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ABSTRACT 

 

PREDICTION IN THERAPEUTIC EFFECTIVENESS RESEARCH: PROLONGED DOSE 

TITRATION IN WARFARIN PATIENTS AND MODEL TRANSPORTABILITY 

Brian Steven Finkelman 

Stephen Kimmel 

 

Therapeutic effectiveness research relies heavily on prediction modeling, as improving 

therapeutic outcomes for individuals often requires being able to predict which patients are likely 

to do poorly on a given therapy. In this dissertation, we examine the specific case of patients 

starting warfarin therapy, many of whom are at higher risk of bleeding and thrombotic events 

because they take a long time to determine their optimal therapeutic dose. Additionally, we 

examine the general problem of transportability of clinical prediction models and whether that 

problem can be improved through sequential model updating. Specifically, we conducted three 

projects with the following goals: 1) To determine the social, clinical, and genetic factors 

associated with time to maintenance dose in patients starting warfarin; 2) To develop and 

externally validate a prediction model of prolonged dose-titration in these patients; and 3) To 

determine whether sequential model updating can improve model transportability in a simulation 

study. Being able to predict which patients are likely to experience prolonged dose titration on 

warfarin could help clinicians and patients decide whether to use warfarin or a less burdensome 

alternative oral anticoagulant. Furthermore, the overall utility of this and other clinical prediction 

models could be greatly increased by strategies that improve model transportability, such as 

sequential model updating. 
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CHAPTER 1. INTRODUCTION 

  

What is therapeutic effectiveness research? The goal of therapeutic effectiveness research is to 

improve public health by increasing the effectiveness of existing therapies as used in clinical 

practice. The effectiveness of a therapy is different from its efficacy, which refers to the average 

effect of a therapy under ideal usage. Efficacy is generally assessed, along with safety, by 

randomized controlled trials to determine whether therapies should be allowed to be brought to 

market. Research on therapeutic effectiveness, thus, seeks to identify the factors that lead to the 

observed discrepancy between a therapy’s efficacy and its effectiveness in real-world usage. 

Therapeutic effectiveness will often depend on a much wider range of factors than efficacy, 

including clinical factors, such as age, comorbidities, and drug-drug interactions; genetic factors, 

such as variants in genes related to a drug’s pharmacodynamic or pharmacokinetic pathways; and 

social/behavioral factors, such as access to health care, health literacy, and medication adherence 

[Bosworth et al., 2011; Ma & Lu, 2011]. As a result, improving the overall effectiveness of a 

therapy in a population will often necessitate identifying patient subpopulations for whom the 

therapy is likely to have limited effectiveness, and then utilizing alternative treatment strategies—

such as dosing or management changes, interventions designed to improve adherence, or even 

alternative therapies—in those patients. 

 

The role of prediction modeling in therapeutic effectiveness research. Because improving 

therapeutic effectiveness often requires identifying patient subpopulations in whom the therapy is 

generally more or less effective than would be expected in an idealized clinical trial scenario, 

prediction modeling is of vital importance to therapeutic effectiveness research. Clinical 

prediction models are most often based on regression methods, in which the outcome of 

interest—for instance, response to therapy or the development of side effects—is modeled as a 
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function of several predictor variables, in order to predict the probability of the outcome for a 

given individual. To be useful clinically, these models must be developed in a rigorous fashion 

and demonstrate generalizability, or the ability to perform well in the patient population of 

interest, not just the study cohort used to develop the model. Models are typically assessed both in 

terms of calibration, which refers to how well predicted probabilities match observed 

probabilities, and discrimination, which refers to how successful the model is at correctly ranking 

relatively lower and higher risk individuals. Additionally, model generalizability is typically 

assessed via external validation, in which the model is tested in a cohort of patients that were not 

used in the model development process. Finally, it is important to test whether use of the 

prediction model actually leads to better outcomes in practice. While observational studies can 

play an important role, testing of prediction model performance is most rigorously done through a 

randomized controlled trial, comparing outcomes on patients who have been randomized to 

receive therapy that has been tailored based on the results of prediction models to those who 

receive standard therapy without prediction. Examples include clinical trials of whether 

pharmacogenetic dosing algorithms for warfarin led to improvement in anticoagulation control 

over clinical dosing algorithms or standard clinical practice [Kimmel et al., 2013; Pirmohamed et 

al., 2013]. Special attention should be paid in such trials to the generalizability of the study 

population, since effectiveness, not efficacy, is the metric of interest. Furthermore, the time and 

monetary costs of conducting such trials can often be prohibitive, especially considering that 

model performance can deteriorate over time, requiring recalibration. 

 

Warfarin is a common oral anticoagulant that has served as a model for therapeutic effectiveness 

research. Warfarin sodium is a commonly prescribed anticoagulant used for the primary and 

secondary prevention of thromboembolic disease, and until recently, it was the only available oral 

anticoagulant in the US [Mohapatra, Tran, Gore, & Spencer, 2005]. The drug has been used in 



3 

 

practice for 60 years; however, it remains difficult to use because of an unusually narrow 

therapeutic range and as much as a 30-fold variability in dosing requirements for patients to 

achieve stable therapeutic levels of anticoagulation [Wadelius et al., 2004]. Over-anticoagulation 

from having too high a dose of warfarin can result in life-threatening bleeding complications, 

such as intracranial hemorrhage, while under-anticoagulation from having too low a dose of 

warfarin reduces the efficacy of the therapy, leaving patients at risk for strokes and other 

thromboembolic events [Higashi et al., 2002; Sconce et al., 2005; White et al., 1987]. Even non-

serious adverse events such as minor bleeding can lead to warfarin discontinuation [Gullov, 

Koefoed, & Petersen, 1999]. As a result of these limitations, much research has been devoted to 

improving the effectiveness of warfarin therapy in practice. Most of this research has focused on 

the development of models to predict a patient’s required warfarin dose, with the idea that 

knowing the required therapeutic dose in advance will make it easier to titrate a given patient to a 

therapeutic level when starting therapy [Gage et al., 2008; Klein et al., 2009]. Pharmacogenetic 

dosing models for warfarin are typically able to predict within 20% of patients’ actual therapeutic 

dose in about half of individuals [Finkelman, Gage, Johnson, Brensinger, & Kimmel, 2011], 

although their accuracy has historically been much lower in African Americans [Klein et al., 

2009; Limdi et al., 2008; Schelleman, Chen, et al., 2008; Suarez-Kurtz & Botton, 2013]. 

 

Current dosing strategies for warfarin often result in a lengthy and dangerous dose titration 

period. Despite the availability of dosing algorithms, warfarin is still typically dosed empirically, 

with patients started at the population average dose of 5mg/day and then titrated either up or 

down based on changes in the international normalized ratio (INR) [Fihn et al., 1993]. As a result, 

patients often experience a lengthy dose titration period of weeks to months at the onset of 

warfarin therapy, during which time they are at particularly high risk of complications from 

improper anticoagulation levels. For instance, it has been estimated that bleeding risk is 
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approximately 2-6 times higher during the first 3 months of warfarin therapy, and the rate of 

thromboembolic events has been shown to be elevated very early in a patient’s course of warfarin 

therapy in some contexts, such as following surgery [Brotman, Jaffer, Hurbanek, & Morra, 2004; 

Fihn et al., 1993]. In addition, a prolonged dose titration phase substantially increases patient 

burden by increasing the frequency of required visits for INR monitoring for an extended period 

of time. As a result, such patients may have increased medical costs, reduced quality of life 

[Dantas, Thompson, Manson, Tracy, & Upshur, 2004], greater dissatisfaction, and higher rates of 

warfarin discontinuation [Arnsten, Gelfand, & Singer, 1997; Fang et al., 2010], thus depriving 

these patients of the benefit of a highly efficacious therapy. 

 

Patients at high risk of having a lengthy dose titration period on warfarin therapy may be more 

appropriately treated with alternative oral anticoagulation agents. In 2010, the FDA approved 

dabigatran, a direct thrombin inhibitor, for patients with non-valvular atrial fibrillation. Thus, 

dabigatran became the first oral anticoagulant to be approved in the U.S. since the introduction of 

warfarin. Rivaroxaban, a Factor Xa inhibitor, was approved by the FDA in November 2011, and 

another Factor Xa inhibitor, apixaban, was recently approved by the FDA in December 2012. 

Both dabigatran and rivaroxaban have been shown to be non-inferior to warfarin for prevention of 

thromboembolic events [Connolly et al., 2009; Patel et al., 2011], while apixaban was shown to 

be superior to warfarin for stroke prevention in the setting of a randomized trial [Granger et al., 

2011]. Bleeding rates were also generally low and either comparable to or lower than warfarin 

[Siegal & Crowther, 2013]. Moreover, these alternative agents all have the advantage of having 

much less variability in their dosing requirement for patients [Cove & Hylek, 2013]—although 

recent evidence suggests that at least dabigatran may have more dosing variability than had been 

previously thought [Charlton & Redberg, 2014; Cohen, 2014a, 2014b; Moore, Cohen, & 

Mattison, 2014]—allowing for fixed dosing regimens and eliminating the monitoring burden of 
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anticoagulation. Furthermore, these newer agents also have fewer food and drug interactions, 

meaning that they might necessitate fewer lifestyle adjustments and be less prone to fluctuations 

in anticoagulation levels over the long term. 

 

However, the newer agents have some issues that have prevented them from completely replacing 

warfarin in clinical practice. All of the drugs are substantially more expensive, as annual direct 

pill costs for the newer agents are about 60 times more expensive than warfarin [Avorn, 2011]. 

Furthermore, more of the cost of the newer agents are shifted to patients, since co-pays on the 

expensive new medications are generally much higher than co-pays for the laboratory testing 

required with warfarin [Avorn, 2011]. Additionally, dabigatran has shown problems of frequent 

gastrointestinal side effects and appears to have an increased risk of myocardial infarction relative 

to warfarin [Ansell, 2010; Uchino & Hernandez, 2012], while rivaroxaban may have an increased 

risk of spinal hematoma [Jaeger, Jeanneret, & Schaeren, 2011; Steffel & Braunwald, 2011]. 

Furthermore, it is too soon to know what the full risk profile for apixaban might be in real-world 

clinical practice.  

 

Ironically, many clinicians have been made uncomfortable by the inability to monitor 

anticoagulation level in individual patients on the alternative agents. With warfarin, monitoring 

allowed physicians the opportunity to tailor therapy to those, for example, with increased 

bleeding risk or renal dysfunction; to identify and potentially address problems with therapy 

before they led to bleeding or thrombotic events; and to determine whether events that did occur 

were due to non-therapeutic drug levels [Ansell, 2010]. Removing the frequent contact with 

health care providers that comes with monitoring might also worsen adherence to the newer 

anticoagulants [Cutler et al., 2014], and poor adherence could theoretically increase the risk of 

adverse outcomes for patients on the newer anticoagulants relative to those on warfarin, due to 
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the shorter half-lives of the newer drugs [Ansell, 2010]. The lack of an antidote to the alternative 

agents has also led to concern about an inability to stop anticoagulation for patients who develop 

serious bleeding [Steffel & Braunwald, 2011], including those who are victims of trauma [Cotton, 

McCarthy, & Holcomb, 2011]; thus, development of antidotes is an active area of current 

research [Lu et al., 2013]. As a result of all of these issues, there is uncertainty in the clinical 

community about when to use these newer anticoagulants instead of warfarin [Ansell, 2010; 

Hankey & Eikelboom, 2010; Kanagasabapathy, Chowdary, & Gatt, 2011; Mangiafico & 

Mangiafico, 2012]. 

 

Our research is motivated by the hypothesis that individual patients who are likely to respond 

poorly to warfarin could potentially be better treated with less burdensome but more expensive 

alternative oral anticoagulants, though we will not formally address this specific hypothesis in 

this dissertation. Recent research has suggested that the cost-effectiveness of dabigatran relative 

to warfarin is greatest when used in patients who would have had poor INR control on warfarin 

[Freeman et al., 2011; Shah & Gage, 2011], and there is no reason to expect that this would be 

different for rivaroxaban and apixaban. Thus, predicting warfarin response in individual patients 

prior to initiating anticoagulation therapy may be an optimal and cost-effective approach to 

incorporating alternative oral anticoagulants alongside warfarin in clinical practice. 

 

Existing research is inadequate for identifying patients at high risk of prolonged dose titration on 

warfarin therapy. While there has been extensive research to determine the factors that affect 

required therapeutic maintenance dose [Gage et al., 2008, 2004; Kimmel et al., 2008; Klein et al., 

2009; Lenzini et al., 2010; Rieder et al., 2005; Schelleman et al., 2010; Schelleman, Chen, et al., 

2008; Schelleman, Limdi, & Kimmel, 2008; Voora et al., 2005], much less is known about the 

factors that lead to a prolonged dose titration phase for patients starting warfarin. Some evidence 
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suggests that genetic variants associated with maintenance dose may also be associated with 

prolongation of the dose titration period. For instance, the APOE ε3 allele has been associated 

with delay of reaching maintenance dose in African Americans [Cavallari et al., 2011]. Mutations 

in CYP2C9 have also been associated with increased time to maintenance dose [Higashi et al., 

2002; Meckley, Wittkowsky, Rieder, Rettie, & Veenstra, 2008], and variants in VKORC1 have 

been associated with increased time to first therapeutic INR [Schwarz et al., 2008], although the 

results for these variants have been mixed [Limdi et al., 2008]. Variants in these genes have also 

been associated with more frequent dosing changes and greater time spent out of therapeutic INR 

range [Limdi, Wiener, Goldstein, Acton, & Beasley, 2009; Schwarz et al., 2008]. However, 

factors that are associated with outcomes in population studies often perform poorly when 

predicting future outcomes in individuals [Pepe, Janes, Longton, Leisenring, & Newcomb, 2004]. 

Thus, it is essential to directly test whether these genetic variants could be clinically useful for 

predicting a prolonged dose titration period in individual patients at the onset of therapy. 

 

Furthermore, given the multifactorial nature of warfarin response, it seems implausible that 

genetic variants are the only important predictors of a prolonged dose titration phase. However, 

potentially important clinical and sociodemographic factors have not, to our knowledge, been 

studied in this context. There is indirect evidence, though, including results from our group, that 

poor adherence to warfarin could lead to prolongation of the dose titration period, as it has been 

associated with significantly worse anticoagulation control [Cavallari et al., 2009; Kimmel et al., 

2007]. Additionally, we and others have shown that baseline clinical and sociodemographic 

factors—such as younger age, greater than high school education, current employment, and 

cognitive impairment—are associated with subsequent poor warfarin adherence [Arnsten et al., 

1997; Platt et al., 2008], as has been seen with other medications [Ediger et al., 2007; Kulkarni, 

Alexander, Lytle, Heiss, & Peterson, 2006; Nikolaus et al., 1996]. However, these prediction 
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models have not shown very good discrimination in individual warfarin patients [Platt et al., 

2010]. Finally, a variety of social and clinical factors have been associated with several other 

endpoints that may be related to a prolonged dose titration phase, including time in therapeutic 

INR range, risk of bleeding events, and discontinuation of warfarin therapy [Beyth, Quinn, & 

Landefeld, 1998; Fang et al., 2010; Gage et al., 2006; Lip, Frison, Halperin, & Lane, 2011; 

Shireman et al., 2006]. 

 

In this dissertation, we aim to improve our ability to predict prolonged dose titration on warfarin 

therapy as well as better understand its causes. When beginning this research, we hypothesized 

that baseline clinical, genetic, and social factors could predict prolonged dose titration, which we 

define as failure to reach stable therapeutic maintenance dose within 3 months of initiating 

warfarin therapy. In Chapter 2, we focus on identifying both baseline and post-initiation factors 

that are associated with time to the achievement of maintenance dose. Better knowledge of which 

factors lead to a longer time to maintenance dose could help clinicians identify patients who are at 

high risk of prolonged dose titration. Moreover, knowledge of reversible factors that are 

associated with prolonged dose titration, such as behavioral factors, could potentially even 

provide targets for interventions designed to improve anticoagulation control in patients on 

warfarin. In Chapter 3, we focus on developing and externally validating a prediction model for 

prolonged dose titration when starting warfarin therapy. Accurate prediction of prolonged dose 

titration could help clinicians decide when to use alternative strategies for anticoagulation, such 

as less burdensome but more expensive alternative oral anticoagulants, genetic testing to try to 

improve dosing on warfarin, or more frequent INR monitoring. 

 

Prediction models for individual response to warfarin therapy will need to be able to generalize 

across a wide variety of clinical settings to maximize their clinical utility. There are over 30 
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million prescriptions for warfarin in the U.S. every year, with common indications including 

stroke prophylaxis in atrial fibrillation, the presence of a mechanical heart valve, and treatment 

for thromboembolic disease [Wysowski, Nourjah, & Swartz, 2007]. Patients on warfarin are 

managed by specialty anticoagulation clinics, primary care physicians, cardiologists, 

hematologists, and pharmacists, among others. As a result, it is likely that prediction models 

developed in one clinical setting may not perform well in other settings, which could diminish 

their overall usefulness in clinical practice. Deterioration of prediction model performance across 

different clinical settings is an example of poor model transportability, which is a component of 

model generalizability that refers to a model’s ability to produce accurate and reliable predictions 

in different populations from the one in which the model was derived [Justice, Covinsky, & 

Berlin, 1999]. Ultimately, the transportability of a prediction model can only be assessed using 

validation data from distinct populations. 

 

Utility of clinical prediction models is hampered by concerns about poor transportability across 

broad areas of clinical medicine. The problem of poor transportability of prediction models is 

much broader than just predicting warfarin response. For instance, the American Heart 

Association (AHA) and the American College of Cardiology’s (ACC) most recent cholesterol 

management guidelines were largely dependent on an individual’s predicted 10-year risk of 

cardiovascular events [Stone et al., 2014]. However, the prediction models used in these 

guidelines have been criticized because of concerns that they over-predict the risk of 

cardiovascular disease in cohorts other than those used to develop the prediction model [Ridker & 

Cook, 2013]. Additionally, there are several documented examples of validated prediction models 

failing to generalize to different populations. For example, the EuroSCORE model, which was 

developed in European populations to predict 30-day mortality in patients undergoing cardiac 

surgery, failed to generalize to Australian surgical patients [Yap et al., 2006]. In another example, 
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a clinical prediction rule for predicting deep vein thrombosis (DVT) performed well in the 

secondary referral patient population in which it was developed, but failed to generalize to a 

primary care setting [Oudega, Hoes, & Moons, 2005]. Furthermore, this problem is likely even 

more widespread because of the many clinical outcomes that are known to vary substantially 

across clinical sites, including readmission after hospitalization for heart failure [Ross et al., 

2008], mortality following surgery for colorectal cancer [Schootman et al., 2014], false-positive 

results from mammographic screening [Roman, Skaane, & Hofvind, 2014], graft failure after 

liver transplantation [Asrani et al., 2013], and medication adherence rates among diabetes patients 

[Sherman, Sekili, Prakash, & Rausch, 2011]. As a result, methods to improve prediction model 

transportability could be expected to impact a wide range of areas in clinical medicine, and could 

be especially transformative for therapeutic effectiveness research. 

 

Methods to improve prediction model transportability. Poor transportability of a prediction model 

often occurs because of a problem of underfitting rather than overfitting [Justice et al., 1999]. In 

other words, important predictors are either unknown, misspecified, or excluded from the original 

model, and model performance degrades when tested in new populations with a different 

conditional prevalence of those predictors. As a result, it can be very difficult to find statistical 

solutions to problems of transportability using the derivation sample, because by definition, the 

model needs to be tested on a sample with a different empirical distribution from the derivation 

sample in order to determine its transportability. Thus, established methods such as Bayesian 

model averaging [Hoeting, Madigan, Raftery, & Volinsky, 1999], bootstrap aggregation or 

bagging [Breiman, 1996], and cross-validation [Borra & Di Ciaccio, 2010], which are effective at 

reducing model overfitting, would not necessarily be expected to lead to improvements in model 

transportability. 
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In Chapter 4, we examine sequential model updating of mixed-effects models as a potential 

strategy for improving prediction model transportability. In this approach, predictions are made 

on individuals using the best available model at that time. Then, when their outcome data 

becomes available, the model is re-estimated incorporating the newly available data. In short, 

sequential model updating solves the problem of derivation datasets not being representative of 

the population of interest by incorporating data from the population of interest into the derivation 

dataset over time. In practice, sequential model updating would likely involve integrating the 

prediction model into an electronic health records system (EHR) that spans multiple clinical sites. 

Predictions for specific patients could be made using data already available in the EHR, and 

outcomes would be automatically captured as they occur. This scheme would have the advantage 

of automatically calibrating to local conditions, thus improving the transportability of the model, 

without the need to recruit additional cohorts for constructing and validating separate prediction 

models at each individual site. Our research attempts to quantify these potential gains in 

prediction accuracy, as well as the types of scenarios where they might be expected to work best. 

The results of this research could potentially enable future prediction models to be more reliable 

in real-world clinical practice, both for oral anticoagulation research and for therapeutic 

effectiveness research in general. 
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CHAPTER 2. FACTORS AFFECTING TIME TO MAINTENANCE DOSE 

IN PATIENTS INITIATING WARFARIN 

 

Brian S Finkelman, Benjamin French, Luanne Bershaw, and Stephen E Kimmel 

 

 

ABSTRACT 

Background. Patients starting warfarin often experience lengthy dose-titration periods, when they 

are at high risk for bleeding and thromboembolism. However, relatively little is known about why 

some patients take longer than others to reach maintenance dose. Thus, we sought to identify 

social, clinical, and genetic factors associated with prolonged time to maintenance dose (TTM). 

 

Methods. We conducted a time-to-event analysis, using a prospective cohort of patients initiating 

warfarin (N = 390). Additionally, we examined whether changes in post-initiation factors were 

associated with TTM. Finally, we performed a secondary analysis in a subcohort (N = 156) 

assessing the effect of adherence on TTM. 

 

Results. No genetic or post-initiation factors were significantly associated with TTM. However, 

previous use of warfarin (HR = 0.64; 95% CI 0.46, 0.88), current smoking status (HR = 0.61; 

95% CI 0.39, 0.96), fewer than 4 doctor’s visits in the previous year (HR = 0.63 vs 4-12 visits; 

95% CI 0.46, 0.88), and worse general health status (HR = 0.63; 95% CI 0.47, 0.84) were 

significantly associated with longer TTM. Use of illegal injectable drugs (HR = 2.51; 95% CI 

1.17, 5.39) was associated with shorter TTM. On secondary analysis, the hazard ratio for better 

adherence and TTM was 1.70 (95% CI 0.88, 3.27). 
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Conclusions. Pre-existing behavioral factors, health care utilization, and health quality were 

associated with TTM in patients initiating warfarin, but clinical comorbidities and genetic factors 

were not. Future studies are needed to determine whether warfarin patients with prolonged TTM 

would have better outcomes on alternative agents. 

 

BACKGROUND 

Patients initiating warfarin often experience lengthy dose-titration periods of weeks to months, 

during which time they are at particularly high risk of both bleeding and thromboembolic 

complications from improper anticoagulation levels [Fihn et al., 1993; Hylek, Skates, Sheehan, & 

Singer, 1996]. Additionally, during the dose-titration phase, patients may have their international 

normalized ratio (INR) monitored as frequently as 1-2 times per week, while INR monitoring 

during the maintenance phase of therapy is generally only once every 1-2 months. As a result of 

this substantial increase in monitoring burden, patients with a long time to maintenance dose 

(TTM) may have increased medical costs, reduced quality of life [Dantas et al., 2004], greater 

dissatisfaction, and higher rates of warfarin discontinuation [Arnsten et al., 1997; Fang et al., 

2010]. Furthermore, given the recent availability of alternative oral anticoagulants—including 

dabigatran, rivaroxiban, and apixaban—a better understanding of the causes of prolonged TTM in 

warfarin therapy is of increasing importance, because it could potentially help identify patient 

subsets who might be better treated with alternative agents that, while more costly, do not require 

monitoring of drug or anticoagulation levels. 

 

In contrast to the large amount of research that has been done on the genetic and clinical factors 

relating to warfarin maintenance dose requirement [Lee & Klein, 2013], relatively little is 

understood about the factors that lead to a longer TTM. Previous research on the association 

between genetic variants and TTM has been mixed [Cavallari et al., 2011; Higashi et al., 2002; 
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Jorgensen et al., 2009; Limdi et al., 2008; Meckley et al., 2008], with few studies conducted in 

prospective cohorts. Given the multifactorial nature of warfarin response, however, it seems 

implausible that genetic variants are the only important factors associated with TTM. Indeed, a 

variety of non-genetic factors, including social and clinical factors, have been associated with 

several other endpoints that may be related to prolonged TTM, including poor warfarin adherence 

[Cavallari et al., 2009; Kimmel et al., 2007], time in therapeutic INR range [Apostolakis, 

Sullivan, Olshansky, & Lip, 2013; Witt et al., 2009], and risk of bleeding events [Beyth et al., 

1998; Gage et al., 2006; Lip et al., 2011; Shireman et al., 2006]. However, such factors have not, 

to our knowledge, been rigorously studied in the specific context of TTM. 

  

We sought to examine the association between social, clinical, and genetic factors and TTM for 

patients initiating warfarin. Additionally, we aimed to identify whether changes in factors after 

warfarin initiation could lead to increased TTM. Identifying such factors could help identify 

patient subsets that might be better treated with warfarin versus one of the newer anticoagulants. 

To accomplish these aims, we conducted a time-to-event analysis of the INR Adherence and 

Genetics (IN-RANGE) cohort, a large prospective cohort of adults initiating warfarin [Kimmel et 

al., 2007; Platt et al., 2008]. 

 

METHODS 

IN-RANGE cohort. The IN-RANGE cohort of warfarin patients has been used to study the 

clinical and genetic predictors of warfarin maintenance dose and adherence [Kealey et al., 2007; 

Kimmel et al., 2007, 2008; Parker et al., 2007; Platt et al., 2008, 2010; Schelleman et al., 2010, 

2007; Schelleman, Chen, et al., 2008]. Participants were recruited from specialty anticoagulation 

clinics at the Hospital of the University of Pennsylvania (HUP), the Philadelphia Veterans Affairs 
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Medical Center (PVAMC), and Hershey Medical Center. Institutional review board approval was 

obtained at all three sites, and all study participants provided written informed consent. Exclusion 

criteria included being under 21 years old, being unwilling or unable to provide consent, having 

an abnormal INR prior to starting warfarin or heparin therapy, or the presence of antiphospholipid 

antibodies. Participants were enrolled between April 2002 and February 2006. All participants in 

the original IN-RANGE cohort (N = 390) were eligible for inclusion in the current study. 

 

Primary outcome. The primary outcome was the time from warfarin initiation to the first 

maintenance dose-defining visit, in days. Patients were considered to have achieved maintenance 

dose if they had three consecutive INRs within the target therapeutic range, with no constraint on 

the amount of time between INRs. This definition was prespecified prior to cohort enrollment. 

Having a longer TTM is generally worse for patients because of increases in bleeding and 

thrombosis risk as well as patient burden. TTM was a secondary outcome of the original IN-

RANGE study; however, a priori power calculations demonstrated adequate power to detect 

clinically meaningful hazard ratios (Table 2.1). 

 

Exposures. A total of 38 pre-existing, or ‘baseline,’ variables were considered for analysis. These 

included social, clinical, and genetic factors, which were all assessed at the time of recruitment 

(Tables 2.2 and 2.3). Genetic factors studied were the VKORC1 -1639G>A variant (rs9923231), 

the CYP2C9*2 and CYP2C9*3 variants (rs1799853 and rs1057910, respectively), and the APOE 

ε2 and ε4 alleles (based on the rs7412 and rs429358 variants, respectively). As described 

previously [Kimmel et al., 2008], DNA was extracted from buccal swab preparations and 

analyzed using PCR amplification by collaborators who were blinded to patient characteristics 

and outcomes. All non-genetic factors were ascertained via self-report, making the data 

comparable to what would be available to clinicians managing warfarin patients.  
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Table 2.1. Power calculation for primary analysis 

Table 2.2. Baseline social and genetic factors considered as candidate variables for primary analysis and 

their specifications. 

 

  

Percent Exposed Minimum Detectable  

Hazard Ratio > 1 

Maximum Detectable 

Hazard Ratio < 1 

50% 1.4 0.71 

35% 1.4 0.71 

25% 1.5 0.67 

15% 1.6 0.63 

10% 1.7 0.59 

Calculations are based on a type I error rate of 0.05, 300 subjects 

reaching maintenance dose, and 80% power. Calculations were 

performed using PASS 11. 

Factor Specification 

Social  

Self-reported race Binary (0 = not African American; 1 = African American) 

Gender Binary (0 = male; 1 = female) 

Marital status Categorical (1 = married (ref); 2 = separated/divorced;  

3 = widowed; 4 = never married) 

Employment status Categorical (1 = working; 2 = unemployed; 3 = retired (ref); 

4 = disabled) 

Education status Binary (0 = more than high school; 1 = high school or less) 

Annual income per household 

member 

Categorical (1 = < $15,000; 2 = $15,000 to $20,000;  

3 = > $20,000 (ref)) 

Insurance status Categorical (1 = private (ref); 2 = any VA; 3 = Medicaid; 4 = 

Medicare only; 5 = no insurance) 

Ever used illegal injectable drugs Binary (0 = no; 1 = yes) 

Number of alcoholic drinks per 

week 

Binary (0 = 0–7 drinks; 1 = more than 7 drinks) 

Current smoking status Binary (0 = not current smoker; 1 = current smoker) 

Self-reported general health status Binary (0 = excellent/very good/good; 1 = fair/poor) 

No. hospitalizations in past 12 

months 

Continuous (linear) 

No. doctor’s visits in past 12 

months 

Categorical (1 = 0–3  visits; 2 = 4–12 visits (ref);  

3  = 13 or more visits) 

Had difficulty receiving health 

care in the past 12 months 

Binary (0 = no; 1 = yes) 

  

Genetic  

VKORC1 -1639G>A variant  Binary (0 = no variants; 1 = at least one variant) 

CYP2C9*2 and CYP2C9*3 

variants 

Binary (0 = no variants; 1 = at least one variant) 

APOE ε2 allele Binary (0 = no copies; 1 = at least one copy) 

APOE ε4 allele Binary (0 = no copies; 1 = at least one copy) 
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Table 2.3. Baseline clinical factors considered as candidate variables for primary analysis and their 

specifications. 

 

Additionally, several ‘post-initiation’ factors were studied, including changes in the use of 

interacting medications, quantitative and qualitative changes in diet, changes in weight, and 

changes in alcohol consumption since starting warfarin. Changes in interacting medications were 

defined as starting or stopping an interacting medication after warfarin initiation; the list of 

potentially interacting medications is shown in the Appendix. Finally, warfarin adherence, 

measured by medication event monitoring system (MEMS) caps [Kimmel et al., 2007], was 

considered in a secondary analysis because adherence data were only available in 40% of the 

cohort (N = 156). Some patients did not have MEMS cap data because the devices first became 

available after enrollment had begun, while others were offered to use the device but declined. 

 

Factor Specification 

Clinical  

Age (years) at baseline visit Continuous (linear) 

Body Mass Index Continuous (linear) 

Previous use of warfarin Binary (0 =  no; 1 = yes) 

Warfarin indication Categorical (1 = atrial fibrillation/atrial flutter (ref);  

2 = post deep vein thrombosis/pulmonary embolism;  

3 = dilated cardiomyopathy/left ventricular thrombosis;  

4 = stroke/transient ischemic attack; 5 = other)  

Number of interacting 

medications being used at baseline 

Binary (0 = 0–1 medications; 1 = 2 or more medications) 

Amiodarone use at baseline Binary (0 =  no; 1 = yes) 

Statin use at baseline Binary (0 =  no; 1 = yes) 

CHADS2 score Categorical (1 = 0 (ref); 2 = 1; 3 = 2 or higher) 

History of pulmonary embolism Binary (0 =  no; 1 = yes) 

History of deep vein thrombosis Binary (0 =  no; 1 = yes) 

History of peptic ulcer disease Binary (0 =  no; 1 = yes) 

History of gastritis Binary (0 =  no; 1 = yes) 

History of stroke Binary (0 =  no; 1 = yes) 

History of cancer Binary (0 =  no; 1 = yes) 

History of hypertension Binary (0 =  no; 1 = yes) 

History of diabetes Binary (0 =  no; 1 = yes) 

History of arrhythmia Binary (0 =  no; 1 = yes) 

History of congestive heart failure Binary (0 =  no; 1 = yes) 

History of myocardial infarction Binary (0 =  no; 1 = yes) 

History of any other heart disease Binary (0 =  no; 1 = yes) 
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Primary Analysis. Cox regression models, stratified by clinical site, were used for all analyses. 

Variable selection for the primary model of baseline factors was performed using a combination 

forward-backward algorithm. Specifically, univariable analyses were performed on baseline 

candidate variables, and those with P < 0.2 via the likelihood ratio test were included in the full 

model. The variable in the full model with the largest P-value via the likelihood ratio test was 

successively removed until all P-values were less than 0.1. Next, all previously omitted variables 

were reintroduced one at a time. Those variables with P < 0.1 in this forward step were included 

in the final model, as were age and race, which were deemed clinically important. The variables 

included in the final model were age, race, previous use of warfarin, current smoking status, 

illegal injectable drug use, number of doctor’s visits in the previous year, general health status, 

history of arrhythmia, and having a variant in VKORC1. Complete-case analysis was used 

because only 32 individuals (9% of cohort) were missing data on any of these variables. 

 

To ensure that we could compare the effect of genetic factors with what has previously been 

observed in the literature, genetic factors were analyzed separately, adjusted for final model 

variables. Genetic factors were specified as binary variables, indicating whether at least one 

variant was present, in order to avoid data sparseness when assessing prespecified interactions 

between genotype and race. For the same reason, CYP2C9*2 and *3 variants were combined into 

a single binary variable. The effects of post-initiation factors, adjusted for final model variables, 

were also analyzed separately. All post-initiation factors were specified as time-dependent 

variables, with their value representing the total number of changes that an individual had 

experienced by a given date. Additionally, because of their time-dependent specification, models 

for post-initiation factors were adjusted for visit number to help prevent confounding by varying 

frequency of INR monitoring [Fihn et al., 1993].  
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Finally, because this study used the same cohort for variable selection and model estimation, 

there was concern about model overfitting and sensitivity to outliers. Thus, all reported point 

estimates, confidence intervals, and P-values in the primary analysis were estimated using 1,000 

bootstrap replications [Efron & Tibshirani, 1994]. Specifically, to perform the bootstrap 

procedure, individuals were repeatedly sampled with replacement, meaning that the same 

individuals could be selected multiple times in a given sample. The Cox model was then fit using 

this bootstrap sample, and hazard ratio estimates were recorded. This procedure was then 

repeated 1,000 times. Reported hazard ratio point estimates were calculated as the mean hazard 

ratio estimate from 1,000 bootstrap samples; confidence intervals and P-values were calculated 

based on the mean and variance of 1,000 bootstrap samples, assuming a normal distribution of the 

bootstrap samples. This method was chosen to improve the stability and interpretability of 

stratified estimates based on model interactions; however, use of quantiles from the empirical 

distribution for producing confidence intervals would have left the results for the main effects 

essentially unchanged (data not shown). These mean estimates are also slightly more stable than 

those using model-based estimates in the original sample. Additionally, confidence intervals and 

P-values are slightly more conservative than what would otherwise be observed. 

 

Secondary Analyses. Warfarin adherence was analyzed using the subcohort of patients with 

available MEMS cap data (N = 156), adjusting for final model variables. Adherence was 

specified as a time-dependent binary variable, indicating whether an individual had been ≥80% 

adherent over the past three visits. Age was excluded from adjusted adherence models to reduce 

the potential bias from adjustment of near-instruments [Myers et al., 2011; Pearl, 2011], because 

it is known to be a strong predictor of warfarin adherence [Platt et al., 2008, 2010], while not 

being associated with the outcome. Use of illegal injectable drugs was also excluded because of 

unstable estimates due to data sparseness in the subcohort. Finally, we performed a secondary 
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analysis examining whether individuals with high (≥49 mg/wk) or low (≤21 mg/wk) maintenance 

dose had increased TTM. As in the primary analysis, point estimates, confidence intervals, and P-

values for all secondary analyses were based on 1,000 bootstrap replications. 

 

Sensitivity Analyses. We conducted a sensitivity analysis using inverse probability of censoring 

weights to determine the potential impact of informative censoring on our results [Cain & Cole, 

2009; Robins & Finkelstein, 2000]. In this analysis, a Cox model was constructed with time until 

censoring, rather than TTM, as the outcome of interest. All candidate baseline variables, post-

initiation variables, adherence, visit number, INR, and warfarin dose were considered for 

inclusion in the model. Factor variables with >1% missingness were given missing indicators, as 

well, because missing data were felt to be potentially predictive of censoring. Variables were 

selected using an analogous combination forward-backward algorithm, with less restrictive 

criteria of P < 0.25 for entry and retention. This model was then used to predict individual 

probabilities of censoring at each patient-visit, which could then be used to construct inverse 

probability weights, using the formula:  

   {

                                              ( )   
  ( ( )   )

  ( ( )   | ( ))
  ( )   

 

for which wt indicates the weight for a patient at time t, C(t) indicates whether an individual was 

censored at time t, and X(t) indicates an individual’s covariates, time-varying or otherwise, at 

time t. These weights were then applied to the final model in the primary analysis to see how 

much incorporation of the weights changed the original hazard ratio estimates. 

 

A sensitivity analysis was also performed treating visit number, rather than days, as the unit of 

time for the primary analysis, in order to look at the impact of potentially variable visit 

frequencies on our results. Additionally, we performed a sensitivity analysis where standard, non-
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bootstrapped model-based estimates were calculated. Finally, the individual effects of CYP2C9*2 

and CYP2C9*3, as well as using an additive specification (i.e. 0, 1, or 2) for all genetic variants, 

were assessed in a sensitivity analysis. All analyses were performed using R 3.0.2 [R 

Development Core Team, 2014]. 

 

RESULTS 

There were 390 subjects in the cohort, whose characteristics are shown in Table 2.4. Median 

TTM was 45 days (IQR 15, 135), with 288 subjects (74%) achieving maintenance dose by the 

end of the study. Median number of visits required to achieve maintenance dose was 7 (IQR 4, 

13). Genotype frequencies by race are shown in Table 2.5. 

 

The results for the final model are shown in Table 2.6. Complete data on all variables in the final 

model were available in 358 subjects (91%), with 267 (75%) achieving maintenance dose by the 

end of the study. Note that because this is a time-to-event analysis where the “event” is reaching 

maintenance dose, hazard ratios below 1 indicate that a factor is associated with longer TTM and 

is worse for patients, on average. This is in contrast to most studies where the event of interest is 

harmful (i.e. mortality), and hazard ratios below 1 would be considered protective. Previous use 

of warfarin (HR = 0.64 vs no previous use of warfarin; 95% CI 0.46, 0.88), current smoking 

status (HR = 0.61 vs current non-smoking status; 95% CI 0.39, 0.96), having fewer than 4 

doctor’s visits in the previous year (HR = 0.63 vs 4-12 visits; 95% CI 0.46, 0.88), and having 

fair/poor general health status (HR = 0.63 vs excellent/very good/good general health; 95% CI 

0.47, 0.84) were significantly associated with longer TTM. In contrast, use of illegal injectable 

drugs (HR = 2.51 vs no reported drug use; 95% CI 1.17, 5.39) was associated with shorter TTM.   
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Table 2.4. Characteristics of the IN-RANGE clinical cohort (N = 390). 

 

  

Characteristic 
N (%) or 

Mean (SD) 
Characteristic 

N (%) or 

Mean (SD) 

Age (years) 59.2 (15.0) CYP2C9 genotype:  

Female gender 119 (31) *1*1 283 (76) 

Race:  *1*2 59 (16) 

African American 174 (45) *1*3 26 (7) 

Caucasian 206 (53) *2*3 3 (1) 

Other 10 (3) VKORC1 -1639G>A genotype:  

Body Mass Index:  GG 209 (56) 

< 25 122 (32) GA 149 (40) 

25–30 125 (32) AA 15 (4) 

> 30 140 (36) Insurance status:  

Warfarin indication:  Private 215 (56) 

Atrial fibrillation/flutter 188 (48) Any VA 107 (28) 

DVT/PE 116 (30) Medicaid 16 (4) 

DCM/LV thrombosis 26 (7) Medicare only 17 (4) 

Stroke/TIA 22 (6) None 29 (8) 

Other 38 (10) Employment status:  

Target INR 2–3 389 (99.7) Working 128 (33) 

Maintenance dose (mg/wk) 39.9 (22.0) Unemployed 34 (9) 

Previous use of warfarin 96 (25) Retired 143 (37) 

History of hypertension 192 (49) Disabled 81 (21) 

History of diabetes 107 (27) Income per household member:  

History of PUD 36 (9) < $15,000/year 109 (33) 

History of CHF 78 (20) $15,000–$20,000/year 99 (30) 

> 1 Interacting medications 210 (54) > $20,000/year 122 (37) 

Smoking status:  AC clinic site:  

Never smoked 141 (36) HUP 184 (47) 

Past smoker 185 (47) PVAMC 137 (35) 

Current smoker 64 (16) Hershey 69 (18) 

Abbreviations:anticoagulation (AC), congestive heart failure (CHF), deep vein thrombosis 

(DVT), dilated cardiomyopathy (DCM), Hospital of the University of Pennsylvania (HUP), left 

ventricular (LV), peptic ulcer disease (PUD), Philadelphia Veterans Administration Medical 

Center (PVAMC), pulmonary embolism (PE), and transient ischemic attack (TIA). 
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Table 2.5. Frequencies of VKORC1, CYP2C9, and APOE genotypes stratified by race. 

 

  

Genotype Not African American  

N (%)a 

African American  

N (%)a 

VKORC1 -1639G>A   

GG 73 (36) 136 (80) 

GA 116 (57) 33 (20) 

AA 15 (7.4) 0 (0.0) 

CYP2C9   

*1*1 128 (63) 155 (92) 

*1*2 47 (23) 12 (7.1) 

*1*3 25 (12) 1 (0.6) 

*2*3 3 (1.5) 0 (0.0) 

APOE   

ε2/ε2 1 (0.5) 4 (2.4) 

ε2/ε3 25 (12) 22 (13) 

ε2/ε4 3 (1.5) 11 (6.5) 

ε3/ε3 131 (64) 80 (47) 

ε3/ε4 45 (22) 46 (27) 

ε4/ε4 1 (0.5) 7 (4.1) 
aPercents are rounded to the nearest percent for values ≥10% and to the 

nearest tenth of a percent for values below that cut-off. As a result, 

percents may not appear to add up to exactly 100%. 
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Table 2.6. Unadjusted and adjusted hazard ratios for time to maintenance dose for variables included in the 

final model. 

 

 

There was evidence to suggest that the proportional hazards assumption may be violated for our 

primary analysis (P = 0.01), but inspection of survival curves for individual covariates indicated 

Baseline Factora 

(N = 358)b 

N (%) or  

Mean (SD) 

Unadjustedc Adjustedc 

Hazard Ratiod P-valuee Hazard Ratiod P-valuee 

Age (years) 59 (15) 1.01 (1.00, 1.01) 0.24 1.01 (1.00, 1.02) 0.15 

Race      

African American 159 (44) 0.85 (0.65, 1.11) 0.24 1.02 (0.73, 1.42) 0.90 

Caucasian or other 199 (56) —  —  

Previous use of warfarin      

Yes 89 (25) 0.69 (0.52, 0.93) 0.015 0.64 (0.46, 0.88) 0.007 

No 269 (75) —  —  

Current smoking status      

Yes 61 (17) 0.72 (0.47, 1.09) 0.12 0.61 (0.39, 0.96) 0.031 

No 297 (83) —  —  

Self-reported illegal 

injectable drug use 

     

Yes 17 (5) 1.65 (0.73, 3.73) 0.23 2.51 (1.17, 5.39) 0.018 

No 341 (95) —  —  

No. doctor’s visits in  

previous year: 

     

< 4 95 (27) 0.71 (0.52, 0.96) 0.085 0.63 (0.46, 0.88) 0.024 

4 – 12 174 (49) —  —  

> 12 89 (25) 0.86 (0.62, 1.20)  0.88 (0.61, 1.28)  

General health      

Fair/poor 114 (32) 0.66 (0.50, 0.88) 0.005 0.63 (0.47, 0.84) 0.002 

Excellent/very good/ 

good 

244 (68) —  —  

History of arrhythmia      

Yes 189 (53) 0.90 (0.70, 1.16) 0.43 0.79 (0.59, 1.05) 0.10 

No 169 (47) —  —  

No. variants in VKORC1      

≥1 159 (44) 1.23 (0.95, 1.59) 0.11 1.33 (0.99, 1.78) 0.061 

0 199 (56) —  —  
aAll non-genetic factors are based on self-report. 
bBoth unadjusted and adjusted results are from the same complete-case dataset to improve 

comparability. 
cAll models are stratified by anticoagulation clinic site. 
dHazard ratios and confidence intervals are based on the mean and variance from 1,000 bootstrap 

replications. Hazard ratios less than 1 indicate longer time to maintenance dose; hazard ratios greater 

than 1 indicate shorter time to maintenance dose. 
eAll P-values are based on the Wald test using the mean and variance of estimates from 1,000 bootstrap 

replications. Categorical variables were tested jointly. 
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that this should not have a qualitative effect on our results. The effects of genetic factors alone, 

stratified by race, are shown in Table 2.7. No genetic variant was significantly associated with 

TTM either before or after adjustment for covariates (All Pmain effect > 0.06), and no significant 

interactions between genetic variants and race were observed (All Pinteraction > 0.4). As shown in 

Table 2.8, no post-initiation factor was statistically significant either before or after adjustment 

for covariates (All P > 0.2). 

 

In secondary analyses, better adherence appeared significantly associated with shorter TTM in an 

unadjusted analysis (HR = 1.95; 95% CI 1.06, 3.59), but it was no longer significant after 

adjustment for covariates (HR = 1.70; 95% CI 0.88, 3.27), as shown in Table 2.9. By contrast, 

final maintenance dose was not significantly associated with TTM in either unadjusted [high dose 

HR = 1.03 (95% CI 0.79, 1.34); low dose HR = 1.13 (95% CI 0.78, 1.64); overall P = 0.81] or 

adjusted [high dose HR = 1.10 (95% CI 0.78, 1.54); low dose HR = 1.11 (95% CI 0.73, 1.69); 

overall P = 0.79] analyses. 

 

In sensitivity analyses, use of inverse probability of censoring weights did not appreciably change 

the results from those shown in Table 2.6, with a 3.3% mean change in hazard ratio estimates, as 

shown in Table 2.10. Additionally, use of visit number, rather than days, as the unit of time did 

not substantially change the results, with a 6.8% mean change in hazard ratio estimates (data not 

shown). Our results were also not substantially changed when standard, non-bootstrapped 

estimates were used, with a 1.1% mean change in hazard ratio estimates (data not shown). 

Finally, use of an additive specification for genetic variants and having separate variables for the 

CYP2C9*2 and CYP2C9*3 variants did not substantially change the results, with small 

quantitative changes toward the null (data not shown). 
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Table 2.7. Unadjusted and adjusted hazard ratios for time to maintenance dose for genetic factors, stratified 

by race. 

 

 

Table 2.8. Unadjusted and adjusted hazard ratios for time to maintenance dose for post-initiation factors. 

 

Genetic Variant 

(N = 358)a 

African 

American 

Unadjusted Adjustedd 

Hazard Ratiob Pinteraction
c Hazard Ratiob Pinteraction

c 

Any VKORC1 No 1.09 (0.81, 1.46) 0.42 1.31 (0.93, 1.85) 0.85 

 Yes 1.41 (0.78, 2.54)  1.40 (0.71, 2.77)  

Any CYP2C9 No 0.97 (0.69, 1.36) 0.99 1.05 (0.73, 1.52) 0.49 

 Yes 0.96 (0.53, 1.73)  0.68 (0.35, 1.35)  

Any APOE ε2 No 1.08 (0.68, 1.73) 0.93 0.91 (0.52, 1.58) 0.46 

 Yes 1.11 (0.62, 2.01)  1.21 (0.61, 2.40)  

Any APOE ε4 No 1.01 (0.71, 1.44) 0.93 0.97 (0.67, 1.42) 0.92 

 Yes 1.03 (0.57, 1.86)  1.00 (0.51, 1.98)  
aBoth unadjusted and adjusted results are from the same complete-case dataset to improve 

comparability. 
bHazard ratios and confidence intervals are based on the mean and variance from 1,000 bootstrap 

replications. Hazard ratios less than 1 indicate longer time to maintenance dose; hazard ratios 

greater than 1 indicate shorter time to maintenance dose. 
cP-values for interactions are based on the Wald test using the mean and variance of interaction 

terms from 1,000 bootstrap replications. 
dAdjusted for all baseline factors shown in Table 2.6. 

Post-Initiation  

Factor 

(N = 358)a 

Median time 

to first changeb  

Unadjusted Adjustede 

Hazard Ratioc P-valued Hazard Ratioc P-valued 

Change in interact- 

ing medication 

47 (28, 83) 0.93 (0.70, 1.24) 0.62 1.01 (0.76, 1.34) 0.95 

Change in diet:      

Qualitative 14 (7, 34) 0.97 (0.80, 1.17) 0.73 1.00 (0.82, 1.23) >0.99 

Quantitative 14 (7, 36) 0.91 (0.78, 1.07) 0.24 0.98 (0.84, 1.15) 0.82 

Change in weight 17 (7, 35) 0.93 (0.82, 1.06) 0.26 0.97 (0.83, 1.13) 0.70 

Change in alcohol  

use 

50 (29, 86) 0.86 (0.60, 1.23) 0.42 0.96 (0.68, 1.34) 0.80 

aBoth unadjusted and adjusted results are from the same complete-case dataset to improve 

comparability. 
bMedian time (IQR) in days from the initiation of warfarin to the first change experienced by an 

individual for the given variable. 
cHazard ratios are based on the mean estimate from 1,000 bootstrap replications. Hazard ratios less 

than 1 indicate longer time to maintenance dose; hazard ratios greater than 1 indicate shorter time to 

maintenance dose. 
dAll P-values are based on the Wald test using the mean and variance of estimates from 1,000 

bootstrap replications. Categorical variables were tested jointly. 
eAdjusted for all baseline factors shown in Table 2.6, plus visit number to prevent visit frequency from 

confounding the time-varying covariates. 
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Table 2.9. Unadjusted and adjusted hazard ratios for time to maintenance dose in subcohort with adherence 

data. 

 

 

  

Factora 

(N = 143)b 

Unadjusted Adjusted (– Adherence) Adjusted (+ Adherence)e 

Hazard  

Ratioc P-valued Hazard  

Ratioc P-valued Hazard  

Ratioc P-valued 

≥ 80% adherencef 1.95  

(1.06, 3.59) 

0.032 — — 1.70  

(0.88, 3.27) 

0.11 

African American 0.88  

(0.54, 1.43) 

0.60 0.84  

(0.44, 1.61) 

0.61 0.90  

(0.46, 1.76) 

0.77 

Previous use of 

warfarin 

0.67  

(0.41, 1.11) 

0.12 0.58  

(0.32, 1.03) 

0.063 0.59  

(0.32, 1.07) 

0.084 

Current smoker 0.75  

(0.39, 1.44) 

0.39 0.68  

(0.31, 1.47) 

0.32 0.70  

(0.33, 1.52) 

0.37 

No. doctor’s visits 

in previous year: 

      

< 4 0.52  

(0.32, 0.85) 

0.026 0.47  

(0.27, 0.82) 

0.026 0.51  

(0.28, 0.91) 

0.053 

4 – 12 —  —  —  

> 12 0.67  

(0.35, 1.29) 

 0.68  

(0.29, 1.57) 

 0.61  

(0.27, 1.41) 

 

Fair/poor general 

health 

0.64  

(0.40, 1.01) 

0.055 0.63  

(0.36, 1.10) 

0.10 0.69  

(0.39, 1.22) 

0.20 

History of 

arrhythmia 

1.14  

(0.74, 1.78) 

0.55 1.01  

(0.57, 1.79) 

0.97 1.00  

(0.57, 1.76) 

>0.99 

VKORC1 variant 0.96  

(0.62, 1.47) 

0.84 1.06  

(0.57, 1.98) 

0.85 1.01  

(0.54, 1.88) 

0.97 

aAll non-genetic factors, excluding adherence, are based on self-report. Age was excluded from this 

analysis to prevent over-adjustment, because it is a known strong predictor of warfarin adherence while 

being very weakly associated with TTM. Illegal injectable drug use was excluded because there were 

too few self-reported users in the subcohort to produce stable estimates. 
bBoth unadjusted and adjusted results are from the same complete-case dataset to improve 

comparability; only individuals with adherence data were included in this analysis. 
cHazard ratios and confidence intervals are based on the mean and variance from 1,000 bootstrap 

replications. Hazard ratios less than 1 indicate longer time to maintenance dose; hazard ratios greater 

than 1 indicate shorter time to maintenance dose. 
dAll P-values are based on the Wald test using the mean and variance of estimates from 1,000 bootstrap 

replications. Categorical variables were tested jointly. 
eThe adjusted model also included visit number to ensure that visit frequency was not confounding the 

time-varying covariate. 
fAdherence was specified in a time-varying fashion, indicating whether the participant had correct 

adherence on ≥ 80% of the days over the last 3 visits, using medication event monitoring system 

(MEMS) data. 
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Table 2.10. Adjusted hazard ratios for time to maintenance dose using inverse probability of censoring 

weights. 

 

 

DISCUSSION 

In this study, we examined the social, clinical, and genetic factors associated with TTM, using the 

IN-RANGE prospective cohort of adults initiating warfarin therapy. We found that previous use 

of warfarin, current smoking status, having fewer than 4 doctor’s visits in the previous year, and 

worse general health status were all associated with longer TTM, while use of illegal injectable 

drugs was associated with shorter TTM. To our knowledge, this study is the first systematic 

examination of all of these factors for the clinically-relevant outcome of TTM in patients 

initiating warfarin. 

Baseline Factora 

(N = 358) 

Adjusted 

IPCW Hazard Ratiob P-valuec 

Age (years) 1.01 (1.00, 1.02) 0.16 

African American 1.00 (0.72, 1.37) 0.98 

Previous use of warfarin 0.66 (0.49, 0.91) 0.011 

Current smoker 0.65 (0.44, 0.98) 0.040 

Illegal injectable drug use 2.25 (1.20, 4.24) 0.012 

No. doctor’s visits in 

previous year: 

  

< 4 0.68 (0.51, 0.92) 0.038 

4–12 —  

> 12 0.94 (0.67, 1.34)  

Fair/poor general health 0.62 (0.46, 0.82) 0.001 

VKORC1 variant 1.32 (1.00, 1.74) 0.054 
aAll non-genetic factors are based on self-report. 
bHazard ratios less than 1 indicate longer time to maintenance dose; 

hazard ratios greater than 1 indicate shorter time to maintenance dose. 

Inverse probability of censoring weights were constructed from a Cox 

model with covariates including income, difficulty obtaining health 

care, previous warfarin use, warfarin indication, number of 

hospitalizations in previous year, number of doctor’s visits in previous 

year, statin use, history of pulmonary embolism, history of congestive 

heart failure, VKORC1, APOE ε2, INR value, visit number, warfarin 

adherence, and clinic site. 
cAll P-values are based on the Wald test, using robust standard errors to 

account for the non-independence of the weighted samples. Categorical 

variables were tested jointly. 
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Primary Analysis. Most of the literature on factors associated with TTM has focused on the 

effects of genetic variants, and our findings for genetic variants are largely consistent with these 

previous studies. None of the genetic variants studied were significantly associated with TTM. 

Like other prospective studies [Jorgensen et al., 2009; Limdi et al., 2008], we failed to observe an 

association between CYP2C9*2 or *3 and TTM in either African Americans or Caucasians. 

While evidence suggests that CYP2C9*5, *6, *8, and *11 may be more important than 

CYP2C9*2 and *3 for determining warfarin maintenance dose in African Americans due to their 

higher prevalence [Cavallari et al., 2010], significant associations between these variants and 

TTM have not been observed in previous studies [Limdi et al., 2008]. 

 

Similarly, VKORC1 was not significantly associated with TTM in either African Americans or 

Caucasians, which is consistent with the overall literature [Cavallari et al., 2011; Higashi et al., 

2002; Jorgensen et al., 2009; Limdi et al., 2008; Meckley et al., 2008]. Our hazard ratio in 

African Americans, however, was similar to that observed by Limdi et al. [Limdi et al., 2008], 

although none of these results were statistically significant. Our study was sufficiently powered to 

detect clinically meaningful hazard ratios, and even when adjusting for multiple variables we had 

more than 26 events per degree of freedom in our model, well more than the generally 

recommended 10 events per degree of freedom [Concato, Peduzzi, Holford, & Feinstein, 1995; 

Peduzzi, Concato, Feinstein, & Holford, 1995]. Thus, if there is indeed a real effect, it seems 

likely to be of small magnitude. Finally, our results did not confirm a previous finding of an 

association between APOE and TTM in African Americans [Cavallari et al., 2011]. However, this 

previous study excluded individuals who did not reach maintenance dose and had limited 

adjustment for confounders. Therefore, the previous finding could have been the result of 

selection bias, since many individuals who failed to reach maintenance dose could have had a 
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prolonged dose titration period, or bias from unmeasured confounding of clinical, social, and 

behavioral factors.  

 

By contrast, non-genetic factors—including behavioral factors (e.g. smoking status), health care 

utilization (e.g. number of doctor’s visits in the previous year), and health quality (e.g. self-

reported general health status)—appeared to be more important than genetic factors for 

determining TTM (Table 2.6). Worse general health status has been previously shown to be 

associated with worse warfarin adherence [Platt et al., 2010], and current smoking status has been 

associated with increased warfarin dose requirement [Gage et al., 2008; Nathisuwan et al., 2011] 

as well as decreased time in therapeutic range [Apostolakis et al., 2013], so it is unsurprising that 

these factors were found to be associated with longer TTM. Furthermore, fewer than 4 doctor’s 

visits in the previous year might be a marker for reduced health care access or health literacy, so 

it could conceivably be related to longer TTM through the effect of these factors on medication 

adherence and INR monitoring burden. Having fewer doctor’s visits in the previous year may 

also be associated with better general health status; however, the effects of being poorly 

integrated into the health care system on TTM likely overwhelm any benefits of better health. 

 

More surprising was the finding that previous use of warfarin was associated with longer, rather 

than shorter, TTM. Previous warfarin users did not differ from new warfarin users in terms of 

their warfarin indication or comorbidities (data not shown); however, they did appear to have 

their INRs checked less frequently, with 32% of previous warfarin users being seen at least once 

per week on average compared to 45% for new warfarin users, although this difference was not 

statistically significant (Table 2.11). One can hypothesize that physicians may have monitored 

patients with prior warfarin experience less frequently, thus leading to a longer TTM; however, 

this explanation likely does not fully explain the observed association, as previous warfarin use   
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Table 2.11. Association between significant factors and overall visit frequency. 

 

was still moderately associated with longer TTM in the sensitivity analysis using visit number, 

rather than days, as the unit of time.  

 

Similarly, the finding that patients who reported using illegal injectable drugs tended to have a 

shorter TTM was counterintuitive. While it is possible that physicians were intentionally 

monitoring these patients more closely, confirmatory evidence will be needed before concluding 

that the observed association was not primarily due to chance. Changes in post-initiation factors 

were also not associated with TTM, suggesting either that most of these changes typically do not 

occur early enough in the course of therapy to have a substantial impact on TTM or that they are 

Factora 

(N = 390) 

Median Number  

of Visits to  

Maintenance Doseb 

Overall Visit Frequencyc 

P-valued 

< 1 per week ≥ 1 per week 

Current smoker:     

No 7 (4, 12) 180 (55) 146 (45) 0.21 

Yes 8 (4, 21) 47 (73) 17 (27)  

Illegal injectable  

drug use: 

    

No 7 (4, 13) 218 (59) 153 (41) 0.076 

Yes 4 (3, 12) 8 (44) 10 (56)  

Previous use of 

warfarin: 

    

No 7 (4, 11) 161 (55) 130 (45) 0.12 

Yes 8 (4, 16) 65 (68) 31 (32)  

No. doctor’s visits  

in previous year: 

    

< 4 8 (5, 14) 62 (61) 39 (39) 0.70 

4–12 6 (4, 10) 102 (55) 85 (45)  

> 12 7 (3, 24) 61 (62) 37 (38)  

General health:     

Excellent/Very 

Good/Good 

6 (4, 11) 141 (55) 115 (45) 0.39 

Fair/poor 9 (4, 16) 81 (64) 45 (36) 0.21 
aAll factors from Table 2.6 that were found to be significantly associated with TTM were 

included here. 
bResults are reported as median (IQR). 
cResults are reported as N (%) for each level of visit frequency for each covariate. 
dP-values are based on the likelihood ratio test from a logistic regression model, adjusted for 

anticoagulation clinic site; categorical variables were tested jointly. 



32 

 

identified by physicians and appropriate dose adjustments are made during the dose titration 

period. However, changes in post-initiation factors could still be important determinants of 

anticoagulation control in patients on long-term warfarin therapy after maintenance dose has been 

achieved and monitoring is typically less frequent. Finally, it is also worth noting that most 

traditional clinical and demographic factors were not associated with TTM, including all clinical 

comorbidities examined and use of interacting medications at baseline. 

 

Secondary Analyses. Better adherence was not significantly associated with shorter TTM after 

adjustment for covariates. However, given that the point estimate for adherence was comparable 

to significant factors in the primary analysis, it seems plausible that there could be a real effect. 

Because of their shorter half-lives and inability to monitor, there is some concern that 

nonadherent patients on alternative oral anticoagulants might be expected to have worse 

outcomes than nonadherent warfarin patients [Avorn, 2011]. Future studies are needed to clarify 

the effect of adherence on TTM and the effects of adherence on outcomes with alternative oral 

anticoagulants. 

 

Limitations. There are several potential limitations of this study: 1) While one strength of our 

study is that we included all available follow-up time in our analyses, there is still the possibility 

of bias due to informative censoring. We attempted to assess the impact of informative censoring 

by performing a sensitivity analysis incorporating inverse probability of censoring weights. 

Because the results were not appreciably changed, we can be more confident that informative 

censoring is not substantially biasing our results. 2) Because INRs were checked only at visits to 

the anticoagulation clinic, there is the potential for interval censoring to bias our results. While 

the potential bias was small due to visits typically being only about a week or two apart, we 

attempted to determine the effect of interval censoring through a sensitivity analysis in which 



33 

 

visit number was the unit of time for the analysis. The fact that the results were not substantially 

changed makes us more confident in the robustness of our results. 3) We were limited to the 

variables available in this cohort; thus, there may have been other important predictors of TTM 

that we could not assess or residual confounding of the variables we did examine. For this reason, 

future studies of TTM will likely need better measurement of social, behavioral, and health care 

access factors, as well as medication adherence. 4) This study used the same dataset for variable 

selection and effect estimation, potentially leading to problems with overfitting. To address this 

issue, we bootstrapped all point estimates and confidence intervals in both primary and secondary 

analyses. Bootstrapped results were not substantially different from standard estimates; however, 

these results will still need independent validation. 5) Finally, these data are from specialty 

anticoagulation clinics, potentially reducing their generalizability to warfarin patients in other 

clinical settings. 

 

Conclusions. In conclusion, TTM was associated with baseline behavioral factors, health care 

utilization, and health quality in patients initiating warfarin, while traditional clinical 

comorbidities and genetic factors appeared less important. The observed associations could 

plausibly be related to differences in warfarin adherence and visit frequency that occur after 

warfarin initiation, through their effects on anticoagulation control. Future studies will be needed 

to address whether warfarin patients with prolonged TTM will have better outcomes on 

alternative oral anticoagulants.  
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CHAPTER 3. CAN WE PREDICT PROLONGED DOSE TITRATION IN 

PATIENTS STARTING WARFARIN? 

 

Brian S Finkelman, Benjamin French, Luanne Bershaw, Colleen M Brensinger,  

and Stephen E Kimmel 

 

 

ABSTRACT 

Background. Patients initiating warfarin therapy generally experience a dose-titration period of 

weeks to months, during which time they are at particularly high risk of both thromboembolic and 

bleeding events. Accurate prediction of which patients are at higher risk of prolonged dose 

titration could help clinicians determine which patients might be better treated by alternative 

anticoagulation therapies that, while more costly, do not require dose titration. 

 

Methods. Prolonged dose titration was defined as having a time to maintenance dose of greater 

than 12 weeks. The prediction model was derived in a prospective cohort of patients initiating 

warfarin (N = 390), using a Cox proportional hazards model to account for censoring, and then 

validated in an external cohort (N = 663). Predictor variables were selected using a modified best 

subsets algorithm, incorporating cross-validation to reduce overfitting.  

 

Results. Five predictor variables were selected for inclusion in the prediction model: warfarin 

indication, insurance status, number of doctor’s visits in the previous year, current smoking 

status, and history of congestive heart failure. The AUC of this model in the derivation cohort, as 

estimated using leave-one-out cross-validation, was 0.66 (95% CI 0.60, 0.74), while in the 
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external validation cohort, the AUC was only 0.59 (95% CI 0.54, 0.64). Including genetic factors 

in the model did not improve the AUC (0.59; 95% CI 0.54, 0.64). Examination of relative utility 

indicated that use of the prediction model was unlikely to provide a clinically meaningful benefit 

for patients. 

 

Conclusion. Our results suggest that prolonged dose titration cannot be accurately predicted in 

warfarin patients, at least using traditional clinical, social, and genetic predictors. Our results also 

highlight the general need for external validation when constructing risk prediction models. 

 

BACKGROUND 

Because of the substantial population-level variability in warfarin dose requirement, patients 

starting warfarin therapy will often experience a lengthy dose-titration period of weeks to months. 

During this period, they are at particularly high risk of both bleeding and thromboembolic 

complications from improper anticoagulation levels [Fihn et al., 1993; Hylek et al., 1996]. 

Patients with a prolonged dose-titration period also face increased burden from more frequent 

international normalized ratio (INR) monitoring, which can lead to a reduced quality of life and 

higher rates of discontinuation of a highly efficacious therapy [Arnsten et al., 1997; Dantas et al., 

2004; Fang et al., 2010]. Given the availability of less burdensome but more expensive alternative 

oral anticoagulants [Avorn, 2011]—including dabigatran, rivaroxaban, and apixaban—accurate 

prediction of which patients are likely to experience a prolonged dose-titration period on warfarin 

could potentially help clinicians decide when to use warfarin versus one of the alternative agents. 

Thus, we sought to develop and externally validate a model to predict prolonged dose titration in 

patients initiating warfarin therapy. 
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METHODS 

Overview. We derived a prediction model for whether a patient initiating warfarin achieved 

maintenance dose within the first 12 weeks of attempted therapy, using a Cox proportional 

hazards model. We then validated this model in an external prospective cohort of patients 

initiating warfarin. All analyses were performed in R 3.1.0 [R Development Core Team, 2014]. 

 

Derivation cohort. We derived the prediction model using the IN-RANGE cohort, a large 

prospective cohort of warfarin initiation that has been used to study the clinical and genetic 

predictors of warfarin maintenance dose and adherence [Kealey et al., 2007; Kimmel et al., 2007, 

2008; Parker et al., 2007; Platt et al., 2008, 2010; Schelleman et al., 2010, 2007; Schelleman, 

Chen, et al., 2008]. Participants were recruited from specialty anticoagulation clinics at the 

Hospital of the University of Pennsylvania (HUP), the Philadelphia Veterans Affairs Medical 

Center (PVAMC), and Hershey Medical Center. Institutional review board approval was obtained 

at all three sites, and all study participants provided written informed consent. Exclusion criteria 

were kept to a minimum to ensure patient generalizability. Specific exclusion criteria included 

being under 21 years old, being unwilling or unable to provide consent, having an abnormal INR 

prior to starting warfarin or heparin therapy, or the presence of antiphospholipid antibodies. 

Participants were enrolled between April 2002 and February 2006. All participants in the original 

IN-RANGE cohort (N = 390) were included as part of the derivation cohort for the current study. 

 

Validation cohort. Once the prediction model was developed, it was then validated in an external 

cohort. The cohort used for validation was the IN-RANGE2 cohort, which was designed as a 

follow-up cohort to the original IN-RANGE cohort, with similar data collection methods. 

Participants were recruited from specialty anticoagulation clinics at HUP, PVAMC, and Johns 

Hopkins University (JHU). Institutional review board approval was obtained at all three sites, and 
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all study participants provided written informed consent. Exclusion criteria were purposefully 

kept similar to the original IN-RANGE cohort, with the only difference being that individuals 

who were neither Caucasian nor African American (about 3% of the original cohort) were 

excluded from the IN-RANGE2 study and that the presence of antiphospholipid antibodies was 

dropped as an exclusion criterion for the IN-RANGE2 study. Participants were enrolled between 

October 2009 and August 2013. All participants with data available as of August 2014 (N = 663) 

were included in the validation cohort for the current study. 

 

Primary outcome. The primary outcome was a prolonged dose-titration phase, defined as whether 

an individual achieved maintenance dose within 12 weeks of attempted warfarin therapy. The 12 

week cut-off was selected as a clinically meaningful cut-off, as the first 3 months of warfarin 

therapy have been shown to be especially high risk for patients [Fihn et al., 1993], and some 

warfarin indications, such as venous thromboembolism with transient risk factors, often only 

require a 3 month course of therapy [Agnelli & Becattini, 2008]. Additionally, we used a 

dichotomous rather than continuous outcome, such as time to maintenance dose, to make it easier 

for clinicians to incorporate model predictions into their decision-making process. Achievement 

of maintenance dose was defined as having two consecutive INRs within the therapeutic range, at 

the same warfarin dose, at least one week apart. Use of this definition allowed for the outcome to 

be defined the same across both the derivation and validation cohorts. Additionally, the time of 

maintenance dose achievement was taken as the number of days from warfarin initiation to the 

first maintenance dose-defining visit in days. Reaching maintenance dose within 4 and 8 weeks 

were also considered as outcomes in secondary analyses. 

 

Candidate predictors. A total of 28 candidate baseline social and clinical factors were considered 

for inclusion in the primary prediction model, shown in Table 3.1. Most of these candidate   
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Table 3.1. Candidate baseline social and clinical predictors and their specifications. 

Candidate Predictor Specification 

Social  

Self-reported race Binary (0 = not African American; 1 = African American) 

Gender Binary (0 = male; 1 = female) 

Marital status Categorical (1 = married (ref); 2 = separated/divorced;  

3 = widowed; 4 = never married) 

Employment status Categorical (1 = working; 2 = unemployed/disabled;  

3 = retired (ref)) 

Education statusa Binary (0 = more than high school; 1 = high school or less) 

Insurance status Categorical (1 = private (ref); 2 = any VA/Medicare only;  

3 = Medicaid/no insurance) 

Number of alcoholic  

drinks per weeka 
Binary (0 = 0 drinks; 1 = 1 or more drinks) 

Current smoking status Binary (0 = not current smoker; 1 = current smoker) 

Self-reported general  

health status 

Categorical (1 = excellent/very good (ref); 2 = good;  

3 = fair/poor) 

No. hospitalizations  

in past 12 months 

Categorical (1 = 0  visits (ref); 2 = 1–2 visits; 3 = 3 or more 

visits) 

No. doctor’s visits  

in past 12 months 

Categorical (1 = 0–3  visits; 2 = 4–12 visits (ref); 3  = 13 or 

more visits) 

Had difficulty receiving 

 health care in the past  

12 months 

Binary (0 = no; 1 = yes) 

  

Clinical  

Age (years) at baseline visit Continuous (linear) 

Body Mass Indexa Continuous (linear) 

Previous use of warfarina Binary (0 =  no; 1 = yes) 

Warfarin indication Categorical (1 = atrial fibrillation/atrial flutter (ref); 2 = post 

deep vein thrombosis/pulmonary embolism; 3 = other)  

Number of interacting  

medications being used  

at baselinea 

Binary (0 = 0–1 medications; 1 = 2 or more medications) 

Amiodarone use at baselinea Binary (0 =  no; 1 = yes) 

Statin use at baseline Binary (0 =  no; 1 = yes) 

CHADS2 score Categorical (1 = 0 (ref); 2 = 1; 3 = 2 or higher) 

History of peptic ulcer  

disease or gastritis 

Binary (0 =  no; 1 = yes) 

History of stroke Binary (0 =  no; 1 = yes) 

History of cancer Binary (0 =  no; 1 = yes) 

History of hypertension Binary (0 =  no; 1 = yes) 

History of diabetesa Binary (0 =  no; 1 = yes) 

History of arrhythmia Binary (0 =  no; 1 = yes) 

History of congestive  

heart failure 

Binary (0 =  no; 1 = yes) 

History of myocardial 

infarctiona 
Binary (0 =  no; 1 = yes) 

aThese variables were excluded from the model via a univariable screen, described in the 

Methods section. 
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predictors have been previously associated with other warfarin-related outcomes, such as warfarin 

maintenance dose requirement [Gage et al., 2008; Klein et al., 2009], poor warfarin adherence 

[Arnsten et al., 1997; Platt et al., 2008, 2010], discontinuation of warfarin [Bushnell et al., 2011; 

Fang et al., 2010; Song, Sander, Varker, & Amin, 2012], percent time in therapeutic range 

[Hylek, Heiman, Skates, Sheehan, & Singer, 1998; Kimmel et al., 2007; Wieloch et al., 2011], 

and risk of bleeding events [Beyth et al., 1998; Gage et al., 2006; Lip et al., 2011; Shireman et al., 

2006]. Additionally, after constructing a model from baseline social and clinical factors, we were 

interested in whether inclusion of genetic factors could improve model prediction. For this 

analysis, we added genetic variants in CYP2C9 (rs1799853 and rs1057910) and VKORC1 

(rs9923231), specified in a binary fashion as having at least one variant in the given gene, to the 

model. These variants were chosen because they have most consistently demonstrated a large 

association with warfarin maintenance dose in the literature, and are used in the major 

pharmacogenetic dosing algorithms [Gage et al., 2008; Kimmel et al., 2013; Klein et al., 2009]. 

 

Choice of statistical model. Because approximately 11% of the derivation cohort was censored 

prior to 12 weeks of attempted warfarin therapy, we needed to use a statistical model that could 

accommodate censoring. As a result, we used a Cox proportional hazards model with time from 

initiation of warfarin to the achievement of maintenance dose or censoring in days as the 

outcome. The probability of prolonged dose titration was, thus, the conditional probability of 

survival predicted from this model at the time-point of interest, 12 weeks of attempted warfarin 

therapy. Because we were not interested in modeling follow-up time after this cut-off point, all 

individuals who had not reached maintenance dose by 12 weeks were artificially censored at this 

time.  
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Univariable screen. To reduce overall computing time for our analyses to manageable levels, we 

chose to perform a univariable screen to reduce the number of candidate predictors from the 

initial 28 to 20, which was determined a priori to be an appropriate number of candidate 

variables, given computational constraints. For each candidate predictor, we constructed a 

univariable Cox proportional hazards model of the time from initiation of warfarin to the 

achievement of maintenance dose or censoring. We then estimated the time-dependent area under 

the ROC curve (AUC) at 12 weeks of follow-up using 10-fold cross-validation for each model. 

The 20 variables with the best time-dependent AUCs in the univariable screen were selected for 

inclusion in the modified best subsets variable selection algorithm, described below. 

 

Time-dependent AUC. The time-dependent AUC—developed by Heagerty, et al. [Heagerty, 

Lumley, & Pepe, 2000]—differs from the standard AUC because it accommodates censoring, and 

it differs from the commonly used C-index because it assesses model discrimination at a single 

point in time, rather than over the total duration of follow-up. The time-dependent AUC can thus 

be interpreted as the probability that a randomly selected individual who has experienced the 

failure event by time t will have a higher predicted probability of failure at time t than a randomly 

selected individual who has not experienced the failure event by time t. This statistic is estimated 

by integrating the time-dependent sensitivity and specificity across all possible cut-off values for 

the linear predictor derived from the model. Because cross-validation was used during the model 

development process, the linear predictor was calculated in the data subset that was withheld 

during estimation of the Cox model, repeated for all data subsets (e.g. 10 times for 10-fold cross-

validation). When the model was assessed in the external validation cohort, the linear predictors 

in that cohort were used without cross-validation. 
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Because individuals may be censored prior to time t, the values for time-dependent sensitivity and 

specificity need to be estimated from the data. As recommended by Heagerty, et al., we used a 

nearest neighbor estimator—which is essentially a weighted Kaplan-Meier estimator based on a 

nearest neighbor kernel function, developed by Akritas [Akritas, 1994]—which allows for 

monotonicity of sensitivity and specificity and for the censoring process to depend on the 

predictive marker of interest. This estimator is dependent on a smoothing parameter,  , where 2  

represents the percentage of observations that are included in an individual observation’s 

neighborhood; in our case, we chose the default value of   = 0.025. The “survivalROC” package 

in R was used to facilitate these calculations [Heagerty & Saha-Chaudhuri, 2013]. 

 

Variable selection algorithm. Variable selection was conducted using a modified best subsets 

algorithm [Miller, 2002]. This algorithm was designed to optimize model discrimination, or how 

well a model distinguishes between those who did and did not experience the outcome (in this 

case, those who had a prolonged vs non-prolonged dose-titration phase, respectively). We 

calculated the time-dependent AUC at 12 weeks using 10-fold cross-validation for all possible 

combinations of the candidate predictors up to 10 predictor variables in length (616,665 

combinations) to reduce our chances of selecting a combination based on overfitting. Because we 

felt that leave-one-out cross-validation (LOOCV)—in which one person at a time is removed 

from the dataset to build the model and then used for model testing, for all individuals in the 

dataset—was a better estimate of external validation than 10-fold cross-validation [Hastie, 

Tibshirani, & Friedman, 2009], we opted to estimate the time-dependent AUC using LOOCV in 

the 1,000 best models based on 10-fold cross-validation for each subset size (8,210 

combinations). The combination of predictors that led to the highest time-dependent AUC using 

LOOCV was then selected as our final prediction model.  
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In short, our algorithm was designed to select the combination of candidate variables with the 

best estimated LOOCV time-dependent AUC. Furthermore, this strategy had the advantage of 

choosing the best subset based on LOOCV, without the nearly 40-fold increase in computing time 

that would be required by calculating the time-dependent AUC using LOOCV in all possible 

combinations of predictors. A sensitivity analysis showed that this algorithm selected the exact 

same best combination of predictor variables as using LOOCV on all possible combinations up to 

6 predictor variables in length. Once selected, prediction model variables were then inspected 

graphically to ensure proper functional form, and all coefficients were examined to ensure that 

the direction of effect reported by the model was consistent with the available literature. 

 

Linear shrinkage factor. Because regression coefficients are often overestimated in small 

samples, prediction models will often show better calibration for out-of-sample predictions when 

coefficients are shrunk toward zero [Van Houwelingen & Le Cessie, 1990]. Thus, we sought to 

apply a linear shrinkage factor—which has been shown to perform well in small samples for 

improving model calibration, without sacrificing model discrimination [Steyerberg, Eijkemans, 

Harrell, & Habbema, 2000]—to our final prediction model. To estimate the shrinkage factor, we 

fit the model in a bootstrap sample of the derivation cohort. We then calculated the linear 

predictors of the individuals in the derivation cohort using the model coefficients from the 

bootstrap sample. The slope of the actual observed outcomes regressed on these bootstrapped 

linear predictors could then be used as an estimate of the shrinkage factor. To form a stable 

estimate of the shrinkage factor, we calculated the mean slope over 1,000 bootstrap replications. 

All of the original model coefficients were then multiplied by this shrinkage factor to produce the 

final shrunk coefficients, which were used for generating predictions in the external validation 

cohort. Because all of the coefficients are being multiplied by the same factor, the rank order of 

individual predictions is preserved and model discrimination is not affected by shrinkage. 
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In order to ensure that shrinkage was toward the overall mean and not toward the overall 

reference category, continuous variables needed to be centered at the mean and categorical 

variables had to be coded using simple contrasts. In this contrast method, reference groups were 

coded as      , while non-reference categories were coded as (   )  , where   is the number 

of categories. In this contrast method, the reference category of 0 is equivalent to the overall 

mean of the sample in which the model is being fit. Note that the difference between the reference 

and non-reference categories is still 1; thus, the interpretation of coefficients in this contrast 

method is identical to the more common dummy coding for categorical variables (i.e. 0 for 

reference and 1 for non-reference categories). 

 

Model assessment and validation. The final prediction model was then assessed in a separate 

validation cohort, described above. Predictions from the model were used to estimate the time-

dependent AUC as the primary measure of model discrimination in the validation dataset. 

Additionally, genetic predictors were added to the model to see if there was a significant 

difference in the AUC between the two models. The integrated discrimination improvement (IDI) 

between the two models was also estimated [Liu, Kapadia, & Etzel, 2010]. We also assessed the 

calibration of the prediction model using calibration plots. Finally, we examined the clinical 

utility of the prediction model using decision curves and plots of the relative utility of the model 

versus the risk threshold [Baker, Cook, & Vickers, 2009; Baker, 2009; Vickers, Cronin, Elkin, & 

Gonen, 2008; Vickers & Elkin, 2006]. Confidence intervals for all estimates were generated using 

the 2.5th and 97.5th percentiles of estimates in 1,000 bootstrap replications. 

 

The methods for determining clinical utility rely on the concept of the risk threshold, which is the 

probability of the outcome at which the clinician is indifferent about which treatment strategy to 

use; in other words, it is the probability at which the costs of false positive and false negative 
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mistakes are equal [Pauker & Kassirer, 1975]. Furthermore, the consequences of basing a clinical 

decision on the predicted probability from a risk prediction model can be estimated as a function 

of the risk threshold. While the exact threshold will vary depending on the value that physicians 

and patients place on certain outcomes, the metric can be used to determine the clinical usefulness 

of a given model under a range of possible thresholds. For our prediction model, given broadly 

similar safety and efficacy profiles for warfarin and the alternative anticoagulants (with the 

possible exception of apixaban) [O’Dell, Igawa, & Hsin, 2012; Rollins, Silva, Donovan, & 

Kanaan, 2014], the risk threshold for a given patient would likely depend primarily on his or her 

relative costs of INR monitoring on warfarin versus the out-of-pocket financial costs of the 

alternative anticoagulant agents. In this scheme, patients that are more burdened by financial 

costs would have a risk threshold above 0.5, while those that are more burdened by INR 

monitoring would have a risk threshold below 0.5. 

 

Decision curves plot the net benefit of various treatment strategies versus the risk threshold, 

where the net benefit is equal to the true positive rate minus the false positive rate, weighted as a 

function of the risk threshold [Vickers & Elkin, 2006]. In this case, the net benefit is calculated 

relative to the strategy of using standard warfarin therapy in all patients. The curve shows the 

values of the risk threshold where using the prediction model would be expected to provide a net 

benefit above the strategies of using the same treatment in every patient. Relative utility is a 

related measure of the usefulness of a prediction model that is essentially a rescaling of the net 

benefit, and it can be interpreted as the net benefit of the prediction model, compared to using the 

same treatment strategy in all patients, as a fraction of the net benefit of perfect prediction [Baker 

et al., 2009]. A relative utility of 1 indicates that the model performs as well as perfect prediction, 

while negative values indicate that the model is worse than using the same strategy in everyone. 
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RESULTS 

The characteristics of the derivation and validation cohorts are shown in Table 3.2. The overall 

prevalence of prolonged dose-titration was 30% in the derivation cohort and 38% in the 

validation cohort. The variable selection algorithm found that the best LOOCV time-dependent 

AUC was in a model with the following five variables: warfarin indication, insurance status, 

number of doctor’s visits in the previous year, current smoking status, and history of heart failure. 

The LOOCV time-dependent AUC in this model was estimated as 0.66 (95% CI 0.60, 0.74). A 

comparison of this model to the other top performing models with different numbers of predictor 

variables, as measured with cross-validation, suggested that using cross-validation successfully 

avoided complex models that were more accurate merely because of having extra degrees of 

freedom (Figure 3.1). The shrinkage factor based on 1,000 bootstrap replications was estimated to 

be about 0.82, indicating a moderate degree of overfitting in the original model. Coefficients from 

the final prediction model, after applying the linear shrinkage factor, are shown in Table 3.3. 

 

When tested in the validation cohort, the AUC of the prediction model at 12 weeks was 0.59 

(95% CI 0.54, 0.64). The ROC curve for this model is shown in Figure 3.2. The AUC of the 

model at 8 weeks was 0.57 (95% CI 0.53, 0.62) and at 4 weeks was 0.57 (95% CI 0.52, 0.62). 

The calibration of the main model was examined by comparing predicted probabilities to 

observed frequencies across risk deciles (Figure 3.3); the Hosmer-Lemeshow test for goodness of 

fit did not show significantly poor model calibration (P = 0.73). Addition of genetic factors did 

not significantly change the AUC at 12 weeks (P > 0.99), with the point estimate remaining 

unchanged at 0.59 (95% CI 0.54, 0.64). A comparison of the ROC curves for the models with and 

without genetic factors is shown in Figure 3.4. The calibration of the genetic model, however, 

seemed worse than the main model, though the level of miscalibration was not significantly 

worse than what would be expected due to chance, using the Hosmer- Lemeshow test (P = 0.06).   
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Table 3.2. Characteristics of the derivation and validation cohorts. 

Variable 
Derivation cohort 

(N = 390)a 
Validation cohort 

(N = 663)a P-valueb 

Age    

< 45 65 (17) 135 (20) < 0.001 

45 – 55 74 (19) 131 (20)  

55 – 65 103 (26) 219 (33)  

65 – 75 83 (21) 116 (18)  

75+ 65 (17) 60 (9)  

Female gender 119 (31) 250 (38) 0.02 

African American race 174 (45) 466 (71) < 0.001 

Body Mass Index    

< 25 122 (32) 186 (28) 0.11 

25 – 30 125 (32) 189 (29)  

> 30 140 (36) 280 (43)  

History of hypertension 192 (49) 461 (70) < 0.001 

History of diabetes 107 (27) 190 (29) 0.71 

History of peptic ulcer  

disease 

36 (9) 98 (15) 0.01 

History of heart failure 78 (20) 141 (21) 0.65 

Warfarin indication    

AFib/AFlutter 188 (48) 214 (32) < 0.001 

DVT/PE 116 (30) 343 (52)  

Other 86 (22) 105 (16)  

Previously used warfarin 96 (25) 209 (32) 0.02 

Smoking status    

Never 141 (36) 275 (42) < 0.001 

Past 185 (47) 235 (36)  

Current 64 (16) 148 (22)  

Insurance status    

Private 215 (56) 276 (42) < 0.001 

VA/Medicare/Other 124 (32) 272 (41)  

Medicaid/None 45 (12) 110 (17)  

Employment status:    

Working 128 (33) 167 (25) < 0.001 

Unemployed 34 (9) 49 (7)  

Retired 143 (37) 192 (29)  

Disabled 81 (21) 251 (38)  

Annual income:    

< $15,000 109 (33) 228 (41) < 0.001 

$15,000 - $20,000 99 (30) 45 (8)  

> $20,000 122 (37) 282 (51)  

Site:    

HUP 184 (47) 263 (40) < 0.001 

PVAMC 137 (35) 198 (30)  

Hershey 69 (18) —  

JHU — 202 (30)  
aAll values are reported as N (%). 
bP-values are based on the chi-square test. 
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Figure 3.1. Comparison of best prediction models by number of predictor variables in the model. 

Prediction models compared by the time-dependent AUC at 12 weeks, as estimated by leave-one-out cross-

validation (LOOCV). 
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Table 3.3. Final prediction model coefficients. 

Predictor variable Shrunk coefficienta,b 

Warfarin indication 

AFib/Aflutter — 

DVT/PE -0.47 

Other -0.33 

Insurance status 

Private insurance — 

VA/Medicare -0.14 

Medicaid/None -0.42 

Number MD visits in previous year 

<4 -0.29 

4-12 — 

>12 -0.23 

Current smoker -0.17 

History of heart failure -0.21 
aCoefficients were multiplied by a linear shrinkage factor, 

equal to about 0.82, based on 1,000 bootstrap replications. 
bNegative coefficients indicate a higher probability of 

prolonged dose titration. 

Figure 3.2. ROC curve for the prediction model as tested in the validation dataset. 
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Figure 3.4. Comparison of ROC curves for the prediction models with and without the addition of genetic 

factors. 

Figure 3.3. Predicted probability vs observed frequency of prolonged dose titration by risk decile. 
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The integrated discrimination improvement from adding genetic factors to the model was 

estimated as 0.01 (0.00, 0.02), which is equivalent to a 7% increase in model discrimination over 

the model without genetic factors. 

 

To examine the clinical utility of the prediction model, the sensitivity, specificity, and positive 

and negative predictive values for various risk thresholds were calculated (Table 3.4). Similarly, 

Figure 3.5 shows the relationship between the positive and negative predictive values and the 

proportion that are classified as positive across the full range of risk thresholds. Predicted 

probabilities of prolonged dose titration in the validation cohort ranged from about 16% to 63%; 

thus, predictive values only varied over this range. The relative utility of the model—which can 

be understood as the net benefit of the current model, compared to not using a prediction model, 

as a fraction of the net benefit of perfect prediction—across the full range of risk thresholds is 

shown in Figure 3.6. The maximum relative utility observed was 9.4%, and the relative utility 

was negative for the risk threshold range of 48% to 62%. Comparisons of relative utility and 

decision curves for the models with and without genetic factors are shown in Figures 3.7 and 3.8, 

respectively. 

 

We also examined site-specific differences in model performance in post-hoc analyses. 

Differences in the characteristics of the derivation and validation cohorts at HUP and PVAMC 

are shown in Table 3.5. The time-dependent AUC at 12 weeks was 0.60 (95% CI 0.51, 0.67) at 

HUP, 0.55 (95% CI 0.45, 0.63) at PVAMC, and 0.61 (95% CI 0.53, 0.69) at JHU. Finally, the 

observed frequency of prolonged dose titration was 32%, 34%, and 48% at HUP, PVAMC, and 

JHU, respectively; predicted probabilities of the outcome at the respective sites, however, were 

37%, 39%, and 38%. 
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Table 3.4. Model characteristics at various risk thresholds. 

Risk thresholda CFP/CFN
b Sensitivity Specificity 

Positive 

Predictive 

Value 

Negative 

Predictive 

Value 

Proportion 

Predicted 

Positive 

10% 0.11 1.00 0.00 0.37 — 1.00 

20% 0.25 0.99 0.03 0.38 0.87 0.98 

30% 0.43 0.83 0.28 0.41 0.74 0.76 

40% 0.67 0.52 0.58 0.43 0.67 0.46 

50% 1 0.19 0.86 0.44 0.64 0.16 

60% 1.5 0.03 0.99 0.57 0.63 0.02 

70% 2.33 0.00 1.00 — 0.63 0.00 
aThe risk threshold refers to the cut-off probability, where one classifies individuals as positive when 

predicted to be above the cut-off or negative when predicted to be below the cut-off. In this case, 

being “positive” refers to having a high probability of prolonged dose titration on warfarin, 

potentially leading a physician to choose an alternative therapy. 
bCFP/CFN refers to the ratio of the costs of false positive and false negative mistakes that are implied 

by the risk threshold, according to decision theory. 

Figure 3.5. Positive predictive value, negative predictive value, and proportion of patients classified as 

positive across the range of values for the risk threshold. Individuals with a predicted probability of 

prolonged dose titration are classified as positive. The absence of a curve in a given region indicates that 

the measure is undefined in that region; for instance, positive predictive value is undefined when no 

patients are classified as positive. 
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Figure 3.7. Comparison of relative utility curves in prediction models with and without genetic factors. 

Figure 3.6. Relative utility of the prediction model across the full range of risk thresholds. 
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Figure 3.8. Decision curve of prediction models with and without genetic factors. In this case, the decision 

curve plots the net benefit of the prediction model compared to the strategy of using standard warfarin 

treatment in everyone, across the full range of values for the risk threshold. The strategy of using standard 

warfarin treatment in everyone is shown with the solid black line, while the strategy of using an 

alternative therapy in everyone is shown with the dashed black line. The net benefit of the strategies of 

using standard warfarin therapy in everyone and using an alternative therapy in everyone intersects when 

the risk threshold is equal to the prevalence of the outcome in the overall population. Note that the curve 

for the all on alternative therapy strategy continues downward beyond the edge of the figure. 
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Table 3.5. Characteristics of the derivation and validation cohorts by site. 

 

  

Variable 

HUPa PVAMCa 

Derivationb 

(N = 184) 

Validationb 

(N = 263) 

Derivationb  

(N = 137) 

Validationb  

(N = 198) 

Age     

< 45 51 (28) 75 (29) 12 (9) 7 (4) 

45 – 55 39 (21) 61 (23) 23 (17) 28 (14) 

55 – 65 35 (19) 62 (24) 57 (42) 96 (48) 

65 – 75 35 (19) 41 (16) 28 (20) 45 (23) 

75+ 24 (13) 23 (9) 17 (12) 22 (11) 

Female gender 89 (48) 136 (52) 5 (4) 9 (5) 

African American race 103 (56) 188 (71) 70 (51) 147 (74) 

Body Mass Index     

< 25 63 (34) 66 (25) 41 (30) 62 (31) 

25 – 30 62 (34) 77 (30) 36 (26) 57 (29) 

> 30 59 (32) 117 (45) 59 (43) 79 (40) 

History of hypertension 87 (47) 170 (65) 66 (48) 151 (76) 

History of diabetes 40 (22) 68 (26) 50 (36) 71 (36) 

History of peptic ulcer disease 16 (9) 26 (10) 17 (12) 9 (5) 

History of heart failure 31 (17) 58 (22) 34 (25) 40 (20) 

Warfarin indication     

AFib/AFlutter 68 (37) 81 (31) 70 (51) 87 (44) 

DVT/PE 73 (40) 131 (50) 40 (29) 86 (44) 

Other 43 (23) 51 (19) 27 (20) 24 (12) 

Previously used warfarin 47 (26) 75 (29) 40 (29) 72 (36) 

Smoking status     

Never 90 (49) 130 (50) 19 (14) 37 (19) 

Past 73 (40) 87 (34) 79 (58) 92 (46) 

Current 21 (11) 42 (16) 39 (28) 69 (35) 

Insurance status     

Private 151 (84) 162 (63) 6 (4) 10 (5) 

VA/Medicare/Other 7 (4) 43 (17) 107 (79) 154 (78) 

Medicaid/None 21 (12) 54 (21) 23 (17) 34 (17) 

Employment status:     

Working 79 (43) 78 (30) 32 (24) 18 (9) 

Unemployed 17 (9) 22 (8) 17 (13) 12 (6) 

Retired 49 (27) 62 (24) 49 (36) 91 (46) 

Disabled 39 (21) 99 (38) 37 (27) 77 (39) 

Annual income:     

< $15,000 48 (29) 90 (37) 41 (38) 95 (49) 

$15,000 - $20,000 45 (27) 18 (7) 48 (45) 18 (9) 

> $20,000 72 (44) 137 (56) 18 (17) 79 (41) 
aSites were limited to those that were present in both derivation and validation cohorts. 
bAll values are reported as N (%). 
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DISCUSSION 

Overview. In this study, we sought to develop a model to predict whether a patient starting 

warfarin would have a prolonged dose-titration phase, and then test the model in an external 

validation cohort. Given the availability of less burdensome but more expensive alternative oral 

anticoagulant agents, being able to predict prolonged dose titration could help patients and 

clinicians decide whether to use warfarin or one of the alternative agents. However, the prediction 

model we developed failed to validate in an external cohort, with an AUC of 0.59 (95% CI 0.54, 

0.64). Thus, our results suggest that it will be difficult for clinicians to predict prolonged dose 

titration in patients starting warfarin, at least using traditional social, clinical, and genetic 

predictors. 

 

Model development. The final model contained five variables: warfarin indication, insurance 

status, number of doctor’s visits in the previous year, current smoking status, and history of heart 

failure. This model performed moderately well in the derivation cohort, with a time-dependent 

AUC at 12 weeks, as measured by LOOCV, of 0.66 (95% CI 0.60, 0.74). Furthermore, only a 

moderate amount of shrinkage was needed to improve model calibration, with a linear shrinkage 

factor of 0.82. Finally, the association between the selected predictor variables and the outcome 

seemed to be quite stable, as these predictors were seen in the best models across the full range of 

subset sizes (Figure 3.1). 

 

Model validation. The model performed much worse when tested in the external validation 

cohort, however. The time-dependent AUC at 12 weeks was only 0.59 (95% CI 0.54, 0.64) when 

validated externally. Model performance did not improve for the secondary outcomes of reaching 

maintenance doses within 4 and 8 weeks, indicating that the model’s limited ability to 

discriminate was not unique to a specific time point cut-off. Although the variable selection 
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algorithm was designed to optimize model discrimination, the model appeared to be reasonably 

well calibrated in the overall validation cohort, with a non-significant Hosmer-Lemeshow 

calibration test (P = 0.73). This result suggests that our use of a linear shrinkage factor was 

largely successful in improving model calibration. However, we believe that model 

discrimination is the best way to determine the clinical utility of this prediction model, because it 

would allow clinicians to distinguish between patients at higher risk for prolonged dose titration 

on warfarin from those at lower risk. 

 

The addition of genetic variants did not improve the performance of the model, with no 

improvement in the time-dependent AUC observed (P > 0.99). Similarly, the IDI was also poor at 

0.01 (95% CI 0.00, 0.02), although it was technically a statistically significant improvement in 

discrimination. The IDI as a test statistic is known to have problems with type I error, especially 

as it approaches zero [Kerr, McClelland, Brown, & Lumley, 2011; Pepe, Feng, & Gu, 2008], so 

this finding of statistical significance should be viewed with skepticism in the context of the rest 

of our results. Overall, the lack of improvement in prediction from adding genetic factors is 

consistent with recent clinical trial evidence showing that inclusion of genetic factors in dose 

prediction models did not lead to significant improvement in clinical outcomes, such as percent 

time in therapeutic range or time to maintenance dose, over purely clinical dose prediction 

algorithms [Kimmel et al., 2013]. 

 

Differences between derivation and validation cohorts. One reason for the failure of the model to 

validate is likely the substantial differences between the derivation and validation cohorts, as 

shown in Table 3.2. Compared with the derivation cohort, the validation cohort was younger, 

more African American, more obese, more under-insured, and more disabled, among other 

differences. These differences are likely reflected in the fact that the prevalence of prolonged 
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dose titration was higher in the validation cohort at 38%, compared to 30% in the derivation 

cohort. Part of these differences might reflect discrepancies in populations at different sites; for 

example, the anticoagulation clinic at Johns Hopkins draws from a much more urban African 

American population than the clinic at Hershey Medical Center. However, there are also 

substantial differences between the derivation and validation cohorts at the sites that were the 

same for both cohorts, including the proportion of individuals who are African American, the 

prevalence of hypertension, the prevalence of different warfarin indications, and the proportion of 

individuals on disability (Table 3.5). These differences can potentially be attributed to random 

fluctuations, to changes in the warfarin population or outcomes over time, to differences in 

practice patterns over time, to differences in those willing to participate, or to changes in 

recruitment strategies between the two studies. For instance, a decrease in the proportion of 

patients with atrial fibrillation as their warfarin indication could be related to some of these 

patients being treated with alternative anticoagulants, which were first approved for that 

indication. By contrast, the increase in the proportion of patients who were African American at 

these sites likely reflects recruitment strategies that were designed to increase the enrollment of 

this group in the validation cohort.  

 

These differences across sites are also reflected by varying performance of the prediction model 

across sites. For instance, the time-dependent AUC was not significantly better than chance at 

PVAMC, while it was better at the other sites. Similarly, the model could not account for the 

substantial differences in baseline risk that was observed at the three sites, with the prevalence of 

prolonged dose titration varying from 32% to 48%. Moreover, a post-hoc analysis where a 

prediction model was developed and tested using the same algorithm in the sites that were present 

in both derivation and validation cohorts showed no improvement in model performance (AUC = 

0.58; 95% CI 0.51, 0.64), confirming the changes in these same sites over time. Similarly, in 
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another post-hoc analysis, performance of the same model development algorithm in the 

validation cohort led to the inclusion of some different variables in the model—variables selected 

were age, BMI, warfarin indication, insurance status, previous warfarin use, history of heart 

failure, and history of arrhythmia—suggesting that the important predictors of prolonged dose 

titration might vary across sites. This model did not perform very well on cross-validation 

(LOOCV AUC = 0.62; 95% CI 0.58, 0.69), suggesting that it also would not perform well on 

external validation. It should also be emphasized that the broader differences among sites where 

patients receive warfarin in the clinical community would be expected to be much larger than the 

differences between our derivation and validation cohort; thus, the performance of the model in 

clinical practice could be expected to be even worse. 

 

Clinical utility of the prediction model. Attempts to quantify the clinical impact of the prediction 

model were consistent with our primary results. While the negative predictive value of the model 

for the lowest range of predicted values (< 20% probability of prolonged dose titration) was 

reasonably good at 0.87, only 2% of patients in the validation cohort actually fall into this 

category (Table 3.4). Both positive and negative predictive values were fairly poor at cut-offs that 

were more commonly observed in our cohort. This drop-off in performance may result from 

incorrectly ranking individuals in the middle of the probability distribution, which can be seen 

when plotting the observed vs predicted probabilities by risk decile (Figure 3.4). 

 

As shown in Figure 3.6, the relative utility of the current model is limited, with a maximum value 

of about 0.09 near the prevalence of the outcome. Additionally, the relative utility is negative for 

risk thresholds above 0.47, meaning that it is better to use standard warfarin therapy for all 

patients with high risk thresholds. This impression is confirmed by the related decision curve, 

which shows that the curves representing the net benefit of the prediction models are not 
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substantially higher than the curves for the strategies of using the same treatment in everyone for 

any risk threshold region (Figure 3.8). While the prediction model is unlikely to be useful 

clinically even in the regions where the relative utility is strictly positive, examination of the risk 

threshold can still be useful for clinicians. Knowing that the overall prevalence of prolonged dose 

titration is about 38%, a discussion of the relative importance financial and monitoring burdens 

with patients can help determine whether treatment with warfarin or an alternative agent is 

optimal in a given situation. For instance, if a given patient feels that the financial costs of 

alternative anticoagulant agents are worse than the monitoring burden of warfarin therapy, then 

his or her individual risk threshold would be above 50%. Since this threshold is greater than the 

38% prevalence of prolonged dose titration, it would be optimal to begin standard warfarin 

therapy in this patient. 

 

Importance of external validation. This study confirms the importance of using external 

validation when developing clinical risk prediction models. Given its importance, external 

validation is performed surprisingly infrequently, with recent evidence suggesting that only 25% 

of published research on new prediction models includes an external validation [Siontis, 

Tzoulaki, Castaldi, & Ioannidis, 2014]. Especially for complex, multifactorial outcomes like 

prolonged dose titration for patients starting warfarin, overall prevalence and the importance of 

different predictors are likely to vary substantially across clinical sites, and even change over 

time. While statistical methods such as cross-validation can help, external validation remains the 

gold standard for determining whether a prediction model will be useful in clinical practice. 

 

Conclusions. In conclusion, our prediction model for prolonged dose titration in patients starting 

warfarin is unlikely to be useful in clinical practice. Moreover, we suspect that this outcome and 

others like it will be difficult to predict using traditional clinical or genetic risk factors, as their 
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relationship to the outcome will likely vary substantially across clinical sites. More accurate 

prediction of prolonged dose titration will likely require researchers to better define and measure 

the social, behavioral, and access-related factors that are probably more directly related to the 

outcome. In the absence of risk prediction, clinicians should consider the relative importance of 

monitoring and financial burdens for their patients when deciding which type of anticoagulation 

therapy to begin.  
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CHAPTER 4. IMPROVING CLINICAL PREDICTION MODEL 

TRANSPORTABILITY WITH SEQUENTIAL UPDATING OF MIXED-

EFFECTS MODELS 

 

Brian S Finkelman, Benjamin French, and Stephen E Kimmel 

 

 

ABSTRACT 

Clinical prediction models often fail to generalize across clinical sites outside of those in which 

the model was derived, and they tend to lose their accuracy over time. These problems have been 

categorized under the umbrella term of poor model transportability. We propose a general 

strategy of sequential updating of mixed-effects models as a mechanism to overcome the problem 

of poor transportability. We examine the potential gains in prediction accuracy for this strategy 

through a simulation study in which poor transportability is modeled as clinic-specific differences 

in the prevalence of the outcome and the association between predictors and the outcome. We 

then test whether the sequential model updating approach is robust to several types of model 

misspecification. 

 

BACKGROUND 

Clinical prediction model transportability. It is well established that clinical prediction models 

often suffer from the problem of the poor generalizability [König, Malley, Weimar, Diener, & 

Ziegler, 2007]. In other words, models that perform well in the datasets in which they were 

derived, measured either by model calibration or discrimination, often perform worse when tested 
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in other settings. Generalizability of prediction models has been previously described as 

encompassing two major components: reproducibility and transportability [Justice et al., 1999]. 

Reproducibility of prediction models can be thought of as the ability of the model to perform well 

in repeated samples from the same population as the one that yielded the original derivation 

sample, while transportability refers to the ability of the model to perform well in samples drawn 

from different but plausibly related populations to the one that yielded the original derivation 

samples. These plausibly related populations could differ from the original population based on 

changes over time, geography, clinical setting, and definitions of predictors or outcomes, among 

other things. 

 

Many statistical methods have been developed to help address the problem of model 

reproducibility, such as Bayesian model averaging [Hoeting et al., 1999], bootstrap aggregation 

or bagging [Breiman, 1996], and a variety of methods for cross-validation [Borra & Di Ciaccio, 

2010]. Broadly speaking, these methods tend to address the problem of model overfitting. 

However, poor transportability of a prediction model often occurs because of a problem of 

underfitting rather than overfitting [Justice et al., 1999]. Underfitting occurs when important 

predictors are either unknown, misspecified, or not included in the original model, and model 

performance degrades when tested in new populations with a different conditional prevalence of 

those predictors. As a result, it is much more difficult to find statistical solutions to problems of 

transportability using the derivation sample, because by definition, the model would need to be 

tested on a sample with a different empirical distribution from the derivation sample in order to 

determine its transportability. 

 

Utility of clinical prediction models is hampered by concerns about poor transportability. Despite 

the adoption of prediction models in clinical practice, there are often major concerns about model 
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generalizability and transportability in many clinical scenarios. For instance, the American Heart 

Association (AHA) and the American College of Cardiology (ACC) released updated cholesterol 

management guidelines in November 2013 that were heavily based on individuals’ predicted 10-

year risk of cardiovascular events [Stone et al., 2014]. These guidelines drew almost immediate 

criticism because of concern about over-prediction of risk related to the particular cohorts used to 

develop the prediction model [Ridker & Cook, 2013]. Specific examples of validated prediction 

models failing to generalize to different populations have been documented, as well. For example, 

the EuroSCORE model, which was developed in European populations to predict 30-day 

mortality in patients undergoing cardiac surgery, failed to generalize to Australian surgical 

patients [Yap et al., 2006], and, even with the European population, proved inaccurate over time, 

over-predicting risk in contemporary practice [Hickey et al., 2013]. In another example, a clinical 

prediction rule for predicting deep vein thrombosis (DVT) performed well in the secondary 

referral patient population in which it was developed, but failed to generalize to a primary care 

setting [Oudega et al., 2005]. Furthermore, this problem is likely even more widespread than what 

has been directly documented in the literature because of the many clinical outcomes that are 

known to vary substantially across clinical sites, including readmission after hospitalization for 

heart failure [Ross et al., 2008], mortality following surgery for colorectal cancer [Schootman et 

al., 2014], graft failure after liver transplantation [Asrani et al., 2013], and medication adherence 

rates among diabetes patients [Sherman et al., 2011]. As a result, generally applicable methods to 

improve the transportability of clinical prediction models could have a large practical impact on a 

wide range of areas in clinical medicine. 

 

Improving prediction model transportability with sequential model updating. Generalized linear 

mixed-effects models, also known as longitudinal or hierarchical models, are well-established in 

the literature for accounting for clustered observations, such as would occur when patients at 
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specific clinical sites are more similar to each other than to the overall population, in the context 

of explanatory models [Fitzmaurice, Laird, & Ware, 2011]. However, their utility for improving 

the transportability of prediction models is less clear, because predictions on novel clusters are 

based on the hypothetical mean cluster. As a result, there is no heterogeneity across clusters for 

out-of-sample predictions, even though the model is technically capable of allowing for such 

heterogeneity. Thus, any improvement in prediction accuracy that results from using mixed-

effects models is generally because of shrinkage effects, rather than incorporating knowledge 

about cluster-specific differences. 

 

One potential approach to the problem of prediction in novel clusters is sequential model 

updating. Under sequential updating, predictions are made on individuals using the best available 

model at that time. Then, when their outcome data become available, they are systematically 

incorporated back into the model. As a result, novel clusters become incorporated into the data 

sample over time, allowing for predictions that account for cluster-specific differences. In 

practice, sequential model updating would likely involve incorporating the prediction model into 

an electronic health records system (EHR) that is integrated across multiple clinical sites, so that 

outcome data could be automatically captured and incorporated into the model. However, the 

expected improvement in prediction accuracy that would be achieved through sequential model 

updating remains unknown. Thus, given the large upfront financial costs and logistical challenges 

of implementing such a system, it is important to quantify these potential gains, as well as the 

conditions under which these gains can be maximized. 

 

Simulation study. We sought to quantify the potential improvement in prediction accuracy that 

might be expected with sequential model updating using a simulation study. Briefly, we 

simulated a population of patients who are clustered in different clinics. These patients were 
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randomly split into derivation and validation cohorts. Standard, non-updating prediction models 

were built in the derivation cohort and then tested in the validation cohort. The same models were 

then allowed to update periodically to see whether prediction accuracy improved. This process 

was then repeated 1,000 times to assess the variability of the results. Finally, the sensitivity of the 

results to changes in the value of parameters for the data-generating process was assessed. 

 

METHODS 

Overview. In our simulation, we aimed to develop a model to predict the outcome Yij, which 

represents a generic, continuous clinical outcome for patient j at clinic i. Yij is dependent on X1ij, a 

known patient-level predictor; X2ij, an unknown patient-level predictor; and Ni, the size of the 

clinic. Note that X1ij and X2ij can also be interpreted as linear combinations of important 

predictors, rather than just a single predictor. Clustering of the outcome is induced by a clinic-

level random intercept b0i and random slopes b1i and b2i. From 500 total clinics in the population, 

20 were randomly selected to make up the “derivation” cohort. Using the derivation cohort, we fit 

both updating and non-updating versions of models with fixed effects only, as well as those with 

random intercepts and random slopes. These models were then tested on the remaining clinics, 

which comprised the “validation” cohort. For each combination of parameter values, the 

simulation was run 1,000 times to estimate the degree of variability in the results. All simulations 

were performed using R 3.1.1 [R Development Core Team, 2014]. 

 

Mixed-effects modeling. Generalized linear mixed-effects models account for clustering in the 

outcome by treating some model parameters as random, rather than fixed across the population. 

These models typically follow the form: 

  (   )            , (1) 
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where  (   ) is a function of the outcome for individual j at clinic i,   is a vector of fixed effects, 

   is a vector of random effects,     is a vector of residual errors, and   and   are observed design 

matrices relating to the fixed and random effects, respectively [Fitzmaurice et al., 2011]. Random 

effects are typically modeled parametrically as  (   ), where   is the variance-covariance 

matrix. Use of this parametric structure for the random effects is typically more efficient than 

cluster-level fixed effects, making it especially useful in settings where there are a large number 

of clinical sites. 

 

Sequential model updating. The primary advantage of combining a sequential model updating 

approach with generalized mixed-effects models is that it allows the model to automatically 

calibrate to local conditions, thus improving the transportability of the model, without the need to 

recruit additional cohorts for constructing and validating a prediction model at each individual 

site. Additionally, predictions at individual sites are able to “borrow strength” from data at other 

sites to avoid the overfitting that might occur if separate models were fit at each site. One method 

of achieving model updating that has been studied in the literature is dynamic logistic regression, 

in which posterior values for Bayesian model parameters at time t are used to construct priors at 

time t + 1, when new data have become available [McCormick, Raftery, Madigan, & Burd, 

2012]. However, there are a number of approaches to estimation that could be used to achieve 

model updating; in this simulation, we are focusing on the simple method of re-fitting the original 

model at time t + 1, after incorporating additional data from the predictions that have been made 

since time t. This choice in estimation allows for a more direct comparison of updating and non-

updating models, because all other features of the models are identical.  

 

Data-generating process. For all simulations, we first generated a population of 500 clinics, each 

with Ni patients, where:  
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      ⌈   (     
 )⌉. (2) 

The log-normal distribution ensures that there are a large number of smaller clinics, with a small 

number of very large clinics. The value for   , where exp(  ) is equivalent to the median clinic 

size, was fixed at ln(65), while the value for    was fixed at ln(2), in order to ensure a range of 

clinic sizes of approximately 10 to 500 patients. These values were thought to be reflective of a 

typical clinical scenario. 

 

Next, clinic-level random intercepts and slopes were generated from a multivariate normal 

distribution, as follows: 

 {           }    (   ), (3) 

where b0i is the random intercept, b1i is the random slope for X1ij, and b2i is the random slope for 

X2ij, and the variance-covariance matrix is: 

   [

  
           

       
      

            
 

]. (4) 

The correlation between the random intercept and random slopes,  , was fixed at a moderate 

value of 0.3, which was felt to be similar to what might be observed in practice. However, 

sensitivity analyses demonstrated that the results were insensitive to increases or decreases in the 

value of the correlation (data not shown). Additionally, we determined that having the correlation 

between the random slopes differ from the correlation between the random intercept and random 

slopes would not have a substantial impact on the results (data not shown), so the same value for 

all correlations was used for model simplicity. After clinic-level random effects were generated, 

patient-level variables were generated. First, X1ij and X2ij were generated as  (   ) variables. The 

variance was fixed at 1 for all parameter combinations in order to provide a reference point for 

easier interpretation of the values of other parameters. We varied   
  and   

  in order to determine  
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the impact of different relative strengths of clinic-level heterogeneities, compared to patient-level 

factors. 

Then, the outcome Yij was generated as: 

        (      )     (      )       (  )     , (5) 

where     are independent errors distributed as  (    
 ) and the value of   

  was chosen such 

that the error terms comprise 20% of the total variance in Yij. Clinic size is associated with the 

outcome through the function f, with: 

 (  )   (  (  )    (  )̅̅ ̅̅ ̅̅ ̅̅ ), (6) 

where   is a scaling factor such that  (  )    (   ). The value for    is fixed at 1 across all 

simulations, so that    and   gain the interpretation of the impact of X2ij and clinic size on the 

outcome, respectively, relative to the impact of X1ij. Note that the overall intercept across all 

clinics,   , was defined as equal to 0 and is thus not included in Equation 5. The data-generating 

process is summarized in Figure 4.1. 

Figure 4.1. Summary of data-generating process. Variables enclosed in squares are fully observed, 

variables enclosed in circles are unobserved, and variables enclosed in rounded rectangles are partially 

observed. 
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Parameter values. The main parameters that were varied for our simulation were   
  and   

 , 

which controlled the relative impact of patient-level factors and clinic-level heterogeneities on the 

outcome. Three values of each parameter were examined—0.5, 1, and 2 for   
 , and 0, 0.25, and 

0.5 for   
 —for a total of 9 main parameter combinations. The values of these parameters can be 

interpreted relative to the size of the variance in X1ij, which was fixed at 1. Additionally,    and   

were fixed at zero for these main parameter combinations, so that the effects of unknown patient-

level factors and clinic size on the results could be examined in isolation. When    was equal to 

zero,   
  was also set equal to zero, so that there was no effect of X2ij on Yij; when    was not 

equal to zero,   
  was set to be equal to   

 . We considered   
   ,   

      ,     , and     

to be the “base” parameter combination, and sensitivity analyses for individual parameters were 

based on this combination of parameter values. 

 

Later, we separately assessed the impact of non-zero values for    and  . Specifically, we 

examined values of √   , 1, and √  for both parameters. These values were selected for greater 

interpretability, as the relative contribution of X2 and  (  ) to the total variance in Yij was 

proportional to   
  and   , respectively. Thus, for example, when    √ , X2ij is contributing 

twice as much to the variance in Yij as is X1ij. This set of parameter values likely covers the full 

range of what could reasonably be expected in practice, given that the prediction models were 

being rigorously constructed in the first place. For this set of parameter combinations,   
  and   

  

were fixed at their base values. 

 

Finally, we assessed the impact of varying update intervals in an attempt to reflect longer time 

lags between predictions and the occurrence of the outcome that might take place in certain 

clinical scenarios, such as those with survival-type outcomes. We examined values of 250, 500, 

1,000, and 5,000 for  , the number of predictions made between rounds of updating for updating 



70 

 

models, as described below. We used   = 500 as the base value for all previously described 

parameter combinations. 

 

Prediction models. We randomly selected 20 clinics—stratified by clinic-size quintile,   
 —for 

the derivation cohort, mimicking a multi-site cohort that might be used to develop a clinical 

prediction model in practice. We selected 6 clinics from each of the bottom 2 quintiles, 3 clinics 

from each of the next 2 quintiles, and 2 clinics from the upper quintile. We then built 3 prediction 

models in the derivation cohort:  

1) a linear model,       ; 

2) a Bayesian linear mixed-effects (BLME) model,           ; and 

3) a second BLME model,     (      )    .  

BLME models were fit using restricted maximum likelihood, with non-informative flat priors for 

the fixed effects and a non-informative prior for the random effects covariance matrix based on 

the Wishart distribution. Estimation of BLME models was accomplished using the “blme” 

package in R [Dorie, 2014]. Additionally, for simulations when    , we also constructed 

versions of the above models that included   
  as a categorical fixed effect, since it was felt that 

  
  would be more likely to be observable than  (  ) in practice. 

 

All three models were tested in the validation cohort with and without sequential model updating. 

Sequential model updating was achieved by making predictions on   patients, incorporating 

outcome data on those individuals back into the derivation dataset, re-estimating the models, and 

then making predictions on the next   patients. This algorithm was repeated until predictions had 

been made on all patients in the validation cohort. For BLME models, this process was equivalent 

to adding new data, and did not affect the model priors. The order of predictions was random 

across the entire validation cohort, and each individual had an 80% chance to have his or her 
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outcome data incorporated into the updating algorithm. We chose 80% because it realistically 

allows for missing outcome data; this is reflective of missing outcome data that might occur when 

utilizing a sequential model updating scheme in practice, where patients might be lost to follow-

up before their outcomes are observed. 

 

Assessment of model calibration. Accuracy of prediction models was based on assessments of 

model calibration, with mean absolute error (MAE) being the primary metric [Wilmott & 

Matsuura, 2005]. MAE was calculated as: 

     
 

 
∑|   ̂     |, (6) 

where n is the total number of individuals in the validation cohort. To improve the interpretability 

of the results, we constructed a new metric, the “relative improvement” (RI) in MAE, for each 

model as: 

    
      

     
, (7) 

where    refers to the mean absolute error for the intercept-only model, as fit in the derivation 

set, and    refers to the mean absolute error for the “true” model, which was considered to be the 

model in Equation 4, minus the error term. Thus, the RI will typically range from 0 to 1 and can 

be interpreted as the improvement of the current model over the intercept-only model, relative to 

the improvement that would have been seen with the “true” model. Negative values for RI 

indicate that the given model is worse than predicting the average value in everybody. 

 

RESULTS 

Population characteristics. There were 41,576 (SD 1,465) patients in the total simulated 

population, on average, with 1,276 (SD 118) patients in the derivation cohort. Clinics ranged in   
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Table 4.1. Clinic size distribution in the simulated population. 

size from 9 to 549 patients, on average. The median clinic had 66 patients, and 67% of patients 

were in clinics in the top two quintiles of clinic size. Other characteristics of the distribution of 

clinic size, which are reflective of the log-normal distribution selected, are shown in Table 4.1. 

The effect of varying   
  and   

  on clinic-level clustering is shown in Figure 4.2; as expected, 

increasing   
  , which represents the variance of the random intercepts, tended to yield greater 

vertical displacement among the slopes, while increasing   
 , which represents the variance of the 

random slopes, led to a more defined fanning pattern. 

 

Main parameter results. As can be seen in Table 4.2, the prediction models explained a 

substantial amount of the variance in the derivation cohort, ranging from an r2 of 0.25 to 0.80, 

depending on the model and parameter combination. Furthermore, the addition of random effects 

consistently led to dramatic improvements in the model r2 in the derivation cohort, creating the 

initial appearance of improved model performance. However, because all out-of-sample 

predictions are made assuming that new clinics have the mean value for their random intercept 

and slope, the addition of random effects led to virtually no improvement in the accuracy of 

predictions in the validation cohort, with mean RI at 33% to 34% for all non-updating models for 

the base parameter combination. In contrast, use of sequential model updating led to dramatic 

improvements in RI for both BLME models, across all parameter combinations tested (Figure 

4.3).  

Clinic-size quintilea,b 0–20% 20–40% 40–60% 60–80% 80–100% 

Minimum number  

of patients in quintile 
9 (2) 37 (2) 55 (2) 78 (3) 117 (5) 

Percent of population  

in quintile 
6.1 (0.3) 10.9 (0.5) 15.8 (0.6) 23.0 (0.6) 44.2 (1.2) 

aResults are presented as mean (SD) across 1,000 simulations. 
bClinic size distribution is not affected by varying the value of the main parameters. 
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Table 4.2. Mean r2 for non-updating models in derivation cohort across all main parameter combinations. 

  
 Model   

     a   
    a   

    a

      0.42 (0.11) 0.34 (0.10) 0.25 (0.09) 

0.5           0.61 (0.08) 0.64 (0.07) 0.68 (0.07) 

    (      )    0.80 (0.04) 0.80 (0.04) 0.79 (0.04) 

      0.47 (0.09) 0.38 (0.08) 0.27 (0.08) 

0.25           0.69 (0.06) 0.71 (0.05) 0.73 (0.06) 

    (      )    0.80 (0.04) 0.80 (0.04) 0.79 (0.04) 

      0.55 (0.06) 0.42 (0.06) 0.29 (0.06) 

0           0.80 (0.02) 0.79 (0.03) 0.79 (0.04) 

    (      )    0.80 (0.02) 0.80 (0.03) 0.79 (0.04) 
aResults presented as mean (SD) over 1,000 simulations. 

Figure 4.2. Effect of   
  and   

  on clinic-level clustering. Each point represents an individual patient at 

one of the 20 clinics in the derivation cohort for a single simulation run. Lines represent the actual 

relationship between X1ij and Yij at each derivation clinic. The center figure represents the base 

parameter combination. 
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Figure 4.3. Relative improvement in MAE for both updating and non-updating models across all main 

parameter combinations. Plots show the density of values for relative improvement in MAE across 1,000 

simulations, with horizontal bars representing the mean value. 

As can be seen in Figure 4.4, gains in prediction accuracy from sequential model updating were 

seen across all clinic-size quintiles, although the greatest improvement was seen in the largest 

clinics. This pattern likely reflects the fact that improvements from updating were seen relatively 

rapidly, with approximately 90% of the total gains in predictive performance for both BLME 
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models occurring after about 10 predictions at a given clinic (Figure 4.5). Because there were 480 

clinics in the validation cohort and the model was updated after every 500 predictions, model 

updates occurred after almost every prediction, on average, especially at smaller clinics. 

Effect of model misspecification. When there was an unknown patient-level factor impacting the 

outcome (i.e.     ), sequential model updating was less effective (Figure 4.6). However, 

updating models still were more accurate than non-updating models for all values of   . Having 

the outcome be dependent on clinic size (i.e.    ) led to worse performance of non-updating 

BLME models, with these models performing worse than intercept-only models with large values 

of   (Figure 4.7). However, updating BLME models showed no drop-off in prediction accuracy 

with non-zero values of  . Inclusion of clinic size quintile,   
 , as a categorical fixed effect led to 

marked improvement in non-updating BLME models and even slight improvement in updating 

BLME models, on average (Figure 4.8). 

Figure 4.4. Relative improvement in MAE by clinic-size quintile. Plots show the density of values for 

relative improvement in MAE across 1,000 simulations, with horizontal bars representing the mean value. 

These results are for the base parameter combination. 
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Figure 4.5. Rate of improvement in prediction accuracy at a given clinic. This plot shows the mean 

relative improvement in MAE for prediction j at clinic i, across 1,000 simulations. These results are for the 

base parameter combination. 
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Figure 4.6. Effect of    on model prediction accuracy. Plots show the density of values for relative 

improvement in MAE across 1,000 simulations, with horizontal bars representing the mean value. The 

parameters for   
  and   

  are fixed at their base values. Note that the relative contribution of X2ij to the 

total variance in Yij, compared to X1ij, is equal to   
 . 
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Figure 4.7. Effect of   on model prediction accuracy. Plots show the density of values for relative 

improvement in MAE across 1,000 simulations, with horizontal bars representing the mean value. The 

parameters for   
  and   

  are fixed at their base values. Note that the relative contribution of  (  ) to the 

total variance in Yij, compared to X1ij, is equal to   .
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Figure 4.8. Effect of   on prediction accuracy for models that include   
 . Plots show the density of values 

for relative improvement in MAE across 1,000 simulations, with horizontal bars representing the mean 

value. All models include   
 , which represents clinic-size quintile, as a categorical fixed effect. The 

parameters for   
  and   

  are fixed at their base values. Note that the relative contribution of  (  ) to the 

total variance in Y, compared to X1, is equal to   . 
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Effect of varying the update interval. Results were fairly insensitive to changes in  , the update 

interval. Even when   = 5,000, or about 12.5% of the validation cohort, prediction accuracy in 

updating BLME models was not substantially decreased (Figure 4.9). Furthermore, prediction 

accuracy was consistent across all quintiles of clinic size with varying values of   (data not 

shown). Finally, the rate of improvement in prediction accuracy only showed a notable decrease 

when   = 5,000, when about 90% of total gains in prediction accuracy for both BLME models 

occurred after about 20 predictions at a given clinic (Figure 4.10). Note that this value for   

corresponds to a highly unlikely scenario where the model can only be updated about 8 times 

over the course of using the model on a population of about 40,000 individuals. 

 

DISCUSSION 

Overview. In this simulation study, we sought to quantify the potential effect of sequential model 

updating on the accuracy of clinical prediction models. Sequential updating of BLME models led 

to uniform improvement in prediction accuracy across all parameter combinations examined. 

Thus, it seems quite likely that substantial gains in the transportability of clinical prediction 

models could be achieved through sequential updating of models that account for clinic-specific 

heterogeneities, including differences in the mean level of the outcome as well as differences in 

the association between known predictors and the outcome. However, the extent of the gains in 

prediction accuracy from updating varied depending on the degree of misspecification of fixed 

effects, indicating that use of sequential model updating will likely be more useful in clinical 

scenarios where such misspecification can be minimized. 

 

Impact of sequential model updating. Sequential model updating did not substantially improve 

prediction accuracy with the linear model, performing similarly to all non-updating models.  
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Figure 4.9. Effect of the update interval,  , on model prediction accuracy. Plots show the density of values 

for relative improvement in MAE across 1,000 simulations, with horizontal bars representing the mean 

value. All other parameters are fixed at their base values. 
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Figure 4.10. Effect of the update interval,  , on the rate of improvement in prediction accuracy at a given 

clinic. This plot shows the mean relative improvement in MAE for prediction j at clinic i, across 1,000 

simulations, for different values of  . All other parameters are fixed at their base values. 
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As a result, flexible models with random effects were needed to account for the heterogeneities 

across clinics. The accuracy of non-updating models decreased with increasing values of   
  and 

  
 ; in short, greater heterogeneity across clinics led to worse performance for models that did not 

take these differences into account. By contrast, updating BLME models showed greater 

improvement in prediction accuracy when a larger proportion of the variation in the outcome was 

explained by clinic-level heterogeneities. The BLME model with a random intercept showed 

improved prediction accuracy with increasing values of   
 ; however, its performance deteriorated 

with higher values of   
 . This deterioration in accuracy with larger random slopes is not 

surprising, because this model had no way to account for the random slopes that were present in 

the data structure. Even so, the model was able to use its random intercept to account for a large 

enough amount of inter-clinic variability to provide uniform improvement over non-updating 

models and the linear updating model. 

 

The BLME model with both a random intercept and random slope was nearly as accurate as the 

“true” model across all main parameter combinations, with a mean RI ranging from 94 to 96%. 

This was because the model was essentially equivalent to the data-generating model in these 

cases, and updating occurred fast enough that predictions on most individuals in the validation 

cohort were made with a fully calibrated model. Indeed, about 90% of the gains in prediction 

accuracy were seen by about the 10th patient at a given clinic, so even small clinics were able to 

see benefits from sequential model updating, and the majority of predictions at large clinics were 

made with an accurate estimate of clinic-specific random effects. This rapid improvement in 

prediction accuracy was largely sustained even with higher values of  , so overall prediction 

accuracy in the validation cohort was preserved even when models were updated less frequently. 

It should also be noted that this high level of prediction accuracy was sustained even when there 

was no random slope in the data-generating process (  
  = 0). Thus, there was not really much 
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downside to having an unnecessary random slope in the updating model, while having only a 

random intercept when the data-generating process included both a random intercept and a 

random slope led to decreased prediction accuracy. 

 

Additionally, the variance of RI values across simulations tended to be lower in updating models 

than in non-updating models. The variance in prediction accuracy decreased with each additional 

random effect in the model, as well. This speaks to another important feature of sequential model 

updating, which is the ability to overcome sampling bias to produce models that perform more 

consistently. In the non-updating models, the prediction accuracy was largely dependent on 

whether the clinics that comprised the derivation cohort happened to be representative of the 

overall population. In simulations where estimates of    and    were very different from their 

true values due to random sampling, prediction accuracy for non-updating models in the 

validation cohort tended to be worse (Figures 4.11–4.13). However, sequentially updating models 

were able to overcome initial sampling bias by improving model calibration over time. 

 

Impact of model misspecification. When an unknown patient-level factor was added to the data 

structure (    ), updating BLME models had a decrease in prediction accuracy; however, they 

still performed better than non-updating models for all values of   . In short, it is still important 

to be diligent when selecting covariates and their specifications for a sequentially updating model, 

as models that are closest to the true data-generating process will still perform the best. However, 

most realistic clinical scenarios involve unknown predictors and misspecification, so the fact that 

sequential model updating still led to improvements in prediction accuracy under these conditions 

suggests that it may be a useful strategy in the real world. 

 

  



85 

Figure 4.11. Relationship between bias in estimated model coefficients and prediction accuracy for the 

linear model. Each point represents one of 1,000 total simulations for the base parameter combination, and 

best fit lines are shown in red. The left panel shows the bias in the estimated intercept from the derivation 

cohort compared to the true value in the overall population, while the right panel shows this bias for the 

estimated slope. 

Figure 4.12. Relationship between bias in estimated model coefficients and prediction accuracy for the 

BLME model with random intercept. Each point represents one of 1,000 total simulations for the base 

parameter combination, and best fit lines are shown in red. The left panel shows the bias in the estimated 

intercept from the derivation cohort compared to the true value in the overall population, the middle panel 

shows this bias for the estimated slope, and the right panel shows this bias for the estimated variance of the 

random intercepts. 
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Figure 4.13 Relationship between bias in estimated model coefficients and prediction accuracy for the 

BLME model with random intercept and slope. Each point represents one of 1,000 total simulations for the 

base parameter combination, and best fit lines are shown in red. Starting from the top left panel and 

moving in clockwise fashion, the panels show the bias in the estimated intercept, slope, variance in the 

random slopes, and variance in the random intercepts, as compared to the true value in the overall 

population. 

Clinic size or volume may be related to outcomes in a number of clinical scenarios, such as 

hospital mortality rates for acute myocardial infarction or surgical mortality rates [Birkmeyer et 

al., 2002; Silber et al., 2010]. While other clinic-level effects can be accommodated by random 

intercepts and slopes, we were concerned that clinic size might behave differently because it is 

directly related to the probability of observing the data in the first place. Larger values of   led to 

worse performance of non-updating BLME models, while updating BLME models showed no 

deterioration in performance. In non-updating BLME models, the effect of sampling bias was 

actually amplified because differences due to clinic size were incorporated into the model as 

random effects, with greater bias in the estimated random effects covariance matrix leading to 
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worse prediction accuracy (Figures 4.14 and 4.15). However, in updating models, these initial 

biases were diminished over time because the model was continually being calibrated to the 

overall population, such that the majority of predictions were unaffected by the initial biases. As a 

result, inclusion of   
  was required to improve the accuracy of non-updating BLME models, but 

not practically necessary in the case of updating BLME models. These results also speak to the 

general robustness of sequentially updating models that account for clinic heterogeneities; while 

correct specification is still better, misspecification is not nearly as costly as it is with non-

updating models. 

 

Challenges to incorporating sequential model updating in practice. Implementation of sequential 

model updating in practice will likely involve many logistical and analytical challenges. In order 

to work well, prediction models will likely need to be integrated into EHR systems, so they will 

be able to automatically extract covariate data to make an initial prediction, and then 

automatically extract outcome data to use for model updating. Furthermore, in order to 

accommodate heterogeneities across sites, the EHR will need to either be standardized across all 

of the sites, or compatible enough to allow for communication of data. Additionally, the data 

storage and security requirements for large amounts of data across multiple sites will likely be 

quite complex. Certain analytic strategies—such as Bayesian dynamic regression, where posterior 

distributions are estimated from dynamic priors in a fully online fashion [McCormick et al., 

2012]—could greatly reduce the data storage requirements, and, accordingly, the data security 

concerns. However, more work is needed to determine the trade-offs in prediction accuracy that 

might accompany this approach under certain scenarios. Finally, there will need to be a concerted 

effort to communicate the effectiveness of this approach to the clinical community in order to 

foster the necessary level of trust to overcome initial financial and logistical hurdles. 
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Figure 4.14. Relationship between bias in estimated model coefficients and prediction accuracy for the 

BLME model with random intercept, with clinic size influencing the outcome. Each point represents one of 

1,000 total simulations with  √ , and best fit lines are shown in red. The left panel shows the bias in the

estimated intercept from the derivation cohort compared to the true value in the overall population, the 

middle panel shows this bias for the estimated slope, and the right panel shows this bias for the estimated 

variance of the random intercepts. 

Figure 4.15 Relationship between bias in estimated model coefficients and prediction accuracy for the 

BLME model with random intercept and slope, with clinic size influencing the outcome. Each point 

represents one of 1,000 total simulations with  √ , and best fit lines are shown in red. Starting from the

top left panel and moving in clockwise fashion, the panels show the bias in the estimated intercept, slope, 

variance in the random slopes, and variance in the random intercepts, as compared to the true value in the 

overall population. 
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The analytic challenges involved in sequential model updating are also likely to be quite 

complex. Missing data, both for covariates and outcomes, will be an important issue to resolve, as 

standard methods, such as multiple imputation [Groenwold, Donders, Roes, Harrell, & Moons, 

2012; Moons, Donders, Stijnen, & Harrell, 2006], may be difficult to implement in the context of 

a dynamic system. As a result, efforts to jointly model the updating process along with the 

prediction model itself, analogous to methods for jointly modeling longitudinal and competing 

risks data [Li, Elashoff, & Li, 2009], may be required. Alternatively, use of missing indicators 

may be more useful than with standard models [van der Heijden, Donders, Stijnen, & Moons, 

2006], because these parameters would be allowed to calibrate to the population over time. 

However, further studies are needed to answer these questions empirically. Other important 

analytic issues that would need to be resolved include how to incorporate new predictors or 

specifications into a sequentially updating model; how much to weight historical data in a 

population that is changing over time; how best to account for time lags between making 

predictions and obtaining outcome data; and how to determine whether a model is not performing 

well enough at a given site and needs to be replaced with a separate, newly derived model. 

 

Study limitations. Although our simulation was based on a hypothetical predictor and outcome 

variable, we tried wherever possible to mimic situations that might occur when developing and 

utilizing a typical clinical prediction model. For instance, we utilized a log-normal distribution for 

clinic size, so that there would be a larger number of small clinics than large clinics, and we 

generated the derivation cohort to be similar in size and composition to what might be found in a 

large multi-center cohort study. We also excluded some patients from contributing data to 

updating models, to reflect the loss to follow-up that might occur in clinical practice. Finally, we 

examined scenarios where the model was not correctly specified, which are likely to occur in 

real-world applications. 
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Despite these efforts, there are a number of limitations to our model. For instance, we did not 

examine scenarios where heterogeneities across clinics were not normally distributed. It is 

possible that standard BLME models might not perform as well in this scenario, leading to a 

model that was less calibrated to local conditions, even after updating. However, research 

studying the impact of misspecified parameterization of random effects on prediction accuracy 

suggests that the standard multivariate normal assumptions should be reasonably robust 

[McCulloch & Neuhaus, 2011]. Additionally, we assumed in our simulation that outcome data 

that was not available for updating was missing completely at random, which may not hold in 

practice. Future studies are needed to determine whether the prediction accuracy of sequentially 

updating models will be worsened in scenarios where the probability of obtaining outcome data 

for updating is dependent on model covariates or, especially, the outcome. 

 

We attempted to cover a reasonable range of parameter values in our analysis; however, it is 

possible that our results will not extrapolate to values outside of the tested ranges. Additionally, 

to reduce computational burdens, we focused on a simplistic model: a single continuous predictor 

and a continuous outcome. Clearly, clinical prediction models in the real world will have multiple 

covariates, and many will have more complex outcomes. The precise gains in prediction accuracy 

from sequential model updating will likely vary depending on the particular structure of the data 

in question. Finally, sequential model updating in practice will have to deal with a lag between 

when predictions are made and when outcomes are observed. It is possible that long lag periods 

relative to the frequency of updating will decrease the rate at which prediction accuracy 

improves. As a result, sequential model updating may be less useful for prediction models with 

long lag times, especially at smaller clinics or in rapidly changing populations. We attempted to 

assess the sensitivity of our results to long lag times by varying the update interval,  , and large 

improvements in prediction accuracy with updating BLME models were still seen even at the 
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highest values of  . Even with these positive results, though, the exact effect of time lags on the 

performance of sequentially updating models will need to be formally addressed in future 

research. Despite these limitations, we are confident that sequential model updating will prove to 

be a useful approach for a broad set of clinical scenarios. 

 

Future directions. Many of the limitations and challenges discussed above provide an excellent 

framework for future research in this area. More simulations are needed to test the performance of 

sequential model updating in the context of clustered populations that change dynamically over 

time, which will be more reflective of actual patient populations. Additionally, more rigorous 

study of time lags in outcome variables and approaches to handling missing data are needed. 

Furthermore, more explicit comparison of different specific modeling approaches, such as formal 

Bayesian dynamic approaches [McCormick et al., 2012], model averaging techniques [Raftery, 

Gneiting, Balabdaoui, & Polakowski, 2005], non-parametric strategies [Ryu, Li, & Mallick, 

2011], and machine learning methods [Hastie et al., 2009] are needed. Finally, these approaches 

will need to be tested in a variety of empirical studies to determine the extent to which theoretical 

gains are likely to be realized in practice. 

 

Conclusions. In conclusion, sequential updating of models that accommodated clinic-level 

differences led to improved prediction accuracy in the overall population. The extent of the 

improvement in prediction accuracy that was observed with updating mixed-effects models 

depended on the relative impact of clinic-level and patient-level factors on the outcome as well as 

the degree of model misspecification; however, updating mixed-effects models were uniformly 

superior to non-updating models as well as updating models with only patient-level fixed effects. 

Gains in prediction accuracy tended to occur rapidly, leading to improvements at small clinics as 

well as large clinics. While there are many logistical and analytical questions to resolve, the 
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potential for a sequential model updating approach to improve the transportability of clinical 

prediction models seems quite promising.  
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CHAPTER 5. CONCLUSIONS 

 

In Chapter 2, we found that baseline behavioral factors, health care utilization, and health quality 

were associated with longer time to maintenance dose in patients initiating warfarin therapy, 

while in Chapter 3, we discovered the difficulty of developing a model to predict prolonged dose 

titration in these patients. Our results in Chapter 4 suggested that sequential model updating of 

mixed-effects models can lead to substantial improvement in prediction model transportability. In 

addition to these specific results, however, a major focus of this dissertation was using warfarin 

response as an example of therapeutic effectiveness research in general. Thus, while the studies in 

Chapters 2 and 3 are designed to address specific questions about patients initiating warfarin 

therapy, the lessons gleaned from these studies can apply to the field of therapeutic effectiveness 

research more broadly. Similarly, the methods examined in Chapter 4 would be expected to 

extend beyond models of therapeutic effectiveness to clinical prediction models more generally. 

 

In Chapter 2, we examined the genetic, clinical, and social factors associated with time to 

maintenance dose (TTM) for patients starting warfarin therapy. The results highlight the 

importance of considering non-genetic factors when studying outcomes related to anticoagulation 

control. While most of the previous research on TTM had focused on genetic variants that have 

been previously found to affect the required therapeutic dose of warfarin [Cavallari et al., 2011; 

Higashi et al., 2002; Jorgensen et al., 2009; Limdi et al., 2008; Meckley et al., 2008], none of the 

genetic variants we examined were significantly associated with TTM. Instead, TTM appeared to 

be more related to baseline behavioral factors, health care utilization, and health quality. Of 

particular importance was the finding that having previously been on warfarin was associated 

with longer, rather than shorter, TTM. This new finding suggests that clinicians should be just as 

vigilant in monitoring these patients, even though they have more experience with warfarin 
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therapy. These findings are salient for the broader field of therapeutic effectiveness research, as 

well. In an era of “personalized medicine” [Crews, Hicks, Pui, Relling, & Evans, 2012], it is 

important that research on the impact of genetic factors on the effectiveness of a given therapy 

not come at the expense of research on non-genetic factors, which may be just as important, if not 

more so, in clinical practice. 

 

When conducting this study, we had hoped to identify potential targets for future interventions for 

improving TTM in patients on warfarin therapy by examining the effect of post-initiation factors, 

such as changes in interacting medications or changes in diet. Our results were disappointing 

here, because none of the post-initiation factors examined were significantly associated with 

TTM. These results further suggested that changes likely did not occur frequently enough in the 

early stages of warfarin therapy to affect TTM or that clinicians responded to these changes with 

appropriate dose changes. However, it is still possible that these factors might be more important 

for determining anticoagulation control in patients in the maintenance phase of therapy, when 

monitoring is less frequent and dose titration is not active. Future research on this topic will need 

to ensure correct specification of time-varying factors to avoid immortal time bias as well as 

adjustment for variable INR monitoring frequency to avoid interval censoring bias. 

 

In Chapter 3, we developed and externally validated a model to predict prolonged dose titration in 

patients initiating warfarin therapy. While the model developed appeared to perform well in the 

derivation cohort, even when assessed using cross-validation, it did not perform as well in the 

external validation cohort. As a result, it is unlikely that the model will be useful in clinical 

practice. Post-hoc analyses suggested that model performance varied substantially across clinical 

sites, with marked differences in the AUC among the anticoagulation clinics in the validation 

cohort. These sites differed from each other in terms of outcome prevalence and patient 
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characteristics, and the most important predictors of prolonged dose titration in the validation 

cohort were somewhat different from the derivation cohort. Although the prediction model itself 

will not be useful for clinical practice, our results offer an important cautionary tale on the 

essential need for external validation when developing prediction models.  

 

Furthermore, the rigorous decision-theoretic approach that we used to examine the clinical utility 

of our model will still be useful, both to clinicians and to future researchers. An understanding of 

the risk threshold can help clinicians formally think about the relative costs of financial and 

monitoring burdens for their patients and then come to a decision about optimal treatment choice 

based on the overall prevalence of the outcome. Additionally, future prediction models on 

therapeutic effectiveness will likely be more easily incorporated into clinical practice if they can 

demonstrate their usefulness to the clinical decision-making process with metrics such as relative 

utility. More research is certainly needed to develop summary metrics of prediction model 

performance that are rooted in decision theory; it is likely that clinicians will be more trusting of 

these methods when they become simpler and more intuitive. 

 

The substantial variability in the performance of our prediction model across clinical sites in 

Chapter 3 provided an unexpectedly good motivation for the methodological work done for the 

project described in Chapter 4. Poor transportability is a pervasive problem for clinical prediction 

models, and, generally, most research has focused on developing new models or finding new 

predictors that can provide incremental improvement, without addressing the fundamental 

challenge of accounting for variability in the relationship between predictor variables and 

outcomes in different locations, across clinical domains, and over time. With recent technological 

advancement in and widespread adoption of electronic health record (EHR) systems [Kukafka et 

al., 2007], it has become easier to imagine systems that utilize EHR data to improve predictions 
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made across integrated health systems. Essentially, prediction models could be incorporated into 

an EHR system, used to make predictions on patients within that system, and then updated 

sequentially as outcome data on those patients become available. Flexible models, such as mixed-

effects models, would thus be able to use this updated information to calibrate to local conditions, 

such as individual clinics or even individual patients in some settings, over time, while using the 

data from the overall population to avoid overfitting at any one site. 

 

Because integrating a clinical prediction model into an EHR would likely involve substantial 

upfront costs, we felt it was important to quantify the potential gains in prediction accuracy that 

could be achieved by sequential model updating. We achieved this aim through a simulation 

study, presented in Chapter 4, comparing the prediction accuracy of several updating and non-

updating models for a generic clinical outcome. The results suggested that sequential updating of 

models that account for heterogeneity across clinics in mean outcome levels and predictor-

outcome associations can lead to dramatic improvements in prediction accuracy. Furthermore, 

while the extent of the gains varied depending on the degree of model misspecification—

including misspecification of the random effects structure, the presence of unknown patient-level 

predictors, and the presence of unknown or misspecified clinic-level predictors, such as clinic 

size—there were no scenarios we examined in which updating models performed worse than non-

updating models. Thus, sequential model updating has the potential to be a broadly applicable 

approach to improving clinical prediction modeling. 

 

However, there remains important methodological work to be done before sequential model 

updating approaches can be widely adopted in clinical practice. For instance, the length of time 

between when predictions are made and when outcomes are experienced could impact the 

feasibility of sequential model updating in certain clinical scenarios. Additionally, methods to 
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deal with missing data and outcome-dependent data collection will need to be tested. Different 

types of statistical models will also need to be compared based on how well they perform in an 

updating framework. Metrics to decide how to incorporate new predictors into established models 

and to determine whether stratified or unified models are needed across diverse patient 

populations will need to be developed. Finally, empirical demonstration projects are also likely to 

reveal unanticipated logistical and analytic challenges that can form the basis for future 

methodological research. All of this work will help to clarify the types of clinical situations where 

sequential model updating would be expected to be most useful and how best to implement this 

approach in practice. 

 

Ultimately, adaptation is likely to be a common theme for therapeutic effectiveness research 

moving forward. Anticoagulation research is shifting in focus from how to determine a patient’s 

warfarin dose to how best to use warfarin as one of a number of therapeutic alternatives. 

Although it proved to be less useful for predicting prolonged dose titration in patients starting 

warfarin therapy, genetic and genomic data will likely be more successful at predicting who is 

likely to respond to therapy or experience side effects for other specific conditions. In contrast, 

methods to improve medication access and adherence will likely be more important for 

conditions where genetic factors are less useful. To maximize their clinical utility, prediction 

models will need to be able to adapt to heterogeneities in patient populations and practice patterns 

in different locations as well as changes in clinical practice over time. It is our hope that the work 

in this dissertation and the work that will arise from it represent a small step toward making 

therapeutic effectiveness research more effective. 
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APPENDIX 

 

List of medications considered to interact with warfarin. Potentially interacting drugs were 

identified from the Physicians Desk Reference, Drug Facts and Comparisons 4.0, and MEDLINE 

literature searches as of the time that patients were enrolled in the study. 

 

Drug Name Drug Name (cont.) 

(CHOLESTROL LOWERING MED.) 

LIPITOR 

IMURAN 

ASTORVASTATIN INDOCIN (X 7 DAYS) 

ATORVAST ISONAL 

ATORVASTATIN KETOCONAZOLE 

ATORVASTATIN CA/LIPITOR KETOCONAZOLE (PILLS) 

ATORVASTATIN CALCIUM KETOCONAZOLE CREAM 

ATORVASTIN CALCIUM KOFECOXIB 

ATOVASTITIN CALCIUM LAMISIL 

CRESTOR LASIX 

CRESTOR/ROSAVASTATIN LASIX INCREASED 

HIGH CHOL. MED./ LIPITOR LEVAGUIN 

LESCOL LEVAQUIN 

LESCOL 20MG QD LEVAQUIN 750 

LESCOL/FLUVASTATIN LEVAQUIN/ANTIBIOTIC 

LIPITOL LEVOFLOXACIN 

LIPITOR LEVOFLOXCIN 

LIPITOR 20MG GD LEVOQUIN 

LIPITOR 40MG QD LEVOQUIN (TILL 10-16) 

LIPITOR/ATORVASTATIN CA LEVOTHROYOXINE 

LIPITOR/ATORVASTATIN CALCIUM LEVOTHYROPINE 

LIPOTON LEVOTHYROXIN 

LOSCOL LEVOTHYROXINE 

LOVASTANTIN LEXA PRO/SELECTIVE SERETONIN 

REUPTAKE 

LOVASTATIN LISINIPRIL/HCTZ/ZESTORETIC 

MEVACOR LISINOPRIL/HYDROCHLROTHIAZIDE/ZEST

ORETIC 

PRAVACAL MASOCORT AC / NASAL STEROID 

PRAVACHOL MAXIDE 

PRAVACHOL 80 MG DAILY MEDROL 

PRAVACHOL/PRAVASTATIN METHIMAZOLE 

PRAVACHOT METHIMAZOLE  THYROID 

PRAVASTATIN/PRAVACOL METHONIDAZOLE 

PRAVOCHOL METHYLPHENIDATE 
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PREVASTATIN METHYL-PREDINZONE 

PROVOCHOL/PRAVASTATIN METOLAZONE 

ROSUVASTATIN/CRESTOR METRINIAZOLE 

SIMAVASTATIN METRONIDAZOLE 

SIMVASTATIN METRONIDAZOLE X 8 WKS. 

SIMVASTATIN (ZOCOR) MOTRIN 

SIMVASTIN MULTI-SYMPTOM NON-ASPIRIN COLD 

MEDICINE 

ZOCOR NAFCILLIN 

ZOCOR 20 MG PO QD NAPROSIN 

ZOCOR/SIMVASTATIN NAPROSYN 

ZOCOR/SIMVASTIN NAPROXEN 

ZOLCOR NAPROXIN 

(CANCER TREATMENT) 

"CARBOPLATIN 

NAPROXYN 

(CHEMOTHERAPY) S-FU NASACORT 

(HYDROCODONE-APAP) NASOCORE 

(PAIN MED.) HYDROCO/APAP NASOCORT 

(TERBINAFINE) NELFINAVIR 

A.S.A. NELFINAVIRMESYLATE/NIRACEPT 

A.S.A. 81 NEOMYCIN 

ACARBASE NIZOVAL CREAM 

ACCOLATE NORVIR 

ACCURETIC OLMESARTAN 

MEDOXOMIL/HCTZ/BENICAR 

ACETAMINOPHEN OMACOR (FISH OIL) RX 

ACETAMINOPHIN OMAPRAZOLE 

ADVIL OMEGA 3 FATTY ACIDS 

ADVIL COLD PILLS OMENPRAZOLE 

ALDACTAZIDE/SPIRONOLACTONE OMEPRAZOLE 

ALDACTONE OMEPRAZOLE (GERD) 

ALEVE OMEPRAZOLE/PRILOSEC 

ALFALFA OMEPROZOLE 

ALKA SELTZER PLUS COLD MED. OMESARTAN/HYDROCHLOROTHIAZIDE 

ALLAPURINOL ORTHOTRYCYCLINE 

ALLIPURINOL OXALIPPATIN 

ALLOPURINOL OXYCODONE W/APAP 

ALLUNOPURINOL OXYCODONE/APAP 

ALLUPROPINOL PANADOL FOR COLD 

AMIADARONE PARACETAMOL 

AMIODARON PAROXETINE 

AMIODARONE PAXIL 

AMIODARONE HCL PCE 

AMIODARONE HCL. PENICILLIN (PENECILLIN) 

AMIODIONE PERCOCET 

AMIODORONE PERCOCET (OXYCODONE-APAP 

ANTIBIOTIC/METRONIDAZOLE PERCOCET PRN 

ANTIBIOTICS- PERCOCET-POSTOP PAIN 
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SULFAMETHOXOZOLE/TRIMETHOPRI

M 

ANTIDEPRESSANT-CELEXA PERCOCETS 

APA PERIOSTAT 

APA/TYLENOL PESTO-CET (PERCOCET) 

ARTHROTEK PHENOBARBITAL 

ASA PHENYTOIN 

ASA (FOR PROCEDURE) PHENYTOIN SODIUM 

ASA 81 MG PO QD PHYTONADIONE 

ASA 81MG. PIROXICAM 

ASA, 81MG PIROXICAM/FELDENE 

ASIPRIN PIROXICAM/FELDINE 

ASPIRIN PIROXICAN 

ASPIRIN (LOW DOSE) PIROXICN 

ASPRIN PLACIDEL 

AZATHIOPRINE PREDNISOLONE EYEDROPS 

AZATHIOPRINE/IMURAN PREDNISONE 

AZITHROMYCIN PREDNIZONE 

AZITHROMYCIN-ONE DOSE ONLY PREDUIBONE 

AZMACORT PREDUISONE 

BABY ASA PRILOSEC 

BACTRIM PRILOSEC 11/29-12/12/04 

BACTRIM 

SS/SULFAMETHOXAZOLE/TRIMETHO

PRIM 

PRIMIDONE 

BACTRIM/SULFAMETHOXAZOLE/TRI

METHOPRIM 

PRIOXICAM 

BACTRUM PROPAFANONE 

BENICAR PROPAFENONE 

BEXTRA PROPAFENONE (RYTHMOL) 

BEXTRA 10MG QD PROPAFENONE-RYTHMOL 

BEXTRA/VALDECOXIB PROPAFERONE 

BEXTRA/VALDECOXILO PROPANOLOL 

BIAXIN/CLARITHROMYCIN PROPANOLOL ER 

BICALURIMINE PROPOXYPHENE. 

BICALUTAMIDE PROPRANOLOL 

CAPECITABINE PROTOZONE 

CARAFATE PROXICAM/FELDENE 

CARBOPLATIN PROZAC 

CASODEX QUININE 

CASODEX/BICALUTAMIDE QUININE SULFATE 

CEFAZOLIN RANITIDINE 

CEFRIAXONE RANITIDINE HCL 

CEFTRIAXONE RANITIDUIE 

CELEBREX RANTITIDEINE 

CELEBREX 200MG REFOCOXIB 

CELEBREX/ CELECOXIB REQUIP 

CELECOXIB/CELEBREX REQUIP (RLS)/ROPINIROLE HCL 
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CELEXA REQUIP/REPINIROLE 

CHEMOTHERAPY-TAXOL REYATAZ 

CHLORPHENIRAMINE MALEATE REYATAZ (ATAZANAVIT) 

CHOLESTYR RHYTHMOL 

CIPRO RHYTHMOL 300MG TID 

CIPRO 3/29 -> 4/2/05 RIBAURIN 

CIPROFLOXACIN RIBAVIRIN 

CITALOPRAM RIFAMPIN 

CITALOPRAM HYDROBROMIDE RITALIN 

CLARITHROMYCIN RITONAVIR (NORVIR) 

CLELBREX RYTHMOL 

CLOBETASAL CREAM SANDOSTATIN 

COATED ASPIRIN SERTRALINE 

CONCERTA (PRN) SPIRONALACTONE 

CORTISONE SHOT SPIRONOLACTONE 

CORTIZONE SHOT SPIRONOLACTONE/HCTZ 

CYCLOSPORIN SULFA 

DARVOCET SULFAMETHOXAZOLE 

DARVOCET-N SULINDAC 

DECADRON SUSTIVA 

DEPAKOTE (BIPOLAR) SYNTHROID 

DETROL SYNTHROID/LEVOTHYROXINE 

DETROL-LA SYNTHROID-1 MG. 

DEXAMETHASONE TAXOL 

DEXAMETHASONE/DECADRON TEQUIN/GATIFLOXACIN 

DEXAMETHAZONE TERBINAFINE HCL 

DILANTIN TERBINAFINE/LAMISIL 

DILANTIN/PHENYTOIN TEROZASIN 

DIURETIC LASIX TESTOSTERONE (ANDRODERM PATCH) 

DOXERCALCIFEROL (FOR 

PARATHYROID) 

TESVOSVERONE 

DOXYCYCLINE TETRACYCLINE 

DOXYCYLINE THALIDOMIDE 

ECOTRIN THERAFLU 

EFUDEX TOLTERODINE TARTRATE/DETROL 

ENDOCET TOOK 1ST NAPROSYN-" 

ENDOCET/PERCOCET TOOK 2ND RELAFEN-" 

ENDOCOT (STOOL SOFTENER) TOPAMAX (MIGRANES) 

ENSURE TRAMADOL 

ERYTHROMYCIN TRAMADOL/CENTRAL ANALGESIC 

ERYTHROPOIETIN TRAZAD 

ERYTHROPOIETIN/EPOGEN TRAZADONE 

ERYTHROPOIETIN-EPOGEN TRAZADONE HCL 

ESTRACE TRAZODONE 

ETODOLAC/FOR PAIN TRENTAL 400MG PO TID 

ETOPOSIDE TRIAMCINOLONE 

EXCEDRIN TENSION HEADACHE TRIAMCINOLONE CREAM 
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EXTRA STRENGTH TYLENOL TRIAMCINOTONE CREAM 

FLAGYL TRICOR 

FLAGYL/METRONIDAZOLE TRICOR/FENOFIBBRATE 

FLORAZEMIDE TYLENOL 

FLUDROCORTISONE ACETATE TYLENOL 3 

FLUOXETINE TYLENOL 500 

FLUROSEMIDE TYLENOL COLD 

FLUROSIMIDE TYLENOL COLD & SINUS 

FRESH FROZEN PLASMA TYLENOL PM 

FUOROSEMIDE TYLENOL PM (PRN) 

FUROSEMIDE TYLENOL PRN. 

FUROSEMIDE / DUIRETIC TYLENOL SINUS 

FUROSEMIDE 40MG DAILY TYLENOL W/CODEINE 

FUROSEMIDE/DIURETIC TYLENOL WITH CODEINE 

FUROSEMIDE/DUIRECTIC TYLENOL/CODENE 

FUROSEMIDE/DUIRETIC TYLOX 

FUROSEMIDE/H20 PILL ULTRACET 

FUROSEMIDE/LASIX ULTRACET MCN 2 EVERY 4-6 HR. AS 

NEEDED 

FUROSEMIDE-DUIRETIC ULTRAM 

FUROSIMIDE/H2O PILL VALPROIC ACID 

GATIFLOXACIN VICODAN 

GEMFIBROZIL VIOX 

GENERIC PERCOCET VIOXX 

GLUCOSAMINE/CHONDROITIN VIRACEPT 

H2O PILL - LASIX (GENERIC) VIT C 

H2O PILL-HYDROCHLOROTHIAZIDE VIT E 

H2O PILLS/FUROSEMIDE VITAMIN C 

HALOPERIDOL VITAMIN E 

HCLT VITAMIN K. 

HCT2 VYTORIN 

HCTZ XELODA 

HCTZ (DIURETIC) XELODA (XELODA) 

HCTZ (HYDROCHLOROTHIAZIDE) ZANTAC 

HCTZ/HYDROCHLOROTHIAZIDE ZAROXALYN (METOLAZONE) 

HCTZ/TRIAMTERENE ZITHRO PAC 

HTCL ZITHROMAX 

HTCZ ZITHROMYCIN 

HYDR0CHLOROTHIAZIDE ZOLOFT 

HYDROCHLOROTHIAZIDE ZOLOFT/SERTRALINE 

HYDROCHLOROTHIAZIDE (HCTZ) ZOSYN 

HYDROCHLORTHESIDE/HCTZ ZOSYN ONE DOSE 

HYDROCHLORTHIA ZIOLE Z-PAC 

HYDROCHLORTHIAZIDE Z-PAC/ZITHROMAX 

HYDROCHLORTHIZIDE Z-PACK 

HYDROCHLOTHIAZID Z-PACK ANTIBIOTIC (TOOK 9-23 TO 9-28) 

HYDROCO/APAP Z-PACK-5 DA ONLY 
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HYDROCORTISONE Z-PAK/ZITHROMAX 

HYZAAR ZYRTEC/CETIRIZINE 

IBUPROFEN  
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