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Casimir potential of a compact object enclosed by a spherical cavity
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We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of
another compact object. We express the interaction energy in terms of the objects’ scattering matrices and
translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is
an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently
separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities
of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law,
the dependence of the force on the separation of the object from the containing sphere is a universal function
of its displacement from the center of the sphere, independent of other details of the object’s electromagnetic
response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside
the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between
two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic
spheres both outside and within one another.
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I. INTRODUCTION

Casimir forces arise due to vacuum fluctuations of elec-
tromagnetic fields in the presence of static or slowly moving
conductors, or more generally, dielectric or magnetic materials
[1]. The fields obey appropriate boundary conditions on the
conductors or appropriate constitutive conditions on other
electromagnetically active objects, which result in induced
charges and currents. Due to the quantum nature of the
field, the induced charges fluctuate, shifting the energy of
the vacuum by a finite amount. This difference manifests
itself as an interaction—the Casimir force—between neutral
objects that depends on their sizes, shapes, material properties,
and relative orientations. The case of perfect conductors
is particularly simple: The Casimir force depends only
on the geometry of the configuration. Analogous Casimir
forces can arise from fluctuating scalar or fermion fields in
the presence of objects on which they obey boundary or
constitutive conditions. The electromagnetic Casimir force
is a quantum effect observable at macroscopic scales. It
has been shown to be significant in submicron-scale de-
vices as well as in the description of the interactions of
atoms and/or molecules with surfaces, prompting substan-
tial theoretical and experimental investigation over the past
decade or so.

In this article, we report computations of the force on a
small polarizable object inside an otherwise empty conducting
spherical shell as a function of its displacement from the
shell’s center—the interior analog of the Casimir-Polder
result. We further give the first exact calculation of the force
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between a metallic sphere inside a metallic spherical shell
as a function of their radii and displacement. Although we
restrict to metallic surfaces immersed in vacuum-air in this
article, the theoretical framework underlying our analysis
is universal [2], and our methods have been extended to
analogous interior configurations involving dielectric objects
immersed in dielectric media [3]. Finally, we combine our
results with earlier work on spheres [4,5] to obtain first-order
corrections to the proximity force approximation (PFA) for two
metallic spheres both outside and within one another. There
has been much interest and research in computing the Casimir
force beyond the PFA [6,7]; we answer this question in the case
of perfectly conducting spheres. Some of the results described
here were presented in an abbreviated form in an earlier Rapid
Communication [8].

In the past, there have not been many studies of the
Casimir force in closed cavities, despite the fact that cavity
configurations are experimentally realizable. Marachevsky [9]
computed the energy of a dilute dielectric sphere and a
dipole at its center, and recently he studied the interaction
of parallel plates inside a cylinder [10]; Brevik et al. [11]
studied concentric dielectric spheres, and Dalvit et al. [12]
studied the interaction of a cylinder inside a cylinder. Recent
theoretical advances [2] (see also precursors Refs. [4,13,14]) in
the study of the Casimir force have made it possible to analyze
a wide variety of geometries and our investigation of the
interior case is an example of configurations made accessible
by these methods. In this article, we only qualitatively
summarize the path integral formalism to serve as a reminder
for the reader. For an extensive introduction, a review of
previous work, and further references, we refer the reader to
Ref. [2].

The electromagnetic Casimir energy of an arbitrary con-
figuration C of objects can be calculated from the partition
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function ZC(κ),

E[C] = − h̄c

2π

∫ ∞

0
dκ log

ZC(κ)

Z0(κ)
, (1)

where ZC(κ) is obtained from the Minkowski space functional
integral Z(T ) = ∫

DAe
i
h̄
S[T ] (where S[T ] is the electromag-

netic action evaluated from t = 0 to t = T ) after decomposing
the fields E into their Fourier modes and Wick-rotating
to imaginary time—κ being the imaginary frequency. The
restriction κ � 0 allows for E(icκ) and E∗(icκ) to be consid-
ered independently since E is real. We subtract the Casimir
energy at a convenient location (described by Z0 in the
denominator of the log) to remove the cutoff-dependent terms
in the unrenormalized energy, since such contributions arise
from the objects individually.

The spatial configuration of interacting objects manifests
itself physically as a continuity condition that the fluctuating
field E obeys on their surfaces. It is possible to trade the
constraints on E for fluctuating sources [2,4,15]. Then the
functional integral over the fields becomes free of constraints
and can be performed up to a multiplicative constant. Since
the path integral over the free fields is independent of the
location of the objects in space, the multiplicative constant
is canceled when dividing by the partition function for the
reference configuration. This leaves a functional integral
over the fluctuating sources on each object α, in which the
action is expressed as a functional of the sources and the
classical field Ecl they produce. By superposition, we write
Ecl = ∑

α Eα,cl, which allows the action to be written as a
sum over the self- and interactions of all the objects in the
system.

With the choice of convenient bases, we can expand Eα,cl in
terms of multipole fields, generated by the multipole moments
of the sources induced on �α . We can express these multipole
fields in terms of the transition matrix T = (S − I)/2 of the
object under consideration (where S is its scattering matrix)
and the multipole sources. The self-action of the sources
on each object can, therefore, be written entirely in terms
of the multipole moments and its T matrix. Similarly, we
can express the interaction of two different objects in terms
of their multipoles and a translation matrix which relates
their coordinate systems in the appropriate bases. Finally, the
functional integral over the multipole moments of the sources
can be performed, leaving an expression for the Casimir
energy in terms of the objects’ T matrices and the translation
matrices.

We are interested in a situation where one object, the
internal (subscript i), is enclosed entirely within a cavity of
another, the external object (subscript e). The polarizable
internal object interacts with fields scattered inside the cavity
in which it is immersed. Therefore, the T matrix of the external
object relevant to the interior case differs from the T matrix
that describes scattered waves outside the external object.
Following Ref. [2], we denote the T matrices of the internal
and external objects by T ee

i and T ii
e , respectively, where the

subscript denotes the object and the superscripts denote the
relevant scattering amplitude (T ee being the standard T matrix
of an object). For conducting boundary conditions on the cavity
of the external object, T ii

e = [T ee
e ]−1, where T ee

e would be the
standard T matrix for scattering exterior to a conductor in the

shape of the cavity. Additionally, the translation matrices in the
interior problem are different (V instead of U , as employed in
Refs. [4,16]) because we are interested in quantum fluctuations
internal to the cavity and external to the internal object. The
V matrices appear because they relate regular waves to outgo-
ing waves as opposed to the U matrices that relate outgoing
waves to outgoing waves. With these modifications, Eq. (1)
evaluates to

E = h̄c

2π

∫ ∞

0
dκ ln

det
(
I − T ii

e Ve,iT ee
i Vi,e

)
det

(
I − T ii

e T ee
i

) . (2)

The dielectric properties of the two objects and the medium
separating them inside the cavity are encoded in the respective
T and V matrices. The denominator subtracts the energy
when the centers of the two objects coincide (as opposed
to infinitely separated in an exterior problem [4,16]). In this
way we eliminate the cutoff-dependent Casimir energy of the
dipole at the center of the sphere [9]. For a detailed discussion,
we refer the reader to Ref. [2].

Equations (2) can be evaluated exactly for certain geome-
tries for which the T and V matrices are easily calculable in a
convenient basis. The case of spherically symmetric dielectric
objects is particularly simple because their T matrices are
diagonal in the basis of spherical wave functions. In this
article, we provide results for a metallic sphere inside an
otherwise empty metallic spherical shell, while dielectric
objects immersed in a dielectric medium are treated in
Ref. [3].

The matrix identity ln detM = Tr lnM, allows for a simple
physical interpretation of Eq. (2). We can express the Casimir
energy as a series, E = h̄c/2π

∫
dκTr(N + 1

2N 2 + · · ·), over
the matrix N = T ii

e Ve,iT ee
i Vi,e, where N describes a wave

that travels from one object to the other and back [4]. In
general, all terms in this series are important, illustrating the
fundamentally non-two-body nature of the Casimir force.
The rate of convergence of this series depends on the size
of the internal object relative to the separation of its surface
from that of the cavity.

First we consider an object that is small compared to the
size of the cavity. Then the first term in the series expansion
of Eq. (2), E = h̄c/2π

∫
dκTrN , already gives an excellent

approximation to the energy. Furthermore, in this limit the
Casimir energy is dominated by the lowest frequency contribu-
tions from the lowest partial waves in T ee

i . In a spherical basis,
the leading terms in the electromagneticT matrix are,T λλ

lml′m′ ∼
κl+l′+1 andT λσ

lml′m′ ∼ κl+l′+2 for λ �= σ , where l = 1,2, . . ., and
λ and σ label the polarizations E (electric) or M (magnetic).
The leading contribution to the Casimir force comes from the
orientation-dependent dipole response of the internal object
to a dipole field, where the internal object can be charac-
terized by its polarizability tensor, α

M/E

mm′ = 3
2κ−3T M/E

1m1m′ (see
Ref. [17]).

Now we fix the external object to be a conducting spherical
shell of radius R and define a to be the displacement of the
center of the internal object from the center of the shell.
To leading order in r/R (where r is the typical size of
the internal object), the Casimir energy can be expressed

052507-2



CASIMIR POTENTIAL OF A COMPACT OBJECT . . . PHYSICAL REVIEW A 82, 052507 (2010)

as [8]

3πR4

h̄c
E(a/R) = [f E(a/R) − f E(0)]Tr αE + gE(a/R)

× (
2αE

zz − αE
xx − αE

yy

) + (E ↔ M) + · · · ,
(3)

where the polarizability tensor αmm′ ∼ r3 has been expressed
in a Cartesian basis and “+ · · ·” denotes terms that are higher
order in r/R. The functions f and g are plotted in Fig. 5
and their functional forms are given in Sec. V. Equation (3)
describes the interaction of a polarizable object (an atom,
for instance) inside a conducting spherical shell, which is
analogous to the well-known Casimir-Polder potential [18].
However, it differs from the Casimir-Polder result in three
ways: f,g are nontrivial functions of a/R; the internal object
experiences a torque; and the Casimir force between the
two objects depends on the internal object’s orientation.
Note that the expansion in Eq. (3) is asymptotic in r/R at
fixed a/R. For a spherically symmetric internal object, the
orientation-dependent terms in the Casimir energy vanish,
and corrections to Eq. (3) come from the static quadrupole
electric and magnetic polarizabilities, α

M,E
2 of the internal

object. These corrections are given in the Appendix.
The opposite extreme from the Casimir-Polder limit occurs

when the interior object nearly touches the cavity wall. The
leading behavior of the Casimir force in this limit is given
by the PFA [19]. The PFA prediction for the Casimir force
between two conducting spheres, whether they are separated
or contained one inside the other, is given by

lim
d→0

d3 F(d,s,R) = −π3h̄c

360

rR

R + r
, (4)

where r and |R| are the radii of the internal and external
spheres, respectively, and d is the minimum distance between
their surfaces. By convention we keep r fixed and let R

vary. R > 0 corresponds to the exterior problem (the spheres
are separated); R < 0 corresponds to the interior problem;
in the limit R → ∞, we have a sphere opposite a plane.
The constraint r � |R| avoids double counting of sphere-
sphere configurations. Equation (4) is derived for R > 0 by
semiclassical methods in Ref. [20] and the extension to R < 0
is straightforward but its corrections have up to now not been
known. The planar and exterior problems have been studied in
Refs. [4] and [5], respectively (see also Refs. [6,7]). Since most
experiments up to now have considered spherical conductors
separated by distances much smaller than their radii, the first
correction in d/r to the PFA is the geometric correction

of greatest immediate interest. As discussed in Sec. IV, we
parametrize the first correction to the PFA by

F(d,r,R) = − π3h̄c

360d3

Rr

R + r

×
(

1 + θ1(r/R)
d

2r
− θ2(r/R)

d2

2r2
+ O(d3/r3)

)
.

(5)

Our evaluation of Eq. (2) for conducting spheres has allowed
us to combine our results with those of Refs. [4,5] to predict an
estimate of the PFA correction coefficient θ1(r/R) appearing
in Eq. (5) for −1 � r/R � 1. We refer the reader to Sec. IV
for further discussion.

The rest of this article is organized as follows: Section II
provides representations of the vector transition and translation
matrices relevant to the interior case in a spherical wave basis,
followed by an exact computation of the Casimir force between
metallic spheres in Sec. III. In Sec. IV, we discuss first-order
corrections to the PFA for two metallic spheres of arbitrary
size based on numerical results in this article and in [4,5]. In
Sec. V, we derive the interior Casimir-Polder result and study
its comparison with the exact results of Sec. III. Reference [21]
repeats the analysis of this article for a complex scalar field,
which follows by analogy with the vector case.

II. THEORETICAL BACKGROUND

As pointed out in the Introduction, the Casimir energy of
a configuration of compact objects can be evaluated in terms
of their transition matrices T = (S − I)/2 (where S is the
scattering matrix) and translation matrices that relate various
coordinate systems relevant to each object. For the interior
geometry, we describe the internal object by T ee

i , the scattering
amplitudes for scattering outside its external surface, and the
external object by T ii

e , the scattering amplitudes for scattering
inside the cavity of the external object which contains the
internal object. We use the subscript M for the medium
inside the cavity, and index the dielectric constants εx(icκ)
and µx(icκ) by x = (i,e,M). Figure 1 is an illustration of the
interior geometry.

Once the geometry and the dielectric properties of the
interacting objects are specified, the next step is to calculate
the T and V matrices in a convenient basis. We specialize to
spherical coordinates and solve the interior problem exactly
for a sphere contained inside a spherical cavity. Choosing r

and R to denote the radii of the internal object and the cavity,
respectively, the T matrices are diagonal and are represented
in a spherical basis as

T ee
i,lmMl′m′M = −δll′δmm′

µMil(nMκr)∂r [ril(niκr)] − µi∂r [ril(nMκr)]il(niκr)

µMkl(nMκr)∂r [ril(niκr)] − µi∂r [rkl(nMκr)]il(niκr)

−−−→
εi→∞

−δll′δmm′
il(nMκr)

kl(nMκr)
,

(6)

T ee
i,lmEl′m′E = −δll′δmm′

εMil(nMκr)∂r [ril(niκr)] − εi∂r [ril(nMκr)]il(niκr)

εMkl(nMκr)∂r [ril(niκr)] − εi∂r [rkl(nMκr)]il(niκr)

−−−→
εi→∞

−δll′δmm′
∂r [ril(nMκr)]

∂r [rkl(nMκr)]
,
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where nx = √
εxµx is the refractive index and M,E denote

the magnetic and electric polarizations, respectively.T ii
e can be

obtained by the substitutions il ↔ kl , r → R, and the subscript
i → e for the dielectric constants everywhere in Eqs. (6).

kl and il are modified spherical Bessel functions of integer
index l.

The spherical wave translation matrices that relate the
coordinate systems centered on the internal sphere and the
external cavity are given by [2,22],

Vie,l′m′M,lmM = (−1)m
∑
l′′

[l(l + 1) + l′(l′ + 1) − l′′(l′′ + 1)]

√
π (2l + 1)(2l′ + 1)(2l′′ + 1)

l(l + 1)l′(l′ + 1)

×
(

l l′ l′′
0 0 0

) (
l l′ l′′
m −m′ m′ − m

)
il′′ (nMκ|Xie|)(−1)l

′′
Yl′′m−m′(X̂ie),

Vie,l′m′E,lmM = − inMκ√
l(l + 1)l′(l′ + 1)

Xie·
{

x̂
1

2
[λ+

lmBl′m′lm+1(Xie) + λ−
lmBl′m′lm−1(Xie)]

+ ŷ
1

2i
[λ+

lmBl′m′lm+1(Xie) − λ−
lmBl′m′lm−1(Xie)] + ẑmBl′m′lm(Xie)

}
,

Vie,l′m′M,lmE = −Vie,l′m′E,lmM, Vie,l′m′E,lmE = Vie,l′m′M,lmM, (7)

where

Bl′m′lm(X) = (−1)m
∑
l′′

√
4π (2l + 1)(2l′ + 1)(2l′′ + 1)

×
(

l l′ l′′
0 0 0

) (
l l′ l′′
m −m′ m′ − m

)
× il′′ (nMκ|X|)(−1)l

′′
Yl′′m−m′ (X̂)

and λ±
lm = √

(l ∓ m)(l ± m + 1). Xie is the displacement
vector that extends from the center of the internal object to
the center of the cavity with a = |Xie|. The translation matrix
Vei is related to Vie by

Vei =
(

1 0
0 −1

)
V†

ie

(
1 0
0 −1

)
(8)

in the two-dimensional space of electric (E) and magnetic
(M) polarizations. To simplify calculations, we have aligned
the z axis of the cavity along Xie. The Casimir energy of
dielectric spheres immersed in a dielectric medium is derived
using the preceding equations in Ref. [3]. We present results
for conducting boundary conditions in the following section.

Oexternal

Ointernal

Xie

FIG. 1. Interior geometry. An object inside the cavity of an
external object. We assume that it is possible to choose a bounding
sphere that does not overlap with the surface of the cavity. The
distance between the two origins is denoted by Xie.

III. COMPUTATION FOR METALLIC SPHERES

In this section, we analyze the Casimir interactions of a
metallic sphere contained within an otherwise empty metallic
spherical shell. The Casimir energy is obtained by numerical
integration of Eq. (2) using the matrix representations given
in Sec. II. It depends on the ratio of the radii, r/R, and
varies with the displacement a of the centers, parametrized by
x = a/(R − r). x ranges from zero (the spheres are concentric)
to unity (the two spheres touch). The Casimir energy varies
over many orders of magnitude and indeed diverges as the
spheres touch at x = 1. To make our graphs easier to read and
the subsequent numerical fits easier to perform, we seek to
divide the Casimir energy by a simple function that captures
the growth near the limit x → 1. This can be accomplished
by utilizing the PFA [19], which accurately predicts that in
the limit x → 1, the Casimir energy diverges as (1 − x)−2.
Unfortunately, the leading term in the PFA does not behave
correctly as x → 0, where the force should vanish. (The
Casimir energy is quadratic in x for small x.) To accommodate
both limits, x → 0 and x → 1, we employ an extension of the
PFA which, although it has no theoretical foundation (beyond
the leading term), yet provides a definite and convenient
function that captures the dominant variation in the exact
Casimir energy over the whole range of x. We refer to this
function as the “full PFA” and denote it by EfPFA(x); it is
described in detail in Sec. IV [see Eq. (12)]. To illustrate our
results, we choose r/R = 0.5 and plot R(x) = E(x)/EfPFA(x)
in Fig. 2.

Given data like that shown in Fig. 2, we obtain the Casimir
force by numerically differentiating R(x) with the help of the
relation

F(x)

FfPFA(x)
= R(x) + EfPFA(x)

FfPFA(x)
R′(x). (9)

Note that R(x) is determined numerically only up to
x = 0.925. Therefore, in the range x � 0.9, R′(x) is de-
termined by numerical differentiation. For x � 0.9, R′(x)
is determined either by differentiating a suitable function
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lmax= ∞
lmax= 25
lmax= 30
lmax= 35
lmax= 45
lmax= 55
lmax= 60
lmax= 65

lmax = 25

lmax = ∞

PFA

x = a/(R− r)

E/
E f

P
F
A

FIG. 2. Casimir energy between two conducting spheres. The
black line shows the Casimir energy, R(x) = E/EfPFA, as a function
of x = a/(R − r), where a is the displacement of centers. The radius
of the inner sphere is fixed at r = 0.5R, where R is the radius of
the outer sphere. In the limit x → 1, the Casimir energy approaches
the PFA energy, which is marked by the dashed horizontal line. EfPFA

denotes the “full” form of the PFA energy discussed in Sec. IV.
At intermediate separations, the Casimir energy is dominated by
lower partial waves. For example, the gray line shows that the energy
obtained by integrating Eq. (2) to partial wave order l = 25 is accurate
up to x ∼ 0.7. The black line is obtained by extrapolating to l = ∞.
(Inset) Convergence at close separations, 0.75 � x � 1.

that extrapolates R(x) or by extrapolating R′(x) itself. Both
procedures give identical results (within numerical error, as
discussed in what follows). The numerical integration and
differentiation were performed with MATLAB while all fitting
and extrapolation procedures were performed with GNUPLOT.

Although all partial waves contribute to the Casimir energy,
partial waves with l � lmax contribute the most, where lmax

depends on the spheres’ relative sizes and separation and grows
rapidly as the separation gets small. For r/R = 0.5, the gray
curve in Fig. 2 shows the results for lmax � 25. For x > 0.7 the
limitation to lmax < 25 is inadequate. To obtain results in this
range of x, it is necessary to include progressively larger values
of l. Eventually the numerical evaluation of Eq. (2) is limited by
our ability to manipulate large matrices. For example, lmax >

65 at x ∼ 0.9. To obtain accurate results for x > 0.7, we first
compute E(lmax) for a sequence of values of lmax. Then we fit
E(lmax) to a decaying exponential (which seems to capture the
leading behavior at large lmax) of the form E(lmax) = E(∞) −
αe−βlmax , where α and β are constants. The resulting function,
E(∞), is plotted in Fig. 2. It smoothly extrapolates to the PFA
point at x = 1, as it should. The convergence of E(lmax) to
E(∞) is illustrated in Fig. 2 (inset).

At even closer separations, x � 0.925, important contri-
butions to the Casimir energy come from values of l even
larger than l ≈ 65. It is difficult to evaluate numerically stable
values for matrix elements involving modified spherical Bessel
functions kl(x) in the limit x → 0 with l ∼ 65 and above.
Therefore, our numerical methods are inadequate when l

grows above 65. However, we know that the Casimir energy
approaches the PFA limit as x → 1. Therefore, we extrapolate
the exact data calculated at x � 0.925 to estimate the Casimir

F
/F

fP
F
A

x = a/(R− r)

FIG. 3. Casimir force between two conducting spheres. The black
line shows the Casimir force, F/FfPFA, between two conducting
spheres as a function of x = a/(R − r) where a is the displacement
of their centers. The radius of the inner sphere is fixed at r = 0.5R,
where R is the radius of the outer sphere. In the limit x → 1, the
Casimir force approaches the PFA. FfPFA denotes the “full” form of
the PFA discussed in Sec. IV.

energy for 0.925 � x � 1. For example, for the case shown
in Fig. 2, this is achieved by extrapolating the five data
points between 0.825 � x � 0.925 to a function, f (d/r) =
1 + θ̄1d/r + θ̄2 log(d/r)d2/r2, where d = R − r − a, θ̄1 =
1.770 ± 0.034 and θ̄2 = 2.272 ± 0.271. Notice that θ̄1 = θ1 −
θ1,fPFA where θ1 is defined for all r/R in Eq. (5) and θ1,fPFA is
calculated from Eq. (12), and likewise for θ̄2 = θ2 − θ2,fPFA.
Therefore, the values of the PFA correction coefficients for
r/R = 0.5 can be easily determined. The preceding analysis
can be easily repeated for other values of r/R and the
coefficients θ1 and θ2 determined for a range of those values.
Thus, our numerical methods yield subleading corrections to
the PFA. We perform these computations in Sec. IV. For more
details, the reader is referred to that section.

The Casimir force between two conducting spheres
depicted in Fig. 3 is calculated by numerical differentiation
of the exact data points spaced at �x = 0.025 along the black
curve R(x) in Fig. 2. We remind the reader that Fig. 2 plots
R(x) = E/EfPFA as a function of x. The curve shown in Fig. 3
is calculated from R(x) using Eq. (9). The differentiation
of R(x) is performed using centered differences for 37 data
points between 0.05 and 0.925. For x � 0.9, F/FfPFA can
be determined either by an independent extrapolation or
by an algebraic manipulation of the fit describing R(x) in
that range. We fit a function of the form, h(d/r) = 1 +
θ̄1d/2r − θ̄2d

2/2r2 − θ1,fPFA(θ̄1 + θ1,fPFA)d2/4r2 to the four
data points between x = 0.825 and x = 0.9 and compare the
new extrapolation constants with the ones determined in Fig. 2.
The function h is determined algebraically from F/FPFA,
where F is given by Eq. (5) We find θ̄1 = 1.770 ± 0.032
and θ̄2 = 2.058 ± 0.529, which agree with their previously
calculated values within their error. This achieves two goals:
It makes contact with the PFA prediction in Eq. (5) and
demonstrates that the function f (d/r) used to extrapolate
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R(x) at values of x close to 1 was the correct ansatz for the
subleading PFA behavior for the energy in Fig. 2.

We have illustrated the numerical evaluation of Eq. (2) with
the case r/R = 0.5. However, the same techniques may be
applied to determine the Casimir force and energy by numer-
ically integrating Eq. (2) for all configurations, 0 < r/R < 1.
In the following section, we apply the methods demonstrated
in this section to study various r/R configurations in the
limit x → 1 and determine the PFA correction coefficients
θ1 corresponding to those configurations. On the other hand,
the Casimir force for intermediate values of a/R is studied
completely analytically for the range of interior configurations
r/R → 0 in Section V.

IV. CORRECTIONS TO THE PFA

As mentioned in the Introduction, one of the most inter-
esting quantities made accessible by our methods is the first
nontrivial correction to the PFA. In this section we extract
this correction for the case of one sphere within another and
combine it with data from the cases of two separated spheres
and a sphere opposite a plane to survey the full range of
possible sphere-sphere configurations.

The leading term in the PFA is given by Eq. (4), as discussed
in the Introduction. The analytic form of the corrections to the
PFA is unknown in general; however, the case of a sphere
facing a plane was treated analytically in Ref. [7]. We find that
our data can be fitted very well by the first few terms in a power
series expansion of the Casimir force in d/r , as mentioned in
the Introduction,

F(d,r,R) = − π3h̄c

360d3

rR

R + r

(
1 + θ1(r/R)

d

2r

− θ2(r/R)
d2

2r2
+ O(d3/r3)

)
, (10)

as d → 0. [Remember that r/R < (>)0 corresponds to
the interior (exterior) case.] This power series expansion
of the force requires that the energy include a log(d/r)
term,

E(d,r,R) = − π3h̄c

720d2

rR

R + r

(
1 + θ1(r/R)

d

r
+ θ2(r/R)

× log(d/r)
d2

r2
+ α(r/R)

d2

r2
+ O(d3/r3)

)
, (11)

where we have adjusted signs in Eq. (10) so that corrections to
the PFA energy in Eq. (11) correspond to the extrapolation
function f (d/r) defined in Sec. III. Note that the term
proportional to d2/r2 in Eq. (11) does not contribute to the
force.

It is useful to have an estimate, however crude, of the
interior Casimir energy over the whole range of d/R in
order to scale out the rapid variation that makes it difficult
to display E graphically. To this end, we extend the PFA
over the whole range of d, r , and R. The PFA estimate of E
can be calculated by assuming that each interacting surface is
assembled of infinitesimal mirrors spaced at a distance l(ζ1,ζ2)
from the other surface, where (ζ1,ζ2) are the coordinates of the
surface chosen as a convenient reference. This algorithm is
ambiguous beyond the leading term in 1/d because there is
no unique way to specify the separation between the surfaces.
For definiteness, we extend the PFA by taking d to be the
distance between the surfaces measured radially outward from
the smaller sphere and integrate over the surface of the smaller
sphere. This can be done for both the interior (r/R < 0) and
the exterior (r/R > 0) configurations. Note that the restriction
y = r/R ∈ [−1,1] covers the full range of sphere-sphere
configurations as long as r is taken to be the radius of the
smaller sphere. The result, which we refer to as the full PFA is
given here (for compactness) as a definite integral (which can
also be obtained in closed form),

EfPFA = −π3h̄cy2

360R

∫ 1

−1
dx

(
1

(−(1 + y + yd/r)x + y +
√

(1 + y + yd/r)2(x2 − 1) + 1)3
+ 1

(1 + y)3

)
, y < 0,

EfPFA = −π3h̄cy2

360R

∫ 1

x0(y,d/r)

dx

((1 + y + yd/r)x − y −
√

(1 + y + yd/r)2(x2 − 1) + 1)3
, y > 0,

where x0(y,d/r) =
√

1 − 1

(1 + y + yd/r)2
. (12)

[For y < 0 we have subtracted the energy when the spheres
are concentric as in Eq. (2).]

Another option would be to measure the distance d radially
inward from the outer sphere. This procedure yields a different
analytical form for the full PFA beyond the leading order,
illustrating the ambiguity in defining d. To distinguish between
the two full PFA estimates, we refer to the former as r-based
and the latter as R-based.

If we expand around d/r = 0 in Eq. (12), we find that
θ1,fPFA(r/R) = −r/R − r/(R + r) − 3, which is continuous

in the interval r/R ∈ (−1,1]. A similar calculation from the
R-based PFA yields a different, yet continuous, form for
θ1,fPFA, that is, −[3r/R + r/(r + R) + 1].

The preceding discussion suggests that corrections to the
PFA extend smoothly from the interior case, −1 < r/R < 0,
to the planar case, r/R = 0, to the exterior case, 0 < r/R < 1.
Results for the special cases r/R = 0 and r/R = 1 were
presented in Refs. [4] and [5], respectively. In order to
give a full description of the leading correction to the PFA,
we compute the correction for several additional exterior
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−k1x− k2x/(1 + x) − k3

FIG. 4. (Color online) PFA correction coefficients for spheres.
r/R ranges from −1 (interior concentric), to zero (sphere-plane),
to +1 (exterior, equal radii). The data points correspond to the
exact values of θ1, calculated numerically, while the solid black
curve is a fit (see text). (Inset) “Interior” and “exterior” geometrical
configurations.

configurations (r/R > 0) and combine those results with the
results of Refs. [4] and [5], and with our results for interior
configurations in order to obtain a form for the PFA corrections
over the entire possible range of r/R. Figure 4 displays
our results along with the corresponding “r- and R-based”
estimates of θ1.

The numerical data in Fig. 4 show a smooth transition from
the interior to the exterior configuration. Although neither of
the full PFA estimates describes the data, the r-based PFA
has a similar functional form and divergence as x → −1.
Therefore, we fit the data in Fig. 4 to a form motivated by the
r-based PFA, θ1(x) = −[k1x + k2x/(1 + x) + k3], and find
k1 = 1.05 ± 0.14, k2 = 1.08 ± 0.08, and k3 = 1.38 ± 0.06.
This provides a simple form for the leading PFA correction for
metallic spheres, one inside the other and both outside, which
is relevant for many experiments. Notice, however, that the
actual function θ1(x) is not known analytically and that our fit
represents a reasonable choice which may not be unique. Our
results show that the correction to the PFA has a significant
dependence on the ratio of curvatures of the two surfaces.
The correction is a factor of two larger for two spheres of
equal radii than for the sphere-plane setup; it vanishes near
r/R = −0.5, and it becomes positive and large as r/R → −1.
These effects should be taken into account when experimental
accuracy has advanced to the point that corrections to the PFA
can be measured.

V. CASIMIR-POLDER LIMIT OF THE
INTERIOR PROBLEM

In this section, we derive the Casimir energy of a small
polarizable object contained inside a metallic spherical shell.
Using the matrix identity ln detM = Tr lnM we expand the
integrand in Eq. (2) in a Taylor series, E = h̄c/2π

∫
dκTr(N +

1
2N 2 + · · ·), in N = T ii

e Ve,iT ee
i Vi,e where each matrix mul-

tiplication by N describes the propagation and reflection of

a virtual photon from the pair of objects [4]. In the exterior
case, both objects can be taken to be small compared to the
separation between them and can be approximated by their
static dipole polarizabilities in this limit, leading to the famous
Casimir-Polder force between polarizable molecules. In the
interior case studied here, the enclosing cavity must be larger
than the interior object and cannot be approximated by its
lowest frequency electromagnetic response. Therefore, any
asymptotic expansion of Eq. (2) requires that the shape and
material properties of the enclosing cavity be specified and
its T matrix be calculable. We obtain a useful expansion by
requiring the size of the internal object to be small enough
that it be adequately described by its electric and magnetic
dipole polarizability tensors. Thus, the most general interior
configuration to which an analytic expansion applies is that
of a small dielectric object immersed in a dielectric medium
inside a dielectric cavity for which the scattering amplitudes
are known analytically in some partial-wave basis. Our results
on the Casimir-Polder limit of a small internal object inside a
metallic spherical shell were reported in Ref. [8], and stable
three-dimensional configurations of objects in spheroidal
drops of liquid or metallic shells were presented in Ref. [3].

Here we consider a metallic spherical cavity of radius R

enclosing a small object of typical linear dimension r and
use the T -matrix representations in Eqs. (6). Substituting the
lowest-order approximation to the interior object’s T matrix,
T ee

i , but keeping all partial waves in theT matrix of the exterior
sphere, T ii

e , we find the first term in the expansion in r/R,
with coefficients that are nontrivial functions of a/R. This
expansion was already mentioned in the Introduction:

3πR4

h̄c
E(a/R) = [f E(a/R) − f E(0)]TrαE + gE(a/R)

× (
2αE

zz − αE
xx − αE

yy

) + (E ↔ M) + · · · ,
(13)

where a denotes the displacement of the internal object along
the z axis from the center of the cavity and α denotes the
dipole polarizability tensor expressed in a Cartesian basis.
The coefficient functions f P and gP , plotted in Fig. 5, can be
expressed in terms of modified spherical Bessel functions iν
and kν as,

f E(ξ ) =
∫ ∞

0
dxx3

∞∑
l=1

{
ζE
l (x)

2

[
(l + 1)i2

l−1(xξ ) + li2
l+1(xξ )

]

− ζM
l (x)

x2ξ 2

2(2l + 1)
[il−1(xξ ) − il+1(xξ )]2

}
, (14)

gE(ξ ) =
∫ ∞

0
dxx3

∞∑
l=1

{
ζE
l (x)

2(2l + 1)

[
l2 − 1

2
i2
l−1(xξ )

+ l(l + 2)

2
i2
l+1(xξ ) − 3l(l + 1)il−1(xξ )il+1(xξ )

]

+ ζM
l (x)

x2ξ 2

4(2l + 1)
[il−1(xξ ) − il+1(xξ )]2

}
, (15)

and f M and gM are obtained by substituting (E ↔
M) in the preceding equations. The functions ζ

M/E

l are
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FIG. 5. (Color online) Plot of the functions f M/E(a/R) and
gM/E(a/R), defined in Eqs. (14) and (15), respectively.

given by

ζM
l (x) = kl(x)

il(x)
, ζE

l (x) = kl(x) + xk′
l(x)

il(x) + xi ′l (x)
. (16)

An analogous result—a series in r/R with coefficients
that are nontrivial functions of a/R—can be obtained for
an analogous “exterior” configuration: a polarizable object
facing a metallic sphere of radius R (see Ref. [8]). Both results
differ from the classic Casimir-Polder result, which describes
an object facing a conducting plane, in three ways: f,g are
nontrivial functions of a/R; the polarizable object experiences
a torque; and the Casimir force between the two objects at
leading order depends on the polarizable object’s orientation.
Specific features of the preceding orientation dependence are
explored by specifying the internal object to be a dielectric
spheroid in Ref. [8]. For example, it is demonstrated that
the orientation dependence, like the leading PFA correction,
has a smooth continuation from the interior to the exterior
configurations; a “cigar-shaped” spheroid prefers to align itself
perpendicular to its displacement vector from the center of the
shell; and a “pancake-shaped” spheroid prefers to align its two
large axes perpendicular to its displacement vector.

For a spherically symmetric internal object, the first
nontrivial correction, which is O(r5/R5), to Eq. (13) can be
easily evaluated. This is possible because the T matrix for
the spherically symmetric object is diagonal in a spherical
basis and independent of the azimuthal index, m, T λσ

lml′m′ =
δll′δmm′δλσT σ

l . For each polarization and l, the leading term in
the T matrix is proportional to a multipole polarizability, ασ

l ∼
r2l+1, which characterizes the low-frequency electromagnetic
response of the internal object, and which can be computed for
simple geometries or measured for any compact conductor [4],

T σ
l = κ2l

[
(−1)l−1(l + 1)ασ

l

l(2l + 1)!!(2l − 1)!!
κ + O(κ3)

]
, (17)

for σ = E or M . Substituting Eqs. (6) and (7) in Tr N, we find
the Casimir energy up to O(r5/R5) to be

2πR

h̄c
ECP = hM

1 (a/R)
αM

1

R3
+ hM

2 (a/R)
αM

2

R5

+ (M ↔ E) + O(r6/R6), (18)

FIG. 6. (Color online) Comparison of the interior Casimir-Polder
result with the exact Casimir energy predicted by Eq. (2) for
conducting spheres. Plotted along the y axis is the fractional error
(E − ECP)/E as a percentage, where ECP is calculated from Eq. (18).
For each value of the separation a/R (denoted by point markers listed
in the figure), we have plotted the fractional difference between E and
ECP at the leading order O(r3/R3) (gray) and next-to-leading order
O(r5/R5) (black) as a function of the internal sphere radius r/R.

where h
M/E

1 are proportional to f M/E(a/R) defined in Eq. (14)
up to a numerical factor. The exact functional forms of the
coefficient functions h1 and h2 are given in the Appendix.
Each can be expanded as a power series in a2/R2 which
converges for a2/R2 < 1. The Casimir force can be calculated
by differentiating h1,h2 with respect to a.

To examine the usefulness of the expansion in Eq. (18),
we compare its predictions with the exact numerical result for
E following from Eq. (2) for the case of an internal metallic
sphere of radius r , for which αM

l = −lr2l+1/(l + 1) and αE
l =

r2l+1. Figure 6 plots the fractional errors �E = (E − ECP)/E vs
r/R for various separations a/R. The first-order data (in black
markers) include contributions from O(R−3) terms only, while
the second-order data (in green markers) include coefficients
from h2(a/R) at O(R−5) in Eq. (18). Many trends are
visible in this graph: For example, the interior Casimir-Polder
result through second order is accurate to more than 99%
of the exact answer for all r/R � 0.1 for 0 < a/R < 0.4.
Another feature worth noting is that for a given value of r/R,
lima/R→0 �E is not zero. Both the exact Casimir energy, E ,
and the interior Casimir-Polder approximation, ECP, vanish
like a2 as a → 0. (Remember, the value of each at a = 0 has
been subtracted.) Notice, however, that the Casimir Polder
approximation is an expansion in r/R, not a/R, and therefore
each term in the expansion [Eq. (18)] contributes, albeit with
smaller magnitude, at a = 0. Figure 6 shows that the interior
Casimir-Polder expansion becomes exact for an arbitrarily
small polarizable object (an atom or a molecule) inside a
conducting spherical shell.

VI. CONCLUSIONS

We have studied the electromagnetic Casimir problem
for a compact object contained inside a closed cavity of
another compact object. Using the scattering formalism, we
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express the Casimir energy between the two objects in terms
of their T matrices and translation matrices that relate the
coordinate systems appropriate to each object. Then we
specialize to the case when both objects are conducting
spheres, and illustrate our methods and results by evaluating
the Casimir energy for the case r/R = 0.5. The Casimir
force for this sphere configuration is calculated by numeri-
cally differentiating the energy with respect to the spheres’
separation.

We have also calculated the analog of the Casimir-Polder
expansion for an object contained inside a metallic spherical
shell. The Casimir energy can be expanded as an asymptotic
series in r/R (the leading term being proportional to r3/R3),
where R is the radius of the spherical cavity, and r is a length
characterizing the size of the internal object. There are certain
novel features of this result: The coefficients are nontrivial
functions of a/R (where a denotes the separation of the center
of the internal object from the center of the shell); that is,
they are represented by infinite sums of modified spherical
bessel functions; the Casimir force at leading order depends
on the orientation of the internal object; and the internal object
experiences a torque. Additionally, we have calculated the
coefficient functions for the leading two terms for the case
when the inner object has spherical symmetry. A comparison of
the “interior Casimir-Polder” expansion [up to O(R−5)] with
the exact energy (calculated numerically) for various sphere
configurations shows it to be accurate to more than 99% of
the exact answer for a/R � 0.4 through r/R � 0.1, where a

is the displacement of their centers.

The methods demonstrated in this article can be applied
very easily to calculate the Casimir force between dielectric
spheres at all separations, although they become computation-
ally intensive when the spheres are nearly touching. In this
limit, we make contact with the PFA. A careful examination
of the approach to the PFA allows us to calculate leading-order
corrections to the PFA limit. We then combine our studies of
various interior sphere configurations at close separations with
previous work on metallic spheres exterior to each other and a
conducting sphere facing a mirror to analyze the leading-order
PFA corrections for all sphere-sphere configurations.
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APPENDIX: INTERIOR CASIMIR-POLDER
COEFFICIENT FUNCTIONS

We give the coefficient functions hM
1 and hM

2 that appear in
Eq. (18) in terms of ζM

l and ζE
l defined in Eq. (16) and modified

spherical Bessel function il . hE
1 and hE

2 can be obtained by
substituting M ↔ E in the following equations:

hM
1 (ξ ) =

∫ ∞

0
dxx3

( ∞∑
l=1

{
ζM
l (x)

[
(l + 1)i2

l−1(xξ ) + li2
l+1(xξ )

] − ζE
l (x)

x2ξ 2

2l + 1
[il−1(xξ ) − il+1(xξ )]2

}
− 2ζM

1 (x)

)
, (A1)

hM
2 (ξ ) =

∫ ∞

0
dxx5

( ∞∑
l=1

[
ζM
l (x)

(l − 1)(l + 1)(2l + 3)i2
l−2(xξ ) + l(l + 2)(2l − 1)i2

l+2(xξ ) + (3l + 3/2)i2
l (xξ )

6(4l(l + 1) − 3)

− x2ξ 2

3(2l + 1)
ζE
l (x)

{
1

4

(
1 − l

2l − 1
il−2(xξ ) − 2l − 1

4l(l + 1) − 3
il(xξ ) + l + 2

2l + 3
il+2(xξ )

)2

+ (l − 1)(l + 2)

(
1

2(2l − 1)
il−2(xξ ) − 2l + 1

4l(l + 1) − 3
il(xξ ) + 1

2(2l + 3)
il+2(xξ )

)2 }]
− 1

6
ζM

2 (x)

)
. (A2)
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