,942,796 

4 M. tuberculosis 1 80 303,869,124 710,912,333 

5 M. tuberculosis 1 75 238,173,500 612,325,622 

6 M. tuberculosis 1 50 85,299,735 307,065,400 

7 P. vivax 10 80 4,129,854,209 40,750,765,958 

8 P. vivax 10 75 2,780,236,529 38,803,668,507 

9 P. vivax 10 50 837,785,449 31,291,283,092 

10 P. vivax 1 80 590,545,217 5,210,647,250 

11 P. vivax 1 75 289,985,276 4,493,713,988 

12 P. vivax 1 50 64,803,452 2,249,610,375 

13 W. pipientis 10 80 71,621,179 441,055,975 

14 W. pipientis 10 75 62,712,293 390,478,303 

15 W. pipientis 10 50 36,527,254 256,900,749 

16 W. pipientis 1 80 7,234,721 50,185,804 

17 W. pipientis 1 75 5,946,277 42,309,224 

18 W. pipientis 1 50 2,451,818 19,419,362 

3.7.4.1. Conclusions 

As shown in Examples 1-3 and 7-12, the cost effectiveness of SWGA is more significant 

when pursuing higher coverage depth across the target genome. In M. tuberculosis, 

SWGA becomes more cost effective when considering sequencing more than 8 samples. 

In P. vivax SWGA is nearly always more cost effective, representative of the variable 

effect the target and host genomes can play on the final efficiency gains. 

For low-depth sequencing, and for small genomes such as W. pipientis, the benefit is only 

realized at higher numbers of samples. Low-depth sequencing of M. tuberculosis is only 

more cost-effective with SWGA when more than 65 samples are being sequenced (Ex 4-

6). Again indicative of the variable influence of the target genome size, however, low-

depth coverage of P. vivax is more cost-effective with SWGA by only 5 or so samples. 

As a contrast, it is unlikely that SWGA would be cost-effective at all for low-depth 

sequencing of W. pipientis given that the lines in Examples 16-18 will only converge 

after a very large (>10,000) number of samples. Importantly, these graphs include the 

cost of designing and testing new SWGA primers. In situations where primer sets already 

exist, SWGA would become cost-effective at even lower numbers of samples. 
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These graphs show that for a variety of target/host genomes, SWGA's benefits are 

greatest when 1) large numbers of samples are studied, 2) when high depths of coverage 

are needed, and 3) a large proportion of the genome should be covered. 
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Chapter 4. T cell dynamics and response of the microbiota 

after SCID-X1 gene therapy 

This chapter is based upon work by Erik Clarke1, Frances Male, Andrew 

Connell1, Nadia Kadry1, Arwa Abbas1, Young Hwang1, John Everett1, Casey 

Hofstaedter, Judith Kelsen, Marina Cavazzana, Emmanuelle Six, Alain Fischer, 

Luigi Notarangelo, Salima Hacein-Bey Abina, Don Kohn, David Williams, Sung-

Yun Pai, and Frederic D. Bushman1. 

1. Dept. of Microbiology, University of Pennsylvania School of 

Medicine 

4.1. Abstract 

Mutation of the IL2RG gene results in a severe combined immune deficiency (SCID-X1) 

that has been treated successfully with hematopoietic stem cell (HSC) gene therapy.  

SCID-X1 gene therapy results in reconstitution of the previously lacking T-cell 

compartment, allowing analysis of the roles of T-cells in humans by comparing before 

and after gene correction.  Here we interrogate T-cell reconstitution using four forms of 

high content analysis.  1)  Estimation of the numbers of transduced progenitor cells by 

monitoring unique positions of integration of the therapeutic gene transfer vector.  2)  

Estimation of T-cell population structure by sequencing of the TCR-beta VDJ-

recombination products.  3)  Metagenomic analysis of microbial populations in 

oropharyngyl, nasopharyngal and gut samples.  4) Metagenomic analysis of viral 

populations in gut samples.  Comparison of progenitor and T-cell populations allows 

estimation of a minimum number of cell divisions needed to generate the observed 

populations.  Analysis of microbial populations shows the effects of immune 

reconstitution, including normalization of gut microbiota and clearance of viral 

infections. Metagenomic analysis revealed a notable enrichment of genes for antibiotic 
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resistance in gene-corrected subjects relative to healthy controls.  These data highlight the 

novel analytical avenues made possible by successful SCID-X1 gene therapy. 

4.2. Introduction 

Several primary immunodeficiencies have now been treated successfully by gene-

correction of hematopoetic stem cells (HSC) with integrating vectors (Aiuti et al., 2013; 

Aiuti et al., 2007; Aiuti et al., 2002; Biffi et al., 2013; Marina Cavazzana-Calvo, Andre-

Schmutz, & Fischer, 2013; Gaspar et al., 2011; Gaspar et al., 2004; Hacein-Bey-Abina et 

al., 2010; Hacein-Bey-Abina et al., 2002).  This work has benefited many patients, and in 

addition provides a unique window on immune mechanisms.  In SCID-X1, the first 

primary immunodeficiency treated successfully by gene transfer, patients harbor 

mutations in the IL2RG gene, which encodes the common gamma chain, a component of 

several cytokine receptors important in T and NK-cell growth and development(Kovanen 

& Leonard, 2004; Noguchi et al., 1993; Puck et al., 1993).  Patients typically lack these 

cells before correction(Kennedy et al., 2000; Lodolce et al., 1998; Puel, Ziegler, Buckley, 

& Leonard, 1998), but afterwards show robust T reconstitution and transient NK-cell 

reconstitution, accompanied by restoration of considerable immune function (Gaspar et 

al., 2011; Gaspar et al., 2004; Hacein-Bey-Abina et al., 2010; Hacein-Bey-Abina et al., 

2002).  Gene correction thus provides a unique opportunity to study the onset of T cell 

function in previously deficient human subjects. 

In the first gene therapy trial to treat SCID-X1, early designs of gammaretroviral vectors 

were used (Gaspar et al., 2011; Gaspar et al., 2004; Hacein-Bey-Abina et al., 2010; 
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Hacein-Bey-Abina et al., 2002), which were the only vector type available at the time.  

These vectors contain strong enhancers derived from the starting retroviral backbone.  

The enhancers supported efficient expression of the corrective IL2RG gene and allowed 

successful gene correction.  However, subsequent experience implicated these vectors in 

insertional mutagenesis, in which vector signals activated transcription of host proto-

oncogenes, in some cases associated with severe adverse events(Hacein-Bey-Abina, von 

Kalle, Schmidt, Le Deist, et al., 2003; Howe et al., 2008).   

A second trial was carried out to treat SCID-X1 using an improved vector in which the 

strong enhancer sequences were deleted (Hacein-Bey-Abina et al., 2014), and a more 

specific promoter was used to express the therapeutic IL2RG  gene copy.  T-cell numbers 

after correction were indistinguishable in the first and second trials.  So far, no severe 

adverse events have been linked to insertional activation in the second trial.   

In this study, we used multiple high throughput sequence-based methods to analyze 

samples from the SCID-X1 trials, with the goal of probing immune mechanisms and the 

resulting effects on microbial communities.  To assess the number and distributions of 

gene-corrected precursor cells producing T-cells, deep sequencing of sites of vector 

integration was used (C. Berry, Hannenhalli, Leipzig, & Bushman, 2006; C. C. Berry et 

al., 2012; C. C. Berry et al., 2017; Hacein-Bey-Abina et al., 2014; Hacein-Bey-Abina, 

von Kalle, Schmidt, Le Deist, et al., 2003; Hacein-Bey-Abina, Von Kalle, Schmidt, 

McCormack, et al., 2003; Howe et al., 2008; Mitchell et al., 2004; Schroder et al., 2002; 

Sherman et al., 2017; G. P. Wang et al., 2010; G. P. Wang et al., 2007), where each 
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unique integration site marked a distinct T-cell progenitor. T-cell development could be 

followed at a later step by using DNA sequencing to track rearrangements of gene 

segments encoding the T-cell receptor-beta CDR3 region (Boyd et al., 2009; 

Campregher, Srivastava, Deeg, Robins, & Warren, 2010; H. S. Robins et al., 2009; H. S. 

Robins et al., 2010; Weinstein, Jiang, White, Fisher, & Quake, 2009).  Immune cells 

contribute to control of the resident microbiota, so the consequences of T-cell 

reconstitution were assessed by deep sequencing of oral, fecal and nares samples to 

characterize the full microbiota using shotgun metagenomics.  In a separate analysis, 

samples were enriched biochemically for viral particles, RNA and DNA extracted, and 

then the viral content monitored in fecal samples.  

The data support a wealth of new inferences on T-cell growth and immune activity after 

reconstitution.  For example, a minimum estimate for the numbers of cell divisions 

between progenitor cells and mature T-cells was developed by comparing population 

sizes from integration site and TCR sequence data.  In the microbiome data, 

normalization of microbial communities was documented following successful treatment 

in several subjects.  Viral infections, several not detected clinically, could be shown to be 

widespread but often cleared with immune reconstitution.  TCR diversity could be 

compared for selected samples from the SCID1 and SCID2 trails, providing information 

on the durability of reconstitution and effects of adverse events on TCR diversity.  Thus 

these data begin to outline the utility of “multi-omics” analysis of gene correction in 

primary immunodeficiency. 
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4.3. Results 

4.3.1. Experimental strategy 

Our comparative analysis of gene-corrected progenitors and daughter T cells focused on 

four patients from the SCID-2 trail (Hacein-Bey-Abina et al., 2014 ) and three patients 

from the SCID-1 trial (Hacein-Bey-Abina et al., 2010) for whom samples were available 

Figure 4-1.  Patient characteristics are summarized in Supp. Table 4-1.  Additional 

subjects were studied for which we did not have T cell samples, but did have peripheral 

blood mononuclear cell samples (PBMC, Supp. Figure 2-1). Adverse events took place in 

the SCID-1 trial involving subjects F107 and F110 at times 68 months and 33 months 

after infusion (Hacein-Bey-Abina et al., 2010; Hacein-Bey-Abina et al., 2014; G. P. 

Wang et al., 2010). The time points analyzed here are well after these adverse events, 

allowing assessment of the effects of leukemia and chemotherapy on progenitor cell and 

T cell populations.  One subject in the SCID2 trial, B205, was transplanted twice without 

achieving clinical reconstitution.  Samples from the two unsuccessful treatments are 

designated B205 and B205b. 

 Vector integration sites and the T cell repertoire were monitored through regular per-

protocol blood draws, followed by isolation of CD3+ populations. Sorted cells were 

subject to DNA extraction and then amplification of either integration sites (mostly 

previously reported in (Hacein-Bey-Abina et al., 2010; Hacein-Bey-Abina et al., 2014; G. 

P. Wang et al., 2010); Supplementary Table X) or mature TCR beta loci (Supp. Table 
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4-3; data new here), followed by sequencing. Vector integration sites mark progenitor 

cells capable of delivering mature T-cells to the periphery.  Rearranged TCR beta loci 

mark mature T-cells present in blood. Time points from the integration site analysis were 

chosen to match those used in the TCR analysis—characterization of additional time 

points for integration site distributions in SCID-X1 gene therapy can be found in (M. 

Cavazzana-Calvo et al., 2000; Hacein-Bey-Abina et al., 2010; Hacein-Bey-Abina et al., 

2014; Howe et al., 2008; Thrasher et al., 2006; G. P. Wang et al., 2010; G. P. Wang et al., 

2008). 

Microbiome samples were available for six SCID-2 patients (B201, B203, B204, B205, 

B207, and F201). Oral, nasal, and gut microbiota were sampled via collection of 

oropharyngeal swabs, nasopharyngeal swabs, and stool samples. Sampling times ranged 

from 4 to 181 months post infusion of corrected cells. Sample acquisition was at times 

limited by clinical and practical considerations.  

As controls, we analyzed TCR-beta sequences from CD3+ cells from five healthy 

children and three healthy adults.  Healthy subject demographics are in Supp. Table 4-1. 

Cross-sectional microbiome samples were collected from the same subjects and analyzed 

as for the SCID gene-corrected samples.  
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Figure 4-1. 
Sampling schedule for eight SCID-X1 gene-corrected subjects studied for integration site distributions and 

TCRB CDR3 sequence composition. A)  Times of sample acquisition after cell infusion. B) Population 

sizes of inferred progenitor cells deduced from marking with unique sites of vector integration. Integration 

site data is in Supplementary Table X, and summaries of genes near sites of vector integration are in 

Supplementary Figure 2. The x-axis shows the time since cell infusion.  The y-axis shows the population 

size reconstructed using Chao1 from the numbers of unique integration sites and replicate sampling. 

Samples are named for the site of gene correction (B indicates Boston, F indicates France; the next digit 

indicates the trail 1=SCID1, 2=SCID2, and the next two digits indicate the patient number within that trial). 
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4.3.2. Integration site analysis 

To characterize progenitor cells delivering T-cells to the periphery, we determined the 

sites of vector integration in patient chromosomes (31 total samples). Because of the 

large size of the human genome, each integration site uniquely marks the descendants of 

a single gene-corrected progenitor. Summaries of genes near integration sites in the most 

expanded clones at each time point are in Supp. Figure 4-2.  The numbers of integration 

sites detected in purified T cell samples ranged widely, from as few as 62 to as many as 

2009.  Reconstruction of population sizes using the Chao1 estimator suggested minimal 

sizes of 144 to 6018 active progenitors.  

For the SCID2 subjects, we found that the estimated total number of vector integration 

sites was relatively constant over the time intervals analyzed (Figure 4-1B), in the range 

of ~1000 predominant clones yielding circulating cells (Supp. Table 4-2).  Numbers 

varied by subject, with subject B203 showing consistently higher levels, while B205, a 

case of unsuccessful reconstitution, showing consistently lower levels. 

For the SCID1 subjects, numbers of unique sites identified varied from 263 to 682; 

reconstructed minimal population sizes ranged from 628 to 1287.  Comparison of mean 

values shows no difference in the numbers of unique integration sites in SCID2 subjects 

compared to SCID1 subjects (p=0.17).  

Population sizes of progenitors were compared between SCID1 subjects who suffered 

adverse events (F107, F110) versus those who did not (F102, F106), or versus SCID2 
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subjects.  Treating time points as independent tests, no systematic differences were 

detected comparing within SCID1 subjects; a marginal difference was detected with a 

comparison of adverse events versus no adverse events (adverse event samples compared 

to pooled SCID1 and 2; p=0.041).   

4.3.3. TCR-beta CDR3 analysis 

Clonal structure of T-cell populations was investigated by analyzing TCR-beta 

rearrangements in genomic DNA from blood CD3+ cells (Figure 2).  CDR3 region 

sequences were conceptually translated, and numbers of productive rearrangements 

quantified (Figure 4-2A).  For healthy adults, numbers ranged from 18,000 to 27,000 per 

sample.  For healthy children, numbers ranged from 18,000 to 22,000 per sample.  For 

SCID2, most samples were close to this range (12,000 to 33,000 per sample; no 

significant difference in medians).  For SCID1, results were slightly lower, with four out 

of five samples between 15,000 and 23,000.  The exceptional sample was from subject 

F107, who suffered an adverse event and was treated by chemotherapy—in this case the 

number was only 5,000 unique CDR3 sequences.   

For all the CDR3 samples sequenced, the numbers of CDR3 clonotypes in the subject 

were much larger than the numbers sequenced, so we used Chao 2 and replicate sampling 

to estimate the number of CDR3 variants present.  Estimators are sensitive to sampling 

effort, so our estimates represent minimal values.  Focusing on samples analyzed over 

multiple replicates, we estimate population sizes of 26,000 to 2,600,000 CDR3 variants. 

The median for SCID2 samples was not different from that of healthy children, but the 
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median for SCID1 was significantly lower than for the healthy children (p=0.026; 

Wilcoxon rank sum test). 

Analysis of trends over time suggested that each subjects’ repertoire was becoming more 

diverse (Figure 4-2B).  The one exception was the unsuccessful case of reconstitution 

(B205), which did not show longitudinal increase.  Inferred CDR3 population sizes in 

gene-corrected subjects approached or equaled sizes in healthy children, and exceeded 

those in healthy adults. 

To begin to characterize repertoire composition, we used Bray-Curtis dissimilarity and t-

SNE to cluster samples (Figure 4-2C).  Replicates from each subject closely resembled 

those from the same subject at different time points, but differed from other subjects.  No 

systematic differences were observed comparing SCID 1 and SCID2, or comparing either 

data set to healthy controls. 

Recombination involving the most frequently used V (Figure 4-2D) and J (Figure 4-2E) 

gene segments was next quantified and compared. Usage of gene segments was 

quantified for healthy children and averaged, then the profile was compared to gene-

corrected SCID subjects.  The great majority of gene-corrected samples did not show 

significant differences from the distribution in healthy children, both in the analysis of V 

and J gene segment usage.  The only exception was V gene usage in SCID2 subject 

B201, where particularly early time point samples were available (6 and 12 months after 

infusion of corrected cells). This subject was successfully corrected, so the unusual 

distribution is not indicative of clinical failure.  We speculate that at the very early time 
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after gene correction newly produced T-cells are only beginning to be subjected to the 

homeostatic mechanisms that yield the consistent mature repertoire.  Figure 2F shows the 

usage of V-J pairs within subjects, emphasizing the occasional outgrowth of expanded 

clones, potentially in response to antigen, followed by down-modulation of abundance. 
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Figure 4-2. 
Analysis of TCRB CDR3 sequences. A) The unique numbers of rearranged genes detected are shown.  The 

colors indicate in frame rearrangements (blue), frameshifts (tan) and stop codons (red).  B) Richness and 

evenness of the inferred TCRB CDR3 populations.  Patients are color coded as indicated on the right.  The 

ranges of healthy adults and children are shown by the grey and salmon shading, respectively. C) 

Clustering of the samples sequenced using Bray-Curtis similarity and t-SNE.  The association of patients 

with samples is shown by the key at the right. D)  V gene usage. The patient of origin is marked at the top 

of each panel.  E) J gene usage. F) Heat map summarizing the frequencies of utilization of the most 

common V and J pairs. Subjects studied are marked at the top. Time of sampling is shown on the right. 

4.3.4. Tracking T-cell ontogeny 

Comparison of the estimated lower bound for the number of unique integration sites per 

sample with the lower bound for the number of unique TCR sequences allows estimation 

of a lower bound on the number of cell divisions required to generate the TCR-beta cell 

population from gene-corrected precursors (Figure 4-3. We calculated the minimum 

number of cell divisions as the base-2 logarithm of the difference between the estimated 

population size of unique T cells and the estimated population size of integration sites:  

CellDivisions = log2(TCRs −  IntSites) 

We found a relatively consistent range of minimum cell division values across patients 

and timepoints, with a median of 8.41 and a minimum and maximum of 5.97 and 17.45. 

Considering only the patients with successful, non-repeated therapy (B201, B203, and 

B207), the range was tighter, with a median of 8.41 and a minimum and maximum of 

5.97 and 14.72, respectively.  The fraction of progenitor cells that die in the thymus is 

unknown, so our estimates are lower bounds for the required number of cell divisions.  

The highest values were for subject B205, for whom reconstitution was unsuccessful.  

We speculate that homeostatic mechanisms may have resulted in signaling to a limited 

number of progenitors to divide with increased frequency in this subject. 
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Figure 4-3. 
Minimum numbers of cell divisions between progenitors and daughter T cells.  The x-axis shows time after 

corrected cell infusion.  The y-axis shows the estimated number of cell divisions calculated as described in 

the text.  The subjects studied are indicated beneath the figure as indicated by the color code. 

4.3.5. Response of the microbiome to reconstitution 

Microbiota community structure was analyzed for six gene-corrected subjects (Figure 

4-4A) by extraction of DNA from swabs (oral and nasal samples) or stool (fecal samples) 

followed by shotgun metagenomic sequencing.  Numbers of samples available per 

subject ranged from one to seven.  The numbers of sequences acquired per sample 

averaged 3,625,000 (oral), 72,000 (nasal) and 8,746,000 (fecal).  Sequencing reads were 

quality filtered as described in Methods and then assigned to microbial taxa using Kraken 

(Wood & Salzberg, 2014) .  
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The analysis of gut microbiota (Figure 4-4B) emphasized the differences between gut 

microbiota of healthy children (left four columns) versus SCID gene-corrected subjects.  

The healthy subjects were colonized predominantly with Bacteriodes, which is typical of 

healthy gut, whereas the SCID-subjects showed a range of major colonists.  B201 was 

colonized mainly with Bifidobacteria, which is characteristic of healthy breast-fed babies 

(Pannaraj et al., 2017). However, subjects B203 and B205 (early times) were colonized 

with Veillonella, which is typically an oral bacteria, possibly indicative of colonization 

with this organism along the length of the GI tract. Subject B204 showed high level 

colonization with Enterobacteriaceae, typical of dysbiotic states.  Early samples from 

subjects B207 and F201 were dominated by viruses, even though whole stool was 

sequenced, with infection by adenovirus and bocavirus respectively. 

Oral samples from the healthy controls were dominated by typical oral bacteria, including 

Prevotella, Streptococcus, Neisseria, and Haemophilus.  In contrast, B203 at the earliest 

time point was dominated by Bocavirus, B204 and B205 showed high level domination 

by Streptococcus, and B207 was dominated by Rothia. 

In nasopharyngeal samples, healthy subjects were dominated by Moraxella, 

Staphylococcus and Propionibacterium.  SCID subjects contained these lineages to 

varying degrees, but also showed high level colonization by Streptococcus, 

Corynebacterium, and others. 
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Figure 4-4. 
Longitudinal analysis of the microbiome during SCID-X1 gene correction. A) Timing of sample 

acquisition.  B) Longitudinal analysis of the nasopharyngeal microbiome.  Each column indicates a sample.  

Samples are grouped by subject as indicated at the top.  Each row summarizes the proportions of a specific 

microbial taxa inferred using Kraken.  Abundance is color coded as indicated to the right. C) As in B, but 

stool samples.  D) As in B, but oropharyngeal samples. 

We compared the full microbial compositions of the samples using Bray-Curtis 

dissimilarities and found that the three sample types clustered by body site of origin 

(Figure 4-5A, PERMANOVA p-value < 0.001). We also found that each subject 
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clustered with themselves throughout all timepoints, reflecting consistently higher inter-

subject variability than intra-subject variability (PERMANOVA p-value < 0.001). In 

several patients (B201, B205, and B207), the microbial communities began resembling 

healthy children more at late times after cell infusion (Figure 4-5B), potentially reflecting 

a combination of improving immune function and reduction in antibiotic usage. 

Analysis of taxonomic richness provides insight into microbial community health, since 

low richness is often associated with abnormal outgrowth of opportunistic organisms.  

For stool, richness increased for 4/6 subjects over time, potentially indicative of 

improving gut health (Figure 4-5C). Unexpectedly, of the four subjects for whom oral 

samples were available, all showed abnormally low richness at every time point.  For 

many this was associated with particularly high Streptococcus colonization, an 

observation that might be of interest to investigate further for possible clinical 

implications.  Nasopharyngeal microbiota showed richness comparable to healthy 

controls.   

SCID patients were treated with a wide variety of antibiotics before and after therapy to 

mitigate opportunistic infections. To assess whether this was associated with an increase 

in antibiotic resistance gene representation, we quantified antibiotic resistance genes in 

the stool sequence samples using ShortBRED and the CARD antibiotic resistant factor 

database (Figure 4-5D). We saw an increase in the total quantity of antibiotic resistance 

genes. The SCID patients had a higher level of antibiotic resistance genes in their stool 

than healthy subjects (pooled across timepoints, p = 0.048). These results indicate that the 



 

126 

 

antibiotic regimen increases both general levels of antibiotic resistance genes. For patient 

B201, who had a timepoint 24 months after therapy, the level of antibiotic resistance 

genes decreased substantially between the 5 month and 24 month timepoint. At this 

timepoint, the patient was no longer on any medications, which suggests that antibiotic 

resistance gene load may decrease after treatment ceases.  
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Figure 4-5. 
Microbiome community analysis. A) Sample clustering using Bray-Curtis dissimilarity. Different sample 

types are marked by the colors, healthy versus SCID are shown by the shapes. B) Comparison of stool 

samples for each patient queried to healthy controls.  Samples were clustered using Bray-Curtis 

dissimilarity. Each panel compares one SCID subject samples (indicated at the top) to healthy control 

samples (shown in grey). Elapsed time is shown using the color code (bottom). C)  Representation of 

selected antibiotic resistance genes in the three sample types studied.  Each column indicates a 

metagenomic data set from the subject listed at the top.  Each row summarizes the abundance of an 

antibiotic resistance gene class.  The tiles are colored by reads per kilobase of target per million sequences 

reads (RPKM); the color code is to the right of the panel. 

4.3.6. Response of the virome 

Viral particles were partially purified from stool, the DNA and RNA purified and 

sequenced.  Reads were assigned using Kraken, then extensive filtering was carried out to 

remove contaminants and artifacts.  Figure 4-6 shows the resulting attributions. For RNA 

viruses, high level colonization was detected with astrovirus (B204 and B205) and 

sapovirus (B203).  For DNA viruses, numerous bacteriophage lineages were seen.  For 

viruses infecting animal cells, high levels of infection were seen for adenovirus in B201, 

bocavirus in B203, and betatorquetenovirus (anellovirus) in B205.  The adenovirus and 

bocavirus infections diminished over time after successful gene correction.  

Betatorquetenovirus is a normal commensal, and persisted. 
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Figure 4-6. 
Virome analysis. A) Heat map summarizing RNA viruses detected. Each column indicates a sample from 

the patient indicated at the top of the heatmap, each row indicates a type of virus.  The tiles are colored 

according to proportion of total viral reads. B) Heat map summarizing DNA viruses detected. Markings as 

in A. 

4.4. Discussion 

We present here a first look at the co-development of the microbiome and immune 

system in patients after gene therapy for SCID. We used targeted sequencing of vector 

integration sites to model the number of gene-corrected progenitor cells, and TCR 

sequencing to capture the development of the T cell repertoire following therapy. The 

combination of these data allowed a lower-bound approximation of the number of cell 

divisions required to progress from a lymphopoetic stem cell to a circulating T cell, a 

measurement uniquely possible thanks to gene marking by integration. We used shotgun 

metagenomic sequencing in longitudinal samples to track early-term changes in the gut, 
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oral and nasopharyngeal microbiome coincident with therapy. In a subset of these 

timepoints, we purified and sequenced RNA and DNA viruses to show clearance of 

pathogenic viruses with immune reconstitution and, in some patients, the presence of 

viruses not reported in clinical records.  

This estimate of cell divisions is limited by wide confidence intervals in the estimators 

for unique TCRs and integration site population sizes, but despite that most of the 

timepoints indicated roughly nine cell divisions between the progenitor stem cell and a 

circulating T cell. This is a minimum value because the amount of cell death during T-

cell ontogeny is unknown and likely high. This helps specify the functional capacity of 

the lymphoid precursor cell targeted in initial transduction.  

The microbiome analysis provided new evidence on how SCID gene therapy patients 

progress to healthier phenotypes after successful therapy. Their immune cell diversity, as 

measured by TCR sequencing, consistently moved from the oligoclonal range of older 

adults and into a higher diversity range more characteristic of healthy children of that 

age. Further, their overall circulating T cell richness showed a similar movement towards 

a healthy and age-typical state. This is concordant with the observed results of healthy 

immune function in these patients and shows that sequencing metrics of the T cell 

repertoire correlate with clinical outcomes. 

As in their immune repertoires, the microbiota of these patients changed in ways that 

resembled the microbiomes of healthy children. We saw an increase in diversity and 

richness of the microbes in the gut and oro- and nasopharygeal compartments and the 
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outgrowth of bacteria associated with healthy gut function. In some patients, we were 

also able to detect bacteria that may be associated with negative outcomes and antibiotic 

resistance, potentially as a result of extended exposure to antibiotics and hospitalization. 

An unexpected finding was the consistently low diversity of SCID oral samples, and the 

high colonization with Streptococcus.  It will be of interest to assess whether this is seen 

in other immunodeficient subjects, and target investigations of possible oral pathology 

associated with this organism. 

In some of these patients, we found viruses known to cause enteropathic conditions in 

humans, including astrovirus, bocavirus and adenovirus. In the case of patient B207, the 

adenovirus detection was clinically corroborated with a diagnosis of adenoviremia. In 

both, the viruses were cleared in later timepoints, likely as a result in part the newly-

functioning immune system. 

This study is also limited in a number of important ways. Most importantly, our sample 

size was quite small. Moreover, clinical considerations often led to inconsistent 

microbiome sampling based on patient and clinician availability, as sample collection 

was a secondary concern to patient monitoring. As a result, our ability to make broad 

inferences based on this sample set is limited.  

Opportunities to study similar systems of immune system/microbiome dynamics are 

present in SCID patients who undergo hematopoetic stem cell transplantation (HSCT). A 

pilot study looking at the microbiome development in SCID patients after HSCT (Lane, 
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2015) was also performed, though with 16S rRNA gene amplicon sequencing rather than 

shotgun sequencing, no healthy controls, shorter sampling period, and no concurrent TCR 

sequencing. They found inconsistent results in microbiome diversity after transplantation, 

possibly due to the limited temporal range of the study, but did note that there were clear 

differences in the microbiota before and after transplantation in the four subjects they 

studied. 

In summary, these data illustrate some of the uses of multi-omic data in assessing 

outcome in human gene therapy.  As more of these studies are carried out, it will be 

possible to more fully assess the utility of such data.  Of particular interest will be any 

signatures that help forecast outcome and provide new opportunities for initiating specific 

interventions. 

4.5. Methods 

4.5.1. Human subjects 

Patients were recruited as described (M. Cavazzana-Calvo et al., 2000; Hacein-Bey-

Abina et al., 2014). We collected the same sample types from six healthy children 

between the ages of 21-43 months under IRB 13-010072. We obtained sorted CD3+ T 

cells from three anonymous healthy adult donors above the age of 18 from the Human 

Immunology Core at the University of Pennsylvania. All samples were stored at -80oC. 
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4.5.2. Integration site analytical methods 

Integration site sequences were determined using two different methods due to changes in 

technology over the period of patient monitoring.  In the first, 454/Roche pyrosequencing 

was used to determine integration site placement (G. P. Wang et al., 2007).  In the 

second, Illumina paired end sequencing was used (C. C. Berry et al., 2012; C. C. Berry et 

al., 2017; Hacein-Bey Abina et al., 2015; Sherman et al., 2017). In both, DNA was 

broken using shearing or restriction enzyme cleavage, then DNA adaptors ligated on to 

the broken DNA ends.  Nested PCR was then used to amplify from the linker to the 

integrated vector, and the intervening segment of human DNA sequenced.  All 

integration site sequence analysis was be carried out in quadruplicate to minimize PCR 

jackpotting. All sample sets were worked up together with human DNA lacking 

integrated lentiviral sequences to monitor for PCR contamination, which was typically 

undetectable. Different linkers were be used for ligation-mediated PCR for each sample 

in a set to block PCR cross over. All samples were bar coded on both ends of the 

molecule, and only those with correct bar code pairs analyzed, thereby suppressing 

artifactual molecules resulting from PCR recombination.  A total of 31 samples were 

analyzed, yielding a total of 24,170 integration sites. 

4.5.3. TCR sequence analysis 

TCR sequencing was performed on whole blood samples that had been fractionated to 

yied T cell (CD3+) or PBMC fractions. Genomic DNA was isolated and sequenced at 

Adaptive Biotechnologies to determine CDR3 region sequences of the TCR beta locus 
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(H. Robins et al., 2012). Data were analyzed using the immunoSeq Analyzer version 3.0. 

A total of 40 samples were analyzed, yielding a total of 32 million TCRB sequences. 

4.5.4. Microbiome sequencing 

DNA was isolated from fecal, oral and nares samples using the following procedures: 

Small aliquots of fecal material (<= 1ml) and the tips of each swab (for oral and nares 

swabs) were deposited into a PowerSoil bead tube. DNA was extracted using standard the 

MoBio PowerSoil DNA extraction protocol, with one or more blank extraction controls 

worked up simultaneously with each set of samples. Work spaces were decontaminated 

using bleach and UV irradiation. The resulting DNA from all samples and blank controls 

was sequenced on an Illumina HiSeq 2500 using NextSeq chemistry and standard 

Illumina dual barcoding for each sample. 

Due to artifacts in genomic sequences for members of the Apicomplexa family, many 

reads from a common water contaminant (Bradyrhizobium) were cross-annotated as 

belonging to Apicomplexa. Consequently we removed all Bradyrhizobium and 

Apicomplexa reads before further analysis due to their uncertain provenance. 

4.5.5. Virome analytical methods 

Viral particles were isolated from a subset of the fecal samples using a protocol adapted 

from (Minot et al., 2013). Fecal samples were homogenized and filtered through a 0.4 

micron filter. The filtered samples were then treated with DNaseI and RNAseI to remove 
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exogenous nucleic acids.  Combined nucleic acids were then purified from the sample 

using the Qiagen UltraSens Virus Kit. 

To obtain DNA viruses, we amplified viral genomes in an aliquot of the combined 

nucleic acids using the Illustra Genomiphi V2 DNA amplification kit. Resulting 

amplified DNA was quantified using PicoGreen and stored at -20oC. To obtain RNA 

viruses, we treated a separate aliquot of the combined nucleic acids with DNAse+ and 

then performed reverse transcription of the RNA to cDNA using the SuperScriptIII First-

Strand Synthesis System from Life Technologies and second strand synthesis using 

Sequenase. The resulting cDNA was quantified with PicoGreen and stored at -20oC. 

Resulting DNA was prepared and sequenced using NextSeq for library preparation and 

an Illumina HiSeq 2500 for sequence acquisition. The same postprocessing pipeline was 

used, including all quality-control, host removal, and read annotation steps. For analysis, 

we considered only reads that fell under the Virus classification, and removed the 

following viral annotations as being reagent contamination (Abbas et al., 2016; Clarke et 

al., 2017): Enterobacteria phage M13, Enterobacteria phage T7, Enterobacteria phage 

phiX-174 sensu lato, Bacillus phage phi29, and Pseudomonas phage phi6, human 

herpesvirus 6 and 7, and Shamonda virus. 
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4.5.6. Bioinformatic methods 

To estimate population sizes of T cell progenitors from integration sites we used a 

jackknifed Chao1 estimator (abundance-based), and for TCR sequence data, we used the 

incidence-based Chao2 estimator (Chao, 1987). 

Sequence reads for all metagenomic samples were processed using the Sunbeam pipeline 

(https://github.com/eclarke/sunbeam). Reads were quality-controlled by trimming low-

quality bases and adapter sequences using Trimmomatic (Bolger et al., 2014), and host 

reads were removed using BWA (Li & Durbin, 2010). The remaining reads were filtered 

for low-complexity sequences using dustmasker (Camacho et al., 2009) and Komplexity 

(https://github.com/eclarke/komplexity). The reads that remained were assigned 

taxonomy via Kraken (Wood & Salzberg, 2014) and a custom database built on all 

microbial genomic sequences in RefSeq release 79 (O'Leary et al., 2016).  

Antibiotic resistance gene levels were assessed using ShortBRED (Kaminski et al., 2015) 

and a marker gene database built from CARD (Jia et al., 2017) available on the 

ShortBRED website 

(https://bitbucket.org/biobakery/shortbred/downloads/ShortBRED_CARD_2017_markers

.faa.gz). The same reads used as input to the Kraken taxonomic classifier were used as 

input to ShortBRED.  

Final analysis and figure generation was performed using the R statistical software (R 

Core Team, 2017). Bray-Curtis dissimilarity and other ecological metrics were calculated 

https://github.com/eclarke/sunbeam)
https://github.com/eclarke/komplexity)
https://bitbucket.org/biobakery/shortbred/downloads/ShortBRED_CARD_2017_markers.faa.gz)
https://bitbucket.org/biobakery/shortbred/downloads/ShortBRED_CARD_2017_markers.faa.gz)
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using the R package vegan (Dixon, 2003). The full code listing and post-processed data 

used for analysis and figures is available online at https://github.com/eclarke/scid-

multiomics-paper.  
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4.7. Supplemental Material 

4.7.1. Supplemental Figures 

 

Supp. Figure 4-1. PBMC samples timeline. 
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Supp. Figure 4-2. Genes near integration sites. 
Stacked bar graphs summarizing genes at or near integration sites for each subject and sample studied here. 
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Supp. Figure 4-3. TCRB population characteristics (PBMC). 
Stacked bar graphs summarizing characteristics of the TCRB repertoire sequenced from PBMC cells. 
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Supp. Figure 4-4. TCRB repertoire similarity (PBMC). 
Bray-Curtis dissimilarity measurements for the TCRB repertoires sequenced from PBMC cells. 
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Supp. Figure 4-5. Lymphocyte progenitor cell divisions. 
Population size estimates for progenitors and daughter t cells, with the minimum number of doublings (cell 

divisions) required. 
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Supp. Figure 4-6. Mean read counts for metagenomic sequencing. 

 

4.7.2. Supplemental Tables 

All supplemental tables are attached in the Digital Supplement named 

SupplementalTables.xlsx. 

Supp. Table 4-1. Subjects in this study. 

Supp. Table 4-2. Vector integration site data. 

Supp. Table 4-3. TCR-beta repertoire data. 

Supp. Table 4-4. Microbiome data  
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Chapter 5. Conclusions and Future Directions  

In this thesis I describe novel approaches to using metagenomic sequencing in idiopathic 

and immune-related diseases. Metagenomics has found fruitful application in studies 

involving gastrointestinal disorders and dysbiosis of existing communities. However, the 

utility of metagenomics has been less clear in other types of diseases. The heightened 

sensitivity of next-generation sequencing at retrieving rare microbes will be key to 

uncovering causal pathogens in idiopathic diseases, but standard approaches suffer from 

extreme sensitivity to contamination and false-positives (Lauder 2016). Meanwhile, the 

interactions between microbiota and the immune system are beginning to be more clearly 

understood (Arpaia 2013, Kamada 2014, Atarashi 2013) but their interplay in immune 

disorders is less clearly defined. 

In Chapter 2, I present a study where we looked for microbial triggers of sarcoidosis, a 

granulomatous disease with no known cause. Our effort involved experimental and 

statistical methods to rigorously account for environmental contamination. We collected 

paired environmental controls for every sample and specific for every sample type: for 

formalin-fixed, paraffin-embedded (FFPE) tissue we sampled the surrounding blank 

paraffin, while for bronchoalveolar lavage (BAL) we sampled the prewash rinse of the 

scope done prior to the procedure. These paired environmental controls were integrated 

into the differential abundance testing by the use of a generalized linear mixed model 

(GLMM) in which the background level of a taxa was allowed to vary in each sample 

pair.  
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This approach demonstrated exceptional precision in the face of strong environmental 

covariates. We found that in one set of FFPE tissue samples, high levels of Aspergillus 

fungi were present in sarcoidosis samples and not in healthy controls. But this same 

difference was seen in the paired environmental controls, indicating that Aspergillus was 

environmentally derived. (We later traced the source of this contamination back to 

difference in storage sites between the two sample groups.) In studies without this 

experimental design, we would have been unable to disentangle the environmental 

confounder from the study group and spent significant time investigating Aspergillus 

fungi as potential sarcoidosis triggers. However, differential abundance testing with the 

GLMM did not identify Aspergillus as enriched. Rather, it identified a different fungus in 

the Cladosporiaceae family as being enriched in sarcoidosis tissue over both healthy 

tissue and the background environment. Cladosporiaceae fungi, while not known to be 

pathogenic, are significant allergens and can cause disorders including hypersensitivity 

pneumonitis (Chiba et al., 2009; Silva & Ekizlerian, 1985), so this is a biologically 

plausible trigger in accordance with Relman’s postulates (Fredricks & Relman, 1996). 

This paired environmental control study design and associated model are applicable to 

other low-biomass metagenomic studies that aim to find differences between two groups. 

While consensus has been reached on the necessity of blank controls in these studies to 

characterize the input from reagents (Kim et al., 2017; Salter et al., 2014), those controls 

alone are not always sufficient–for instance, they would not have uncovered the 

Aspergillus contaminant as described above. There exist other approaches for 

determining the source of microbial signatures in a sample (Knights et al., 2011), but this 
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is the first able to translate these contaminating sources into terms that affect differential 

abundance testing. Many clinical studies would benefit from this approach, especially 

those that investigate microbial communities in sources previously considered sterile in 

healthy individuals, such as the brain or placenta. In these studies, collection and storage 

methods may contribute significant amounts of microbial biomass as a percentage of the 

total. Without the controls, researchers may be erroneously reporting the presence of 

endogenous or enriched microbiota when in fact they are subtle contaminants. 

 In Chapter 3 I describe a computational method that efficiently designs primers to 

selectively amplify a target’s genome from a complex mixture. This program, swga, 

makes the method described in (Leichy 2014) significantly more accessible to a broad 

range of researchers. The wet-side method, selective whole-genome amplification 

(SWGA), uses a set of phi29 primers that bind more frequently to a target’s genome than 

the background to preferentially amplify the target using multiple-displacement 

amplification. With the correct primers, the resulting amplicon will have much higher 

amounts of target DNA proportionally than the starting mixture. Consequently, less 

sequencing effort is required to achieve high depth-of-coverage of the target genome. The 

swga program described in this chapter makes it possible to rapidly design primer sets for 

this assay, which was originally a manual and error-prone process. The program works 

by first identifying all k-mers of a range of lengths in the target and background genome. 

It then filters the k-mers for undesirable characteristics including self-complementarity 

and suboptimal melting temperature range, or uneven binding on the target genome. It 

then assembles a graph representation with primers as vertices, and compatible primers–
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i.e. those that do not form primer dimers–are linked by edges. Each primer is weighted by 

how frequently it binds the background genome. The program then searches for cliques, 

or completely-interconnected subgraphs, with the smallest possible weight. These cliques 

form the basis for selective primer sets for the SWGA method.  

In this chapter, I demonstrated the efficacy of this program and approach on three real-

life host/parasite systems. SWGA, when used with a well-chosen primer set, significantly 

reduces the costs associated with repeatedly obtaining high-coverage genomes of a given 

target. This is especially critical when retrieving genomes from targets that are difficult or 

impossible to culture, especially in the context of pathogen or parasite genomics. In this 

sense it is complementary to our efforts in Chapter 2 to identify microbial agents in 

sarcoidosis: one possible use for SWGA is the isolation and characterization of the 

precise Cladosporiaceae fungi in the sarcoidosis samples to see if there are strain-level 

differences that may be causing disease symptoms. 

In Chapter 4, I presented our efforts to characterize the interactions between the 

microbiome and immune system of SCID patients after gene therapy. The gene therapy 

trials for SCID provided a unique opportunity to observe a cohort of humans born 

without an immune system, but with colonized microbiomes (normally, the microbiome 

and immune systems co-develop in healthy babies). Once the gene therapy was 

administered, these patients’ immune systems began to develop, and we were able to 

track how the immune system and microbiome in these patients changed in response to 

each other. To do this, we used T cell repertoire sequencing and metagenomic shotgun 
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sequencing on a longitudinal sample set. We found that patients generally reconstituted a 

normal-looking immune system when the therapy worked, which was concordant with 

reported positive clinical outcome. We also found that patients’ microbiomes often 

started off in a dysbiotic state, frequently characterized by the dominance of certain 

bacteria or viruses, but shifted to resemble healthy children as time went on. We also 

found that the microbiomes of these patients began to harbor higher levels of antibiotic 

resistance genes as time went on, up until around six months post-therapy. This likely 

correlates to high exposure levels of antibiotics administered prophylactically until the 

patients were no longer immunocompromised (around six months post-therapy). We also 

found high levels of adenovirus and astrovirus in these patients, which only occasionally 

corresponded to clinical reports. In each case, high viral loads subsided with time, 

indicating clearance of the virus. 

This chapter demonstrated the potential applications for metagenomics in immune 

diseases and gene therapy. Because of established links between the microbiome and 

immune system, diseases that affect the immune system like SCID are likely to affect the 

immune system (and vice versa). In SCID patients, we were unsure whether immune 

system restoration would lead to restoration of a normal microbiome, or if a dysbiotic 

state would persist due to a founder-type effect. In the patients for which we had the 

longest sampling time course, we did see a normalization of the microbiome and decrease 

of antibiotic resistance load after immune reconstitution. While this conclusion is limited 

by the small number of patients, it suggests that the immune system acts to maintain a 

healthy microbial community in these patients. 
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Future directions 

The work presented in this thesis center around the use of metagenomic sequencing in a 

variety of diseases. I explored the use of sequencing to robustly identify triggers in 

sarcoidosis, efficiently isolate difficult-to-culture pathogen genomes such as 

Mycobacterium tuberculosis using SWGA, and characterize microbe-immune 

interactions in SCID after gene therapy. These works center around short-read 

sequencing, the current state-of-the-art sequencing method used today for metagenomics. 

However, it seems likely that this will soon be supplanted by rising long-read 

technologies, such as those from Pacific Biosciences and Oxford Nanopore. 

The essence of nanopore long-read sequencing is a small pore that moves nucleotide 

molecules through a few bases at a time and measures changes in the electrical potential 

based on the sequence. It avoids issues inherent to Illumina chemistry that lead to high 

error rates with longer sequences, and consequently can read tens of kilobases in length 

per sequence (under optimal conditions). However, nanopore sequencing comes with its 

own drawbacks, including a higher error rate and more difficult-to-model error profile. 

Even in the last few years, however, the error rates have decreased substantially and it 

seems reasonable to expect them to continue falling. Another key benefit of nanopore 

sequencing, specific to the Oxford minION, is the extremely small size of the sequencer 

itself. It is only slightly larger than a thumb drive and connects to a computer using USB. 

This small size raises alluring potential for field deployment as part of a portable 

sequencing and analysis toolkit. 
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Metagenomically, long-read sequencing offers a number of advancements over current 

methods. First, the retrieval of long contiguous DNA allows us to fill in the gaps and 

reconstruct microbial genomes much more easily (Loman, Quick, & Simpson, 2015; 

Quick et al., 2017). More comprehensive microbial genome databases will significantly 

improve our ability to classify and functionally annotate microbiomes. Second, long 

reads offer the ability to recover strain-level resolution in tagged sequencing experiments. 

While we are nominally constrained to tagged sequences smaller than 500bp in Illumina 

paired-end sequencing, long reads would enable the recovery of the entire 16S or ITS 

region and significantly improve our phylogenetic resolution (Kerkhof, Dillon, 

Häggblom, & McGuinness, 2017). Third, it opens up new opportunities for 

biosurveillance. Assuming we could identify a specific sequence unique to a pathogen or 

virulence gene of interest, long read sequencers can “read until” detection of that 

sequence (Loose, Malla, & Stout, 2016). Paired with a potentially field-deployable 

sequencer, this could enable extremely rapid monitoring of an environment for pathogens 

and antibiotic resistance capabilities, without the need for culture, extensive 

bioinformatics analysis, or data storage. 

Even considering our current approaches in short-read sequencing, there remains 

significant room for advancement from the techniques outlined in this thesis. 

Metagenomic sequencing is exquisitely sensitive, but this can result in a higher level of 

false positives and spurious detections. In Chapter 2, I outlined an experimental approach 

that helps assuage these problems, but there are situations in which environmental 

controls may not be identifiable or obtainable. Approaches that restrict DNA to just those 
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from viable organisms may be worthwhile in certain studies (Emerson et al., 2017) but 

often samples are collected and stored in ways that damage or kill the microbes in them. 

Other ways of reducing spurious detections include the use of RNA in conjunction with 

DNA, on the premise that RNA is more readily degraded in the environment due to 

ubiquitous RNase activity. Making cDNA libraries from RNA and comparing to the 

results from gDNA could identify signatures from only authentically-present microbes in 

the original sample.   

It is likely that metagenomic sequencing will become a core part of diagnostic and 

clinical work in time, but it has some way to go before it reaches the necessary level of 

affordability, speed and rigor. The promise of rapid, unbiased detection of any microbe or 

gene in a sample is one that could revolutionize our ability to track pathogens and disease 

outbreaks. Similarly, integration of metagenomic sequencing with new advancements in 

immunological sequencing will allow us to more effectively treat and understand 

immunological diseases. In total, the work demonstrated in this thesis lays a foundation 

for more robust and informative uses of metagenomic sequencing in the study of 

idiopathic and immunological disorders.  
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