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Abstract. We report on a continuous time odometry scheme for a walking hexapod robot
built upon a previously developed leg-strain based body pose estimator. We implement this
estimation procedure and odometry scheme on the robot RHex and evaluate its performance at
widely varying speeds and over different ground conditions by means of a 6 degree of freedom
vision based ground truth measurement system (GTMS). We also compare the performance
to that of sensorless odometry schemes — hoth legged as well as on a wheeled version of the
robot — using GTMS measurements of elapsed distance.

1 Introduction

The hexapod, RHex [1], exhibits unprecedented mobility for a legged autonomous
robot [2]. Motivated by the desire to improve dynamical performance of the present
open loop controller through the introduction of continuous rigid body state estimates
[3], we have recently reported on the development of a novel leg-strain based body
pose! sensor [4]. Within a stride that maintains at least three non-collinear toes fixed
in ground contact, this system delivers a continuous stream of body frame estimates
relative to the ground frame at 300 Hz [4]. Additional body proprioceptive sensors
— a three degree of freedom (DOF) rate gyro and a six DOF accelerometer array
— now under development will lead to the complete 6 DOF continuous time state
estimator necessary for advanced feedback control. Notwithstanding this central
focus upon sensory feedback control for dynamical gaits, it seems quite interesting
to explore along the way the capabilities of the strain based body pose sensor in
isolation from these other proprioceptive modalities within quasi-static operational
regimes.

1 \We use the term body pose to denote the position and orientation of the robot’s present
body frame relative to the local ground tripod frame within this tripod stance.
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In this paper we apply the leg strain based body pose estimator reported in [4]
to develop a new sensor that provides complete legged odometry for alternating
tripod gaits satisfying the previously stated ground contact conditions: at least three
noncollinear toes on the ground at all times. We present a straightforward but general
odometry-from-pose algorithm that uses periods of “double support” (where two
triads of legs are simultaneously in ground contact) to express the frame of the
successor triad in terms of the frame of the predecessor, thereby “remembering” the
body’s frame relative to the world coordinate system prior to the onset of motion.
We stress the system by placing it on increasingly slippery surfaces and report the
degradation in performance as a function of surface traction. We compare our sensed
odometry scheme to the sensorless alternative of average distance traveled per leg
stride? as well as to a standard axle revolution count implemented on a wheeled
version of the same robot.

The word odometry® seems to be used in several different contexts in robotics.
The traditional notion associated with wheeled vehicles corresponds to planar 3
DOF dead-reckoning by encoder-like sensors that count the rotation of wheels in
the absence of other sensors. Here, we generalize this approach to examine the
quality of “complete” 6 DOF dead-reckoning for the legged robot — the position
and orientation of the robot’s present body frame relative to that prior to the initiation
of motion.

In reviewing the literature it is similarly useful to distinguish between the po-
sitioning problem and the orientation problem. The positioning problem has been
treated extensively for wheeled vehicles where the traditional “elapsed distance”
measure is combined with body proprioception (accelerometer and gyro data) [5-7]
to obtain high quality estimates of the local translation. More recent research is
concerned with the fusion of exteroceptive (vision [8], ultrasonic [9], sonar [10],
or GPS [11]) sensor data for purposes of obtaining precise global positioning by
periodically recalibrating the accumulated dead-reckoning error. In contrast, body
orientation estimation has been investigated in the legged robot literature for high-
DOF bipeds [12, 13], whose stability and balance must be actively controlled by
state feedback. There is some prior work on exteroceptive (vision based) [14-16]
approachesto positioning for legged machines but no account of the legged odometry
problem. Thus, our treatment of complete 6 DOF odometry appears to be novel.

Section 2 presents the odometry algorithm — a matter of standard geometry
and linear algebra involving the position of the presumably known contact-toes
in body coordinates. Section 3 examines the accuracy of the resulting odometry
estimator implemented on RHex pictured in Figure 1(upper left) using our previously
developed leg strain based body pose sensor. We use an independent camera based
ground truth measurement system (GTMS) to assess the deterioration in performance
over increasingly slippery ground and at varying speeds, as well as to compare the
quality of elapsed distance measurements arising from the leg sensor based estimator,

2 We thank Dr. Johann Borenstein for suggesting this comparison to us.
% The Oxford English Dictionary traces the meaning back to its Greek roots measuring the
way.
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Fig. 1. (Left) RHex and Wheeled RHex; (Right) Sketch illustrating the robot on a flat ground
plane, G, within a single stance phase during which it is supported by only three legs whose toes
define the support triangle, S. Attached to the support triangle, we define a tripod coordinate
system, 7.

a legged open loop scheme, and the traditional axle revolution count performed on a
wheeled version of RHex pictured in Figure 1(lower left). Section 4 concludes this

paper.

2 Computation of Odometry from Body Pose

We develop our odometry algorithm for a hexapod robot in an alternating tripod
walking gait because of its utility for RHex. However, the computations below
generalize to a family of gaits characterized by two conditions: A) the body is
supported by at least three legs with non-collinear toes at any given time; and B)
ground contact legs have no toe slippage*.

In an alternating tripod walking gait we identify two intervals: the single stance
phase when the body is supported by only one tripod, which denotes the mode of
leg contact wherein the three toes of the front and rear ipsilateral legs and the middle
contralateral leg of a tripod are all in contact with the ground as depicted in Figure
1(Right); and the double stance phase when all legs are in ground contact. This sug-
gests a hierarchically structured algorithm with two levels: 1) a low level, originally
presented in [4] and briefly reviewed in Section 2.1, operating during individual
single stance phases computing the body pose in a locally defined coordinate system
termed tripod coordinate system, 7, which is rigidly related to the world coordinate
system, W; and 2) a high level sequential composition method relating the tripod
coordinate systems in consecutive single stance phases to evaluate the odometry
with respect to the world coordinate system, W.

4 These conditions guarantee that the toe contacts yield a well defined coordinate system
fixed in the world frame. Appropriate generalizations of the calculations would extend the
computation of odometry to other kinds of legged robots, like quadrupeds or even bipeds
with foot (surface) contact.
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2.1 Body Posein Single Stance

It is intuitively clear that knowledge of the configuration relative to the body of
each leg in contact with the ground, together with information about the ground
contact points yields complete pose information. Assume a “leg model,” s;(z;), for
each tripod toe, ¢ = 1,2, 3, where z; denotes the sensory measurements available
regarding the configuration of the kinematic chain connecting the robot body to
the ith toe and s; represents the point of toe contact with respect to the robot
body coordinate system, B. For example, in the RHex implementation, s;(v;, 0;) =
n}* om;(0;),i = 1,2,...,6 detailed in [4] consists of the kinematic parameters, +;,
relating the ith hip frame, C;, to the body frame, B, together with the strain across
the compliant portion of the leg as read from the sensor suite, o;. By defining the
tripod coordinate system, 7, detailed in [4], whose orthonormal basis (q1, 92, q3)
with origin at s, is a function of s;,i=1,2,3 as

(T
= oL (daelds g =gy q3i=q X G

Nler—(af en)asl,
represented in the body coordinate system, B, where e; := ﬁ and ey :=
2
ﬁ, we can construct a homogeneous coordinate transformation, h : B —
2
77, relates the coordinates, b, in body coordinate system, 3, to that in the tripod
coordinate system, 7,

h(b) := B (b —s;)

where B := [q;1 q2 q3]T

2.2 LegBased Odometry via Composition of Single Stance M easurements

We will now detail how the single stance phase pose computations described above
can be integrated over multiple steps to generate this continuous computation of
absolute body pose.

First, compute the homogeneous transformation between the tripod coordinate
systems of consecutive single stance phases , 7; and 7,41, as follows. Assuming
the toes defining these tripod coordinate systems are stationary (there is no slippage
and no liftoff) throughout their presumed stances, and assuming there is an adequate
period of double support (the two stance phases overlap for a time sufficient to
complete their respective single stance pose computations), both coordinate systems
are related to the same (moving) body coordinate system, B. Now, assuming that
the prior tripod coordinate system, 7, has been expressed in world coordinates, the
representation of its successor, 7.1, in the world coordinate system follows by the
properties of rigid transformations in a straightforward manner that we now detail.

We index single stance phases, j = 0, 1, ..., according to their occurrences over
the course of locomotion where we denote the jth single stance tripod coordinate
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system by 7;. Without loss of generality, assume that the tripod coordinate system
of the first single stance phase coincides with the world coordinate system, 7o = W.
The key for establishing the odometry is there exists an intermediate double
stance phase where all legs are in ground contact, which allows us to find relationship
between tripod coordinate systems of two consecutive single stance phases, gj’l

T = Ti—1, g;-_l =h;_4 ohj_l, before and after this double stance phase. In the on-
line implementation where the robot operates on “flat ground,” we determine double
stance by evaluating a “planarity measure,” p(s), based upon the sampled covariance
matrix of the “sampled toe distribution®” S = {sy,..,s¢}. The status of double
stance is checked if the planarity measure, p(s), is dropped under a empirically set
threshold, p. When this event is detected we compute the transformations between
tripod coordinate systems of consecutive single stance phases, gj._l. Figure 2(left)
illustrates the flow diagram of the complete on-line algorithm and Figure 2(Right)
illustrates the sequential relationship between the tripod coordinate systems, 7;. As
a direct consequence, the map, gg : T; — W, relating the jth tripod coordinate
system, 7;, to the world coordinate system, YV = 7o, can be defined recursively,

gl =g} 08 Lief{1,2,.}

where g9 := id. This in turn leads to the definition of the map, f; : B — W, that
relates the body coordinate system, B, during the jth single stance phase to the world
coordinate system, W, f; := g;? o h;, which is a homogeneous transformation that
we prefer to write as

fj(b) := A; (b —c;)
where A ; and c; denote the rotation matrix and COM translation of the homogeneous
transformation accordingly.

The body pose is now read off the entries of the transformation matrices in the
familiar manner. The COM is given as

r= [a:yz]T = —Ajc;

and three rotational components of the pose, pitch, «, roll, 3, and yaw, -yare computed
from the within-stride rotation matrix, B in the standard manner [17] to reduce the
possible accumulation error.

5 Namely, let P := 3°% | s;s7 —55” where s := £ 3°%_ s; is the sample mean. Denoting
by, v , the eigenvector associated with the smallest eigenvalue of P, we define p(s) :=
é E?zl [(s; — §).v]? which gives the mean squared distance of the distribution around the

best common plane.
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Fig.2. (Left) Flow chart for the within-stride body pose computation and leg odometry
functions; (Right) Commutative diagram relating the tripod coordinate systems, 7;.

3 Performance

We now evaluate the performance of the odometry scheme implemented on RHex in
three different scenarios: 1) at varying walking speeds; 2) over dramatically different
ground conditions; 3) in comparison to wheeled and sensorless legged versions of
the same machine. We report the results using the mean and standard deviation
from five runs in each experiment set. The reader should note that RHex’s relatively
constrained kinematics preclude the exercise of its yaw degree of freedom when it
walks with no aerial phase and no toe slippage, hence the implementation we discuss
in this section will entail no data of that nature. We compare the estimator output to
that of the GTMS (independent visual ground truth measurement system introduced
in [4]) with respect to five configuration components — the lateral (z), fore-aft (y),
and vertical (z) components of COM translation as well pitch («) and roll (8) — all
in world coordinates, Y. Figure 3 plots the comparison for each component over
a typical run. We will quantify performance by presenting the standard root mean
squared (RMS) error, given by

A

(s dy = [(|[ad| /)

where d = (dy,...,dnr) and d; := (24,9, 2i, i, B;) represents the state trajec-
tory from GTMS; d denotes the corresponding state trajectory from output of the
algorithm.

Table 1 summarizes the outcome of repeated runs at slow (0.25 m/s), medium
(0.35m/s), and fast (0.51 m/s) speeds, which also includes GTMS measured elapsed
distance, v, and number of tripod strikes for each run, v, as references. RMS error
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Fig. 3. Odometry measured by GTMS (solid green line) and computed according to our
algorithm (dashed blue line).

Table 1. RMS Odometry Error at Varying Walking Speeds (each row representing data
averaged over 5 runs with distance, v and number of strides, v, shown in reference)

Walking Speed State Reference
x (cm) y (cm) z (cm) a (deg) B (deg) v (cm) v
avg (std) | avg (std) | avg(std) | avg(std) | avg(std) | avg(std) |avg(std)
Slow (0.25 m/s)[ 0.42 (0.13)[ 4.53 (0.80){ 0.30 (0.08)| 0.78 (0.09)| 0.73 (0.06)| 84.0 (6.2)| 8.4 (0.5)
Medium (0.35 m/s)[ 0.41 (0.13)[ 1.42 (0.32){ 0.22 (0.04)| 0.60 (0.10)| 0.71 (0.08)| 83.8 (8.0)| 7.8 (0.7)
Fast (0.51 m/s)[ 0.39 (0.05)[ 1.41 (0.25)[ 0.27 (0.04)[ 0.63 (0.08)[ 0.68 (0.08)| 84.8 (6.5)] 7.4 (0.7)

values compared to the robot size (50cm x 25¢cm x 15¢m) indicate successful odom-
etry computation with mean error in angular states less than 1 degree and lateral and
vertical positions less than 1 cm. Since slippage during double stance has significant
impact on the fore/aft direction of the robot, the corresponding RMS error of y is the
largest. We observe that the error in the fore/aft position decreases with increasing
speed, attributable to: 1) shorter double stance decreasing the error in the sequential
composition computation; and 2) increasing ground reaction forces that decrease
slippage.

Table 2 summarizes the outcome of repeated walks at slow speed over four types
of surfaces: cardboard (us = 0.65, ux = 0.60); plastic (us = 0.33, ur = 0.27);
plastic with wet soap (us = 0.20, ur = 0.11); and plastic with dry soap (us = 0.07,
pr = 0.05), where the static friction (“stiction™) coefficient, us, and kinetic fric-
tion coefficients, uy, are empirically determined. As these coefficients decrease we
observe significant deterioration in computation of linear position in the horizontal
plane, (x,y). This is a direct result of the increase in slippage. The angular states,
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Table 2. RMS Odometry Error over Different Ground Conditions at slow speed (each row
representing data averaged over 5 runs with distance, v and number of strides, v, shown in
reference)

Ground State Reference

z (cm) y (cm) z (cm) ‘ a (deg) B (deg) v (cm) v

avg (std) | avg(std) | avg(std) | avg(std) | avg(std) | avg(std) |avg(std)
Cardboard (us = 0.65)] 0.42 (0.13)[4.53 (0.80)]0.30 (0.08)] 0.78 (0.09)| 0.73 (0.06)| 84.0 (6.2)| 8.4 (0.5)
Plastic (s = 0.33)] 0.40 (0.08)[4.45 (0.82)[0.51 (0.05)] 0.83 (0.05)| 0.65 (0.06)| 79.0 (6.2) 8.0 (0.6)
Plastic w/ wetsoap (us = 0.20)| 1.39 (0.22){9.72 (1.30)[0.45 (0.07)| 0.63 (0.07)| 1.12 (0.22)| 73.8 (5.6)| 7.4 (0.5)
Plastic w/ drysoap (us = 0.07)| 1.82 (0.28){9.40 (0.56)[0.42 (0.07)| 0.63 (0.09)| 0.65 (0.05)| 78.6 (3.1)| 8.2 (0.4)

(a, B), are not affected as severely since they are invariant under the COM transla-
tion resulting from uniform leg slippage and their computation only depends on the
current single stance phase measurements with no accumulated odometry error. In
general, excluding the specially prepared slippery surfaces detailed below, the algo-
rithm performs well and consistently within normal ground conditions characterized
by pus = 0.33 — 0.65, within which range lie most of the common surfaces when
contacted by the rubber toe of robot’s leg.

Table 3 compares our leg strain based odometry estimates with sensorless
schemes by reference to discrepancies with GTMS measurements of elapsed dis-
tance as well as with a wheeled implementation of the Robot pictured in Figure
1(lower left). With no sensing apart from motor shaft measurements, “blind odom-
etry” estimates result from counting the number of leg cycles and multiplying by a
previously calibrated “distance-per-cycle” constant. Of course, this is the traditional
approach to odometry in wheeled vehicles as well. We ran calibration tests for RHex
and a wheeled implementation of the Robot, counting the number of motor shaft
cycles over the same long flat “slipless” surface to get the best possible conversion
constant. The table presents discrepancies, (%) (=]av|/v), as a percentage of the
GTMS measured elapsed distance, v, for each of the three odometry methods: sen-
sorless legged; pose-based legged; and sensorless wheeled . The results show that
the leg strain based odometry from body pose measurements is greatly superior to
the blind predictions of the open loop scheme, by nearly an order of magnitude at
the higher speeds where the inaccuracies of double support have less effect. The
dynamical nature of legged walking (even in the absence of an aerial phase, RHex’s
gaits exhibit a significant interchange of body kinetic and leg spring potential en-
ergy in stance) causes speed variations during locomotion that incur significantly
more slippage (exacerbated at slower gaits by prolonged double support) than the
far smoother ride afforded by wheels. Thus, our sensor based legged odometry is
significantly less accurate than the blind results of counting motor shaft revolutions
on the wheeled version of the same machine.

4 Conclusion

We have introduced odometry measurements from a full body pose estimator for a
walking hexapod robot based on the kinematic configuration of its legs. We have
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Table 3. RHex vs. Wheeled RHex at Varying Speeds and over Different Ground Conditions

Legged RHex Wheeled RHex
GTMS sensorless pose-based GTMS
vem) |[Aval @M ka (%) |[Avr] @M w2 (B) | vw ©M) | Fw (6)
avg (std) | avg(std) | avg(std) | avg(std) | avg(std) | avg (std) | avg (std)
at Varying Speed on Cardboard
Slow (0.25 m/s) 84.0(6.2) | 17.9(0.7) [ 21.4(2.0) | 5.1(1.9) | 6.1(0.7) | 87.6(3.3) [ 0.3(0.09)
Medium (0.35 m/s)| 83.8 (8.0) | 17.6 (1.8) [21.1(1.0) | 1.8(0.8) | 2.2(1.0) | 83.3(1.8) [ 0.3 (0.07)
Fast (0.51 m/s) 84.8(6.5) [ 13.9(3.1) [16.3(2.9) | 1.5(0.6) | 1.7 (0.6) | 80.8(0.9) [ 0.5(0.26)

over Different Ground at Slow Speed
Cardboard 84.0(6.2) | 179(2.2) [21.4(2.0)| 5.1(1.9) | 6.1(0.7) [ 87.6(3.3) [ 0.3 (0.09)
Plastic 79.0(6.2) | 18.0(1.9) [22.8(1.8) | 5.3(3.4) | 6.6(4.4) [ 87.6(5.2) [ 0.3(0.08)
Plastic w/ wet soap | 73.8 (5.6) | 16.0 (0.6) [ 21.8(1.5) | 6.0(0.4) | 8.2(0.7) [ 90.2(4.0) [ 1.7(0.22)
Plastic w/ dry soap | 78.6 (3.1) | 20.9 (2.5) [26.5(2.9) | 14.0(0.7) [ 17.8(0.6)[ 93.2(5.1) [ 1.2(0.43)

implemented this algorithm on the robot RHex [2] and used a separate visual ground
truth measurement system to evaluate the performance at various walking speeds
and conditions of surface friction, as well to compare that performance with a
wheeled implemented version of the robot. The estimator is shown to perform well
at all speeds over normal ground conditions — achieving, for example, mean error
in angular states less than 1 degree and lateral and vertical positions less than
1 cm compared to the robot size (50cm x 25cm x 15cm), and five times more
accurate legged odometry than computed from averaged open loop distance-per-
stride estimates — close to the performance of wheeled vehicles. The estimator
continues to function well over a variety of ground conditions, with the onset of
significant performance degradation on the most slippery surfaces (soaped plastic)
whose coefficient of friction is less than a third that of normal linoleum.

The odometry computation algorithm as described here cannot function if the
operating regime includes aerial phases such as those dynamical gaits studied in [18].
To remedy this shortcoming our future work will introduce other sensor modalities
such as linear accelerometers and rotational rate gyroscopes to complement the
leg kinematic configuration sensor. The more elaborate sensor suite will not only
allow us to perform pose estimation during aerial phases but also enable us to detect
slippage, the primary source of error in the present scheme, and correct measurements
accordingly.
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