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ABSTRACT

LOWER BOUNDS FOR GENERALIZED REGULATORS

James D. Sundstrom

Ted Chinburg

In 1999, Friedman and Skoruppa demonstrated a method to derive lower bounds for the
relative regulator of an extension L/K of number fields. The relative regulator is defined
using the subgroup Ep /i of relative units of L/K. It appears in the theta series GEL/K
associated to Ep g, so an inequality relating ©p, K and @’EL/K provides an inequality for
Reg(L/K). This same technique can be applied to other subgroups E of the units of a
number field L. In this thesis, we consider the case E' = Ey i, N Ef/k,, where K and Ko

are real quadratic fields; the corresponding regulator grows exponentially in [L : Q).
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Chapter 1

Introduction

This thesis demonstrates how a technique of Friedman and Skoruppa [8] can be generalized.
Before proceeding to the generalization, we first review their paper. Friedman and Skoruppa
proved lower bounds for the relative regulator Reg(L/K) associated to an extension L/K
of number fields. The relative regulator was defined by Bergé and Martinet [3], [4], [5] as
follows.

Given a number field K, let O denote the algebraic integers of K, with unit group
O% and roots of unity uxg C OF%. Let Agx be the set of archimedean places of K; for each

v € Ak, let

1 ifvisreal
€y =

2 if v is complex.

Let r1(K) and ro(K) be, respectively, the number of real and complex places of K.
Given an extension of number fields L/K, let Ef, /i denote the group of relative units
of L/K, i.e.,
Epx ={e€ 01 | Np/k(e) € ukt.

1



Note that B g has rank r = rp i = [AL| — |Ak|. Let €1,..., ¢ be fundamental relative
units (free generators for Ey /i modulo torsion). For each w € A, fix some w € Ay, lying
above w. Let A} denote the remaining places of L after each @ is removed from Az. Then

the relative regulator of L/K is defined by

Reg(L/K) = |det(e, log|ejlo) veay,
I<j<r
Costa and Friedman [6] proved that
1 L L
Res (/1) — Reg(L) _ Reg(L)

[O% : e Ny (O7)] Reg(K) — Reg(K)

Hence a lower bound for Reg(L/K) is also a lower bound for Reg(L)/ Reg(K). Furthermore,
Reg(L/Q) = Reg(L); of course, this was already clear from the definition of Reg(L/Q).
Thus a lower bound for relative regulators includes a lower bound for the classical regulator
as a special case.

To any subgroup E of O} , we can associate a theta series O . Let Eio, = E'Npuy, denote
the torsion subgroup of £. Let Fr = E ® R, and fix a Haar measure p on Eg, so that
w(Er/FE) is the volume of any fundamental domain for the action of E on Eg.

There is an embedding of Er into R“fr‘L given by

T = ZGJ ®€] (‘TU)UEAL7 Ty = H|€j‘1€)j- (11)
J

J
For a € L and = € ER, set

lazl® =) eulalia?

veEA]

For any fractional ideal a of L and any t > 0, define

Or(t;a) = HEr/E) + Z/ exp (—catlaz|?) du(x), (1.2)
|Et0r‘ aca/E
a#0



where the sum is taken over a complete set of representatives for the non-zero E-orbits in

a,
- —2/[L:Q]
Cag =T (\/ |disc(L)] NL/Q(a)> :

Friedman and Skoruppa give a proof that ©p is well-defined: it is independent of the
choice of representatives a, and the sum is absolutely convergent. They also observe that

Q2@ (t; a) is an increasing function (Prop. 2.1). Differentiating, it follows that

Ont:a) + [L?Q]t@ﬂg(t; @) > 0. (1.3)

Since the definition of ©f involves u(Egr/FE) as a constant term, this inequality can be
understood as a lower bound for y(Eg/FE). In particular, if we take F' = Ep,/, then it is
fairly natural to normalize pu by u(Egr/E) = Reg(L/K). Thus, by estimating the integrals
in the definition of ©p, we will obtain the desired lower bound for Reg(L/K).

As a first step to understanding these integrals, Friedman and Skoruppa use the Mellin

transform to prove the following (Prop. 3.1).

Proposition 1.1. With notation as above (including E = EL/K),

[ expl-thas|P)dute) = 4 ] fulaw+ lost),

R wEAK

where A = 27"L/K p=2(L)/2

1 c+ioco
fw(y) _ / e—sew[L:K]yr(s)pw—l-qwr(s + %)Qw ds,
C

278 Jo—ioso

Ay = log|N7 /i (@)]w-

2
[L: K]

Here c is any positive number, and p,, and q,, are respectively the number of real and complex

places of L extending w € Ag.



This proposition puts the integrals into a more tractable form; instead of estimating the
original integrals, it suffices to understand f,,. More precisely, setting y = log t, inequality

(1.3) becomes

Reg(L/K) >4 % _1_[L3Q] Z fu law+y)p [ folaw+y), (14)

L aca/Ep i fw weAK
a#0

so we need to estimate f,, and f! /f,. This is accomplished by the saddle-point method.
The saddle point method is summarized below, in a somewhat simplified form. See de

Bruijn [7] for more details. The method applies to a contour integral of the form

/ ef®) dz.
c

We shift the contour C' so that it passes through the saddle point o, the point where
f'(o) = 0. The idea then is that we can replace f with its degree-2 Taylor approximation

at o, so that the integral is approximated by an integral of the form

> 2
/ eafbt dt,
—0o0

which we know how to evaluate. Furthermore, if we want to understand
/ (%) gz as n — 0o,
C

then this approximation gets better as n gets larger, so that we get an excellent description
of the asymptotic behavior of the integral.

Once we have estimates for f,, and f} /f., we can plug them into inequality (1.4) and
we are essentially done. Since inequality (1.4) holds for any y € R, it remains only to choose
a y which gives a good bound. However, our estimates for f,, and f /f, depend on p,, and

qw- We would prefer to have lower bounds for Reg(L/K) that do not require such detailed



information about the places of L. Hence we make some effort to transform the bounds in
terms of the p,, and ¢, into bounds depending only on [L : K] and ri(L).

In short, Friedman and Skoruppa’s method consists of four main steps:

1. Use the Mellin transform to replace the ©f integrals with complex integrals.

2. Use the saddle-point method to estimate the complex integrals.

3. Replace these estimates with estimates that do not depend on the p,, and q,.
4. Plug these estimates into inequality (1.3) to get lower bounds for the regulator.

In this thesis, we apply these methods to a generalized regulator for a number field L
containing two real quadratic fields K; and K. Specifically, we consider the regulator
associated to E' = Ep i, N Er/k,. Chapter 2 defines this regulator. Chapter 3 computes
the necessary inverse Mellin transform; we find that we need to study a triple integral.
Chapters 4-5 carry out step 2. Chapter 4 summarizes some results in single-variable calculus
which will be needed; many of these results are quite similar (or identical) to results from
Friedman and Skoruppa’s original paper. Then Chapter 5 applies these results to study
the relevant triple integrals. Step 3 is done in Chapters 6 and 7. Once again, Chapter 6
provides some simple results, which are applied in Chapter 7. Finally, Chapter 8 completes
the argument, proving that the generalized regulator Regy, r, (L) grows exponentially in
[L: K].

There is a mistake in Friedman and Skoruppa’s proof of their Lemma 5.6. Fortunately,
Lemma 5.6 is used only to prove Lemma 5.8. Appendix A gives a correct proof of Lemma

5.8, so their main results are all correct.



Chapter 2

The (Generalized Regulator

Let K7 and K5 be distinct real quadratic fields, and L a number field containing K := K7 K».
Let m = [L : K] = [L : Q/4. Let Ax, = {w1,w2} and Ak, = {ws,ws} be the sets
of archimedean places of K and Ks. Let Ax = {wi3, w14, wa3, was} denote the set of
archimedean places of K, labeled so that w;; extends w; € Ax, and w; € Ag,. Note that
for any i € {1,2} and j € {3,4},

Z €y = Z ey = 2m, Z €y, = m. (2.1)

vEAL vEAL vEAL
v|w; vlw; v|wg;

For any w € Ak, k,, let p,, and ¢, denote respectively the number of real and complex
places of L extending w, so that p,, + 2¢, = m. Let E; denote the relative units of L/K;,
and define £ = E; N Ey. Let Fio, denote the torsion subgroup of E.

We define a generalized regulator Reg, x,(L) as follows. Let €1,...,¢. (r = |AL| —3)
be free generators of E/Ej,. Let Axk be a set containing any three places of K, and select

one place of L above each place in Ag. Let A’ denote A, with these three places removed.



Define

det (e, log|€jlv) ve 4,
1<j<r

Regk, k,(L) =

Lemma 2.1. Regy, g, (L) is well-defined, i.e., it is independent of the choice of the €; and

of A7 .
Proof. Define X\: O] — RAL by

)‘(6) = (ev IOng)vEAL‘

Define «; € RAL by

ey if v wi,
(ml)v -

0 otherwise.

Define similarly a2 with respect to wo and @3 with respect to ws. Let M denote the matrix
with columns x1, 2, 3, A(€1), ..., A(€). Note that |det(M)]| is the covolume of the lattice
generated by x1, 2, x3, and A\(O}), so it is independent of our choice of the €¢;. Row
operations show that

|det(M)| = |det(M")| Reg, r, (L),

where M’ is the 3 x 3 matrix defined by

M = Z €y

v|w; and v|w; 1<i<3
1<5<3

(The precise row operations to be used depend on Ag, but the result is the same.) Since
|det(M’)| = 4m?, this proves that Regy, f, (L) = ﬁ|det(M)\, so Regg, f, (L) is well-

defined. O



Chapter 3

Theta series

Let E C O7 be as in the previous chapter. Let G = ]Rfr‘L and let H = Rj_‘KlU{wg}. Let pg

denote the natural Haar measure on GG, namely

duc(9) = |1 dov,

vEA] Yo

Define pp similarly. Let p be the Haar measure on Egr, normalized so that

W(ER/E) = RegKl,Kg (L).

Define 6: G — H by 6(9) = (hw)weAx, Ufws}> Where

hw - nge)v'

v|w
Using the embedding Eg — G from (1.1), we get an exact sequence 1 — EFg — G — H — 1.
Let 0: H — G be a section of §. (We will choose a particular section o below.) Define

an isomorphism ¢: Egr x H — G by ¢(x,h) = zo(h).

Lemma 3.1. 220 c0¢ = 1 x g



Proof. Since pugo ¢ is a Haar measure on Er X H, we know that cugo¢ = pu x pg for some
constant c. Consider Eg, G, H, and R as real vector spaces. Choose any v1s, va3,v14 € AL

such that v;; extends w; and w;. Define g13, 923, g14 € G by

exp(1/ey,) if v = vy,
(gij)v =

1 otherwise.

Then 6(g13),9(g23),0(g14) is a basis for H, so we can define the section o: H — G by
6(9ij) = 9ij-

As before, let €1,..., € be a Z-basis for E/FE,. Then the 2; = ¢; ® 1 form an R-basis
of Fr. Extend this to a basis for G by adjoining the three vectors g;;. It follows that

cpg([z1, ..., 2r, 913, 923, 914)) = p([21, ..., 2p]) - pE([0(913), 6(g23), 6(g14)]),

where [...] denotes convex hull. We have u([z1,...,2,]) = Regg, g, (L) by the normaliza-
tion of p. The convex hull of the §(g;;) is the “unit cube,” so it has volume 1. It is easily

seen that pg([z1,..., T, 913, g23, g14]) = 2772V Regg, r,(L). Hence c = ora(L), O

For a fractional ideal a of L and ¢ > 0, recall the theta series Og(¢; a) defined in (1.2).
We will use the Mellin transform to study this function. First, we define some notation.

For any z € C with Re(z) > 0 and any & € [0, 1], set
a(z) = klogT(2) + (1 — k) log (2 + 1).
For i € {1,2} and j € {3,4}, let
kij = 1 (Pwi; + Gui;)- (3.1)
Given s = (s1, 89,53) € C3, define

S$13 =81+ 83, S23 =S2+ 83, S14=S1, S24= S2.



Let R denote the region

R = {s € C*| all Re(s;;) > 0}.

For a given R = (K13, K14, K23, K24), we define a function az: R — C by

ag(s) = Z Qi (i) (3.2)
i€{1,2}
je{3.4}

Let a denote aj, where k= (k13, k14, ko3, ko4) as in (3.1).

For g € G, set

lgl* = " eugd

vEAL

and

W(g) = / exp(—lgzl|?) dyu(z).

Egr

We want to evaluate ¥(g); since ¥(g) depends only on g modulo Eg, it suffices to consider

1 = Woo. Now we compute the Mellin transform of :

(M)(s) = (M) (51.52,50) = [ (oW dun (0

H

-[ ([ exp(far () (o)) 1 ()

= / exp(—|é(x, h)|[*)8(d(x, h))* (dp x dugr)(w, h)
ErxH

— () /G exp(—gl|?)6(9)* duc(g).

Next observe that

S1 S 83

2
5(g) = [ o5 IT o | = 11 II9

v|wy v|wa v|ws 1€{1,2} v|w;;
Je{3.4}

10



It follows that

()(s) =220 [ expi=ll?) [T T o ducy

1€{1,2} v|w;;

je{3,4}
- dgy
— ora(L H H / ey gv evs“
i€{1,2} v|w;; v
je{3,4}
= QTQ(L)fLAL‘ H P (%)pw” (2 SZJ]__‘( ))qwlj
ie{1,2}
Jje{3,4}
_ 2_‘.AL|71——T2 H r < )pw1J+Qw” r (82]2_'_1>wa
i€{1,2}
je{34}

= 9 el (D2 exp(mal(Ls),

where we have used the identity 27°I'(s) = (2/7) " 'T(£)I'(23h).

Setting h = §(g) and taking an inverse Mellin transform,

(g) =v(h)
2 ‘AL‘T(-—TQ(L)/Q ct+ico  petioco c+zoo X
81 —821,—S
B 27['1 /C /c /; hwz hw33 exp(ma(ﬁs)) ds1 dso dss
23 |.AL|7T—T‘2 L)/2 ct+ico  petico c+zoo 2
S17,—2827 —2s3
N (27i)3 /C /C /c Py " hayy ™ exp(ma(s)) ds1 dsz dss.

Given a € L* and t > 0, define g € G by g, = V/t|al,. Then for any = € Eg, t|az||® = ||g=||?,

SO

W(g) = [ exp (~tloal?) di(a)

Eg

is the integral that appears in Og. For w € Ay,

hy = Hgf}” = Hte”ﬂ’aﬁ” =t"|Np /K, (a)]w-

vlw v|w

Let A = 23~ Melz—2(L)/2 and let a,, = % log|Ny,/k,(a)|w. For any y € R, define

9ya(8) = =2(aw, +y)s1 = 2(aw, +y)s2 = 2(awy +y)s3 + a(s)

11



and
c+io0o c+io00 c+1i00
f(y,a) 2m /c /C /C exp(mgy.q(s)) ds1 dss dss.

The preceding work shows that U(g) = Af(logt,a). Hence

. WER/E) 3
®E(tﬂ a) - |Etor| + A ‘ /Ef 10g Cﬂt) )
aca
a#0

Inequality (1.3) says that Og(t;a) + ﬁt@b(zﬁ; a) > 0. Plugging in the above formula, and

choosing t so that y = log(cqt), this proves that for any y € R,

w(ER/E) 1/ )
Bl >A@§%(:1— wEwa) o). (33)
a#0

Next we want to choose y such that —fTI(y, a) > 2m for all a. Then we can drop terms

for a # 1 to conclude that

w(Ex/E) Ly
) s a (1 D)) s (3.0

This is done by the saddle-point method. In order to apply the saddle-point method,
we first need to know that there is a saddle point. That is, we would like to find a point
(s1, 82, 83) where

agy,a agy a 8gy,a

681 - 882 - (983 =0

This means we need to solve

awl + y = %04613 (81 + 83) + %a;€14 (81)7
1 7 1./
aw2 + y - fak23 (82 + 83) + iak24 (82)7

1

Ows +Y = 504213(51 +s3) + %012;23(52 + 53).

Note that for any k € (0,1], o}.: (0,00) — R is strictly increasing and surjective.

12



Lemma 3.2. This system has a unique solution in R NR3.

Proof. The given system of equations is equivalent to

%a;€24 (32) = Qu, + Awy — Qs + Y- %a;€14 <81)7 (35)
%O‘;ezg (52 + 53) = Quz — Gy + %a§fl4 (51)’ (3'6)
%a;ﬂg (81 + 83) = a'u)l + y - %06214 (81)' (37)

Note that equation (3.5) determines sy > 0 as a strictly decreasing function of s; > 0,
and equation (3.6) determines sy + s3 > 0 as a strictly increasing function of s; > 0.
Therefore these two equations determine s3 as a strictly increasing function of s;. Under
this correspondence, s3 — 0o as s;1 — co. On the other hand, equation (3.7) determines s3
as a strictly decreasing function of s;. Under this correspondence, s3 — oo as s; — 0. Now
we have two functions s; — s3, and the solutions of the system correspond to choices of s;
at which these functions are equal. It follows from what we have said that there is exactly

one solution. O

13



Chapter 4

Single-variable calculus

Before proceeding to the triple-integral estimates we need, we record some single-variable
lemmas which will be useful. Throughout this chapter, we assume % <k <1,m>Q0,

and o > 0 (sometimes adding an additional assumption on m where helpful). Recall the

formula [1], 6.4.10: for n > 1 and Re(s) > 0,

V) e 1 r
k= 0
Lemma 4.1. If mk > 4, then
Vo%all(o) 0%l (0)
1.25mk o]/2 \/> and 1.25mk[o]/2 <2

If mk > 30, then

VPG g

(gg)mn a]/2

Proof. The first inequality is given in the proof of Friedman and Skoruppa’s Lemma 5.5;

as the other inequalities are proven in the same way, the proof is repeated here. Note that

o?a(0) < *W' (o) < 1+,

K

14



where the last inequality follows from estimating the sum (4.1) by an integral. Thus we
need to show that /T + o/1.25™1/2 < \/2. We see that /1 + ¢/1.25™1°1/2 is maximized

as ¢ — 17, because 1.25% > /3/2. O

Lemma 4.2. Let € be 0 or 1. Suppose u > 0 and mk > 2. Then

‘teema(a+it)| dt < . ,
. (mlﬁl _ 2)(1 + %)mﬁ[a]/?(l + u?)mn/Q

/oo ema(a)a.l—i-eue—l(l + u2)
w

where [o] denotes the greatest integer less than or equal to o.

Proof. This is Friedman and Skoruppa’s Lemma 5.3. 0

Lemma 4.3. Let D be given with 0 < D < m1/3\/E and assume that mk > 2. Define
§ = D/(m'3\/a"(5)). Then

K

/ (i) gy < v%em“(“)( 2820 \/mail(o) 23/2exp<—m1/3D2/4>>
[t|>6 N

ma' (o) \ V/T(mk — 2)1.25mkl01/29ms/2 VTmt/6D
9e—m'/3D?/2

(& —_—
/t|>5 ~ m2B3D\/al(o)

where [o] denotes the greatest integer less than or equal to o.

Proof. These inequalities can be found in Friedman and Skoruppa (see their proof of Lemma

5.4). O

Lemma 4.4. Suppose mk > 2. Then for any 0 < D < m1/3\/E,
> ’eman(aJrit)’ dt < \/ﬂemo"f(o) 1 23/20'\/W
V7 (mek — 2)1.25m#lol/29me/2

—o0 mai(o)
2%/2 exp(—m!/3D?/4) ~P'/(m'Pm) 1 3
VTml/6D * D4/(4m'/3K) 4mk |’

where [o] again denotes the greatest integer less than or equal to o. If m > 1000, then
/ | eman(o+in)| g < 2me™ ) 00205
e'nen — 1. .

—o0 Vmall (o)

15



Proof. The first claim essentially comes from Lemma 5.4 of Friedman and Skoruppa, which

estimates

/oo em(a,{(oJr'it)fiyt) dt

for y = a/.(0). However, that lemma has two extra terms which are not needed here.
Friedman and Skoruppa bound the integral over |t| > § := D/(m'/3\/a!(c)) by replacing
emlan(otit)=iyl) with |emas(o+it)| 5o that part of the argument works in this case without
any change. That is,

ma (o)

/ emase+io)| gr < 2me 93/25.\ /mal (o) 93/2 oxp(—m1/3 D2 /4) |
|t|>6 ~ /ma(o) \ V7(mk — 2)1.25mkl0]/29ms/2 J/aml/6D

Next, we have

0 ; 0 1 " 2 0 : 1 " 2
/ lema,«u(a+zt)—ma,€(a)| dt = / e—ima,{(a)t dt + / (‘emoz,g(a—i-zt)—ma,ﬁ(a)’ - e—gman(a)t )dt
_5 —0

-4
0
< V 2/7/1'( ) +/ (‘emaﬂ(aJrit)fma,@(a)’ _ e*%mag(g)ﬁ) dt.
ma!l (o -5
Note that
‘eman(a+it)fema*€(")‘ _ ef%mozf{/(o')z‘/2 _ (emRe(p(t)) _ 1)67%7710/,;(0)97

where p(t) = a,(o + it) — iyt + 2o/l (0)t?. Therefore we can bound the last integral in the
—Lmal(o)t?

same way that Friedman and Skoruppa bounded the integral of (emp(t) —1)e 2 ,

except that we do not get a term coming from Im(p). We conclude that

2

) vma! (o) D4/(4m1/3K) 4mk’

Now suppose m > 1000. Then

2320\ /ma’ () 4 Vvmk/2 mk  y/o2dl(o) - 10776 (4.2)

’ D4 /(4am1/3k
/ (‘emoe,.;(a-kit)—mam(a)‘ . e—lmag(a)ﬁ) gt < \/ﬂ e /( ) _ 1 3

V(me — 2)1.25mkl01/29me/2 " 3/2, /. 9me/2 kg — 2 1.25mklo]/2 m

16



bounds for the first three terms are obvious, and the last term is addressed by Lemma 4.1.

Thus

/OO ‘eman(a'-‘rit)‘ b < M 1 10_76+23/2 exp(_m1/3D2/4)+€D4/(2m1/3) _1 i
—o0 ma (o) m VTmi/6D D4/(2mY/3) 2m |

Set D = 1.76. The quantity in parentheses is decreasing in m for m > 0, so the claimed

bound follows by plugging in m = 1000. 0

Lemma 4.5. Suppose m > 1000. Let 0 < D < m1/3\/E be given, and again set § =

D/(m'/3\/a/(c)). Then

K

/ |emen(otit)| gy < Vamemas(o) 1 (10-70 4 23/2m5/6 exp(—m!/3D? /4)
|t|>6 mall(o) m V/TD '

Proof. This is immediate from Lemma 4.3 and inequality (4.2). O
Lemma 4.6. Let C > 0 be given. Then

* o —1/2 X o | * o3 |
e dt = /mC~/2, e “tdt = -C*, e Y dt = —C .
—0o0 0 2 0 2

Proof. Make the substitution u = Ct?. For any n > 0, we have

/oo e_c,tgtn g — /oo e_u(u/c)(n—i—l)/Z dj _ lr(%ﬂ)c—(nﬁ-l)/Q n
0 0 20 2

Lemma 4.7. Let any 0 >0 and 0 < k <1 be given. Define p = pro: R — C by
p(t) = ax(o +it) — ax(o) —ial (o)t + %ag(a)tQ;
i.e., p is the error in the degree-2 Taylor approximation to a(o +it). Then for any t € R,

oo (o
_ Hgl( )|t|3, [Re(p(t))| < ( )t4. (4.3)

[T (p())| <

If |t| < o, then

0 < Re(p(t)) < MR; (4.4)

- 4

17



. ag
if [t < ENGL then

0 <Re(p(t)) < ag(a)tz'

-T2
Furthermore, Im(ay (o + it)) is odd and Re(a. (o + it)) is even as a function of t. Thus

Im(p(t)) is an odd function and Re(p(t)) is an even function.

Proof. The odd/even statement is proven by Friedman and Skoruppa, as well as the fact
that Re(p(t)) > 0 for |t| < 0. See the proof of their Lemma 5.1.

From (4.1), we know that \oz,(f) (o +it)| and |a,g4) (o +it)| (considered as functions of t)

are both maximized at ¢ = 0, with o) (0) < 0 and o (o) > 0. Now apply the Taylor

remainder theorem to Im(a, (o + it)): since

3

g Im(ax(o +it)) = —i Im(a® (o + it)),

we see that for any ¢ € R, there exists 6; between 0 and ¢ such that

—ilm( (o +i6) 5| __ar’(0)
3! = 3

Im(a (o +it))| = It]3.

This proves (4.3) for the imaginary part; the proof for the real part is identical.

For any ¢ > 0, (4.1) shows that

1 ~ ¥(0)
(c+k)?2 4

NE

2y(3) 1 2 1
Ui@:,zai<,
4! 4= (o +k)t T4

i
o

0
It follows that o2al’ (0)/4! < &ll(0)/4. Thus for [t| < o,
2. (4

() 4 _ o?al(0) p _ alllo)
4! - 4! - 4 ’

[Re(p(t))] <

The same argument works for |t| < 375" O]

g

Lemma 4.8. Let R > 0 be given. Then for any 0 < u < R and any v € R, we have

R—l 2

R T

IRe(e" — 1)| < uS
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Proof. This is inequality (5.11) from Friedman and Skoruppa. O

Lemma 4.9. For m > 1000,

/ |t€man(a+it)| dt < 000025570’6ma“(0)
1>

- m/2 o (o)

Proof. By Lemma 4.2,

00 19 2 _mak(o)
. g-e
|teman(a+zt)| dt S 2 . 1873 — 9 —
/f (mr — 2) ()72 (1g)mer?

19 vm  Jo2dl(o)  oemes(o)
_9(5—%) (%)mR/Q (%)mn[o]/Z mg/Qm.

We have /m/(19/18)™%/2 < \/m/(19/18)™/* < 1/1000/(19/18)'909/4 < 0.0000853. Com-

bining this with Lemma 4.1, we conclude that

00 . 19 mou (o)
/ jtemeOHD| g <« — = .0.0000853 - /2 - —

= 9(3 — 1o00) m3/2\/ajl(0)

0.0002557ge™max (o)

O
w32/ ag(o)
Lemma 4.10. For m > 1000,
/ emen(oit)| gy < 0.00003429¢™x(7)
1> 572 my/ /(o)
Proof. The argument is the same as the proof of Lemma 4.9; by Lemma 4.2,
@) [ |emanto+in o
—mo (o maoy (o4t < 9. 6
¢ /f <2 e e
_ 19v2 1 o2aj(o) 1
3(/-; _ %) (%)m/{/Q (%)mn[o’]/? m OKZ(U)
19+/2 1 1
< 21 \[2 " (19\1000/4 V2 7
3(2 ~ wo0) (18) my/ajl(o)
0.00003429
— O
m/all(o)
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Lemma 4.11. For any m > 0,

L\/» ) Bemocn(a)
/3 2 ’tema,ﬁ(a+zt)| dt < 35 ; )
_ﬁ mall (o)

Proof. Lemma 4.7 shows that, for |t| < o/(3v/2),

may (o+it) ’ <

mou (o) —mall (0)t? /2+mall(o)t? /72 _ ema,@(a)—(35/72)maf{’(a)t2.

e e

Hence

_o_ 00 72 ;mau (o)
/3\/5 |teman(a+it)‘ dt < 2/ tema,i(o')f(35/72)ma;’(o')t2 di = 35¢ - ) ]
g 0 ma){(a)

T3V2

Lemma 4.12. For any o > 0, 0/1’/2(0/\/5) > aff (o) = V(o).
Proof. The duplication formula for ¥ ([1], 6.3.8) says that
0/1/2(0) = %\I’(O') + %‘I’(O‘ + %) = U (20) — log 2.

Differentiating, o/l’/Q(a) = 20/(20). Thus we want to prove that 2U'(v/20) > ¥/(o). Esti-

mating the sum (4.1) by integrals, we find that

1 1 1 1 1

—t —— <V < — .
O'2+(O'+1) (o) 02+(a—|—1)2+a+1

Hence

2W(V20) - W) > 2 (g + )~ (Gt ot )

(V20 +1) o2 (c+1)2 o+1
2-v2)0? + (3— 2V2)0
(c+1)2(V20 +1)
> 0. O
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Chapter 5

Estimation of f and f'/f

Let m > 0 be given. (We will primarily be interested in m > 1000, but we will note which
lemmas hold for all m > 0 and which require m > 1000.) Let % < k;; < 1 be given for
i €{1,2} and j € {3,4}, and let a = aj as in (3.2). Also let 7 = (y1,y2,y3) € R® be given.

For s = (s1,s2,53) € R, define

and

G(s) = exp(mg(s)).

For a given a € L* and y € R, if we take ¥ = (2(aw, + ¥), 2(@w, + ¥), 2(aw; + vy)), then

g = gya- Let & = (01,09,03) be the unique point in R N R3 at which

d9 _ 09 _ 09 _,
351_882_883_ ’

o exists by Lemma 3.2. Recall that we are interested in

f 1 /01—4—1'00 /crz—l—z'oo /03+ioo G( ) e den d 1 /oo /oo /oo G( —») b b d
= — S)ds3dss ds] = —— o+it) dts dto dty.
(27”)3 o1 —100 09 —100 03—100 (27T)3 —o0 J —00 J—0
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To simplify notation, define A;; = a%ij(aij) and II;; = A13A23A14A24/A;j. Let Amin =
min(A;;), and let o = max(Il;;) = Ai13A23A414A24/Amin. (Without loss of generality,
we will assume that Ags = Anin and Aoy < Aj3 wherever this helps.l) Define P =
I3 4 o3 + 1114 + [Doy; ie., P = P3(Ai3, A14, A2s, Aaq), where Py is the degree-3 elementary
symmetric polynomial.

Define

H(f) = exp(m(g(f?)— > At/ 2)>
i€{1,2}
je{34}

=G(d exp( Z A%ng )

1€{1,2}
je{3.4}

The idea is that H(f) is a good approximation to G(& + if); we obtain H(f) from G(s) =
exp(mg(s)) by replacing each ay,.(sij) in g(s) = =7+ s + > ag,;;(si;) with its degree-two
Taylor approximation (as a function of ¢;;). The fact that & is a critical point ensures that

the linear terms cancel. The main term in our estimate for f comes from integrating H:
Lemma 5.1. We have

%) 00 o0 . B (271_)3/2(;(5:)
/oo/oo/ooH(t)dtSdthtlm?’/z\/ﬁ .

Proof. 1t is well-known (see, e.g., [7], page 71) that if A = (a;;) is an n x n positive-definite

symmetric matrix, then

/ exp(—4 3 ai; T;T;) dT = (2m)™/2 det(A)~Y/2.
TeR"

'Note that the only relation among t13, t14, t23, and taq is t13 + t2a = t14 + t23. Since this is symmetric,
we are free to choose any A;; as Amin. After choosing A2z = Amin, we are still free to swap A3 and Aay if

necessary.
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In this case,

A3+ A1 0 A1z
det(A) = m? det 0 Aoz + Aoy Aoz = m3P. O
Ay A3 Az + Ao

As a simple consequence of this lemma, we can evaluate some other integrals which will

be useful later:

Lemma 5.2. Let any i € {1,2} and j € {3,4}be given. Then

o oo poo 2m)32G(5) 3
H(f)t}, (
/_OO /_Oo /_OO (t)tw dt3 dto dt; < m3/2\/ﬁ m2A?j

and

(2m)3/2G(5) 15
H(E)tS; dt dty dt .
/ / / 3 =T s mAY,

Proof. First observe that

H(t dt dtodt; = —— H ) dts dta dt
/oo/oo/oo ( s maAz]/ / / so e

2 9 (2m)G(3)
m 6AU m3/2\/7
B (2m)3/2G(5) OP
B m5/2P3/2 8142] '

Note that 0P/0A;; does not depend on A;j;; for example, 0P/0A 13 = A14A23 + A14A2 +

A23A24 . Hence

H(t tdtdtdt——— H t-dtdtdt
/_oo/_oo/_oo ()t dts dt dia maAw/ / / s

2 9 ((27r)3/2a(a) ap)

m 814” m5/2P3/2 GAU

B 3(27r)3/2c;(5) oP \?
N m7/2P5/2 8Alj ’
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so the first claim will follow once we check that

OP/0A;; 1
—5 < A, (5.1)
This is obvious; for example,
opP
A138T13 = A13A14A23 + A13A14A24 + A13A23A24 < P.
The second claim is proven identically:
e e 2 9 (2m)32G(3) [ OP \?
H(T - _Z
[ moa =2 0 (3 e (o
B 15(2@3/20(5) OP \?
N m9/2P7/2 8AU
3/201( 7
(2m)°/“G(d) 15 -

m3/2\/P m3A§’j'
As in Lemma 4.5, choose D such that 0 < D < 10001/3/\/5. (This ensures D <

m!/3, /ki; for all i, when m > 1000.) Define

D

i\ /Ay

Let A C R3 denote the set
{(t1,t2,t3) € R | |t1a] < 014, [toa| < o4, [t13] < 513}

Recall that we want to prove that the integrals of G and H have the same asymptotic
behavior. We will do so by showing that H is a good approximation to G inside of A, and

that the contributions to the integrals outside of A are (asymptotically) negligible.

Lemma 5.3. Suppose m > 1000. Then

(271')3/2G( 7)1 o 232mP/0 exp(—m1/3D? /4)
T)| dts dty dt —-3.013 { 10 .
///]R3\A U+Z ‘ 3dt2dhn < m3/2\/ IIo3 m + ﬁD
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Proof. Recall that
IT(c +1it)| <T'(0) for any 0 > 0 and ¢t € R. (5.2)
Hence for any s € R with Re(s23) = 023, we have
(G(s)] < 272 [exp(m(=F - 5 + akyy (513) + Qkyy(514) + Qry(520)))]. (5.3)

We can bound the triple integral of the right-hand side by splitting it into three single
integrals. (We will use this strategy several more times in this chapter.) In order to do
so, we will need to change variables from (t1,t2,t3) to (t14,t24,t13), so that the right-hand

side of (5.3) becomes a product of three single-variable functions. The change-of-variable

matrix
1 0 0
010
1 01

has determinant 1, so the substitution does not introduce a Jacobian factor. Using Lemmas

4.4 and 4.5 to bound the resulting single integrals, we find that

/ / / O‘ + ’Lt | dtg dtg dtl
[t14]>014

CrRGE) 1 00052 (10—76 | 2w exp(-m!PD?) 4)> .

m3/2 Ilog m ﬁD
We get the same bound for f f\t24\>624 foooo and for f f f|t13|>5 ., Note that 3 -

1.002052 < 3.013. 0O

Lemma 5.4. We have

. (2) /2G \/>m5/6 —m1/3D2/2
H(t) dtsdto dt; <
//]R3\A (£) di dt diy m3/2vH23 m
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Proof. Arguing as in the proof of Lemma 5.3, Lemmas 4.3 and 4.6 show that

0o oo 2e—m/*D?/2 \/7\/7
H(t)dtsdta dt; < G(&
/|;14>614 /—oo /;oo ( ) s = ( ) (mQ/SD\/E mAsgg | mA3

(27T 3/2G \/>m5/6 —m1/3D2/2
B m3/2\/1_[23 m ™

We get the same bound for [%_ f| o[> 6s [ and for [ [70 f| t1s|>61- Lhe result follows.

O
Define p13(t) as in Lemma 4.7, i.e.,
p13(t) = gy (013 + it) — gy (013) — i, (013)t + 307, (013)t%;
define po3, p14, and poy similarly. Then define
p(f) = Z Pij (t )
i€{1,2}
je{34}
so that
G(& +if) — H(F) = H(E)(emD — 1),
Lemma 5.5. For anyt € R3,
/3
Im(p@)] < %5 > A el (5.4)
1€{1,2}
Je{3:4}
IRe(p Z A%t (5.5)
16{1 2}
je{3.4}

Furthermore, if t € A and Az = Apin, then [Re(p(f))| < 42D*m~4/3.

Proof. By Lemma 4.7,

o 1
Im(p(®)] < 5 > oy (ou) il
1€{1,2}
Je{3.4}
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o 1
Re(p@)] < 57 D o (o)t
1€{1,2}
Je{3.4}

Friedman and Skoruppa proved (Lemma 5.2) that for any integer n > 2, any 0 < k < 1,

and any o > 0,

o (o)) _ (n=1)!.
(af(o) = 51

thus the previous inequalities and k;; > 3 imply inequalities (5.4) and (5.5).

When f € A,

D 1 pt
Alstly < Afyls = Al < >

ml/3 /A13 -

T mA/3?
and similarly for A%,t}, and A3,t3,. By Jensen’s inequality, we know that for any n > 1
and any z,y, z € R,

o+ y + 2" <3l + yl” + 12",

In particular,
ths = (tiz — t1a +tas)" < 27(t5 + t1y + t5).
For Ay3 = Amin and € A, it follows that
ABgtyy < 27[ATythy + AQytly + A34t5,) < 81D*m ™73,
Then inequality (5.5) says that [Re(p(f))| < 42D*m /3. O

It follows from Lemma 4.7 that Re(p) is an even function and Im(p) is an odd function,

in the sense that

Re(p(tl, tQ, tg)) = Re(p(—tl, —tQ, —tg)).
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Thus H(7) Im(e™*® — 1) = H(T)emRe®) sin(m Im(p(T))) is odd, so

///A(G(&Jr it) — H(%)) dt3 dta dt; = // H(z’)<emp(i> — 1) dty dty dty

// H (%) Re(e™D — 1) dty dts dt,.

Now we use this fact to bound the integral.

Lemma 5.6. Assume Asz = Apin. Then

‘///A(G(E +it) — H(T)) dts dta dt;| <

where R = 42D*m~1/3,

(2m)%2G(5) 1 GeR—l 80
m3/2\/P m ’

Proof. By Lemmas 5.5 and 4.8,

’/ / /A(G(E +it) — H(T)) dts dta dty

= / / H(F)Re(e™?D) — 1) dts dt, dty

S eft—1 ()2
t t dts dto dt
/// ( R + 5 > 3 dto dty,

where
- 1

u(t) = B m(Alstls + Adstss + ALgtly + A34t54),

V2 432

v(f) = ?m(

3/2 3/2

|t13]® + A5 [tas]® + AY) [tral® + A§£2|t24|3)-

It follows from Lemma 5.2 that

///Hfz

By Jensen’s inequality,

—1 21)3/2G (5 R_1
Cltg dto dt; < ( 7[') G(U) . Ee .

m3/2\/ﬁ m R

v(f)?

5 m?(Adgtls + A3, + AlstSs + A3t5,).

<

O

Hence Lemma 5.2 shows that
% oo oo (t)? (2m)%2G(3) 80/3
H(t) . .
—00 J—00 J —0c0 m3/2 VP m
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Lemma 5.7. Suppose m > 1000. Then

1 o [foo e - G (%)
= — o t)dts dto dt; = 1
f (271')3 /oo /oo /oo G(U—i_l ) s (277)3/2m3/2\/P( +30)7
where
378.1
ol < ——.
m

Proof. Without loss of generality, assume Aoz = Amin- We split up the integral as

o= flfc flf,ne fff e m

Then Lemma 5.1 gives the main term in the estimate, and Lemmas 5.3, 5.4, and 5.6 provide

the error terms. We get

P 93/2,,5/6 exp(—ml/3D2/4) \/§m5/66—m1/3p2/2
— [ 3.013( 1077¢ 31/ =
m|¢\<\/H23( (107 i )+ 2 .

e2Dim P 80
42Dim~13 3"

6

Since P/Tly3 = P/l ax < 4, we have

93/2,,5/6 exp(—m1/3D2/4) \/§m5/6€m1/31)2/2
2 (3.013( 1076 34/ =
m|e| < (30 3(0 + D )—I— - D +

6€42D4m*1/3 -1 N @
42D4m~1/3 3’

(5.6)

Set D = 1.01; note that D < 1000*/3 /v/2, so this choice is valid. A simple derivative check
shows that the right-hand side of (5.6) is decreasing for m > 1000. Plugging in m = 1000

yields |¢| < 378.1/m. O

Next we need to estimate f'/f, where f' = df/dy is given by

1 00 poo oo
/ / / —2m(81 + So + Sg)G(S) dts dto dty
(27T)3 —00 J—00 J —00

2’ oo o0 o =
:_2m(al+02+ag)f—(;:;3/ / / (t1 + to + t3)G(G + iF) dts dt2 dt,.

f =
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We want to show that

——=— = (01 + 02 + 03) as m — 0o,

2m f

so we need to find an upper bound for the error term

1 . 0o 0o oo . .
_ZmJch — (01 + 02 +03) = (27:)3]0/ / / (t1 +t2 +t3)G(F +it) dtz dta dty. (5.7)

Before attempting to bound the integral, we will need a few more lemmas.

Lemma 5.8. Let ig,i1 € {1,2} and jo,j1 € {3,4} be given such that A;yj, < A;j,. Then

Tigjo > Ji1j1/ﬂ'

Proof. Recall that /(o) is increasing in x and decreasing in o. We have
o 1o (Tinjo) < Aigjo < Airiy < A (0iy,) < & o(0iy 4y /V2)
1/2\% 2070/ = ‘1030 = “Hg1 = Y1\Yug1 1/2\%11n )

where we have used Lemma 4.12 for the last inequality. It follows that oy, > 04,5, /V2, as

claimed. ]

Corollary 5.9. For any i € {1,2} and j € {3,4},

Tis
01+ 02+ 03

If Aoz < Ay, then

S U SO
01+ 09+ 03

Similarly, if Aoy < Aqs, then

S N SN
o1+ 02+ 03
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Proof. The first claim follows from o1 + 02 + 03 = 013 + 024 = 014 + 023. The last two

claims are proven identically; we prove the first:

1 1
014 __ 014 _ 9 _ /. O

o <73 =
ortortos optou EH+l o 541

Corollary 5.10. Assume Agz < Ajy and Azqg < Aiz. Then for any i € {1,2} and j €

{37 4}7

1 (2V2—-2)(o1+02+03) ifi=1,

\/5(01—!-02—1—03) ifi=2.

Proof. 1t follows from (4.1) that for any o > 0 and any 3 < k < 1, 0%ajl(0) > ko?¥/(0) > k.

Thus
1 1 _ 1 Oij < 1 Oij < \/5 Oij '
1/Aij 01+ 092 + 03 azzja%ij(gij)al—i—ag—l—ag «/kz‘j 01+ 092 + 03 01+ 09+ 03
Now use the previous lemma. O
Define

7 3
N =A{t e R | [twz| < 75 [tral < ZH5, [aa] < 28}
We will split the integral (5.7) into an integral over ¥ and an integral over R3\ X.

Lemma 5.11. Assume that Asz = Apin and Asy < Ay3. Then, for m > 1000,

|/// (t1 + to + t3)G(G + it ) dt3 dto dty
R3\Z

Proof. Note that t1 4+ to 4+ t3 = t13 + to4, so we consider separately the integrals

/// tlgG(E + ZZ) dts dto dt and /// t24G(5 + zf) dts dto dtq,
R3\E R3S

(2m)*%G()

0.0008
m3/2\/P '

< (01 + 02+ 03)
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starting with the ¢13 integral. As in the proof of Lemma 5.3, we can bound this integral by
splitting it into a product of three single integrals. By Lemmas 4.9 and 4.4, the integral

over the region |ti3| > ;—\1/% is bounded above by

). 0-000255701 5™ 13 (713) 1.00205/2me™ k24 (724) 1,00205/2me™ k14 (714)
m3/2\/ A3 VmAgy VmAiy 7

em(ozk23 (023

which gives an upper bound of

0.002015G(5)
mb/2\/A13A24A14

Similarly, Lemmas 4.11, 4.10, and 4.4 show that the integral over the region |t13] < 3"%,

|toa| > % is bounded above by

oy (023) =5 Z2eM13(713) 0.00003429¢M 24 (724) 1.00205 27rem°‘k14(‘714)’
mA13 ma/ A24 vV mA14

which gives an upper bound of
0.0002G(5)

m5/2\/ A%3A24A14 .

Therefore

- G () 0.0004
t13G t)dtsdta dt1| < 0.002 — . 9.8
|///R3\E 13G(G + it) db dby diy md/2\/A13A24A14 ( o1 VA3 > (58)

Corollary 5.9 says that

0.002013 < 0.002(2 — v/2)(01 4 03 + 03) < 0.002(01 4 09 + 03).

Corollary 5.10 shows that

0.0004

< 0.0004(2v2 — 2)(01 + 02 + 03) < 0.0004(01 + 09 + 03).
V A13
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Since A23 = Aminv we have A13A24A14 = Hmax > P/4. Thus

G(&)(Ul + o9 + (73)
mb/2\/A13A24 414
G(&)(Ul + 09 + 03) . 0.0048
- m3/2\/P m
_ (27)3/2G(&) (01 + 02 + 3) 0.0004
m3/2\/P m

| / / / t13G(G + iT) dts dty dty | < (0.002 + 0.0004)
R3\2

Now we use the same method to bound the 94 integral. The argument used to prove

(5.8) works equally well in this case; that is,

elta) 0.0004
tosG t) dts dts dt 0.0020
‘///R?’\Z 20G(G + i) dtg diz dt m5/2vA13A24A14 ( ot VA2 >

Corollaries 5.9 and 5.10 show that

0.002094 < 0.002(0’1 + 09 + 03),

0.0004
< 0.0004v2(01 + 09 + 03) < 0.0006(01 + 09 + 03).
Since (27)~3/2 - 2(0.002 + 0.0006) < 0.0004, this proves that
27)3/2 .0004
/// t24G(O' + Zt) dtg dtg dtl ( 7'(') G( )(01 tort 0-3) . 0.000 . L]
R3\3 m3/2y/P m

It remains to consider the integral over Y. The following lemma describes the behavior

of the integrand for £ € X.

Lemma 5.12. Assume Ags = Apin. Lett € ¥ be given. Then

1!
oy (023)
|Re(pa3(t23))] < 7234 t33,

and for (i,7) # (2,3), we have



Proof. 1t follows from Lemma 5.8 that |te3| < oo3:
[taz| = |t13 + toa — t1a| < |tas| + [toa] + [tia] < 35 3 ( + =+ —=
Now use Lemma 4.7. O

Recall that Re(p) is an even function and Im(p) is an odd function, so

/// (t1 + to + t3)G(G + it ) dt3 dto dt;
P
B / / / (t1 + to + t3) H(D)e™ D dts dty dty

/ / / b+ o + ts) H (E)e™ B0 [cos(m(Im(p))) + i sin(m Im(p))] dts dts dtx

i / / / b+t + 1) H(T)e™ R0 sin(m Tm(p)) dts dts i (5.9)

By Lemma 5.5,

jsin(m Im(p(F))] < [m Im(p(F sf > ALl

1€{1,2}
je{3,4}

Lemma 5.12 shows that for 7 € X,

1

[Re(p(7))] < 7*(14131513 + Auatly + Asatsy) + A14t14
Hence H(f)e™Re(r) < H(T), where we define
H(F) = G(3) exp (—m (5 AustTs + B Awtly + 33 Astsy + § Asstdy)) -
Plugging these inequalities into (5.9), we find that
‘/// (t1 +to + t3)G(G +it) dtg dta dt; | < (5.10)
b

V2 -
S [ [ttt tl (A0l + AR ef® + AL el + A PV EE) s dr it
b
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Note that H (f) is obtained from H(f) by replacing Ass with %Agg and the other A;;’s with

%Aij, so our previous lemmas about H also apply to H. In particular, P is replaced by
D= Py(8A13, 35 A1y, £ 454, L Asg).
We will need to know how P compares to P.

Lemma 5.13. Assume Ass = Apin. Then P > 0.5841P.

Proof. The assumption that Asz = Ay, ensures that Ilog = A13414A494 > P/4. Thus

P = % (%) (ITy3 + T4 + Iog) + (%) 1193
=367 P+ ()" -3 (3)°)

> (38 +1((8)’-3(®)%)) P> 058uP. O
Now we can bound the relevant integrals.

Lemma 5.14. Assume Agz = A,in and Aoy < A13. Then

A2 A (2m)3/2G() 22.206
/ / / t23H dtgdthtl < W(01+J2+0_3)‘W’

AL (2m)3/2G(7) 13.008
A / / / t23H dtgdtgdtl < W(Ul‘f‘UQ‘i‘US)' m2

432 (21)3/2G(5) 3.441
ELH(F) dby dis dty < 2229 (60 4 gy 4ag) - 2
/ / / 13 3 dty dty D (01+ 02+ 03) - —

AY2 (2m)*°G(3) 5.874
/ / / t24H ) dt3 dto dty < W(Ul—i_(jQ—i_ag).W’

A2 (2m)3/2G () 3.441
A / / / t24H dtgdtgdtl < W(Ul+02+03)' m2
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Proof. We prove the first claim; the rest are proven similarly. Lemma 5.2 shows that

3/2

3/2/ / / t33H (T) dts dts dty <A3/2(27r) G( 7) 13

3/2(%)3/2(:( 7) 3-2%/\/05840
m3/2v/P m2?A3,

(27)*2G(3) 15.7014

2P miAg

< A,

Now Corollary 5.10 shows that

A3 f (2m)3/2G(5) 15.7014+/2
/ / / t23H dtgdtht]_ < W(O‘l"‘(f?—f—gg). T

Note that 15.7014v/2 < 22.206.

Lemma 5.15. We have

Y L - 21)32G(d 6.690
A}£2A23/ / / t%4t53H(t) dtgdts dt1 < M(Ul + 09 + (73) . mi

m3/2y/P 2
1/2 (21)3/2G(5) 3.441
Al/ A24/ / / t 3t24H dtg dtQ dtl < W(Ul + 09 + 0'3) . m2 X

Proof. Recall from the proof of Lemma 5.2 that

SR Bl P _ (2n)*%G(5) oP
/oo /oo /ootQSH(t) dts dba Aty = = e 3T 5y

It follows that

/ / / 2,42 H () dts dto dt;
maA14/ / / t23H dt3 dt2 dtl
2

B o [ (2m)3%G(s
N m6A14 m5/2P3/2 61423

(2m)°2G(G) oP 0P 2 (20)*PG(3) ,
mT2P52 9A140Ay  m mb/2P3/2 (s + Az)
(2m)3/2G(5) oP OP

m7/2P5/2 9A14 0As3’
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Now inequality (5.1) shows that

Y ~ 27)3/2G(5) 3
2,42, H(T) dt3 dts dt ( . )
/oo /oo /oo 14723 ( ) 3 2 LS m3/2\/]>3 m2A14A23

We conclude that

21)3/2G (&) 3
Al2A / / / 12,12, H(T) dts dty dt; < AP A ( :
14 423 14723 so i 2 m3/2\/ P m2 (35 A14) (5 A23)

(27)*2G(5)  8.075
m3/2\/]3 mQ\/ A23 ’

because 3 - % +2/4/0.5841 < 8.075. Corollary 5.10 completes the proof of the first claim,

because 8.075(2v/2 — 2) < 6.690. The second claim is proven identically. O

Lemma 5.16. If Ass = A, then

A2 (2m)3/2G() 9.849
/ / / |t14t23|H dtg dtQ dtl < W(Ul + o9 + 03) . m2 .

If furthermore Asy < Ays, then

A2 (21)3/2G(5) 3.441
/ / / ’t13t24|H dt3 dtg dtl < W(Ul + o9 + 0'3) . .

Proof. The claims follow from the previous two lemmas; by AM-GM,
W tatds| < (Au/; Agstiytds + Apy P Agthy). o

Lemma 5.17. Assume Asz = Apin. Then

21)3/2G (& 3.975
3/2/ / / |t24t14|H dtg dtg dtl < M(O’l +O'2 +O’3) . m2 5

m3/2\/P
432 (2m)3/2G() 3.975
/ / / |t24t13|H dtgdtg dtl < W(C’l"‘O’Q"‘Oﬁ).W’
432 (27)*%G(5) ) 2329
/ / / ’t13t14’H dtg dto dt1 < m3/2f Ul + o9 + 03) 77”2 .
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Proof. We prove the first claim; the rest are proven similarly. Note that

3/2/ / / \toat3,| H(T) dts dts dty

< A32G(5) / / / [toat3 | exp(— 331 (Ay3t35 + Avatd, + Asatdy)) dts dts dty

35 35 0 35m
2 _2om 2
A?A/L G(O’)/ |t24|6 A24t24 dt 4/ |t14|6 A14t14 dt14/ e 72 Arsti dt1s.
— 0 —00

—00

We can use Lemma 4.6 to evaluate these integrals:

> 35m > 35m 2 72/35
|t24| eXp( A24t24) dt24 =2 toy exp(— 79 A24t24) dt24 = s
—0 0 mA24
> > 72/35)*
/ |t34] exp(—225 Ayatiy) dirg = 2/ t3, exp(— 225 Aytly) diyg = (712/85)° 2/ 2> ;
oo 0 m=Aiy

o \/ 721 /35
/ exp( 35m1413t )dtlg: 771-/

—00 mA13

Thus

422 2.131G(7) 1
toqt H dt dto dt1 < .
/ / / taatl s = m3:5y/Aag A14A13 / Aoa

Using Ag4A14A413 > P/4 and Corollary 5.10,

G( 62.596
3/2/ / / ltoats, | H(T) dis dty dty < 3/(0)(01+02+03)-

m3/2/P m?
21)3/2G(3 3.975

The second claim is proven identically. The third claim is proven similarly, except that

Corollary 5.10 contributes a factor of (2y/2 — 2) instead of v/2. Note that 3.975(2v/2 —

2)/v/2 < 2.329. O

Now we can estimate f’/f using inequality (5.10). Since t1+to+t3 = t13+tog = t14+ta3,
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we have

3/2 3/2

3/2
b1+ to + t3| (A2 |1 ]? + AZ |taal? + AZP|t1al? + AD|t0al?) <

3/2 3/2 3/2 3/2
A2t + [taatdy)) + ASL([t1atds] + ths) + AX (sl + [E2atds]) + ASP (|tiatdy] + ).

Now we can split the integral in (5.10) into eight separate integrals, which we bound using

Lemmas 5.14, 5.16, and 5.17 (still assuming that Ass = Apin and Agy < Aj3):

3/
| /// t1 + t2—|—t3 (O‘ + Zt) dts dto dt1 /<(2m)33/225£ )(0'1 + o9 + O'3)>

1v2
< {(3.441 +3.975 + 9.849 + 22.206 + 2.329 + 3.975 + 3.441 + 5.874)
m

25.9697
< .
m

Combining this with Lemma 5.11, we conclude that, for m > 1000,
2m)3/2G (¢ 25.971
7( ) ( )(0'1+O'2+O'3)' .

o0 o0 o
ti+to 4+t 7+ it) dts dto dt
st i < G o

Now equation (5.7) and Lemma 5.7 show that, for m > 1000,

1
o1+ 09+ 03

1 !
—7i — (0'1 + 09 +03)

2m f
3f/ / / tl + 12 —i—tg)G(O'—f—Zt)dtg dto dtq

1
o1+ 09 + 03
< i G(a) 25.971
S 1fl @n)3lem3/P m
1 25.971
< 1 _ 3781 ) :
m

m

This proves the following lemma:

Lemma 5.18. For m > 1000,

;n‘;‘:(0'1+0'2+0'3)(1+/8)7

where || < nff??% i
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Chapter 6

Properties of ¥

In this section, we prove some properties of the digamma function ¥ which will be needed

when we study the saddle point & in the next section.

Lemma 6.1. For any t > 0, we have the following inequalities:*

t t
—14+->0
et — 1 +2_ ’
t t t?
<
et — 1 2 12—
t t 12 t4

S IO
d-1 ‘Ta =t

Proof. Since t/(e! — 1) — 1 + ¢/2 vanishes when ¢ = 0, the first inequality follows from the

fact that

d t t sinh(t) — ¢
£ 1+ = T S0 fort > 0.
ﬁ<é—1 +2> 2 cosh(t) — 2 o

!These inequalities are all special cases of the conjecture that t/(e’ — 1) is enveloped by its Taylor series

for t > 0.
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To prove the second inequality, we consider instead t2/(ef —1) —t+¢2/2 —3/12. Again,

we need only check that its derivative is nonpositive:

4 t sz ﬁ = t 1+f2<0
dt \et —1 2 12/ et — 1 2/ — 7

The first two inequalities say that

P ot 10t 50 foralltso
— — — or a .
2= et 1 5 =

It follows that

d [ 2 3 4 2\ 2 t £\?
a RTINS I (I T (LA LA ) for all ¢ > 0
dt (at—l Ty 720) <12> (et—l +2> - ora ’

which proves the last inequality. O

Recall the asymptotic series [1], 6.3.18, 6.4.12-14:

\Il(x)wlogx—i— ! + L +
2z 1222 120x* 25226 ’
, 111 1 1
Ve~ T e T 6 308 T
11111
22 23 22% ' 626 628
o 3 2 1 4

3 ozt 25 T 329

_|_...7

As these series are directly related to the Taylor series for t/(e! — 1), the previous lemma

lets us turn these series into inequalities.

Lemma 6.2. For any x > 0,

1 1 1 <¥(x)<l ! ! + 1

0gr — — — — x 0gr — — — —5 + ——

& T oy T 1242 S oy T 1222 T 12040
11 1 1 11 1

b < W(2) < —
x+2x2+6$3 3025 () x+2x2+6x3
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Proof. Recall ([2], p. 18) that

1 o 1 1 1\ _
\Il(x)zlogx—%—/o <et—1_t+2>6 .

Differentiating, we get similar expressions for the derivatives of ¥. We illustrate one proof;

the rest are all analogous:

1 o 1 1 1
U(x) =1 - — = —— = )eat
(x) = log 2x /0 (et -1 t + 2> c

Recall ([1], 6.3.5) that ¥(z) = —1 4+ ¥(z + 1); taking derivatives, we get recurrence
formulas for the derivatives of W as well. Combining these formulas with the previous

lemma, we obtain bounds for W and its derivatives: for any = > 0,

1 1 1 1
v — = +1 1) — — 6.1
(@) < -z s+ )~ oy " e T 0@ (6.1)
U(z+1)> - ! + log(x + 3) — ! — ! (6.2)
2 P R TE R R DY o s ‘
1 1 1 1
0< v - 6.3
< (:r)<x2+x+1+2(x+1)2+6(a;+1)3’ (63)
1 1 1 1 1
Uz +1)> + + + — , 6.4
(#+2) (z+3)2 z+3 2@+3)2 6(x+3)3 30(x+3)P (64)
2 1 1 1 1
v - - - - 0 6.5
@ < G Gt 2w T e@rip Y (6.5)
6 2 3 2
0<w® — 6.6
< ($)<a;4+(x+1)3+(a:+1)4+(:c+1)5 (6.6)
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Lemma 6.3. For any x > 0,

1 1 L1 1 1
r+i 2x+3) 12+3)2 ¢ ox+1 24(z+1)2 120z + 1)

U(z+3)-U(z) > — > 0.

Proof. Note that A(t) := log(1 +t) —t + 4¢> > 0 for all ¢ > 0; this follows from A(0) = 0
and N'(t) = t2/(t + 1) > 0 for all ¢t > 0. Therefore

1 1

Q(x—l—l)) Z2a+1) Bl

log(z + 3) — log(z + 1) = log <1 +

Now the first inequality follows immediately from inequalities (6.1) and (6.2). To prove the

second inequality, combine terms; we get a rational function with positive coefficients. [J
Lemma 6.4. For any x > 0,
ng"(;p)Z < U(2) 0D (2).
Proof. Let ¢ denote the Hurwitz zeta function. Recall from equation (4.1) that
M (z) = (=1)"nl(n + 1, 2).

Thus the inequality is equivalent to ¢(3,7)% < ((2,7)((4,z), which follows from strict
log-convexity of n — ((n,x).

O
Lemma 6.5. For a given x > 0, the function k — |a,§3) (x)|/all(x) is increasing for k €
[0, 1].

Proof. Observe that

d o (@)] _ d —aP@) _ al@) @ (@+3) - V(@) + (V(2) - V(@ + §))a’ (@)
dr ol(x) dr  o!'(z) al(x)?




so we want to prove that U/(2)¥”(z + 1) — ¥/ (z + 3)¥”(z) > 0. We do so by showing that

U” /¥ is an increasing function: by Lemma 6.4,

d v'(z) U(x)0®(z)— 0" (x)?
dx O'(z) o’

Lemma 6.6. For any = > 0 and any & € [3,1],

o’ (@) _ W) = W' +3)
ai@) T W(atg) — ()

Proof. Thanks to Lemma 6.5, we may assume k = % Recall the duplication formula for

U, which says that 0/1/2(33) = U(2z) — log 2. Thus we want to show that

200" (2z)|  W'(z) — W(a +3)
U/(2x) U(z+3)— U(2)

for z > 0. By Lemma 6.3 and inequalities (6.3), (6.4), and (6.5), this function is bounded

below by a rational function with positive coefficients. O
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Chapter 7

Properties of the Saddle Point

Now we are prepared to consider the saddle point & = (01, 09, 03). If i € {1,2}, let i’ denote

the other element of {1,2}; define j' similarly for j € {3,4}. Thus
oij + oy =01+ 02+ 03 for any i € {1,2} and j € {3,4}.

Recall from Lemma 3.2 that, for a nonzero a € O, and y € R, the corresponding saddle

point is the unique & € R? with all 0;; > 0 which satisfies

awl =+ Y= %a;ﬂlg (0-13) + %a;c“l (0-14) (71)
aw2 + y = %aijgg (023) + %a;ﬁg;l (024) (72)
g +Y = %a%w(alg) + %Oé;wg(a'zg). (7.3)

In order for our estimates to be useful, we need to choose a y which gives a good lower

bound on oy + 09 + 03, independent of a and k.

Lemma 7.1. Let yg € R be given. For anyy > yo, ke [%, 1]*, and a € L, the corresponding
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saddle point & satisfies

o1+ 092+ 03 > 2(0/1/2)*1(y0).
In particular, if y > —1.18, then o1 + 09 + 03 > 1.0572.

Proof. Using the fact that a is an algebraic integer, we add equations (7.1) and (7.2) to

obtain

4
Z (O‘ku (o15) + osz (o950 ))

j=3

l\DM—l

2y < ayy + Ay + 2y =
Thus we can choose j € {3,4} such that
2y < ap,, (015) + 0, (02j0) < o (1)) + a5 (025).
Since 0/1/2 is a concave function, it follows that y < a/1/2((0'1j + 09jr)/2). Thus
01+ 02+ 03 =015 + 0250 > 2(0/1/2)_1(9) > 2(0/1/2)_1(3/0)- O
Recall that, once we choose y such that —fT,(y,a) > 2m for all a, we can ignore all
terms in inequality (3.3) except for the a = 1 term. It remains to understand the saddle

point corresponding to a = 1. When a = 1, equations (7.1)-(7.3) say that the saddle point

o satisfies

2y = o, (013) + gy, (014) = Ay, (023) + Ay, (024) = a , (013) + Ay, (023),

or equivalently,

a;€24 (0-24) + 06;914 (014) = 23/» (74)
O[2313 (013) - a;€24 (024) = 07 (75)
a;€14 (014) - a;€23 (023) = O (76)

46



Now we regard a = 1 and y € R as fixed, and consider properties of o;; as a function of

k, defined by equations (7.4), (7.5), and (7.6). For any k € [0,1]* and any si; > 0, define

Pp(s13, 514, 523, 524) = P3(ay,, (s13), o, (s14), Oy, (523), oy, (524)),

where Pj5 is the degree-3 elementary symmetric polynomial in four variables. Then we wish

to find an upper bound for
P = P(k) = Py(o13(k), o14(k), 023(K), 024 (k)),

for k € [2,1]%. T claim that P(k) is maximized when k = (3,1,1,1). Essentially, we will
prove this by showing that 0P/0k;; < 0. To simplify notation, define
Aij = O/k/ij (Uij) >0,
3 3
AEJ) = O‘I(c”) (Ul'j) <0,
Aij = \I’(Uij + %) — \I/(O'ij) > 0,
A;j = \IJ/(UZ‘J‘) — \III(O'Z‘]‘ + %) > 0.
Note that A;; = —804% (0i;)/0kij; if we take the derivative with o;; fixed (not a function of
Finally, let ) denote the degree-2 elementary symmetric polynomial in 3 variables. For
i€ {1,2} and j € {3,4}, define

Qij = Q(Aijr, Airj, Arjr);

e.g., Q13 = A14A23 + A14A24 + Aoz Aas.
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Lemma 7.2. For any i € {1,2} and j € {3,4},

601-]- Aij 80’1‘3‘/ Aij

— l.A} = Ai/ Ai/ )
Okij P @i Oki; P TR
dowj Ay dowyr A
L 7114 1 Ao = _iAi'/Ai’ j .
Oky; P VT ki p

Proof. Applying the implicit function theorem to equations (7.4)-(7.6),
-1

o1 /D1y A As 0 0
0oy/0kis | = | Az —Aau  Aus —Aa3
do3/0k13 Ay —Az —Ag3 0
(A13 + A2q) A Ag3 Ay A13A2 0
= % Ar3(Arg + Ass) —A14A23 —A13A14 Ay
A14Agy — A13A23 A1a(Ags + A2s) —Aa(A13 + Ara) 0
AgzAaa
_ Agg
- p —A14A23
A14(Azz + Asq)

This proves the lemma for derivatives with respect to ki3; the rest follow by symmetry. [

Lemma 7.3. For anyi,j € {1,2},

Al 3 3 3 3
<A-J» PQij — |A§j/)|Ai’1Ai’2Qij’ - \A§/])|A1j/A2j/Qi/j - |A§j)|Q22j + ’AEIJ')/|Aij’Ai’jQi/j’> :
ij

8P . Aij
Oki; P

Proof. By symmetry, it suffices to prove the case (i,j) = (1,4). Lemma 7.2 shows that

0 A A
a714141314141423 = (;LA%)A%AM) A14A93 + A1 (;Aﬁ)QM + A/14> Agsz +

A
A13A14 <—;A§§)A13A24> )

0 A A
= A13A14 A2 = iA%)A%AM A4 Ao + Ars 7141451)@14 + Ay ) Aos +
Ok1a P P
A
A13A1 (;*Agi?AlgAzg) ,
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0 A A
—A13A23 424 = 71414(?5)14231424 A3 Aoy + Asz —iA(?;)AlsAM Aoy +
Ok14 P P
A
A Azs <Pl4A§i’A13A23> ,
0 A A
——A14Ax3 Aoy = iAﬁ)lex + Ay ) AazAos + Arg —71414%)1413/124 Az +
Ok14 P P
A
Aq4A93 <;A§?A13A23> .
Summing these equalities and simplifying yields the desired result. ]

We now have formulas for 0P/0k;;. If we could prove that these derivatives are always
negative, that would complete the proof that P is maximized when k= (%, %, %, %) But
we are not able to prove that, so we proceed in two steps. First, the next lemma narrows
down the possibilities for where the maximum could occur. Then it is feasible to check by

brute force that the necessary derivatives are negative.

Lemma 7.4. Then there ezist k1, k2 € [1,1] such that

_max P(IZ) = P(k1, %, %,/4;2) = P(%,Iil, K9, %)
ke[l 1]4

Proof. First observe that P(ky, %, %, Kg) = P(%, K1, k2, %) is automatic, by symmetry. Now
we prove that if P is maximized at k, then k has the form (k1, %, %,mg) or (%,Hl,fiz, %)

This is immediate from the following claim: for every ke [%, 1]4,

oPrP OP oP 0P
Ok13’ Okay < Ok’ Okas <0 (7.7)

Lemma 6.6 says that Aj,/A14 < \Aﬁ)|/A14. Thus

P

A Aq13A93A
_|Aﬁ)|Q%4 T TiPQM < |Aﬁ)|Q14 <A14 — Q14) = |A$’B|Q14M.

Aty
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Plugging this into the previous lemma,

oP A Aj3A23A

o < S AR A 404Qs — [AS) | 413 Ans Qe + [AD|Qua TEEE T 4 AR | A13 A0 Qa5 ) -
8k‘14 P A14

Consequently,

P oP _ AR Qu AR Qu
A1y A5 A4 A3, A3, Oky A3, AgAgzAgy A3, AzAigAgs
‘Aﬁ)| Q14 + |A§§)| Q23 ‘
A3, AysAgzAgy - A2, A13AigAg

_l’_

Hence 0P/0k14 is negative if

IA%)I Q13 n |A§1)] Q24 S |Aﬁ)| Q14 . |Aé3§)| Q23 '
A2, AngAozAgy - AL, AisAigAsy T A2, AigAsgAoy A3, AizAiaAy

Similarly, OP/0kas is negative if this inequality holds; dP/0k13 and OP/0kay are negative

if this inequality holds in the reverse direction. This proves claim (7.7). O

Now we need only check that 0P/0kis and 0P/0kas are negative when k lies in the
square
S=[51x {3} x{3} x5, 1.

By symmetry, it suffices to check OP/0k13 < 0. If k lies in a subset of S of the form
S' = [kig™, ki) x {5} > {5} x [k33", k35,

min J.max 7.min max

we want to find an upper bound for 0P/0k;3 as a function of k3™, k5, kX", and kY.
Then we partition the interval [%, 1] into N equal subintervals of length ﬁ, thereby par-
titioning S into N? equal subsquares. By choosing N sufficiently large, we will see that

8P/8k13 < 0.

In order to bound 0P/dki3 on S’, we will need upper/lower bounds for the o;;.
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Lemma 7.5. Let y € R be fized. Let % < kﬁm < k73 <1 and % < kg}f” < k<1 be

given. Define

min __ min 1 1 max maxr __ mar 1 1 min
ory" = o13(k75 v 3035 Kod ), o5 = o13(k{3 1303 ks )s
min __ maxr 1 1 min maxr __ min 1 1 max
o9s" = oa4(kTs SIIL) ), o34 = o24(k{3 » 5 70 kg )s

Suppose ki3 € (k75" k707 and koa € [k55™, k5, and let k = (K13, 3, %, kaa). Then
ol5™ < o3(k) < o3,

min e maz
o35" < o24(k) < 054",

o14(k) = oo3(k) = o13(k) *2'024(16)‘

Proof. The inequalities are immediate from Lemma 7.2: Jo13/0kis and Joa4/0keys are
positive, while 0o13/0kos and Jogy/0k13 are negative. Also, 014 = o093 follows from

0/1/2(014) = 0/1/2(023), and then the last claim follows from o3 4+ 094 = 014 + 093. O
The lemma implies that, for k¥ € S’ as above,
7 " min
Az(k) < OékrlgaX(Uw ).

(Recall that o//(x) is strictly decreasing as a function of z, and strictly increasing as a
function of x.) Similarly, the A;;, the |A§?)|, the A;;, and the A;j are clearly all monotone
in the o;; and k;j, so this technique gives us upper/lower bounds for every term in Lemma

7.3.
Lemma 7.6. Suppose y = —1.18 and k € (3, 1]%. Then
P < P4 4 1) < 11178
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Proof. Use the upper bound described in the previous paragraph, partitioning S into 302

subsquares. ]
For k € [0,1]*, recall that the function aj is defined by
(81,52, 53) = Qy5 (51 + 53) + gy (52 + 53) + gy (51) + gy (52).
Define

)+ o2(k) + o3(k))

Q
—
a1
N—
I
L
Bl
—~
Q.
—~
Syl
SN—
~—
|
DO
<
—
Q
—
—~
Syl

where § = (2y, 2y, 2y).
Lemma 7.7. The function g is concave on [0,1]%.
Proof. First observe that

dg

00jj g (o1 + 09 + 03)
Ok13 '

= (logT —logD 1 ' (o
o8 (13) —logT(ons +3)) + | D el o)z | =2 5p0
1€{1,2}
je{34}

Recall that 013 + 024 = 01 + 02 + 03 = 093 + 014. Along with equations (7.4)-(7.6), this

yields

80’1“ 80'13 8024 8

/ J _ / —__ 2
'6{212} Oé ( Z])ak 13 - aklg (013) 8k + ak24 (024) ak13 + ak14 (014) 8]{313 + ak23 (023) ak13
je(3.4}

do13 Ooa4
= 0%13(013) ks +a k13(013>ak + ay,, (014)(%13 + oy, (014)%

8(01 + 09 + 0‘3)
= [0}, (013) + A, (014)] Ohe1s

3(0'1 + o9 -|-0'3)

—9
y ks
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Thus we have 8g/0k13 = logI'(013) — logT'(o13 + 3). Identical arguments show that

dg
({9]%]'

=logI'(0i;) —log (05 + %)

for all i € {1,2} and j € {3,4}. It follows that, for any i, € {1,2} and jo, j1 € {3,4},

8 (‘3g o —A' ) 801’0]‘0
Okirjr Okigjo " Okiyjy
1171 20J0 1J1

Recall that A;j;, > 0. Hence, to prove that g is convex, we must prove that the matrix

Jdo13  Ooi1z  0Odoiz  0Oois
Ok13  Okisa  Okas  Okoy

Jo14  Oo14 0Oo1a  Oo1a
Ok13  Okis  Okas  Okoy

Oo2z  Jog3  OQoaz Doz
Ok13  Okisa  Okas  Okoy

Jogy  Oooq  Oogs  Ooay
Ok13  Okia  Ok2s  Okoy

is positive semidefinite. We do so by checking that the principal minors of M are nonneg-
ative. Since 013 + 094 = 014 + 023, we have det(M) = 0. Lemma 7.2 shows that the 1 x 1
principal minors are all positive.

Now we consider the 2 x 2 principal minors. By symmetry, it suffices to consider

o3 do13 doi3 0013
ok ok ok ok
det e H and det ' 24
80’14 60’14 60’24 a0'24
Ok13 Ok14 0k13 Okay

By Lemma 7.2, the first is

A3A
%[(AMAQ?) + A1y Aoy + Agg Aog)(A13Agy + A13Asg + AgzAgy) — (AzAgg)®] > 0,
and the second is

Aq3A04

P [(A14A23 + A4 Aoy + Aoz Asq)(A14Aos + A13Aag + A13A1s) — (—A14423)?] > 0.

53



It remains to consider the 3 x 3 principal minors; by symmetry, we need only consider

the leading 3 x 3 minor. Thus, we need to check that

A14A23 + A14Ags + Azz Aoy Az Ay A14Az4
det Aoz Az A13A24 + A13A23 + AzzAgy —A13A24
A14A24 —A13A2 A13A1s + A13Ags + A4 Ao

is positive. This is trivial: expand the determinant, and all the negative terms will be

canceled by positive terms. O
Lemma 7.8. Let y = —1.18. Then the minimum value of g(k) for k € [2,1]* occurs when
k=(3333)

Proof. By concavity of g, it suffices to check the vertices of [%, 1]*. By symmetry, we need

only consider

g(%,1, 1 1) ~ 3.49963,

9(1,1,1,3) ~ 4.15,

g(1,1,1,1) ~ 4.35. O
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Chapter 8

Conclusion

Lemmas 5.18 and 7.1 show that, whenever m > 1000 and y > —1.18, we have —ﬁle(% a) >

1. Hence inequality (3.4) holds:

Regre 16, (L) (s jan) —ra(1)/2 1/
utall) 5 potastgrr (<1 - L) g0

We also have, in the notation of the previous section,

—.

f1) > __cxp(ma(B) (1 ) 3781)
(2n)32m3/24/ P(R) m
_27171?(3/, 1) > (01 + 02 + 03) (1 — n%) :

Thus Lemmas 7.1, 7.6, and 7.8 show that, for m > 1000,

F(-118.1) > £3-49962m (1 N 3781) > (1.866 x 10~8)eB499m
o (27)3/2m3/2\/111.78 m ‘ ,
L f 25.971
I SN G > - ° T om0 14 . .
1 2mf( 1.18,1) > —1 + 1.0572 <1 m_378‘1> > 0.0287

Hence for m > 1000,

Regk, r, (L)

> (4.28 x 1079)34995mo =Ll —r2(L)/2,
#ir
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Note that |Ar| + r2(L) = [L : Q] = 4m. Thus,

2_‘~AL|T‘—_T2(L)/2 — 2—4m+r2(L)7r—7’2(L)/2 Z 16—m,
as 2-4M+727=72/2 s minimized (as a function of r9) when 75 = 0. We conclude that, for
[L : K] > 1000,

Regk, r,(L)

4 > (4.28 x 1079)34995m 167 > (4,28 x 107Y) - 2.0686™.
127

56



Appendices

o7



Appendix A

Proof of Lemma 5.8

Friedman and Skoruppa made an error in the proof of their Lemma 5.6, while bounding
g
Ji = '/ te=me (@)t /24mp gy |
—o

(See their paper for the notation.) They claim that

Va2r |a® (o) V2
Jis 2m3/2a/ (o) (o' (0))3/2 < VEm32a! (o)

(A1)

However, the first inequality is incorrect. In fact, they found the asymptotic behavior of

J1, not a bound for Jy:

Vo Ja(o))

Jy ~ 2320 (o) (o (0))?2 as m — 00.

Lemma, 5.6 is used only to prove Lemma 5.7, which is used only to prove Lemma 5.8. As
such, we do not attempt to prove Lemmas 5.6 or 5.7 here, only Lemma 5.8. Furthermore,
we prove it only in the cases which are needed for their paper, namely k € [%, 1], o > 0,

and integers m > 40. We proceed in three steps:

e Prove Lemma 5.6 (and thus Lemma 5.8) for € [3,1], 0 > 0.65, and m > 40.
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e Prove Lemma 5.8 for k € [%, 1], o > 0, and m > 140.

e It remains only to consider x € [%,1], 0 € (0,0.65], and m € Z N [40,139]. A brute-

force computer search can check that Lemma 5.8 holds in this region.

A.1 Proof for ¢ > 0.65

We prove that Friedman and Skoruppa’s bound for J; in the proof of their Lemma 5.6 is

valid for o > 0.65, for all m > 40 and all x € [%, 1]. We start by collecting some lemmas.

Lemma A.1. For any 0 <t <o,

0 < Re(p(t)) < 1127,
0 < Tm(p(t)) < _t3a(3;!(0) _ t3]a(3;!(a)"

Furthermore, Re(p(t)) is an even function and Im(p(t)) is an odd function.
Proof. See Friedman and Skoruppa’s Lemma 5.1. O

Lemma A.2. Let an integer n > 2 be given. The function

[T =D(s)|
\I/’(S)”/Q

is strictly decreasing for s > 0.

Proof. Recall that W) (s) = (=1)*T1k!C(k + 1, s), where ¢ is the Hurwitz zeta function.

Thus we need to show that (n, s)/((2,5)™? is a decreasing function. We have

i C(na S) _ _nC(n+1aS)C(2vs) *((TL,S)C(B, S) <0
ds ¢(2,5)"/2 ¢(2,5)2 ’
where the inequality follows from log-convexity of k — ((k, s). O
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Lemma A.3. Let og > 0 and an integer n > 2 be given. Define

e (o)
= (= )W ()

Then for all o > oy,

Proof. Set

>0, A=U'(o), B=V'(0+3),

0D (o + )|
B R R e T

The lemma is equivalent to the positivity of
f(t) = (A+tB)"/?E - C —tD.

We shall prove that f(¢t) > 0 by showing f(0) > 0, f/(0) > 0, and f”(t) > 0 for all ¢t > 0.

Lemma A.2 implies that

(e (s)|/(n — 1)
\I/’(s)”/2

E > for all s > oy.

Taking s = o shows that A%E > C. Taking s = o + % shows that B%E > D.

We have f(0) = A"2E — C > 0. Next observe that A > B because ¥’ is decreasing, so
, n_, n_, n
f(0)=242"'"BE-D>A2"'"BE-D>B2E—D >0.
: " n(n 5212
Finally, f"(t) =% (% — 1) (A+tB)2 °B*E > 0. O
Corollary A.4. For all 0 > 0.65,
|3 ()| _ 139154 oW (o

and

I GRERN (o)

~—

3.3975

S
N
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Proof. Note that

1T (0.65)] (3 (0.65)
< 1.39154 ——— < 3.3975.
U/(0.65)3/2 = ’ <

0'(0.65)2

O

Lemma A.5. Let sy € (0,0.65] be given. Then the function f(s) = s?W®)(s)/W(s) is

mazximized for s € [sg,00) at s = sp.

Proof. We can replace f with g(s) = s2¢(4,s)/((2,s). We prove the claim in two steps:

e The function g is decreasing on the interval (0, 0.85]. [We could also prove the claim

simply by showing that g is decreasing on (0, 00).]

e If s > 0.85, then g(s) < g(sg). We prove this by finding a decreasing function h with

h(0.85) < g(0.65) and g(s) < h(s) for all s. Hence g(s) < h(s) < h(0.85) < g(0.65) <
g(so) for all s > 0.85.

We want to show that

(o) = 256902, 5) — 4525, 5)C(2,5) + 25°C(4,5)C(3,5)
((2,5)?

is negative for s € (0,0.85]. We estimate the zeta functions by integrals:

1+1+1<§(2)<1+1+1
— S —
2 (s+1)2 s+2 ’ 2 (s+1)2 s+1
1 1 1
3,8) < =
¢3:9) s3+(5+1)3+2(s+1)2’

1 1 1
4 -
C(4,8) < 54+ (s+1)4+3(s+1)3’

1 1 1

- + G117 + (512 <(¢(5,s).
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Plugging in these estimates, we find that 2s¢(4, s)((2, s) —452¢(5, 5)((2, 8) +252( (4, 5)((3, 5)
is bounded above by a rational function, which is easily checked to be negative on the
interval (0,0.85]. Thus ¢’ < 0 on (0,0.85].

Again using the above estimates for the zeta function, we have

1 1 1
ST I S
82 st (s+1)% 3(s+1)3 h(S)

g(s) <

1 1 1
2T Gz T sz
Note that

H(s) 359 + 1758 4 5257 + 15455 + 3615° + 5355 + 45553 + 20752 4 365 “0
s)=—
3(s+1)3(s* +4s3 + 752 + bs + 2)?

and that h(0.85) < ¢(0.65), so h has the claimed properties. O

Lemma A.6. Let oo € (0,0.65] be given. For all o > oy,

2‘11(3)(0 )

2 @) (5 <« 20 0) n
oca\M (o) < (o) (o).
Proof. Lemma A.5 says that

200 () < o503 (00)

= (o) \IJ/(O')7

2/(3)
PV (o1 1) < (0 + 12U (0 + 1) < DY (%0)

o1
= W(0y) Vio+3)

and combining these inequalities yields the lemma. ]

Corollary A.7. For all o > 0, 02a® (o) < 6a/(0). For all o > 0.65, 02a®(0) <

4.58111a” (o).

Proof. Note that 02¥®)(5) /¥ (o) — 6 as o — 0. Also, 0.652¥(3)(0.65)/9’(0.65) < 4.58111.

O]
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Now we are prepared to bound Ji. Recall that, by Lemma A.1,

J1

2

/ teme” (@)1 /24 Re(p(1)) sin(m Im(p(t))) dt
0

3 o
<m ’Oé( ;'(J)’ / t4e—moz"(a)t2/2+ma<4)(0)t4/24 dt.
: 0

Lemma A.8. Suppose 0 < L < U and o > 0.65. Let

By = 1 3.3975U
U=\ 2 480 )

Then

$3/2¢75 ds.

U
Vime(@) 4 —ma (o) /24 ma (o)1 /24 gy 1 1 / ot
Ve T (ma(0))52 2852 Ja, 1

Proof. By Corollary A 4, for any 0 <t < \/U/(ma"(0)),

a(4)(0')t2 - U a(4)(0') < 33975(]0/,(0_) < MO&”(U)
24 ~ma’(0) 24— 24mk ~ 480 '

It follows that

—ma (0)t* /2 + malV (0)t!/24 < — G - ?)'?f;)w> ma’(0)t* = —Byma”(o)t*.

Thus, making the substitution s = Byma” (o)t?,

U U

/ ma’/(o) t4€—ma”(0')t2/2+ma(4)(U)t4/24 dt < / e t4e—6Umo//(
/L - /L

mal/ (o) mall (o)

1 1 //BUU 3/2,-5 g -
- S e S.
(e (@) 357 Sy

O')t2 dt

Lemma A.9. Let L > 0 be given, and suppose o > 0.65. Then

7 4 _—ma' (0)t2/2 ) (o)t /24 1 1 * 3/2 —
the—me(0)t7/2+matT (@)% /24 gy < . / $3/2¢75 ds.
0.309L

/\/T (ma’(c))5/2 2-0.3095/2
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Proof. By Corollary A.7, for any 0 <t < g,

oW (o)t - a2a® (o) _ 4.581110"(0)
24 = 24 = 24 '

It follows that

1 458111
2 24

—ma (0)t? /2 + ma (o)1 /24 < — ( > ma” (o)t* < ~0.309ma” (o).

The rest of the argument is identical to the previous proof, with 0.309 replacing F;;. O

Let T' = 4/26/(ma’(0)). Now we estimate J; by considering separately the integral
over [0,7] and the integral over [T',c]. We use Lemma A.8 for the first integral, splitting

[0,T] into 100 separate intervals:

100 26k

T
tho—ma (o) /2+ma® (o)t /24 gy _ Z ma’t (” Ao—ma (@)2 2+ma® (o)t /24 gy
0 .26(k—1)
mal (o)

100 26k 26k

ma// 5/2 Z 5/2 /2 e—S ds

26k Gk 1ﬁ26k‘

< 5.318
(ma//(a))5/2 !

We use Lemma A.9 for the second integral:

g " 1 1 &
t4 —ma! (0)t2/2+ma® (o)t /24 dt < . / 3/2 =5
/T ‘ = (ma(0))%2 2-0.3095/2 Jg.300.26 e
0.0834
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Combining these bounds and applying Corollary A.4, we conclude that

Ji 1a®) (o) 5.4014
— <m
2 31 (ma”(0))>/2
5.4014 - 1.39154/3!
\/Em3/20/’(0')
- 1.253
\/Em3/20/’(0')
V2 /2

< -
\/Em?’/QO/’(o') ’

which is the desired inequality.

A.2 Proof for m > 140

Now we prove the inequality for all x € [%, 1], o > 0, and m > 140. We follow Friedman
and Skoruppa’s proof closely, giving stronger versions of Lemmas 5.5 and 5.7 to compensate
for the weaker, corrected Lemma 5.6. This involves few new ideas; mostly we just plug in

m = 140 where they plugged in m = 40.

Lemma 5.5

First, we give an improved version of Lemma 5.5 for m > 140.
Lemma A.10. If m > 140, then
(o)—myo ~
Fo(y,m) = ————= (1 - —) Iy| < 5.23.
m
Proof. We have

3
220+/ma’ (o) 4 Vme/2 mk +/o2a"(o) 1078

Vr(mk — 2)1.25m~lol/29mr/2 " 3/2, /r 9mE/2 mypg — 2 1.25mklo]/2 m
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Also, if we define ¢(m) as in the proof of Lemma 5.5, then max,>140 ¢(m) = ¢(140) < 5.224.

It follows that |y| < 5.224 + 1078 < 5.23. O

Lemma 5.6

We will need a version of Lemma 5.6 that is valid for m > 140. Since the estimate for .Jo

in the paper is fine, we need only estimate J;. First, some lemmas:

Lemma A.11. For any o > 0,
o2a(0) < 60" (0).
Proof. Clearly it suffices to check that o2 (5) < 6¥/(c). Recall that
F) (o) = (=) EIC(k + 1, 0),

where ( is the Hurwitz zeta function. Estimating the zeta functions by integrals, we obtain

the inequalities

1 1 1
<(47U)<;+(0‘—|—1)4+3(0‘+1)37
((2,0)> 5+ — :

o? (0+1)2+0+2'

It follows that, for any o > 0,

o2

0.2
UG (o) 602¢(4,0) o7t G T s
V(o) 2,0) SR N

< 6. O

Now we are prepared to bound J;. Recall that, using Lemma 5.1,

/ te=me" (@)2/24mRe(p(0) gin (m Tm(p(t))) dt
0

<m ‘05(3)‘(0')‘ /U t4e—ma”(a)t2/2+mo¢(4) (o)t*/24 dt.
ETRA
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Lemma A.12. Suppose 0 < L < U < 140. Let

U

280

| =

Bu =

If m > 140, then

Ve BuU
" emmel (@) 2rma )t 2 gy < 1 57 15/2 / | s
= () 957 S
Proof. By Lemma 5.2, for any 0 <t < /U/(ma’ (o)),
@ (0)t2 U a®W) 6U U
o\ (o o\ (o
< < i < 2
2m S mar(e) o = e () S 5550 ()
It follows that
" 2 (4) 4 1 U " 2 " 2
—ma’ (0)t* /2 + ma'? (0)t* /24 < — 2~ 580 ) M@ (o)t® = —Byma” (o)t*.
Thus, making the substitution s = Byma’”(o)t?,
[ U /.
ma’l (o) t4e—mo¢”(a)t2/2+mo¢(4)(U)t4/24 dt < / ma’l (o) t4e—,3UmOc”(a)t2 dt

V) Ve @)

= 1 1 /BUU s3/2¢75 ds.
(ma (@)1 2572 Jo1

Lemma A.13. Let L > 0 be given. For any m > 0,

/U t4efma”(0')t2/2+ma(4)(U)t4/24 dt < 16 /OO 83/2673 ds.
(ma(0))5/2 J1a

mall (o)

Proof. By Lemma A.11, for any 0 <t < o,

(4) 2 2 (4) "
a\M(o)t L oa (o) e (0’).

24~ 24 - 4
It follows that
" 2 (4) 4 1 1 " 2 1 " 2
—ma’ (0)t7/2 + ma'V (o)t" /24 < — 37 1) M (o)== —yma (o)t

The rest of the argument is identical to the previous proof, with 1/4 replacing Sy .
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Let T' = 4/50/(ma’(c)). Now we estimate .J; by considering separately the integral
over [0,7] and the integral over [T, o]. We use Lemma A.12 for the first integral, splitting

[0, 7] into 200 separate intervals:

T 200 k///4
/ fAg—ma (0)i2/24ma@ (o)td /24 gy _ S / Ve 4 —ma (0)12 /24 ma® (o)1t /24 4
=1

(k—1)/4
0 mal’ (o)
1 200 /4 kBr/a \
ds
(77%0/’(0))5/2 pot 252% = 1)6k/4

< 4.353
(ma”(0)?>

We use Lemma A.13 for the second integral:

/ 7 4 —mal ()2 /24ma® ()t /24 gy < 16 / T 3205 g
T = (ma”(0))%2 Js04

< 0.003
(ma//(0)>5/2 '

Combining these bounds and applying Lemma 5.2, we conclude that

J1 la®)(0)] 4.36
— <m
2 31 (ma(0))%/?
__4.36-2/31
\/Em?’/QO/’(o')
1.455

< \/EmS/Qa”(o') :

Combining this with the existing bound for J» gives us our new version of Lemma 5.6:

Lemma A.14. Suppose m > 140. Then

/ T emlalotiti—iyt) gy < 4eme(@) g N 2.91¢m) .
= (mk — 2)1.25mslol/29mR/2 T Sem3/20/ ()

Lemma 5.7

Our new version of Lemma 5.6 translates directly into a new version of Lemma 5.7:
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Lemma A.15. Assume m > 140. Then

‘/oo tem(a(cr—i-it)—iyt) dtl < 2.3220 Qwema(g)
— 00 - m ma//(o_)

Proof. Lemma A.14 says that

3
/oo sem(alotit)—iyt) gy < 7 2memal?) 220/ma’(0) n 2.91/v2x
—oo ~ ma(o) \ Vm(me —2)1.25mklol/29me/2 | ka0l (o)

We saw in the proof of Lemma A.10 that

3
220\/ma’ (o) < 1078

VT (mek — 2)1.25mklol/29ms/2 =

We know that o2a” (o) > k, so

201/v2r  2.91/\2r  5.82/v2r  2.3219
< < < .
my/ ko’ (o) mk m m

Lemma 5.8

Lemma A.16. Forye R, k € [%, 1], and m > 140, with 0 = 0, (y),

1 0F;/0y
m Fy

o) =an) (14 2) 181 = 160, < 282

Proof. The proof is identical to the original proof, with our Lemmas A.10 and A.15 replacing

the original Lemmas 5.5 and 5.7. Only the last line of the proof changes:

ijoooo tem(alo+it)—iyt) g4

2322 1 2322 1 2.42
2me™e F (y, m) )

g <o
523 523
m1-=2 140 m

<o

m

A.3 Proof for remaining cases

In the remaining cases, as in the proof for m > 140 above, we give stronger versions of

Lemmas 5.5 and 5.7 to compensate for the weaker Lemma 5.6. As we have already seen
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how Lemmas 5.5 and 5.7 can be strengthened by restricting to particular cases, the only
remaining problem is how to prove a correct version of Lemma 5.6 that is not too much
weaker than the original version. We use a computer to bound J; by brute force, by splitting
the integral up over several small intervals and estimating each one separately.

To simplify notation, define
~ . . 1 " 2
p(t) = alo+1it) — alo) — iyt = —5@ (o)t” + p(t).

Let 0 < Mmin < Mmax, 0 < Kmin < Kmax < 17 0< Omin < Omax < 0657 and 0 < UO <

Mmin0 23, @ (omin) be given.! We would like to find an upper bound for the integral?

min -~ Kmin
/Yo _
/ ma!l (o) te_mRe(ﬁ)

0

sin(m Im(p)) dt, (A.2)

where Mmin S m S Mmax, Kmin S R S RKmax, and Omin S o S Omax-

Note that mo2a’ (o) is increasing as a function of , o, and m; this follows from the

formula
> o \? = o ?
2 N
oo, (0) =K -] +(1—k
=(2) ;(wy) | >§_: oyt
7=0
Hence the assumption on Uy ensures that
<o. (A.3)

!The assumption omax < 0.65 is not necessary, and is made only to simplify the proofs. It makes sense
to permit omin = 0, even though «(0) is not defined, because every function which we evaluate at omin in

the following argument will approach a limit as ¢ — 0.

ZMore precisely, we would like to find an upper bound for the absolute value of the integral. The methods
described below could be adapted in the obvious way to provide a lower bound for the integral, and therefore
bound the absolute value. In practice, it’s fairly clear that these integrals are always positive — at least in

the cases that we care about — so we will not bother with the lower bounds here.
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Once we have a bound for (A.2), we can combine it with an easy upper bound for

o te™™ Re() sin(m Im(p)) dt
Q

‘ o
ma'l (o)

to obtain an upper bound for

/ te~™Re) gin (m Im(p)) dt.
0

Algorithm

We split the interval [0, /Up/(ma’(o))] into a number of subintervals of the form

L U
ma’ (o)’ \| ma’ (o)

and bound the integral over each subinterval separately. For each subinterval, we find an

9

inequality of the form

U
Vma@) | _ . Cru
/ e i) <

Adding the inequalities for each subinterval, we get an inequality

/__Uo
ma! (o) —mRe(p) ; I < C
/0 te sin(m Im(p)) dt < (o)

(A.4)

The first step in determining Cp, i is to obtain upper and lower bounds for mIm(p).
The proof of Friedman and Skoruppa’s Lemma 5.1 shows that mIm(p) is given by the
alternating series

s . @D (g)]| o,
mIm(p) = m -1 ]+17|O‘ - 2+t
(0 =m3 "y

and that the absolute values of the summands converge monotonically to zero.? Therefore
we can obtain upper or lower bounds for m Im(p) by truncating the series, e.g.,

1a®(0)] 4 1a®)(0)] 5 a7 (0)]
g LM ey

3This is why inequality A.3 was necessary.

mIm(p) <m t7.
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Of course, we need bounds in terms of the given constants L, U, muyin, Mmax, €tc. It is

clear how to eliminate ¢ and m: to continue the above example,

1a®) (o) U3/? 1a)(5)| L5/2 o (o) U2
mIm(p) < _
- o ( )3/2 3"[71,1/2 o (0-)5/2 5|m3/2 (0_)7/2 7!m5/2
a® ()] U3/2 a®) ()| L5/2 o (a)| UT/?
~ a0 )3/2 3!m1/.2 o o/’(a)5/2 f)n/a2x (o )7/2 — 57

To handle the terms involving o, we use the following lemma:

Lemma A.17. Let 0 < 0min < Omaz < 0.65 and 0 < Kmin < Kmaz < 1 be given. Let n > 3

be an integer. If 0 € [Omin, Omaz] aNd K € [Kmin, Kmag], then

<’imm>2_1 ’af(::zm(amaz)’ < |O‘f(fn)(‘7)’ < <Hm“$>2_1 |a'(€7}3az(‘7mm)‘

o (Umaac>n/2 - ag(o-)n/Q - o (Umm)”/Q'

K Kmg
mazx Kmin min Kmaz

Proof. This is immediate from Lemmas A.20 and A.21 in the next section. O

"/2 with an upper or lower bound, we

Using the lemma to replace each ]a,&n)(a)\/ag(a)
get constant bounds ¢; < mIm(p) < 2 as desired. We can use the exact same argument
to find bounds 71 < —mRe(p) < no.

Define

S = max sin(f).
01<0<0>

We consider two cases separately:

o If S >0, then

U U
\ ma (o) _ ma (o) Se™(U — L)/2
/ ) te=mRe(?) sin(m Im(p)) dt < Se™ ) = Sem(U —L)/2
(o) 7/%( 5 mo/’(a)

o If S <0, then

/\/ W te_mRe(ﬁ) V ma’ (U) Senl(U - L)/Q

sin(m Im(p)) dt < Se™ tdt =

- 1
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In either case, we have an inequality of the form (A.4), as claimed.
It remains only to bound the integral over [\/Up/(ma’(c)),o]. The estimate relies on

the following bound, which will be proven in the last section.

Lemma A.18. Assume* o, < 0.65. For all |t| < o, we have
—mRe(p(t)) < —mpBa" (0)t?,

where

1 024 \IJ(S) O min
/6 — — _ mn ( )

2 249/ (O’mm)

Define Vo = Mmax02ax@”  (0max). Recall that mo2a//(o) is strictly increasing as a

max ™~ Kmax

function of m, k, and o, so

o < mmaxo'rgnaxagmax (Umax) — ‘/b .
- ma!’ (o) ma! (o)

Hence
~ ma'’ (o " 2
‘ ~ te”™ e gin(m Im(p)) dt| < - te MA@ gy
ma”o(a) W’O(o')
_ 5(e7 P — e PVo) /i /B
o \/Em?’/?o/’(o)
_ (e — V) i 8

\/Em3/20/’(o')
Proof of Lemma A.17
Let ¢ denote the Hurwitz zeta function.

Lemma A.19. For any integer n > 3 and any o € (0,0.65],

C(n+1,0)¢(2,0 +3) +¢(n+ 1,0+ 1)¢(2,0) — ¢(n,0)((3,0 + L) — ¢(n, 0+ 1)¢(3,0) > 0.

4 Again, this assumption is unnecessary.
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Proof. Estimating the zeta functions by integrals, we obtain the following bounds:

1 1
Cn+1,0)> ol * (o + 1)ntl”
1 1 1
(2,0 +3) > +

G+ @+ e+

((n+1lo+3)>

1
+ )
(O’—|- %)n-i-l (U+ %)n+1

¢(2,0) > 012+(0+11)2,
¢(n,o) < UlnvL(n_ll)gn1
R e e T,
ot < G R D
C(3,a)<i+ ! !

BT e 1P 2o
Combining these bounds, we obtain a lower bound for the target function. When n = 3,

the bound is

p(o)
oo+ 1)4(20 + 1)*(20 + 3)*(5 + 20)2’

where

p(o) = —5120 — 102400' — 8064001% — 3540485 —
99552000 — 19141765° — 25710080° — 23482400" — 12558580 —

353000° + 5911670* + 55868403 + 27565502 + 758520 + 9324.

We can see that this is positive for 0 < o < 0.65. [Proof: By Descartes’ rule of signs, p(o)
changes sign only once for o > 0, and p(0), p(0.65) > 0.] This proves the claim when n = 3.
We can prove the claim similarly when n = 4,5,6,7,8.

Now assume n > 9. In this case, we will use the bounds
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((n+1,0)> =ty (2,0+3) > —1,

C(TL—FLO’—F%) > ﬁ) C(270) > %a
(J+§>
C(n>0)<ﬁ+m_1)ﬁ§%ﬂ+&ﬂ%, (Bo+3) < 53+ ——

((no+3)< <U+11)n+8<0 11>n1, ((3,0) < 75 + 52-
2

+3

We obtain a lower bound of

(1+ %)”‘2 (32 — 160 — 4202 — 403) — (34 + 250 + 4402 + 403)

A5
6403 (o + 5)"+! (4.5)

For o € (0,0.65] and n > 9, we have

1 n—2 1 7
T R A
(+20> _<+2-0.65) >0

Note that 32 — 160 — 4202 — 463 > 0 for 0 < o < 0.65; thus the numerator in (A.5) is

bounded below by
54(32 — 160 — 420° — 403) — (34 + 250 + 440° + 40°) = 1694 — 8890 — 231207 — 2200°.

We can check that 1694 — 8890 — 231202 — 22003 > 0 for 0 < ¢ < 0.65. This completes the

proof. O

Lemma A.20. For any n > 3 and k € [0,1], the function

ok (0)
ol (o)
is decreasing for o € (0,0.65].
Proof. We have
A (o) _ L )n& _ (_Una,&m)(g)ag(a) — 20(0)a(0)
do o/l (o)/2 T do ol (o) = VIGE ,



so we need to show that

Plugging in the definition of o, and using the formula ¥*)(s) = (=1)*1EI¢(k + 1, s), this

becomes
—[k¢(n+1,0)+ (1 —K)(n+ 1,0+ 2)][KC(2,0) + (1 — K)((2,0 + 2)] +
[K¢(n,0) + (1= K)¢(n, 0 + )][KC(3,0) + (1 = £)¢(3,0 + 5)] 0.
The left-hand side is the sum of the following three expressions:
R2[=C(n +1,0)¢(2,0) + ¢(n,0)((3,0)],
(1= r)*[=C(n+ 1,0+ 3)C(2,0 + 3) +((n, 0+ 3)C3, 0+ 3)),

—k(1—kr)[¢C(n+1,0)¢(2, U—F%)—FC(TH-L J—i—%)C(Q, o)—C(n,o)C(3, 0+%)—C(n, O'—l—%)((?), a)l.

I claim that all three are non-positive. For the first two, this follows from log-convexity of

k +— ((k,o0); the third claim is Lemma A.19. O

Lemma A.21. Let 0 < 0 < 0.65 and n > 3 be given. Then

2o ()]
afi(o)"/2

is increasing for k € [0, 1].

Proof. Set

>0, A=V'(0), B="(o+1),

C =" D), D=[w" o+
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With this notation, we want to show that

C +tD
(A+tB)"/?

is decreasing as a function of ¢ for all ¢ > 0. We have

d C+tD  AD-3BC —(
dt (A+tB)"/2

» _1)BDt
(A+tB)2T!

Clearly —(§ — 1)BDt < 0, so we need only check that AD — §BC < 0. Rewriting A, B,

C, and D in terms of {, we want to show that

((2,0)¢(n. 0+ §) = 5C(2,0 + $)((n,0) <.
We have

((2.0)¢(n,0 + §)= 562 0+ §)(n,0)

<<012+(1f> ((a—:é)”—i_ : >_Z(01 :

(n—1)(o + 2)n-1

+52 o

1 11 o c+3\ n 1\"
— (5 += H2 (1 ——(1+=—=) |.
(o4 §)t2 (02+0)(U+2)<+n—1 5 \' " 20

The quantity in brackets is decreasing as a function of n, so it suffices to check the case

n = 3. When n = 3, this quantity is

(20 4+ 1)%(20° + T0? — 0 — 3)
1603

We can see that this is negative when 0 < o < 0.65.

Proof of Lemma A.18

Lemma A.22. Let o, € (0,0.65] be given. For all 0 > o pn,

02a(4) (0_) < U%nm\ll(?)) (Umin) "

T (om) (o).
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Proof. Lemma A.5 says that

®3)
02\:[;(3) (0-) < mln\Il (Umln)

— \I//(Umln) v (U)v

o2, \P(3)(0min)

2y (3) 1 1y2(3) 1 min
oW o+ 35)<(c+35) VY (o+3) <
(0 +4) < (0 + 5 e0(o + §) < PO,
and combining these inequalities yields the lemma.
Lemma A.18 is an immediate consequence:
. 2, 1wy 4
Re(p(1)) < —50"(0)t" + 57V (o)t

11 a(4) o) 2\ u
:( 51 o )t>a(a)t2

1 1 o2a®(0)\ ,
( ﬂ (o) ) o (o)t?

1 mm )(Umln) " 2
( AT () >a (o)t°.
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