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Abstract—Wireless mesh networks hold the promise of rapid
and flexible deployments of communication facilities. This potential
notwithstanding, the often erratic behavior of multihop wireless
transmissions is limiting the range of applications that such
networks can target. In this paper we investigate the feasibility and
benefits of a routing protocol explicitly aimed at making wireless
mesh networks more predictable while preserving their efficiency
and flexibility. The protocol’s basic premise is the classical idea
that a multipath solution can offer resiliency to unexpected link
variations. The paper’s contributions are in demonstrating how
this can be effectively realized in a wireless context, and in offering
initial evidences of its efficacy. In particular, the paper illustrates
how routing decisions that account for link variability can be
computed in a distributed fashion, and the benefits they afford
in improving the stability of end-to-end transmission rates even in
the presence of random network fluctuations.

I. INTRODUCTION

Wireless mesh networks boast many advantages over tradi-
tional wired networks, but the wireless medium is often unpre-
dictable. This makes delivering reliable communication difficult.
Traditional solutions for overcoming network changes involve
protocols designed to react to those changes. Routing protocols
are a prime example, as they adapt forwarding decisions once
notified of network changes. However, even the most efficient
protocol has a finite reaction time, which limits its efficacy
especially in settings where changes occur relatively frequently,
as is the case in wireless mesh networks.

Awareness of those limitations is in part behind the recent
interest in multi-path solutions. This interest has manifested itself
across most layers of the protocol stack. At the link layer, the
combination of (diversity) coding schemes and multipath was for
example explored to facilitate recovery from network failures [4].
At the network layer, there have been numerous protocols
that have sought to leverage multiple paths to improve either
performance or reliability; see e.g., [13]. At the transport layer,
multipath (MP)TCP and related efforts [5], [6], [8], [17], are
among the more visible such activities. They have investigated
various performance and implementation aspects of congestion
control when using several paths simultaneously, and demon-
strated the benefits this affords. There are also many works that
explore the combination of coding schemes and multipath to
improve transmission stability over lossy networks [14], [15],
especially for real-time applications such as video [3].

In short, there is plenty of evidence that multipath solutions
increase resiliency to disruptions and links variability, because it
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is unlikely that all paths are simultaneously affected. However,
blindly seeking multiple paths can have disadvantages as well;
e.g., it may be that not all links have the same quality and com-
bining them may produce an overall poorer result. It is, therefore,
important to ensure an approach to multipath computations that
is principled and incorporates clear objectives. The challenge
is to realize a reasonable trade-off between the rigor of the
protocol’s objectives and the complexity of implementing it. For
example, the DIV-R protocol of [11] sought robust multipath
solutions by maximizing the number of next-hops at each node,
and relied on an approximate objective function amenable to a
distributed optimization solution. As shown in [10], while this
offered reasonable resiliency to link failures, it did not perform
as well when confronted to node failures.

Our goals are, therefore, twofold. First, to formulate a clear
objective function that reflects performance predictability in the
face of the many uncertainties that prevail in wireless networks.
Second, to develop a practical distributed algorithm that realizes
this objective, and evaluate its performance to better gauge the
benefits of such an approach. Our objective function calls for
computing paths that meet target (average) rate guarantees while
minimizing the variance of the rates. Rate guarantees account for
a flow’s long-term throughput. Minimizing rate variances fosters
rate stability in the presence of random link fluctuations.

Our solution relies on a distributed optimization framework
originally proposed in [18], which we extend to enable a
practical protocol implementation. The implementation assumes
the availability of local link statistics, i.e., link reliability and
transmission rates. In wireless networks, these depend on nu-
merous factors; some exogeneous such as noise and fading, and
others that are affected by the network and its operation, e.g.,
interferences, collisions, etc. There is a vast literature, e.g., [1],
[7], [16], on how to carry out measurements to estimate the
combined impact of these factors on link statistics. In this paper,
we assume the availability of such information; at least to the
extent that nodes can estimate the mean and variance of local
transmission rates. Designing and implementing such estimation
procedures is a topic for future work.

The paper describes the Distributed Reduced Variance Routing
(DRVR) multipath computation protocol, and makes two contri-
butions. The first is in developing and validating an effective
distributed optimization solution, which accounts for a number
of practical deployment aspects such as convergence and in-
feasibility detection. The second is in assessing the benefits of
such an approach compared to solutions that primarily seek to
maximize transmission rates. In particular, we show that while a978-1-4673-2447-2/12/$31.00 c© 2012 IEEE



multipath approach yields a slightly lower long-term guaranteed
rate, it substantially reduces rate fluctuations; especially at the
time-scale of relevance to real-time, interactive applications (see
Section IV-A2 for details)

The rest of the paper is organized as follows. Section II
reviews the optimization framework, discusses issues that arise
in the context of a distributed implementation, and presents
properties of the proposed distributed optimization solution.
Section III introduces our evaluation methodology, including
metrics, scenarios, and an alternate approach that will be used as
a benchmark. Section IV is devoted to evaluating the benefits of
the proposed multipath scheme, and highlighting the impact of
different parameters. Finally, Section V summarizes the paper’s
findings and discusses several ongoing extensions.

II. MINIMUM LOCAL VARIANCE ROUTING

Wireless networks are characterized by the variability of
links. At small time scales ranging from microseconds to a
few milliseconds, fading and interference are the dominant
phenomena. At mesoscales ranging from around 10 milliseconds
to a few seconds, channel variations appear in the form of
shadowing and other slow variations in channel gains. At larger
time scales, variations occur due to spatial reconfigurations
and node failures. Wireless physical layers incorporate effective
techniques to counteract microscale fading effects while medium
access (MAC) layers incorporate contention protocols to handle
microscale interference. Macroscale variations can be handled by
reconfiguring tables at the routing layer. Mesoscale variations,
however, are too fast to allow recomputation of routes and too
slow to be handled by the physical or MAC layer. Our purpose
is to introduce a routing protocol to handle variations in link
quality at these intermediate time scales.

For a precise problem formulation, consider a wireless net-
work with N nodes, and let Rij denote the transmission rate
from i to j as perceived at the routing layer. Implicit in this rate is
an average of the small time scale rates perceived at the physical
and MAC layers. As such Rij represents an average across
fading states and contention resolutions. Conventional routing
protocols assume these rates as given, and deal with variations
in Rij by reconfiguring routing tables. This is effective for long
time scale variations but ineffective for changes that happen at
intermediate time scales. To account for these variations we
explicitly model changes in these rates through a stochastic
model. Specifically, rates Rij are modeled as random variables
whose means and variances

R̂ij := E [Rij ] , σ2
ij := E

[(
Rij − R̂ij

)2]
, (1)

are available to the routing layer1. The set of nodes that can
communicate with node i, i.e., the nodes j for which R̂ij > 0,
is termed the neighborhood of i and denoted n(i). Node i knows
R̂ij and σ2

ij only for j ∈ n(i).
We consider K information flows. Without loss of generality

we assume the first K nodes, 1, . . . ,K, are the respective

1As mentioned earlier, a number of approaches are available to design effective
estimation procedures for those variables. Selecting a particular one is, however,
beyond the scope of this paper.

destinations of flows 1, . . . ,K. To handle rate variations we
implement multipath routing, which we realize through the
introduction of routing variables Tkij to control traffic splitting.
Variable Tkij represents the fraction of transmission opportuni-
ties node i allocates for transmissions to neighboring node j of
packets whose final destination is k. As such, we have for all
nodes i, ∑

k

∑
j∈n(i)

Tkij ≤ 1. (2)

If the achievable rate on link i→ j is Rij , and a fraction Tkij of
transmission opportunities is allocated to neighbor j and flow k,
the traffic that node i sends to node j for this particular flow is
TkijRij . The total flow k traffic out of node i is then the sum∑
j∈n(i) TkijRij . Conversely, the total flow k traffic into node i

includes packets
∑
j∈n(i) TkjiRji received from neighbors. The

(end-to-end) transmission rate aki available to local arrivals for
flow k at node i therefore satisfies

aki =
∑
j∈n(i)

TkijRij −
∑
j∈n(i)

TkjiRji ∀ k, i. (3)

Larger rates are favored, but the principal objective is to realize
a minimum required rate of a0,ki that exceeds the local arrival
rate for flow k at node i. If we guarantee aki ≥ a0,ki for all
nodes i and flows k, then all buffers are stable and information
is eventually delivered to the destination. However, it is not
possible to know whether aki ≥ a0,ki because the link rates
Rij that determine aki in (3) are unknown at the routing layer.
In fact, given the rate model in (1), the end to end rates aki are
random variables. In this context we reinterpret the rate aki as
the local belief that node i has regarding the actual end-to-end
rate for flow k.

We therefore proceed to let node i work with its local belief
aki in order to meet traffic requirements on average while
minimizing the variance of the rates aki. To be specific, take
expectation on both sides of (3) to write the expectation of aki,

E [aki] =
∑
j∈n(i)

TkijR̂ij −
∑
j∈n(i)

TkjiR̂ji. (4)

Likewise, the variance of aki follows from (3) as

varaki =
∑
j∈n(i)

T 2
kijσ

2
ij +

∑
j∈n(i)

T 2
kjiσ

2
ji. (5)

To satisfy traffic requirements on average we impose the con-
straint a0,ki ≤ E [aki] and search for routing variables Tkij that
result in the minimum possible sum variance

∑
i,k varaki. Using

the explicit expressions in (4) and (5), we select optimal routing
variables T ∗kij that solve the optimization problem

T ∗kij = argmin
∑
k,i,j

T 2
kijσ

2
ij +

∑
k,i,j

T 2
kjiσ

2
ji

s.t.
∑
k

∑
j∈n(i)

Tkij ≤ 1, Tkij ≥ 0,

a0,ki ≤
∑
j∈n(i)

TkijR̂ij −
∑
j∈n(i)

TkjiR̂ji. (6)

The problem defined in (6) is a convex quadratic program and so
can be solved in polynomial time. However, solving the problem



as stated, requires knowledge of the entire network, which forces
a centralized implementation. Centralized computations are not
desirable, as they induce the need to gather information about
all network nodes at a central location. This results in numerous
message exchanges, longer computation time, and frequent re-
computations as a byproduct of local changes in the network. For
this reason, a distributed solution is preferred. The next section
outlines a solution introduced in [18].

A. Distributed implementation algorithm

Distributed implementation of convex optimization algorithms
can be obtained by working in the dual domain. For that pur-
pose, [18] introduces Lagrange multipliers λki associated with
the constraints a0,ki −

∑
j∈n(i) TkijR̂ij +

∑
j∈n(i) TkjiR̂ji ≤ 0

in (6), and defines the Lagrangian as

L(Tkij ,λki) =
∑
k,i,j

T 2
kijσ

2
ij +

∑
k,i,j

T 2
kjiσ

2
ji

+ λki

(
aki −

∑
j∈n(i)

R̂ijTkij +
∑
j∈n(i)

TkjiR̂ji

)
. (7)

Define a time index n and let λki(n) be given multiplier values
at time n. Primal Lagrangian minimizers are defined as

Tkij(n) = argmin
Tkij≥0,

∑
k,j Tkij≤1

L(Tkij , λki(n)). (8)

Denote as Ski(n) the gradient component along the dual direc-
tion at λki = λki(n) obtained by evaluating the slack of the
constraint enforced by λki,

Ski(n) = a0,ki −
∑
j∈n(i)

Tkij(n)R̂ij +
∑
j∈n(i)

Tkji(n)R̂ji. (9)

It can be observed that by reordering terms in (7) we can define
local Lagrangians

Li(Tkij ,λki) = (10)∑
k,j

2T 2
kijσ

2
ij + λki

(
aki −

∑
jεn(i)

TkijR̂ij − R̂jiTkji
)
,

so as to decompose the (global) Lagrangian into the sum

L(Tkij , λki) =
∑
i

Li(Tkij , λki). (11)

Thus, to compute the Lagrangian minimizers in (8), it suffices
to find arguments that minimize local Lagrangians

Tkij(n) = argmin
Tkij≥0,

∑
k,j Tkij≤1

Li(Tkij , λki). (12)

The minimization in (12) can be expressed in closed form with
the aid of the non-negative auxiliary variable δi(n) ≥ 0. This
variable is chosen to guarantee that

∑
k,j Tkij(n) ≤ 1 when the

Tkij(n) variables are given by

Tkij(n) =

[
1

σ2
ij

(
−δi(n) + λki(n)R̂ij − λkj(n)R̂ij

)]+
, (13)

where [x]+ := max(x, 0). If for δi(n) = 0, the Tkij(n) resulting
from (13) satisfy

∑
k,j Tkij(n) ≤ 1, these variables are the

optimal solution2 to (12). Otherwise, we determine the strictly
positive δi(n) > 0 that makes the Tkij(n) resulting from (13)
satisfy

∑
k,j Tkij(n) = 1.

With the gradients available as per (9), dual variables are
updated along the gradient direction. This update is given by

λki(n+ 1) =
[
λki(n) + εkiSki(n)

]+
, (14)

where εki is the stepsize corresponding to the dual direction λki.
The algorithm determined by iterative application of (13)-(14)

computes Tkij(n) that converge to optimal routing variables T ∗kij
as the iteration index n grows. To compute the primal iterates
in (13) node i requires access to local multipliers λki(n) and
multipliers λkj(n) available at neighboring nodes j ∈ n(i). To
compute the dual iterates in (14), node i accesses local routing
variables Tkij(n) and Tkji(n) of all neighbors j ∈ n(i). We
transform (13)-(14) into the DRVR protocol in the next section.

B. DRVR Protocol

A distributed implementation of (13)-(14) requires synchro-
nizing primal and dual updates among all nodes in the network.
This is unrealistic in practice, and motivates an asynchronous
implementation in the form of a protocol, DRVR, whose op-
eration is summarized in Algorithm 1. In DRVR, each node
updates routing variables Tkij(n). Node i also updates Lagrange
multipliers λki(n) that serve as auxiliary variables used to
determine suitable values for Tkij(n). In this asynchronous
distributed implementation we further introduce local versions
of neighboring variables. We denote as λ(i)kj the values of the
multipliers of node j as stored in node i. Likewise we denote
as T (i)

kji the values of the routing variables of node j as stored
in node i. Algorithm 1 also assumes that average rates, R̂ij and
R̂ji, and variances, σ2

ij and σ2
ji, for all links in and out of node i

are available at the routing layer of node i.
1) Protocol Iterations: The core steps in DRVR are opera-

tions that correspond to (13)-(14) but using local versions of
neighboring variables. The update of the primal variables is
performed in Step 4 of Algorithm 1. The update coincides with
the expression in (13) except for the substitution of the local
copies λ(i)kj (n) for the neighboring multipliers λkj(n). The dual
variable updates correspond to steps 8 and 9, which compute
the gradient component Ski(n) and the new value of the local
dual variables λki(n + 1), respectively. In the computation of
the gradients Ski(n) we use (9) with T

(i)
kji(n)’s used in lieu of

their actual values Tkji(n). The dual variable updates in (14) and
Step 9 look the same, except that the gradient Ski(n) in (14)
is replaced in Step 9 by the local constraint slack computed in
Step 8.

Whenever a multiplier or a dual variable is updated, it is
immediately scheduled for transmission to neighboring nodes.
When the routing variable Tkji(n) is updated in Step 4, a mes-
sage with the new value of Tkji(n) is scheduled for transmission
to node j ∈ n(i) as indicated in Step 5. When this new primal
variable is received at node j, it triggers a recomputation of dual
variables, but this is beyond the purview of node i. When the
multipliers λki(n + 1) are updated in Step 9, the new values

2See [18] for details and a proof of optimality.



Algorithm 1: DRVR;
protocol at node i

Data: Link mean rates R̂ij and R̂ji for j ∈ n(i)
Data: Link variances σ2

ij and σ2
ji for j ∈ n(i)

Result: Near optimal routing variables Tij(n) for j ∈ n(i)
1 while Ski(n) ≥ γ do
2 while λ(i)

kj (n− 1) = λ
(i)
kj (τ) for all j ∈ n(i) and τ ≤ δ do

3 Update neighboring multipliers λ(i)
kj (n) = λ

(i)
kj (τ)

4 Update primal variables Tkij as per (13)

Tkij(n) =

[
1

σ2
ij

(
−δi(n) + λki(n)R̂ij − λ(i)

kj (n)R̂ji

)]+
5 Transmit primal variable Tkij(n) to node j ∈ n(i)
6 while T (i)

kji(n− 1) = T
(i)
kji(τ) for all j ∈ n(i) and τ ≤ 2δ do

7 Update neighboring routing variables T (i)
kji(n) = T

(i)
kji(τ)

8 Compute constraint slacks as per (9)

Ski(n) = a0,ki −
∑

j∈n(i)

Tkij(n)R̂ij +
∑

j∈n(i)

T
(i)
kji(n)R̂ji

9 Update dual parameters as per (14)

λki(n+ 1) = [λki(n) + εkiSki(n)]
+

10 Transmit λki(n+ 1) to all nodes j ∈ n(i)
11 Update discrete time n = n+ 1. Reset analog time τ = 0
12 end

Algorithm 2: Global stopping criteria for DRVR;
at node i

1 while τ ≤ δ′ do
2 while λ(i)

kj (n) 6= λ
(i)
kj (τ) for all j ∈ n(i) do

3 Run DRVR;
4 at node i (cf. Algorithm 1)
5 end
6 Reset analog time τ = 0
7 end

are transmitted to all neighboring nodes j ∈ n(i) as stated in
Step 10. Reception of these new dual variables at neighboring
nodes triggers recomputation of their primal variables. This
recomputation is, again, beyond the scope of action of node i.

The counterpart of the transmission steps are the reception
loops in steps 2 and 6. Here we use λ

(i)
kj (n − 1) to denote

the local version of neighboring dual variables used in the last
step and λ

(i)
kj (τ) to denote their current values. Step 2 locks

execution of DRVR until an updated dual variable λ
(i)
kj (τ) is

received from some neighbor j ∈ n(i). When this happens
we update the current value of the local multipliers λ(i)kj (n) as
indicated by Step 3 and proceed to the recomputation of primal
variables in Step 4. Observe that the dual reception loop in
Step 2 is unlocked by the transmission of a dual variable by
some neighboring node currently running Step 10 of its local
DRVR state machine. Step 6 locks execution at node i to wait
for updated primal variables from some neighbor. When a new
primal variable T

(i)
kji(τ) is received, its value is recorded into

T
(i)
kji(n) as per Step 7, and we proceed to the recomputation of

dual variables. Observe that the loop in Step 6 is unlocked when

some neighboring node updates the routing variable T (i)
kji(n) due

to the execution of Step 5 of its local DRVR state machine.
2) Protocol Convergence: Convergence is detected when

the constraint slacks Ski(n) drop below a given tolerance γ.
This is a suitable stopping criteria because constraint slacks are
elements of the gradient of the dual function. The stopping
criteria Ski(n) ≤ γ is a local check on the norm of the
gradient, which we know should vanish as the routing variable
iterates Tkij(n) approach optimal values T ∗kij . As DRVR nears
convergence variable updates stop. To avoid software blocks in
this situation, steps 2 and 6 include timers of duration δ. If δ
time units elapse without a variable update, the corresponding
wait loop is unlocked to proceed to the variable recomputations
in steps 4 and 9.

There is a distinction between local convergence, in the sense
of having local constraint slacks Ski(n) ≤ γ smaller than the
given γ tolerance, and global convergence in the sense of having
Ski(n) ≤ γ for all nodes i. It is only the latter that guarantees
proximity of Tkij(n) and T ∗kij , but only the former that can
be checked locally. It is possible that variables stop changing
in a certain neighborhood, making DRVR comply with the exit
criteria in Step 1 at some particular nodes, while iterations
continue in other places. Eventually however, changes that occur
in some part of the network propagate to other parts, but this
is moot if DRVR has declared convergence in these nodes. To
avoid this problem we introduce a global stopping criteria for
DRVR as shown in Algorithm 2. This forces the algorithm to
wait for δ′ time units before declaring convergence. If during this
waiting time a change is detected (cf. Step 2 of Algorithm 2)
the loop in Algorithm 1 is restarted. Note that the performance
of the protocol is not sensitive to an exact optimal choice of δ′

as long as the value is chosen to be sufficiently large.
Though [18] proves convergence of a synchronous version

of DRVR, the proof does not extend to an asynchronous im-
plementation. Nevertheless, empirical results show that even for
relatively small δ values that allow asynchronous computations
that are more likely to involve outdated values, DRVR converges
to the same final results, albeit in a larger number of iter-
ations. In particular, a series of experiments were performed
on networks described in Section III-C for values of δ equal
to 200, 000, 20, 000, 2, 000, 200 and 20ns. As δ decreased from
20, 000ns to 200ns, the average number of iterations required
before DRVR converged increased from around 900 to around
6, 000, but the final results were identical. It is only in the last
scenario with an unrealistically small value of δ = 20ns that
nodes claim local convergence before global convergence had
occurred. This results in incorrect final values, and highlights
that in practice a reasonable delay should be imposed before
allowing nodes to start a new computation cycle. This ensures
sufficient time to receive updates from enough neighbors.

Finally, note that although once computed the multipath routes
of DRVR minimize the need to update routing after every
network change, DRVR’s computations will occasionally have
to be restarted, e.g., when adding or removing nodes. When
those computations end, forwarding decisions must be updated,
and updates should be performed without jeopardizing network
stability. In particular, this calls for avoiding the formation of



transient loops that could quickly exhaust link bandwidth. For-
tunately, this can be readily realized through a simple adaptation
of the DIV protocol of [11], which guarantees that loops never
form. Due to space limitations, it is not possible to include
the detailed description of this adaptation, but the key to its
feasibility is that the local Lagrange multipliers of DRVR map
directly onto the “values” that DIV relies on to avoid loop
formation. Specifically, DIV allows forwarding from node i to
node j only if the value (for a given destination) of node i is
larger than that of node j. Similarly, DRVR’s routing variables
result in forwarding from node i to node j only if node i’s
multipliers are larger than those of node j. This allows a direct
mapping of DIV’s update rules onto DRVR’s operation.

III. EVALUATION METHODOLOGY

The previous section introduced DRVR that seeks predictable
transmissions in mesh networks, where the availability and
quality of wireless links vary faster than routing can adapt to.

The computational complexity of an exact solution together
with the need for a distributed approach led to a formulation that
replaced the end-to-end route selection problem by a concatena-
tion of local decisions, where rate variance was minimized under
the constraints of meeting average rate guarantees. Our goal is
next to evaluate the extent to which this approach succeeds in
minimizing end-to-end rate variations while securing end-to-end
rate guarantees.

Given the intractability of an optimal benchmark, we resort to
comparing DRVR to a heuristic that simply targets maximizing
end-to-end path availability, and therefore the odds that rate
guarantees are met. In other words, rate variations are not ex-
plicitly accounted for, and the focus is instead on selecting paths
that are least likely to experience disruptions and, therefore, rate
variations.

Next, we outline and justify the use of this “most reliable
path” (MRP) heuristic as a benchmark, and identify the metrics
we rely upon to compare MRP to DRVR. The scenarios used
for the purpose of this comparison are also introduced together
with parameters whose impact is explored.

A. Most reliable path

When links experience random quality fluctuations, a natural
option is to favor paths whose end-to-end stability/reliability is
maximal. Such paths experience the least disruptions, and can
be readily computed in a distributed fashion using only local es-
timates of link reliability. For example, links can be represented
as a Gilbert-Elliot channel [9] that alternates between “good”
and “bad” states. Assuming that the traffic load is low (high)
compared to link capacities when in a good (bad) state and that
link “failures” are independent, a most reliable path is a shortest
path with link weights set to minus the log of the probability
that the link is in its good state. The distributed computation of
MRP can, therefore, be readily accomplished using a standard
distance-vector approach, e.g., Bellman-Ford.

B. Evaluation metrics and parameters

Given our target of minimizing rate variations while offering
rate guarantees, it is natural for the evaluation to focus on metrics
that capture these goals. Two such metrics are the mean and the

standard deviation of the transmission rates of individual flows
under both DRVR and MRP. In particular, we are interested in
the extent to which DRVR’s lack of end-to-end path awareness
affects its average rate performance. Conversely, MRP’s focus
on paths that experience the least disruptions independent of rate
variability should yield average rates that outperform DRVR, but
at the cost of greater variations.

1) Average rate and rate variance: A flow’s transmission
rate is measured at the flow’s destination node and tracks both
the different rates at which the destination receives data and
the durations of the periods when each rate is in effect. More
formally, for an experiment of duration T , the average rate αki
and variance σ2

ki for a flow from node i to node k are given by

ᾱki(T ) =
1

T

∫ T

0

αki(t)dt (15)

σ̄2
ki(T ) =

1

T

∫ T

0

α2
ki(t)dt− α2

ki , (16)

where αki(t) denotes the end-to-end rate at which destination
node k receives data from source node i at time t.

Comparing variances σ̄2
ki(T ) or standard deviations σ̄ki(T )

for different protocols may yield unfair metrics as it is possible
to reduce the standard deviation of a random variable simply
by reducing its mean. To avoid this, we rely on the normalized
standard deviation σ̃ki(T ) defined as

σ̃ki(T ) =
σ̄ki(T )

ᾱki(T )
. (17)

In Section IV, we report empirical values for mean rates
ᾱDRVR
ki (T ) and ᾱMRP

ki (T ) of DRVR and MRP, as well as em-
pirical estimates of normalized standard deviations σ̃DRVR

ki (T )
and σ̃MRP

ki (T ) for DRVR and MRP.
2) Buffer space, spare capacity, and delays: In most com-

munication systems there is a trade-off between buffer space
and transmission capacity; at least within the system’s capacity
region. Our system is no exception, and the introduction of
increasingly large buffers can allow any routing to realize rate
guarantees (below capacity) when averaged over a long enough
period of time. Hence, when buffers are large enough and
enough spare capacity exists to drain buffers that have filled
up during periods of link unavailability, both DRVR and MRP
should realize the same average rate performance. Buffers can,
therefore, help DRVR mitigate its inability to account for end-to-
end transmission rates. Assessing the impact of buffers on both
a flow’s realized average rate and its rate variance3 is explored
in Section IV.

Large buffers, however, come at a cost. In particular, they
introduce additional delays while draining link down periods.
These delays can become large and amplify the impact of dis-
ruptions when network load is high so that buffers drain slowly.
The impact of these factors on DRVR’s and MRP’s ability to
benefit from larger buffers is also assessed in Section IV, which
further illustrates differences in the two protocols’ sensitivity to
network load. Because MRP selects paths solely based on their
end-to-end reliability without accounting for their capacity, it

3As a flow’s larger average rate is realized by allowing higher transmission
rates while buffers are drained, this can increase the flow’s rate variance.



tends to pack flows on the more reliable links. This can result
in overloading those. In contrast, the rate constraints built into
the optimization behind DRVR ensure that link overloads are
avoided when feasible. On the flip side, MRP tends to favor
shorter paths (fewer links) as they are usually more reliable.
This consumes resources on fewer links, while DRVR multipath
choices often result in longer, less efficient paths. Given our
focus on minimizing rate variations while meeting (as opposed to
optimizing) average rate guarantees, we focus on scenarios that
avoid penalizing either protocols because of overloaded links,
i.e., we avoid high load configurations.

C. Topologies, link capacities, and simulation scenarios

To compare DRVR and MRP, we generate a number of
representative network topologies using a method similar to
that of [12]. Specifically, for a network consisting of N nodes,
we distribute nodes uniformly at random in a square of unit
dimension. Links are then sorted by distance and the first Nd2 are
kept, where d is the average node degree targeted for the network
topology. The resulting network corresponds to a graph G(V,E)
of |V | = N vertices with average degree d, and |E| = Nd

2 edges
that reflect a node’s ability to communicate with neighbors at a
distance less than a certain maximum value. The reliability of
communications on a link is, however, based on the link’s length.
We assign values of Pb and Pd < Pb to the shortest and longest
links in the network, respectively4, and as suggested in [2] take
a link’s reliability to decrease quadratically between these two
values as a function of its length.

The next step in constructing a network topology is to assign
realistic capacities to links. All links are initially assumed to
have the same raw transmission rate C, but their actual capacity
should reflect interactions arising from transmissions among
nodes within transmission range of each other, and the resulting
selection of a reasonable transmission schedule, e.g., as would
be discovered by the 802.11 MAC protocol. To capture these
effects and realize a reasonable assignment of link capacities,
we introduce the standard assumption that interferences prohibit
any receiver from being in the transmission range of two or
more transmitting nodes or from simultaneous transmission and
reception at any given node. Writing these constraints explicitly
schedules δij are required to satisfy

n∑
k=1

δjk +

n∑
i=1

aijδij ≤ 1,

n∑
i=1

aij

n∑
k=1

δik +

n∑
i=1

aijδij ≤ 1 δij ∈ [0, 1]. (18)

In (18) δij represents the fraction of transmission opportunities
in which the link i → j is active and the aij are elements of
A, the adjacency matrix of G(V,E). The corresponding average
rate of the link i → j would be R̂ij = PijCδij where Pij is
the link reliability computed according to the description in the
previous paragraph and C is the raw transmission rate. We then
proceed to choose schedules δij that maximize a proportional

4In Section IV, we use Pb = 0.95 and Pd = 0.7.

fair rate utility Uij = log(PijCδij), i.e.,

max
δij

∑
i,j

Uij = log(PijCδij) (19)

s.t. constraints in (18)

The utility Uij seeks to approximate a reasonably fair transmis-
sion schedule across nodes. We emphasize that our formulation
of the maximum weight optimization in (19) is a dual relaxation
of the actual integer program that needs to be solved to find
optimal schedules. This relaxation has been observed to be a
reasonable approximation to the NP-hard original problem.

Once network topologies and link capacities have been gen-
erated, we consider two different operating environments.

In the first, small buffer configuration, nodes can store just
a few packets waiting to be transmitted, but those buffers are
not sufficient to hold data while a link is unavailable. In such a
setting, a flow realizes a non-zero rate only when all links on its
path are operational. As discussed earlier, the lack of buffers to
average out transient interruptions is expected to have a greater
impact on DRVR, because of its lack of explicit awareness for
end-to-end path reliability.

In the second, large buffer configuration, we introduce pro-
gressively larger buffers that can store data while transmissions
are interrupted due to a link’s unavailability. Again as mentioned
earlier, this should improve the average rate performance of both
DRVR and MRP, with both eventually (once buffers are large
enough) yielding similar average rates. With large buffers, access
to excess link capacity to drain a flow’s buffer is in proportion
to the flow’s original rate requirement.

IV. PERFORMANCE COMPARISON OF DRVR AND MRP

As mentioned earlier, their respective designs should transalate
in MRP outperforming DRVR in terms of expected rates,
whereas the converse should hold when it comes to rate vari-
ances. In this section, we quantify these differences in perfor-
mance, and show that DRVR offers an attractive compromise.

For that purpose, we rely on networks generated according to
the method of Section III-C. Given our initial intent of using
mesh networks as an alternative to traditional wired infrastruc-
tures, we focus on small topologies, i.e., around 10 nodes, which
correspond to common deployment sizes for the type of light
infrastructure we target. We expect the benefits of DRVR to,
however, remain or even increase in larger topologies, as its
ability to construct multipaths that meet rate guarantees while
minimizing variance improves with the greater path diversity
commonly available in larger topologies. To facilitate compar-
isons (between DRVR and MRP), we also rely on configurations
involving a small number of flows, i.e., either 4 flows (2 random
destinations each with 2 random sources) or 8 flows (2 random
destinations each with 4 random sources). These correspond to
light and medium load scenarios, respectively.

The nominal link capacities introduced in Section III-C are
normalized to a unit capacity, while each individual flow con-
tributes a traffic intensity of 1/25th that value. Actual link
capacities are set based on the solution of the optimization
problem (19) that seeks to account for the impact of interfer-
ences, fading, collisions, etc. Similarly, link reliabilities are set
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Fig. 1. “Instantaneous” realized end-to-end flow rates of DRVR (red dots) and
MRP (blue stars) for a sample flow in a 4-flows configuration.
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Fig. 2. Probability distribution of a sample flow’s “instantaneous” rates αki(t)
for DRVR (right red bars) and MRP (left blue bars) in a 4-flows configuration.

as discussed in Section III-C, with exponentially distributed up
and down times. The expected time between failures of link
i→ j is equal to ξPij sec, and conversely the expected duration
of failures of link i → j is ξ(1 − Pij) sec. The values Pij are
assigned as described in Section III-C, while ξ is a constant
selected so that the average channel coherence time is 122msec.
This corresponds to a pedestrian 802.11 channel operating in the
2.4 GHz band. The average rates and variances used as inputs
to Algorithm 1 are also computed as per Section III-C.

Next, we discuss results obtained for the small and large buffer
configurations mentioned earlier.

A. Small buffer scenarios

In the case of small buffers, flows realize non-zero end-to-end
rates only when there is an uninterrupted path from source to
destination. In the case of MRP that typically selects a single
(most reliable) path, a flow realizes its full target rate when all
links in the path are up, and a rate of 0 when at least one link in
the path has failed (faded). For DRVR, a flow’s realized rate is
the sum of rates achieved across all the (multiple) paths currently
open between source and destination.

1) Instantaneous rates: Fig. 1 offers an illustrative exam-
ple. It plots the “instantaneous” end-to-end rates realized by
a sample flow over a period of 10 secs. Rates are recorded
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Fig. 3. Distribution of the ratio ᾱMRP
ki (T )/ᾱDRVR

ki (T ) for experiments of
duration 3,000 secs across 1,000 different topologies (low load configuration).
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Fig. 4. Distribution of the ratio σ̃MRP
ki (T )/σ̃DRVR

ki (T ) for experiments of
duration 3,000 secs across 1,000 different topologies (low load configuration).

at random sample times and the figure displays the recorded
values for DRVR (red dots) and MRP (blue stars). The figure
highlights MRP’s bimodal rate behavior and the rate fluctua-
tions of smaller amplitude displayed by DRVR. This difference
is further highlighted in Fig. 2 that displays a histogram of
normalized (to a flow’s maximum rate) realized end-to-end flow
rates for MRP and DRVR over a total experiment duration of
now T = 1, 000sec. The histogram consists of 10 bins, with
the x−axis of Fig. 2 identifying bin boundaries, e.g., the first
bin tracks the number of normalized rate samples in the range
[0, 0.1]. MRP rate samples alternate more or less equally between
values of either 0 or 1, i.e., in the first and last bins, while
DRVR boasts a wider support for its rate samples as suggested in
Fig. 1. Specifically, under MRP the flow suffers a rate of 0 close
to 50% of the time, while the bulk of DRVR’s probability mass
is in the range αki(t) ∈ [0.3, 1]. We also note that for the sample
flow of Fig. 1, both MRP and DRVR realize similar average end-
to-end rates (around 0.5). This is, however, somewhat atypical,
as MRP’s focus on selecting paths that experience the least
disruption usually results in a higher average rate than DRVR,
but at the cost of a correspondingly higher (normalized) variance.
We explore this issue next.

Specifically, we carry out a set of experiments across a total
of 1, 000 different topologies under both light (4 flows) and
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Fig. 5. Distribution of the ratio ᾱMRP
ki (T )/ᾱDRVR

ki (T ) for experiments of du-
ration 3,000 secs across 1,000 different topologies (medium load configuration).
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Fig. 6. Distribution of the ratio σ̃MRP
ki (T )/σ̃DRVR

ki (T ) for experiments of du-
ration 3,000 secs across 1,000 different topologies (medium load configuration).

medium (8 flows) loads. Each experiment runs for a total of
T = 3, 000 secs, at the end of which the mean and normalized
standard deviation of each flow’s realized rate is recorded for
both DRVR and MRP, i.e., ᾱDRVR

ki (T ) and ᾱMRP
ki (T ), as well as

σ̃DRVR
ki (T ) and σ̃MRP

ki (T ) as given by (15)-(17). The distributions
of the ratios (MRP/DRVR) of both quantities are reported in
Figs. 3 and 4 for a 4-flow configuration, and in Figs. 5 and 6
for an 8-flow configuration. The findings from both sets of
figures are comparable. They illustrate the (slight) penalty that
DRVR pays compared to MRP when it comes to average realized
rate, and at the same time demonstrate its advantage in terms of
lowering rate variations.

The data from Figs. 3 and 5 gives median rate reductions
of 0.81 and 0.87, respectively, for DRVR over MRP. In other
words, a penalty of less than 20% in both cases. Similarly, the
probability of a rate reduction exceeding 30% under DRVR is
less than 15% in the low load configuration of Fig. 3, and even
lower at barely 3% in the medium load configuration of Fig. 5.
The slightly lower average rate penalty that DRVR experiences
at medium load is in part due to the impact of load on
MRP’s ability to route all flows on their most reliable path.
In particular, as load increases the most reliable links tend
to become over-subscribed, which then forces MRP to select
the next most reliable path for the affected flows. In contrast,
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Fig. 7. Distribution of DRVR (right red) and MRP (left blue) rates averaged
using a W = 200 msec sliding window.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean rates

D
is

tr
ib

ut
io

n 
of

 th
e 

m
ea

n 
ra

te
s

Fig. 8. Distribution of DRVR (right red) and MRP (left blue) rates averaged
using a W = 2 sec sliding window.

because DRVR distributes flows across multiple paths, it is less
likely to be forced to use a less desirable path because of
rate feasibility constraints. The effect of load notwithstanding,
DRVR does offer, as expected, meaningful improvements in
rate variability. Figs. 4 and 6 show median improvements of
about 43% and 36%, respectively, in the normalized standard
deviation of flows’ rates. The extent to which the reduction in
rate variability that DRVR affords is worth the slight loss in
average rate is likely to vary across applications. Investigating
this for several representative applications is a topic we are
actively investigating. However, this trade-off is in general likely
to depend on both the magnitude and the time-scale of the
reductions in rate variations that DRVR produces. This is a topic
we explore next.

2) Rates and rate variations across time-scales: Because
most applications are sensitive to rate variations over a specific
time-scale, we introduce a rate averaging window to compare
DRVR and MRP across different time-scales. The averaging
window measures a flow’s rate over a time interval of duration
W . We select two sample values for W , namely, W = 200 msec
and W = 2 secs. These correspond roughly to time-scales of
relevance to interactive, real-time applications, e.g., audio or
videoconf, and interactive, non-real-time applications, e.g., web
browsing. For both values of W, we compute average rate values
using a sliding window of duration W and using a sliding step
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Fig. 9. Distribution of zero-rate durations in secs for DRVR (right red) and
MRP (left blue) over a sample 3, 000 secs experiment.

of size W/20.
Comparisons between DRVR and MRP for representative

flows are presented in Figs. 7 and 8 for W = 200msec and
W = 2sec, respectively. In both cases, the network operates
at light load and links coherence time is kept5 at 122msec.
Fig. 7 shows that at a time-scale of 200msec, MRP subjects
flows to significant rate variations, while DRVR offers more even
performance. In particular, the odds that a flow receives less
than 30% of its nominal rate, an arguably severely degraded
level of performance, is less than 16% under DRVR and about
28% under MRP; a non-trivial difference. As illustrated in
Fig. 8, this difference, shrinks when the time-scale increases
to 2secs,. In this case, the odds that the flow receives less than
30% of its nominal rate is 7% under DRVR and 15% under
MRP. When looking at the converse, namely the odds that the
flow experiences a rate of 90% or more of its nominal rate,
MRP has an edge (44% vs. only 8% for DRVR). Qualitatively
similar results were observed across different topologies and for
different network loads.

Figs. 7 and 8 illustrate what may be the most important advan-
tage of DRVR over MRP. User perception is typically governed
by average communication performance during application-
specific time scales. For infinite time horizons the metrics for
DRVR and MRP coalesce to their respective (long-term) means.
As the mean of MRP is larger than that of DRVR , the former
is preferred in this scenario. However, the smaller variance
in instantaneous rates αki(t) implies that the convergence of
DRVR to its mean performance is faster than the convergence
of MRP. Thus, for smaller time windows, DRVR should offer
better user experience due to the reduced rate variability. Again,
assessing to what extent this is indeed realized for different
applications, is a topic of ongoing work.

A related perspective is presented in Fig. 9. It again considers
a given (random) topology, and gives the distribution of the
duration of zero rate periods, i.e., time intervals during which
αki(t) = 0, under DRVR (right red bars) and MRP (left blue

5Changing the link coherence time simply amounts to rescaling the results,
e.g., a decrease by a factor 10 in link coherence time transforms Fig. 7 into
Fig. 8, and conversely an increase by a factor 10 transforms Fig. 8 into Fig. 7.

	
  
Fig. 10. Normalized flow rates as a function of normalized buffer size for
DRVR (red stars) and MRP (blue circles).

bars). The figure illustrates the benefits of DRVR in ensuring
much shorter periods of complete transmission interruption. The
average length of service interruption is 47msec for DRVR and
interruption periods longer than 300msec have essentially zero
probability. For MRP the average length of service interruption is
139msec, and service interruption periods longer than 300msec
occur with probability 0.19. Repeated experiments of duration
T = 3, 000secs yielded an average time of total communication
interruption of 14secs for DRVR vs. 88secs for MRP.

B. Large buffer scenarios

The previous section offered evidence in support of the bene-
fits that DRVR offers when it comes to reducing rate variability,
especially at short time-scales. These benefits were at the cost
of lower average rates than a solution such as MRP. However,
the decrease was observed under the assumption of a network
configured with small buffers, i.e., with insufficient storage to
hold data during link down times and transmit it once the link
comes back up. This is not unreasonable since large buffers
can introduce substantial delays given standard link speeds in
wireless mesh networks. Nevertheless, it is an assumption that
penalizes DRVR and it is, therefore, of interest to explore if/how
larger buffers may improve its performance.

The benefits of buffers (for either DRVR or MRP) depend on
both the size of the buffers and the spare capacity available in
the network to (quickly) drain data that accumulated during link
down times. Fig. 10 reports on the result of an experiment carried
out at low load for different buffer sizes. The x−axis is the buffer
capacity in units normalized to a flow’s original transmission
rate, i.e., if flows transmit at a rate of 1Mbps, buffers are in
units of Megabits. The y−axis reports normalized mean rates.
A normalized rate of 1 would indicate that the buffers have been
successful at entirely eliminating the impact (on the average rate)
of link disruptions. The results (red stars and blue circles corre-
spond to normalized rates of an individual flow during a sample
experiment under DRVR and MRP, respectively) illustrate that as
expected, increasing buffer size eventually helps both DRVR and
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Fig. 11. Average flow delays as a function of normalized buffer size for
DRVR (red stars) and MRP (blue circles).

MRP6 realize average rates close to the their nominal rate. This
means that DRVR’s disadvantage vanishes, and it can be verified
that its advantage when it comes to reducing rate variability
remains7. This being said, the buffer sizes required to realize
average rates close to a flow’s nominal rate for both DRVR and
MRP are large, i.e., a few 100 Megabits assuming 1Mbps flows.
Hence, such values are unlikely to be practical, especially since
as presented next, they translate into substantial delays.

Fig. 11 reports average delays experienced by flows in a
sample topology during a 1,000secs experiment under low
load conditions, as a function of normalized buffer sizes for
DRVR (red dots) and MRP (blue circles). For DRVR, the delay is
the worst average delay across all of a flow’s paths. This reflects
that packets delayed on one path affect the delays of packets
on all other paths, and is in part responsible for the steeper
growth of DRVR’s delay with buffers. This, however, ignores the
possibility that excessively delayed data may be retransmitted on
other paths and arrive before the original copy, or that coding
be used [3], [14], [15] and allow the recovery of delayed data.
Hence, the data of Fig. 11 represents a worst case scenario
for DRVR. The combination of Figs. 10 and 11 nevertheless
illustrates that increasing buffers to eliminate the average rate
penalty caused by link rate fluctuations, translates into delays
that for both DRVR and MRP quickly become comparable to
the response time of reactive solutions, e.g., re-routing. Avoiding
such delayed reactions was one of the motivations behind DRVR,
which confirms that its preferred use is in a small buffer setting.

V. CONCLUSION

The paper introduced DRVR, a routing protocol that seeks
to deliver rate guarantees while minimizing rate variability
in wireless mesh networks. The protocol was evaluated and

6The fact that MRP requires larger buffers is in part because its single path
solution translates into higher buffer filling rates during link down times.

7A companion figure of Fig. 10 showing DRVR’s benefits when it comes to the
standard deviation of flows’ rates is not shown due to lack of space, and neither
are figures showing similar outcomes at medium and high load configurations.

compared to a solution, MRP, that focuses on maximizing long-
term throughput, independent of short-term rate variations. The
evaluation demonstrated the benefits of DRVR in delivering
reasonably stable rates over short time-scales.

There are two major directions in which the work is be-
ing extended. The first seeks to better quantify the benefits
of DRVR for actual applications. Of particular interest is the
evaluation of TCP performance to better understand the extent
to which it can benefit from reduced short-term rate variabil-
ity. A second equally important extension involves an actual
experimental evaluation. This requires not only a complete
implementation of DRVR on a wireless mesh network platform,
e.g., OpenWrt (see https://openwrt.org.), but also the design and
implementation of the link estimation procedures needed to ac-
quire the necessary link statistics information. Once completed,
this work should offer a complete and more accurate assessment
of DRVR’s potential as a protocol for wireless mesh networks.
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[11] S. Ray, R. Guérin, K. Kwong, and R. Sofia. Always acyclic distributed path
computation. IEEE/ACM Trans. Netw., 18(1):307–319, February 2010.

[12] I. Stojmenovic and X. Lin. Loop-free hybrid single-path/flooding routing
algorithms with guaranteed delivery for wireless networks. IEEE Transac-
tions on Parallel and Distributed Systems, 12(10), 2001.

[13] J. Tsai and T. Moors. A review of multipath routing protocols: From
wireless ad hoc to mesh networks. In Proc. ACoRN Early Career
Researcher Workshop on Wireless Multihop Networking, July 2006.

[14] A. Tsirigos and Z. Haas. Analysis of multipath routing - Part I: The effect
on the packet delivery ratio. IEEE Trans. Wireless Comm., 3(1), January
2004.

[15] E. Vergetis, E. Pierce, M. Blanco, and R. Guérin. Packet-level diversity:
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