
On-the-fly Reachability and Cycle Detection for

Recursive State Machines ?

Rajeev Alur1, Swarat Chaudhuri1, Kousha Etessami2, and P. Madhusudan3

1 University of Pennsylvania, USA
2 University of Edinburgh, UK

3 University of Illinois at Urbana-Champaign, USA

Abstract. Searching the state space of a system using enumerative
and on-the-fly depth-first traversal is an established technique for model
checking finite-state systems. In this paper, we propose algorithms for
on-the-fly exploration of recursive state machines, or equivalently push-
down systems, which are suited for modeling the behavior of procedural
programs. We present algorithms for reachability (is a bad state reach-
able?) as well as for fair cycle detection (is there a reachable cycle with
progress?). We also report on an implementation of these algorithms to
check safety and liveness properties of recursive boolean programs, and
its performance on existing benchmarks.

1 Introduction

Recursive state machines (RSM) can model control flow in typical sequential im-
perative programming languages with recursive procedure calls, and are equiva-
lent to pushdown systems [1]. Even though the state-space of an RSM is infinite
due to recursion, model checking problems for RSMs are decidable [6, 7, 15, 12,
1, 5]. Extended RSMs (ERSM) augment RSMs with global and local variables
that can be tested and updated along the edges of the control structure. Con-
temporary tools for software verification employ abstraction to automatically
extract ERSMs from code written in languages such as C, and then use ERSM
model checking algorithms to check temporal requirements [4, 17]. The complex-
ity of the key analysis problems for ERSMs, such as reachability, is polynomial
in the number of states [12, 1], where a state needs to encode the control location
and the values of all the global and in-scope local variables. To cope with the
state-space explosion due to the variables, existing implementations of ERSM
model checkers such as Bebop [3] and Moped [12] use symbolic encoding using
automata and binary decision diagrams. In this paper, we propose on-the-fly
explicit-state search algorithms as a viable alternative.

An on-the-fly algorithm explores the reachable states starting from initial
states by computing the successors of a state only when needed, typically using
depth-first traversal, and terminates as soon as it finds a counterexample to the

? This research was partially supported by ARO URI award DAAD19-01-1-0473, and
NSF awards ITR/SY 0121431 and CCR-0306382.

property being verified. While the effectiveness of this technique is limited by
the number of states that can be stored and processed, it has its own advan-
tages over the symbolic approach. The guards and updates on an edge can be
complex, and can even include calls to library functions. It does not require an
a priori encoding of the states, and hence, can support complex and unbounded
data types and dynamic creation of data. Early termination allows discovery
of shallow bugs rapidly. Finally, the performance is more predictable as more
states are guaranteed to be searched with an increase in the available memory
and time. Consequently, tools such as Spin [18] and Murϕ [10] that rely on
on-the-fly explicit-state search algorithms have been very effective for classical
model checking problems. More recent tools like Zing [2] and Bandera [8] are
also explicit-state, support complex data types, concurrency, and recursion, but
do not offer any termination guarantees.

We first consider the reachability problem for ERSMs: starting from an initial
state, can control reach one of the target locations along some execution of the
ERSM? Our algorithm combines on-the-fly traversal of extended state machines
with early termination used in explicit-state model checkers and a summarization
algorithm used in interprocedural data-flow analysis [20].

We build on our reachability algorithm to arrive at a novel solution to the
fair cycle detection problem for ERSMs: starting from an initial state, is there
an execution of the ERSM that visits one of the target locations infinitely often?
This fair cycle detection problem is central to the algorithmic verification of live-
ness requirements. The known solution to this problem is most naturally viewed
in two phases [1]. In the first phase, all the summary edges are computed, and
the second phase reduces to fair cycle detection in an ordinary graph containing
these summary edges. Since we desire an on-the-fly solution with the possibility
of early termination, we do not want to compute all the summary edges first,
and wish to interleave the two phases. We can view this problem as fair cycle
detection in a graph (second phase) in which the edges, namely, the summary
edges discovered by the first phase, are inserted dynamically. For on-the-fly fair
cycle detection in ordinary graphs, tools such as Spin employ the so-called nested
depth-first-search algorithm [9], but this algorithm relies on the ordering of states
in a depth-first traversal, which fails if we allow dynamic insertion of (summary)
edges. In the proposed solution, we use a path-based algorithm for computing
the strongly-connected-components (SCC) of a graph [16]. Every time the first
phase discovers a summary transition, the SCC discovery algorithm processes
the newly reachable states. As a new SCC is discovered, early termination is
possible if it contains a state with the target location or a summary transition
representing a path through such a state, and if not, all vertices in the SCC can
be collapsed to a single vertex for efficiency. Cycle detection (but not fair cycle
detection) is interesting in program analysis in the context of points-to analysis
and cycle detection in dynamic graphs has been studied [19, 14].

For analysis of worst-case time bounds, let us assume that the ERSM has k
components, has no variables and has total size n (control locations plus tran-
sitions). Then, the time bounds for non-on-the-fly explicit-state algorithms for

reachability and fair cycle detection are O(n) [1], while the symbolic algorithms
for reachability and fair cycle detection are O(n2) [13]. The newly proposed
reachability algorithm is O(n) and the new fair cycle detection algorithm is
O(kn).

To test the performance of the proposed algorithms, we implemented them
in the tool Vera. The ERSM model is described in an input language that ex-
tends the boolean programs of Bebop [3] with additional types such as bounded
integers. The specifications can be written as monitors, and the tool performs
on-the-fly reachability and fair cycle detection on the product of the model and
the monitor. The regression test suite of Slam contains boolean programs ob-
tained from abstractions of real-world C code [4], and while Vera performs
well on examples that contain a bug, it performs poorly compared to symbolic
checkers such as Moped [12] when forced to search the entire space. On exam-
ples such as Quicksort from Moped’s benchmarks that need manipulation of
integer variables, Vera performs significantly better than Moped. Finally, we
manually abstracted a Linux driver code in which Metal had found a double
locking error using static analysis [11]. Vera performs well on this example, and
can also prove the liveness requirement that “every lock should eventually be
released.”

2 Extended recursive state machines

In this section, we introduce the formalism of extended recursive state machines
(ERSMs). We start with the language we use to specify guarded commands.

Expressions and assignments Let us have a set T of types and a domain Dt

associated with each type t ∈ T . In particular, we allow a boolean type with the
domain {T, F}. Let V be a finite set of variables where each variable is associated
with a type, and let Expr (V) be a set of typed expressions. We refer to the set
of expressions of boolean type as BoolExp(V).

An interpretation of V is a map σ : v ∈ V 7→ d ∈ Dt, where v is of type
t. Every interpretation can be extended to a unique semantic map σ : expr ∈
Expr 7→ d ∈ Dt, where expr is of type t.

An assignment over V has the form [x1, x2, . . . , xl] := [exp1, exp2, . . . , expl],
where xj ∈ V are distinct variables, and for all j, expj ∈ Expr(V) is an ex-
pression of the same type as xj . We refer to the set of assignments over V as
Assgn(V). The semantics of assignments are defined over pairs (σ1, σ2) of inter-
pretations of V . Given an assignment α of the above form, we say σ2 = α(σ1)
if (1) σ2(xj) = σ1(expj) for all xj , and (2) σ1(y) = σ2(y) for all variables
y ∈ V \ {x1, x2, . . . , xl}.

Syntax of ERSMs An extended recursive state machine (ERSM) A is a tuple
〈G, γin , p, (A1, A2, . . . , Ak)〉, where G is a finite set of global variables, γin is an
initial interpretation of G, p ∈ {1, . . . , k} is the index of the initial component,

and each component state machine Ai = 〈Li, Ii, Oi, λiin
, Ni, eni, ex i, δi〉 consists

of

– a finite set Li of local variables, a set Ii ⊆ Li of input variables, and a set
Oi ⊆ Li of output variables. The sets Ii and Oi are totally ordered, the j-th
variables in these orders being given by Ii(j) and Oi(j) respectively. Also,
we require that Ip = ∅;

– an initial interpretation λiin of Li;
– a finite set Ni of nodes;
– two special nodes eni, exi ∈ Ni, known respectively as the entry node and

the exit node; 1

– A set δi of edges, where an edge can be one of two forms:
• Internal edge: A tuple (u, v, g, α). Here u and v are nodes in Ni, g ∈

BoolExp(G ∪ Li) is a guard on the edge, and α ∈ Assgn(G ∪ Li) is an
assignment. Intuitively, such an edge will be taken only if the guard g

is true, and if it is taken, the assignments will be applied to the current
variables. The set of internal edges in component i is denoted by δI

i .
• Call edge: A tuple (u, v, g,m, in, out). Here u and v are nodes in Ni,
g ∈ BoolExp(G ∪ Li) is an edge guard, m ∈ {1, 2, . . . , k} is the index
of the called component, and in ∈ Lr

i and out ∈ L
q
i , for r = |Im| and

q = |Om|, are two lists of local variables. Intuitively, in is the list of
parameters passed to the call, and out is the list of variables where the
outputs of the call are stored on return from the call. We require that
all variables in out are distinct.
The set of call edges in component i is denoted by δC

i . The function
Yi : δC

i → {1, 2, . . . , k} maps call edges to indices of the components
they call, so that, for a call edge e such as above, Yi(e) = m.

We assume that entry nodes eni do not have incoming edges and exit nodes
exi do not have outgoing edges. ut

We designate the component Ap as the initial component. This component,
where runs of A begin, models the “main” procedure in procedural programs.

Example: Figure 1 shows a sample ERSM with one global variable a, and com-
ponents A1 and A2. Component A1 has an input variable i, and an output
variable x. Component A2, also the initial component, has no inputs and one
local/output variable y. All variables are of boolean type, and initially, we have
a = F , x = T , and y = T .

In the diagram, an internal edge (u, v, g, α) is drawn as a solid arrow from
node u to node v annotated by (g ⇒ α) (we will omit the guard g and the
assignment α if, respectively, g is always true and the assignment α is empty). A
call edge (u, v, g,m, in, out) is a dashed arrow annotated by (g ⇒ out := m(in))
(we omit out if it is empty, and leave out the guard g if it is trivially true).

1 The usual definition of RSMs [1] allows components to have multiple entry and exit
nodes. In this paper, we model entries and exits by input and output variables, so
it suffices to let each component have one entry and one exit node.

A1 A2

bool i
bool y:=Tbool x:=T

en1

n1 n2 ex1
en2

n3

n5 n6

n4
ex2

bool a:=F

x=F
i=T

[x] :=2()

[a] := 2()

y =T−> [y:=F]

a=F −> [y:=T]n7 n8 [a:=T]

[y]:= 1([y])

Fig. 1. A sample ERSM

Semantics of ERSMs ERSMs model procedural programs written in C-like
imperative languages and resemble the latter in operational semantics. Compo-
nents, nodes, internal edges, and call edges in ERSMs respectively model proce-
dures, control locations, intraprocedural control flow, and procedure invocations
in procedural programs, and configurations and runs of ERSMs are the equiv-
alents of program states and program executions. A configuration of an ERSM
consists of a call stack, a current node, and a current interpretation of the global
and in-scope local variables. The transition relation on configurations has three
kinds of transitions: internal steps, calls, and returns. At an internal step, control
follows an internal edge, reaches a new node, and applies the assignments on the
edge to the variables in scope, the stack remaining unaffected. During a call, a
call edge and the current interpretation of the local variables in scope are pushed
onto the call stack, control reaches the entry node of the called component, and
a new set of local variables are initialized. At a return, we pop a calling context
off the stack, reinstate the popped local variables (after adjusting for possible
output values), and proceed to the node to which the popped call edge leads.

We now formally define the configuration space Q of an ERSM A. A configu-
ration of A is a tuple ψ = 〈γ, stack , u, λ〉, where γ is an interpretation of G, and
stack is either of the form 〈(e1, λ1), (e2, λ2), . . . , (er, λr)〉 or the empty list. Here,
e1, e2, . . . , er are call edges of A, λ1 is an interpretation of Lp, e1 is a call edge
in Ap, and, for every i > 1, λi is an interpretation of Lc and ei is a call edge in
Ac, where c = Y (ei−1). Finally, u is a node in Nj and λ is an interpretation of
Lj , where j equals p if stack is empty, and Y (er) otherwise.

In a configuration of the above form, we define the node u to be the current
node in ψ. We refer to this node as Currnode(ψ).

We need some more notation before we can define the transition relation on
these configurations. Let σ1 and σ2 be interpretations of disjoint sets of variables
V1 and V2. Then σ1 t σ2 is the interpretation of (V1 ∪ V2) that agrees with σ1

and σ2 on variables from V1 and V2 respectively.

Now let l1 ∈ U
q
1

and l2 ∈ U
q
2

be two lists of variables such that U1 ∩ U2 = ∅
and members of l2 are all distinct. Let us also have interpretations σ1 and σ2 of
U1 and U2 respectively. Then τ = borrowValues(σ2, l2, σ1, l1) is an interpretation
of U2 obtained by (1) setting τ(l2(i)) = σ1(l1(i)) for all i, and (2) for all other

v, setting τ(v) = σ2(v). Intuitively, borrowValues replaces the values of those
variables in σ2 that occur in l2, the i-th variable in l2 getting the value that
interpretation σ1 gives to the i-th variable in l1.

The global transition relation ∆ of an ERSM is then defined as follows. Let
ψ = 〈γ, stack , u, λ〉 be a configuration with u ∈ Nj . Then (ψ, ψ′) ∈ ∆ iff one of
the following sets of conditions holds:

1. Internal step

(a) (u, u′, g, α) ∈ δI
j for a node u′ of Aj ,

(b) γ t λ satisfies g, and

(c) ψ′ = 〈γ′, stack , u′, λ′〉, where γ′ t λ′ = α(γ t λ).

2. Call

(a) e = (u, u′, g,m, inm, outm) ∈ δC
j for a node u′ of Aj ,

(b) γ t λ satisfies g, and

(c) ψ′ = 〈γ, 〈stack, (e, λ)〉, enm, λ
′〉〉, where λ′ = borrowValues(λmin

, Im, λ, inm).

3. Return

(a) u is the exit node exj of Aj ,

(b) stack is of the form 〈stack ′, (er, λr)〉
(c) er = (v, u′, g, j, inj , outj) for some v, u′, g, inj , and outj , and

(d) ψ′ = 〈γ, stack ′, u′, λ′〉〉, where λ′ = borrowValues(λr , outj , λ, Oj).

Note that the configurations Q and the transition relation ∆ define an or-
dinary (and in general infinite) transition system TA. A run of A is a (finite or
infinite) sequence ρ = ψ0ψ1ψ2 . . ., where ψ0 = 〈γin ,⊥, enp, λpin

〉 (⊥ being the
empty stack sequence), and for all i, ψi ∈ Q and (ψi, ψi+1) ∈ ∆. The semantics
of A are defined by its set of runs.

Given an ERSM A, we are interested in two central algorithmic questions:

1. Reachability: Given an ERSM A and a set of target nodes T of A, does A
have a run ρ = ψ0ψ1ψ2 . . . such that Currnode(ψj) ∈ T for some j?

2. Fair cycle detection: Given an ERSM A and a set R of repeating nodes of A,
does A have a run ρ = ψ0ψ1ψ2 . . . such that Currnode(ψj) ∈ R for infinitely
many j ∈ N?

In this paper, we present two algorithms that search the set of local states
enumeratively to solve these problems. These algorithms differ from previous
work in two important respects:

1. On-the-fly search: We generate states “on demand”, as we explore the state
space, and only store the visited states.

2. Early termination: Our algorithms terminate as soon as a reachability wit-
ness or a cycle containing a repeating state occurs in the visited state space.
Consequently, our algorithms do not necessarily have to generate the entire
state space in order to terminate.

3 Reachability

We now describe an on-the-fly, early-terminating algorithm to check if a given
set T of target nodes is reachable in an ERSM A.

A state of an ERSM A is a tuple of the form s = 〈v, γ, λ〉, where v is a
node, and γ and λ are interpretations of global and local variables. Note that a
state is different from a configuration in that it does not include the stack. An
entry state for component Ai is a state s = 〈v, γ, λ〉 where v = eni. Likewise,
s = 〈v, γ, λ〉 is an exit state if v = exi. A summary is a pair (sen, sex), where sen

is an entry state and sex is an exit state in the same component.
Let us now define a state graph S corresponding to A. The vertices of S are

the states of A and the set of transitions of S is the smallest set E of transitions
satisfying the following conditions:

- Internal transitions Let s = 〈u, γ, λ〉 be a state. If Ai has an internal edge
(u, v, g, α) and the interpretation γ t λ satisfies g, then E has a internal
transition (s, s′), where s′ = 〈v, γ′, λ′〉, where γ′ t λ′ = α(γ t λ).

- Call and summary transitions Let s = 〈u, γ, λ〉 be a state. Assume Ai has
a call edge (u, v, g,m, inm, outm) and the interpretation γ t λ satisfies g.
Let sen = 〈enm, γ, λen〉, where λen = borrowValues(λmin

, Im, λ, inm). Then
(s, sen) is a call transition in E.
If sex = 〈exm, γ

′, λex〉 is some exit state in Am and sex is reachable from sen

using only internal and summary transitions, then (s, s′) is a summary tran-
sition in E where s′ = 〈v, γ′, λ′〉 and λ′ = borrowValues(λ, outm, λex, Om).

For a set of repeating nodes R, let us also define SR, which is defined exactly
as S is defined above except that summary transitions can be of two kinds,
fair or not fair. When a summary transition is added, it is set to be fair if the
run from sen to sex goes through a state involving R or uses a fair summary
transition.

The key to checking reachability and cycles in an ERSM is given by the
following lemma:

Lemma 1 ([1]). Let A be an ERSM and let S be its associated state-graph. For
a given set of target nodes T , T is reachable in A iff there is a node of the form
(u, γ, λ) with u ∈ T reachable in S. Similarly, given a set of repeating nodes R,
there is run of A that visits R infinitely often iff there is a path in SR that visits
the set {(u, γ, λ)|u ∈ R} infinitely often or uses fair summary edges infinitely
often.

Note that if local and global variables are finite-domain, then S is finite
as well, and the above lemma shows checking reachability and fair cycles are
decidable. We refer to the subgraph of S induced by the nodes belonging to
Ai, i.e. nodes of the form (u, γ, λ) where u ∈ Ni, as Si; the graphs Si contain
only internal and summary transitions. Our reachability algorithm explores S
on-the-fly looking for a state of the form (u, γ, λ), where u ∈ T . It can be in

Reachability(s, sen)
1 Visited ← Visited ∪ {(s, sen)}
2 if Currnode(s) ∈ T
3 then print (“Target reached”) ; break
4 if s is an exit state in component i
5 then VisitedExits [i, sen]← VisitedExits [i, sen] ∪ {s}
6 for (s′, s′

en) ∈ VisitedCalls[i, sen]
7 do sret = GetReturnState(s′, s)
8 if (sret, s

′

en) /∈ Visited

9 then Reachability(sret, s
′

en)
10 else for e ∈ EdgesI(s)
11 do if s satisfies guard of e
12 then s′ ← Apply(e, s)
13 if (s′, sen) /∈ Visited

14 then Reachability(s′, sen)
15 for e ∈ Edges

C
(s)

16 do if s satisfies guard of e
17 then m← Y (e); s′ ← GetEntryState(e, s)
18 VisitedCalls [m, s′]← VisitedCalls[m, s′] ∪ {(s, sen)}
19 if (s′, sen) /∈ Visited

20 then Reachability(s′, sen)
21 else for sex ∈ VisitedExits [Y (e), s′]
22 do sret = GetReturnState(s, sex)
23 if (sret, sen)) /∈ Visited

24 then Reachability(sret, sen)

Fig. 2. On-the-fly reachability in ERSMs

fact viewed as an interleaving of k separate depth-first searches, the i-th search
taking place in the transition system Si.

Our search begins from the initial state 〈enp, γin, λpin
〉, in the initial compo-

nent Ap. The search proceeds depth-first following edges in Ap. If, during this
search, we are at a state s1 in Sp and find a call edge calling component Aq ,
we would need to search along a summary transition in Sp. To discover this
transition, however, we would need to know the reachability relation between
the corresponding entry and exit states in Aq , and to compute this relation, we
must search Sq.

The crux of the algorithm is to view Sp as an incompletely specified transition
system and suspend the search in Sp when such a situation occurs. Given s1 and
the call edge in question, we can compute the entry state s2 in Sq reached follow-
ing the corresponding call transition. If s2 has not been visited so far, we search
Sq starting from s2; if a search from s2 has previously been started, we simply
suspend searching and wait for future “updates”. As we learn more about reach-
ability between entry and exit states in Sq , we may add corresponding summary
transitions in Sp and resume the search in Sp. If all local searches terminate,
then we have explored all of the reachable part of S, and can terminate.

Figure 2 describes the algorithm more formally. Given a state s = 〈v, γ, λ〉,
we refer to the set of internal and call edges going out of v as Edges I(s) and

EdgesC(s) respectively. If the variables in s satisfy the guard g on an internal
edge e, the function Apply(e, s) returns the state s′ to which the corresponding
internal transition leads. If s satisfies the guard g on a call edge e, the function
GetEntryState(e, s) returns the entry state s′ that is the target of the corre-
sponding call transition. Finally, suppose s is an exit state in component Am

and s′ is a state with a call transition to component Am; also suppose there ex-
ists a summary transition (s′, s′′) corresponding to s′, e and s. Then the function
GetReturnState(s′, s) returns the state s′′.

The function Reachability has two inputs: a state s in component Ai and
an entry state sen. The pair of states (s, sen) forms a context if s is reachable
from sen. The set VisitedCalls [i, sen] stores the set of “calling contexts”: contexts
(s′, s′en) where control switched to component Ai and entry state sen. Then, if
an exit state sex in Ai is reachable from state sen, a summary transition between
states s′ and s′′ = GetReturnState(s′, sex) has been discovered.

To solve the reachability problem, we call Reachability(sinit , sinit), where
sinit = 〈enp, γin, λpin

〉. Termination of this algorithm is guaranteed if the set of
states reachable from the initial states is finite; one such special case is when all
types are finite-domain. We omit the detailed proof of correctness.

Theorem 1. Let A be an ERSM, T be a set of target nodes, and sinit =
〈enp, γin, λpin

〉. Then if the algorithm Reachability (sinit, sinit) halts, it prints
“Target reached” iff there is a run of A that reaches a configuration ψ with
Currnode(ψ) ∈ T . Moreover, if the set of states reachable from sen in S is fi-
nite, then Reachability(sinit, sinit) is guaranteed to halt. ut

This algorithm has some of the nicer, “on-the-fly” properties of DFS. We
start with an initial state, only store the “visited” state space, make a switch to
a different component only when a call edge requires it, and, even when such a
switch is made, “discover” entry states only when necessary. Moreover, we can
terminate as soon as we encounter a target state.

If s′en is an entry state of Si reachable in S and s′ is reachable from s′en

using edges in Si only, then when calling Reachability(sinit, sinit), the recursive
procedure Reachability(s′, s′en) will be called at most once. This observation leads
to the following complexity of the reachability algorithm in terms of the number
of discovered states and transitions in S:

Theorem 2. Let Reachability terminate on a given ERSM A. Let n and m be
the number of states and edges in the explored part of S. Let β be a bound on
the maximum number of reachable entry or exit states in any component Si.
Then Reachability(sinit, sinit) takes O(mβ + nβ2) time to terminate and space
O(nβ). ut

4 Fair Cycle Detection

Let us fix an ERSM A and a set of repeating nodes R of A. Let SR be the
associated state-graph of A and R as defined in the previous section. In this

section, we present an on-the-fly fair cycle detection algorithm for ERSMs that
searches the transition system SR for a cycle containing a repeating state or a fair
summary edge. If the domains of the types are finite, Lemma 1 guarantees that
A has a run visiting infinitely many repeating states if and only if such a cycle
exists. Our core idea is to view SR as an incomplete transition system to which
edges are added dynamically, and to use an online cycle detection algorithm for
dynamically presented graphs to find such a cycle.

The following are a few ways in which this can be implemented:

– The most naive algorithm would be to search the state-space of A using
Reachability, postponing cycle detection until we know all states and
transitions in SR. At that point, we may detect cycles in SR using an al-
gorithm (such as nested DFS [9]) for cycle detection in finite graphs. This
algorithm, however, is inherently a two-phase algorithm and does not have
the early termination property.

– Another possibility is to adapt the nested DFS algorithm [9] to a setting
where summary transitions are dynamically presented and early termination
is required. This turns out to be difficult. The problem is that in the nested
DFS algorithm, the secondary search follows the DFS order computed by the
primary search: if s and s′ are two states such that s is an ancestor of s′ in
the primary DFS tree, the secondary search from s′ must terminate before
the secondary search from s may start. However, in our context, we may
discover a summary transition from s′ (that can possibly introduce cycles)
while searching a different branch of the primary DFS tree rooted at s.
A conceivable way of adapting this algorithm to our setting would be to start
a new instance of Reachability each time we reach a repeating state sr,
to check if sr is reachable from itself. However, the time complexity of such
an algorithm would be NF times the size of SR, where NF is the number
of repeating states; note that due to data interpretations, NF can be very
large.

– A third option, which is what we follow, is to maintain strongly connected
components (SCCs) in SR dynamically using an incremental algorithm. We
terminate, reporting a cycle, as soon as the explored part of SR starts con-
taining a non-trivial SCC with a repeating state or a fair summary transition
in it. However, linear time incremental algorithms for maintaining SCCs are
not known. While we could use heuristically tuned online algorithms such as
in [19], we have chosen instead to use an adaptation of Gabow’s algorithm
as it uses simpler data-structures.

Our algorithm Fair-Cycle-Detect consists of two subroutines: one ex-
plores the state space of the ERSM and discovers new transitions in SR (includ-
ing summary transitions), while the other updates the SCCs in the discovered
graph. The former algorithm is essentially the algorithm Reachability of the
previous section while the latter is an adaptation of a path-based DFS algorithm
by Gabow [16] that finds SCCs in a graph.

Gabow’s algorithm finds SCCs in a graph via a DFS on it. As soon as a
back edge is identified, it contracts the cycle formed by it into an SCC, and,

finally, outputs the SCCs in a topological order. This algorithm has an early
termination property, because if an SCC introduced by a back edge contains a
repeating state or a fair summary transition, we can terminate immediately.

Let us now describe an optimization that changes the structure of our algo-
rithm. Since Gabow’s algorithm essentially explores its graph using a depth-first
search and the state-space exploration of the ERSM done by Reachability is
also essentially a DFS, these two can be combined easily. However, in Reach-

ability, when a new summary is discovered, the control shifts to the returns
corresponding to this summary, which can be in an entirely different part of the
graph. Since such a ‘jump’ requires us to restart our SCC algorithm, we prefer
to process the summary transitions later, after the current DFS is over.

Consequently, our search-space exploration algorithm is the same as Reach-

ability, except that when a summary is discovered, the returns corresponding
to it are not pursued and instead the new summary transitions are recorded in a
set Summ. The dynamic SCC algorithm processes these transitions and updates
the SCCs. When the exploration stops (or the current search phase ends), we
add the summary transitions in Summ and run the dynamic SCC algorithm once
more to effect the changes. Then we call the exploration algorithm again and
ask it to proceed from the return states corresponding to the newly discovered
summary transitions in Summ. We terminate, concluding that there is no fair
cycle, if no new summary is found at the end of a search phase. Figure 3 and
Figure 4 give the pseudocode of the entire algorithm Fair-Cycle-Detect.

SCC-search explores the transition system SR recursively, feeding every
new transition to the procedure Update-SCCs, which uses two stacks [16] to
update the data structures it uses to remember the SCCs, and halts if the new
transition introduces a fair cycle. To perform this update, it may have to do a
DFS on the graph of discovered SCCs; however, since the edges fed to it in a
phase are in DFS order, it only needs one cache of “visited” SCCs per phase.

While backtracking from the search, the procedure Create-component,
which marks an SCC to be used in the next phase, is called. Finally, the procedure
Collapse-SCCs takes in a set of summary edges found in the previous search
phase (fair summaries are kept track of using a special bit b) and updates the
current graph G of SCCs with them, terminating if it finds a fair cycle.

The correctness of this algorithm is guaranteed by the following theorem:

Theorem 3. Given an ERSM A, a set R of repeating nodes, and the entry
state sinit = 〈enp, γin, λpin

〉, if the algorithm Fair-Cycle-Detect halts, then
it prints “Fair cycle found” iff there is a run of A that has infinitely many
configurations ψ′ with Currnode(ψ′) ∈ R. Furthermore, if the state-graph SR

corresponding to A is finite, then Fair-Cycle-Detect always halts. ut

Recall that in every search phase, we need to perform a search on the graph
of SCCs. The total number of search phases in Fair-Cycle-Detect is bounded
by the number of possible summaries in SR. Let N be the maximum, over all
component graphs Si, of the number of pairs (sen, sex), where sex is an exit state
in Si and is reachable from entry state sen of Si. Then SR can have at most kN
search phases, where k is the number of components in A. Hence, we have:

Fair-Cycle-detect()
1 graph G← ({sin}, ∅);Visited ← ∅; Sin = {(sin, sin, (sin ∈ R))}
2 repeat

3 Summ ← ∅; Initialize-SCC-Update()
4 for (s, sen, b) ∈ Sin

5 do SCC-Search (s, sen, b)
6 Collapse-SCCs (Summ)
7 if Collapse-SCCs finds a fair nontrivial SCC
8 then print (“Fair cycle found”) ; break
9 Sin ← {(sret, s

′, b) : ∃s.(s′

en, (s, sret), b) ∈ Summ}
10 until Summ = ∅
11 print (“No fair cycle”)

Fig. 3. Fair cycle detection algorithm

Theorem 4. Let A be an ERSM, R be a set of repeating nodes and SR be the
associated state graph. Let n and m be the number of states and edges, β be
a bound on the maximum number of reachable entry states and reachable exit
states in any Si, in the reachable part of SR. Then Fair-Cycle-Detect takes
O(kN(mβ + nβ2)) time to terminate and uses space O(nβ2 +m). ut

Note that N is bounded by β2. While Fair-Cycle-Detect does not run
in time linear in the size of SR, it has the early-termination property and some
“on-the-fly” properties.

5 Vera

Vera is a Java implementation of the algorithms for reachability and fair cycle
detection presented in this paper. In this section, we highlight its main features
and compare it with Moped [13], a popular BDD-based LTL model checker for
pushdown systems.

Input language Boolean programs, introduced in [3] and used in the Slam

verification process [4], are abstractions of imperative programs that retain most
of the control structures available in a C-like language but only allow variables
and expressions of boolean type. These abstractions permit procedure calls with
call-by-value parameter passing and recursion; procedures can return vectors
of expressions. Global and local declarations of variables are permitted. Allowed
statements include parallel assignment (where a list of variables may be assigned
in parallel, either by a list of expressions or by a vector returned by a proce-
dure), “goto” jumps, “if-else” branches, and “while” loops. Non-determinism is
permitted both in branches and loops.

Vera accepts boolean programs as inputs; it also admits a bounded-integer
data type and arithmetic expressions on variables declared as such. These ab-
stractions are translated into ERSMs internally before the algorithms for reach-
ability and fair cycle detection are applied.

SCC-Search(s, sen, b)
1 Visited ← Visited ∪ {(s, sen, b)}
2 if s is an exit state in component i
3 then VisitedExits [i, sen]← VisitedExits [i, sen] ∪ {(s, b)}
4 for (s′, s′

en, b′) ∈ VisitedCalls[i, sen]
5 do sret = GetReturnState(s′, s); bret = b ∨ b′ ∨ (sret ∈ R)
6 if (sret, s

′

en, bret) /∈ Visited

7 then Summ ← Summ ∪ {((s′, sret), s
′

en, bret)}
8 else for e ∈ Edges

I
(s)

9 do if s satisfies guard of e
10 then s′ ← Apply(e, s); b′ = b ∨ (s′ ∈ R); Update-SCCs(s, s′, b′);
11 if Update-SCCs finds a fair nontrivial SCC
12 then print (“Fair cycle found”) ; break
13 if (s′, sen, b′) /∈ Visited

14 then SCC-Search(s′, sen, b′)
15 for e ∈ Edges

C
(s)

16 do if s satisfies guard of e
17 then m← Y (e); s′ ← GetEntryState(e, s);
18 b′ = (s′ ∈ R); Update-SCCs(s, s′, b′)
19 VisitedCalls [m, s′]← VisitedCalls[m, s′] ∪ {(s, sen, b)}
20 if (s′, sen, b′) /∈ Visited

21 then SCC-Search(s′, sen, b′)
22 else for (sex, bex) ∈ VisitedExits [Y (e), s′]
23 do sret = GetReturnState(s, sex)
24 bret = bex ∨ b′ ∨ (sret ∈ R)
25 if (sret, sen, bret) /∈ Visited

26 then SCC-Search(sret, sen, bret)
27 Create-Component ()

Fig. 4. Procedure SCC-Search

Specifying properties One way to specify target (or repeating) nodes in Vera

is to list a set of target (or repeating) labels along with the input. Any control
location marked by such a label translates into a target or repeating node. The
target (repeating) set may also be specified by a monitor.

A monitor, in our context, is a finite automaton M with edges labeled by
guards on global and local variables in A, and a set of states identified as target
states. The definition of the product P of M and A is standard: a configuration
of P consists of a configuration of A and the current state of M , and progress
along a monitor is allowed only if the current variables satisfy the guard on
it. A target (or repeating) node in P is one where the current state of M is a
target. Given a monitor and the ERSM underlying an input program, Vera can
perform reachability (cycle) analysis for the product ERSM P .

5.1 Experiments

Slam regression testing examples We ran Vera on the regression test
suite for Slam: a collection of 64 C programs which, after abstraction in Slam,

Example Lines Globals Locals Reachable Visited Vera time(s) Moped time (s)

n-mutex1 439 3 13 Yes 274 0.06 0.04
p-mutex33 460 6 21 Yes 702 0.21 0.14

n-i2o-simple 347 2 3 Yes 94 0.08 0.01
n-list-22 305 0 15 Yes 316 0.07 0.02

p-mutex34 466 6 21 No 14144 6.17 0.08
p-farray 306 0 8 No 1304 0.18 0.01

p-nbebop-test 239 0 16 No 75524 151.85 0.04
p-srdriver 1454 10 36 No - - 0.29

Fig. 5. Experiments on the Slam regression test suite

give boolean programs whose lengths range between 80 and 1450 lines. In each
case, the query was: is the control location labeled as SLIC ERROR reachable?
The experiments were run on a machine with 2GB of RAM and two 1.4 GHz
CPUs. Measurements on a few representative examples are tabulated in Figure 5.
The first three columns show the number of lines of code, the number of global
variables, and the maximum number of local variables in a procedure (recall that
the number of ERSM states is exponential in the last two parameters). The next
column gives the answer to the query. The next two columns give the number
of visited states at termination, and total runtime in seconds. The final column
shows the runtime of the Moped model checker on the same example.

In the first four examples, where the target set is reachable, Vera seems to
find a reachability witness easily. In the next four cases, where it has to gen-
erate the entire reachable state space, it performs much worse than Moped.
Particularly, in the last case, where there there may be as many as 10 unini-
tialized globals and 36 uninitialized locals in any procedure, the state space is
too large for our procedure to terminate. On the other hand, in examples such
as p-mutex34 where Vera works better, there are complex conditions on edges
but the number of uninitialized variables is not very high.

Quicksort Among the examples that come with Moped is an abstraction
of a buggy quicksort routine (quicksort error.pds). The routine has two non-
deterministically chosen integer inputs and can run into an infinite loop for some
input values. While there exists a short witness to this error, it is by no means
trivial.

We use Moped and Vera to find this witness. To do this in Vera, we write
a simple monitor and run the fair cycle detection module. We find that Vera’s
early termination capability lets it identify a cycle very fast, even when inputs
have large ranges and, consequently, the set of reachable states is very large.
The symbolic algorithm for Moped, however, becomes prohibitively expensive
as the number of bits in an integer (N) is increases, and does not terminate for
N = 10 or above (see Figure 6).

We also compared Vera and Moped on a trivial reachability property:
whether the program has some terminating run. Vera identifies a witness im-
mediately, whereas in Moped, an effect similar to Figure 6 is observed.

N Vera runtime(s) Vera visited states Moped runtime(s) Moped BDD nodes

4 0.08 95 0.16 40880
6 0.08 95 4.01 1.91 ×105

8 0.08 95 260.35 2.12 ×106

10 0.10 95 - -
32 0.15 95 - -

Fig. 6. Buggy quicksort

Abstraction of a Linux driver Finally, we ran Vera’s reachability and cycle
detection algorithms on a manual abstraction of the Perle Specialix RIO driver
for Linux. This driver, 1100 lines long and previously identified as buggy by
the Stanford metacompilation project [11], contains a double locking error. We
abstract it manually into a 220-line Vera input file, keeping the basic control
structure intact, modeling locks and process id-s by Vera variables, and replac-
ing many of the control-flow conditions by nondeterminism. We write simple
monitors to answer the following questions:
(1) Is there an execution where the same lock is acquired twice in a row?
(2) Is every lock that is acquired also released?

In the former case, there exists a reachability witness to an error state. For
4-bit integers, Vera detects the error in 0.18s after visiting 15 states (this figure
stays more or less the same even as the size of the integer type is made larger). In
the second case, our abstraction satisfies the property, and Vera has to generate
the entire state space before it terminates. Because of a few uninitialized integer
variables, this space is quite large. For N = 2, it takes 50.92s. For higher values
of N , Vera does not terminate.

6 Conclusions

We have presented algorithms for on-the-fly reachability and fair cycle detection
for extended recursive state machines. Algorithmically, on-the-fly detection of
cycles deserves further exploration. It is closely related to the problem of dy-
namic data structures for graphs where insertions are allowed, and queries check
existence of cycles containing repeating nodes. It is open whether the worst-case
quadratic bound of our cycle-detection algorithms can be improved. It would be
interesting to know whether online SCC algorithms are essential to detect fair
cycles in ERSMs on-the-fly, i.e. whether faster algorithms for on-the-fly traversal
of ERSMs would necessarily imply faster online algorithms for cycle detection.
Our implementation in Vera and experimentation support the hypothesis that
on-the-fly model checking is a viable, and sometimes more effective, alternative to
symbolic checkers for verifying ERSMs. Future work will focus on optimizations,
alternative strategies for cycle detection, and applications to program analysis
problems.
Acknowledgements: We thank Mihalis Yannakakis for useful discussions, Sri-
ram Rajamani and Stefan Schwoon for the Slam regression test suite, and an
anonymous referee for several relevant references in program analysis.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In Proc. Computer-Aided Verification, LNCS 2102: 207–220, 2001.

2. T. Andrews, S. Qadeer, S.K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. In Proc. CAV’04, LNCS 3114: 484–487, 2004.

3. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
In SPIN Workshop on Model Checking of Software, LNCS 1885: 113–130, 2000.

4. T. Ball and S. Rajamani. The SLAM toolkit. In Proc. CAV’01, LNCS 2102, 2001.
5. M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted hierar-

chical state machines. In Proc. ICALP ’01, LNCS 2076: 652–666, 2001.
6. A. Boujjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Applications to model checking. In CONCUR’97, LNCS 1243, 1997.
7. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite

sequential processes. Theoretical Computer Science, 221:251–270, 1999.
8. J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and

H. Zheng. Bandera: Extracting finite-state models from Java source code. In Proc.

of Intl. Conf. on Software Engg., pages 439–448. 2000.
9. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient

algorithms for the verification of temporal properties. Formal Methods in System

Design, 1:275–288, 1992.
10. D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. Protocol verification as a hard-

ware design aid. In IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 522–525, 1992.
11. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-

specific, programmer-written compiler extensions. In Proc. 4th USENIX OSDI,
pages 1–16, 2000.

12. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Computer Aided Verification, 12th Interna-

tional Conference, LNCS 1855, pages 232–247. Springer, 2000.
13. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.

Lecture Notes in Computer Science, 2102:324+, 2001.
14. M. Fähndrich, J.S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in

inclusion constraint graphs. Proc. PLDI ’98, pages 85–96, 1998.
15. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model

checking pushdown systems. In Proc. Workshop on Verification of Infinite State

Systems, volume 9 of Electronic Notes in Theor. Comp. Sci. Elsevier, 1997.
16. H. Gabow. Path-based depth-first search for strong and biconnected components.

Inf. Process. Lett., 74(3-4):107–114, 2000.
17. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.

Temporal-safety proofs for systems code. In CAV 02: Proc. of 14th Conf. on

Computer Aided Verification, LNCS 2404, pages 526–538, 2002.
18. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997.
19. D.J. Pearce, P.H.J. Kelly, and C. Hankin. Online cycle detection and difference

propagation for pointer analysis. Software Quality Journal, 12(4):311–337, 2004.
20. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. POPL ’95, pages 49–61, 1995.

