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ABSTRACT

ANISOTROPY AND AGGREGATION IN SELF-ASSEMBLED POLYMER

NANOCOMPOSITES

Benjamin J. Lindsay

Robert A. Riggleman

Russell J. Composto

Polymer nanocomposites (PNC) are an exciting class of materials with a wide array of ap-

plications. Whether the desired application involves isotropic or anisotropic polymer and

particle structures, controlling aggregation and/or anisotropy in PNCs remains crucial to

engineering composites with desired properties. Many methods have been developed to

address these challenges. Three methods of interest include 1) the inclusion of anisotropic

particles in the PNC, 2) block copolymers used as anisotropic templates to pattern par-

ticles, and 3) particle surface chemistry modification to increase dispersion. Significant

experimental progress has been made in all three of these methods, but deeper fundamental

understanding in each of these domains is necessary to continue to improve experimen-

tal control over PNCs. Efficient simulation methods like Polymer Nanocomposite Field

Theory (PNC-FT) and Theoretically Informed Langevin Dynamics (TILD) are a powerful

way to gain these insights when used alongside experiments. With regards to anisotropic

particles, PNC-FT was used to gain a better understanding of an experimentally observed

phenomenon where gold nanorods (NRs) were observed bridging cylindrical domains in a

diblock copolymer film. The simulations supported the idea that the observed orienta-

tions were indeed energetically favorable and not just kinetically trapped, and found ranges

of NR length where bridging is expected to be most favorable. With regards to using

block copolymers as anisotropic templates, in addition to the bridging nanorod study just

described, PNC-FT was used to investigate the effect of diblock domain deformation on
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particle-particle interactions when particles are confined within a diblock domain. It was

found that for an A-B diblock copolymer nanocomposite, domain deformation can lead to

stronger particle-particle attraction compared to interactions within a homopolymer melt,

with attraction strength and separation distance tunable by properties like grafted chain

length and density, particle size, and diblock A-B repulsion strength. Finally, with regards

to surface chemistry modification to increase dispersion, TILD was used to better under-

stand particle clustering behavior as a function of particle volume fraction and particle-

polymer attraction strength. It was discovered that particle cluster size distribution and

cluster structure change relatively slowly over the sharp phase boundaries present in phase

diagrams.
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CHAPTER 1 : Introduction

Polymer nanocomposites (PNCs), or polymer with nanoparticles dispersed inside them, are

an exciting class of materials with a wide variety of applications. By virtue of the high

surface area to volume ratio of the nanoparticles, small volume fractions of particles can

lead to many kinds of improvements, such as in thermal [90], optical [34, 5], electrical [22],

and mechanical [64] properties. For almost any desired property improvement, at least one

of the following factors plays a key role: 1) polymer and/or particle anisotropy, and 2) the

particle dispersion state.

Particle or polymer anisotropy is crucial for engineering materials with directional proper-

ties. For example, graphite particles were added to a polymer resin to synthesize a flexible

film with good through-plane thermal conduction [90]. The high aspect ratio of the graphite

plates were critical to allow heat to pass directly through the particles from one face of the

film to the other. Another way to achieve directed properties is to use diblock copolymers

as a template. Depending on the relative lengths of the dissimilar blocks of the diblock

chain, the polymer melt can microphase separate into anisotropic formations like lamellar

or cylindrical domains [61]. Several studies have demonstrated that lamellar templates can

preferentially direct spherical or anisotropic particles to a particular domain of the diblock

melt [79, 54, 16, 60, 51]. Other studies have shown that grain boundaries in lamellar diblock

copolymer films can be used to preferentially direct fillers like homopolymer or nanoparticles

to those defects [81, 49, 58].

The particle dispersion or aggregation state is also very important. For example, Moll et

al. have shown that in an athermal system of polymer grafted particles in a homopolymer

melt, particles arranged in a network impart greater mechanical strength than particles

arranged in spherical or sheet-like clusters [64]. That same study and several others have

explored how dramatically different aggregate structures can be achieved by manipulating

simple parameters like the polymer graft length and the polymer graft surface density [53].
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Efficient simulation methods are important for explaining and directing experimental re-

search into the development of PNC materials. There are several complementary approaches

to simulating polymer systems, including Self-Consistent Field Theory (SCFT) [61]. and

Polymer Reference Interaction Site Model (PRISM) [77]. Nanoparticles can be incorporated

into each of these methods. For example, PRISM has been used to explore how surface in-

teractions between particles and polymer influence the particle dispersion state [31, 32, 27]

Fixed particles have been added in SCFT using cavity functions to represent particles.

This method is called Hybrid Particle Field Theory (HPFT) and was first introduced by

Sides et al [79]. Our lab has extended HPFT in a method called Polymer Nanocomposite

Field Theory (PNC-FT) in which particles can be treated as field-based to more efficiently

compute density distributions of particles [47]. We have also developed a dynamic method

called Theoretically Informed Langevin Dynamics (TILD), formerly known as Dynamic

Mean Field Theory (DMFT) [10], an efficient mesoscale method which allows us to capture

approximate dynamics. Particles can be incorporated into TILD by calculating forces from

the same pair potentials used in PNC-FT.

My work has primarily made use of PNC-FT and TILD because of their flexibility and ability

to calculate real-space particle and polymer properties. In this dissertation, I describe my

efforts in 3 main directions related to anisotropy and aggregation within PNC materials:

nanorods in cylindrical diblock domains in Chapter 3, nanospheres in diblock domains in

Chapter 4, and nanoparticles with attractive particle-polymer interactions in Chapter 5.

All of this work is aimed at providing insights to help experimentalists improve the design

of specialty PNC materials.
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CHAPTER 2 : Simulation and Analysis Methods

2.1. Polymer Nanocomposite Field Theory

2.1.1. Generalized Model

In Chapters 3 and 4, diblock copolymer nanocomposite systems were simulated using both

the HPFT method and the PNC Field Theory (PNC-FT) method previously developed

in the Riggleman lab [47, 10, 48]. The diblock copolymer chains are modeled as discrete

Gaussian chains with P = PA + PB segments, where the statistical segment sizes and

monomer volumes of the two blocks are assumed to be identical. For systems with grafted

NPs, the grafted chains have chain length N . The mass of the coarse grain segments of

the polymer chains in the PNC-FT framework is distributed over a unit Gaussian, which

regularizes the theory against ultraviolet divergences. In both the HPFT and PNC-FT

approaches, NPs are introduced as cavity functions that can be carried through the particle-

to-field transformation or left as explicit particles (HPFT). This field-based representation

of particles allows us to calculate probability distributions of NPs using either the mean

field assumption or complex Langevin schemes.

The discrete Gaussian polymer chain connectivity is modeled using the harmonic bonding

potential

βUideal =

nD∑
i

P−1∑
j

3 |ri,j − ri,j+1|2

2b2
+

nGA∑
i

N−1∑
j

3 |ri,j − ri,j+1|2

2b2
(2.1)

where nD is the number of diblock chains, nGA is the number of grafted chains, and b is

the statistical size of a polymer segment. Density deviations away from the bulk density,

ρ0, are penalized using a Helfand compressibility potential [28], given by

βUex =
κ

2ρ0

∫
dr [ρ̂+(r)− ρ0]2 (2.2)

3



where ρ̂+ = ρ̂DA+ ρ̂DB + ρ̂GA+ ρ̂P + ρ̂S is the spatially varying total density and κ controls

the magnitude of the density fluctuations. In the limit κ→∞, the strictly incompressible

model is recovered. ρ̂DA, ρ̂DB, ρ̂GA, ρ̂P , and ρ̂S are the microscopic densities of the A-block

of the diblock chain, B-block of the diblock chain, grafted chains, NPs, and confining surface

respectively. A and B components are assumed to interact through a purely repulsive, Flory-

like contact potential given by

βU2 =
χ

ρ0

∫
drρ̂A(r)ρ̂B(r) (2.3)

where the Flory parameter χ quantifies the magnitude of incompatibility between A and B

components and ρ̂A and ρ̂B are the spatially varying sums of all components given A and

B chemistries, respectively. For simulations with bare NPs, the particles are assumed to

be A-like, such that ρ̂A = ρ̂DA + ρ̂P . For simulations with grafted NPs, the particles are

assumed to be neutral, so ρ̂A = ρ̂DA + ρ̂GA. In both cases, ρ̂B = ρ̂DB.

It is assumed that the mass of each polymer segment is described by a Gaussian distribution

about its center, such that ρ̂K(r), the microscopic density of polymer segment type K, is

given by

ρ̂K(r) =

∫
dr′h(r− r′)ρ̂K,c(r

′) = (h ∗ ρ̂K,c)(r) (2.4)

where the last expression introduces a shorthand notation for a convolution integral, ρ̂K,c(r)

is the distribution of polymer segment centers given by

ρ̂K,c(r) =

nK∑
i

NK∑
j

δ(r− ri,j) (2.5)

and h(r) is the Gaussian smearing function given by

h(r) =

(
1

2πa2

)3/2

e−|r|
2/2a2 (2.6)
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where a is the smearing length scale.

In Chapter 4, some NPs are treated as field-based, and some are explicitly fixed in one

position. The field-based particle density ρ̂PF (r) and explicit particle density ρ̂PE(r) are

both given by

ρ̂PK(r) = (Γ ∗ ρ̂PK,c)(r) (2.7)

where ρ̂PK represents either ρ̂PF or ρ̂PE , Γ(r − r′) is a smearing function that defines the

shape of the particle, and ρ̂PK,c(r) is the NP center distribution given by

ρ̂PK,c(r) =

nPK∑
i

δ(r− ri). (2.8)

For explicit particles, since the particle positions are fixed, ρ̂PE is a constant function of r

such that

ρ̂PE(r) =

nPE∑
i

Γ(r− ri) (2.9)

For spherical particles in Chapter 4, the particle smearing function is given by

Γ(r− r′) =
ρ0

2
erfc

(
|r− r′| −RP

ξ

)
(2.10)

where RP is the particle radius and ξ controls the length over which the density changes

from ρ0 to 0. For nanorods in Chapter 3, the particle smearing function is given by

Γ(r− r′) =
ρ0

4
erfc

(
|u · (r− r′)| − LP /2

ξ

)
erfc

(
|u× (r− r′)| −RP

ξ

)
(2.11)

where LP is the nanorod length, and u is a constant unit vector pointing in the direction

of the long axis of the nanorod. In Chapter 3, a confining surface is also used, meaning ρ̂S
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is nonzero and is given by

ρ̂S(r) =
ρ0

2
erfc

(
min(rz, Lz − rz)− TS

ξS

)
(2.12)

where rz is the z-component of r, Lz is the box size in the z-dimension, TS is the thickness

of the confining surface, and ξS is the length scale over which the surface drops from a

density of ρ0 to a density of 0.

By employing a standard Hubbard-Stratonovich particle-to-field transformation [18, 9], a

partition function can be obtained of the form

Z = z1

∫
D{w}eH[{w}] (2.13)

where z1 is a numerical prefactor containing the thermal de Broglie wavelengths and nor-

malization constants from the Gaussian functional integrals used to decouple the particle

interactions, and H is the effective Hamiltonian given by

H[{w}] =
ρ0

2κ

∫
dr w+(r)2 − iρ0

∫
dr w+(r) +

ρ0

χ

∫
dr
[
w

(+)
AB(r)2 + w

(−)
AB(r)2

]
− nD lnQD [µA, µB]− nPF lnQPF [µPF ] +

∫
dr [ρ̂PE(r) + ρ̂S(r)]wP (r)

− nGAE
∫
drσGAE(r) ln qGA(N, r).

(2.14)

Here, {w} represents the set of chemical potential fields w
(+)
AB(r), w

(−)
AB(r), and w+(r); µA

and µB are defined by µK = (h ∗ wK)(r) where

wA = i
(
w+ + w

(+)
AB

)
− w(−)

AB , (2.15)

wB = i
(
w+ + w

(+)
AB

)
+ w

(−)
AB , (2.16)

and wP is equal to wA for bare particles or iw+ for grafted particles. QD and QPF are the

partition functions for a single diblock chain and a single field-based NP, respectively. QD
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is calculated from the chain propagator q(j, r),

QD[µA, µB] =
1

V

∫
dr q(P, r) (2.17)

with the chain propagator constructed by iterating a Chapman-Kolmogorov equation

q(j + 1, r) = e−µK(r)

∫
dr Φ(r− r′)q(j, r) (2.18)

where K is either A or B depending on the type of segment j+1, Φ(r−r′) is the normalized

bond transition probability, and the initial condition is given by

q(1, r) = e−µA(r). (2.19)

QPF is given by

QPF [µPF ] =
1

V

∫
dr e−µPF (r) (2.20)

where µPF is given by

µPF (r) = (Γ ∗ wP )(r)− nGAF
nPF

(Γσ ∗ ln qGA)(r). (2.21)

For bare particles, the last term can be ignored since the number of A chains grafted to the

particles, nGAF , is 0. Γσ(r − r′) represents the distribution of grafting sites surrounding a

single NP center and is given by the Gaussian distribution function

Γσ(r− r′) =
1

σ0
exp

[
−
(
|r− r′| −RP − ξ

ξ

)2
]

(2.22)

where σ0 is a normalization factor that enforces
∫
dr Γσ(r) = 1. This function confines the

grafting sites to a homogeneous, thin shell with a thickness ∼ 2ξ and a distance RP + ξ

away from the particle center. qGA is the chain propagator for the grafted chains and has
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the same form as Equation 2.18. In the last term of Equation 2.14, nGAE is the number of

A chains grafted onto the surface of explicit NPs and σGAE is the constant distribution of

grafting sites on explicit NPs given by

σGAE(r) =

nPE∑
i

Γσ(r− ri). (2.23)

For systems with bare particles, this term can be ignored since both nGAE and σGAE are

0. Diblock A and B center densities were calculated as follows:

ρ̃DA(r) =
nD
V QD

PA∑
j=1

q(j, r)e−µA(r)q†(P − j, r) (2.24)

ρ̃DB(r) =
nD
V QD

P∑
j=PA+1

q(j, r)e−µB(r)q†(P − j, r) (2.25)

where q† is the inverse diblock propagator with the same form as Equation 2.18, but starting

from the B end of the chain, and with an initial condition given by

q(1, r) = e−µB(r). (2.26)

NP center densities were calculated using

ρ̃PF (r) =
nPF
V QPF

e−µPF (r). (2.27)

Grafted chain center densities were calculated using

ρ̃GAE = nGAE

N∑
j=1

qGA(j, r)e−µA(r)q†GA(N − j, r) (2.28)

where q†GA is the complementary propagator of the grafted chains, and also follows the same
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form as Equation 2.18 but with an initial condition given by

q(1, r) =
σGAE(r)

qGA(N, r)
e−µA(r). (2.29)

The total density for polymer segments of type X ∈ {DA,DB,GA,GAE} chains is given

by

ρ̆X(r) = (h ∗ ρ̃X)(r). (2.30)

Several figures in this work plot φDA, the local volume fraction of A-diblock segments. This

is given by

φDA(r) =
ρ̆DA(r)

ρ0
. (2.31)

2.1.2. Numerical Methods

Complex Langevin

To sample thermal fluctuations, the complex Langevin (CL) method [18, 19, 65, 46] was

used, which has been shown to be an efficient sampling technique for fluctuating polymer

field theoretic models [47, 2, 72, 71, 88]. The field variables w+, w
(+)
AB , and w

(−)
AB are sampled

while updating according to

∂wK(r)

∂t
= −λK

∂H
∂wK(r)

+ η(r, t), (2.32)

where t is not a physical time, but a pseudo integration time, wK ∈ {w+, w
(+)
AB , w

(−)
AB}, λK

is the step rate applied to wK , and η is Gaussian white noise with the statistics

〈η(r, t)〉 = 0, (2.33)〈
η(r, t)η(r′, t′)

〉
= 2λδ(t− t′)δ(r− r′). (2.34)
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The functional derivatives used in Equation 2.32 are given by:

∂H
∂w+(r)

=
ρ0

κ
w+(r)− iρ0 + iρ̆+(r) (2.35)

∂H
∂w

(+)
AB(r)

=
2ρ0

χ
w

(+)
AB(r) + i [ρ̆A(r) + ρ̆DB(r)] (2.36)

∂H
∂w

(−)
AB(r)

=
2ρ0

χ
w

(−)
AB(r) + ρ̆DB(r)− ρ̆A(r) (2.37)

where

ρ̆+ = ρ̆DA + ρ̆DB + ρ̆GA + ρ̆PF + ρ̂PE + ρ̂S (2.38)

and ρ̆A(r) depends on whether bare, A-like particles are used or grafted particles with

neutral cores are used. For bare, A-like particles,

ρ̆A = ρ̆DA + ρ̆PF + ρ̂PE , (2.39)

and for grafted particles with neutral cores,

ρ̆A = ρ̆DA + ρ̆GA. (2.40)

Note that the (r) was left off of all terms in the previous three equations to reduce clutter.

A first-order splitting scheme [55] was used to evolve the fields according to Equation 2.32.

For the CL results shown in Chapter 4, each simulation was run for 100,000 iterations after

equilibration, sampling every 50 iterations, and averaged over 20 replicates. Step sizes were

set to λ+∆t = λ
(+)
AB∆t = 0.005 and λ

(−)
AB∆t = 0.0005.
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Mean-Field Approximation

Most PNC-FT simulations described in this thesis made use of the mean-field approxima-

tion, which finds the field configuration at the saddle point where

∂H
∂w+(r)

=
∂H

∂w
(+)
AB(r)

=
∂H

∂w
(−)
AB(r)

= 0. (2.41)

The configuration that solve this system of equations is found by updating the fields wK

according to Equation 2.32, but with the Gaussian noise term set to 0.

2.1.3. Potential of Mean Force Calculation

In Chapter 4, potential of mean force (PMF) curves were generated to describe the free

energy as a function of particle separation distance. Two different types of PMF curves were

generated, which will be referred to as constrained and unconstrained PMFs. Constrained

PMFs describe the free energy of a system with two NPs under the idealized condition that

the particles are fixed to a line along the center of a cylindrical or lamellar domain, like

two beads on an infinitely tight string. Unconstrained PMFs, on the other hand, relax this

constraint and account for particles not exactly on the center line. All PMFs were generated

using 3D simulations.

Each constrained PMF was generated by running a series of HPFT simulations (i.e. nPE =

2 and nPF = 0) with two explicit NPs held fixed along the center-line of a cylindrical

or lamellar diblock domain over a range of interparticle distances. Figure 1 a) shows a

3D representation of the simulation box used to calculate the free energy of a cylindrical

system with bare 1.2 Rg diameter particles whose centers are separated by a distance of

∆r = 12.5 Rg. Here, and in the remainder of this work, Rg refers to the radius of gyration

of the diblock chains, which are held constant to a constant discretization of P = 60 in all

simulations. Figure 1 b) shows A-segment volume fraction in a 2D slice through the diagonal

of the simulation box. In both cases, red and blue regions represent regions of high and

11



a) b)
B A B

Figure 1: a) Constrained case showing 3D representation of A-segment density of cylindrical
diblock simulation with 1.2 Rg diameter NPs. High and low A-segment densities shown in
red and blue, respectively. b) A-segment density in 2D slice through diagonal of simulation
box shown in a)

low A-segment density, respectively. The change in free energy (∆F ) from each simulation

was computed using ∆F (∆r) = H(∆r)−H(∆r =∞) where ∆r is the interparticle center-

to-center distance and H is the effective Hamiltonian of the system. In each case, ∆F is

plotted against the interparticle surface-to-surface distance, ∆r −Dp, where Dp is the NP

diameter.

The unconstrained PMF was generated from a single SCFT simulation with one explicit NP

and one field-based NP. Figure 2 a) shows a 3D representation of the simulation box used

to generate the PMF for a cylindrical system with bare 1.2 Rg diameter particles. Figure

2 b) then shows the local number density of field-based NP centers in units of R−3
g . The

simulation method used here is the same as that used for the constrained PMFs, but with

the added use of field-based NPs as has been previously described and implemented [47].

Additionally, selected PMFs were generated using fully-fluctuating field theoretic simula-

tions in which thermal fluctuations were sampled using a complex Langevin implementation
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a) b)

Figure 2: a) Unconstrained case showing a 3D representation of A-segment density of
cylindrical diblock simulation with one particle fixed at z =12.5 Rg and one free 1.2 Rg
diameter NP. High and low A-segment densities shown in red and blue, respectively. b)
Number density of field-based NP centers in units of R−3

g in 2D slice through diagonal of
simulation box shown in a). This result shows that the most probable location of a second
particle (red region) is adjacent to the fixed particle.

of the PNC-FT model [47]. The free energy was calculated using

∆F (∆r)

kBT
= − ln

(
ρPF,c,center(∆r)

ρPF,c,center(∆r =∞)

)
, (2.42)

where ρFP is the field-based NP center density along the center-line of the diblock domain

in which the fixed particle resides. Density along the center-line is used to give a direct

comparison with the constrained PMFs.

2.1.4. Box Size Optimization

Box size optimization was performed in Chapters 3 and 4 prior to production simulations

by minimizing free energy per volume for bulk mean field systems with only field-based

particles. In Chapter 3, the optimization was done with no nanoparticles in the system. In

Chapter 4, the number of NPs was fixed at 2. This was done instead of holding the NP

volume fraction fixed because exactly 2 NPs were required for constrained PMF generation.
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For lamellar diblock systems, the box lengths in the y- and z-dimensions (Ly and Lz) were

held fixed while the length in the x-dimension (Lx) was varied. For cylindrical diblock

systems, a hexagonally close-packed (HCP) structure was enforced by fixing Lz and fixing

Ly/Lx =
√

3 while varying Lx. In each case, the minimization was performed by running a

series of independent simulations with varying box sizes and fitting a parabola to the free

energy vs. box size to extract the minimum of the curve.

2.1.5. Potential Energy and Entropy Calculation

Constrained PMFs in Chapter 4 were analyzed to determine whether entropic or enthalpic

effects dominated. Expressions for entropy and potential energy were derived using the

thermodynamic relationships

U = T

(
∂ logZ
∂T

)
(2.43)

and

F = U − TS (2.44)

under the mean field assumption and the assumption that both χ and κ are inversely

related to temperature. Here and below, U , TS, and F are taken to be in units of kBT .

The expressions are

∆U = − ρ0

2κ

∫
drw2

+(r)− ρ0

χ

∫
dr

(
w

(+)
AB

2
(r) + w

(−)
AB

2
(r)

)
(2.45)

−T∆S = ∆H−∆U. (2.46)

where the reference values for ∆U , T∆S, and ∆H are all at ∆r =∞. A full derivation can

be found in Appendix 7.1.
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2.1.6. Nematic Order Parameter Calculation

In order to quantify alignment of polymer chains due to nearby particles in Chapter 4,

nematic order parameter calculations were performed for several simulations. The derivation

for this order parameter is an extension of the derivation presented by Prasad and coworkers

[68], which is here adapted for a discrete Gaussian chain. The elements of the nematic order

tensor Sij (where i, j ∈ {x, y, z}) for the diblock are calculated as a function of position (r),

and are given by

Sij(r) =
b2

36Qd(N − 1)

N−1∑
s=1

(
q∇i∇jq† + q†∇i∇jq −∇iq∇jq† −∇jq∇iq†

− δij
3

[
q(∇ · ∇)q† + q†(∇ · ∇)q − 2(∇q) · (∇q†)

]) (2.47)

where q is a shorthand for q(s, r) and q† is a shorthand for q†(N − s, r). The full derivation

can be found in Appendix 7.2.

The diagonal elements Sii(r) can be interpreted as the strength of alignment of bond vectors

in the i direction at position r. Positive values indicate high bond stretching in the i

direction, and negative values indicate compression in the i direction. The bond vectors are

normalized by b, the expected bond length, but since our model employs Gaussian bonds,

there is no strict maximum length and therefore no formal restriction of the nematic order

parameter to the range −1/2 to 1.

To isolate diblock-specific effects on the polymer conformations, a residual nematic order

parameter, Sresij , is used. This parameter is given by

Sresij (r; rP1, rP2) = Sij(r; rP1, rP2)− Shij(r; rP1, rP2) (2.48)

where Shij is the nematic order for a simulation with A homopolymer instead of AB diblock,

and rP1 and rP2 are the positions of the two fixed nanoparticles.
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2.2. Theoretically Informed Langevin Dynamics

TILD allows efficient simulation of particles and polymers with approximate dynamics. A

wide variety of particle types and polymer morphologies can be incorporated, but work in

this thesis focused on bare nanoparticles with variable particle-polymer attraction.

2.2.1. Model

In Chapter 5, PNCs composed of homopolymer and spherical nanoparticles with a tunable

attractive interaction to the homopolymer were simulated using TILD. The polymers are

modeled as nA discrete Gaussian chains with P segments each. The polymer microscopic

center density is given by

ρ̂A,c(r) =

nA∑
i

P∑
j

δ(r− ri,j) (2.49)

and the smeared polymer density is given by

ρ̂A(r) = (ρ̂A,c ∗ h)(r) (2.50)

where h(r) is a Gaussian smearing function given by Equation 2.6. The segments in the

polymer chains are connected by a Gaussian bonding potential given by

βU0 =

nA∑
i

P−1∑
j

3 |ri,j − ri,j+1|2

2b2
(2.51)

To describe the particle-polymer interactions, a piecewise energy potential is introduced to

allow mathematical control of an energy well near the surface of the particle. This function
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is given by

uAP (r) =



κ erfc
(
|r−σP |

ξ

)
r ≤ σP

c0 + c1r + c2r
2 + c3r

3 σP < r < σP + ξ

4ε

[(
σLJ

r−rshift

)12
−
(

σLJ
r−rshift

)6
]

σP + ξ ≤ r

(2.52)

This function is composed of 3 pieces: a volume exclusion repulsion for r ≤ σP similar to

the spherical cavity functions that have been used in the past [47, 10, 48, 49, 50], a Lennard-

Jones tail for r ≥ σP +ξ, and a cubic spline connecting the two for σP < r < σP +ξ. In this

function, κ controls the magnitude of the volume exclusion repulsion and σP controls the

distance from the center at which the potential drops to κ/2. ε controls the depth of the

energy well near the surface of the particle. ξ controls the distance over which the potential

drops from κ to κ/2 as well as the distance from σP to the energy minimum. σLJ controls

the length scale over which the tail end of the Lennard-Jones potential approaches 0. rshift

is a shift factor to fix the energy minimum of the potential at r = σP + ξ, and is given by

rshift = σP + ξ − 21/6σLJ . (2.53)

The middle piece of the piecewise function is a cubic spline to smoothly connect the repulsive

and attractive pieces of the function. The parameters c0, c1, c2, and c3 are determined by

solving this system of linear equations:

c0 + c1σP + c2σ
2
P + c3σ

3
P = κ/2

0 + c1 + 2c2σP + 3c3σ
2
P =

κ

ξ
√
π

c0 + c1Rm + c2R
2
m + c3R

3
m = −ε

0 + c1 + 2c2Rm + 3c3R
2
m = 0
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Figure 3: Particle-polymer pair potential curves for the range of ε values used in Chapter
5.

where Rm = σP + ξ, which represents the distance from the particle center to the energy

minimum near the particle surface. Figure 3 shows uAP curves for a few of the systems

simulated in Chapter 5.

The particle center density is given by

ρ̂P,c =

nP∑
i

δ(r− ri) (2.54)

The smearing function for the nanoparticle, ΓP (r), is given by uAP (r; ε = 0), such that the

function is nonnegative everywhere. With that definition, the microscopic particle density

is given by

ρ̂P = (ρ̂P,c ∗ ΓP )(r) (2.55)

Total nonbonded interaction energies UAA, UPP , and UAP can be generalized as

βUIJ =

∫
dr

∫
dr′ρ̂I,c(r)uIJ(r− r′)ρ̂J,c(r

′) (2.56)

where uAA(r) = κ
ρ0

(h ∗ h)(r), uPP (r) = κ
ρ0

(ΓP ∗ΓP )(r), and uAP is given by Equation 2.52.
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Combining these, the total energy in the system is given by

βU = βU0 + βUAA + βUAP + βUPP . (2.57)

2.2.2. Numerical Methods

TILD simulations are performed by iteratively updating polymer and particle positions

according to an overdamped Langevin equation that ignores hydrodynamics for simplicity.

The equation is written as

drk,s
dt

= Dβ
[
f bk,s(t) + fnbk,s(t)

]
+ Θk,s (2.58)

where rk,s is the position of the sth monomer of the kth molecule, D is the monomeric

diffusion coefficient, β is 1/kBT , f bk,s is the bonded force, fnbk,s is the nonbonded force, and

Θk,s is Gaussian white noise that satisfies

〈Θk,s(t)〉 = 0 (2.59)〈
Θk,s(t)Θk′,s′(t

′)
〉

= 2Dβδk,k′δs,s′δt,t′ . (2.60)

The bond potential in Equation 2.51 leads to a bond force of

f bk,s = − 3

b2
[(rk,s − rk,s−1) + (rk,s − rk,s+1)] (2.61)

where the first term is neglected for the first segment and the second term is neglected for

the last segment of each chain. Note that the dependence on t has been removed for clarity

in the previous equation. As has been shown previously [50, 11], nonbonded forces can be

calculated efficiently from continuous density fields. In this case, ρ̃A(r, t) and ρ̃P (r, t) are

the continuous density fields for monomer and nanoparticle centers, respectively, and are

defined from the microscopic particle center densities using a first-order particle-to-mesh

(PM) technique, which is a standard method for PM Ewald summations in particle-based
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simulations of charged systems [29, 15, 20, 78]. The nonbonded force on polymer segment

s of molecule k is given by

fnbk,s(r, t) = −
∫
dr′∇uAA(r− r′)ρ̃A(r′(t))−

∫
dr′∇uAP (r− r′)ρ̃P (r′, t), (2.62)

and similarly, the nonbonded force on nanoparticle k is given by

fnbk (r, t) = −
∫
dr′∇uAP (r− r′)ρ̃A(r′(t))−

∫
dr′∇uPP (r− r′)ρ̃P (r′, t). (2.63)

The Langevin equation was discretized using the method proposed by Grønbech-Jensen and

Farago (GJF) [25], as was done in the work by Koski and coworkers [50].

2.2.3. Phase Diagram Calculation

In order to generate phase diagrams describing the macrophase separation or miscibility

of nanoparticles, a method similar to that used by Koski et al. [50] was used. Simulation

boxes with an aspect ratio (AR = Lz/Lx = Lz/Ly) of 4 or higher were initialized with

nanoparticles in the center. Once the system reached equilibrium, average profiles of local

particle volume fraction in the z-direction were computed such that

φP (z) =
〈ρP (r)〉x,y

〈ρA(r)〉x,y + 〈ρP (r)〉x,y
. (2.64)

To extract the particle volume fractions in the particle-rich and particle-poor phases, the

volume fraction curves were fitted with hyperbolic tangent curves of the form

φP,fit(z) = φP,poor +
φP,poor + φP,rich

2

(
tanh

(
wf/2− |Lz/2− z|

ξf

)
+ 1

)
, (2.65)

where φP,poor, φP,rich, wf , and ξf are parameters to extract from the best fit curve, repre-

senting the particle volume fraction of the particle-poor phase, the particle volume fraction

of the particle-rich phase, the width of the particle-rich phase, and the width of the in-
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Figure 4: Representative particle configurations from long box simulations (left column)
and corresponding particle volume fraction profiles (right column) for low to high ε values
from top to bottom.

terface between the particle-poor and particle-rich phases. Figure 4 shows representative

particle configurations and corresponding particle volume fraction profiles to demonstrate

how volume points were generated for the phase diagram. These values were calculated for

each equilibrated frame of the simulations, and the average values of φP,poor, φP,rich from

phase-separating simulations are plotted as pairs of points on a phase envelope with error

bars representing standard deviation in phase diagrams in Chapter 5.

2.2.4. Cluster Analysis

Particle clusters were defined based on a contact cutoff distance, rcut. A pair of particles

was considered to be in contact if the Euclidean distance between them was less than rcut.

Unless otherwise specified, rcut = 1.125 DP , where DP is the particle diameter determined

by the position of the first peak in gPP , the particle-particle pair correlation function for

particles of the same size with ε = 0. Any two particles for which a path could be drawn

from one to the other through particle contacts were considered part of the same cluster.
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Within those clusters, a few different measurements were taken. The number of particles

was counted in each cluster to determine cluster size distributions in different simulations.

The coordination number of each particle was calculated, defined as the number of particles

with which it was in contact.
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CHAPTER 3 : Nanorods Bridging Diblock Copolymer Domains

3.1. Introduction

Nanoparticle (NP) position and orientation within polymer nanocomposites (PNCs) play

critical roles in determining the resulting material properties. Block copolymers (BCPs)

have been shown to be useful as templates for NP-BCP self-assembly to guide nanopar-

ticles into desired positions and orientations [79, 54, 16, 60, 51]. This additional control

may enable applications like the fabrication of integrated circuits using PNCs [80]. Thus,

it is important to continue to improve our understanding of and control over NP-BCP

self-assembly. NP-BCP self-assembly is typically guided by solvent annealing or thermal

annealing a mixture of NPs and a BCP. BCPs can self-assemble into periodic, microphase-

separated morphologies, enabling preferential localization of NPs into specific microphases,

depending on the chemistry of the BCP microphases and the surface chemistry of the NPs.

Spherical NP-BCP self-assembly has been extensively studied [40, 13, 42, 43, 6, 57, 39, 94],

but co-assembly of non-spherical NPs in BCPs is still an emerging area of research. [16, 85,

86, 84, 26, 66, 67, 69] In this work, the position and orientation of nanorods (NRs) in self-

assembled BCPs with vertical domains were studied. The free energies of three different

particle orientations as a function of NR length and diameter were studied with hybrid

particle-field theory (HPFT) simulations, and orientations where the rod lies horizontally

at the film surface were found to be the most energetically favorable. The simulations

were in qualitative agreement with the experimental observation that the longer NRs prefer

bridging over centered locations and that the shorter NRs prefer the centered locations.

The simulations also reveal the existence of a wetting layer under NRs that bridge adjacent

domains, but further from the NR, the cylindrical conformation remains unperturbed.
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3.2. Methods

3.2.1. HPFT Model

Thin cylindrical diblock copolymer nanocomposite films were modeled with HPFT [79],

which is a modified version of the PNC-FT model described in section 2.1.1. Only explicit

particles were used, so nPF = 0, and the NRs were bare, so nGAE = 0. The simplified

Hamiltonian is

H[{w}] =
ρ0

2κ

∫
dr w+(r)2 − iρ0

∫
dr w+(r) +

ρ0

χ

∫
dr
[
w

(+)
AB(r)2 + w

(−)
AB(r)2

]
− nD lnQD [µA, µB] +

∫
dr [ρ̂PE(r) + ρ̂S(r)]wP (r)

(3.1)

Neutral surfaces (ρ̂S) are included as cavity functions described in 2.12 to simulate the

confinement seen in a thin film [10, 48]. The smearing length a used in equation 2.6 is 0.2

Rg where Rg is the ideal radius of gyration of the diblock copolymer

Rg =

√
P − 1

6
b. (3.2)

To compute mean-field solutions, we evolve the fields according to

(
∂wK(r)

∂t

)
= −λK

(
∂H

∂wK(r)

)
(3.3)

where λK is the relaxation coefficient for field wK and t is a fictitious time. A first-order

semi-implicit scheme [55] was used to numerically evolve the fields. For each free energy

calculation, the vertical distance between the NR and the surface played a significant role

in the resulting free energy since the interfaces are “soft”, in that the surfaces of each are

essentially a smoothed step function. In order to prevent this effect from dominating the

free energy, the vertical position of the rod relative to the surface was chosen to minimize

the free energy using Brent’s method in each simulation [8].
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3.2.2. System Dimensions

The experimental films upon which this work is based were prepared by spin-coating

PS(Mn=180,000 g mol−1)-b-P2VP(Mn=77,000 g mol−1) diblock from chloroform on sili-

con wafers, following the method of Yin et al [92]. The resulting films had a thickness of

363 nm, center-to-center distance between nearest neighbor cylinders (∆rctc) of 83 nm, and

cylinder diameter of 43 nm. Two different NR lengths were used, 70 nm and 101 nm, which,

importantly, were shorter and longer than ∆rctc, respectively.

To model this system, a diblock Gaussian chain with PA = 18 and PB = 42 was used. χP

was set to 30, which gives strong microphase separation, but is significantly lower than the

expected χP for the experimental system. This choice was made because going to higher

values of χP would significantly slow the simulations down. The size of one unit cell was

determined using the box size optimization technique on neat diblock with no confinement,

as discussed in section 2.1.4. For the neat BCP, the vertical cylinders had a ∆rctc of 5.09 Rg

and a diameter of 2.85 Rg. The thickness of the HPFT film was 9 Rg, which is sufficiently

thick for the interface to not interact. Simulation boxes with two unit cells were used to

provide enough space for NRs to fit when aligned horizontally. For comparison, in the

experimental system, ∆rctc was 6.03 Rg,exp the cylinder diameter was 3.12 Rg,exp, and the

film thickness was 26.36 Rg,exp where Rg,exp is the radius of gyration of PS(Mn=180,000

g mol−1)-b-P2VP(Mn=77,000 g mol−1) Assuming Gaussian chain statistics with equal sta-

tistical segments sizes for both blocks, we calculate Rg,exp=13.8 nm using bexp=0.68 nm

with a reference volume of 0.1 nm3 [17]. The difference in parameters in the calculations

and the experiments is likely due to the choice of χ. Higher χ leads to a larger domain

spacing relative to the neat polymer Rg.
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a) b) c)

Figure 5: Representative cylindrical diblock configurations with a a) vertical, b) centered,
and c) bridging NR at the surface.

3.3. Results and Discussion

3.3.1. Free Energy

In order to understand and predict likely positions and orientations of NRs near the surface

of a HCP cylindrical diblock film, HPFT simulations were performed with NRs of different

dimensions aligned in 3 different orientations which are referred to here as vertical, centered,

and bridging, as shown in Figure 5. NRs with a vertical orientation were centered in a

cylindrical A-domain with one end of the NR touching the surface. Centered and bridging

rods were aligned horizontally at the surface of the film, with the particle either centered

in a cylindrical A-domain or centered between two cylindrical A-domains such that the NR

bridged the two domains if long enough. Centered rods were also aligned to point towards

nearest neighbor cylindrical domains. These orientations were chosen based on commonly

seen orientations in experiments.

In order to determine which configurations were most likely to be observed in experiments,

NRs of different lengths and diameters were placed in each of the three orientations just

described, and the free energy (∆F ) of the equilibrium configuration for each was recorded.

HPFT is convenient for this purpose, because under the mean-field approximation, we have

direct access to the free energy via the effective Hamiltonian. Since the experimental NRs

are densely functionalized with short P2VP ligands, the simulations model the NR as though
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Figure 6: Mean-field free energy differences for NRs in different configurations as a function
of NR length for NRs of diameter a) 1.0 Rg, b) 1.5 Rg, and c) 2.0 Rg. The NR length in the
x-axis is normalized by the cylindrical domain nearest neighbor center-to-center distance,
∆rctc. Free energy differences in each plot are calculated relative to the free energy of a
rod of the same diameter and in the same configuration but with a length of 2 Rg, the
shortest length in each case. The positions of the 101x16 nm and 70x12 nm rods used in
experiments are marked in a) to show roughly where the experimental NR sizes fit into
these calculations.

it has the same chemistry as the minority block of the copolymer, resulting in an athermal

NR-monomer interaction with the cylinder-forming block.

Figure 6 shows the free energy calculations for all 3 NR diameters that were simulated,

such that the plots in the figure correspond to NRs of different diameters 1.0, 1.5, and 2.0

Rg from left to right. Each plot has blue, green, and red points, corresponding to vertical,

centered, or bridging NRs, respectively. Points of the same orientation are connected with

lines as a guide to the eye. The x-axis corresponds to the NR length scaled by ∆rctc, such

that at a value of 1.0, a NR perfectly extends from the center of one cylindrical domain to

the center of a nearest neighbor. The y-axis corresponds to the free energy of the system

relative to the free energy of the system with the shortest vertical NR of the same diameter

that was tested. This means that each of the 3 plots has a different reference free energy,

but that within each plot, the points are comparable to each other. Note that the lowest

vertical orientation point in each plot is 0.

The most prominent feature of the plots in figure 6 is that vertical rods of any appreciable

length always have a higher ∆F compared to the horizontal rods. At the shortest NR length
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simulated (LNR = 2Rg), the bridging state and vertical state have similar free energies.

This is because in the bridging state, the relative entropic favorability of increased contact

between NR and the surface is balanced by the relative enthalpic penalty of increased

contact between NR and PS. As LNR/∆rctc increases, the vertical state always has a greater

free energy than the two horizontal states. The free energy increases more slowly for the

horizontal states with the centered state being preferred up to LNR/∆rctc = 1.18 and then

transitioning to the bridging state with increasing LNR/∆rctc.

The HPFT predictions can be compared with the two experimental systems. For the films

with 101 nm NRs where LNR/∆rctc = 1.22, Figure 6 a) shows that the bridging state (red)

is thermodynamically favored, while the centered state is slightly less favorable and the

vertical state is highly unfavorable. We can quantify the probability of finding a rod in a

particular state S with

P (S) =
exp(−∆FS)∑

X∈{B,C,V } exp(−∆FX)
(3.4)

where B, C, and V represent the bridging, centered, and vertical states, respectively. At

the 101 nm length, (LNR/rctc,exp = 1.22) ∆FB, ∆FC , and ∆FV are about 77.4, 114.3,

and 280.6 kBT , respectively. Equation 3.4 gives P (B), P (C), and P (V ) values of 1.0,

9.0× 10−17, and 5.5× 10−89, respectively, meaning that virtually all NRs should be in the

bridging state, with negligible centered and vertical fractions. Comparing simulations with

the experimental horizontal states, only the bridging state is observed for the 101 nm NRs,

consistent with simulations. However, whereas the simulations predict that the vertical

orientation is unfavorable, AFM and SEM scans from experiments show that some 101 nm

NRS are found vertically oriented within the P2VP domain near the surface. Explanations

for this discrepancy are given later. For films with 70 nm NRs where LNR/∆rctc = 0.84,

Figure 6 a) shows that the centered bridging state is slightly more favored than the bridging

centered state and vertical is the least thermodynamically favored state. ∆FB, ∆FC , and

∆FV are about 42.6, 45.6, and 153.7 kBT , respectively, leading to probability estimates
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of P (B) = 0.95, P (C) = 0.05, and P (V ) = 5.2 × 10−49. This means the predicted ratio

of bridging to centered rods is about 20:1, and the vertical state is again expected to be

negligible. In experiments with 70 nm NRs, the bridging, the centered and vertical states

are observed with the ratio of bridging to centered states being 3.5:1. The simulation results

trend in a similar direction with the experiments in that the centered orientation is more

preferable for the shorter NRs than for the longer ones. The experimental observation

of centered NRs is consistent with the HPFT prediction, however, the results are not in

quantitative agreement with the experiments.

There are several possible explanations for the quantitative differences between experiments

and HPFT predictions. First, nanocomposite films were processed via solvent annealing

where polymer and NRs co-assemble during swelling and solvent evaporation. As a re-

sult, NRs in the dry film may be kinetically trapped in thermodynamically unfavorable or

metastable states. Due to the mean-field nature of the calculations, these kinetic effects

are not represented in the simulations. Second, the simulations do not explicitly model the

grafted polymers, and therefore these calculations would not capture any entropy associated

with the grafted polymers that may be important. Finally, the experimental χP parameter

is larger than those used in the simulations and we have assumed equal interactions (surface

energy) of both blocks with the top surface.

3.3.2. Bridging Morphology

Visualizing the simulations leads to insights about the BCP morphology around bridging

NRs that are difficult to access experimentally using SEM and AFM. Figure 7 shows the

3D field configuration and a 2D slice along the length of the NR, where the NR diameter

and length are 1 Rg and 6 Rg, respectively, which approximates the dimensions of the 101

nm NR. Both representations show that blocks from the cylindrical domain (red) wet the

underside of the bridging NR (gold) resulting in the two bridged vertical cylinders becoming

connected into one arch shaped domain. The vertical cylinders forming each ”column” of the

arch remain intact. Note that the HPFT assumes symmetric wetting at the air/polymer and
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a) b)

Figure 7: a) 3D visualization of the cylindrical domains of a simulation with NR diameter
and length of 1 Rg and 6 Rg, respectively. Red surfaces and gold-colored surfaces represent
isosurfaces at which the local A volume fraction and NR volume fraction, respectively, is
0.5. b) 2D density map of the diagonal plane taken along the length of the NR from a).
Red and blue regions represent high and low, respectively, local A volume fraction, and the
gold-colored surface matches the gold isosurface in a).

polymer/substrate interfaces. This suggests that in the experimental 101 nm NR system,

a bridging NR induces a similar arch shape, connecting the two cylindrical domains.

3.4. Conclusions

This work supported experimental efforts to use NRs to bridge cylindrical BCP domains.

Ranges of NR lengths where bridging is expected were found, which qualitatively agree

with experiments. The expected morphology of BCP films beneath the surface of bridging

NRs was discovered, which is difficult to access experimentally. This work, together with

experimental efforts, provides a promising approach for developing new self-assembled BCP-

NP devices.

30



CHAPTER 4 : Spherical Nanoparticle Interactions in Diblock Copolymer Domains

4.1. Introduction

Polymer nanocomposite (PNC) materials, or polymer melts with dispersed NPs, have be-

come a topic of increasing interest due to unique combinations of properties they can exhibit.

Compared to conventional filler materials, NPs have orders of magnitude higher surface area

per volume, allowing them to induce significant changes in material properties even at low

filler fractions [7]. PNCs have been shown to exhibit a wide variety of property enhance-

ments, including mechanical [64], optical [34, 5], thermal [90], and electrical [22] properties,

and control over NP dispersion is essential to achieving the desired effects. Significant

research effort has gone into understanding the fundamental physics that will enable fur-

ther advancements in PNC material properties for both homopolymer and diblock matrices

[7, 30, 52]

The dispersion behavior of particles is relatively well understood in so-called “athermal”

systems, where either the particle surface chemistry matches the polymer matrix chemistry,

or polymer chains of the same chemistry as the matrix chains that have been grafted to the

particles. Briefly, the dispersion depends primarily on P , the matrix degree of polymeriza-

tion; N , the graft degree of polymerization; and σ, the graft density. When P � N , the

system is in a “wet brush” regime where matrix chains and grafted chains are interdigitated,

and when P � N , the system is in a “dry brush” regime where the entropic penalty for

interdigitation is prohibitively high, and particles aggregate due to depletion—attraction

forces [59, 70, 3, 62, 93, 1, 38, 44, 87, 12, 24, 33]. However, the interactions between NPs

mediated by more complex matrices like block copolymer (BCP) melts have not been as

rigorously studied.

BCP matrices enable microphase separated domains and are often used to control NP

dispersion behavior [7, 76, 69]. This allows both enthalpic control (choice of graft chem-

istry) and entropic control (choice of graft length) over particle dispersion. The first BCP
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nanocomposite syntheses were reported in the early 1990s [75]. Since then experimental

studies have investigated the rich and complex thermodynamics in such systems, exploring,

for example, the effect of particle size on position within BCP domains [82] and the NP

loading at which macrophase separation occurs [91]. Work from Xu and coworkers has

demonstrated that bottlebrush block copolymer matrices can guide NP self-assembly into

a range of morphologies depending on volume fraction of grafted NPs [41]. Other work has

explored the localization of NPs to block copolymer defects, demonstrating, for example,

how defects in block copolymer domains can be used for directed self-assembly of nanocom-

posites with ordered NPs [45, 49] and how NP pinning at grain boundaries influences the

grain coarsening of BCP nanocomposites [73, 74]. A few studies have demonstrated the

ability to direct gold nanorods into diblock domains which could lead to materials with in-

creased thermal or electrical conductivity along those domains [16, 56, 60, 69, 14]. A recent

study showed that polymer grafted nanoplates can be directed into the favorable domain of

a lamellar diblock copolymer [51]. A superassembly approach has also been used to create

co-existing nanoplates and diblocks [35].

An alternative approach to achieve directed properties afforded by anisotropic particles

like gold nanorods would be to disperse spherical NPs into the diblock domains in a way

that they will self-assemble into long chain-like structures. However, even with spherical

NPs, interactions between NPs and BCP matrices are not fully understood. One clear

demonstration of the complex behavior of BCP nanocomposites was conducted by Lan

and coworkers [54]. They dispersed PS-grafted silica NPs in a symmetric poly(styrene-

b-butadiene) matrix and observed good dispersion with P/N . 1 in the dry-brush limit

and aggregation with P/N > 1, exactly opposite of what is observed in athermal systems

with a homopolymer matrix. Rationalizations were offered based on effective particle size

compared to lamellar spacing as well as degree of solvation at the time of ordering, but a

molecular view of this interpretation has remained elusive. Efficient simulation techniques

can be a powerful complement to experiments to better understand particle interaction

mechanisms at the molecular level.
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These types of dense systems are expensive to simulate using particle-based approaches,

whereas polymer field theory provides efficient pathways to explore BCP nanocomposites.

Several theoretical studies have been performed based on polymer field theoretic simula-

tions to elucidate the complex physics involved in BCP nanocomposites. Matsen et al.

investigated the effect of a single NP on the nearby domain interfaces in a lamellar diblock

matrix using self-consistent field theoretic (SCFT) simulations [63]. Other studies investi-

gated the distribution of many particles. For example, several researchers have used SCFT

with density functional theory (DFT) to predict particle distributions in diblock copoly-

mer domains [83, 36, 37, 23]. Sides et al. developed a hybrid particle-field (HPF) method

to predict particle dispersion while explicitly retaining particle location information [79].

Riggleman et al. have developed a framework called PNC field theory (PNC-FT) which

generalizes the HPF treatment of NPs to efficiently allow fluctuations, grafted chains, and

particle anisotropy in the simulations. Though these methods have been successfully used

to study particle distributions, little is known about pairwise interactions between NPs in

BCP domains.

Here, results are presented using PNC-FT simulations to systematically explore pairwise

interactions between spherical NPs in diblock copolymer matrices. The results suggest

that equilibrium particle spacing in diblock matrices can be finely controlled by tuning

the particle diameter, the diblock to graft degree of polymerization ratio, and the graft

density. They also show that attractive forces between particles can be much stronger in

a diblock copolymer than in a homopolymer in some cases, and the effective interaction

is mediated by both the entropy of the diblock matrix and the deformation of the A-B

interface. This ability to tune the spacing between spherical NPs opens up pathways for

anisotropic properties that would typically require more expensive anisotropic NPs such

as gold nanorods. Grafted chains reduce particle-particle interaction strength, but when

confined by domain interfaces, it is shown here that they can have a significantly reduced

extension compared to what is expected for dewetted brush chains.
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4.2. Numerical Methods and Parameters

Most results presented below were from simulations performed under the mean field (MF)

approximation, but in some cases the complex Langevin (CL) method [18, 19, 65, 46],

was used, which has been shown to efficiently sample fluctuations in polymer field theory

[47, 2, 72, 71, 88]. The fields were evolved as was done previously [10] using a semi-

implicit first-order splitting scheme [55]. In all calculations presented below, the diblock

matrix chains are discretized into P = 60 segments, the matrix chain density parameter

C = ρ0R
3
g/P = 6, and χ = 0.5. For cylindrical systems, PA = 18 and PB = 42 were used,

such that fA = 0.3. For lamellar systems, PA = PB = 30 were used, such that fA = 0.5.

For bare NP systems, an incompressibility parameter of κ = 6 was used; NP diameters were

set to 1.2 or 1.5 Rg; and the NP interfacial width parameter, ξ, and the polymer segment

smearing length scale, a, were set to 0.2 Rg. For grafted NP systems, smaller NPs with

a core diameter of 0.6 Rg were used. To avoid a sharp discontinuity at the center of the

cavity function for these particles, ξ and a were decreased to 0.1 Rg. In order to successfully

exclude polymer segments from these smaller particles, the incompressibility parameter was

increased to κ = 12. Altering these parameters in the bare NP systems did not significantly

change the resulting free energy differences. Grafted chains were discretized into either

N = 6 or N = 60 segments, giving P/N = 10 and P/N = 1, respectively.

4.3. Results and Discussion

4.3.1. Bare Nanoparticles in Cylindrical and Lamellar Forming Copolymers

In order to isolate the role of matrix and grafted chains, diblock systems with bare NPs

were studied using PNC-FT. Figure 8a) shows constrained PMFs for bare NPs of two

different sizes (DP = 1.5 Rg and 1.2 Rg) in the A domain of cylindrical and lamellar

diblock copolymers. The PMF between two NPs in a homopolymer matrix is also shown

for comparison. This system has the same input parameters as the cylindrical diblock

system with DP = 1.5 Rg, but with an A homopolymer of length P = 60 rather than

34



an A-B diblock with PA = 18 and PB = 42. These PMFs represent the free energy as a

function of distance between the surfaces of two NPs, assuming the particles are axially

constrained to the center of the cylindrical domain.

The PMFs have several common features that can be better understood by observing the

diblock morphology associated with different points on the curves. The cylindrical domain

contains two nanoparticles with diameters of 1.2 Rg and the PMF corresponding to the

primary minimum (b), activated state (c) and secondary minimum (c) are denoted by solid

circles in Figure 8a). Figures 8b)-d) show the A segment density in diagonal slices through

cylindrical 1.2 Rg diameter particle at the first three extrema in 8a). At ∆r − DP = 0

(point b), corresponding to the two particles in contact, a primary minimum in free energy

is observed. Note that the free energy is finite at and below 0 due to the soft walls of the NPs

and weak compressibility in the HPF model. When the particle surfaces are separated by a

distance of 1-2 Rg (point c), a local free energy maximum in the diblock is seen. The maxima

for the lamellar conformations are significantly lower than for the cylindrical conformations.

This reduced energy makes sense given that within a lamellar domain, a particle is confined

by a smaller surface area of A-B interface compared to cylindrical domains, and suggests

that forming particle aggregates should be easier in lamellar diblocks compared to cylindrical

diblocks. Figure 8c) shows that at this point, the slight bulges induced by the particles in

the A-B interface come together to form a region of high curvature in the interface between

the particles. When the particle surfaces are separated by a distance of 4-5 Rg (point d), the

bulges in the interface are sufficiently far apart to allow the high curvature associated with

the maximum (Figure 8c) to relax. ∆F approaches 0 at higher particle separation. For the

homopolymer (green line), the primary minimum is about a third of the cylindrical (solid

black) and lamellar (dashed black) systems for Dp = 1.5 Rg. The energy barrier is about an

order of magnitude smaller, suggesting that the microphase-separated diblock copolymer

matrix can significantly increase the strength of equilibrium particle-particle attraction. To

the best of our knowledge, experimentalists have been unable to observe the bulge in the A-

B interface depicted in 8b)-d), for reasons which are discussed later. However, the presence
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Figure 8: a) Constrained PMFs for 1.5 Rg diameter particles (black lines) and 1.2 Rg
diameter particles (red lines) in cylindrical (solid lines) and lamellar (dashed lines) diblock
domains. Black circles denote primary minimum, energy barrier, and secondary minimum
at -0.075, 1.3, and 4.3 Rg. b), c), and d) show A segment volume fraction in diagonal slices
through simulations with 1.2 Rg diameter particles whose surface separation distances are
-0.075, 1.3, and 4.3 Rg, respectively. Red regions represent high A segment volume fraction,
while blue regions represent low A segment volume fraction.
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Figure 9: Entropic (black) and enthalpic (red) contributions to the free energy (blue) for
1.2 Rg diameter NPs in a cylindrical diblock domain as a function of distance between NP
surfaces

of such a bulge around a large particle contained in a chemically similar diblock domain

has been shown in SCFT simulations in work by Matsen and Thompson [63].

The presence of an energy well at point b) is likely due to depletion-attraction interactions,

an entropic effect, but the mechanisms underlying the formation of the energy barrier and

energy well at points c) and d), respectively, are not immediately apparent. For example, in

Figure 8 b), the increase in curvature in the A-B interface could increase the volume of the

interface relative to infinite separation, causing an increase in ∆U , the enthalpic contribution

to ∆F . Alternatively, increased chain stretching near the defect could increase −T∆S, the

entropic contribution the ∆F . In order to determine how entropic and enthalpic effects

contribute to the free energy, the free energy is separated into its enthalpic and entropic

components using equations 2.45 and 2.46, respectively. Figure 9 shows the enthalpic (red

dashed) and entropic (black dotted) contributions along with the free energy for DP =

1.2Rg. The features in ∆F represent a balance of ∆U and −T∆S, although features in

−T∆S generally have a higher magnitude in this case except for the region where ∆r−DP <

0.

The unconstrained PMFs are calculated by relaxing the centerline constraint on the NPs.

Figure 10 shows these unconstrained PMFs for both 1.5 and 1.2 Rg diameter NPs using
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Figure 10: Unconstrained PMFs for 1.5 Rg (black) and 1.2 Rg (red) diameter NPs in a
cylindrical diblock domain using MF (solid) and CL (dashed) simulations

both MF and CL simulations. Without the centerline constraint, the features in the un-

constrained PMFs have magnitudes that are smaller by a factor of about 5 compared to

the corresponding constrained PMFs in Figure 8. Another key difference in the constrained

and unconstrained PMFs is the presence of a local minimum at ∆r−DP = DP (
√

3− 1) in

Figure 10 (∼ 0.9 Rg and ∼ 1.1 Rg for 1.2 Rg and 1.5 Rg diameter particles, respectively).

These minima correspond to the distance between second nearest neighbor particles in an

HCP lattice. They arise because field-based particles allow for multi-particle correlations.

Note that the CL simulations, which sample thermal fluctuations, exhibit similar features

as the MF simulations, with the exception of the local minimum from the multi-body effect

in the smaller particle size. Because of the good qualitative agreement between MF and CL

simulations, only the MF results are presented in the remainder of this article.

Because interactions between the NPs and the A-B interface are important, the effect of

quench depth (χN) on the PMF is explored next. Recalling that the order to disorder

transition (ODT) occurs at χN = 10.5 for the standard diblock model [4], the unconstrained

PMFs at moderate (χN = 30) and strong (χN = 60) segregation were compared, as shown

in Figure 11 a). Both PMFs represent cylindrical systems with particles of diameter 1.2 Rg.

A-segment density maps along the diagonal of these simulation boxes can be seen in Figure
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11 b) and c). The increased A-B repulsion in the χN = 60 simulation led to less deformation

of the A-B interface (i.e. lower curvature), which in turn leads to a lower energy barrier

to bring 2 NPs into contact. The relatively undeformed interface between the cylindrical

domain (red) and the matrix (blue) at χN = 60 partially explains why bulging, to our

knowledge, has been difficult to observe in experiments [16, 51]. Typically, BCPs have large

χN (> 30) which ensures strong microphase separation and a high free energy penalty to

perturb the A-B interface. In addition, experiments typically use particles with diameters

that are much smaller than the size of the diblock domain. Experiments by Warren and

coworkers [89] have shown that particles with diameters larger than a certain threshold tend

to disrupt the diblock structure to form onion-ring structures. For a PI-b-PEO diblock with

silica NPs, the threshold was found to be the root-mean-square-end-to-end distance of the

PEO block, which formed the diblock domain containing the NPs [89]. Combined, these

factors suggest that bulging of a diblock domain due to incorporation of particles occurs

over a narrow range of parameters. However, as shown in Figure 11, non-negligible particle-

particle interactions are still seen even with barely visible bulging, which again emphasizes

that entropic effects play a substantial role in the interactions.

After showing that diblock domains can increase the strength of effective interactions be-

tween particles, simulations were performed to determine whether this effect holds as par-

ticles chain together to form longer aggregates. These simulations contained 1, 2, or 3 co-

linear, fixed NPs within a cylindrical domain and computed the unconstrained PMF from

each relative to one of the outermost chained particles. In each simulation, DP = 1.2 Rg

and χN = 60 and the explicit particles are each placed in a chain with particle centers a

distance of 1 DP from adjacent particles. Figure 12a) shows how the PMF curves change

as a function of NP chain length. Figures 12b-d) show A-segment volume fraction in 2D

slices along the diagonal of the 3D simulation boxes associated with the 1, 2, and 3 fixed

particle curves, respectively. There is a small increase of about 0.1 kBT in the larger of

the two energy barriers for a particle to join a chain of 2 particles compared to joining a

single particle, but a negligible difference when a 3rd particle is added to the chain. This
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Figure 11: a) Unconstrained PMF for cylindrical A-B diblock system with particles of
diameter 1.2 Rg at 2 different A-B repulsion strengths. b) and c) show A-segment volume
fraction in 2D slices through the diagonals of the simulation boxes for χN = 30 and χN =
60, respectively.
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observation suggests that rod-like NPs can be fabricated using chains of spherical NPs. This

is a very attractive approach because spherical NPs are more readily available and easier

to synthesize with monodisperse sizes at low polydispersity [34].

To better understand how the microphase-separated polymer structure affects chain stretch-

ing and alignment, the nematic order parameter was calculated to quantify local chain

alignment in diblock and homopolymer simulations. Figure 13a) shows visualizations of the

nematic order parameter Sxx(r) within x-z slices through the particle center. Larger values

(deeper red) correspond to stronger alignment in the x-direction (horizontal), while smaller

values (deeper blue) correspond to stronger alignment in orthogonal directions. To see how

the patterns correspond to the locations of the diblock domains, 13b) contains a map of

diblock A volume fraction from the same slice as the ∆r −DP = 11.2 Rg simulation from

13a). Similar to what was found in Prasad et al.[68], far from either NP, these plots show

nematic order of 0 at the center of each domain due to symmetry, negative values at the

interface between domains, and positive values everywhere else. The patterns immediately

around the particles are consistent with polymer chains laying flat against the particle sur-

face, as illustrated in the schematic of polymer conformations near the particle in Figure

13d). In fact, these patterns are seen with nearly identical magnitudes in pure homopolymer

simulations as well. To focus on how the presence of the diblock affects conformations, the

nematic order parameter from corresponding homopolymer simulations is subtracted from

13a) to get Sresxx shown in 13c). Analysis of the residual nematic order shows that chains in

the neighboring B domain near the particle are compressed, illustrated in the schematic in

13d). In contrast, the layering of the chains in the immediate vicinity of the NP surface is

absent in 13b), suggesting this affect is the same as in the homopolymer. The strength of

the compression in the nearby B domain appears to change subtly as a function of particle

surface-to-surface distance. To quantify this subtle changes, line plots were taken along the

x-axis through the center of the lower particles in 13e). The largest changes occur near

x = 1.14 and x = 4.0 in these plots. Choosing xm = 1.14 and plotting the residual nematic

order from this x-value in 13f), the residual nematic order parameter is inversely correlated
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Figure 12: a) Unconstrained PMFs for strings of b) 1, c) 2, or d) 3 fixed, explicit NPs with
diameter DP = 1.2 Rg along the Z-dimension within a cylindrical diblock domain.
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to the first energy barrier and second local minimum of the associated free energy curve,

which would correspond to a direct correlation between −T∆S and the same features. This

suggests that chain compression in the neighboring B domain has some mid-range effects

on the free energy.

4.3.2. Grafted Nanoparticles

Next, the effects of polymer brushes on the interactions between NPs were investigated.

Simulations with long and short brushes were performed with N = 60 and N = 6, respec-

tively. For both systems, DP = 0.6 Rg, σ = 20 R−2
g , and P = 60. Thus, the brushes

correspond to the wet (P/N = 1) and dry (P/N = 10) brush limits in homopolymer matri-

ces respectively. Figure 14 shows the constrained PMFs for the wet (black) and dry (red)

brush cases. Comparing these PMFs to those for the bare particles, the first local minimum

in ∆F has shifted by a distance that scales approximately with
√
N , consistent with Gaus-

sian conformations of the brush. For P/N = 10, the first local minimum is also a global

minimum, similar to bare particles. However, for P/N = 1, because of steric hindrance of

the wetted chains, that first local minimum is not the global minimum, and the equilibrium

separation distance is instead around 6.5 Rg.

The brush and A block domain density profiles for the P/N = 1 and 10 systems were

determined to help inform further analysis of this system. Figure 15a) shows the diblock

A volume fraction in an x − z slice through the center of a fixed particle in a P/N = 1

simulation and labels the radial and axial directions for reference. Figures 15b) and c) show

the brush and A block domain profiles in the radial and axial directions from a particle

center, respectively. The short grafted chains of the P/N = 10 system have very similar

density profiles (i.e., symmetric) in both the radial and axial directions, suggesting that

the A-B interface does not have a strong influence on brush conformation in that case.

The longer grafted chains with P/N = 1, however, have a radial density profile that is

shorter than the axial profile, extending about half the distance due to influence of the A-B

interface. Frischknecht and coworkers previously computed brush profiles from simulations
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Figure 13: a) Sxx maps in x− z slices through the center of the lower half of the simulation
box for various particle surface-to-surface distances (∆r − DP ). All simulations here are
for DP = 1.2 Rg. c) Diblock A segment volume fraction map in x − z slice corresponding
to the 11.2 Rg nematic order slices in a) and b) for reference. b) Sresxx maps for the same
simulations as a). d) Schematic of polymer stretching and compression near a particle. e)
Sresxx profiles along the x-axis through the center of the lower particle for each simulation in
a). f) Constrained PMF (dashed blue line) plotted against residual nematic order parameter
values (solid red line) at the A-B interface next to the particle (x = 1.14) as a function of
particle-particle surface separation distance.
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Figure 14: Constrained PMFs 0.6 Rg diameter NPs where P/N = 1 (black) and P/N = 10
(red)

of polymer grafted gold nanorods in a homopolymer matrix [21] with the x-axis normalized

by ideal radius of gyration of the brush rather than the matrix, and the results presented

here are in good qualitative agreement with the lone exception of the radial direction in

the P/N = 1 case. Polymer chain alignment in the grafted systems was also investigated

by calculating residual nematic order as was done for the bare NPs (not shown). Overall,

the changes in the matrix chain conformations as the particles were brought together were

minimal as the grafts effectively screened the conformational changes.

Similar to the bare particles case, the enthalpic and entropic contributions to the changes in

the free energy as the grafted particles are brought together can be analyzed. Figures 16a)

and b) show these contributions for P/N = 10 and P/N = 1, respectively. For P/N = 10,

the first local minima for both the entropic (dotted black) and enthalpic (dashed red)

curves are less than 0, leading to a net weak attraction between the particles. However, for

P/N = 1 in Figure 16b), in the region ∆r−DP < 4Rg, where significant brush layer overlap

occurs, the entropic component is significantly higher, increasing the free energy even at the

local minimum. This can be explained by the loss of conformations available to the grafted

chains as the brush layers overlap. Additionally, the features in the enthalpic component

have a higher magnitude in the P/N = 1 case because of the stronger deformations in the
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Figure 15: a) Diblock A volume fraction map in x− z slice through center of particle in a
P/N = 1 simulation. Radial and axial directions are labelled for reference. b) A-segment
density profiles in the radial direction from a particle center. c) A-segment density profiles
in the axial direction from a particle center. Both graphs plot brush (solid) and A block
domain (dashed) profiles for P/N = 1 (black) and P/N = 10 (red).

A-B interface due to the thicker brush layer.
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Figure 16: Entropic penalty (black), potential energy (red), and free energy (blue) for
constrained systems with a) P/N = 10 and b) P/N = 1 for 0.6 Rg diameter particles in a
cylindrical diblock domain as a function of distance between particle surfaces

The enthalpic component can further be broken down into contributions from diblock and

brush chains. To decouple potential energy into brush and diblock contributions, an alter-
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native method to measure potential energy is employed using

UD =
χ

ρ0

∫
drρA,c,diblock(r)ρB,c(r) (4.1)

UG =
χ

ρ0

∫
drρA,c,grafts(r)ρB,c(r). (4.2)

Figure 17 a) shows UD and UG, as well as their sum. As expected, UD +UG (blue) matches

very closely to Equation 2.45, with the only significant difference being a lower value near

∆r − DP = 0, when the particle cores are in contact. Comparing the magnitudes of the

two components, it can be seen that the features in the potential energy curve are primarily

driven by contact between diblock A and B segments. Figure 17 b)-d) show the diblock

A density at different particle separation distances. In all three density maps, bulging can

be seen in the A-B interfaces around the particles. In Figure 17 b), potential energy is

at a minimum because the bulges merge to form relatively flat interface. In Figure 17 c),

potential energy is higher due to increased interfacial area since the bulges are beginning to

separate, producing more interfacial area and curvature. In Figure 17 d), potential energy

is approaching a constant value because the bulges are too far apart to have meaningful

interactions.

Finally, the effect of grafting density on the unconstrained PMFs are studied. Figure 18

shows unconstrained PMFs for 0.6 Rg diameter NPs with graft densities of 40, 20, and 10

R−2
g . For reference, given PS-b-P2VP with Mn = 177 kg/mol and a NP with a grafted brush

having Mn = 25.5 kg/mol, a graft density of σ = 10/R2
g corresponds to approximately 0.55

chains/nm2. Figure 18 shows that the magnitudes of the energy barriers and wells increase

linearly with increasing graft density. This suggests that the strength of NP interactions can

be tuned by adjusting the graft density. Increasing the graft density increases the effective

particle size, which increases deformation of the A-B interface, similar to increasing the core

diameter of the NP.
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Figure 17: a) A-B contact potential between graft A and diblock B, and diblock A and
diblock B b), c), and d) show diblock A segment density in diagonal slices through sim-
ulations with 0.6 Rg diameter particles with A grafts such that P/N = 1 whose surface
separation distances are 2.4, 4.9, and 7.9 Rg, respectively. Red regions represent high A
segment density, while blue regions represent low A segment density.
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g

4.4. Conclusions

In this chapter, the interactions between bare and grafted NPs in diblock copolymer domains

were quantified. Systems in which the particle diameter was similar to the width of the

BCP domain in which the particle was located were studied with field-theoretic simulations.

Although bare particles in contact exhibit a global energy minimum, chain stretching and

compression in the diblock chains can create an energy barrier on the order of several kBT .

This suggests that the ratio of chained particles to free particles could be tuned by changing

the size of the particle relative to the width of the diblock domain. For systems with

grafted particles, on the other hand, the interactions between the particles are governed by

a more nuanced interplay between entropic and enthalpic effects. The equilibrium separation

between particles can be tuned by controlling P/N , and the strength of the energy well and

energy barrier can be tuned by controlling the graft density.

This control over inter-particle spacing could be useful in several applications. For example,

NPs could be arranged in a chain along the axis of a cylindrical diblock domain, allowing for

improved thermal or electrical conductivity, or finely-tuned optical properties. The energy

barrier, which is especially strong for bare particles, could be exploited to lock in particle

chaining. If temperatures are increased high enough for particles to overcome that energy
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barrier, or some other method is used to temporarily reduce or overcome the barrier, the

particles are unlikely to escape the globally stable energy well. An application like this

could allow an alternative to dispersing nanorods into cylindrical domains, which is difficult

experimentally. This could open up new techniques for fabricating materials with directed

properties.
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CHAPTER 5 : Spherical Nanoparticles with Attractive Particle-Polymer

Interactions

5.1. Introduction

Polymer nanocomposites (PNCs) are a promising class of materials with a wide variety of

potential applications. By dispersing nanoparticles into polymers, many types of property

enhancements can be achieved, including mechanical [64], optical [34, 5], thermal [90], and

electrical [22] properties. Controlling dispersion state of particles and the interactions be-

tween particles is critical to achieving desired properties. For example, Moll et al. demon-

strated that the mechanical strength of a PNC depends on the structure of the particle

aggregates that form, with a networked particle structure leading to the highest strength

[64]. Genix et al. found that because of the different ways short and long matrix chains

can mediate interactions between particles, an optimal matrix size can be found for a given

type of bare nanoparticle that will maximize the shear modulus. One method for influenc-

ing the particle dispersion state is by modifying the surface chemistry of the particles using

short ligands [69, 51]. By tuning the surface density of the attached ligands, the strength

of effective particle-polymer attraction should be able to be varied over a continuous range.

Previous work by Hall and Schweizer used the polymer reference interaction site model

(PRISM) to study the effect of the particle-polymer attraction strength on the dispersion

state of particles [27]. They found that in an athermal PNC, particles would aggregate,

as expected, and that increasing the particle-polymer attraction strength would allow par-

ticles to disperse. They also found a counterintuitive effect where particles would return

to an aggregated state with a high enough particle-polymer attraction strength, due to

polymer-mediated bridging of particles. They produced a phase diagram delineating which

combinations of particle-polymer attraction strength and particle volume fraction would

lead to miscible states and which would lead to aggregated states. This phase diagram

showed that as volume fraction increased, the range of particle-polymer attraction strength
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in which a miscible state occurred decreased. While PRISM is a powerful tool for efficiently

generating phase information, it has some limitations. As a liquid state theory, it only has

access to radially averaged pair pair correlation function and structure factor information.

Additionally, it only has access to single phase regions, so it can’t probe regions where phase

coexistence occurs.

Phase diagrams such as these are a common way to understand and predict dispersion

state of PNCs from a few key variables. Many experimental and simulation efforts have

made phase diagrams for this purpose [27, 53, 50, 95] and they have been shown to be a

powerful tool. However, phase diagrams don’t tell the whole story about particle clustering

behavior. Koski, Ferrier, and Krook have taken preliminary steps to understand phase

behavior in situations with partial clustering but not complete aggregation [50]. In this

work, the clustering behavior of particles in PNCs is measured more quantitatively. We

show that clustering behavior changes more slowly as a function of key variables than a

phase diagram lets on. Furthermore, we show that even within a particle-rich phase, cluster

structure can change as a function of attraction strength.

5.2. Numerical Methods

Simulations of bare nanoparticles were performed using the TILD method described in

2.2.1. Polymer chains were discretized into P = 20 segments. Particles were simulated with

parameters κ = 25, σP = σLJ = 1 Rg, and ξP = 0.2 Rg. For phase diagram simulations,

a simulation box with dimensions 10 Rg × 10 Rg × 40 Rg was used with 45 × 45 × 175

collocation points used for grid-based operations. Simulations were run and analyzed as

described in Section 2.2.3. Particle-polymer attraction ε, was varied from 0 to 6 kBT at

particle volume fractions φP ranging from 0.05 to 0.15. For each ε, the simulation with a

final volume fraction of the particle-rich phase (if it exists) closest to 0.5 was used for phase

diagram generation. For cluster analysis simulations, a simulation box with dimensions 8

Rg × 8 Rg × 8 Rg was used with 63 × 63 × 63 collocation points used for grid-based

operations. Simulations were run and analyzed as described in Section 2.2.4. ε, was again
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Figure 19: Phase diagram for σP = 1.0 Rg particles as a function of φP and ε.

varied from 0 to 6 kBT at particle volume fractions φP ranging from 0.05 to 0.15.

5.3. Results and Discussion

In order to get a preliminary understanding of particle dispersion and aggregation behavior

with particle-polymer attractions, a phase diagram, seen in Figure 19, was generated as

described in Section 2.2.3. This diagram can be qualitatively compared to those produced

by Hall and Schweizer using the PRISM model [32]. Note that while ε is also used in this

work to encode the strength of polymer attraction at the particle surface, the shape of

the attractive well in the pair potential differs between the two studies. Despite the model

differences, the phase diagrams here show qualitative agreement with the PRISM-generated

phase diagrams. In both cases, at low values of ε, we see strong macrophase separation. At

intermediate values of ε, we see no macrophase separation, then at high values of ε, we once

again see macrophase separation.

The reason for this return to a macrophase-separated state at high enough particle-polymer

attraction strength is understood to be mediated by polymer chains “bridging” the gaps

between adjacent particles [31, 32, 27]. To verify that this same mechanism was at play
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here, the particle-polymer (gAP ) and particle-particle (gPP ) pair correlation functions were

examined. Figure 20 shows gPP (r) for various values of ε used (rows) and for the two

different particle sizes (columns) studied. The x-axis is scaled by the particle diameter,

DP = 2.47 Rg, which is determined by the location of the first peak in the ε = 0 case.

The dashed lines mark r/DP = 1.125, which is used as a cutoff distance for clustering

analysis, which will be discussed below. At low and high values of ε, a sharp first peak

is seen, indicating many particle-particle contacts. If polymer-mediated bridging explains

the return to phase separation in the high ε regime, we would expect the first peak in

the higher ε regime to be shifted slightly to the right to accommodate monomers between

neighboring particle surfaces. We do in fact see a slight right shift of about 0.25a where a

is the smearing length scale used in Equation 2.6. The fact that the shift is less than a full

monomer diameter can be explained by the use of “soft” potentials rather than hard-sphere

potentials.

The polymer-particle distribution functions, gAP , shown in Figure 21, provide further ev-

idence for polymer bridging. The x-axis is scaled by the particle radius, RP , defined as

RP = DP /2. For all cases, there is an expected peak at r = RP , corresponding to increased

polymer density at the particle surface. With increasing ε, the magnitude of that peak

increases, suggesting an increased amount of polymer available to bridge particles.

After seeing qualitative agreement with expected phase behavior, we sought to quantita-

tively determine what particle clustering looks like. We first measured how cluster sizes

changed over time, using the cluster definition described in Section 2.2.4. Figure 22 shows

the cluster size distribution evolution over time for simulations where φP = 0.15. Each

point contains information about the number of clusters of a particular size found in a

particular iteration of the simulation. For example, a large point at a y-value of 1 means

there were many clusters with cluster size of 1 (i.e. a lone particle), and a small point at

a y-value of 103 means that all 103 particles were part of 1 single cluster. Each plot shows

that equilibration is reached within about 1 million iterations. Intermediate values of ε
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Figure 20: Particle-particle pair correlation functions for the purely repulsive (ε = 0 kBT )
to the strongly attractive (ε = 6 kBT ) from top to bottom. The left-to-right columns show
increasing particle volume fraction.
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Figure 21: Particle-polymer pair correlation function, showing the inscrease in intensity of
the first peak as ε increases.

leads to smaller cluster size on average, while small and large values of ε lead to all particles

joining the same cluster.

By aggregating cluster size information from the last 250,000 iterations of each of these

and other DP = 2.47Rg simulations, we get a more nuanced perspective on what clustering

looks like around the phase boundaries. Figure 23 shows these equilibrium cluster size

distributions as a function of φP and ε. Rather than seeing a perfectly sharp transition

from fully clustered to fully miscible, there’s a transition period of roughly 0.5 kBT where

we see coexistence of intermediate-sized clusters with disconnected particles. The plot for

each value of φP has a dashed line showing the mean cluster size as a guide to the eye.

Looking at both the dashed lines and the actual cluster size points as φP increases, we see

the miscible window decrease, as expected.

We also wanted to better understand how cluster structure changes as a function of ε and

φP in these systems. We used the particle coordination number as a measure of this. High

coordination numbers correspond to densely packed particle clusters while low coordination

numbers correspond to more loosely packed clusters or clusters with high surface area to

volume ratio. Figure 24 shows coordination number distributions from the last 250,000
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Figure 22: Cluster size distribution as a function of time. Each chart comes from a φP = 0.15
simulation with a different value of ε. Each point represents a particular cluster size at a
particular iteration. The size of each point represents the number of clusters of that size.
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Figure 23: Cluster size distribution from last 250,000 iterations of simulations with φP =
0.05 (top), φP = 0.1 (middle), and φP = 0.15 (bottom) on a range of ε values from 0 to 6.
Dashed line represents mean cluster size for a given ε and φP .
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Figure 24: Coordination number distribution as a function of ε and φP . Each point repre-
sents a single particle from one of the last 5 simulation frames saved with 50,000 iterations
between each iteration. The dashed lines represent the mean coordination number from
those 5 frames.

iterations of simulations, and is structured in an analogous way to Figure 23. For all three

volume fractions, the coordination number distribution changes more slowly as a function

of ε than does the cluster size distribution. Even within the fully aggregated systems where

φP ≥ 0.1 and ε ≥ 4kBT , the coordination number distribution continues to increase as a

function of ε. This taken together with the cluster size distribution results suggest that

by tuning the particle-polymer attraction strength, it could be possible to target different

cluster sizes and cluster densities.

5.4. Conclusions

In this chapter, clustering behavior of PNCs with attractive particle-polymer attractions

was quantified. First, a phase diagram was generated to ensure results qualitatively aligned

with prior work. Next, cluster sizes and structures were measured to gain a more in-depth
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look at the real clustering behavior. Both cluster size distribution and coordination number

distribution data show a more nuanced view of the system, demonstrating that 1) even in

a miscible system, small clusters can form, and that 2) cluster size and structure change

more slowly than is apparent from a phase diagram.

These insights show that, while phase diagrams are powerful tools, they don’t tell the whole

story. Tuning the particle-polymer attraction strength and particle volume fraction could

allow experimentalists to target different cluster size distributions and cluster structures,

depending on the desired application.
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CHAPTER 6 : Conclusion and Outlook

In Chapter 1, we discussed the critical importance of two key effects—anisotropy and

aggregation—on the resulting properties of PNCs. The presence or absence of particle

clusters, the shape of those clusters, and the isotropy and anisotropy of the polymer in

which those particles reside determine properties like mechanical strength, conductivity,

permeability, and many other potential properties. The remaining chapters detailed work

conducted to explore those effects. Chapter 2 discussed the equilibrium and dynamic poly-

mer field theory methods used throughout the work. These methods have broad applica-

bility and have the potential to explore countless other polymer-based systems in future

studies. In Chapter 3, we explored the use of anisotropic nanoparticles—gold nanorods in

particular—to bridge vertical cylindrical diblock domains via directed self-assembly. Chap-

ter 4 investigated the potential to employ directed self-assembly towards arranging spherical

nanoparticles into chains within cylindrical diblock domains. Finally, Chapter 5 explored

the effect of tuning particle surface chemistry on the resulting particle cluster distributions.

This work has the potential to be extended and expanded in several directions that could

provide further fundamental and practical insight that could lead to improvements in spe-

cialty polymer nanocomposites. The bridging nanorod work could be extended by adding

particle entropy and multiple particle interactions into consideration. The work so far as-

sumed fixed particles, so the only entropic contributions to the total free energy came from

the polymer, and only one nanorod was included in each simulation. Using TILD with

explicit nanorods, especially multiple nanorods and multiple cylindrical domains, would

produce a more complete picture of how particles tend to arrange on the surface of the film.

This could potentially be done in a 2D simulation to reduce computational cost.

Krook and Tabedzki have already begun to extend the work in Chapter 4 by studying

nanoplates in lamellar diblock domains. They found similar interactions shown in this work,

and demonstrated close agreement between simulation and experiment. Further extension
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of this work could make use of TILD to analyze dynamic clustering of particles of different

sizes within diblock domains. On a more fundamental level, there is an open question of

the amount of “softening” of nanoparticles when they are treated as field-based rather than

explicit, and further simulations of explicit and field-based particles would enable us to

quantitatively answer that question.

Finally, for the work on attractive polymer-nanoparticle interactions, work is currently being

done to select pair potentials that more closely match experiments. The form of the pair

potentials used in this work, especially the particle-polymer pair potential, are fairly crude.

Work currently under way is making use of iterative Boltzmann inversion (IBI) to as a more

data-driven approach to designing appropriate pair potentials. The results with better pair

potentials will likely give qualitatively similar results to those in Chapter 5, but will can

be expected to be more quantitatively similar to experimental results. Since the goal is

to improve real polymer nanocomposite materials, quantitatively trustworthy results have

high importance.
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CHAPTER 7 : Appendix

7.1. Entropy and Potential Energy Derivation

To derive the expressions for the entropic and enthalpic components of the free energy,

we begin by applying the mean field approximation to our canonical partition function,

resulting in

Z = z1 exp (−H∗) (7.1)

where H∗ is the mean field Hamiltonian and the z1 term contains a factor of T 3nsites/2

where nsites = nDN + nGAnP + nPF . We then insert this expression into equation 2.43.

The resulting expression is

U =
3nsites

2
− T

(
∂H∗

∂T

)
. (7.2)

To evaluate the last term in equation 7.2, we assume that κ ∝ 1/T and χ ∝ 1/T . The only

T -dependent terms in H∗ are those containing κ and χ. The resulting expression for U in

units of kBT is

U =
3nsites

2
− ρ0

2κ

∫
drw2

+(r)− ρ0

χ

∫
dr

(
w

(+)
AB

2
(r) + w

(−)
AB

2
(r)

)
. (7.3)

Let us define Uideal and Uexcess as follows:

Uideal =
3nsites

2
(7.4)

Uexcess = − ρ0

2κ

∫
drw2

+(r)− ρ0

χ

∫
dr

(
w

(+)
AB

2
(r) + w

(−)
AB

2
(r)

)
. (7.5)
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Note that Uideal is constant across all NP separation distances ∆r. We can use the rela-

tionship

F = − logZ = − log z1 +H∗ (7.6)

in combination with equation 2.44 to find −TS. Here, let us define F0 = − log z1, which also

is constant across all NP separation distances ∆r. If we start with −TS(∆r) = F (∆r) −

U(∆r) and subtract the equation −TS(∆r = ∞) = F (∆r = ∞) − U(∆r = ∞), we get

−T∆S = ∆F −∆U , or equivalently, −T∆S = ∆H∗ −∆Uexcess.

7.2. Nematic Order Parameter Derivation

Assume we have a system with a diblock chain comprised of N beads and N − 1 harmonic

bonds attaching those beads. The probability of observing bond s ∈ [1, N − 1] at position

r with extension δr is given by the product of the propagator (q) to bead s, the inverse

propagator (q†) to bead s+ 1, and the normalized bond potential (Φ) as follows:

P (s; r, δr) =
1

Qd
q

(
s, r− 1

2
δr

)
Φ(δr)q†

(
N − s, r +

1

2
δr

)
(7.7)

Here, r is the position of the bond, taken as the halfway point between the beads it connects.

To get equation 7.7 in a more tractable form, we can approximate it with a second order

Taylor series expansion as follows:

P (s; r, δr) =
Φ(δr)

Qd

[
q(s, r)− 1

2
δr · ∇q(s, r) +

1

8
(δr · ∇)2q(s, r) +O(δr3)

]
×
[
q†(N − s, r) +

1

2
δr · ∇q†(N − s, r) +

1

8
(δr · ∇)2q†(N − s, r) +O(δr3)

]
=

Φ(δr)

Qd

[
q(s, r)q†(N − s, r) +

1

2
δr · ∇

(
q†(N − s, r)q(s, r)− q(s, r)q†(N − s, r)

)
− 1

4
δr · ∇q(s, r)δr · ∇q†(N − s, r)

+
1

8
(δr · ∇)2

(
q(s, r)q†(N − s, r) + q†(N − s, r)q(s, r)

)]
+O(δr3)

(7.8)
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The ijth component of the nematic order tensor is given by

Sij(r) =

∫
d(δr)

1

N − 1

N−1∑
s=1

P (s; r, δr)

(
δriδrj
b2

− δij
3

|δr|2

b2

)
. (7.9)

To derive expressions for the elements of S, we split P (s; r, δr) into 4 terms such that

P = P1 + P2 + P3 + P4 (7.10)

P1(s; r, δr) =
Φ(δr)

Qd
q(s, r)q†(N − s, r) (7.11)

P2(s; r, δr) =
1

2

Φ(δr)

Qd
δr · ∇

(
q†(N − s, r)q(s, r)− q(s, r)q†(N − s, r)

)
(7.12)

P3(s; r, δr) = −1

4

Φ(δr)

Qd
δr · ∇q(s, r)δr · ∇q†(N − s, r) (7.13)

P4(s; r, δr) =
1

8

Φ(δr)

Qd
(δr · ∇)2

(
q(s, r)q†(N − s, r) + q†(N − s, r)q(s, r)

)
(7.14)

Next, we use

Sij(r) =

4∑
k=1

Sij(r; k) (7.15)

where

Sij(r; k) =
1

N − 1

∫
d(δr)

N−1∑
s=1

Pk(s; r, δr)

(
δriδrj
b2

− δij
3

|δr|2

b2

)
. (7.16)

For each k ∈ [1, 4], we’ll derive the expression for one diagonal element, Sxx(r, k), and

one off-diagonal element, Sxy(r, k), and generalize for all elements. We begin with k = 1.
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Diagonal elements evaluate to 0 as shown here:

Sxx(r; 1) =
1

Qdb2(N − 1)

N−1∑
s=1

q(s, r)q†(N − s, r)

∫
d(δr)Φ(δr)

(
δr2
x −

1

3
(δr2

x + δr2
y + δr2

z)

)

=
1

Qdb2(N − 1)

N−1∑
s=1

q(s, r)q†(N − s, r)

(
b2

3
− 1

3
(3
b2

3
)

)
= 0

(7.17)

where the integral is evaluated by making use of

∫
d(δr)Φ(δr)δriδrj = δij

b2

3
. (7.18)

Off-diagonal elements also evaluate to 0 as shown here:

Sxy(r; 1) =
1

Qdb2(N − 1)

N−1∑
s=1

q(s, r)q†(N − s, r)

∫
d(δr)Φ(δr)δrxδry = 0 (7.19)

We now look at k = 2. Diagonal elements evaluate to 0 as shown here:

Sxx(r; 2) =
1

2Qdb2(N − 1)

N−1∑
s=1

∑
k∈{x,y,z}

(
q(s, r)∇kq†(N − s, r)− q†(N − s, r)∇kq(s, r)

)
×
∫
d(δr)Φ(δr)δrk

(
δr2
x −

1

3

(
δr2
x + δr2

y + δr2
z

))
= 0

(7.20)
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Off-diagonal elements also evaluate to 0 as shown here:

Sij(r; 2) =
1

2Qdb2(N − 1)

N−1∑
s=1

∑
k∈{x,y,z}

(
q(s, r)∇kq†(N − s, r)− q†(N − s, r)∇kq(s, r)

)
(7.21)

×
∫
d(δr)Φ(δr)δriδrjδrk (7.22)

= 0 (7.23)

In both of these cases, the terms evaluate to zero because
∫
d(δr)Φ(δr)δriδrjδrk = 0. The

terms associated with k = 3 are the first non-zero ones. Below is the derivation for a

diagonal term. The notation has been shortened here to save space.

Sxx(r; 3) = − 1

4Qdb2(N − 1)

∑
s

∑
k

∑
l

∇kq∇lq†
∫
d(δr)Φ(δr)δrkδrl

(
δr2
x −

1

3

(
δr2
x + δr2

y + δr2
z

))
= − 1

4Qdb2(N − 1)

∑
s

∑
k

∇kq∇kq†
∫
d(δr)Φ(δr)δr2

k

(
δr2
x −

1

3

(
δr2
x + δr2

y + δr2
z

))

= − 1

4Qdb2(N − 1)

∑
s


∇xq∇xq†

∇yq∇yq†

∇zq∇zq†

 ·


3 b
4

9 −
1
3

(
3 b

4

9 + b4

9 + b4

9

)
1 b

4

9 −
1
3

(
b4

9 + 3 b
4

9 + b4

9

)
1 b

4

9 −
1
3

(
b4

9 + b4

9 + 3 b
4

9

)



= − b2

36Qd(N − 1)

∑
s


∇xq∇xq†

∇yq∇yq†

∇zq∇zq†

 ·


3− 5
3

1− 5
3

1− 5
3


= − b2

36Qd(N − 1)

∑
s

(
2∇xq∇xq† −

2

3
(∇q) · (∇q†)

)
(7.24)

The integrals were evaluated using the following relationship:

∫
d(δr)Φ(δr)δr2

xδrkδrl =
b4

9
(3δxkδxl + δykδyl + δzkδzl) (7.25)
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And here is the derivation for an off-diagonal term:

Sxy(r; 3) = − 1

4Qdb2(N − 1)

∑
s

∑
k

∑
l

∇kq∇lq†
∫
d(δr)Φ(δr)δrxδryδrkδrl (7.26)

The integral evaluates to

∫
d(δr)Φ(δr)δrxδryδrkδrl =

b4

9
(δxkδyl + δxlδyk) (7.27)

meaning it is b4/9 in 2 cases: 1) k = x and l = y, or 2) k = y and l = x, and otherwise is

zero. With this knowledge, we can simplify equation 7.26 to

Sxy(r; 3) = − b2

36Qd(N − 1)

∑
s

(
∇xq∇yq† +∇yq∇xq†

)
(7.28)

Generalizing equations 7.24 and 7.26 to any element of S, we get

Sij(r; 3) = − b2

36Qd(N − 1)

∑
s

[
∇iq∇jq† +∇jq∇iq† −

2δij
3

(∇q) · (∇q†)
]

(7.29)

We now evaluate expression associated with k = 4. This expression has 2 terms which we

will refer to as 4a and 4b. The math looks very similar for each, so we will evaluate one term

(the one containing q∇2q†) and apply the same treatment to the other. First, we evaluate
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the expression for a diagonal term, Sxx(r; 4a):

Sxx(r; 4a) =
1

8Qdb2(N − 1)

∑
s

∑
k

∑
l

q∇k∇lq†
∫
d(δr)Φ(δr)δrkδrl

(
δr2
x −

1

3
(δr2

x + δr2
y + δr2

z)

)
=

1

8Qdb2(N − 1)

∑
s

∑
k

q∇2
kq
†
∫
d(δr)Φ(δr)δr2

k

(
δr2
x −

1

3
(δr2

x + δr2
y + δr2

z)

)

=
1

8Qdb2(N − 1)

∑
s


q∇2

xq
†

q∇2
yq
†

q∇2
zq
†

 ·


3 b
4

9 −
1
3

(
3 b

4

9 + b4

9 + b4

9

)
1 b

4

9 −
1
3

(
b4

9 + 3 b
4

9 + b4

9

)
1 b

4

9 −
1
3

(
b4

9 + b4

9 + 3 b
4

9

)



=
b2

72Qd(N − 1)

∑
s


q∇2

xq
†

q∇2
yq
†

q∇2
zq
†

 ·


3− 5
3

1− 5
3

1− 5
3


=

b2

72Qd(N − 1)

∑
s

(
2q∇2

xq
† − 2

3
q(∇ · ∇)q†

)
=

b2

36Qd(N − 1)

∑
s

(
q∇2

xq
† − 1

3
q(∇ · ∇)q†

)
(7.30)

For an off-diagonal term:

Sxy(r; 4a) =
1

8Qdb2(N − 1)

∑
s

∑
k

∑
l

q∇k∇lq†
∫
d(δr)Φ(δr)δrxδryδrkδrl

=
b2

72Qd(N − 1)

∑
s

(
q∇x∇yq† + q∇y∇xq†

)
=

b2

36Qd(N − 1)

∑
s

q∇x∇yq†

(7.31)

Generalizing equations 7.30 and 7.31 to any element of S:

Sij(r; 4a) =
b2

36Qd(N − 1)

∑
s

(
q∇i∇jq† −

δij
3
q(∇ · ∇)q†

)
(7.32)
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Applying the same process to term 4b (the term with q†∇2q) and combining with equation

7.32, we can determine that term 4 is

Sij(r; 4) =
b2

36Qd(N − 1)

∑
s

(
q∇i∇jq† + q†∇i∇jq −

δij
3

[
q(∇ · ∇)q† + q†(∇ · ∇)q

])
(7.33)

Adding the third and fourth terms (equations 7.29 and 7.33) together, we get:

Sij(r) =
b2

36Qd(N − 1)

N−1∑
s=1

(
q∇i∇jq† + q†∇i∇jq −∇iq∇jq† −∇jq∇iq†

− δij
3

[
q(∇ · ∇)q† + q†(∇ · ∇)q − 2(∇q) · (∇q†)

]) (7.34)

where, as a reminder, q is a shorthand for q(s, r) and q† is a shorthand for q†(N − s, r).
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