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ABSTRACT

PARTIAL INFORMATION FRAMEWORK:
BASIC THEORY AND APPLICATIONS

Ville A. Satopää

Shane T. Jensen

Lyle H. Ungar

Many real-world decisions depend on accurate predictions of some future outcome. In
such cases the decision-maker often seeks to consult multiple people or/and models for
their forecasts. These forecasts are then aggregated into a consensus that is inputted in the
final decision-making process. Principled aggregation requires an understanding of why
the forecasts are different. Historically, such forecast heterogeneity has been explained by
measurement error. This dissertation, however, first shows that measurement error is not
appropriate for modeling forecast heterogeneity and then introduces information diversity
as a more appropriate yet fundamentally different alternative. Under information diversity
differences in the forecasts stem purely from differences in the information that is used in
the forecasts. This is made mathematically precise in a new modeling framework called the
partial information framework. At its most general level, the partial information framework
is a very reasonable model of multiple forecasts and hence offers an ideal platform for the-
oretical analysis. For one, it explains the empirical phenomenon known as extremization.
This is a popular technique that often improves the out-of-sample performance of simple
aggregators, such as the average or median, by transforming them directly away from the
marginal mean of the outcome. Unfortunately, the general framework is too abstract for
practical applications. To apply the framework in practice one needs to choose a paramet-
ric distribution for the forecasts and outcome. This dissertation motivates and chooses the
multivariate Gaussian distribution. The result, known as the Gaussian partial information
model, is a very close yet practical specification of the framework. The optimal aggregator
under the Gaussian model is shown to outperform the state-of-the-art measurement error
aggregators on both synthetic and many different types of real-world forecasts.
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1
Introduction

A new form of polling has emerged from the recent development of computer and social

networks; it is called prediction polling (Atanasov et al., 2015). In a prediction poll a group

of participants collectively make predictions about some future quantity of interest. For

instance, consider a policy maker who is interested in the probability of Brexit. Instead of

collecting data and aiming to build a statistical model, the policy-maker may reach out to

a group of European Union experts and ask them for their subjective probabilities of the

event. After this, the decision-maker must choose how to use the forecasts. The first idea

may be to simply follow the most accurate or informed forecaster’s advice. Unfortunately,

however, it is often not possible to know ex-ante who this forecaster is, and even if one

somehow could know, simply following a single forecaster’s advice would ignore poten-

tially a large amount of information that is being contributed by the rest of the forecasters.

Therefore a better option is to combine the forecasts into a single consensus forecast that re-

flects all forecasters’ information. Unfortunately, there are many ways one could combine

the predictions, and the final combination rule will largely determine the out-of-sample

performance of the consensus forecast.

The past literature has distinguished two general approaches to forecast aggregation:

1. Empirical. Overall, this approach is by far the more widely studied one. It is akin to

machine learning in a sense that the decision-maker first picks some class of aggre-
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gators and within that class chooses the aggregator that performs the best over some

training set of past predictions on known outcomes. The chosen aggregator is then

used for combining any future predictions of unknown outcomes.

2. Model-based. This approach begins with a probability model of forecast hetero-

geneity, that is, the way the predictions differ from each other and the outcome. The

model-based aggregator is then the optimal aggregator under this assumed outcome-

forecast link. Note that applying the aggregator in practice may or may not involve

estimating some model parameters from the forecasts – but not from the outcomes.

Both of these approaches are important and serve somewhat different purposes. More

specifically, the empirical techniques are often simpler and work very well when one has

access to a training set that is representative of the future aggregation tasks. There are,

however, many forecasting applications where a training set is not available. For instance,

in prediction polling obtaining a training set would require a lot of time and effort on behalf

of the forecasters and polling agency. For this reason, many prediction polls do not yield

a training set. Instead, the participants are typically handed out a single questionnaire that

solicits their predictions about one or more future outcomes. Fortunately, the model-based

aggregation approach can be applied directly to the forecasts even when no knowledge

of the outcomes is available. Therefore the model-based approach is much more broadly

applicable than the empirical approach. Furthermore, the model-based aggregators are

based on theory which provides a clear direction for improvement. Of course, this all

comes at a cost. In particular, the model-based approach relies on modeling assumptions.

If these assumptions are no appropriate, the resulting aggregators are, unfortunately, only of

limited use. Therefore it is important to perform careful model evaluation of any proposed

model-based aggregators.

This dissertation was largely motivated by the lack of an appropriate framework for

model-based aggregation. Historically, possibly due to early forms of data collection, fore-
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cast heterogeneity has been explained with measurement error: the forecasts are assumed

to be equal to the true outcome plus some mean zero idiosyncratic error. While this as-

sumption may make sense when modeling estimates arising from repeated applications

of a sensitive yet somewhat imprecise instrument, it is hardly reasonable when the esti-

mates arise from multiple, often widely different sources. Furthermore, the measurement

error based aggregators are different types of measures of central tendency such as the

(weighted) average or median. Unfortunately, such simple aggregators do not behave as if

they are collecting information from the different forecasters. To illustrate, consider a pa-

tient who is worried about his or her health and hence goes to the hospital. At the hospital

both a blood test and an MRI are taken. Both tests come back with no evidence of poor

health. Suppose there are two doctors who decide to look at the patient’s case: doctors A

and B. Doctor A only looks at the blood test results and provides a probability of 0.9 of the

patient being healthy. Doctor B, on the other hand, only looks at the MRI results but also

provides a probability of 0.9 of the patient being healthy. Now, the patient has two 0.9s that

are based on very different information. How should they be aggregated? Surely, if one

were to see the good news both from the blood test and the MRI, one would be even more

convinced of the patient’s good health and hence predict something greater than 0.9. In

other words, in this simple example the combined evidence should yield a forecast some-

what greater than 0.9. Unfortunately, however, all measures of central tendency aggregate

precisely to 0.9. Therefore they fail to account for the doctors’ differing information sets

and hence cannot collect information from the different forecasters. Of course, this is only

a simple example. The result, however, is much more general than this. In fact, as will be

shown in Chapter 7, this result holds for any number of forecasters despite whether their

forecasts are equal or not.

In order to fix this shortcoming, it is necessary to revisit the fundamentals. In particular,

a new source of forecast heterogeneity must be introduced. This should be more appropri-
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ate than measurement error and it should lead to aggregators that do behave as if they

were collecting information from the different forecasters. Such an alternative is precisely

what is introduced in this dissertation; it is called information diversity. Under information

diversity, the differences in the predictions are fully explained by differences in the infor-

mation used by the respective forecasters. For instance, consider two forecasters predicting

the chances of some global crisis. One of these forecasters lives in USA and follows the

American news. The second forecaster, on the other hand, lives in Russia and reads the

Russian news. Given these descriptions, it is likely that the two forecasters have different

information and hence provide different predictions. This intuition is mathematically for-

malized in a new modeling framework called the partial information framework. Overall,

the partial information framework is very general and can be applied to a broad range of

different forecasting applications, allowing the practitioner to construct application-specific

aggregators instead of always relying on the usual average and median. The partial infor-

mation aggregators also behave as if they collect information from the forecasters and often

outperform the state-of-the-art measurement error aggregators in real-world applications.

Given that information diversity is a contribution at the root of statistical theory, it gives

rise to a large amount of new theory and methodology. This dissertation discusses several

such projects. In particular, each chapter is a separate paper discussing a different aspect

of the partial information framework. The chapters have been ordered chronologically in

the order they were written. The following enumeration briefly describes each chapter and

provides citations of the corresponding papers.

Chapter 2. Satopää et al. (2014) introduces a new empirical aggregator for prob-

ability forecasts. Overall, the aggregator is very simply: it involves only a single

tuning parameter which determines how much the average log-odds forecast should

be extremized. Here extremization refers to the process of transforming a measure of

central tendency, such as the average, directly away from the marginal mean (typi-
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cally at 0.5 for probability forecasts) and closer to the nearest extreme (at 0.0 or 1.0).

This extremizing aggregator is then shown to outperform simple measurement-error

aggregators on real-world predictions. Furthermore, the amount of extremization

was observed to decrease in the forecaster’s self-reported expertise.

Note: At this point the benefits of extremizing were merely an empirical observation.

In particular, it was not clear why it helps or how much extremization should be

performed.

Chapter 3. Satopää et al. (2014)1 was largely motivated by the data collected by

the Good Judgment Project (GJP) (Mellers et al., 2014). More specifically, the GJP

recruited 1,000s of experts to make probability forecasts of hundreds of future events

deemed important by the Intelligence Advanced Research Projects Activity (IARPA).

Each event was succeeded by a period of time during which the forecasters were

allowed to make predictions and update them if they felt that the likelihoods had

changed. Therefore each forecaster gave a time-series of predictions. To aggregate

such streams of forecasts, this paper develops an empirical aggregator that extremizes

and combines predictions over time. Furthermore, the amount of extremization is al-

lowed to vary across different self-reported expertise groups. Overall, the aggregator

outperforms classical exponentially-weighted aggregators on real-world predictions

from the GJP.

Note: Even though this paper contributes to a common forecasting setup where the

forecasters are allowed to update their forecasts over time, all methodology is empir-

ical and hence requires the decision-maker to conduct a rather large study in which

the forecasters are making and updating forecasts for multiple events. Also, given

that the aggregator is learned over a training set, the decision-maker must wait for

1This is the thesis for my Master of Arts in Statistics degree received in December 2014. It is included
here for completeness.

5



each of the events to be resolved. This illustrates the limitations of the empirical ag-

gregation approach. In some sense, the benefits of extremizing suggest a bias in the

underlying probability model, namely the measurement error model that motivates

the simple aggregators applied before extremization.

Chapter 4. Satopää et al. (2015) introduces the partial information framework for

probability forecasts. The framework motivates two benchmarks for aggregation:

the oracular and revealed aggregators. The oracular aggregator has access to all

the details of the forecasters’ information and hence is only useful for theoretical

analysis. The revealed aggregator, on the other hand, can be used in practice as it

only depends on information revealed through the reported forecasts. As a practical

specification of the framework the first version of the Gaussian partial information

model is developed. This version describes full information by some closed interval.

Each forecaster then observes some Borel subset of this interval. The variance of the

forecast is the size of the corresponding Borel set, and the covariance between any

two forecasters is the size of the overlap between their Borel sets. This motivates

a structure for the covariance matrix that has to be in a convex set known as the

correlation polytope. In the paper the oracular aggregator under the Gaussian model

is used as benchmark to analyze the amount of required extremization under different

information structures. In particular, it is found that extremization increases in two

separate measures: the total amount of information and the amount of information

diversity among the forecasters. This motivates a spectrum of aggregators, ranging

from averaging (full information overlap) to summing (no information overlap).

Note: While information diversity is intuitively much more appealing than measure-

ment error, this paper was mainly theoretical and contained very little empirical evi-

dence in favor of information diversity. Furthermore, the focus was entirely on mod-

eling probability forecasts. Based on the general analysis, however, it is clear that
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information diversity is a much more general concept: it is an alternative to measure-

ment error and hence suggests a more general modeling framework.

Chapter 5. Satopää et al. (2016) introduces information diversity as a general alter-

native to measurement error and shows how the partial information framework can

be used in practice to model different types of outcome-forecast pairs, such as proba-

bility forecasts of binary outcomes or real-valued forecasts of real-valued outcomes.

Such applications are made more tractable by modifying the Gaussian model. In par-

ticular, it turns out that applying the partial information framework in practice only

needs a choice of a parametric family of distributions for the outcome and forecasts

– nothing else. The multivariate Gaussian distribution here leads to our second ver-

sion of the Gaussian model. This time the form of the forecasts’ covariance matrix

is motivated solely by the general partial information framework instead of overlap-

ping Borel sets. Most importantly, however, the revised form is much more tractable

than the one introduced by the first version of the Gaussian model. The paper then

develops a procedure for estimating these covariance matrices and applies the re-

vised Gaussian model to two real-world applications. The analysis leads to several

observations. First, in both cases the revealed aggregator significantly outperforms

the state-of-the-art measurement error aggregators. Second, unlike the measurement

error aggregators, the revealed aggregator behaves as if it is collecting information

from the forecasters. Third, the estimated information structure aligns well with prior

knowledge about the forecasters’ information.

Note: This paper provides much empirical evidence in favor of information diver-

sity as the more important source of forecast heterogeneity. The estimation pro-

cedure therein, however, requires the forecasters to make predictions for multiple

related outcomes. Unfortunately, in many forecasting setups multiple outcomes are

not available, and even if they are, the outcomes may different in nature such that the
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information structure cannot be assumed to remain constant among them. Ideally,

one would have a partial information aggregator that can operate directly on a set of

forecasts of a single outcome.

Chapter 6. Ernst et al. (2016) introduces the notion of Bayes-Gaussian aggregation.

The motivation relies on previous applications that have inputted a point estimate

of the information structure to the revealed aggregator. Such plug-in aggregators,

however, can be unstable. To avoid this, a Bayes-Gaussian aggregator computes a

posterior-weighted mixture of the plug-in aggregators under all possible information

structures. In this paper a Bayes-Gaussian aggregator is developed for two probabil-

ity forecasts of a single event. To simplify the computations, each of the forecasters

is assumed to know half of the total information. Their information overlap, however,

is considered unknown and is analytically integrated out with respect to its posterior

distribution. The final form is a simple aggregator that is free of any model parame-

ters and hence can be applied directly to any two probability forecasts. Even though

the literature on Bayesian statistics offers many numerical procedures for integra-

tion, the model parameters here are integrated out analytically in order to arrive at

a closed-form aggregator. The hope is that such a simple closed-form encourages

practitioners to abandon the usual average and median aggregators.

Chapter 7. Satopää and Ungar (2015) begins by proving and discussing some gen-

eral results under the partial information framework. For one, it makes the notion

of information collection precise: an information collector is a calibrated aggrega-

tor, as this shows that it is consistent with some information set about the outcome,

and its variance is at least as large as the maximum variance among the individual

forecasts. The paper then proceeds to show that the revealed aggregator does col-

lect information. In contrast, the weighted average of calibrated forecasts is shown

to be neither calibrated nor to collect information. Given that measures of central

8



tendency generally reduce variance, these simple aggregators can be intuitively seen

to not collect information either. Furthermore, the weighted average tends to be too

close (as compared to the revealed aggregator) to the marginal mean. This motivates

extremization of the weighted average under any type of forecast-outcome pair. The

paper concludes by showing how extremizing real-valued forecasts improves both

calibration and prediction accuracy under synthetic and real-world data.
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2
Combining Multiple Probability Predictions Using

a Simple Logit Model∗

Abstract

This paper first presents a simple model of how experts estimate probabilities. The model

is then used to construct a likelihood-based aggregation formula for combining multiple

probability forecasts. The resulting aggregator has a simple analytic form that depends on

a single easily-interpretable parameter. This makes it computationally simple, attractive

for further development, and robust against overfitting. Based on a large-scale dataset in

which over 1,300 experts tried to predict 69 geopolitical events, our aggregator is found to

be superior to several widely used aggregation algorithms.

2.1 Introduction

Experts are often asked to give decision makers subjective probability estimates on whether

certain events will occur or not. After collecting such probability forecasts, the challenge

is to construct an aggregation method that produces a consensus probability for each event

∗Joint work with Jonathan Baron, Dean P. Foster, Barbara A. Mellers, Philip E. Tetlock, Lyle H. Ungar

10



by combining the probability estimates appropriately. If the observed long-run empirical

distribution of the events matches the aggregate forecasts, the aggregation method is said to

be calibrated. This means that, for instance, 30% of the events, which have been assigned

a aggregate forecast of 0.3, occur. According to Ranjan (2009), however, calibration is

not sufficient for useful decision making. The aggregation method should also maximize

sharpness which increases as the aggregate forecasts concentrate closer around the extreme

probabilities 0.0 and 1.0. Therefore it can be said that the overall goal in probability es-

timation is to maximize sharpness subject to calibration (for more information see, e.g.,

Gneiting et al. 2007; Pal 2009).

The most popular choice for aggregation is linear opinion pooling, which assigns each

individual forecast a weight reflecting the importance of the expert. Ranjan and Gneiting

(2010), however, show that any linear combination of (calibrated) forecasts is uncalibrated

and lacks sharpness. Furthermore, Allard et al. (2012) show in several simulations stud-

ies that linear opinion pooling performs poorly relative to other pooling formulas with a

multiplicative instead of an additive structure.

Previous literature has introduced a wide range of methods that aggregate probabili-

ties in a non-linear manner (see, e.g., Ranjan and Gneiting 2010; Bordley 1982; Polyakova

and Journel 2007). Many of these methods, however, involve a large number of param-

eters making them computationally complex and susceptible to over-fitting. By contrast,

parameter-free approaches such as the median or the geometric mean of the odds are too

simple to optimally incorporate the use of training data. In this paper, we propose a novel

aggregation approach that is simple enough to avoid over-fitting, straightforward to imple-

ment, and yet flexible enough to make use of training data. Therefore our aggregator retains

the benefits of parsimony from parameter-free approaches without losing the ability to use

training data.

The theoretical justification for our aggregator arises from a log-odds statistical model
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of the data. The log-odds representation is convenient from a modeling perspective. Being

defined on the entire real line, the log-odds can be modeled with a Normal distribution.

For example, Erev et al. (1994) model log-odds with a Normal distribution centered at

the “true log-odds”2. The variability around the “true log-odds” is assumed to arise from

the personal degree of momentary confidence that affects the process of reporting an overt

forecast. We extend this approach by adding a systematic bias component to the Normal

distribution. That is, the Normal distribution is centered at the “true log-odds” that have

been multiplied by a small positive constant (strictly between zero and one) and are hence

systematically regressed toward zero.

To illustrate this choice of location, assume that 0.9 is the most informed probability

forecast that could be given for a future event with two possible outcomes. A rational fore-

caster who aims to minimize a reasonable loss function, such as the Brier score3, without

any previous knowledge of the event, gives 0.5 as his initial probability forecast. However,

as soon as the forecaster gains some knowledge about the event, he produces an updated

forecast that is a compromise between his initial forecast and the new information acquired.

The updated forecast is therefore conservative and necessarily too close to 0.5 as long as

the forecaster remains only partially informed about the event. If most forecasters fall

somewhere on this spectrum between ignorance and full information, their average fore-

cast tends to fall strictly between 0.5 and 0.9 (see Baron et al. (2014) for more details).

This discrepancy between the “true probability” and the average forecast is represented in

our model by using the regressed “true log-odds” as the center of the Normal distribution.

Both Wallsten et al. (1997) and Zhang and Maloney (2012) recognize the presence of

this systematic bias. Wallsten et al. (1997) discuss a model with a bias term that regresses

2In this paper, we use quotation marks in any reference to a true probability (or log-odds) to avoid a
philosophical discussion. These quantities should be viewed simply as model parameters that are subject to
estimation.

3The Brier score is the squared distance between the probability forecast and the event indicator that
equals 1.0 or 0.0 depending on whether the event happened or not, respectively.
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the expected responses towards 0.5. Zhang and Maloney (2012) provide multiple case

studies showing evidence for the existence of the bias. Neither study, however, describe a

way of correcting the bias or a potential aggregation method to accompany the correction.

Zhang and Maloney (2012) estimate the bias at an individual level requiring multiple prob-

ability estimates from a single forecaster. Even though our approach can be extended rather

trivially to correct the bias at any level (individual, group, or collective), in this paper we

treat the experts as being indistinguishable and correct the systematic bias at a collective

level by shifting each probability forecast closer to its nearest boundary point. That is, if

the probability forecast is less (or more) than 0.5, it is moved away from its original point

and closer to 0.0 (or 1.0).

This paper begins with the modeling assumptions that form the basis for the derivation

of our aggregator. After describing the aggregator in its simplest form, the paper presents

two extensions: the first one generalizes the aggregator to events with more than two pos-

sible outcomes, and the second one allows for varying levels of systematic bias at different

levels of expertise. The aggregator is then evaluated under multiple synthetic data scenar-

ios and on a large real-world dataset. The real data were collected by recruiting over 1,300

forecasters ranging from graduate students to forecasting and political science faculty and

practitioners, and then posing them 69 geopolitical prediction problems (see the Appendix

for a complete listing of the problems and Ungar et al. 2012 for more details on the data

collection process). Our main contribution arises from our ability to evaluate competing ag-

gregators on the largest dataset ever collected on geopolitical probability forecasts made by

human experts. With such a large dataset, we have been able to develop a generic aggrega-

tor that is analytically simple and yet outperforms other widely used competing aggregators

in practice. After presenting the evaluation results, the paper concludes by exploring some

future research ideas.
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2.2 Theory

Using the logit function

logit(p) = log

(
p

1− p

)

a probability forecast p ∈ [0, 1] can be uniquely mapped to a real number called the log-

odds, logit(p) ∈ R. This allows us to conveniently model probabilities with well-studied

distributions, such as the Normal distribution, that are defined on the entire real line. In

this section, assume that we have N experts each giving one probability forecast for a

binary-outcome event. We consider these experts as interchangeable. That is, no forecaster

can be distinguished from the others either across or within problems. Denote the experts’

forecasts with pi and let Yi = logit(pi) for i = 1, 2, . . . , N . As discussed earlier, we

model the log-odds with a Normal distribution centered at the “true log-odds” that have

been regressed towards zero by a factor of a. More specifically,

Yi = log

(
p

1− p

)1/a

+ εi,

where a ≥ 1 is an unknown level of systematic bias, p is the “true probability” to be

estimated, and each εi
i.i.d.∼ N (0, σ2) is a random shock with unknown variance σ2 on the

individual’s reported log-odds. If the model is correct, the event arising from this model

would occur with probability p. Therefore p should be viewed as a model parameter that is

subject to estimation.

The larger a is, the more the log-odds are regressed towards 0 or, equivalently, the more

the probability estimates are regressed towards 0.5. Therefore we associate a = 1 with

an accurate forecast and any a > 1 with a partially informed and under-confident forecast

(Baron et al., 2014). It is certainly possible for an expert to be overconfident (see, e.g.,

McKenzie et al. 2008 for a recent and comprehensive discussion). In fact, we find this to
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be the case among forecasters at the highest level of self-reported expertise. In Section

2.3.3.3 we provide empirical evidence that the forecasters as a group, however, tend to be

under-confident. We therefore treat group-level under-confidence as a reasonable modeling

restriction that we do not need to impose in our simulations (see Section 2.3), where we

allow the data to speak for themselves by letting a ∈ [0,∞).

Notice that, unlike the systematic bias term a, the random error component εi is allowed

to vary among experts. Putting this all together gives

log

(
pi

1− pi

)
i.i.d.∼ Normal

(
log

(
p

1− p

)1/a

, σ2

)

⇔ pi
1− pi

i.i.d.∼ Log-Normal

(
log

(
p

1− p

)1/a

, σ2

)

⇔ pi
i.i.d.∼ Logit-Normal

(
log

(
p

1− p

)1/a

, σ2

)

This model is clearly based on an idealization of the real world and is therefore an over-

simplification. Although performing a formal statistical test to determine whether the log-

odds in our real-world dataset follow a Normal distribution lead to rejection of the null

hypothesis of normality, this result simply reflects the inevitability of slight deviation from

normality and the sensitivity of the statistical tests involving large sample sizes. Assuming

normality, however, turns out to be a good enough approximation to be of practical use.

While Zhang and Maloney (2012) did not model log-odds with a Normal distribution, they

argue in favor of using the logit-transformation with a linear bias term to model probabil-

ities. Di Bacco et al. (2003) use the Logit-Normal distribution to jointly model experts’

probabilities under different levels of information. For our purposes, the Logit-Normal

model serves as a theoretical basis for a clean and justified construction of an efficient

aggregator.
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2.2.1 Model-based Aggregator

The invariance property of the maximum likelihood estimator (MLE) can be used to show

that the MLE of p is

p̂G(a) =
exp

(
aȲ
)

1 + exp
(
aȲ
) ,

where Ȳ = 1
N

∑N
i=1 Yi. By plugging in the definition of Yi, the MLE can be expressed in

terms of the geometric mean of the odds as

p̂G(a) =

[
N∏
i=1

(
pi

1−pi

)1/N
]a

1 +

[
N∏
i=1

(
pi

1−pi

)1/N
]a , (2.1)

where the subindex G indicates the use of the geometric mean. The input argument em-

phasizes the dependency on the unknown quantity a. The estimator p̂G is particularly con-

venient because it allows for (i) an easy extension to uneven expert weights by simply

replacing each 1/N with a weight term wi and (ii) switching the order of transformation

and aggregation operators. Notice, however, that making use of (i) would result in an esti-

mator with a total of N parameters. Such an estimator would be computationally complex

and susceptible to overfitting. Many authors including Graefe et al. (2014a), Armstrong

(2001), and Clemen (1989) encourage the use of equal weights unless there is strong evi-

dence to support unequal weightings of the experts. For simplicity, we limit this paper to

the equally weighted aggregator.

2.2.2 Estimating Systematic Bias

Our aggregator p̂G depends on the unknown quantity a, which needs to be inferred. If

we have a training set consisting of K binary-outcome events and K pools of probability
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forecasts associated with these events, we can measure the goodness of fit for any a with

the mean score

S̄K(a) =
1

K

K∑
k=1

S(p̂G,k(a), Zk),

where S is a proper scoring rule (see, e.g., Gneiting and Raftery (2007)), p̂G,k is the aggre-

gate probability forecast for the kth event, and the event indicator Zk ∈ {0, 1} depending

on whether the kth event occurred (Zk = 1) or did not occur (Zk = 0). Optimizing this

mean score as a function of a gives the optimum score estimator

âOSE = arg min
a
S̄K(a),

which according to Gneiting and Raftery (2007) is a consistent estimator of a.

Although strictly proper scoring rules are the natural loss functions in estimating bi-

nary class probabilities (see Buja et al. (2005)), the real appeal arises from the freedom of

choosing a proper scoring rule to suit the problem at hand. Among the infinite number of

proper scoring rules, the two most popular ones are the Brier score (see Brier 1950) and

the logarithmic scoring rule (see Good 1952), which is equivalent to maximizing the log-

likelihood and hence finding the maximum likelihood estimator of a. Given that it is not

clear which rule should be used for predicting social science events, we estimate a both via

the Brier score

âBRI = arg min
a

K∑
k=1

(p̂G,k(a)− Zk)2

and via the likelihood function

âMLE = arg max
a

K∏
k=1

p̂G,k(a)Zk(1− p̂G,k(a))1−Zk ,
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and compare the resulting two aggregators. Notice that both equations are non-linear op-

timization problems with no analytic solutions. Fortunately, the optimizing values can be

found with numerical methods such as the Newton-Raphson method or a simple line search.

2.2.3 Extensions to the Aggregator

This section briefly discusses two extensions to the aggregator. The first one extends p̂G

to events with more than two possible outcomes. This gives a more general aggregator

with p̂G as a sub-case. The second extension allows for varying values of a across different

groups of expertise.

2.2.3.1 Multinomial Events

For now, assume that the event can take exactly one of a total ofM ≥ 2 different outcomes.

Under pure ignorance the forecaster should assign 1/M probability to each outcome. The

more ignorant the forecaster is, the more we would expect him to shrink his forecasts

towards 1/M . See Zhang and Maloney (2012) and Fox and Rottenstreich (2003) for further

discussion.

We use this idea to generalize our aggregator. Choosing the M th outcome as the base-

line, denoting the forecast for the mth outcome by the ith forecaster with pi,m, and letting

Yi,m = log
(
pi,m
pi,M

)
for i = 1, 2, . . . , N , we arrive at a more general version of the model

represented as

Yi,m = log

(
pm
pM

)1/a

+ εi,m

where m ∈ {1, . . . ,M − 1} and εi,m
i.i.d.∼ N (0, σ2) with σ2 unknown. The resulting
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maximum likelihood estimator for the kth outcome is

p̂G,k(a) =

[
N∏
i=1

(
pi,k
pi,M

)1/N
]a

M∑
j=1

[
N∏
i=1

(
pi,j
pi,M

)1/N
]a

Instead of analyzing this more general estimator, this paper will focus on the binary sub-

case. Notice, however, that all the properties generalize trivially to the multi-outcome case.

2.2.3.2 Correction under Levels of Expertise

The reasoning in the previous subsection suggests that better forecast performance could

be achieved by correcting for systematic bias differently at different levels of expertise. To

make this more specific, assume that each forecaster can identify himself with one of C

expertise levels with C being the most knowledgeable. Let a = [a1, . . . , aC ]′ be a vector

of C different systematic bias factors, one for each expertise level. Then,

p̂G,k(a) =

N∏
i=1

(
pi,k
pi,M

)e′ia
N

M∑
j=1

N∏
i=1

(
pi,j
pi,M

)e′
i
a

N

where ei is a vector of length C indicating which level of expertise the ith forecaster be-

longs to. For instance, if ei = [0, 1, 0, . . . , 0, 0]′, the ith expert identifies himself with

expertise level two. The systematic bias factors can be estimated by first partitioning the

dataset by expertise and then finding the optimal value for each expert group separately.

We will return to this topic briefly at the end of the results section, where we show the

effects of actual expertise self-ratings from forecasters.
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2.3 Results and Discussion

This section compares different aggregators both on synthetic and real-world data. The

aggregators included in the analysis are as follows.

(a) Arithmetic mean of the probabilities

(b) Median of the probabilities

(c) Logarithmic opinion pool

p̂ =
N∏
i=1

pwii

/(
N∏
i=1

pwii +
N∏
i=1

(1− pi)wi
)
,

which according to Bacharach (1972) was proposed by Peter Hammond (see Genest

and Zidek (1986)). Given that we consider the forecasters indistinguishable, we

assign equal weights to each forecaster. Letting wi = 1/N for i = 1, . . . , N gives us

the equally weighted logarithmic opinion pool (ELOP).

(d) Our aggregator p̂G(a) as given by Equation (2.1)

(e) The Beta-transformed linear opinion pool

p̂(α, β) = Hα,β

(
N∑
i=1

wipi

)
,

where Hα,β is the cumulative distribution function of the Beta distribution with pa-

rameters α and β, and wi is the weight given to the ith forecast. Allard et al.

(2012) show, on simulations, that Beta-transformed linear pooling presents very good

forecast performance. Again we assign equal weights to each forecaster. Letting

wi = 1/N for i = 1, . . . , N gives us the Beta-transformed equally weighted linear

opinion pool (BELP). This aggregator, however, tends to overfit in all of our evalua-

tion procedures. Much better performance is obtained by requiring α = β ≥ 1. Un-
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der such a restriction, the BELP aggregator can be enforced to shift any mean prob-

ability more toward the closest extreme probability 0.0 or 1.0. This one-parameter

sub-case (1P-BELP) is more robust against overfitting and is supported by the the-

oretical results by Wallsten and Diederich (2001). For these reasons, it is a good

competing aggregator in our simulations. We do not present the results associated

with the 2-parameter BELP aggregator because BELP performs much worse than

1P-BELP in all of our simulations.

As suggested by Ranjan and Gneiting (2010), the parameter α can be fit by using op-

timum score techniques. We fit any tuning parameters using both the Brier score and the

likelihood function, and then compare the resulting aggregators. Given that Ranjan and

Gneiting (2010) only considered aggregating binary events, it is unclear how the Beta-

transformed linear pooling can be generalized to events with more than two possible out-

comes. Therefore our comparison will focus only on forecasting binary events.

Throughout this evaluation section, we will be using the Brier score as the performance

measure. As discussed earlier in Section 2.2.2, this scoring rule has some attractive prop-

erties and is in essence a quadratic penalty. It also has an interesting psychological inter-

pretation as the expected cost of an error, given a probability judgment and the truth (see

Baron et al. 2014 for the details).

2.3.1 Synthetic Data: Correctly Specified Model

In this section we evaluate the different aggregators on a correctly specified model; that is,

on data that have been generated directly from the Logit-Normal distribution described in

Section 3.3. The evaluation is done over a three-dimensional grid that expands the number

of forecasters per problem, N , from 5 to 100 (with increments of five forecasters), the true

probability, p, from 0.1 to 0.9 (with increments of 0.1), and the systematic bias term, a,

from 5/10, 6/10, . . . 9/10, 10/10, 10/9, . . . , 10/6, 10/5 symmetrically around the no-bias
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point at 1.0. The simulation was run for 100 iterations at every grid point. Each iteration

used the values at the grid point to produce a synthetic data set from the Logit-Normal

distribution. The true probability, p, was used to generate Bernoulli random variables that

indicated which events occurred and which did not. Testing was performed on a separate

testing set consisting of 1,000 problems, each with the same number of forecasters as the

problems in the original training set. The simulation was repeated for two different numbers

of problems in the training set, K = 30 and K = 100. The variance for the log-odds, σ2,

was equal to 5 throughout the entire simulation4.

The results are summarized in two sets of figures: Figures 2.1a and 2.2a plot the Brier

scores (given by averaging over the systematic bias and the true probability) against the

number of forecasters per problem, Figures 2.1b and 2.2b plot the Brier score (given by

averaging over the number of forecasters per problem and the true probability) against the

systematic bias term, and Figures 2.1c and 2.2c plot the Brier scores (given by averaging

over the number of forecasters per problem and the systematic bias) against the true proba-

bility. Figure 2.1 presents the results under K = 30, and Figure 2.2 shows the results under

K = 100.

Given that p̂G(âMLE) and 1P-BELP(α̂MLE) performed better than p̂G(âBRI) and 1P-

BELP(α̂BRI), only the results associated with the maximum likelihood approach are pre-

sented. Comparing Figure 2.1 to Figure 2.2 shows that these two aggregators make very

good use of the training data and outperform the simple, parameterless aggregators as

the training set increases from K = 30 to K = 100 problems. Overall, our aggregator

p̂G(âMLE) achieves the lowest Brier score almost uniformly across Figures 2.2a to 2.2c.

This result, however, is more of a sanity-check than a surprising result as the data were

generated explicitly to match the model assumptions made by p̂G.

4This value was considered a realistic choice after analyzing the variance of the log-odds in our real-world
data. The simulation was also run with unit variance. These results, however, were not remarkably different
and are hence, for the sake of brevity, not presented in this paper
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Figure 2.1: K = 30 synthetic problems for training. 1,000 problems for testing.

Mean

Median

ELOP

p̂G(âMLE)
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Figure 2.2: K = 100 synthetic problems for training. 1,000 problems for testing.

Based on Figures 2.1b and 2.2b, correcting for the bias when the data are actually

unbiased (a = 1.0) does not cause much harm. But correcting for the bias when the

data are truly biased (a 6= 1.0), yields noticeable performance benefits especially when

K = 100. Interestingly, the mean performs better than all other aggregators when the

experts are highly over-confident (a ≤ 0.7) but is hugely outperformed when the experts
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are under-confident (a > 1). To gain some understanding of this behavior, notice that in the

highly over-confident case the distribution of the forecasts tends to be very skewed in the

probability scale. The values in the long tail of such a distribution have a larger influence on

the mean than, say, the median of the probability forecasts. Given that the median is mostly

unaffected by these values, it produces an aggregate forecast that remains over-confident.

The mean, by contrast, is drawn towards 0.5 by the values in the long tail. This produces

an aggregate forecast that is less over-confident; hence improving forecast performance.

The improved performance, however, comes at a cost: when the true probability p is

very close to the extreme probabilities 0.0 and 1.0, the mean is, on average, the worst

performer among all the aggregators in the analysis. This difference in performance, which

is clear in Figures 2.1c and 2.2c, is more meaningful when compared to the baseline given

by p(1 − p)2 + (1 − p)p2. Given that the expected Brier score is minimized at the true

probability, this line should be considered as the ultimate goal in Figures 2.1c and 2.2c.

Notice that all aggregators, except the mean, approach the line p(1− p)2 + (1− p)p2 from

above as p gets closer to the extreme probabilities 0.0 and 1.0.

2.3.2 Synthetic Data: Misspecified Model

Next we evaluate the different aggregators on data that have not been generated from the

Logit-Normal distribution. The setup considered is an extension of the simulation study

introduced in Ranjan and Gneiting (2010) and further applied in Allard et al. (2012). Under

our extended version, the true probability for a problem with N forecasters is given by

p = Φ

(
N∑
i=1

ui

)
,

where Φ is the cumulative distribution function of a standard normal distribution, and each

ui
i.i.d.∼ N (0, 1). Now, assume that the ith expert is aware of the true probability generating
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process but only observes ui. Then his calibrated estimate for p is given by

pi = Φ

(
ui√

2N − 1

)

Notice that the more forecasters are participating in a given problem, the less information

(proportionally) knowing ui gives the forecaster. Therefore as the number of forecasters

increases, the forecaster shrinks his estimate more and more towards 0.5. More specifically,

pi → Φ(0) = 0.5 for all i = 1, . . . , N as N →∞.

To give a real-world analogy of this setup, think of a group of N people independently

voting on a binary event. Knowing everybody’s vote determines the final outcome. Given

that each person only knows his own vote, his proportional knowledge share diminishes

as more people enter the voting. As a result, his probability forecast for the final outcome

should shrink towards 0.5.

In our simulation, we varied the number of forecasters per problem, N , from 2 to 100

(with increments of one forecaster). Under each value of N , the simulation ran for a total

of 10,000 iterations. Each iteration produced the true probabilities for the K problems and

their associated pools of N probability estimates from the process described above. The

true probabilities were used to generate Bernoulli random variables that indicated which

events occurred and which did not. Testing was performed on a separate testing set con-

sisting of 1,000 problems, each with the same number of forecasters as the problems in the

training set. In the end, the resulting Brier scores were averaged to give an average Brier

score at each number of forecasters for each problem.

Figure 2.3 plots the average Brier score against the number of forecasters per problem

under K = 100 problems. The same analysis was performed under K = 30. The results,

however, turned out to be almost identical to the results under K = 100 and hence, for

the sake of brevity, are not presented separately. Before discussing the K = 100 results,

however, it is important to emphasize the peculiarity of this setting. Notice that, unlike in
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Figure 2.3: 100 synthetic problems for training. 1,000 problems for testing.

many generally encountered data generating processes, having more data leads to increased

bias and is therefore harmful. As a result, we would expect the aggregators to perform

worse as the sample size increases. Based on Figure 2.3, the mean, median, and ELOP,

which do not aim to correct for the bias, in fact, degrade in terms of performance as the

number of forecasters increases. The one-parameter aggregators, p̂G and 1P-BELP, by

contrast, are able to stabilize the average Brier score despite the increasing bias in the

probability estimates. Overall, p̂G achieves the lowest Brier score across all numbers of

forecasters per problem.

2.3.3 Real Data: Predicting Geopolitical Events

We recruited over 1,300 forecasters, who ranged from graduate students to forecasting and

political science faculty and practitioners, and then asked them to give probability forecasts

on 69 geopolitical events. Forecasters were recruited from professional societies, research
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centers, alumni associations, science bloggers, and word of mouth. Requirements included

at least a Bachelor’s degree and completion of psychological and political tests that took

roughly two hours. These measures assessed cognitive styles, cognitive abilities, person-

ality traits, political attitudes, and real-world knowledge. All forecasters knew that their

probability estimates would be assessed for accuracy using Brier scores. This incentivized

the forecasters to report their true beliefs instead of gaming the system. Forecasters re-

ceived $150 for meeting minimum participation requirements, regardless of their accuracy.

They also received status rewards for their performance via leaderboards displaying Brier

scores for the top 20 forecasters. Each of the 69 geopolitical events had two possible out-

comes. For instance, some of the questions were

Will the expansion of the European bailout fund be ratified by all 17 Eurozone

nations before 1 November 2011?

and

Will the Nikkei 225 index finish trading at or above 9,500 on 30 September

2011?

See the Appendix for a complete list of the 69 problems and associated summary statistics.

The forecasters were allowed to update their forecast as long as the question was active.

Some questions were active longer than others. The number of active days ranged from 2

to 173 days, with a mean of 54.7 days. It is important to note that this paper does not focus

on dynamic data. Instead we study pools of probability forecasts with no more than one

forecast given by a single expert. More specifically, we consider the first three days for

each problem because this is when the most of uncertainty is present. If an expert made

more than one forecast within these three days, we consider only his most recent forecast.

This results in 69 sets of probabilities with the number of forecasters per problem ranging

from 86 to 647 with a mean of 235.1 forecasters. Given that all experts did not participate
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in every problem, we consider the experts completely anonymous (and interchangeable)

both within and across problems. Before we evaluate the results, however, we discuss

several practical matters that need to be taken into account when aggregating real-world

forecasting data.

2.3.3.1 Extreme Values and Inconsistent Data

For any value of a, the aggregator p̂G satisfies the 0/1 forcing property which states that if

the pool of forecasts includes an extreme value, that is either zero or one but not both, then

the estimator should return that extreme value (see, e.g., Allard et al. (2012)). This property

is desirable if one of the forecasters happens to know the final outcome of the event with

absolute confidence. Unfortunately, experts can make such absolute claims even when they

are not completely sure of the outcome. For instance, each of the forecast pools associated

with the 69 questions in our data contained both a zero and a one. In any such dataset, an

aggregator that is based on the geometric mean of the odds is undefined.

These data inconsistencies can be avoided by adding and subtracting a small quantity

from zeros and ones, respectively. Ariely et al. (2000) suggest changing p = 0 and 1 to

p = 0.02 and 0.98, respectively. Allard et al. (2012) only consider probabilities that fall

within a constrained interval, say [0.001, 0.999], and throw out the rest. Given that this

implies ignoring a portion of the data, we take an approach similar to that of Ariely et al.

(2000) and replace p = 0 and 1 with p = 0.01 and 0.99, respectively. In the case of

multinomial events, the modified probabilities should be normalized to sum to one. This

forces the probability estimates to the open interval (0, 1). The transformation will shift the

truncated values even closer to their true extreme values. For instance, if a is larger than

two, which often is the case, 0.01 and 0.99 would be transformed at least to 0.0001 and

0.9999, respectively.

Another practical solution is to estimate the geometric mean of the odds with the odds
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given by the arithmetic mean of the probabilities. This gives us the following estimator

p̂A(a) =

[
p̄

1−p̄

]a
1 +

[
p̄

1−p̄

]a ,
where p̄ = 1

N

∑N
i=1 pi. The subindex emphasizes the use of the arithmetic mean. The two

estimators p̂G and p̂A will differ the most when the set of probability forecasts includes

values close to the extremes. Therefore the larger the variance term σ2 of the Logit-Normal

model is the more we would expect these two estimators to differ. For comparison’s sake,

we have included p̂A in the real-world data analysis.

A similar problem arises with the logarithmic opinion pool, where zero predictions

from experts can be viewed as “vetoes” (see Genest and Zidek (1986)). To address this, we

replaced p = 0 with p = 0.01 and normalized the probabilities to sum to one.

2.3.3.2 Aggregator Comparison on Expert Data

This section evaluates the aggregators on the first three days of the 69 problems in our

dataset. The evaluation begins by exploring the impact of number of forecasters per prob-

lem on predictive power. Each run of the simulation fixes the number of forecasters per

problem and samples a random subset (of this size) of forecasters within each problem.

These subsets are then used for training and computing a Brier score. The sampling pro-

cedure is repeated 1,000 times during the simulation. The resulting 1,000 Brier scores are

averaged to obtain an overall performance measure under the given number of forecasters

per problem.

Figure 2.4 plots the average Brier score against the number of forecasters per problem.

The MLE aggregator p̂G achieves the lowest Brier score across all numbers of forecasters

per problem. The two aggregators p̂A and P1-BELP perform so similarly that their average

Brier scores are almost indistinguishable. The performance gap from p̂G to P1-BELP and
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Figure 2.4: 69 real-world problems for training. The first three days; much uncertainty.

p̂A appears to widen as the number of forecasters increases.

It merits note that most of the improvement across the different approaches occurs

before roughly 50 forecasters per problem. This suggests a new strategy for collecting data:

instead of having a large number of forecasters making predictions on a few problems, we

should have around 50 forecasters involved with a large number of problems. With a larger

number of problems, a more accurate estimate of the systematic bias could be acquired,

possibly leading to improved forecast performance.

A similar analysis was performed with the last three days of each problem. The average

Brier scores, however, were very close to zero. There was, in fact, so much certainty among

the forecasters, that simply taking the median gave an aggregate forecast very close to the

truth. For this reason, we decided to not present these results in this paper.

The average Brier scores in Figure 2.4 are based on the training error. No separate

testing set was used in this particular analysis because we believe that fitting one parameter
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in a large enough sample does not overfit significantly. Figure 2.5 plots the Brier score for

p̂G under varying levels of a. Given that the optimal level of a is around 2.0, the experts

(as a group) appear under confident, and p̂G gains its advantage by shifting each of the

probability forecasts closer to its nearest boundary point (0.0 or 1.0).

Running a repeated sub-sampling validation with a training set of size K and a testing

set of size 69−K supports the results shown in Figure 2.4. Table 2.1 shows the results after

running repeated sub-sampling validation with K = 30 and K = 60 a total of 1,000 times

and then averaging the resulting 1,000 (testing) Brier scores. For the sake of consistency,

we have also included the average logarithmic scores:

− 1

69−K

69−K∑
k=1

Zk log(p̂k) + (1− Zk) log(1− p̂k)

where p̂j is the probability estimate and Zj is the event indicator for the jth testing problem

defined earlier in Section 2.2.2. The values given in parentheses are the estimated standard

deviations of the testing scores. Given that the mean, median, and ELOP do not use training

data, their reported scores are based on the simulation withK = 30 that uses a larger testing

set.

In Table 2.1 we have also included the bias-corrected versions of the mean, median,

and ELOP. This correction was attained by applying bootstrap sampling to the pool of

probabilities for a total of 1,000 times. More specifically,

p̂f,k = 2f(pk)−
1

1000

1000∑
i=1

f
(
p

(i)
k,bs

)
,

where pk is the (full) original set of probabilities for the kth problem, p(i)
k,bs is the ith boot-

strap sample obtained from pk, and f is a functional depending on the estimator. For

instance, when correcting the sample median, f(pk) = median(pk). The biases found,

however, turned out to be very small. As can be seen in Table 2.1, correcting for the bias
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Brier Score Logarithmic Score
Bias Correction Bias Correction

No Yes No Yes
Mean 0.150 (0.032) 0.150 (0.032) 0.477 (0.025) 0.477 (0.025)

Median 0.140 (0.038) 0.139 (0.038) 0.446 (0.031) 0.444 (0.031)
ELOP 0.132 (0.039) 0.131 (0.039) 0.425 (0.032) 0.425 (0.032)

K = 30
Bias Estimation Bias Estimation

BRI MLE BRI MLE
1P-BELP 0.126 (0.027) 0.125 (0.026) 0.401 (0.115) 0.401 (0.117)

p̂A 0.127 (0.027) 0.125 (0.026) 0.402 (0.109) 0.402 (0.115)
p̂G 0.124 (0.028) 0.122 (0.026) 0.401 (0.134) 0.394 (0.127)

K = 60
Bias Estimation Bias Estimation

BRI MLE BRI MLE
1P-BELP 0.122 (0.061) 0.121 (0.064) 0.383 (0.170) 0.384 (0.193)

p̂A 0.122 (0.061) 0.121 (0.065) 0.385 (0.168) 0.386 (0.190)
p̂G 0.119 (0.060) 0.118 (0.064) 0.376 (0.165) 0.377 (0.188)

Table 2.1: K problems for training. 69 − K problems for testing. 1,000 repetitions. The

values in the parentheses are the estimated standard deviations of the testing scores.

improved the performance only by a small margin if at all.

For convenience, we have bolded the lowest scores in each column of the three boxes.

Overall, the ranking of the aggregators on relative performances is the same as in Figure

2.4. As seen before, p̂G(âMLE) achieves the lowest Brier and logarithmic scores by a

noticeable margin.

2.3.3.3 Less Transformation for More Expertise

Earlier we proposed that the more expertise the forecaster has, the less systematic bias can

be found in his probability forecasts. This means that his forecasts require less transfor-

mation, i.e. a lower level of a. To evaluate this interpretation, we asked forecasters to

self-assess their level of expertise on the topic. The level of expertise was measured on a

1-to-5 scale (1 = Not At All Expert to 5 = Extremely Expert). Figure 2.6 plots the max-
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imum likelihood estimator of a under different levels of expertise. The gray bars around

each point are the 95% (Bonferroni corrected) simultaneous confidence intervals computed

by inverting the likelihood-ratio test. We have allowed for values of a less than 1 to reveal

possible overconfidence.

These results are based on the first three days of data for each problem because this is

when most uncertainty is present and the expertise level matters the most. Although we are

unable to show statistical significance for a strictly decreasing trend in the systematic bias

across the different levels of expertise, the need for transformation is apparent in a 99%

confidence interval for the value of a when the level of expertise is not taken into account.

This interval (not shown on Figure 2.6) is [1.161, 3.921]. Given that it does not include

a = 1, i.e. the level of no transformation, there is significant evidence (at 1% significance

level) that as a group the experts are under-confident. Therefore their probability forecasts

should be shifted more toward the extreme probabilities 0.0 and 1.0.

2.4 Conclusions

In this paper we have motivated and derived a model-based approach to aggregation of

expert probability forecasts. The resulting aggregator, which is based on the geometric

mean of the expert odds, has a single tuning parameter that determines how much each of

the probabilities should be shifted toward its nearest extreme probability 0.0 or 1.0. This

transformation aims to compensate for the under-confidence that arises from incomplete

knowledge and becomes present at a group level among the experts. That is, although the

individual experts may not all be under-confident (in fact, according to our analysis, some

of the experts with high self-reported expertise tend to be over-confident), as a group the

experts are under-confident. Therefore, if no bias-correction is performed, the consensus

probability forecast can turn out to be biased and sub-optimal in terms of forecast perfor-

mance.

33



Value of a

A
v
g
. 
B

ri
e
r 

S
c
o
re

0
.1

1
5

0
.1

2
0

0
.1

2
5

0
.1

3
0

0
.1

3
5

0
.1

4
0

0
.1

4
5

1 2 3 4 5 6 7 8 9 10

Figure 2.5: Sensitivity to the choice of a

based on all data available in the first three

days.

Expertise (1−5)

O
p
ti
m

a
l 
va

lu
e
 o

f 
a

1
2

3
4

1 2 3 4 5

Figure 2.6: Optimal transformation a (rep-

resenting systematic bias) with 95% simul-

taneous confidence intervals as a function of

forecaster self-reported expertise.

To study the extent of this bias, it is helpful to compare the aggregate probability

forecasts given by a naive approach, such as the arithmetic mean with no explicit bias-

correction, against the corresponding forecasts given by a bias-correcting approach, such

as our p̂G(âMLE) aggregator. In the table in the Appendix we have provided both the

mean probability forecast and the aggregate estimate p̂G(âMLE) for all the 69 problems

in our real-world dataset. Looking at these estimates (see Figure A.1 in the Appendix), it

is clear that the p̂G(âMLE) aggregator is much sharper than the simple arithmetic mean.

Furthermore, the noticeable disagreement between the two estimates (with mean absolute

difference of 0.175) suggests that a large enough bias persists for bias-correction to improve

performance.

As is evident throughout Section 2.3, our aggregator shows very good forecast perfor-

mance especially when the outcome of the event involves much uncertainty. In addition,
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our aggregator utilizes the training data efficiently leading to improved forecast perfor-

mance as the size of the training set increases. This improvement, however, happens at

such a diminishing rate that there are few additional gains in forecast performance from

aggregating more than roughly 50 forecasters per problem (see Figure 2.4).

It is likely that our aggregator can be improved and extended in many ways. This,

however, might lead to reduced interpretability and additional assumptions that may not

comply with the psychology literature. For instance, being able to estimate the bias term a

within each problem individually could improve the performance of the aggregator. This,

however, seems difficult given the framework of this paper; that is, non-dynamic proba-

bility pools given by interchangeable forecasters. As Table 2.1 shows, simple bootstrap

approaches to problem-specific bias-correction do not lead to significant improvements in

forecast performance.

Perhaps an intermediate approach that neither shares a single bias term nor has com-

pletely independent bias terms across problems will yields further improvements in perfor-

mance. One possibility is that the more difficult the problem, the more bias persists among

the experts. This suggests that developing a measure of the difficulty of the problem, esti-

mating a single bias term across all problems, and then adjusting this bias term individually

for each problem based on the estimated difficulty could lead to better predictions. Coming

up with a reasonable difficulty measure, however, is challenging. One simple idea is to use

the variance of the expert forecasts as a proxy for problem difficulty.

Such an extension could also satisfy the unanimity property: if all experts give the

same forecast, then the aggregator should return that forecast as a unanimous decision.

Although this property may not be critical in large probability pools such our dataset, it

needs to be mentioned that our aggregator does not satisfy the unanimity property. Instead,

it tends to assume under-confidence and shift each of the probability forecasts closer to

its nearest extreme probability 0.0 or 1.0. Nonetheless, it gives extremely good results on
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real data. Furthermore, unlike the Beta-transformed linear opinion pool, our aggregator

can be applied to a wide range of situations, such as events with more than two possible

outcomes, and has a simple analytic form making it interpretable, flexible, and amenable

to many future extensions.
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3
Probability Aggregation in Time-Series: Dynamic

Hierarchical Modeling of Sparse Expert Beliefs∗

Abstract

Most subjective probability aggregation procedures use a single probability judgment from

each expert, even though it is common for experts studying real problems to update their

probability estimates over time. This paper advances into unexplored areas of probability

aggregation by considering a dynamic context in which experts can update their beliefs

at random intervals. The updates occur very infrequently, resulting in a sparse dataset

that cannot be modeled by standard time-series procedures. In response to the lack of

appropriate methodology, this paper presents a hierarchical model that takes into account

the expert’s level of self-reported expertise and produces aggregate probabilities that are

sharp and well-calibrated both in- and out-of-sample. The model is demonstrated on a real-

world dataset that includes over 2,300 experts making multiple probability forecasts over

two years on different subsets of 166 international political events.

∗Joint work with Shane T. Jensen, Barbara A. Mellers, Philip E. Tetlock, and Lyle H. Ungar

37



3.1 Introduction

Experts’ probability assessments are often evaluated on calibration, which measures how

closely the frequency of event occurrence agrees with the assigned probabilities. For in-

stance, consider all events that an expert believes to occur with a 60% probability. If the

expert is well-calibrated, 60% of these events will actually end up occurring. Even though

several experiments have shown that experts are often poorly calibrated (see, e.g., Cooke

(1991); Shlyakhter et al. (1994)), these are noteworthy exceptions. In particular, Wright

et al. (1994) argue that higher self-reported expertise can be associated with better calibra-

tion.

Calibration by itself, however, is not sufficient for useful probability estimation. Con-

sider a relatively stationary process, such as rain on different days in a given geographic

region, where the observed frequency of occurrence in the last 10 years is 45%. In this set-

ting an expert could always assign a constant probability of 0.45 and be well-calibrated. His

assessment, however, can be made without any subject-matter expertise. For this reason the

long-term frequency is often considered the baseline probability – a naive assessment that

provides the decision-maker very little extra information. Experts should make probability

assessments that are as far from the baseline as possible. The extent to which their proba-

bilities differ from the baseline is measured by sharpness (Gneiting et al. (2008); Winkler

and Jose (2008)). If the experts are both sharp and well-calibrated, they can forecast the

behavior of the process with high certainty and accuracy. Therefore useful probability es-

timation should maximize sharpness subject to calibration (see, e.g., Raftery et al. (2005);

Murphy and Winkler (1987b)).

There is strong empirical evidence that bringing together the strengths of different ex-

perts by combining their probability forecasts into a single consensus, known as the crowd

belief, improves predictive performance. Prompted by the many applications of probability

forecasts, including medical diagnosis (Wilson et al. (1998); Pepe (2003)), political and
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socio-economic foresight (Tetlock (2005)), and meteorology (Sanders (1963); Vislocky

and Fritsch (1995); Baars and Mass (2005)), researchers have proposed many approaches

to combining probability forecasts (see, e.g., Ranjan and Gneiting (2010); Satopää et al.

(2014); Batchelder et al. (2010) for some recent studies, and Genest and Zidek (1986);

Wallsten et al. (1997); Clemen and Winkler (2007); Primo et al. (2009) for a comprehen-

sive overview). The general focus, however, has been on developing one-time aggregation

procedures that consult the experts’ advice only once before the event resolves.

Consequently, many areas of probability aggregation still remain rather unexplored.

For instance, consider investors aiming to assess whether a stock index will finish trading

above a threshold on a given date. To maximize their overall predictive accuracy, they may

consult a group of experts repeatedly over a period of time and adjust their estimate of

the aggregate probability accordingly. Given that the experts are allowed to update their

probability assessments, the aggregation should be performed by taking into account the

temporal correlation in their advice.

This paper adds another layer of complexity by assuming a heterogeneous set of ex-

perts, most of whom only make one or two probability assessments over the hundred or

so days before the event resolves. This means that the decision-maker faces a different

group of experts every day, with only a few experts returning later on for a second round

of advice. The problem at hand is therefore strikingly different from many time-series esti-

mation problems, where one has an observation at every time point – or almost every time

point. As a result, standard time-series procedures like ARIMA (see, e.g., Mills (1991)) are

not directly applicable. This paper introduces a time-series model that incorporates self-

reported expertise and captures a sharp and well-calibrated estimate of the crowd belief.

The model is highly interpretable and can be used for:

• analyzing under- and overconfidence in different groups of experts,

• obtaining accurate probability forecasts, and

39



Table 3.1: Five-number summaries of our real-world data.

Statistic Min. Q1 Median Mean Q3 Max.
# of Days a Question is Active 4 35.6 72.0 106.3 145.20 418
# of Experts per Question 212 543.2 693.5 783.7 983.2 1690
# Forecasts given by each Ex-
pert on a Question 1 1.0 1.0 1.8 2.0 131

# Questions participated by an
Expert 1 14.0 36.0 55.0 90.0 166

Table 3.2: Frequencies of the self-reported expertise (1 = Not At All Expert and 5 = Ex-

tremely Expert) levels across all the 166 questions in our real-world data.

Expertise Level 1 2 3 4 5
Frequency (%) 25.3 30.7 33.6 8.2 2.1

• gaining question-specific quantities with easy interpretations, such as expert dis-

agreement and problem difficulty.

This paper begins by describing our geopolitical database. It then introduces a dynamic

hierarchical model for capturing the crowd belief. The model is estimated in a two-step

procedure: first, a sampling step produces constrained parameter estimates via Gibbs sam-

pling (see, e.g., Geman and Geman (1984)); second, a calibration step transforms these

estimates to their unconstrained equivalents via a one-dimensional optimization procedure.

The model introduction is followed by the first evaluation section that uses synthetic data

to study how accurately the two-step procedure can estimate the crowd belief. The second

evaluation section applies the model to our real-world geopolitical forecasting database.

The paper concludes with a discussion of future research directions and model limitations.
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3.2 Geopolitical Forecasting Data

Forecasters were recruited from professional societies, research centers, alumni associa-

tions, science bloggers, and word of mouth (n = 2, 365). Requirements included at least

a Bachelor’s degree and completion of psychological and political tests that took roughly

two hours. These measures assessed cognitive styles, cognitive abilities, personality traits,

political attitudes, and real-world knowledge. The experts were asked to give probability

forecasts (to the second decimal point) and to self-assess their level of expertise (on a 1-to-5

scale with 1 = Not At All Expert and 5 = Extremely Expert) on a number of 166 geopolitical

binary events taking place between September 29, 2011 and May 8, 2013. Each question

was active for a period during which the participating experts could update their forecasts

as frequently as they liked without penalty. The experts knew that their probability esti-

mates would be assessed for accuracy using Brier scores2. This incentivized them to report

their true beliefs instead of attempting to game the system (Winkler and Murphy (1968)).

In addition to receiving $150 for meeting minimum participation requirements that did not

depend on prediction accuracy, the experts received status rewards for their performance

via leader-boards displaying Brier scores for the top 20 experts. Given that a typical ex-

pert participated only in a small subset of the 166 questions, the experts are considered

indistinguishable conditional on the level of self-reported expertise.

The average number of forecasts made by a single expert in one day was around 0.017,

and the average group-level response rate was around 13.5 forecasts per day. Given that

the group of experts is large and diverse, the resulting dataset is very sparse. Tables 3.1 and

3.2 provide relevant summary statistics on the data. Notice that the distribution of the self-

reported expertise is skewed to the right and that some questions remained active longer

than others. For more details on the dataset and its collection see Ungar et al. (2012) and

2The Brier score is the squared distance between the probability forecast and the event indicator that
equals 1.0 or 0.0 depending on whether the event happened or not, respectively. See Brier (1950) for the
original introduction.
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(a) Will the expansion of the European

bailout fund be ratified by all 17 Eurozone

nations before 1 November 2011?
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(b) Will the Nikkei 225 index finish trading

at or above 9,500 on 30 September 2011?

Figure 3.1: Scatterplots of the probability forecasts given for two questions in our dataset.

The solid line gives the posterior mean of the calibrated crowd belief as estimated by our

model. The surrounding dashed lines connect the point-wise 95% posterior intervals.

Satopää et al. (2014).

To illustrate the data with some concrete examples, Figures 3.1a and 3.1b show scatter-

plots of the probability forecasts given for (a) Will the expansion of the European bailout

fund be ratified by all 17 Eurozone nations before 1 November 2011?, and (b) Will the

Nikkei 225 index finish trading at or above 9,500 on 30 September 2011?. The points have

been shaded according to the level of self-reported expertise and jittered slightly to make

overlaps visible. The solid line gives the posterior mean of the calibrated crowd belief as es-

timated by our model. The surrounding dashed lines connect the point-wise 95% posterior

intervals. Given that the European bailout fund was ratified before November 1, 2011 and
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that the Nikkei 225 index finished trading at around 8,700 on September 30, 2011, the gen-

eral trend of the probability forecasts tends to converge towards the correct answers. The

individual experts, however, sometimes disagree strongly, with the disagreement persisting

even near the closing dates of the questions.

3.3 Model

Let pi,t,k ∈ (0, 1) be the probability forecast given by the ith expert at time t for the

kth question, where i = 1, . . . , Ik, t = 1, . . . , Tk, and k = 1, . . . , K. Denote the logit-

probabilities with

Yi,t,k = logit(pi,t,k) = log

(
pi,t,k

1− pi,t,k

)
∈ R

and collect the logit-probabilities for question k at time t into a vector

Y t,k = [Y1,t,k Y2,t,k . . . YIk,t,k]
T .

Partition the experts into J groups based on some individual feature, such as self-reported

expertise, with each group sharing a common multiplicative bias term bj ∈ R for j =

1, . . . , J . Collect these bias terms into a bias vector b = [b1 b2 . . . bJ ]T . Let M k be a

Ik × J matrix denoting the group-memberships of the experts in question k; that is, if the

ith expert participating in the kth question belongs to the jth group, then the ith row ofM k

is the jth standard basis vector ej . The bias vector b is assumed to be identical across all

K questions. Under this notation, the model for the kth question can be expressed as

Y t,k = M kbXt,k + vt,k (3.1)

Xt,k = γkXt−1,k + wt,k (3.2)
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X0,k ∼ N (µ0, σ
2
0)

where (3.1) denotes the observed process, (3.2) shows the hidden process that is driven by

the constant γk ∈ R, and (µ0, σ
2
0) ∈ (R,R+) are hyper-parameters fixed a priori to 0 and

1, respectively. The error terms follow

vt,k|σ2
k

i.i.d.∼ NIk(0, σ2
kIIk)

wt,k|τ 2
k

i.i.d.∼ N (0, τ 2
k ),

Therefore the parameters of the model are b, σ2
k, γk, and τ 2

k for k = 1, . . . , K. Their prior

distributions are chosen to be non-informative, p(b, σ2
k|Xk) ∝ σ2

k and p(γk, τ 2
k |Xk) ∝ τ 2

k .

The hidden state Xt,k represents the aggregate logit-probability for the kth event given

all the information available up to and including time t. To make this more specific, letZk ∈

{0, 1} indicate whether the event associated with the kth question happened (Zk = 1) or

did not happen (Zk = 0). If {Ft,k}Tkt=1 is a filtration representing the information available

up to and including a given time point, then according to our model E[Zk|Ft,k] = P(Zk =

1|Ft,k) = logit−1(Xt,k). Ideally this probability maximizes sharpness subject to calibration

(for technical definitions of calibration and sharpness see Ranjan and Gneiting (2010);

Gneiting and Ranjan (2013)) Even though a single expert is unlikely to have access to

all the available information, a large and diverse group of experts may share a considerable

portion of the available information. The collective wisdom of the group therefore provides

an attractive proxy for Ft,k.

Given that the experts may believe in false information, hide their true beliefs, or be bi-

ased for many other reasons, their probability assessments should be aggregated via a model

that can detect potential bias, separate signal from noise, and use the collective opinion to

estimate Xt,k. In our model the experts are assumed to be, on average, a multiplicative

constant b away from Xt,k. Therefore an individual element of b can be interpreted as a
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group-specific systematic bias that labels the group either as over-confident (bj ∈ (1,∞))

or as under-confident (bj ∈ (0, 1)). See Section 3.3 for a brief discussion on different bias

structures. Any other deviation from Xt,k is considered random noise. This noise is mea-

sured in terms of σ2
k and can be assumed to be caused by momentary over-optimism (or

pessimism), false beliefs, or other misconceptions.

The random fluctuations in the hidden process are measured by τ 2
k and are assumed to

represent changes or shocks to the underlying circumstances that ultimately decide the out-

come of the event. The systematic component γk allows the model to incorporate a constant

signal stream that drifts the hidden process. If the uncertainty in the question diminishes

(γk ∈ (1,∞)), the hidden process drifts to positive or negative infinity. Alternatively, the

hidden process can drift to zero in which case any available information does not improve

predictive accuracy (γk ∈ (0, 1)). Given that all the questions in our dataset were resolved

within a pre-specified timeframe, we expect γk ∈ (1,∞) for all k = 1, . . . , K.

As for any future time T ∗ ≥ t

XT ∗,k = γT
∗−t

k Xt +
T ∗∑

i=t+1

γT
∗−i

k wi

∼ N

(
γT
∗−t

k Xt,k, τ
2
k

T ∗∑
i=t+1

γT
∗−i

k

)
,

the model can be used for time-forward prediction as well. The prediction for the aggregate

logit-probability at time T ∗ is given by an estimate of γT ∗−tXt,k. Naturally the uncertainty

in this prediction grows in T . To make such time-forward predictions it is necessary to

assume that the past population of experts is representative of the future population. This is

a reasonable assumption because even though the future population may consist of entirely

different individuals, on average the population is likely to look very similar to the past

population. In practice, however, social scientists are generally more interested in an esti-

mate of the current probability than the probability under unknown conditions in the future.
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For this reason, our analysis focuses on probability aggregation only up to the current time

t.

For the sake of model identifiability, it is sufficient to share only one of the elements

of b among the K questions. In this paper, however, all the elements of b are assumed to

be identical across the questions because some of the questions in our real-world data set

involve very few experts with the highest level of self-reported expertise. The model can be

extended rather easily to estimate bias at a more general level. For instance, by assuming

a hierarchical structure bik ∼ N
(
bj(i,k), σ

2
j(i,k)

)
, where j(i, k) denotes the self-reported

expertise of the ith expert in question k, the bias can be estimated at an individual-level.

These estimates can then be compared across questions. Individual-level analysis was not

performed in our analysis for two reasons. First, most experts gave only a single prediction

per problem, which makes accurate bias estimation at the individual-level very difficult.

Second, it is unclear how the individually estimated bias terms can be validated.

If the future event can take upon M > 2 possible outcomes, the hidden state Xt,k is

extended to a vector of size M −1 and one of the outcomes, e.g., the M th one, is chosen as

the base-case to ensure that the probabilities will sum to one at any given time point. Each

of the remaining M − 1 possible outcomes is represented by an observed process similar

to (3.1). Given that this multinomial extension is equivalent to having M − 1 independent

binary-outcome models, the estimation and properties of the model are easily extended

to the multi-outcome case. This paper focuses on binary-outcomes because it is the most

commonly encountered setting in practice.

3.4 Model Estimation

This section introduces a two-step procedure, called Sample-And-Calibrate (SAC), that

captures a well-calibrated estimate of the hidden process without sacrificing the inter-

pretability of our model.
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3.4.1 Sampling Step

Given that (ab, Xt,k/a, a
2τ 2
k ) 6= (b, Xt,k, τ

2
k ) for any a > 0 yield the same likelihood for

Y t,k, the model as described by (3.1) and (3.2) is not identifiable. A well-known solution is

to choose one of the elements of b, say b3, as the reference point and fix b3 = 1. In Section

3.5 we provide a guideline for choosing the reference point. Denote the constrained version

of the model by

Y t,k = M kb(1)Xt,k(1) + vt,k

Xt,k(1) = γk(1)Xt−1,k(1) + wt,k

vt,k|σ2
k(1)

i.i.d.∼ NIk(0, σ2
k(1)IIk)

wt,k|τ 2
k (1)

i.i.d.∼ N
(
0, τ 2

k (1)
)
,

where the trailing input notation, (a), signifies the value under the constraint b3 = a. Given

that this version is identifiable, estimates of the model parameters can be obtained. Denote

the estimates by placing a hat on the parameter symbol. For instance, b̂(1) and X̂t,k(1)

represent the estimates of b(1) and Xt,k(1), respectively.

These estimates are obtained by first computing a posterior sample via Gibbs sampling

and then taking the average of the posterior sample. The first step of our Gibbs sampler is to

sample the hidden states via the Forward-Filtering-Backward-Sampling (FFBS) algorithm.

FFBS first predicts the hidden states using a Kalman filter and then performs a backward

sampling procedure that treats these predicted states as additional observations (see, e.g.,

Carter and Kohn (1994); Migon et al. (2005) for details on FFBS). Given that the Kalman

filter can handle varying numbers or even no forecasts at different time points, it plays a

very crucial role in our probability aggregation under sparse data.

Our implementation of the sampling step is written in C++ and runs quite quickly. To

obtain 1000 posterior samples for 50 questions each with 100 time points and 50 experts
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takes about 215 seconds on a 1.7 GHz Intel Core i5 computer. See the supplemental article

for the technical details of the sampling steps (Satopää et al. (2014)), and, e.g., Gelman

et al. (2003) for a discussion on the general principles of Gibbs sampling.

3.4.2 Calibration Step

Given that the model parameters can be estimated by fixing b3 to any constant, the next

step is to search for the constant that gives an optimally sharp and calibrated estimate of

the hidden process. This section introduces an efficient procedure that finds the optimal

constant without requiring any additional runs of the sampling step. First, assume that

parameter estimates b̂(1) and X̂t,k(1) have already been obtained via the sampling step

described in Section 3.4.1. Given that for any β ∈ R/{0},

Y t,k = M kb(1)Xt,k(1) + vt,k

= M k (b(1)β) (Xt,k(1)/β) + vt,k

= M kb(β)Xt,k(β) + vt,k,

we have that b(β) = b(1)β and Xt,k(β) = Xt,k(1)/β. Recall that the hidden process

Xt,k is assumed to be sharp and well-calibrated. Therefore b3 can be estimated with the

value of β that simultaneously maximizes the sharpness and calibration of X̂t,k(1)/β. A

natural criterion for this maximization is given by the class of proper scoring rules that

combine sharpness and calibration (Gneiting et al. (2008); Buja et al. (2005)). Due to the

possibility of complete separation in any one question (see, e.g., Gelman et al. (2008)), the

maximization must be performed over multiple questions. Therefore,

β̂ = arg max
β∈R/{0}

K∑
k=1

Tk∑
t=1

S
(
Zk, X̂k,t(1)/β

)
(3.3)
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where Zk ∈ {0, 1} is the event indicator for question k. The function S is a strictly proper

scoring rule such as the negative Brier score (Brier (1950))

SBRI(Z,X) = −(Z − logit−1(X))2

or the logarithmic score (Good (1952))

SLOG(Z,X) = Z log
(
logit−1(X)

)
+ (1− Z) log

(
1− logit−1(X)

)
The estimates of the unconstrained model parameters are then given by

X̂t,k = X̂k,t(1)/β̂

b̂ = b̂(1)β̂

τ̂ 2
k = τ̂ 2

k (1)/β̂2

σ̂2
k = σ̂2

k(1)

γ̂k = γ̂k(1)

Notice that estimates of σ2
k and γk are not affected by the constraint.

3.5 Synthetic Data Results

This section uses synthetic data to evaluate how accurately the SAC-procedure captures the

hidden states and bias vector. The hidden process is generated from standard Brownian

motion. More specifically, if Zt,k denotes the value of a path at time t, then

Zk = 1 (ZTk,k > 0)

Xt,k = logit

[
Φ

(
Zt,k√
Tk − t

)]
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gives a sequence of Tk calibrated logit-probabilities for the event Zk = 1. A hidden process

is generated for K questions with a time horizon of Tk = 101. The questions involve 50

experts allocated evenly among five expertise groups. Each expert gives one probability

forecast per day with the exception of time t = 101 when the event resolves. The forecasts

are generated by applying bias and noise to the hidden process as described by (3.1). Our

simulation study considers a three-dimensional grid of parameter values:

σ2 ∈ {1/2, 1, 3/2, 2, 5/2}

β ∈ {1/2, 3/4, 1, 4/3, 2/1}

K ∈ {20, 40, 60, 80, 100},

where β varies the bias vector by b = [1/2, 3/4, 1, 4/3, 2/1]Tβ. Forty synthetic datasets

are generated for each combination of σ2, β, and K values. The SAC-procedure runs for

200 iterations of which the first 100 are used for burn-in.

SAC under the Brier (SACBRI) and logarithm score (SACLOG) are compared with the

Exponentially Weighted Moving Average (EWMA). EWMA, which serves as a baseline,

can be understood by first denoting the (expertise-weighted) average forecast at time t for

the kth question with

p̄t,k =
J∑
j=1

ωj

 1

|Ej|
∑
i∈Ej

pi,t,k

 (3.4)

where Ej refers to an index set of all experts in the jth expertise group, and ωj denotes the

weight associated with the jth expertise group. The EWMA forecasts for the kth problem
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Table 3.3: Summary measures of the esti-

mation accuracy under synthetic data. As

EWMA does not produce an estimate of the

bias vector, its accuracy on the bias term can-

not be reported.

Hidden Process
Model Quadratic Loss Absolute Loss
SACBRI 0.00226 0.0334
SACLOG 0.00200 0.0313
EWMA 0.00225 0.0339

Bias Vector
Model Quadratic Loss Absolute Loss
SACBRI 0.147 0.217
SACLOG 0.077 0.171

SACBRI SACLOG EWMA
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Figure 3.2: The marginal effect of β

on the average quadratic loss.

are then constructed recursively from

p̂t,k(α) =


p̄1,k, for t = 1,

αp̄t,k + (1− α)p̂t−1,k(α), for t > 1,

where α and ω are learned from the training set by

(α̂, ω̂) = arg min
α,ωj∈[0,1]

K∑
k=1

Tk∑
t=1

(Zk − p̂t,k(α,ω))2 s.t.
J∑
j=1

ωj = 1

If pt,k = logit−1(Xt,k) and p̂t,k is the corresponding probability estimated by the model,

the model’s accuracy to estimate the hidden process is measured with the quadratic loss,

(pt,k − p̂t,k)
2, and the absolute loss, |pt,k − p̂t,k|. Table 3.3 reports these losses averaged
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over all conditions, simulations, and time points. The three competing methods, SACBRI,

SACLOG, and EWMA, estimate the hidden process with great accuracy. Based on other

performance measures that are not shown for the sake of brevity, all three methods suffer

from an increasing level of noise in the expert logit-probabilities but can make efficient use

of extra data.

Some interesting differences emerge from Figure 3.2 which shows the marginal effect

of β on the average quadratic loss. As can be expected, EWMA performs well when

the experts are, on average, close to unbiased. Interestingly, SAC estimates the hidden

process more accurately when the experts are over-confident (large β) compared to under-

confident (small β). To understand this result, assume that the experts in the third group

are highly under-confident. Their logit-probabilities are then expected to be closer to zero

than the corresponding hidden states. After adding white noise to these expected logit-

probabilities, they are likely to cross to the other side of zero. If the sampling step fixes

b3 = 1, as it does in our case, the third group is treated as unbiased and some of the

constrained estimates of the hidden states are likely to be on the other side of zero as well.

Unfortunately, this discrepancy cannot be corrected by the calibration step that is restricted

to shifting the constrained estimates either closer or further away from zero but not across

it. To maximize the likelihood of having all the constrained estimates on the right side of

zero and hence avoiding the discrepancy, the reference point in the sampling step should

be chosen with care. A helpful guideline is to fix the element of b that is a priori believed

to be the largest.

The accuracy of the estimated bias vector is measured with the quadratic loss, (bj−b̂j)2,

and the absolute loss, |bj − b̂j|. Table 3.3 reports these losses averaged over all conditions,

simulations, and elements of the bias vector. Unfortunately, EWMA does not produce an

estimate of the bias vector. Therefore it cannot be used as a baseline for the estimation

accuracy in this case. Given that the losses for SACBRI and SACLOG are quite small, they
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estimate the bias vector accurately.

3.6 Geopolitical Data Results

This section presents results for the real-world data described in Section 3.2. The goal is to

provide application specific insight by discussing the specific research objectives itemized

in Section 3.1. First, however, we discuss two practical matters that must be taken into

account when aggregating real-world probability forecasts.

3.6.1 Incoherent and Imbalanced Data

The first matter regards human experts making probability forecasts of 0.0 or 1.0 even if

they are not completely sure of the outcome of the event. For instance, all 166 questions

in our dataset contain both a zero and a one. Transforming such forecasts into the logit-

space yields infinities that can cause problems in model estimation. To avoid this, Ariely

et al. (2000) suggest changing p = 0.00 and 1.00 to p = 0.02 and 0.98, respectively. This

is similar to winsorising that sets the extreme probabilities to a specified percentile of the

data (see, e.g., Hastings et al. (1947) for more details on winsorising). Allard et al. (2012),

on the other hand, consider only probabilities that fall within a constrained interval, say

[0.001, 0.999], and discard the rest. Given that this implies ignoring a portion of the data,

we adopt a censoring approach similar to Ariely et al. (2000) by changing p = 0.00 and

1.00 to p = 0.01 and 0.99, respectively. Our results remain insensitive to the exact choice

of censoring as long as this is done in a reasonable manner to keep the extreme probabilities

from becoming highly influential in the logit-space.

The second matter is related to the distribution of the class labels in the data. If the set

of occurrences is much larger than the set of non-occurrences (or vice versa), the dataset is

called imbalanced. On such data the modeling procedure can end up over-focusing on the
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larger class, and as a result, give very accurate forecast performance over the larger class

at the cost of performing poorly over the smaller class (see, e.g., Chen (2009); Wallace and

Dahabreh (2012)). Fortunately, it is often possible to use a well-balanced version of the

data. The first step is to find a partition S0 and S1 of the question indices {1, 2, . . . , K}

such that the equality
∑

k∈S0
Tk =

∑
k∈S1

Tk is as closely approximated as possible. This

is equivalent to an NP-hard problem known in computer science as the Partition Problem:

determine whether a given set of positive integers can be partitioned into two sets such that

the sums of the two sets equal to each other (see, e.g., Karmarkar and Karp (1982); Hayes

(2002)). A simple solution is to use a greedy algorithm that iterates through the values of

Tk in descending order, assigning each Tk to the subset that currently has the smaller sum

(see, e.g., Kellerer et al. (2004); Gent and Walsh (1996) for more details on the Partition

Problem). After finding a well-balanced partition, the next step is to assign the class labels

such that the labels for the questions in Sx are equal to x for x = 0 or 1. Recall from Section

3.4.2 that Zk represents the event indicator for the kth question. To define a balanced set of

indicators Z̃k for all k ∈ Sx, let

Z̃k = x

p̃i,t,k =


1− pi,t,k, if Zk = 1− x,

pi,t,k, if Zk = x,

where i = 1, . . . , Ik, and t = 1, . . . , Tk. The resulting set

{(
Z̃k, {p̃i,t,k|i = 1, . . . , Ik, t = 1, . . . , Tk}

)}K
k=1

is a balanced version of the data. This procedure was used to balance our real-world dataset

both in terms of events and time points. The final output splits the events exactly in half

(|S0| = |S1| = 83) such that number of time points in the first and second halves are 8,737
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and 8,738, respectively.

3.6.2 Out-of-Sample Aggregation

The goal of this section is to evaluate the accuracy of the aggregate probabilities made

by SAC and several other procedures. The models are allowed to utilize a training set

before making aggregations on an independent testing set. To clarify some of the upcoming

notation, let Strain and Stest be index sets that partition the data into training and testing sets

of sizes |Strain| = Ntrain and |Stest| = 166−Ntrain, respectively. This means that the kth

question is in the training set if and only if k ∈ Strain. Before introducing the competing

models, note that all choices of thinning and burn-in made in this section are conservative

and have been made based on pilot runs of the models. This was done to ensure a posterior

sample that has low autocorrelation and arises from a converged chain. The competing

models are as follows.

1. Simple Dynamic Linear Model (SDLM). This is equivalent to the dynamic model

from Section 3.3 but with b = 1 and β = 1. Thus,

Y t,k = Xt,k + vt,k

Xt,k = γkXt−1,k + wt,k,

where Xt,k is the aggregate logit-probability. Given that this model does not share

any parameters across questions, estimates of the hidden process can be obtained di-

rectly for the questions in the testing set without fitting the model first on the training

set. The Gibbs sampler is run for 500 iterations of which the first 200 are used for

burn-in. The remaining 300 iterations are thinned by discarding every other observa-

tion, leaving a final posterior sample of 150 observations. The average of this sample

gives the final estimates.
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2. The Sample-And-Calibrate procedure both under the Brier (SACBRI) and the loga-

rithmic score (SACLOG). The model is first fit on the training set by running the

sampling step for 3,000 iterations of which the first 500 iterations are used for burn-

in. The remaining 2,500 observations are thinned by keeping every fifth observation.

The calibration step is performed for the final 500 observations. The out-of-sample

aggregation is done by running the sampling step for 500 iterations with each consec-

utive iteration reading in and conditioning on the next value of β and b found during

the training period. The first 200 iterations are used for burn-in. The remaining 300

iterations are thinned by discarding every other observation, leaving a final posterior

sample of 150 observations. The average of this sample gives the final estimates.

3. A fully Bayesian version of SACLOG (BSACLOG). Denote the calibrated logit probabil-

ities and event indicators across all K questions withX(1) and Z, respectively. The

posterior distribution of β conditional onX(1) is given by

p(β|X(1),Z) ∝ p(Z|β,X(1))p(β|X(1)).

The likelihood is

p(Z|β,X(1)) ∝
K∏
k=1

Tk∏
t=1

logit−1 (Xt,k(1)/β)Zk × (3.5)(
1− logit−1 (Xt,k(1)/β)

)1−Zk

As in Gelman et al. (2003), the prior for β is chosen to be locally uniform, p(1/β) ∝

1. Given that this model estimates Xt,k(1) and β simultaneously, it is a little more

flexible than SAC. Posterior estimates of β can be sampled from (3.5) using generic

sampling algorithms such as the Metropolis algorithm (Metropolis et al. (1953)) or

slice sampling (Neal (2003)). Given that the sampling procedure conditions on the
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event indicators, the full conditional distribution of the hidden states is not in a stan-

dard form. Therefore the Metropolis algorithm is also used for sampling the hidden

states. Estimation is made with the same choices of thinning and burn-in as described

under Sample-And-Calibrate.

4. Due to the lack of previous literature on dynamic aggregation of expert probability

forecasts, the main competitors are exponentially weighted versions of procedures

that have been proposed for static probability aggregation:

(a) Exponentially Weighted Moving Average (EWMA) as described in Section 3.5.

(b) Exponentially Weighted Moving Logit Aggregator (EWMLA). This is a moving

version of the aggregator p̂G(b) that was introduced in Satopää et al. (2014).

The EWMLA aggregate probabilities are found recursively from

p̂t,k(α, b) =


G1,k(b), for t = 1,

αGt,k(b) + (1− α)p̂t−1,k(α, b), for t > 1,

where the vector b ∈ RJ collects the bias terms of the expertise groups, and

Gt,k(ν) =

Nt,k∏
i=1

(
pi,t,k

1− pi,t,k

) bj(i,k)
Nt,k

/1 +

Nt,k∏
i=1

(
pi,t,k

1− pi,t,k

) bj(i,k)
Nt,k


The parameters α and b are learned from the training set by

(α̂, b̂) = arg min
b∈R5,α∈[0,1]

∑
k∈Strain

Tk∑
t=1

(Zk − p̂t,k(α, b))2

(c) Exponentially Weighted Moving Beta-transformed Aggregator (EWMBA). The

static version of the Beta-transformed aggregator was introduced in Ranjan and

Gneiting (2010). A dynamic version can be obtained by replacingGt,k(ν) in the

57



EWMLA description with Hν,τ (p̄t,k), where Hν,τ is the cumulative distribution

function of the Beta distribution and p̄t,k is given by 3.4. The parameters α, ν, τ ,

and ω are learned from the training set by

(α̂, ν̂, τ̂ , ω̂) = arg min
ν,τ>0 α,ωj∈[0,1]

∑
k∈Strain

Tk∑
t=1

(Zk − p̂t,k(α, ν, τ,ω))2

s.t.
J∑
j=1

ωj = 1

The competing models are evaluated via a 10-fold cross-validation3 that first partitions

the 166 questions into 10 sets such that each set has approximately the same number of

questions (16 or 17 questions in our case) and the same number of time points (between

1,760 and 1,764 time points in our case). The evaluation then iterates 10 times, each time

using one of the 10 sets as the testing set and the remaining 9 sets as the training set.

Therefore each question is used nine times for training and exactly once for testing. The

testing proceeds sequentially one testing question at a time as follows: First, for a question

with a time horizon of Tk, give an aggregate probability at time t = 2 based on the first

two days. Compute the Brier score for this probability. Next give an aggregate probability

at time t = 3 based on the first three days and compute the Brier score for this probability.

Repeat this process for all of the Tk − 1 days. This leads to Tk − 1 Brier scores per testing

question and a total of 17,475 Brier scores across the entire dataset.

Table 3.4 summarizes these scores in different ways. The first option, denoted by Scores

by Day, weighs each question by the number of days the question remained open. This is

performed by computing the average of the 17,475 scores. The second option, denoted by

Scores by Problem, gives each question an equal weight regardless how long the question

remained open. This is done by first averaging the scores within a question and then aver-

3A 5-fold cross-validation was also performed. The results were, however, very similar to the 10-fold
cross-validation and hence not presented in the paper.
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Table 3.4: Brier Scores based on 10-fold cross-validation. Scores by Day weighs a question

by the number of days the question remained open. Scores by Problem gives each question

an equal weight regardless how long the question remained open. The bolded values indi-

cate the best scores in each column. The values in the parenthesis represent standard errors

in the scores.

Scores by Day
Model All Short Medium Long
SDLM 0.100 (0.156) 0.066 (0.116) 0.098 (0.154) 0.102 (0.157)
BSACLOG 0.097 (0.213) 0.053 (0.147) 0.100 (0.215) 0.098 (0.215)
SACBRI 0.096 (0.190) 0.056 (0.134) 0.097 (0.190) 0.098 (0.192)
SACLOG 0.096 (0.191) 0.056 (0.134) 0.096 (0.189) 0.098 (0.193)
EWMBA 0.104 (0.204) 0.057 (0.120) 0.113 (0.205) 0.105 (0.206)
EWMLA 0.102 (0.199) 0.061 (0.130) 0.111 (0.214) 0.103 (0.200)
EWMA 0.111 (0.146) 0.080 (0.101) 0.116 (0.152) 0.112 (0.146)

Scores by Problem
Model All Short Medium Long
SDLM 0.089 (0.116) 0.064 (0.085) 0.106 (0.141) 0.092 (0.117)
BSACLOG 0.083 (0.160) 0.052 (0.103) 0.110 (0.198) 0.085 (0.162)
SACBRI 0.083 (0.142) 0.055 (0.096) 0.106 (0.174) 0.085 (0.144)
SACLOG 0.082 (0.142) 0.055 (0.096) 0.105 (0.174) 0.085 (0.144)
EWMBA 0.091 (0.157) 0.057 (0.095) 0.121 (0.187) 0.093 (0.164)
EWMLA 0.090 (0.159) 0.064 (0.109) 0.120 (0.200) 0.090 (0.159)
EWMA 0.102 (0.108) 0.080 (0.075) 0.123 (0.130) 0.103 (0.110)

aging the average scores across all the questions. Both scores can be further broken down

into subcategories by considering the length of the questions. The final three columns of

Table 3.4 divide the questions into Short questions (30 days or fewer), Medium questions

(between 31 and 59 days), and Long Problems (60 days or more). The number of questions

in these subcategories were 36, 32 and 98, respectively. The bolded scores indicate the best

score in each column. The values in the parenthesis quantify the variability in the scores:

Under Scores by Day the values give the standard errors of all the scores. Under Scores by

Problem, on the other hand, the values represent the standard errors of the average scores

of the different questions.

59



As can be seen in Table 3.4, SACLOG achieves the lowest score across all columns

except Short where it is outperformed by BSACLOG. It turns out that BSACLOG is over-

confident (see Section 3.6.3). This means that BSACLOG underestimates the uncertainty in

the events and outputs aggregate probabilities that are typically too near 0.0 or 1.0. This

results into highly variable performance. The short questions generally involved very lit-

tle uncertainty. On such easy questions, overconfidence can pay off frequently enough to

compensate for a few large losses arising from the overconfident and drastically incorrect

forecasts.

SDLM, on the other hand, lacks sharpness and is highly under-confident (see Section

3.6.3). This behavior is expected as the experts are under-confident at the group-level (see

Section 3.6.4) and SDLM does not use the training set to explicitly calibrate its aggregate

probabilities. Instead, it merely smooths the forecasts given by the experts. The resulting

aggregate probabilities are therefore necessarily conservative, resulting into high average

scores with low variability.

Similar behavior is exhibited by EWMA that performs the worst of all the compet-

ing models. The other two exponentially weighted aggregators, EWMLA and EWMBA,

make efficient use of the training set and present moderate forecasting performance in most

columns of Table 3.4. Neither approach, however, appears to dominate the other. The high

variability and average of their performance scores indicate that their performance suffers

from over-confidence.

3.6.3 In- and Out-of-Sample Sharpness and Calibration

A calibration plot is a simple tool for visually assessing the sharpness and calibration of

a model. The idea is to plot the aggregate probabilities against the observed empirical

frequencies. Therefore any deviation from the diagonal line suggests poor calibration. A

model is considered under-confident (or over-confident) if the points follow an S-shaped
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(or S-shaped) trend. To assess sharpness of the model, it is common practice to place a

histogram of the given forecasts in the corner of the plot. Given that the data were balanced,

any deviation from the the baseline probability of 0.5 suggests improved sharpness.

●
●

●

●

●

●

●

●

● ●

Predicted Probability

O
bs

er
ve

d 
O

cc
ur

re
nc

e

0.1 0.3 0.5 0.7 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) SDLM

●

●

●
● ●

●

●
●

●

●

Predicted Probability
0.1 0.3 0.5 0.7 0.9

(b) SACLOG

●

●

●
● ●

●

●
●

●

●

Predicted Probability
0.1 0.3 0.5 0.7 0.9

(c) SACBRI

●

●

●

●

●

●

●

●

●

●

Predicted Probability
0.1 0.3 0.5 0.7 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O
bs

er
ve

d 
O

cc
ur

re
nc

e

(d) BSACLOG

●
●

●

●

●

●

●

●

● ●

Predicted Probability

O
bs

er
ve

d 
O

cc
ur

re
nc

e

0.1 0.3 0.5 0.7 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) SDLM

●

●

● ●

●

●

●

●

●

●

Predicted Probability
0.1 0.3 0.5 0.7 0.9

(f) SACLOG

●

●

● ●

●

●

●

●

●

●

Predicted Probability
0.1 0.3 0.5 0.7 0.9

(g) SACBRI

●

●

●
●

●

●

● ●

●

●

Predicted Probability
0.1 0.3 0.5 0.7 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O
bs

er
ve

d 
O

cc
ur

re
nc

e

(h) BSACLOG

Figure 3.3: The top and bottom rows show in- and out-of-sample calibration and sharpness,

respectively.

The top and bottom rows of Figure 3.3 present calibration plots for SDLM, SACLOG,

SACBRI, and BSACLOG under in- and out-of-sample probability aggregation, respectively.

Each setting is of interest in its own right: Good in-sample calibration is crucial for model

interpretability. In particular, if the estimated crowd belief is well-calibrated, then the el-

ements of the bias vector b can be used to study the amount of under- or over-confidence

in the different expertise groups. Good out-of-sample calibration and sharpness, on the

other hand, are necessary properties in decision making. To guide our assessment, the

dashed bands around the diagonal connect the point-wise, Bonferroni-corrected (Bonfer-
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roni (1936)) 95% lower and upper critical values under the null hypothesis of calibration.

These have been computed by running the bootstrap technique described in Bröcker and

Smith (2007) for 10,000 iterations. The in-sample predictions were obtained by running

the models for 10,200 iterations, leading to a final posterior sample of 1,000 observations

after thinning and using the first 200 iterations for burn-in. The out-of-sample predictions

were given by the 10-fold cross-validation discussed in Section 3.6.2.

Overall, SAC is sharp and well-calibrated both in- and out-of-sample with only a few

points barely falling outside the point-wise critical values. Given that the calibration does

not change drastically from the top to the bottom row, SAC can be considered robust against

over-fitting. This, however, is not the case with BSACLOG that is well-calibrated in-sample

but presents over-confidence out-of-sample. Figures 3.3a and 3.3e serve as baselines by

showing the calibration plots for SDLM. Given that this model does not perform any ex-

plicit calibration, it is not surprising to see most points outside the critical values. The pat-

tern in the deviations suggests strong under-confidence. Furthermore, the inset histogram

reveals drastic lack of sharpness. Therefore SAC can be viewed as a well-performing com-

promise between SDLM and BSACLOG that avoids over-confidence without being too con-

servative.

3.6.4 Group-Level Expertise Bias

This section explores the bias among the five expertise groups in our dataset. Figure 3.4

compares the posterior distributions of the individual elements of b with side-by-side box-

plots. Given that the distributions fall completely below the no-bias reference-line at 1.0,

all the expertise groups are deemed under-confident. Even though the exact level of under-

confidence is affected slightly by the extent to which the extreme probabilities are censored

(see Section 3.6.1), the qualitative results in this section remain insensitive to different

levels of censoring.
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Figure 3.4: Posterior distributions of bj for j = 1, . . . , 5.

Figure 3.4 shows that under-confidence decreases as expertise increases. The posterior

probability that the most expert group is the least under-confident is approximately equal

to 1.0, and the posterior probability of a strictly decreasing level of under-confidence is

approximately 0.87. The latter probability is driven down by the inseparability of the two

groups with the lowest levels of self-reported expertise. This inseparability suggests that

the experts are poor at assessing how little they know about a topic that is strange to them.

If these groups are combined into a single group, the posterior probability of a strictly

decreasing level of under-confidence is approximately 1.0.

The decreasing trend in under-confidence can be viewed as a process of Bayesian up-

dating. A completely ignorant expert aiming to minimize a reasonable loss function, such

as the Brier score, has no reason to give anything but 0.5 as his probability forecast. How-

ever, as soon as the expert gains some knowledge about the event, he produces an updated
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forecast that is a compromise between his initial forecast and the new information ac-

quired. The updated forecast is therefore conservative and too close to 0.5 as long as the

expert remains only partially informed about the event. If most experts fall somewhere on

this spectrum between ignorance and full information, their average forecast tends to fall

strictly between 0.5 and the most-informed probability forecast (see Baron et al. (2014)

for more details). Given that expertise is to a large extent determined by subject-matter

knowledge, the level of under-confidence can be expected to decrease as a function of the

group’s level of self-reported expertise.

Finding under-confidence in all the groups may seem like a surprising result given that

many previous studies have shown that experts are often over-confident (see, e.g., Licht-

enstein et al. (1977); Morgan (1992); Bier (2004) for a summary of numerous calibration

studies). It is, however, worth emphasizing three points: First, our result is a statement

about groups of experts and hence does not invalidate the possibility of the individual ex-

perts being overconfident. To make conclusions at the individual-level based on the group-

level bias terms would be considered an ecological inference fallacy (see, e.g., Lubinski

and Humphreys (1996)). Second, the experts involved in our dataset are overall very well

calibrated (Mellers et al. (2014)). A group of well-calibrated experts, however, can produce

an aggregate forecast that is under-confident. In fact, if the aggregate is linear, the group

is necessarily under-confident (see Theorem 1 of Ranjan and Gneiting (2010)). Third, ac-

cording to Erev et al. (1994) the level of confidence depends on the way the data were

analyzed. They explain that experts’ probability forecasts suggest under-confidence when

the forecasts are averaged or presented as a function of independently defined objective

probabilities, i.e. the probabilities given by logit−1(Xt,k) in our case. This is similar to our

context and opposite to many empirical studies on confidence calibration.
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3.6.5 Question Difficulty and Other Measures

One advantage of our model arises from its ability to produce estimates of interpretable

question-specific parameters γk, σ2
k, and τ 2

k . These quantities can be combined in many

interesting ways to answer questions about different groups of experts or the questions

themselves. For instance, being able to assess the difficulty of a question could lead to

more principled ways of aggregating performance measures across questions or to novel

insight on the kind of questions that are found difficult by experts (see, e.g., a discussion

on the Hard-Easy Effect in Wilson (1994)). To illustrate, recall that higher values of σ2
k

suggest greater disagreement among the participating experts. Given that experts are more

likely to disagree over a difficult question than an easy one, it is reasonable to assume that

σ2
k has a positive relationship with question difficulty. An alternative measure is given by

τ 2
k that quantifies the volatility of the underlying circumstances that ultimately decide the

outcome of the event. Therefore a high value of τ 2
k can cause the outcome of the event to

appear unstable and difficult to predict.

As a final illustration of our model, we return to the two example questions introduced

Figure 3.1. Given that σ̂2
k = 2.43 and σ̂2

k = 1.77 for the questions depicted in Figures 3.1a

and 3.1b, respectively, the first question provokes more disagreement among the experts

than the second one. Intuitively this makes sense because the target event in Figure 3.1a is

determined by several conditions that may change radically from one day to the next while

the target event in Figure 3.1b is determined by a relatively steady stock market index.

Therefore it is not surprising to find that in Figure 3.1a τ̂ 2
k = 0.269, which is much higher

than τ̂ 2
k = 0.039 in Figure 3.1b. We may conclude that the first question is inherently more

difficult than the second one.
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3.7 Discussion

This paper began by introducing a rather unorthodox but nonetheless realistic time-series

setting where probability forecasts are made very infrequently by a heterogeneous group

of experts. The resulting data is too sparse to be modeled well with standard time-series

methods. In response to this lack of appropriate modeling procedures, we propose an

interpretable time-series model that incorporates self-reported expertise to capture a sharp

and well-calibrated estimate of the crowd belief. This procedure extends the forecasting

literature into an under-explored area of probability aggregation.

Our model preserves parsimony while addressing the main challenges in modeling

sparse probability forecasting data. Therefore it can be viewed as a basis for many future

extensions. To give some ideas, recall that most of the model parameters were assumed

constant over time. It is intuitively reasonable, however, that these parameters behave

differently during different time intervals of the question. For instance, the level of dis-

agreement (represented by σ2
k in our model) among the experts can be expected to decrease

towards the final time point when the question resolves. This hypothesis could be explored

by letting σ2
t,k evolve dynamically as a function of the previous term σ2

t−1,k and random

noise.

This paper modeled the bias separately within each expertise group. This is by no means

restricted to the study of bias or its relation to self-reported expertise. Different parameter

dependencies could be constructed based on many other expert characteristics, such as

gender, education, or specialty, to produce a range of novel insights on the forecasting

behavior of experts. It would also be useful to know how expert characteristics interact

with question types, such as economic, domestic, or international. The results would be of

interest to the decision-maker who could use the information as a basis for hiring only a

high-performing subset of the available experts.

Other future directions could remove some of the obvious limitations of our model. For
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instance, recall that the random components are assumed to follow a normal distribution.

This is a strong assumption that may not always be justified. Logit-probabilities, however,

have been modeled with the normal distribution before (see, e.g., Erev et al. (1994)). Fur-

thermore, the normal distribution is a rather standard assumption in psychological models

(see, e.g., signal-detection theory in Tanner Jr and Swets (1954)).

A second limitation resides in the assumption that both the observed and hidden pro-

cesses are expected to grow linearly. This assumption could be relaxed, for instance, by

adding higher order terms to the model. A more complex model, however, is likely to sac-

rifice interpretability. Given that our model can detect very intricate patterns in the crowd

belief (see Figure 3.1), compromising interpretability for the sake of facilitating non-linear

growth is hardly necessary.

A third limitation appears in an online setting where new forecasts are received at a

fast rate. Given that our model is fit in a retrospective fashion, it is necessary to refit the

model every time a new forecast becomes available. Therefore our model can be applied

only to offline aggregation and online problems that tolerate some delay. A more scalable

and efficient alternative would be to develop an aggregator that operates recursively on

streams of forecasts. Such a filtering perspective would offer an aggregator that estimates

the current crowd belief accurately without having to refit the entire model each time a new

forecast arrives. Unfortunately, this typically implies being less accurate in estimating the

model parameters such as the bias term. However, as estimation of the model parameters

was addressed in this paper, designing a filter for probability forecasts seems like the next

natural development in time-series probability aggregation.
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4
Modeling Probability Forecasts via Information

Diversity∗

Abstract

Randomness in scientific estimation is generally assumed to arise from unmeasured or

uncontrolled factors. However, when combining subjective probability estimates, hetero-

geneity stemming from people’s cognitive or information diversity is often more important

than measurement noise. This paper presents a novel framework that uses partially overlap-

ping information sources. A specific model is proposed within that framework and applied

to the task of aggregating the probabilities given by a group of forecasters who predict

whether an event will occur or not. Our model describes the distribution of information

across forecasters in terms of easily interpretable parameters and shows how the optimal

amount of extremizing of the average probability forecast (shifting it closer to its nearest

extreme) varies as a function of the forecasters’ information overlap. Our model thus gives

a more principled understanding of the historically ad hoc practice of extremizing average

forecasts. Supplementary material for this article is available online.

∗Joint work with Robin Pemantle and Lyle H. Ungar
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4.1 Introduction and Overview

4.1.1 The Forecast Aggregation Problem

Probability forecasting is the science of giving probability estimates for future events. Typ-

ically more than one different forecast is available on the same event. Instead of trying to

guess which prediction is the most accurate, the predictions should be combined into a sin-

gle consensus forecast (Armstrong, 2001). Unfortunately, the forecasts can be combined

in many different ways, and the choice of the combination rule can largely determine the

predictive quality of the final aggregate. This is the principal motivation for the problem

of forecast aggregation that aims to combine multiple forecasts into a single forecast with

optimal properties.

There are two general approaches to forecast aggregation: empirical and theoretical.

Given a training set with multiple forecasts on events with known outcomes, the empirical

approach experiments with different aggregation techniques and chooses the one that yields

the best performance on the training set. The theoretical approach, on the other hand, first

constructs a probability model and then computes the optimal aggregation procedure under

the model assumptions. Both approaches are important. Theory-based procedures that do

not perform well in practice are ultimately of limited use. On the other hand, an empirical

approach without theoretical underpinnings lacks both credibility (why should we believe

it?) and guidance (in which direction can we look for improvement?). As will be discussed

below, the history of forecast aggregation to date is largely empirical.

The main contribution of this paper is a plausible theoretical framework for forecast

aggregation called the partial information framework. Under this framework, forecast het-

erogeneity stems from information available to the forecasters and how they decide to use

it. For instance, forecasters studying the same (or different) articles on the presidential

election may use distinct parts of the information and hence report different predictions of

70



a candidate winning. Second, the framework allows us to interpret existing aggregators

and illuminate aspects that can be improved. This paper specifically aims to clarify the

practice of probability extremizing, i.e., shifting an average aggregate closer to its nearest

extreme. Extremizing is an empirical technique that has been widely used to improve the

predictive performance of many simple aggregators such as the average probability. Lastly,

the framework is applied to a specific model under which the optimal aggregator can be

computed.

4.1.2 Bias, Noise, and Forecast Assessment

Consider an eventA and an indicator function 1A that equals one or zero depending whether

A happens or not, respectively. There are two common yet philosophically different ap-

proaches to linking A with the probability forecasts. The first assumes 1A ∼ Bernoulli(θ),

where θ is deemed a “true” or “objective” probability for A, and then treats a probability

forecast p as an estimator of θ (see, e.g., Lai et al. 2011, and Section 4.2.2 for further dis-

cussion). The second approach, on the other hand, treats p as an estimator of 1A. This links

the observables directly and avoids the controversial concept of a “true” probability; for

this reason it is the approach adopted in this paper.

As is the case with all estimators, the forecast’s deviation from the truth can be broken

into bias and noise. Given that these components are typically handled by different mech-

anisms, it is important, on the theoretical level, to consider them as two separate problems.

This paper focuses on noise reduction. Therefore, each forecaster is considered calibrated.

Here calibration is defined in terms of conditional expectation and hence represents a prop-

erty of the underlying joint distribution of 1A and p. More specifically, the forecast p is

calibrated for the outcome 1A if P(1A = 1|p) = E(1A|p) = p almost surely. This form of

calibration was alluded to by Murphy and Winkler (1987b) and mentioned possibly even

earlier than that. Over the years it has become common in the statistical and meteorological
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forecasting literature (see, e.g., Ranjan and Gneiting 2010; Jolliffe and Stephenson 2012,

Section 7.2.2. for recent references). It is, however, different from the notion of empirical

calibration discussed by Dawid (1982), Foster and Vohra (1998), and many others.

A forecast (individual or aggregate) is typically assessed with a loss function L(p,1A).

A loss function is called proper or revealing if the Bayesian optimal strategy is to tell the

truth. In other words, if the subjective probability estimate is p, then t = p should minimize

the expected loss pL(t, 1)+(1−p)L(t, 0). Therefore, if a group of sophisticated forecasters

operates under a proper loss function, the assumption of calibrated forecasts is, to some

degree, self-fulfilling. There are, however, many different proper loss functions, and an

estimator that outperforms another under one loss function will not necessarily do so under

a different one. For example, minimizing the quadratic loss function (p−1A)2, also known

as the Brier score, gives the estimator with the least variance. This paper concentrates on

minimizing the variance of the aggregators, though much of the discussion holds under

general proper loss functions. See Hwang and Pemantle (1997) for a discussion of proper

loss functions.

4.1.3 The Partial Information Framework

The construction of the partial information framework begins with a probability space

(Ω,F ,P) and a measurable event A ∈ F to be forecasted by N forecasters. These fore-

casters operate under the same probability model but make predictions based on different

information sets. More specifically, in any Bayesian setup, with a proper loss function, it

is more or less tautological that Forecaster i reports pi := E(1A | Fi), where Fi ⊆ F is

the information set used by the forecaster. Therefore Fi 6= Fj if pi 6= pj , and forecast

heterogeneity stems purely from information diversity. Note, however, that if Forecaster i

uses a simple rule, Fi may not be the full σ-field of information available to the forecaster

but rather a smaller σ-field corresponding to the information used by the rule. For example,

72



when forecasting the re-election of the president, a forecaster obeying the dictum “it’s the

economy, stupid!” might utilize a σ-field containing only economic indicators. Further-

more, if two forecasters have access to the same σ-field, they may decide to use different

sub-σ-fields, leading to different predictions. Therefore, information diversity does not

only arise from differences in the available information, but also from how the forecasters

decide to use it.

The person performing the aggregation is assumed to know only F0 = {∅,Ω}, namely

the trivial σ-field. Given that every forecaster knows at least as much, the aggregator read-

ily adopts any forecaster’s prediction without modification. Therefore, each forecaster is

considered to be an “expert” in the sense introduced in DeGroot (1988) and later discussed

in Dawid et al. (1995).

Under the partial information framework the forecasts are calibrated. This can be veri-

fied by direct computation as follows:

E(1A|pi) = E{E(1A|pi,Fi)|pi} = E{E(1A|Fi)|pi} = E(pi|pi) = pi.

Conversely, if pi is any calibrated forecast, then pi = E(1A|Gi), where Gi = σ(pi) ⊆

Fi is the σ-field generated by pi. This shows constructively that assuming the general

form pi = E(1A | Fi) does not pose any additional restrictions but arises directly from the

assumption of calibration and the existence of an underlying probability model. The σ-field

Gi, however, corresponds to the information revealed by the forecast and hence may not be

equal to the full σ-field of information actually used by the forecaster, namely Fi.

The distinction between Fi and Gi introduces two benchmarks for aggregation effi-

ciency. The first is the oracular aggregator p′ := E(1A | F ′), where F ′ is the σ-field gener-

ated by the union of the information sets {Fi : i = 1, . . . , N}. This field represents all the

information used by the forecasters. Given that aggregation cannot be improved beyond

using all the information of the forecasters, the oracular aggregator represents a theoretical
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optimum and is therefore a reasonable upper bound on estimation efficiency.

In practice, however, information comes to the aggregator only through the forecasts

{pi : i = 1, . . . , N}. Given that F ′ generally cannot be constructed from these forecasts

alone, no practically feasible aggregator can be expected to perform as well as p′. There-

fore, a more achievable benchmark is the revealed aggregator p′′ := E(1A | F ′′), where F ′′

is the σ-field generated (or revealed) by the forecasts {pi : i = 1, . . . , N}, or equivalently

by the union of the generated σ-fields {Gi : i = 1, . . . , N}.

Even though the partial information framework, as specified above, is too theoretical

for direct application, it highlights the crucial components of information aggregation and

hence facilitates formulation of more specific models within the framework. This paper

develops such a model and calls it the Gaussian partial information model. Under this

model, the information among the forecasters is summarized by a covariance structure.

This provides sufficient flexibility to allow for construction of many application-specific

aggregators.

4.1.4 Organization of the Paper

The next section reviews prior work on forecast aggregation and relates it to the partial

information framework. Section 4.3 discusses illuminating examples and motivates the

Gaussian partial information model. Section 4.4 compares the oracular aggregator with the

average probit score, thereby explaining the empirical practice of probability extremizing.

Section 4.5 derives the revealed aggregator and evaluates one of its sub-cases on real-world

forecasting data. The final section concludes with a summary and discussion of future

research.

74



4.2 Prior Work on Aggregation

4.2.1 The Interpreted Signal Framework

Hong and Page (2009) introduce the interpreted signal framework in which the forecaster’s

prediction is based on a personal interpretation of (a subset of) the factors or cues that in-

fluence the future event to be predicted. Differences among the predictions are ascribed to

differing interpretation procedures. For example, if two forecasters follow the same politi-

cal campaign speech, one forecaster may focus on the content of the speech while the other

may concentrate largely on the audience interaction. Even though the forecasters receive

the same information, they interpret it differently and therefore are likely to report differ-

ent estimates of the probability that the candidate wins the election. Therefore forecast

heterogeneity is assumed to stem from “cognitive diversity”.

This is a very reasonable assumption that has been analyzed and utilized in many other

settings. For example, Parunak et al. (2013) demonstrate that optimal aggregation of in-

terpreted forecasts is not constrained to the convex hull of the forecasts; Broomell and

Budescu (2009) analyze inter-forecaster correlation under the assumption that the cues

can be mapped to the individual forecasts via different linear regression functions. To the

best of our knowledge, no previous work has discussed a formal framework that explicitly

links the interpreted forecasts to their target quantity. Consequently, the interpreted signal

framework, as proposed, has remained relatively abstract. The partial information frame-

work, however, formalizes the intuition behind it and permits models with quantitative

predictions.

4.2.2 The Measurement Error Framework

In the absence of a quantitative interpreted signal model, prior applications have typically

relied on the measurement error framework that generates forecast heterogeneity from a
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probability distribution. More specifically, the framework assumes a “true” probability θ,

interpreted as the forecast made by an ideal forecaster, for the eventA. The forecasters then

“measure” some transformation of this probability φ(θ) with mean-zero idiosyncratic error.

Therefore each forecast is an independent draw from a common probability distribution

centered at φ(θ), and a recipe for an aggregate forecast is given by the average

φ−1

{
1

N

N∑
i=1

φ(pi)

}
. (4.1)

Common choices of φ(p) are the identity φ(p) = p, the log-odds φ(p) = log {p/(1− p)},

and the probit φ(p) = Φ−1(p), giving three aggregators denoted in this paper with p, plog,

and pprobit, respectively. These averaging aggregators represents the main advantage of the

measurement error framework: simplicity.

Unfortunately, there are a number of disadvantages. First, given that the averaging

aggregators target φ(θ) instead of 1A, important properties such as calibration cannot be

expected. In fact, the averaging aggregators are uncalibrated and under-confident, i.e., too

close to 1/2, even if the individual forecasts are calibrated (Ranjan and Gneiting, 2010).

Second, the underlying model is rather implausible. Relying on a true probability θ is

vulnerable to many philosophical debates, and even if one eventually manages to convince

one’s self of the existence of such a quantity, it is difficult to believe that the forecasters

are actually seeing φ(θ) with independent noise. Therefore, whereas the interpreted signal

framework proposes a micro-level explanation, the measurement error model does not; at

best, it forces us to imagine that the forecasters are all in principle trying to apply the same

procedures to the same data but are making numerous small mistakes.

Third, the averaging aggregators do not often perform very well in practice. For one

thing, Hong and Page (2009) demonstrate that the standard assumption of conditional inde-

pendence poses an unrealistic structure on interpreted forecasts. Any averaging aggregator

is also constrained to the convex hull of the individual forecasts, which further contradicts

76



the interpreted signal framework (Parunak et al., 2013) and can be far from optimal on

many datasets.

4.2.3 Empirical Approaches

If one is not concerned with theoretical justification, an obvious approach is to perturb one

of these estimators and observe whether the adjusted estimator performs better on some

data set of interest. Given that the measurement error framework produces under-confident

aggregators, a popular adjustment is to extremize, that is, to shift the average aggregates

closer to the nearest extreme (either zero or one). For instance, Ranjan and Gneiting (2010)

extremize p with the CDF of a beta distribution; Satopää et al. (2014) use a logistic re-

gression model to derive an aggregator that extremizes plog; Baron et al. (2014) give two

intuitive justifications for extremizing and discuss an extremizing technique that has previ-

ously been used by a number of investigators (Erev et al. 1994; Shlomi and Wallsten 2010;

and even Karmarkar 1978); Mellers et al. (2014) show empirically that extremizing can

improve aggregate forecasts of international events.

These and many other studies represent the unwieldy position of the current state-of-

the-art aggregators: they first compute an average based on a model that is likely to be at

odds with the actual process of probability forecasting, and then aim to correct the induced

bias via ad hoc extremizing techniques. Not only does this leave something to be desired

from an explanatory point of view, these approaches are also subject to overfitting. Most

importantly, these techniques provide little insight beyond the amount of extremizing itself

and hence lack a clear direction of continued improvement. The present paper aims to

remedy this situation by explaining extremization with the aid of a theoretically based

estimator, namely the oracular aggregator.
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4.3 The Gaussian Partial Information Model

4.3.1 Motivating Examples

A central component of the partial information models is the structure of the information

overlap that is assumed to hold among the individual forecasters. It therefore behooves us

to begin with some simple examples to show that the optimal aggregate is not well defined

without assumptions on the information structure among the forecasters.

Example 4.3.1. Consider a basket containing a fair coin and a two-headed coin. Two fore-

casters are asked to predict whether a coin chosen at random is in fact two-headed. Before

making their predictions, the forecasters observe the result of a single flip of the chosen

coin. Suppose the flip comes out HEADS. Based on this observation, the correct Bayesian

probability estimate is 2/3. If both forecasters see the result of the same coin flip, the op-

timal aggregate is again 2/3. On the other hand, if they observe different (conditionally

independent) flips of the same coin, the optimal aggregate is 4/5.

In this example, it is not possible to distinguish between the two different information

structures simply based on the given predictions, and neither 2/3 nor 4/5 can be said to

be a better choice for the aggregate forecast. Therefore, we conclude that it is necessary

to incorporate an assumption as to the structure of the information overlap, and that the

details must be informed by the particular instance of the problem. The next example

shows that even if the forecasters observe marginally independent events, further details in

the structure of information can still greatly affect the optimal aggregate forecast.

Example 4.3.2. Let Ω = {A,B,C,D} × {0, 1} be a probability space with eight points.

Consider a measure µ that assigns probabilities µ(A, 1) = a/4, µ(A, 0) = (1 − a)/4,

µ(B, 1) = b/4, µ(B, 0) = (1− b)/4, and so forth. Define two events

S1 = {(A, 0), (A, 1), (B, 0), (B, 1)},
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S2 = {(A, 0), (A, 1), (C, 0), (C, 1)}.

Therefore, S1 is the event that the first coordinate is A or B, and S2 is the event that the

first coordinate is A or C. Consider two forecasters and suppose Forecaster i observes Si.

Therefore the ith Forecaster’s information set is given by the σ-field Fi containing Si and

its complement. Their σ-fields are independent. Now, let G be the event that the second

coordinate is 1. Forecaster 1 reports p1 = P(G|F1) = (a + b)/2 if S1 occurs; otherwise,

p1 = (c + d)/2. Forecaster 2, on the other hand, reports p2 = P(G|F2) = (a + c)/2 if S2

occurs; otherwise, p2 = (b+ d)/2. If ε is added to a and d but subtracted from b and c, the

forecasts p1 and p2 do not change, nor does it change the fact that each of the four possible

pairs of forecasts has probability 1/4. Therefore all observables are invariant under this

perturbation. If Forecasters 1 and 2 report (a + b)/2 and (a + c)/2, respectively, then the

aggregator knows, by considering the intersection S1 ∩ S2, that the first coordinate is A.

Consequently, the optimal aggregate forecast is a, which is most definitely affected by the

perturbation.

This example shows that the aggregation problem can be affected by the fine structure

of information overlap. It is, however, unlikely that the structure can ever be known with the

precision postulated in this simple example. Therefore it is necessary to make reasonable

assumptions that yield plausible yet generic information structures.

4.3.2 Gaussian Partial Information Model

The central component of the Gaussian model is a pool of information particles. Each

particle, which can be interpreted as representing the smallest unit of information, is either

positive or negative. The positive particles provide evidence in favor of the event A, while

the negative particles provide evidence against A. Therefore, if the overall sum (integral)

of the positive particles is larger than that of the negative particles, the event A happens;
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otherwise, it does not. Each forecaster, however, observes only the sum of some subset of

the particles. Based on this sum, the forecaster makes a probability estimate for A. This is

made concrete in the following model that represents the pool of information with the unit

interval and generates the information particles from a Gaussian process.

The Gaussian Model. Identify the pool of information with the unit interval

S = [0, 1]. Consider a centered Gaussian process {XB} that is defined on a

probability space (Ω,F ,P) and indexed by the Borel subsets B ⊆ S such that

Cov (XB, XB′) = |B∩B′|. Such a process can be constructed, for example, by

considering a standard Brownian motion process Y (t) on [0, 1], and defining

XB as the variation of Y over B. Let A denote the event that the sum of all

the information is positive: A := {XS > 0}. For each i = 1, . . . , N , let Bi be

some Borel subset of S, and define the corresponding σ-field as Fi := σ(XBi).

Forecaster i then predicts pi := E(1A | Fi).

The Gaussian model can be motivated by recalling the interpreted signal model of Broomell

and Budescu (2009). They assume that Forecaster i forms an opinion based on

Li(Z1, . . . , Zr),

where eachLi is a linear function of observable quantities or cuesZ1, . . . , Zr that determine

the outcome of A. If the observables (or any linear combination of them) are independent

and have small tails, then as r → ∞, the joint distribution of the linear combinations

L1, . . . , LN will be asymptotically Gaussian. Therefore, given that the number of cues in a

real-world setup is likely to be large, it makes sense to model the forecasters’ observations

as jointly Gaussian. The remaining component, namely the covariance structure of the

joint distribution is then motivated by the partial information framework. Of course, other

distributions, such as the t-distribution, could be considered. However, given that both the
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multivariate and conditional Gaussian distributions have simple forms, the Gaussian model

offers potentially the cleanest entry into the issues at hand.

Overall, modeling the forecasters’ predictions with a Gaussian distribution is rather

common. For instance, Di Bacco et al. (2003) consider a model of two forecasters whose

estimated log-odds follow a joint Gaussian distribution. The predictions are assumed to be

based on different information sets; hence, the model can be viewed as a partial informa-

tion model. Unfortunately, as a specialization of the partial information framework, this

model is a fairly narrow due to its detailed assumptions and extensive computations. The

end result is a rather restricted aggregator of two probability forecasts. On the contrary,

the Gaussian model sustains flexibility by specializing the framework only as much as is

necessary. The following enumeration provides further interpretation and clarifies which

aspects of the model are essential and which have little or no impact.

(i) Interpretations. It is not necessary to assume anything about the source of the in-

formation. For instance, the information could stem from survey research, records,

books, interviews, or personal recollections. All these details have been abstracted

away.

(ii) Information Sets. The set Bi holds the information used by Forecaster i, and the

covariance Cov (XBi , XBj) = |Bi ∩ Bj| represents the information overlap between

Forecasters i and j. Consequently, the complement of Bi holds information not used

by Forecaster i. No assumption is necessary as to whether this information was un-

known to Forecaster i instead of known but not used in the forecast.

(iii) Pool of Information. First, the pool of information potentially available to the fore-

casters is the white noise on S = [0, 1]. The role of the unit interval is for the con-

venient specification of the sets Bi. The exact choice is not relevant, and any other

set could have been used. The unit interval, however, is a natural starting point that

links the information structure to many known results in combinatorics and geometry
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(see, e.g., Proposition 4.3.3). Second, there is no sense of time or ranking of infor-

mation within the pool. Instead, the pool is a collection of information, where each

piece of information has an a priori equal chance to contribute to the final outcome.

Quantitatively, information is parametrized by the length measure on S.

(iv) Invariant Transformations. From the empirical point of view, the exact identi-

ties of the individual sets Bi are irrelevant. All that matters are the covariances

Cov
(
XBi , XBj

)
= |Bi ∩ Bj|. The explicit sets Bi are only useful in the analysis,

e.g., when computing the oracular aggregator.

(v) Scale Invariance. The model is invariant under rescaling, replacing S by [0, λ] and

Bi by λBi. Therefore, the actual scale of the model (e.g., the fact that the covariances

of the variables XB are bounded by one) is not relevant.

(vi) Specific vs. General Model. A specific model requires a choice of an event A

and Borel sets Bi. This might be done in several ways: a) by choosing them in

advance, according to some criterion; b) estimating the parameters P(A), |Bi|, and

|Bi ∩ Bj| from data; or c) using a Bayesian model with a prior distribution on the

unknown parameters. This paper focuses mostly on a) and b) but discusses c) briefly

in Section 5.5. Section 4.4 provides one result, namely Proposition 4.4.2 that holds

for any (nonrandom) choices of the sets Bi.

(vii) Choice of Target Event. There is one substantive assumption in this model, namely

the choice of the half-space for the event A. Choosing {XS > t} for some t ∈ R

makes the prior probability equal to P(A) = 1 − Φ(t). The current paper defers the

analysis of t 6= 0 to future work and focuses on the centered model for simplicity.

Furthermore, choosing t = 0 implies a prior probability P(A) = 1/2, which seems

as uninformative as possible and therefore provides a natural starting point. Note that

specifying a prior distribution for A cannot be avoided as long as the model depends
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Figure 4.1: Illustration of Information Dis-

tribution among N Forecasters. The bars

leveled horizontally with Forecaster i rep-

resent the information set Bi.

Figure 4.2: Marginal Distribution of pi un-

der Different Levels of δi. The more the

forecaster knows, the more the forecasts

are concentrated around the extreme points

zero and one.

on a probability space. This includes essentially any probability model for forecast

aggregation.

4.3.3 Preliminary Observations

The Gaussian process exhibits additive behavior that aligns well with the intuition of an

information pool. To see this, consider a finite partition of the full information {Cv :=

∩i∈vBi \ ∪i/∈vBi : v ⊆ {1, . . . , N}}. Each subset Cv represents a set of information

particles such that Bi =
⋃

v3iCv and XBi =
∑

v3iXCv . Therefore XB can be regarded

as the sum of the particles in the subset B ⊆ S, and different XB’s relate to each other

in a manner that is consistent with this interpretation. The relations among the relevant
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variables are summarized by a multivariate Gaussian distribution:



XS

XB1

...

XBN


∼ N


0,

Σ11 Σ12

Σ21 Σ22

 =



1 δ1 δ2 . . . δN

δ1 δ1 ρ1,2 . . . ρ1,N

δ2 ρ2,1 δ2 . . . ρ2,N

...
...

...
. . .

...

δN ρN,1 ρN,2 . . . δN




, (4.2)

where |Bi| = δi is the amount of information used by Forecaster i, and |Bi∩Bj| = ρij = ρji

is the amount of information overlap between Forecasters i and j. One possible instance of

this setup is illustrated in Figure 4.1. Note that Bi does not have to be a contiguous subset

of S. Instead, each forecaster can use any Borel measurable subset of the full information.

Under the Gaussian model, the sub-matrix Σ22 is sufficient for the information struc-

ture. Therefore the exact identities of the Borel sets do not matter, and learning about the

information among the forecasters is equivalent to estimating a covariance matrix under

several restrictions. In particular, if the information in Σ22 can be translated into a diagram

such as Figure 4.1, the matrix Σ22 is called coherent. This property is made precise in the

following proposition. The proof of this and other propositions are deferred to Appendix

A of the Supplementary Material.

Proposition 4.3.3. The overlap structure Σ22 is coherent if and only if Σ22 ∈ COR(N) :=

conv
{
xx′ : x ∈ {0, 1}N

}
, where conv{·} denotes the convex hull and COR(N) is known

as the correlation polytope. It is described by 2N vertices in dimension dim(COR(N)) =(
N+1

2

)
.

The correlation polytope has a very complex description in terms of half-spaces. In fact,

complete descriptions of the facets of COR(N) are only known for N ≤ 7 and conjectured

for COR(8) and COR(9) (Ziegler, 2000). Fortunately, previous literature has introduced

both linear and semidefinite relaxations of COR(N) (Laurent et al., 1997). Such relaxations
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together with modern optimization techniques and sufficient data can be used to estimate

the information structure very efficiently. This, however, is not in the scope of this paper

and is therefore left for subsequent work.

The multivariate Gaussian distribution (4.2) relates to the forecasts by

pi = P (A|Fi) = P (XS > 0|XBi) = Φ

(
XBi√
1− δi

)
. (4.3)

The marginal density of pi,

m (pi|δi) =

√
1− δi
δi

exp

{
Φ−1(pi)

2

(
1− 1

2δi

)}
,

has very intuitive behavior: it is uniform on [0, 1] if δi = 1/2, but becomes unimodal with

a minimum (maximum) at pi = 1/2 when δi > 1/2 (δi < 1/2). As δi → 0, pi converges

to a point mass at 1/2. On the other hand, as δi → 1, pi converges to a correct forecast

whose distribution has atoms of weight 1/2 at zero and one. Therefore a forecaster with no

information “withdraws” from the problem by predicting a non-informative probability 1/2

while a forecaster with full information always predicts the correct outcome with absolute

certainty. Figure 4.2 illustrates the marginal distribution when δi is equal to 0.3, 0.5, and

0.7.

4.4 Probability Extremizing

4.4.1 Oracular Aggregator for the Gaussian Model

Recall from Section 4.1.3 that the oracular aggregator is the conditional expectation of 1A

given all the forecasters’ information. Under the Gaussian model, this can be emulated

with a hypothetical oracle forecaster whose information set is B′ :=
⋃N
i=1Bi. The oracular
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aggregator is then nothing more than the probability forecast made by the oracle. That is,

p′ = P(A|F ′) = P(XS > 0|XB′) = Φ

(
XB′√
1− δ′

)
,

where δ′ = |B′|. Given that the oracle’s information set B′ cannot be used to reconstruct

the individual sets {Bi}Ni=1, some potentially relevant information may appear to have been

lost. Under the Gaussian model, however, only the total variation over B′ is relevant to

aggregation. The next proposition shows that XB′ contains all the information in {XBi}Ni=1

and hence leads to an actual oracular aggregator.

Proposition 4.4.1. The event A is conditionally independent of the collection {XBi}Ni=1

given XB′

The oracular aggregator provides a reference point that allows us to identify information

structures under which other aggregation techniques perform relatively well. In particular,

if an aggregator is likely to be near p′ under a given Σ22, then that information structure

reflects favorable conditions for the aggregator. This ideas is used in the following subsec-

tions to develop intuition about probability extremizing.

4.4.2 General Information Structure

A probability p is said to be extremized by another probability q if and only if q is closer to

zero when p ≤ 1/2 and closer to one when p ≥ 1/2. This translates to the probit scores as

follows: q extremizes p if and only if Φ−1(q) is on the same side but further away from zero

than Φ−1(p). The amount of (multiplicative) extremization can then be quantified with the

probit extremization ratio defined as α(q, p) := Φ−1(q)/Φ−1(p).

Given that no aggregator can improve upon the oracular aggregator, it provides an ideal

reference point for analyzing extremization. This section specifically uses it to study ex-

tremizing of pprobit because a) it is arguably more reasonable than the simple average p̄;
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and b) it is very similar to plog but results in cleaner analytic expressions. Therefore, of par-

ticular interest is the special case α(p′, pprobit) = P ′
/(

1
N

∑N
i=1 Pi

)
, where P ′ = Φ−1(p′).

From now on, unless otherwise stated, this expression is referred simply with α. Therefore,

the probit opinion pool pprobit requires extremization if and only if α > 1, and the larger α

is, the more pprobit should be extremized.

Note that α is a random quantity that spans the entire real line; that is, it is possible

to find a set of forecasts and an information structure for any possible value of α ∈ R.

Evidently, extremizing is not guaranteed to always improve pprobit. To understand when

extremizing is likely to be beneficial, the following proposition provides the probability

distribution of α.

Proposition 4.4.2. The law of the extremization ratio α is a Cauchy with parameters x0 and

γ, where the location parameter x0 is at least one, equality occurring only when δi = δj for

all i 6= j. Consequently, if δi 6= δj for some i 6= j, then the probability that pprobit requires

extremizing P (α > 1|Σ22, δ
′) is strictly greater than 1/2.

This proposition shows that, on any non-trivial problem, a small perturbation in the di-

rection of extremizing is more likely to improve pprobit than to degrade it. This partially

explains why extremizing aggregators perform well on large sets of real-world prediction

problems. It may be unsurprising after the fact, but the forecasting literature is still full of

articles that perform probability averaging without extremizing. The next two subsections

examine special cases in which more detailed computations can be performed.

4.4.3 Zero and Complete Information Overlap

If the forecasters use the same information, i.e., Bi = Bj for all i 6= j, their forecasts

are identical, p′ = p′′ = pprobit, and no extremization is needed. Therefore, given that

the oracular aggregator varies smoothly over the space of information structures, averag-

ing techniques, such as pprobit, can be expected to work well when the forecasts are based
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on very similar sources of information. This result is supported by the fact that the mea-

surement error framework, which essentially describes the forecasters as making numerous

small mistakes while applying the same procedure to the same data (see Section 4.2.2),

results in averaging-based aggregators.

If, on the other hand, the forecasters have zero information overlap, i.e., |Bi ∩ Bj| = 0

for all i 6= j, the information structure Σ22 is diagonal and

p′ = p′′ = Φ

 ∑N
i=1XBi√

1−
∑N

i=1 δi

 ,

where the identities δ′ =
∑N

i=1 δi and XB′ =
∑N

i=1XBi result from the additive nature of

the Gaussian process (see Section 4.3.3). This aggregator can be described in two steps:

First, the numerator conducts voting, or range voting to be more specific, where the votes

are weighted according to the importance of the forecasters’ private information. Second,

the denominator extremizes the consensus according to the total amount of information in

the group. This clearly leads to very extreme forecasts. Therefore more extreme techniques

can be expected to work well when the forecasters use widely different information sets.

The analysis suggests a spectrum of aggregators indexed by the information overlap:

the optimal aggregator undergoes a smooth transformation from averaging (low extremiza-

tion) to voting (high extremization) as the information overlap decreases from complete to

zero overlap. This observation gives qualitative guidance in real-world settings where the

general level of overlap can be said to be high or low. For instance, predictions from fore-

casters working in close collaboration can be averaged while predictions from forecasters

strategically accessing and studying disjoint sources of information should be aggregated

via more extreme techniques such as voting. See Parunak et al. 2013 for a discussion of

voting-like techniques. For a concrete illustration, recall Example 4.3.1 where the optimal

aggregate changes from 2/3 (high information overlap) to 4/5 (low information overlap).
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4.4.4 Partial Information Overlap

To analyze the intermediate scenarios with partial information overlap among the forecast-

ers, it is helpful to reduce the number of parameters in Σ22. A natural approach is to assume

compound symmetry, where the information sets have the same size and that the amount of

pairwise overlap is constant. More specifically, let |Bi| = δ and |Bi ∩Bj| = λδ, where δ is

the amount of information used by each forecaster and λ is the overlapping proportion of

this information. The resulting information structure is Σ22 = IN(δ − λδ) + JNλδ, where

IN is the identity matrix and JN is N ×N matrix of ones. It is coherent if and only if

δ ∈ [0, 1] and λ|δ ∈
[
max

{
N − δ−1

N − 1
, 0

}
, 1

]
. (4.4)

See Appendix A of the Supplementary Material for the derivation of these constraints.

Under these assumptions, the location parameter of the Cauchy distribution of α sim-

plifies to x0 = N/(1+(N−1)λ)
√

(1− δ)/(1− δ′). Of particular interest is to understand

how this changes as a function of the model parameters. The analysis is somewhat hindered

by the unknown details of the dependence between δ′ and the other parameters N , δ, and

λ. However, given that δ′ is defined as δ′ = | ∪Ni=1 Bi|, its value increases in N and δ but

decreases in λ. In particular, as δ → 1, the value of δ′ converges to one at least as fast as δ

because δ′ ≥ δ. Therefore the term
√

(1− δ)/(1− δ′) and, consequently, x0 increase in δ.

Similarly, x0 can be shown to increase in N but to decrease in λ. Therefore x0 and δ′ move

together, and the amount of extremizing can be expected to increase in δ′. As the Cauchy

distribution is symmetric around x0, the probability P(α > 1|Σ22) behaves similarly to x0

and also increases in δ′. Figure 4.3 illustrates these relations by plotting both log(x0) and

P(α > 1|Σ22) for N = 2 forecasters under all plausible combinations of δ and λ. The

white space collects all pairs (δ, λ) that do not satisfy (4.4) and hence represent incoherent

information structures. Note that the results are completely general for the two-forecaster
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(a) log(x0) (b) P(α > 1|Σ22)

Figure 4.3: Extremization Ratio under Symmetric Information. The amount of extremizing

α follows a Cauchy(x0, γ), where x0 is a location parameter and γ is a scale parameter. This

figure considers N = 2 because in this case δ′ is uniquely determined by Σ22.

case, apart from the assumption δ1 = δ2. Relaxing this assumption does not change the

qualitative nature of the results.

The total amount of information used by the forecasters δ′, however, does not provide

a full explanation of extremizing. Information diversity is an important yet separate deter-

minant. To see this, observe that fixing δ′ to some constant defines a curve λ = 2 − δ′/δ

on the two plots in Figure 4.3. For instance, letting δ′ = 1 gives the boundary curve on the

right side of each plot. This curve then shifts inwards and rotates slightly counterclockwise

as δ′ decreases. At the top end of each curve all forecasters use the total information, i.e.,

δ = δ′ and λ = 1.0. At the bottom end, on the other hand, the forecasters partition the total

information and have zero overlap, i.e., δ = δ′/2 and λ = 0.0. Given that moving down

along these curves simultaneously increases information diversity and x0, both information

diversity and the total amount of information used by the forecasters are important yet sep-
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arate determinants of extremizing. This observation can guide practitioners towards proper

extremization because many application specific aspects are linked to these two determi-

nants. For instance, extremization can be expected to increase in the number of forecasters,

subject-matter expertise, and human diversity, but to decrease in collaboration, sharing of

resources, and problem difficulty.

4.5 Probability Aggregation

4.5.1 Revealed Aggregator for the Gaussian Model

Recall the multivariate Gaussian distribution (4.2) and collect all XBi = Φ−1(pi)
√

1− δi

into a column vector X = (XB1 , XB2 , . . . , XBN )′. If Σ22 is a coherent overlap structure

and Σ−1
22 exists, then the revealed aggregator under the Gaussian model is

p′′ = P (A|F ′′) = P (XS > 0|X) = Φ

(
Σ12Σ

−1
22X√

1−Σ12Σ
−1
22 Σ21

)
. (4.5)

Applying (4.5) in practice requires an estimate of Σ22. If the forecasters make predictions

about multiple events, it may be possible to model the different prediction tasks with a

hierarchical structure and estimate a fully general form of Σ22. This can be formulated as

a constrained (semi-definite) optimization problem, which, as was mentioned in Section

4.3.3, is left for subsequent work. Such estimation, however, requires the results of a large

multi-prediction experiment which may not always be possible in practice. Often only

a single prediction per forecaster is available. Consequently, accurate estimation of the

fully general information structure becomes difficult. This motivates the development of

aggregation techniques for a single event. Under the Gaussian model, a standard approach

is to assume a covariance structure that involves fewer parameters. The next subsection

discusses a natural and non-informative choice.
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4.5.2 Symmetric Information

This subsection assumes a type of exchangeability among the forecasters. While this is

somewhat idealized, it is a reasonable choice in a low-information environment where there

is no historical or self-report data to distinguish the forecasters. The averaging aggregators

described in Section 4.2, for instance, are symmetric. Therefore, to the extent that they re-

flect an underlying model, the model assumes exchangeability. Under the Gaussian model,

exchangeability suggests the compound symmetric information structure discussed in Sec-

tion 4.4.4. This structure holds if, for example, the forecasters use information sources

sampled from a common distribution. The resulting revealed aggregator takes the form

p′′cs = Φ

 1
(N−1)λ+1

∑N
i=1 XBi√

1− Nδ
(N−1)λ+1

 , (4.6)

where XBi = Φ−1(pi)
√

1− δ for all i = 1, . . . , N .

Given these interpretations, it may at first seem surprising that the values of δ and λ

can be estimated in practice. Intuitively, the estimation relies on two key aspects of the

model: a) a better-informed forecast is likely to be further away from the non-informative

prior (see Figure 4.2); and b) two forecasters with high information overlap are likely to

report very similar predictions. This provides enough leverage to estimate the information

structure via the maximum likelihood method. Complete details for this are provided in

Appendix B of the Supplementary Material. Besides exchangeability, p′′cs is based on very

different modeling assumptions than the averaging aggregators. The following proposition

summarizes some of its key properties.

Proposition 4.5.1. (i) The probit extremization ratio between p′′cs and pprobit is given by

the non-random quantity α(p′′cs, pprobit) = γ
√

1− δ/
√

1− δγ, where γ = N/((N −

1)λ+ 1),
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(ii) p′′cs extremizes pprobit as long as pi 6= pj for some i 6= j, and

(iii) p′′cs can leave the convex hull of the individual probability forecasts.

Proposition 4.5.1 suggests that p′′cs is appropriate for combining probability forecasts of

a single event. This is illustrated on real-world forecasts in the next subsection. The goal

is not to perform a thorough data analysis or model evaluation, but to demonstrate p′′cs on a

simple example.

4.5.3 Real-World Forecasting Data

Probability aggregation appears in many facets of real-world applications, including weather

forecasting, medical diagnosis, estimation of credit default, and sports betting. This sec-

tion, however, focuses on predicting global events that are of particular interest to the In-

telligence Advanced Research Projects Activity (IARPA). Since 2011, IARPA has posed

about 100-150 question per year as a part of its ACE forecasting tournament. Among the

participating teams, the Good Judgment Project (GJP) (Ungar et al. 2012; Mellers et al.

2014) has emerged as the clear winner. The GJP has recruited thousands of forecasters to

estimate probabilities of the events specified by IARPA. The forecasters are told that their

predictions are assessed using the Brier score (see Section 4.1.2). In addition to receiving

$150 for meeting minimum participation requirements that do not depend on prediction

accuracy, the forecasters receive status rewards for good performance via leader-boards

displaying Brier scores for the top 20 forecasters. Every year the top 1% of the forecasters

are selected to the elite group of “super-forecasters”. Note that, depending on the details of

the reward structure, such a competition for rank may eliminate the truth-revelation prop-

erty of proper scoring rules (see, e.g., Lichtendahl Jr and Winkler 2007).

This subsection focuses on the super-forecasters in the second year of the tournament.

Given that these forecasters were elected to the group of super-forecasters based on the

first year, their forecasts are likely, but not guaranteed, to be relatively good. The group
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involves 44 super-forecasters collectively making predictions about 123 events, of which

23 occurred. For instance, some of the questions were: “Will France withdraw at least 500

troops from Mali before 10 April 2013?”, and “Will a banking union be approved in the

EU council before 1 March 2013?”. Not every super-forecaster made predictions about

every event. In fact, the number of forecasts per event ranged from 17 to 34 forecasts, with

a mean of 24.2 forecasts. To avoid infinite log-odds and probit scores, extreme forecasts

pi = 0 and 1 were censored to pi = 0.001 and 0.999, respectively.

In this section aggregation is performed one event at a time without assuming any other

information besides the probability forecasts themselves. This way any performance im-

provements reflect better fit of the underlying model and the aggregator’s relative advantage

in forecasting a single event. Aggregation accuracy is measured with the mean Brier score

(BS): Consider K events and collect all Nk probability forecasts for event Ak into a vector

pk ∈ [0, 1]Nk . Then, BS for aggregator g : [0, 1]Nk → [0, 1] is

BS =
1

K

K∑
k=1

(g(pk)− 1Ak)
2 .

This score is defined on the unit interval with lower values indicating higher accuracy.

For a more detailed performance analysis, it decomposes into three additive components:

reliability (REL), resolution (RES), and uncertainty (UNC). This assumes that the aggre-

gate forecast g(pk) for all k can only take discrete values fj ∈ [0, 1] with j = 1, . . . , J .

Let nj be the number of times fj occurs, and denote the empirical frequency of the cor-

responding events with oj . Let ō be the overall empirical frequency of occurrence, i.e.,

ō = 1
K

∑K
k=1 1Ak . Then,

BS = REL− RES + UNC

=
1

K

J∑
j=1

nj(fj − oj)2 − 1

K

J∑
j=1

nj(oj − ō)2 + ō(1− ō).
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Table 4.1: The Mean Brier Scores (BS) with Its Three Components, Reliability (REL),

Resolution (RES), and Uncertainty (UNC), for Different Aggregators.

Aggregator BS REL RES UNC
p̄ 0.132 0.026 0.045 0.152
plog 0.128 0.025 0.048 0.152
pprobit 0.128 0.023 0.047 0.152
p′′cs 0.123 0.020 0.049 0.152

In this decomposition low REL represents good calibration. If a calibrated aggregate is

also confident, it exhibits high RES. Therefore the combination of good calibration and

high confidence leads to low BS. The corresponding forecasts are likely to be very close

to 0 and 1, which is more useful to the decision-maker than the naive forecast ō. The final

term UNC equals the BS for ō and hence provides a reference point for interpreting the

performance of the aggregator.

Table 4.1 presents results for p̄, plog, pprobit, and p′′cs under the super-forecaster data.

Empirical approaches were not considered for two reasons: a) they do not reflect an actual

model of forecasts; and b) they require a training set with known outcomes and hence

cannot be applied to a single event. Overall, p̄ presents the worst performance. Given that

pprobit and plog are very similar, it is not surprising that they have almost identical scores.

The revealed aggregator p′′cs is both the most resolved and calibrated, thus achieving the

lowest BS among all the aggregators. This is certainly an encouraging result. It is important

to note that p′′cs is only the first attempt at partial information aggregation. More elaborate

information structures and estimation procedures, such as shrinkage estimators, are very

likely to lead to many further improvements.
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4.6 Summary and Discussion

This paper introduced a probability model for predictions made by a group of forecasters.

The model allows for interpretation of some of the existing work on forecast aggregation

and also clarifies empirical approaches such as the ad hoc practice of extremization. The

general model is more plausible on the micro-level than any other model has been to date.

Under this model, some general results were provided. For instance, the oracular aggre-

gate, which uses all the forecasters’ information (Proposition 4.4.1), is more likely to be

more extreme than one of the common benchmark aggregates, namely pprobit (Proposi-

tion 4.4.2). Even though no real world aggregator has access to all the information of the

oracle, this result explains why extremization is almost certainly called for. More detailed

analyses were performed under several specific model specifications such as zero and com-

plete information overlap (Section 4.4.3), and fully symmetric information (Section 4.4.4).

Even though the zero and complete information overlap models are not realistic, except

under a very narrow set of circumstances, they form logical extremes that illustrate the

main drivers of good aggregation. The symmetric model is somewhat more realistic. It

depends only on two parameters and therefore allows us to visualize the effect of model

parameters on the optimal amount of extremization (Figure 4.3). Finally, the revealed ag-

gregator, which is the best in-practice aggregation under the partial information model, was

discussed. The discussion provided a general formula for this aggregator (Equation 4.5)

as well as its specific formula under symmetric information (Equation 4.6). The specific

form was applied to real-world forecasts of one-time events and shown to outperform other

model-based aggregators.

It is interesting to relate our discussion to the many empirical studies conducted by the

Good Judgment Project (GJP) (see Section 7.5). Generally extremizing has been found to

improve the average aggregates (Mellers et al., 2014; Satopää et al., 2014,?). The average

forecast of a team of super-forecasters, however, often requires very little or no extremizing.
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This can be explained as follows. The super-forecasters are highly knowledgeable (high δ)

individuals who work in groups (high ρ and λ). Therefore, in Figure 4.3 they are situated

around the upper-right corners where almost no extremizing is required. In other words,

there is very little left-over information that is not already used in each forecast. Their

forecasts are highly convergent and are likely to be already very near the oracular forecast.

The GJP forecast data also includes self-assessments of expertise. Not surprisingly, the

greater the self-assessed expertise, the less extremizing appears to have been required. This

is consistent with our interpretation that high values of δ and λ suggest lower extremization.

The partial information framework offers many directions for future research. One

involves estimation of parameters. In principle, |Bi| can be estimated from the distribution

of a reasonably long probability stream. Similarly, |Bi ∩ Bj| can be estimated from the

correlation of the two parallel streams. Estimation of higher order intersections, however,

seems more dubious. In some cases the higher order intersections have been found to be

irrelevant to the aggregation procedure. For instance, DeGroot and Mortera (1991) show

that it is enough to consider only the pairwise conditional (on the truth) distributions of

the forecasts when computing the optimal weights for a linear opinion pool. Theoretical

results on the significance or insignificance of higher order intersections under the partial

information framework would be desirable.

Another promising avenue is the Bayesian approach. In many applications with small

or moderately sized datasets, Bayesian methods have been found to be superior to the

likelihood-based alternatives. Therefore, given that the number of forecasts on a single

event is typically quite small, a Bayesian approach is likely to improve the predictions of

one-time events. Currently, we have work in progress analyzing a Bayesian model but there

are many, many reasonable priors on the information structures. This avenue should cer-

tainly be pursued further, and the results tested against other high performing aggregators.
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5
Partial Information Framework: Model-Based

Aggregation of Estimates from Diverse

Information Sources∗

Abstract

Prediction polling is an increasingly popular form of crowdsourcing in which multiple par-

ticipants estimate the probability or magnitude of some future event. These estimates are

then aggregated into a single forecast. Historically, randomness in scientific estimation

has been generally assumed to arise from unmeasured factors which are viewed as mea-

surement noise. However, when combining subjective estimates, heterogeneity stemming

from differences in the participants’ information is often more important than measure-

ment noise. This paper formalizes information diversity as an alternative source of such

heterogeneity and introduces a novel modeling framework that is particularly well-suited

for prediction polls. A practical specification of this framework is proposed and applied

to the task of aggregating probability and point estimates from two real-world prediction

polls. In both cases our model outperforms standard measurement-error-based aggregators,

∗Joint work with Shane T. Jensen, Robin Pemantle, and Lyle H. Ungar
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hence providing evidence in favor of information diversity being the more important source

of heterogeneity.

5.1 Introduction

Past literature has distinguished two types of polling: prediction and opinion polling. In

broad terms, an opinion poll is a survey of public opinion, whereas a prediction poll in-

volves multiple agents collectively predicting the value of some quantity of interest (Goel

et al., 2010; Mellers et al., 2014). For instance, consider a presidential election poll. An

opinion poll typically asks the voters who they will vote for. A prediction poll, on the other

hand, could ask which candidate they think will win in their state. A liberal voter in a domi-

nantly conservative state is likely to answer differently to these two questions. Even though

opinion polls have been the dominant focus historically, prediction polls have become in-

creasingly popular in the recent years, due to modern social and computer networks that

permit the collection of a large number of responses both from human and machine agents.

This has given rise to crowdsourcing platforms, such as MTurk and Witkey, and many

companies, such as Myriada, Lumenogic, and Inkling, that have managed to successfully

capitalize on the benefits of collective wisdom.

This paper introduces statistical methodology designed specifically for the rapidly grow-

ing practice of prediction polling. The methods are illustrated on real-world data involving

two common types of responses, namely probability and point forecasts. The probability

forecasts were collected by the Good Judgment Project (GJP) (Ungar et al. 2012; Mellers

et al. 2014) as a means to estimate the likelihoods of international political future events

deemed important by the Intelligence Advanced Research Projects Activity (IARPA). Since

its initiation in 2011, the project has recruited thousands of forecasters to make probability

estimates and update them whenever they felt the likelihoods had changed. To illustrate,

Figure 5.1 shows the forecasts for one of these events. This example involves 522 fore-
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Figure 5.1: Probability forecasts of the

event “Will Moody’s issue a new down-

grade on the long-term ratings for any of the

eight major French banks between 30 July

2012 and 31 December 2012?” The points

have been jittered slightly to make overlaps

visible.
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Figure 5.2: Point forecasts of the weights of

20 different people. The boxplots have been

sorted to increase in the true weights (red

dots). Some extreme values were omitted

for the sake of clarity.

casters making a total of 1, 669 predictions between 30 July 2012 and 30 December 2012

when the event finally resolved as “No” (represented by the red line at 0.0). In general,

the forecasters reported updates very infrequently. Furthermore, not all forecasters made

probability estimates for all the events, making the dataset very sparse. The point forecasts

for our second application were collected by Moore and Klein (2008) who recruited 416

undergraduates from Carnegie Mellon University to guess the weights of 20 people based

on a series of pictures. This is an experimental setup where each participant was required

to respond to all the questions, leading to a fully completed dataset. The responses are

illustrated in Figure 5.2 that shows the boxplots of the forecasters’ guesses for each of the
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20 people. The red dots represent the corresponding true weights.

Once the predictions have been collected, they are typically combined into a single con-

sensus forecast for the sake of decision-making and improved accuracy. Unfortunately, this

can be done in many different ways, and the final combination rule can largely determine

the out-of-sample performance. The past literature distinguishes two broad approaches to

forecast aggregation: empirical aggregation and model-based aggregation. Empirical ag-

gregation is by far the more widely studied approach; see, e.g., stacking (Breiman, 1996),

Bayes model averaging (Raftery et al., 1997), linear opinion pools (DeGroot and Mortera,

1991), and extremizing aggregators (Ranjan and Gneiting, 2010; Satopää et al., 2014). All

these methods are akin to machine learning in a sense that they first learn the aggregator

based on a training set of past forecasts of known outcomes and then use that aggregator

to combine future forecasts of unknown outcomes. Unfortunately, in a prediction polling

setup, constructing such a training set requires a lot of effort and time on behalf of the fore-

casters and the polling agent. Therefore a training set is often not available. Instead, the

participants are typically handed a single questionnaire that simultaneously inquires about

their predictions of one or more unknown outcomes. This leads to a dataset consisting only

of forecasts, which means that empirical aggregation cannot be applied.

Fortunately, model-based aggregation can be performed even when prior knowledge

of outcomes is not available. This approach begins by proposing a plausible probability

model for the source of heterogeneity among the forecasts, that is, for how and why the

forecasts differ from the target outcome. Under this assumed forecast-outcome link, it is

then possible to construct an optimal aggregator that can be applied directly to the forecasts

without learning the aggregator first from a separate training set. Given this broad applica-

bility, the current paper focuses only on the model-based approach. In particular, outcomes

are not assumed available for aggregation at any point in the paper. Instead, aggregation

is performed solely based on forecasts, leaving all empirical techniques well outside the
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scope of the paper.

Historically, potentially due to early forms of data collection, model-based aggregation

has considered measurement error as the main source of forecast heterogeneity. This choice

motivates aggregators with central tendency such as the (weighted) average, median, and

so on. Intuitively, measurement error may be reasonable in modeling repeated estimates

from a single instrument. However, it is unlikely to hold in prediction polling, where the

estimates arise from multiple, often widely different sources. It is also known that a non-

trivial weighted average is not the optimal aggregator (in terms of the expected quadratic

and many other loss functions) under any joint distribution of the outcome and its (condi-

tionally unbiased) forecasts (Dawid et al., 1995; Ranjan and Gneiting, 2010; Satopää and

Ungar, 2015). This questions the role of measurement error in model-based aggregation

and highlights the need for a different source of forecast heterogeneity.

The main contribution of this paper is a new source of forecast heterogeneity, called

information diversity, that explains variation by differences in the information available to

the forecasters and how they decide to use it. For instance, forecasters studying the same

(or different) articles about a company may use separate parts of the information and hence

report differing predictions on the company’s future revenue. Such diversity forms the ba-

sis of a novel modeling framework known as the partial information framework. Theory

behind this framework was originally introduced for probability forecasts by Satopää et al.

(2015); though their specification is somewhat restrictive for empirical applications. The

current paper generalizes the framework beyond probability forecast and removes all un-

necessary assumptions, leading to a new specification that is more appropriate for practical

applications. This specification allows the decision-maker to build models for different

types of forecast-outcome pairs, such as probability forecasts of binary events or point

forecasts of real-valued outcomes. Each such model motivates and describes an explicit

joint distribution for the target outcome and its forecasts. The optimal aggregator under
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this joint distribution is available and serves as a more principled model-based alternative

to the usual (weighted) average or median.

The paper is structured as follows. Section 5.2 first describes the partial information

framework at its most general level and then introduces a practical specification of the

framework. The section ends with a brief review of previous work on model-based ag-

gregation. Section 5.3 derives a general procedure that guides efficient estimation of the

information structure among the forecasters. Section 5.4 illustrates on real-world data how

specific models within the framework can be constructed and applied. In particular, the

models are derived and evaluated on probability and point forecasts from the two predic-

tion polls discussed above. Overall, the resulting partial information aggregators achieve a

noticeable performance improvement over the common measurement-error-based aggrega-

tors, suggesting that information diversity is the more appropriate model of forecast hetero-

geneity. Finally, Section 5.5 concludes with a summary and discussion of future research.

5.2 Model-Based Aggregation

5.2.1 Bias and Noise

Consider N forecasters and suppose forecaster j predicts Xj for some quantity of interest

Y . For instance, in our weight estimation example Y is the true weight of a person and Xj

is the guess given by the jth undergraduate. In our probability forecasting application, on

the other hand, Y is binary, reflecting whether the event happens or not, and Xj ∈ [0, 1]

is a probability forecast for its occurrence. This section, however, avoids such application

specific choices and treats Y andXj as generic random variables. In general, predictionXj

is nothing but an estimator of Y . Therefore, as is the case with all estimators, its deviation

from the truth can be broken down into two components: bias and noise. On the theoretical

level, these two components can be separated and hence are often addressed by different
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mechanisms. This suggests a two-step approach to forecast aggregation: i) eliminate any

bias in the forecasts, and ii) combine the unbiased forecasts.

Historically, bias in human judgment has been extensively studied in the psychology lit-

erature (for reviews, see Lichtenstein et al. 1977; Yates 1990; Keren 1991). This bias often

exhibits well-known patterns (see, e.g., the easy-hard effect in Lichtenstein and Fischhoff

1977; Juslin 1993), and many authors have proposed both cognitive and motivational mod-

els to explain it (Koriat et al., 1980; Kruglanski, 1990; Soll, 1996; Moore and Healy, 2008).

These models and other results in this popular area of research suggest ways for ex-ante

bias reduction. Such techniques, however, are not in the scope of this paper. Instead, the

focus here is on noise reduction and hence specifically on developing methodology for the

second step in the overall process of forecast aggregation. In particular, Section 5.2.2 de-

scribes our new framework for modeling the noise component. This is then compared in

Section 5.2.3 to previous noise models. These models make different assumptions about the

way the unbiased forecasts relate to the target outcome and hence motivate very different

classes of model-based aggregators.

5.2.2 Partial Information Framework

5.2.2.1 General Framework

The partial information framework assumes that Y andXj are measurable under some com-

mon probability space (Ω,F ,P). The probability measure P provides a non-informative yet

proper prior on Y and reflects the basic information known to all forecasters. Such a prior

has been discussed extensively in the economics and game theory literature where it is

usually known as the common prior. Even though this is a substantive assumption in the

framework, specifying a prior distribution cannot be avoided as long as the model depends

on a probability space. This includes essentially any probability model for forecast aggre-

gation. How the prior is incorporated depends on the problem context: it can be chosen
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explicitly by the decision-maker, computed based on past observations of Y , or estimated

directly from the forecasts.

The principal σ-field F can be interpreted as all the possible information that can be

known about Y . On top of the basic information reflected in the prior, the jth forecaster

uses some personal partial information setFj ⊆ F and predictsXj = E(Y | Fj). Therefore

Fi 6= Fj if Xi 6= Xj , and forecast heterogeneity stems purely from information diversity.

Note, however, that if forecaster j uses a simple rule, Fj may not be the full σ-field of

information available to the forecaster but rather a smaller σ-field corresponding to the

information used by the rule. Furthermore, if two forecasters have access to the same σ-

field, they may decide to use different sub-σ-fields, leading to different predictions. This

is particularly salient in our weight estimation example where each forecaster has access

to the exact same information, namely the picture of the person, but can choose to use

different subsets of this information. Therefore, information diversity does not only arise

from differences in the available information, but also from how the forecasters decide

to use it. This general point of view was motivated in Satopää et al. (2015) with simple

examples that illustrate how the optimal aggregate is not well-defined without assumptions

on the information structure among the forecasters.

Satopää et al. (2015) also show that Xj = E(Y | Fj) is precisely the same as having a

calibrated (sometimes also known as reliable) forecast, that is, Xj = E(Y |Xj). Therefore

the form Xj = E(Y |Fj) arises directly from the existence of an underlying probability

model and calibration. Overall, calibration Xj = E(Y |Xj) has been widely discussed

in the statistical and meteorological forecasting literature (see, e.g., Dawid et al. 1995;

Ranjan and Gneiting 2010; Jolliffe and Stephenson 2012, Section 7.2.2.), with traces at

least as far back as Murphy and Winkler (1987b). Given that the condition Xj = E(Y |Xj)

depends on the probability measure P, it should be referred to as P-calibration when the

choice of the probability measure needs to be emphasized. This dependency shows the
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main conceptual difference between P-calibration and the notion of empirical calibration

(Dawid 1982; Foster and Vohra 1998; and many others). However, as was pointed out

by Dawid et al. (1995), these two notions can be expressed in formally identical terms by

letting P represent the limiting joint distribution of the forecast-outcome pairs.

In practice researchers have discovered many calibrated subpopulations of experts, such

as meteorologists (Murphy and Winkler, 1977a,b), experienced tournament bridge players

(Keren, 1987), and bookmakers (Dowie, 1976). Generally, calibration can be improved

through team collaboration, training, tracking (Mellers et al., 2014), performance feed-

back (Murphy and Daan, 1984), representative sampling of target events (Gigerenzer et al.,

1991; Juslin, 1993), or by evaluating the forecasters’ performance under a loss function

that is minimized by the conditional expectation of Y , given the forecaster’s information

(Banerjee et al., 2005). If one is nonetheless left with uncalibrated forecasts, they can

be calibrated ex-ante as follows. First, consider some (possibly uncalibrated) forecasts

X̃ = (X̃1, . . . , X̃N)′ defined on (Ω,F). Choose some distribution Q for (Y, X̃). For in-

stance, Dawid et al. 1995 suggest first choosing a distribution Q for X̃ and then setting

Q(Y, X̃) = Ψ(X̃)Q(X̃), where Ψ is an arbitrary aggregator (such as the average of proba-

bility forecasts of a binary event) acting as Q(Y |X̃). Alternatively, one may search for an

appropriate Q in the large literature of quantitative psychology. Regardless how Q is con-

structed, however, the calibrated version of X̃j is EQ(Y |X̃j). This forecast is Q-calibrated

and can be written as EQ(Y |Fj), where Fj = σ(EQ(Y |X̃j)) is the σ-field generated by

EQ(Y |X̃j). Intuitively, calibrating is equivalent to replacing forecast x by EQ(Y |X̃j = x)

for all possible values x ∈ supp(X̃j). Perhaps, however, one does not want to work under

this particular model. To accommodate alternative models (such as the Gaussian model

described in Section 5.2.2.2), the next proposition shows how Q-calibrated forecasts can

be transformed into forecasts that are calibrated under some other probability measure P.

All the proofs are deferred to Appendix A.
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Proposition 5.2.1. Consider a probability measure P such that P � Q. Let dP
dQ denote

the Radon-Nikodym derivative of P with respect to Q. The forecasts under the new model

P are then given by the transformation EP(Y |Fj) = EQ

(
dP
dQY

∣∣Fj)/EQ

(
dP
dQ

∣∣Fj), where

Fj = σ(EQ(Y |X̃j)).

This shows that uncalibrated forecasts from “non-experts” can be calibrated as long as

one agrees on some joint distribution for the target outcome and its forecasts. While such

constructs certainly deserve further analysis, they are not in the scope of this paper and

hence are left for future work. Therefore, from now on, the forecasts are assumed to be

calibrated. Note, however, that in general the forecasts should satisfy some minimal per-

formance criterion; simply aggregating entirely arbitrary forecasts is hardly going to lead

to improved forecasting accuracy. To this end, Foster and Vohra (1998) analyze probability

forecasts and state that “calibration does seem to be an appealing minimal property that

any probability forecast should satisfy.” They show that one needs to know almost nothing

about the outcomes in order to be calibrated. Thus, in theory, calibration can be achieved

very easily and overall seems like an appropriate base assumption for developing a general

theory of forecast aggregation.

Given that the partial information framework generates all forecast variation from in-

formation diversity, it is important to understand the extent to which the forecasters’ partial

information sets can be measured in practice. First, note that, for the purposes of aggre-

gation, any available information discarded by a forecaster may as well not exist because

information comes to the aggregator only through the forecasts. Therefore it is not in any

way restrictive to assume that Fj = σ(Xj). Second, the following proposition describes

observable measures for the amount of information in each forecast and for the amount of

information overlap between any two forecasts.

Proposition 5.2.2. If Fj = σ(Xj) such that E(Y |Fj) = E(Y |Xj) = Xj for all j =

1, . . . , N , then the following holds.
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i) Forecasts are marginally consistent: E(Y ) = E(Xj).

ii) Variance increases in information: Var (Xi) ≤ Var (Xj) if Fi ⊆ Fj . Given that Y =

E(Y |F), the variances of the forecasts are upper bounded as Var (Xj) ≤ Var (Y ) for

all j = 1, . . . , N .

iii) Cov (Xj, Xi) = Var (Xi) if Fi ⊆ Fj . Again, expressing Y = E(Y |F) implies that

Cov (Xj, Y ) = Var (Xj) for all j = 1, . . . , N .

This proposition is important for multiple reasons. First, item i) provides guidance in

estimating the prior mean of Y from the observed forecasts. Second, item ii) shows that

Var (Xj) quantifies the amount of information used by forecaster j. In particular, Var (Xj)

increases to Var (Y ) as forecaster j learns and becomes more informed. Therefore in-

creased variance reflects more information and is deemed helpful. This is a clear contrast

to the standard statistical models that often regard higher variance as increased noise and

hence harmful. The covariance Cov (Xi, Xj), on the other hand, can be interpreted as the

amount of information overlap between forecasters i and j. Given that being non-negatively

correlated is not generally transitive (Langford et al., 2001), these covariances are not nec-

essarily non-negative even though all forecasts are non-negatively correlated with the out-

come. Such negatively correlated forecasts can arise in a real-world setting. For instance,

consider two forecasters who see voting preferences of two different sub-populations that

are politically opposed to each other. Each individually is a weak predictor of the total vote

on any given issue, but they are negatively correlated because of the likelihood that these

two blocks will largely oppose each other.

Third and finally, item iii) shows that the covariance matrix ΣX of the Xjs extends to

the unknown Y as follows:

Cov ((Y,X1, . . . , XN)′) =

 Var (Y ) diag(ΣX)′

diag(ΣX) ΣX

 , (5.1)
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where diag(ΣX) denotes the diagonal of ΣX . This is the key to regressing Y on the Xjs

without a separate training set of past forecasts of known outcomes. The resulting estima-

tor, called the revealed aggregator, is

X ′′ := E(Y |X1, . . . , XN) = E (Y | F ′′) ,

where F ′′ := σ(X1, . . . , XN) is the σ-field generated (or information revealed) by the Xjs.

The revealed aggregator uses all the information that is available in the forecasts and hence

is the optimal aggregator under the distribution of (Y,X1, . . . , XN). To make this precise,

consider a scoring rule S(x, y) that represents the loss of predicting x when the outcome

is y. A scoring rule is said to be consistent for the mean of Y if EY [S(EY (Y ), Y )] ≤

EY [S(x, Y )] for all x ∈ R. Savage (1971) showed, subject to weak regularity conditions,

that all such scoring rules can be written in the form

S(x, y) = φ(y)− φ(x)− φ′(x)(y − x), (5.2)

where φ is a convex function with subgradient φ′. An important special case is the quadratic

loss S(x, y) = (x−y)2 that arises when φ(x) = x2. Now, if an aggregator is defined as any

random variableX ∈ σ(X1, . . . , XN), thenX ′′ is an aggregator that minimizes expectation

of any scoring rule S of the form (5.2):

E[S(X, Y )] = EX1,...,XN{EY |X1,...,XN [S(X, Y )]}

≥ EX1,...,XN{EY |X1,...,XN [S(X ′′, Y )]}

= E[S(X ′′, Y )].

Ranjan and Gneiting (2010) showed a similar results for probability forecasts. For these

reasons,X ′′ is considered the relevant aggregator under each specific instance of the frame-
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work. The next section shows how this aggregator can be captured in practice.

5.2.2.2 Gaussian Partial Information Model

Even though the general framework is convenient for theoretical analysis, it is clearly too

abstract for practical applications. Fortunately, applying the framework in practice only

requires one extra assumption, namely the choice of a parametric family for the distribution

of (Y,X1, . . . , XN). One approach is to refer to Proposition 5.2.2 and choose a family that

is parametrized in terms of the first two joint moments. This points at the multivariate

Gaussian distribution that is a typical starting point in developing statistical methodology

and often provides the cleanest entry into the issues at hand.

The Gaussian distribution is also the most common choice for modeling measurement

error. This is typically motivated by assuming the terms to represent sums of a large number

of independent sources of error. The central limit theorem then gives a natural motivation

for the Gaussian distribution. A similar argument can be made under the partial information

framework. First, consider some pieces of information. Each piece either has a positive or

negative impact and hence respectively either increases or decreases Y . The total sum (in-

tegral) of these pieces determines the value of Y . Each forecaster, however, only observes

the sum of some subset of them. Based on this sum, the forecaster makes an estimate of Y .

If the pieces are independent and have small tails, then the joint distribution of the forecast-

ers’ observations will be asymptotically Gaussian. Given that the number of information

pieces in a real-world setup is likely to be large, it makes sense to model the forecasters’

observations as jointly Gaussian. Of course, other distributions, such as the multivariate

t-distribution, are possible. At this point, however, such alternative specifications are best

left for future work.

The model variables (Y,X1, . . . , XN) can be modeled directly with a Gaussian distri-

bution as long as they are all real-valued. In many applications, however, Y and Xj may
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not be supported on the whole real line. For instance, the aforementioned Good Judg-

ment Project collected probability forecasts of binary events. In this case, Xj ∈ [0, 1] and

Y ∈ {0, 1}. Fortunately, different types of outcome-forecast pairs can be easily addressed

by borrowing from the theory of generalized linear models (McCullagh et al., 1989) and

utilizing a link function. The result is a close yet widely applicable specification called the

Gaussian partial information model. This model begins by introducing N + 1 information

variables that follow a multivariate Gaussian distribution with the covariance pattern (5.1):



Z0

Z1

...

ZN


∼ NN+1


0,

 1 diag(Σ)′

diag(Σ) Σ

 :=



1 δ1 δ2 . . . δN

δ1 δ1 ρ1,2 . . . ρ1,N

δ2 ρ2,1 δ2 . . . ρ2,N

...
...

...
. . .

...

δN ρN,1 ρN,2 . . . δN




.

(5.3)

This distribution supports the Gaussian model similarly to the way the ordinary linear re-

gression supports the class of generalized linear models. In particular, the information

variables transform into the outcome and forecasts via an application-specific link function

g(·); that is, Y = g(Z0) and Xj = E(Y |Zj) = E(g(Z0)|Zj). Given that Z0 fully de-

termines Y , it is sufficient for all information that can be known about Y . The remaining

variables Z1, . . . , ZN , on the other hand, summarize the forecasters’ partial information. To

make this more concrete, consider our two real-world applications. For probability fore-

casts of a binary event a reasonable link function g(·) is the indicator function 1A, where

A = {Z0 > t} for some threshold value t ∈ R. For real-valued Xj and Y , on the other

hand, a reasonable choice is a linear function g(Z0) = σ0Z0 + µ0, where µ0 and σ0 are the

prior mean and standard deviation of Y , respectively. In general, it makes sense to have

g(·) map from the real-numbers to the support of Y such that Y has the correct prior P(Y ).
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Overall, this model can be considered as a close yet practical specification of the

general framework. After all, it only adds on the assumption of Gaussianity. This ex-

tra assumption, however, is enough to allow the construction of the revealed aggregator

X ′′ = E(Y |Z1, . . . , ZN). For X ′′ and also Xj the conditional expectations can be often

computed via the following conditional distributions:

Z0|Zj ∼ N (Zj, 1− δj) and

Z0|Z ∼ N
(
diag(Σ)′Σ−1Z, 1− diag(Σ)′Σ−1diag(Σ)

)
,

where Z = (Z1, . . . , ZN)′. For instance, if both Xj and Y are real-valued, then Xj =

σ0Zj + µ0 and X ′′ = diag(Σ)′Σ−1(X − µ01N) + µ0, where X = (X1, . . . , XN)′. These

conditional distributions arise directly from the well-known conditional distributions of the

multivariate Gaussian distribution (see, e.g., Ravishanker and Dey 2001).

5.2.3 Previous Work on Model-Based Aggregation

5.2.3.1 Interpreted Signal Framework

The interpreted signal framework is a behavioral model that assumes different predictions

to arise from differing interpretation procedures (Hong and Page, 2009). For example, con-

sider two forecasters who visit a company and predict its future revenue. One forecaster

may carefully examine the company’s technological status while the other pays closer at-

tention to what the managers say. Even though the forecasters receive and possibly even

use the exact same information, they may interpret it differently and hence end up reporting

different forecasts. Therefore forecast heterogeneity is assumed to stem from “cognitive di-

versity”.

This is a very reasonable model and hence has been used in various forms to simulate

and illustrate theory about expert behavior (see, e.g., Broomell and Budescu 2009; Parunak
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et al. 2013). Consequently, previous authors have constructed many highly specialized toy

models of interpreted forecasts. For instance, Dawid et al. (1995) construct simple models

of two forecasts to support their discussion on coherent forecast aggregation; Ranjan and

Gneiting (2010) use one of these models to simulate calibrated forecasts; and Di Bacco

et al. (2003) introduce a model for two forecasters whose (interpreted) log-odds predic-

tions follow a joint Gaussian distribution. Unfortunately, their model is very narrow due to

its detailed assumptions and extensive computations. Furthermore, it is not clear how the

model can be used in practice or extended to N forecasters. All in all, it seems that suc-

cessful previous applications of the interpreted signal framework have used it as a basis for

illustrating theory instead of actually aiming to model real-world forecasts. In this respect,

the framework has remained relatively abstract.

Our partial information framework, however, formalizes the intuition behind it, allows

quantitative predictions, and provides a flexible construction for modeling many different

forecasting setups. Overall, the framework is very general and, in fact, encompasses all the

other authors’ models mentioned above as different sub-cases. Unlike the Gaussian model,

however, these models make many restrictive assumptions in addition to just choosing a

parametric family. Even though the general partial information framework, as described in

Section 5.2.2, does not allow the forecasters to interpret information differently and hence

does not capture all aspects of the interpreted signal framework, personal interpretations

can be easily introduced by associating forecaster j with a probability measure Pj that

describes that forecaster’s interpretation of information. If Ej denotes the expectation under

Pj , then it is possible that Xi = Ei(Y |Fi) 6= Xj = Ej(Y |Fj) even if Fi = Fj . In practice,

however, eliciting the details of each Pj is hardly possible. Therefore, to keep the model

tractable, it is convenient to assume a common interpretation Pj = P for all j = 1, . . . , N .
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5.2.3.2 Measurement Error Framework

In the absence of a quantitative interpreted signal model, prior applications have typically

explained forecast heterogeneity with standard statistical models. These models are dif-

ferent formalizations of the measurement error framework that generates forecast hetero-

geneity purely from a probability distribution. More specifically, this framework assumes a

“true” (possibly transformed) forecast θ, which can be interpreted as the prediction made by

an ideal forecaster. The forecasters then somehow measure θ with mean-zero idiosyncratic

error. For instance, in our probability forecasting application one possible measurement

error model is

Y ∼ Bernoulli(θ),

logit(Xj) = logit(θ) + ej, and (5.4)

ej
i.i.d.∼ N (0, σ2) for all j = 1, . . . , N,

where logit(x) = log(x/(1 − x)) is the log-odds operator. Given that the errors are gen-

erally assumed to have mean zero, measurement error forecasts are unbiased estimates

of θ, that is, E(Xj|θ) = θ. Observe that this is not the same as assuming calibration

E(Y |Xj) = Xj . Therefore an unbiased estimation model is very different from a cali-

brated model. This distinction is further emphasized by the fact that X ′′ never reduces to a

(non-trivial) weighted average of the forecasts (Satopää and Ungar, 2015). Given that the

measurement-error aggregators are often different types of weighted averages, measure-

ment error and information diversity are not only philosophically different but they also

require very different aggregators.

Example (5.4) illustrates the main advantages of the measurement error framework:

simplicity and familiarity. Unfortunately, there are a number of disadvantages. First,

measurement-error aggregators estimate θ instead of the realized value of the random vari-
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able Y . For this reason, these aggregators often do not satisfy even the minimal perfor-

mance requirements. For instance, a non-trivial weighted average of calibrated forecasts is

necessarily both uncalibrated and under-confident (Ranjan and Gneiting, 2010; Satopää and

Ungar, 2015). Second, the standard assumption of conditional independence of the obser-

vations forces a specific and highly unrealistic structure on interpreted forecasts (Hong and

Page, 2009). Measurement-error aggregators also cannot leave the convex hull of the indi-

vidual forecasts, which further contradicts the interpreted signal framework (Parunak et al.,

2013) and can be easily seen to result in poor empirical performance on many datasets.

Third, the underlying model is rather implausible. Relying on a true forecast θ invites

philosophical debate, and even if one assumes the existence of such a value, it is difficult

to believe that the forecasters are actually seeing it with independent noise. Therefore,

whereas the interpreted signal framework proposes a plausible micro-level explanation, the

measurement error model does not; at best, it forces us to imagine a group of forecasters

who apply the same procedures to the same data but with numerous small mistakes.

5.3 Model Estimation

This section describes methodology for estimating the information structure Σ. Even

though Σ is mostly used for aggregation, it also describes the information among the fore-

casters (see end of Section 5.2.2.1) and hence should be of interest to decision analysts,

psychologists, and the broader community studying collective problem solving. Unfortu-

nately, estimating Σ in full generality based on a single prediction per forecaster is difficult.

Therefore, to facilitate model estimation, the forecasters are assumed to predict K ≥ 2

related events. For instance, in our second application 416 undergraduates guessed the

weights of 20 people. This yielded a 20× 416 matrix that was then used to estimate Σ.
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5.3.1 General Estimation Problem

Denote the outcome of the kth event with Yk and the jth forecaster’s prediction for this

outcome with Xjk. For the sake of generality, this section does not assume any particular

link function but instead operates directly with the corresponding information variables, de-

noted with Zjk. In practice, the forecasts Xjk can be often transformed into Zjk at least ap-

proximately. This is illustrated in Section 5.4. Recall that aggregation cannot access to the

outcomes {Y1, . . . , YK} or their corresponding information variables {Z01, . . . , Z0K}. In-

stead, Σ is estimated only based on {Z1, . . . ,ZK}, where the vector Zk = (Z1k, . . . , ZNk)
′

collects the forecasters’ information about the kth event.

This estimation must respect the covariance pattern (7.3). More specifically, if SN+

denotes the set of N ×N symmetric positive semidefinite matrices and

h(M) :=

 1 diag(M)′

diag(M) M


for some symmetric matrix M, then the final estimate must satisfy the condition h(Σ) ∈

SN+1
+ . Intuitively, this is satisfied if there exists a random variable Y for which the forecasts

Xj are jointly calibrated. In terms of information, this means that it is physically possible

to allocate information about Y among the N forecasters in the manner described by Σ.

Therefore the condition is named information coherence.

Unfortunately, simply finding an accurate estimate of Σ does not guarantee precise ag-

gregation. To see this, recall from Section 5.2.2.2 that E(Z0k|Zk) = diag(Σ)′Σ−1Zk. This

term is generally found in the revealed aggregator and hence deserves careful treatment.

Re-express the term as v′Zk, where v is the solution to diag(Σ) = Σv. The rate at which

the solution changes with respect to a change in diag(Σ) depends on the condition number

cond(Σ) := λmax(Σ)/λmin(Σ), i.e., the ratio between the maximum and minimum eigen-

values of Σ. If the condition number is very large, a small error in diag(Σ) can cause a
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large error in v. If the condition number is small, Σ is called well-conditioned and error in

v will not be much larger than the error in diag(Σ). Thus, to prevent estimation error from

being amplified during aggregation, the estimation procedure should require cond(Σ) ≤ κ

for a given threshold κ ≥ 1.

This all gives the following general estimation problem:

minimize f0 (Σ, {Z1, . . . ,Zk})

subject to h(Σ) ∈ SN+1
+ , and

cond(Σ) ≤ κ,

(5.5)

where f0 is some objective function. The feasible region defined by the two constraints is

convex. Therefore, if f0 is convex in Σ, expression (5.5) is a convex optimization problem.

Typically the global optimum to such a problem can be found very efficiently. Problem

(5.5), however, involves
(
N+1

2

)
variables. Therefore it can be solved efficiently with stan-

dard optimization techniques, such as the interior point methods, as long as the number

of variables is not too large, say, not more than 1,000. Unfortunately, this means that the

procedure cannot be applied to prediction polls with more than about N = 45 forecasters.

This is very limiting as many prediction polls involve hundreds of forecasters. For instance,

our two real-world applications involve 100 and 416 forecasters. Fortunately, by choosing

the loss function carefully one can perform dimension reduction and estimate Σ under a

much larger N . This is illustrated in the following subsections.

5.3.2 Maximum Likelihood Estimator

Under the Gaussian model the information structure Σ is a parameter of an explicit like-

lihood. Therefore estimation naturally begins with the maximum likelihood approach

(MLE). Unfortunately, the Gaussian likelihood is not convex in Σ. Consequently, only

a locally optimal solution is guaranteed with standard optimization techniques. Further-
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more, it is not clear whether the dimension of this form can be reduced. Won and Kim

(2006) discuss the MLE under a condition number constraint. They are able to transform

the original problem with
(
N+1

2

)
variables to an equivalent problem with only N variables,

namely the eigenvalues of Σ. This transformation, however, requires an orthogonally in-

variant problem. Given that the constraint h(Σ) ∈ SN+1
+ is not orthogonally invariant, the

same dimension-reduction technique cannot be applied. Instead, the MLE must be com-

puted with the
(
N+1

2

)
variables, making estimation slow for small N and undoable even for

moderately large N . For these reasons the MLE is not discussed further in this paper.

5.3.3 Least Squares Estimator

Past literature has discussed many simple covariance estimators that can be applied effi-

ciently to large amounts of data. Unfortunately, these estimators are not guaranteed to

satisfy the conditions in (5.5). This section introduces a correctional procedure that inputs

any covariance estimator S and modifies it minimally such that the end result satisfies the

conditions in (5.5). More specifically, S is projected onto the feasible region. This ap-

proach, sometimes known as the least squares approach (LSE), motivates a convex loss

function that guarantees a globally optimal solution and facilitates dimension reduction.

Most importantly, however, it provides a general tool for estimating Σ, regardless whether

one is working with a Gaussian model or possibly some future non-Gaussian model.

From the computational perspective, it is more convenient to project h(S) instead of S.

Even though this could be done under many different norms, for the sake of simplicity, this

paper only considers the squared Frobenius norm ||M||2F = tr(M′M), where tr(·) is the

trace operator. The LSE is then given by h−1(Ω), i.e., Ω without the first row and column,
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where Ω is the solution to

minimize ||Ω− h(S)||2F

subject to Ω ∈ SN+1
+ ,

cond(Ω) ≤ κ, and

tr(AjΩ) = bj, (j = 1, . . . , N + 1).

(5.6)

Both Aj and bj are constants defined to maintain the covariance pattern (7.3). More specif-

ically, if ej denotes the jth standard basis vector of length N + 1, then

b1 = 1, A1 = e1e
′
1, and

bj = 0, Aj = eje
′
j − 0.5(e1e

′
j + eje

′
1) for j = 2, . . . , N + 1.

If Ω satisfies the other two conditions, namely Ω ∈ SN+1
+ and cond(Ω) ≤ κ, then

Σ = h−1(Ω) also satisfies them. This follows from the fact that Σ is a principal sub-matrix

of Ω. Therefore Ω ∈ SN+1
+ implies Σ ∈ SN+ . Furthermore, Cauchy’s interlace theorem

(see, e.g., Hwang 2004) states that λmin(Ω) ≤ λmin(Σ) and λmax(Σ) ≤ λmax(Ω) such

that cond(Σ) ≤ cond(Ω) ≤ κ. Of course, requiring cond(Ω) ≤ κ instead of cond(Σ) ≤ κ

shrinks the region of feasible Σs. At this point, however, the exact value of κ is arbitrary

and merely serves to control cond(Σ). Section 5.3.4 introduces a procedure for choos-

ing κ from the data. Under such an adaptive procedure, problem (5.6) can be considered

equivalent to directly projecting S onto the feasible region.

The first step towards solving (5.6) is to express the feasible region as an intersection

of the following two sets:

Csd =
{
Ω : Ω ∈ SN+1

+ , cond(Ω) ≤ κ
}
, and

Clin = {Ω : tr(AjΩ) = bj, j = 1, . . . , N + 1} .
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Given that both of these sets are convex, projecting onto their intersection can be computed

with the Directional Alternating Projection Algorithm (Gubin et al., 1967). This method

makes progress by repeatedly projecting onto the sets Csd and Clin. Consequently, it is

efficient only if projecting onto each of the individual sets is fast. Fortunately, as will be

shown next, this turns out to be the case.

First, projecting an (N + 1) × (N + 1) symmetric matrix M = {mij} onto Clin is a

linear map. To make this more specific, let m = vec(M) be a column-wise vectorization

of M. If A is a matrix with the jth row equal to vec(Aj), the linear constraints in (5.6)

can be expressed as Am = e1. Then, the projection of M onto Clin is given by vec−1(m +

A′(AA′)−1(e1 − Am)). This expression simplifies significantly by close inspection. In

fact, it is equivalent to setting m11 = 1 and for j ≥ 2 replacing mj1, m1j , and mjj by their

average (mjj +mj1 +m1j)/3. Denote this projection with the operator Plin(·).

Second, Tanaka and Nakata (2014) describe a univariate optimization problem that is

almost equivalent to projecting M onto Csd. The only difference is that their solution

set also includes the zero-matrix 0. Assuming that such a limiting case can be safely

handled in the implementation, their approach offers a fast projection onto Csd even for

a moderately large N . To describe this approach, consider the spectral decomposition

M = QDiag(l1, . . . , lN+1)Q′ and the univariate function

π(µ) =
N+1∑
i=1

[
(µ− li)2

+ + (li − κµ)2
+

]
,

where Diag(x) is a diagonal matrix with diagonal x and (·)+ is the positive part operator.

The function π(µ) can be minimized very efficiently by solving a series of smaller convex

problems, each with a closed form solution. The result is a binary-search-like procedure
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described by Algorithm 3 in Appendix A. If µ∗ = arg minµ≥0 π(µ) and

λ∗j :=


µ∗ if lj ≤ µ∗

κµ∗ if κµ∗ ≤ lj

lj otherwise

for j = 1, . . . , N + 1, then QDiag(λ∗1, . . . , λ
∗
N+1)Q is the projection of M onto Csd. Call

this projection Psd(· : κ).

Algorithm 1 uses these projections to solve (5.6). Each iteration projects twice on one

set and once on the other set. The general form of the algorithm does not specify which

projection should be called twice. Therefore, given that Psd(· : κ) takes longer to run than

Plin(·), it is beneficial to choose to call Plin(·) twice. The complexity of each iteration is

determined largely by the spectral decomposition which is fairly fast for moderately large

N . Overall time to convergence, of course, depends on the choice of the stopping criterion.

Many intuitive criteria are possible. Given that ΩD ∈ Clin and ΩC ∈ Csd, the stopping

criterion max{(ΩD −ΩC)2
ij} < ε suggests that the return value is in Csd and close to Clin

in every direction. Based on our experience, the algorithm converges quite quickly. For

instance, our implementation in C++ generally solves (5.6) for ε = 10−5 and N = 100 in

less than a second on a 1.7 GHz Intel Core i5 computer. This code will be made available

online upon publication. For the remainder of the paper, projecting S onto the feasible

region is denoted with the operator PLSE(S : κ).

5.3.4 Selecting κ

The estimation procedure described in the previous section has one tuning parameter,

namely the condition number threshold κ. This subsection discusses an in-sample ap-

proach, called conditional validation, that can be used for choosing any tuning parameter,
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Algorithm 1 This procedure projects h(S) onto the intersection Csd ∩ Clin. Denote the
projection with PLSE(S : κ). Throughout the paper, the stopping criterion is fixed at
ε = 10−5.
Require: Unconstrained covariance matrix estimator S, stopping criterion ε > 0, and an

upper bound on the condition number κ ≥ 1.
1: procedure DIRECTIONAL ALTERNATING PROJECTION ALGORITHM

2: ΩA ← h(S)
3: repeat
4: ΩB ← Plin(ΩA)
5: ΩC ← Psd(ΩB : κ)
6: ΩD ← Plin(ΩC)
7: ∆ ← ||ΩB −ΩC ||2F/tr [(ΩB −ΩD)′(ΩB −ΩC)]
8: ΩA ← ΩB + ∆(ΩD −ΩB)

9: until max
{

(ΩD −ΩC)2
ij

}
< ε

10: return h−1(ΩC)
11: end procedure

such as κ, under the partial information framework. To motivate, recall that the revealed

aggregator X ′′ uses Σ to regress Z0 on the rest of the Zjs. Of course, the accuracy of this

prediction cannot be known until the actual outcome is observed. However, apart from be-

ing unobserved, the variable Z0 is theoretically no different to the other Zjs. This suggests

the following algorithm: for some value ν compute PLSE(S : ν), let each of the Zjs in turn

play the role of Z0, predict its value based on Zi for i 6= j, and choose the value of ν that

yields the best overall accuracy. Even though many accuracy measures could be chosen,

this paper uses the conditional log-likelihood. Therefore, if Z∗j = (Zj1, . . . , ZjK)′ collects

the jth forecaster’s information about the K events, the chosen value of κ is

κcov = arg max
ν≥1

N∑
j=1

`
(
Z∗j ,PLSE(S : ν)

∣∣Z∗i for i 6= j
)
, (5.7)

where the log-likelihood is now conditional on Z∗i s for i 6= j and S is computed based

on all the forecasts Z∗1, . . . ,Z
∗
N . Plugging this into the projection algorithm gives the final

estimate Σcov := PLSE(S : κcov).

Unfortunately, the optimization problem (5.7) is non-convex in ν. However, as was
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mentioned before, Algorithm 1 is fast for moderately sized N . Therefore κ can be cho-

sen efficiently (possibly in parallel on multicore machines) over a grid of candidate values.

Overall, the idea in conditional validation is similar to cross-validation but, instead of pre-

dicting across rows (observations), the prediction is performed across columns (variables).

This not only mimics the actual process of revealed aggregation but is also likely to be

more appropriate for prediction polling that typically involves a large number of forecast-

ers (large N ) predicting relatively few events (small K). Furthermore, it has no tuning

parameters and remains more stable when K is small; see Appendix B for an illustration

of this result under synthetic data.

5.4 Applications

This section applies the partial information framework to different types of real world fore-

casts. For each type there may be different ways to adopt the Gaussian model. The main

point, however, is not to find the optimal way to do this but rather to give illustrative ex-

amples on using the framework and also to show how the resulting partial information

aggregators outperform the commonly used measurement error aggregators.

5.4.1 Probability Forecasts of Binary Outcomes

5.4.1.1 Dataset

During the second year of the Good Judgment Project (GJP) the forecasters made proba-

bility estimates for 78 events, each with two possible outcomes. One of these events was

illustrated in Figure 5.1. Each prediction problem had a timeframe, defined as the number

of days between the first day of forecasting and the anticipated resolution day. These time-

frames varied largely among problems, ranging from 12 days to 519 days with a mean of

185.4 days. During each timeframe the forecasters were allowed to update their predictions
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as frequently as they liked. The forecasters knew that their estimates would be assessed for

accuracy using the quadratic loss (often known as the Brier score; see Brier 1950 for more

details). This is a proper loss function that incentivized the forecasters to report their true

beliefs instead of attempting to game the system. In addition to receiving $150 for meet-

ing minimum participation requirements that did not depend on prediction accuracy, the

forecasters received status rewards for their performance via leader-boards displaying the

losses for the best 20 forecasters. Depending on the details of the reward structure, such

a competition for rank may eliminate the truth-revelation property of proper loss functions

(see, e.g., Lichtendahl Jr and Winkler 2007).

This data collection raises several issues. First, given that the current paper does not

focus on modeling dynamic data, only forecasts made within some common time inter-

val should be considered. Second, not all forecasters made predictions for all the events.

Furthermore, the forecasters generally updated their forecasts infrequently, resulting into a

very sparse dataset. Such high sparsity can cause problems in computing the initial uncon-

strained estimator S. Evaluating different techniques to handle missing values, however, is

well outside the scope of this paper. Therefore, to somewhat alleviate the effect of miss-

ing values, only the hundred most active forecasters are considered. This makes sufficient

overlap highly likely but, unfortunately, still not guaranteed.

All these considerations lead to a parallel analysis of three scenarios: High Uncertainty

(HU), Medium Uncertainty (MU), and Low Uncertainty (LU). Important differences are

summarized in Table 5.1. Each scenario considers the forecasters’ most recent prediction

within a different time interval. For instance, LU only includes each forecaster’s most

recent forecast during 30 − 60 days before the anticipated resolution day. The resulting

dataset has 60 events of which 13 occurred. In the corresponding 60×100 table of forecasts,

around 42 % of the values are missing. The other two scenarios are defined similarly.
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Table 5.1: Summary of the three time intervals analyzed. Each scenario considers the fore-

casters’ most recent forecasts within the given time interval. The value in the parentheses

represent the number of events occurred. The final column shows the percent of missing

forecasts.

Scenario Time Interval # of Events Missing (%)
High Uncertainty (HU) 90− 120 49 (10) 51
Medium Uncertainty (MU) 60− 90 56 (14) 46
Low Uncertainty (LU) 30− 60 60 (13) 42

5.4.1.2 Model Specification and Aggregation

The first step is to pick a link function and derive a Gaussian model for probability forecasts

of binary events. Overall, this construction resembles in many ways the latent variable

version of a standard probit model.

Model Instance. Identify the kth event with Yk ∈ {0, 1}. These outcomes link

to the information variables via the following function:

Yk = g(Z0k) =


1 if Z0k > tk

0 otherwise,

where tk ∈ R is some threshold value. Therefore the link function g(·) is sim-

ply the indicator function 1Ak of the event Ak = {Z0k > tk}. This threshold is

defined by the prior probability of the kth event P(Yk = 1) = Φ(−tk), where

Φ(·) is the CDF of a standard Gaussian distribution. Given that the thresh-

olds are allowed to vary among the events, each event has its own prior. The

corresponding probability forecasts Xjk ∈ [0, 1] are

Xjk = E(Yk|Zjk) = Φ

(
Zjk − tk√

1− δj

)
.

126



In a similar manner, the revealed aggregator X ′′k ∈ [0, 1] for event k is

X ′′k = E(Yk|Zk) = Φ

(
diag(Σ)′Σ−1Zk − tk√

1− diag(Σ)′Σ−1diag(Σ)

)
. (5.8)

All the parameters of this model can be estimated from the data. The first step is to

specify a version of the unconstrained estimate S. If the tk’s do not change much, a reason-

able and simple estimate is obtained by transforming the sample covariance matrix SP of

the probit scores Pjk := Φ−1(Xjk). More specifically, if D := Diag(d)Diag(1 + d)−1,

where d = diag(SP ), then an unconstrained estimator of Σ is given by S = (IN −

D)1/2SP (IN − D)1/2. Recall that the GJP data holds many missing values. This is han-

dled by estimating each pairwise covariance in SP based on all the events for which both

forecasters made predictions. Next, compute Σcov, where κcov is chosen over a grid of

100 candidate values between 10 and 1, 000. Finally, the threshold tk can be estimated by

letting Pk = (P1k, . . . , PNk)
′, observing that −Diag(1− diag(Σ))1/2Pk ∼ NN(tk1N ,Σ),

and computing the precision-weighted average:

t̂k = −P′kDiag(1− diag(Σcov))
1/2Σ−1

cov1

1′Σ−1
cov1

.

If Pk has missing values, the corresponding rows and columns of Σcov are dropped. In-

tuitively, this estimator gives more weight to the forecasters with very little information.

These estimates are then plugged in to (5.8) to get the revealed aggregator X ′′cov.

This aggregator is benchmarked against the state-of-the-art measurement-error aggre-

gators, namely the average probability, median probability, average probit-score, and av-

erage log-odds. Unequally weighted averages were not considered because it is unclear

how the weights would be determined based on forecasts alone, and even if this could be

done somehow (perhaps based on self-assessment or organizational status), using unequal

weights often leads to no or very small performance gains (Rowse et al., 1974; Ashton

127



Average Median Log−odds Probit Xcov
''

10 20 30 40 50 60

0.
27

0.
28

0.
29

0.
30

0.
31

0.
32

R
M

S
E

Number of Forecasters, N

(a) High Uncertainty (HU)

10 20 30 40 50 60

0.
20

0.
22

0.
24

0.
26

0.
28

R
M

S
E

Number of Forecasters, N

(b) Medium Uncertainty (MU)

10 20 30 40 50 60

0.
16

0.
18

0.
20

0.
22

0.
24

R
M

S
E

Number of Forecasters, N

(c) Low Uncertainty (LU)

Figure 5.3: Average prediction accuracy over the 1,000 sub-samplings of the forecasters.

See Table 5.1 for descriptions of the different scenarios.

and Ashton, 1985; Flores and White, 1989). To avoid infinite log-odds and probit scores,

extreme forecasts Xjk = 0 and 1 were censored to Xjk = 0.001 and 0.999, respectively.

The results remain insensitive to the exact choice of censoring as long as this is done in a

reasonable manner to keep the extreme probabilities from becoming highly influential in

the logit- or probit-space. The accuracy of the aggregates is measured with the average

root-mean-squared-error (RMSE). Note that this is nothing but the square root of the com-

monly used Brier score. Instead of considering all the forecasts at once, the aggregators are

evaluated under different N via repeated subsampling of the 100 most active forecasters;

that is, choose N forecasters uniformly at random, aggregate their forecasts, and compute

the RMSE. This is repeated 1,000 times with N = 5, 10, . . . , 65 forecasters. Due to high

computational cost, the simulation was stopped after N = 65. In the rare occasion where

no pairwise overlap is available between one or more pairs of the selected forecasters, the

subsampling is repeated until all pairs have at least one problem in common.

Figure 5.3 shows the average RMSEs under the three scenarios described in Table 5.1.

Here a reasonable upper bound is given by 0.5 as this is the RMSE one would receive by

128



constantly predicting 0.5. All presented scores, however, are well below it and improve

uniformly from left to right, that is, from HU to LU. This reflects the decreasing level of

uncertainty. In all the figures the measurement-error aggregators rank in the typical order

(from worst to best): average probability, median probability, average probit, and average

log-odds. Regardless of the level of uncertainty, the revealed aggregator X ′′cov outperforms

the averaging aggregators as long as K ≥ 10. The relative advantage, however, increases

from HU to LU. More specifically, the improvement from Log-odds to X ′′cov is about 2%,

17%, and 21% in HU, MU, and LU, respectively. This trend can be explained by several

reasons. First, as can be seen in Table 5.1, the amount of data increases from HU to LU.

This yields a better estimate of Σ and hence more accurate revealed aggregation. Second,

the forecasters are more likely to be well-calibrated under MU and LU than under HU (see,

e.g., Braun and Yaniv 1992). Third, under HU the events are still inherently very uncertain.

Consequently, the forecasters are unlikely to hold much useful information as a group.

Under such low information diversity, measurement-error aggregators generally perform

relatively well (Satopää et al. 2015). In the contrary, under MU the events have lost a part of

their inherent uncertainty, allowing some forecasters to possess useful private information.

These individuals are then prioritized by X ′′cov while the averaging-aggregators continue

treating all forecasts equally. Consequently, the performance of the measurement error

aggregators plateaus after N = 30 or so. Therefore having more than about 30 forecasters

does not make a difference if one is determined to aggregate their predictions using the

measurement error techniques; a similar results was reported by Satopää et al. 2014. In

contrast, however, the RMSE of X ′′cov continues to improve linearly in N , suggesting that

X ′′cov is able to find some residual information in each additional forecaster and use this to

increase its performance advantage.
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5.4.1.3 Information Diversity

The GJP assigned the forecasters to make predictions either in isolation or in teams. Fur-

thermore, after the first year of the tournament, the top 2% forecasters were elected to

the elite group of “super-forecasters.” These super-forecasters then worked in exclusive

teams to make highly accurate predictions on the same events as the rest of the forecasters.

Overall, these assignments directly suggest a level of information overlap. In particular,

recalling the interpretation of Σ from Section 5.2.2.1, super-forecasters can be expected to

have the highest δjs and forecasters in the same team should have a relatively high ρij . This

subsection examines how well Σcov aligns with this prior knowledge about the forecasters’

information structure.

For the sake of brevity, only the LU scenario is analyzed as this is where X ′′cov pre-

sented the highest relative improvement. The associated 100 forecasters involve 36 indi-

viduals predicting in isolation, 33 forecasting team-members (across 24 teams), and 31

super-forecasters (across 5 teams). Figure 5.4a displays Σcov for the five most active fore-

casters. This group involves two forecasters working in isolation (Iso. A and B) and three

super-forecasters (Sup. A, B, and C), of whom the super-forecasters A and B are in the

same team. Overall, Σcov agrees with this classification: the only two team members,

namely Sup. A and B have a relatively high information overlap. In addition, the three

super-forecasters are more informed than the non-super-forecasters. Such a high level of

information unavoidably leads to higher information overlap with the rest of the forecasters.

By and large, this agreement generalizes to the entire group of forecasters. To illustrate,

Figure 5.4b displays Σcov for all the 100 forecasters. The information structure has been

ordered with respect to the diagonal such that the more informed forecasters appear on the

right. Furthermore, a colored rug has been appended on the top. This rug shows whether

each forecaster worked in isolation, in a non-super-forecaster team, or in a super-forecaster

team. Observe that the super-forecasters are mostly situated on the right among the most
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Figure 5.4: The estimated information structure Σ under the LU scenario. Each forecaster

worked either in isolation, in a non-super-forecaster team, or in a super-forecaster team.

The super-forecasters generally have more information than the forecasters working in iso-

lation.

informed forecasters. The average estimated δj among the super-forecaster is 0.80. On

the other hand, the average estimated δj among the individuals working in isolation or in

non-super-forecaster teams are 0.47 and 0.50, respectively. Therefore working in a team

makes the forecasters’ predictions, on average, slightly more informed.

In general, a plot such as Figure 5.4b is useful for assessing the level of information

diversity among the forecasters: the further away it is from a monochromatic plot, the

higher the information diversity. That being said, the colorful Figure 5.4b suggests that the

GJP forecasters have high information diversity. This makes sense as these forecasters were

asked to make predictions about international political events. Given that on such events the
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forecasters’ background knowledge, education, how closely they follow the news, and so

on matter, one should expect a high level of information diversity. Therefore not only does

X ′′cov clearly outperform the common measurement error aggregators in terms of prediction

accuracy but the Gaussian model also captures true structure in the data.

5.4.2 Point Forecasts of Continuous Outcomes

5.4.2.1 Dataset

Moore and Klein (2008) hired 415 undergraduates from Carnegie Mellon University to

guess the weights of 20 people based on a series of pictures. These forecasts were illustrated

in Figure 5.2. The target people were between 7 and 62 years old and had weights ranging

from 61 to 230 pounds, with a mean of 157.6 pounds. All the students were shown the

same pictures and hence given the exact same information. Therefore any information

diversity arises purely from the participants’ decisions to use different subsets of the same

information. Consequently, information diversity is likely to be low compared to Section

5.4.1 where diversity also stemmed from differences in the information available to the

forecasters.

Unlike in Section 5.4.1, the Gaussian model can be applied almost directly to the data.

Only the effect of extreme values was reduced via a 90% Winsorization (Hastings et al.,

1947). This handled some obvious outliers. For instance, the original dataset contained

a few estimates above 1000 pounds and as low as 10 pounds. Winsorization generally

improved the performance of all the competing aggregators.
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5.4.2.2 Model Specification and Aggregation

Model Instance. Suppose Yk and Xjk are real-valued. If the proper non-

informative prior distribution of Yk isN (µ0k, σ
2
0), then Yk = g(Z0k) = Z0kσ0+

µ0k. Consequently, Xjk = E(Y |Zjk) = Zjkσ0 + µ0k for all j = 1, . . . , N .

Therefore Xj ∼ N (µ0k, σ
2
j ) for some σ2

j ≤ σ2
0 . If Zk = (Z1k, . . . , ZNk)

′, then

the revealed aggregator for the kth event is

X ′′k = E (Yk|Zk) = diag(Σ)′Σ−1Zkσ0 + µ0k. (5.9)

Under this model the prior distribution of Yk is specified by µ0k and σ2
0 . Given that

E(Xjk) = µ0k for all j = 1, . . . , N , the sample average µ̂0k =
∑N

j=1 Xjk/N provides an

initial estimate of µ0k. The value of σ2
0 can be estimated by assuming a distribution for the

σ2
j s. More specifically, let σ2

j be i.i.d. on the interval [0, σ2
0] and use the resulting likelihood

to estimate σ2
0 . For instance, a non-informative choice is to assume σ2

j
i.i.d.∼ U(0, σ2

0),

which leads to the maximum likelihood estimator max{σ2
j}. This has a downward bias

that can be corrected by a multiplicative factor of (N + 1)/N . Therefore, replacing σ2
j

with the sample variance sj =
∑K

k=1(Xjk − µ̂0k)
2/(K − 1) gives the final estimate σ̂2

0 =

(N + 1)/N max{sj}. Using these estimates, the Xjks can be transformed into the Zjks

whose sample covariance matrix SZ provides the unconstrained estimator for the projection

algorithm. The value of κcov is chosen over a grid of 10 values between 10 and 10, 000.

Once Σcov has been computed, the prior means are updated with the precision-weighted

averages µ̂0k = (X′kΣ
−1
cov1N)/(1′NΣ−1

cov1N). In the end, all these estimates are plugged in

(5.9) to get the revealed aggregator X ′′cov.

This aggregator is compared against the average, median, and average of the median

and average (AMA). The last competitor, namely AMA is a heuristic aggregator that Lobo

and Yao (2010) showed to work particularly well on many different real-world forecast-
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Figure 5.5: Average prediction accuracy Figure 5.6: Σcov for all 416 forecasters

shows low information diversity.

ing datasets. In this section the overall accuracy is measured with the RMSE averaged over

10, 000 sub-samplings of the 416 participants. That is, each iteration choosesN participants

uniformly at random, aggregates their forecasts, and computes the RMSE. The size of the

sub-samples is varied between 10 and 100 with increments of 10. These scores are pre-

sented in Figure 5.5. The average outperforms the median across all N . The performance

of AMA falls between that of average and median, reflecting its nature as a compromise of

the two. The revealed aggregator X ′′cov is the most accurate once N > 10. The relatively

worse performance at N = 10 suggests that 10 observations is not enough to estimate

µ̂0k accurately. As N approaches 100, however, X ′′cov collects information efficiently and

increases the performance advantage against the other aggregators.

Figure 5.6 shows Σcov for all the 416 forecasters. Similarly to before, the matrix has

been ordered such that the most knowledgeable forecasters are on the right. Overall, this

plot is much more monochromatic than the one presented earlier in Figure 5.4b, suggesting

that information diversity among the 416 students is rather lower. This aligns with the ex-

134



pectations laid out earlier in Section 5.4.2.1. If there were no information diversity, i.e., all

the forecasters used the same information, then averaging aggregators, such as the simple

average, would perform very well (Satopää et al., 2015). Such a limiting case, however, is

rarely encountered in practice. Often at least some information diversity is present. The

results in the current section show that the revealed aggregator does not require extremely

high information diversity in order to outperform the measurement-error aggregators.

5.5 Discussion

This paper introduced the partial information framework for modeling forecasts from dif-

ferent types of prediction polls. Even though the framework can be used for theoretical

analysis and studying information among groups of experts, the main focus was on model-

based aggregation of forecasts. Such aggregators do not require a training set. Instead,

they operate under a model of forecast heterogeneity and hence can be applied to forecasts

alone. Under the partial information framework, all forecast heterogeneity stems from dif-

ferences in the way the forecasters use information. Intuitively, this is more plausible at the

micro-level than the historical measurement error. To facilitate practical applications, the

partial information framework motivates and describes the forecasters’ information with a

patterned covariance matrix (Equation 5.1). A correctional procedure was proposed (Al-

gorithm 1) as a general tool for estimating these information structures. This procedure

inputs any covariance estimator and modifies it minimally such that the final output rep-

resents a physically feasible allocation of information. Even though the general partial

information framework describes an optimal aggregator, it is generally too abstract to be

directly applied in practice. As a solution, this paper discusses a close yet practical specifi-

cation within the framework, known as the Gaussian model (Section 5.2.2.2). The Gaussian

model permits a closed-form solution for the optimal aggregator and extends to different

types of forecast-outcome pairs via a link function. These partial information aggrega-
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tors were evaluated against the common measurement error aggregators on two different

real-world (Section 5.4) prediction polls. In each case the Gaussian model outperformed

the typical measurement-error-based aggregators, suggesting that information diversity is

more important for modeling forecast heterogeneity.

Generally speaking, partial information aggregation works well because it downweights

pairs or sets of forecasters that share more information and upweights ones that have unique

information (or choose to attend to unique information as is the case, e.g., in Section 5.4.2,

where forecasters made judgments based on the same pictures). This is very different from

measurement-error aggregators that assume all forecasters to have the same information

and hence consider them equally important. While simple measurement-error techniques,

such as the average or median, can work well when the forecasters truly operate on the

same information set, in real-world prediction polls participants are more likely to have

unequal skill and information sets. Therefore prioritizing is almost certainly called for.

Of course, the more diverse these sets are, the better the partial information aggregators

can be expected to perform relative to the measurement error aggregators. To illustrate

this result, compare the relative performances in Section 5.4.1 (high information diversity)

against those in Section 5.4.2 (low information diversity).

Overall, the partial information framework can be applied and extended in many dif-

ferent ways. For instance, in this paper the jth forecaster’s prediction was assumed to be

the expectation of Y after observing some partial information Fj . In some applications,

however, other constructs, such as the conditional median or other quantiles, may be more

appropriate. Such extensions can be handled by considering the distribution of Y |Fj and

then equating the jth forecaster’s prediction to any desired functional of this distribution.

This is particularly easy under the Gaussian model, where Y |Fj conveniently follows a

Gaussian distribution.

In terms of future research, the partial information framework offers both theoretical
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and empirical directions. One theoretical avenue involves estimation of information over-

lap. In some cases the higher order overlaps have been found to be irrelevant to aggregation.

For instance, DeGroot and Mortera (1991) show that the pairwise conditional (on the truth)

distributions of the forecasts are sufficient for computing the optimal weights of a weighted

average. Theoretical results on the significance or insignificance of higher order overlaps

under the partial information framework would be desirable. Given that the Gaussian model

can only accommodate pairwise information overlap, such a result would reveal the need

of a specification that is more complex than the Gaussian model.

A promising empirical direction is the Bayesian approach. These techniques are very

natural for fitting hierarchical models such as the ones discussed in this paper. Further-

more, in many applications with small or moderately sized datasets, Bayesian methods have

been found to be more stable than the likelihood-based alternatives. Therefore, given that

the number of forecasts in a prediction poll is typically quite small, a Bayesian approach

is likely to improve the quality of the final aggregate. This would involve developing a

prior distribution for the information structure – a problem that seems interesting in itself.

Overall, this avenue should certainly be pursued, and the results tested against other high

performing aggregators.
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6
Bayesian Aggregation of Two Forecasts in the

Partial Information Framework∗

Abstract

The partial information framework was introduced in Satopää et al. (2015, 2016) as a the-

ory for aggregating probability and point forecasts from a pool of expert forecasters. The

examples there assume a fixed information overlap model with unknown parameters which

are estimated from data. In the present paper, we examine how the framework can be used

in a one-shot aggregation problem in which parameters cannot be estimated. Our approach

is Bayesian; the proposed estimator is a mixture of the fixed parameter estimators over the

posterior distribution of the parameters. We compare this to the aggregator arising from

fixed overlap Gaussian models from the partial information framework, as well as to clas-

sical aggregators based on other aggregation paradigms.

∗Joint work with Philip Ernst, Robin Pemantle, and Lyle H. Ungar
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6.1 Introduction

The partial information framework for forecast aggregation was introduced by Satopää

et al. (2015). This framework in its most general form is a probability model for forecast

aggregation, allowing for many possible information structures. A Gaussian model was

proposed within this framework. The resulting aggregate forecast depends on parameters

which must be estimated. Apparatus to estimate parameters in the Gaussian partial infor-

mation model was further developed in Satopää et al. (2016).

The purpose of the present note is to show how, in theory, the Gaussian aggregator may

be computed via a Bayesian approach that does not require parameter estimation. Our main

result is Theorem 6.3.1 below, which gives an explicit formula for the Gaussian aggregator

in a one-shot aggregation problem with two forecasters.

In the remainder of the introduction we give a brief description of the problems of event

forecasting and forecast aggregation, then summarize the partial information framework,

the Gaussian partial information model and our Bayesian approach. Section 6.2 recalls the

relevant computations for the Gaussian model with fixed parameters. Section 6.3 computes

the Bayesian aggregator. Section 6.5 contains our proposed methodology applied to a real

data set on election forecasting for the 2012 presidential election.

6.1.1 Event forecasting, loss functions, and calibration

In event forecasting, an expert is asked for a series {pn} of probability forecasts for events

{An}. The quantitative study of event forecasting dates back at least three decades (Dawid,

1982; Murphy and Winkler, 1987a). Typically the expert is scored by a loss function

L(pn,1An). The loss function L is assumed to be proper, meaning that p minimizes

EL(·, Y ) when Y is a Bernoulli random variable with mean p. Thus a forecaster with

subjective probability p minimizes expected loss by forecasting p. A more complete dis-

cussion of probability forecasting and proper loss functions may be found in Hwang and
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Pemantle (1997).

Probability forecasts may suffer from two kinds of error, namely bias and imprecision.

Bias occurs when the long run frequency of An for those pn ≈ p is not equal to p. Impreci-

sion occurs when pn is typically not close to zero or one. Given a sufficiently long stream

of forecasts, these two problems may be separated: each forecast pn may be replaced by the

forecast q(pn) where q(t) is the long run frequency ofAn given a forecast of t. The forecast

is then said to be calibrated (cf. Murphy and Winkler (1987a)) and the main objective is to

minimize loss. In this paper we always assume calibrated forecasts.

6.1.2 Forecast aggregation

Forecast aggregation is the problem of producing a synthesized forecast from a collection

of expert forecasts. Various probability models have been implicitly or explicitly used for

this problem. As discussed in Satopää et al. (2015), if the events are defined on a probability

space (Ω,F ,P) then calibration means precisely that an expert’s forecast p for an event A

is equal to P(A|F ′) for some F ′ ⊆ F . The σ-field F ′ represents the information used to

make the forecast and is not necessarily the full information available to the expert.

Some empirical work on forecast aggregation operates outside these assumptions. For

example, the measurement error framework assumes there is a true probability θ interpreted

as the forecast made by an ideal forecaster, and that actual forecasters “observe” some

transformation φ(θ) together with independent mean zero idiosyncratic errors.

This leads to relatively simple aggregation rules. For example, if φ is the identity,

the forecasters are assumed to be reporting θ plus independent mean zero errors. The

corresponding aggregator simply averages the forecasts:

gave(p1, . . . , pn) :=
1

n

n∑
k=1

pk . (6.1)
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When φ is the inverse normal CDF, this leads to probit averaging, defined by

gprobit(p1, . . . , pn) := Φ

(
1

n

n∑
k=1

Φ−1(pk)

)
. (6.2)

Such models, while very common in practice, lead both to uncalibrated forecasts and sub-

optimal performance. Theoretical problems with these models are discussed by Hong and

Page (2009); for example, such aggregators can never leave the convex hull of the indi-

vidual expert forecasts, which is demonstrably sub-optimal in some cases (Parunak et al.,

2013); see also Satopää et al. (2016, Section 2.3.2).

Satopää et al. (2015), propose the partial information framework. This model for ag-

gregation of calibrated forecasts assumes that each forecaster i, 1 ≤ i ≤ N , has access

to information Fi. The aggregator has access only to the forecasts pi := P(A|Fi). The

theoretical best forecast with this information is the revealed estimator

p∗ := P(A|pi : 1 ≤ i ≤ N) .

It is evident from the definition that

p∗ = grev(p1, . . . , pn)

for some function g = grev; however, it is not possible to compute g without making further

assumptions on the model. At this level of specificity, the model, while too general to be

applied, is almost certainly correct. If we pick a particular probability model (Ω,F ,P),

event A ∈ F , and sub-σ-fields {Fi}, then the model will almost certainly be wrong but

will, at least in principle, determine g. Philosophically, we might think of the goal as to

choose the model that is least wrong among models in which g may be computed.
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6.1.3 Gaussian partial information model

In Satopää et al. (2015) the following Gaussian model is introduced. The probability space

(Ω,F ,P) supports a centered Gaussian process {XA : A ⊆ S} indexed by the Borel

subsets of a single set S, with Cov (XA, XB) = |A ∩ B|. Here, without loss of generality,

S is taken to be the unit interval and | · | refers to Lebesgue measure. The event A is the

event that XS ≥ 0. The interpretation is that each bit of the white noise X[t,t+dt] adds either

positive or negative information about the occurrence of A, this being decided in the end

by whether the preponderance of information is positive or negative. Each forecaster Fi

is privy to some subset of this information, namely they see all the noise in some subset

Bi ⊆ S. Formally, Fi = σ(XA : A ⊆ Bi). Specification of the sets {Bi} determines the

model and hence g.

A number of consequences of this model are worked out in Satopää et al. (2015). The

question of how one can efficiently estimate the parameters is taken up in Satopää et al.

(2016). In Satopää et al. (2016, Section 5.1), with a slightly enlarged model, these aggre-

gators are tested against data from the Good Judgment Project (Ungar et al., 2012) and

compared to the performance of existing aggregators. The parameters of the model neces-

sary for this computation are the unknown covariances between pairs of forecasters. For

the purpose of parameter estimation it was important to have not just one forecast but a

stream of forecasts for each forecaster.

6.1.4 A Bayesian approach to specifying parameters

The present paper considers the problem of applying the Gaussian partial information

model in a one-shot forecasting model, i.e., a stream of forecasts is unavailable. The pa-

rameters {|Bi|, |Bi∩Bj| : 1 ≤ i, j ≤ N} cannot consistently be estimated because there is

only one data point p(i) for each forecaster i. We proceed to model this framework with a

Bayesian approach. First, choose a prior µ on these parameters, chosen to be as uninforma-
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tive as possible. Let ν be the posterior law of the parameters given the forecasts. Then p∗

is the mean of gα(p(1), . . . , p(N)) when α is an assignment of parameters chosen randomly

from the posterior law ν.

Our purpose here is to show that these computations can be carried out for N = 2

and one natural choice of prior distribution, and results in an aggregator possessing certain

desirable characteristics. Our model is admittedly a toy model, which, on its own, will not

beat empirically tuned aggregators. It is hoped, however, that the family of Gaussian-Bayes

partial information models includes something close to the correct micro-level model, and

that by understanding these models we will understand how to improve on existing non-

theoretically based models.

6.2 Aggregation function for fixed parameters

We consider a model, as above, whereN = 2, |S| = 2, |B1| = |B2| = 1 and |B1∩B2| = ρ.

The parameter ρ, treated in the previous literature as a parameter to be estimated, will later

in this paper be taken to be random, uniform on [0, 1]. In this section we fix ρ ∈ [0, 1] and

compute the forecast, its marginal distribution and the aggregation function.

6.2.1 Computing the forecast and marginals for any parameters

A forecaster observing XB is ignorant of XS − XB which is independent of XB and has

distribution N(0, |S| − |B|) or
√
|S| − |B|χ where χ is a standard normal. Therefore,

conditional on XB = x, the forecast is

p(x) = P(XS −XB > −x) = P(χ < (|S| − |B|)−1/2x) = Φ

(
x√

|S| − |B|

)
.

Let β := |B|/(|S| − |B|). Because XB is distributed as |B|1/2χ, we see that the law of

p in this model is the law of Φ(β1/2χ). Because χ has law Φ−1(U) for U uniform on [0, 1],
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Figure 6.1: The solid line, dashed line, and dotted line are respectively β = 7/3, 1, and 3/7

we can summarize this as

p(x) ∼ Φ(β1/2Φ−1(U)) .

The density behaves like (cx(1− x))1/β . When β < 1 it is unimodal, when β > 1 it blows

up at the endpoints, and when β = 1 it is exactly uniform; see Figure 6.1.

In this light, the choice of |B1| = |B2| = |S \B1| = |S \B2| seems natural, as it causes

each forecast to be marginally uniform on [0, 1].

6.2.2 Computing g under fixed overlap

We now specialize to the Gaussian partial information model |B1| = |B2| =
|S|
2

= 1 and

assume that the parameter ρ = |B1 ∩ B2| is known. In this section we will compute the

aggregating function. In particular:

Proposition 6.2.1. In the Gaussian partial information model with |B1| = |B2| = 1,

|S| = 2 and |B1 ∩ B2| = ρ, if the two experts forecast p(1) = p and p(2) = q, then the best

aggregator gρ(p, q) := P(A|p(1) = p, p(2) = q) is given by

gρ(p, q) = Φ

(
Φ−1(p) + Φ−1(q)√

2ρ(1 + ρ)

)
. (6.3)
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PROOF: See the Appendix. 2

6.3 Bayesian model

We enhance the model from 6.2 a Bayesian framework by assuming that the overlap pa-

rameter ρ is random, with a prior distribution that is uniform over [0, 1]. The posterior

distribution is not uniform because the likelihood

λρ(p, q) := P(p, q | ρ)

of (p, q) given ρ is nonconstant, whence Bayes’ Rule applied with the uniform prior gives

a nonconstant posterior. Given p and q, posterior probabilities are given by quotients of

integrals:

g(p, q) := P(A | p, q) =

∫
P(A | p, q, ρ) · P(ρ | p, q) (6.4)

=

∫
f(p, q, ρ)λρ(p, q) dρ∫

λρ(p, q) dρ
.

Here we include a factor of
∫
λρ dρ in the denominator so that we may, if we choose, allow

λρ not to be normalized to have total mass one.

Theorem 6.3.1.

g(p, q) =



p− (1− 2q)

2q
p > max{q, 1− q}

p

2(1− q)
p < min{q, 1− q}

p− (1− 2p)

2p
q > max{p, 1− p}

q

2(1− p)
q < min{p, 1− p}

(6.5)
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PROOF: See the Appendix. 2

6.4 Comparison of Aggregations With Hypothetical Data

For a concrete comparison, suppose two experts forecast respective probabilities p1 = 0.6

and p2 = 0.8. We compare a number of aggregators. The first two were discussed in (6.1)

and (6.2), namely the simple average pave := gave(p1, p2) and the probit average pprobit :=

gprobit(p1, p2). As previously discussed, these are constrained to lie between p1 and p2.

We compare the revealed forecast to these two and to two others not constrained to the

convex hull. The first of these two is the Gaussian model with fixed overlap parameter

ρ = 1/2. The second is the log odds summing aggregator. This aggregator, which we have

not discussed above, is based on the following probability model. Each forecaster begins

with a prior probability estimate of p = 1/2 (equivalently log(p/(1 − p)) = 0 and sees

results of an independent experiment.

By Bayes rule, this experiment affects the posterior probability by some additive in-

crement in the log odds. The result of the two independent experiments is to add both

increments to the log odds, resulting in an estimator plog odds which is the most extreme

of those we have considered. Just as pave and pprobit are demonstrably underconfident,

plog odds is overconfident because it assumes that the experts’ data are completely disjoint.

We then have the following values for the various synthesized forecasts (rounded to the

nearest 0.001).

pave 0.700

pprobit 0.708

p1/2 0.814

prevealed 0.833

plog odds 0.857
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Figure 6.2: Comparisons of aggregators

The first thing we see from this is that the range of values taken by these aggregators

is quite broad, extending from 7/10 at the low end to 6/7 at the high end2. Almost anyone

in the business, if given forecasts of 3/5 and 4/5 would place their estimate between 7/10

and 6/7. The choice of model substantially alters the particular aggregate forecast within

the interval of plausible forecasts, and is therefore quite important. We also remark that

this choice is not a mathematical one but a practical one. Different forecasting problems

may call for different aggregation techniques.

The left graph in Figure 6.2 provides a visual comparison of the above synthesis func-

tions by graphing the diagonal values, that is those where p = q. By symmetry, it suffices

to graph each of these on the interval [1/2, 1]. When p = q = x, both the average pave

and the probit average pprobit are also equal to x; these are shown by the blue line. The

red curve is plogodds, which is always greatest of the aggregators under consideration. The

green and black curves represent p1/2 and prevealed respectively, which are the two partial

overlap models. As is evident, these are not strictly ordered. On the right, graphs are shown

for p ∈ [1/2, 1] and q = (1 + p)/2. When p 6= q, as in the figure on the right, the probit

average (shown in brown) is distinct from the average.

One final remark concerns pprobit, a popular choice for empirically driven aggregators.

2A number of these aggregators give rational values on rational inputs.
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While it may seem atheoretical, in fact it arises as the limit as ρ → 1 of the fixed overlap

aggregator. To see this, denote the values of XS as S varies over the algebra of sets gener-

ated by B1 and B2 by U := XB1\B2 , V := XB2\B1 , M := XB2∩B1 and W := X(B2∪B1)c;

thus XB1 = U + M,XB2 = V + M and XS = U + V + M + W , where U, V,M,W are

independent Gaussians with respective variances 1− ρ, 1− ρ, ρ, ρ.

2

U

M

V

W B

B1

Figure 6.3: Information partition

As |U | = |V | → 0 in Figure 6.3, asymptotically, the likeliest way to achieve U+M = a

and V + M = b is to let M = (a + b)/2 and U = −V = (a − b)/2. These choices

become forced in the limit. Applying this with a = Φ−1(p) and b = Φ−1(q) shows that the

revealed forecast is Φ((a+ b)/2) which is the probit average. In other words, this forecast

is practical if we have reason to believe that both forecasters know nearly all information

possible (but then somehow mysteriously find highly relevant information in the small part

of their information that is not shared).
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6.5 Comparison of Estimators with 2012 Presidential Elec-

tion Data

In this section, we apply our proposed Bayesian aggregator from Theorem 6.3.1 to a real

data set. The data are collected from two freely online sources: DeSart’s 2012 presidential

predictions (DeSart, 2015) and Silver’s 2012 United States presidential predictions (Silver,

2015). The data are structured as follows: for each state as well District of Columbia,

DeSart and Silver give a probability that Obama will win the state’s electoral votes. We

consider an expert’s prediction to be “successful” if the expert-given probability of .5 or

greater corresponded to a state in which Obama won (and vice versa for a state in which

Obama lost). In 2012, both DeSart and Silver predicted each state’s outcome successfully,

(the only exception worth noting is that Silver predicted Obama would win Florida with

probability .5). To quantify the “success” of each aggregator, we employ ROC (receiver

operating curve) analysis. That is, for each classification cutoff value, we calculate the sum

of the resulting true positives and the resulting true negatives and divide this number by the

total sample size of 51. This is done in Section 6.5.2, in which a ROC analysis is performed

for our proposed Bayesian aggregator, the inverse-phi aggregator, and the mean aggregator.

6.5.1 Exploratory Data Analysis

When there are two experts leaning over, say, 80% in one direction, as defined, the Bayesian

aggregator will be more extreme than either prediction. A scatter plot with the DeSart

and Silver predictions along with the Bayesian aggregation model’s predictions shown in

Figure 6.4 to support this claim. Table 6.2 further supports this claim by displaying a few

state indexes (and their corresponding states) that have the highest discrepancy between the

Bayesian aggregator and the expert predictors of DeSart and Silver.

In Figure 6.5, we display a scatter plot for the predictions for each state from the
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Figure 6.4: DeSart predictions, Silver predictions, and Bayesian aggregation predictions

State ID State Aggregation DeSart Silver
3 Arizona .012 .15 .02
6 Colorado .849 .662 .8
9 Florida .712 .712 .5
15 Iowa .926 .876 .84
26 Montana .011 .04 .02
49 Wisconsin .984 .935 .97

Table 6.1: Bayesian aggregation and expert predictions for individual states

Bayesian model, from the inverse-phi aggregation, and from the raw average aggregation.

Notice in Figure 6.5 that the Bayesian aggregate predictions are always more extreme or

equally as extreme as the mean and inverse-phi aggregation methods.
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Figure 6.5: Predictions for three aggregation models: Bayesian aggregation, inverse-phi

aggregation, and raw average aggregation

We now proceed to calculate the squared-error loss for each aggregation methodology.

For each state, we have a prediction, call it p̂i, for each of the three aggregators. We then

have the observed data, Yi, corresponding to an Obama victory or loss in that state (Yi = 1

is a win, Yi = 0) is a loss. The sum of the squared error loss
∑51

i=1 (p̂i − Yi)2 is calculated

below for the three aggregation methodologies. Note the small squared error loss across

for all three aggregators; this is due to the experts’ very high accuracy in prediction.

Bayesian Inverse Mean
.1805 .4492 .4875

Table 6.2: Squared error loss for aggregation procedures
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6.5.2 ROC Analysis

In Table 6.3 below we provide a few values from the ROC table for classifying a prediction

of Obama victory. In the table, the number True positive (TP) and true negative (TN)

predictions for each cutoff value are counted as TP+TN. The maximum value of TP+TN is

the number of observations, which in this case is 51.

Cutoff p0 Bayesian
aggregation
(TP+TN)

Inverse-phi
aggregation
(TP+TN)

Mean-
aggregation
(TP+TN)

.01 27+21=48 27+21=48 27+15=42

.05 27+23=50 27+22=49 27+21=48

.10 27+23=50 27+23=50 27+22=49

.25 27+24=51 27+23=50 27+23=50

.5 27+24=51 27+24=51 27+24=51

.75 26+24=50 24+24=48 24+24=48

.90 24+24=48 20+24=44 20+24=44

.95 21+24=45 20+24=44 20+24=44

.99 19+24=43 16+24=40 14+24=38

Table 6.3: Some rows of ROC table

We see that for cutoff of p = .5 (that is, we classify Yi = 1 if pi ≥ .5), all three methods

have no misclassifications. For the cutoffs p = 0.75, 0.90, 0.95 and 0.99, our Bayesian

aggregation method outlined in this paper is superior to both the inverse-phi aggregation

and the mean aggregation. We also note that our method has better predictions for every

cutoff than the mean aggregation (except for the cutoff p = 0.5). It performs equivalently

to inverse-phi aggregation for p = 0.01, 0.1 and 0.5 but produces outperforms inverse-phi

aggregation for all other cutoff values. These results give us confidence in the performance

of our proposed one-shot Bayesian aggregator.
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7
Combining and Extremizing Real-Valued

Forecasts∗

Abstract

The weighted average is by far the most popular approach to combining multiple forecasts

of some future outcome. This paper shows that both for probability or real-valued forecasts,

a non-trivial weighted average of different forecasts is always sub-optimal. More specifi-

cally, it is not consistent with any set of information about the future outcome even if the

individual forecasts are. Furthermore, weighted averaging does not behave as if it collects

information from the forecasters and hence needs to be extremized, that is, systematically

transformed away from the marginal mean. This paper proposes a linear extremization

technique for improving the weighted average of real-valued forecasts. The resulting more

extreme version of the weighted average exhibits many properties of optimal aggregation.

Both this and the sub-optimality of the weighted average are illustrated with simple exam-

ples involving synthetic and real-world data.

∗Joint work with Lyle H. Ungar
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7.1 Introduction

Policy-makers often consult human or/and machine agents for forecasts of some future out-

come. For instance, multiple economics experts may provide quarterly predictions of gross

domestic product (GDP). Typically it is not possible to determine ex-ante which expert will

be the most accurate, and even if this could be done, heeding only the most accurate expert’s

advice would ignore a potentially large amount of relevant information that is being con-

tributed by the rest of the experts. Therefore a better alternative is to combine the forecasts

into a single consensus forecast that represents all the experts’ advice. The policy-makers,

however, can choose to aggregate the forecasts in many different ways. The final choice

of the combination rule is crucial because it often decides how much of the experts’ total

information is incorporated and hence how well the consensus forecast performs in terms

of predictive accuracy.

Possibly because of its simplicity and intuitive appeal, the most popular approach to

combining forecasts is the weighted average, sometimes also known as the linear opinion

pool. This technique has a long tradition, with many empirical studies attesting to its ben-

efits (see, e.g., Bates and Granger 1969; Clemen 1989; Armstrong 2001). Even though the

average forecast does not always outperform the best single forecaster (Hibon and Evge-

niou, 2005), it is still considered state-of-the-art (Elliott and Timmermann, 2013) in many

fields, including economics (Blix et al., 2001), weather forecasting (Raftery et al., 2005),

political science (Graefe et al., 2014b), and many others. In this paper, however, we show

that non-trivial weighted averaging is suboptimal, and propose a simple transformation to

improve it. A more detailed description of the contributions is given below.

In practice forecasts are typically either real-valued or probabilities of binary events,

such as rain or no rain tomorrow. Ranjan and Gneiting (2010) focus on the latter and explain

how the quality of a probability forecast (individual or aggregate) is typically measured in

terms of reliability and resolution (sometimes also known as calibration and sharpness, re-
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spectively). Reliability describes how closely the conditional event frequencies align with

the forecast probabilities. Resolution, on the other hand, measures how far the forecasts

are from the naive baseline forecast, that is, the marginal event frequency. A forecast that

is reliable and highly resolute is very useful to the policy-maker because it is both accu-

rate and close to the most confident values of zero and one. Therefore a well-established

goal in probability forecasting is to maximize resolution subject to reliability (Murphy and

Winkler, 1987b; Gneiting et al., 2007).

Strikingly, Ranjan and Gneiting (2010) prove that any non-trivial weighted average of

two or more different, reliable probability forecasts is unreliable and lacks resolution. In

particular, they explain that such a weighted average is under-confident in a sense that it

is overly close to the marginal event frequency. This result is an important contribution to

the probability forecasting literature in part because it points out a dramatic shortcoming

of methodology that is used widely in practice. However, the authors neither provide a

principled way of addressing the shortcoming nor interpret potential causes of the under-

confidence.

The first step towards addressing these issues and improving the general practice of

aggregation is to understand what is meant by principled aggregation. This topic was dis-

cussed by Satopää et al. (2016, 2015) who propose the partial information framework as

a general platform for modeling and combining forecasts. Under this framework, the out-

come and the forecasts share a probability space but without any restrictions on their depen-

dence structure. Any forecast heterogeneity is assumed to stem purely from information

available to the forecasters and how they decide to use it. For instance, forecasters study-

ing the same (or different) articles about the state of the economy may use distinct parts

of the information and hence report different predictions of the next quarter’s GDP. Even

though, to date, this framework has been mainly used for constructing new aggregators,

it also offers an ideal environment for analyzing other, already existing, aggregation tech-
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niques. No previous work, however, has used it to study weighted averaging of probability

or real-valued forecasts.

The first contribution of this paper leaves the type of forecasts unspecified and analyzes

the weighted average of any univariate forecasts under the partial information framework.

The results are general and encompass both probability and real-valued forecasts. First,

the aforementioned result in Ranjan and Gneiting (2010) is generalized to any type of uni-

variate forecasts. This result shows, for instance, that any non-trivial weighted average of

reliable predictions about the next quarter’s GDP is both unreliable and under-confident.

Second, some general properties of optimal aggregation are enumerated. This leads to an

original point of view on forecast aggregation, general, yet intuitive, descriptions of well-

known properties such as reliability and resolution, and an introduction of a new property,

called variance expansion, that is associated with aggregators whose variance is never less

than the maximum variance among the individual forecasts. Such aggregators are called

expanding and can be considered to collect information from the individual forecasters.

Showing that a non-trivial weighted average is never expanding leads to a mathematically

precise yet easy-to-understand explanation of why weighted averages tend to be under-

confident. This reasoning suggests that under-confidence is not unique to the class of

weighted averages but extends to many other measures of central tendency, such as the

median, that also tend to reduce variance.

In probability forecasting the under-confidence of a simple aggregator, such as the av-

erage or median, is typically alleviated by a heuristic known as extremizing, that is, by

systematically transforming the aggregate towards its nearer extreme (at zero or one). For

instance, Ranjan and Gneiting (2010) propose a beta transformation that extremizes the

weighted average of the probability forecasts; Satopää et al. (2014) use a logistic regression

model to extremize the average log-odds of the forecasts; many others, including Shlomi

and Wallsten (2010), Baron et al. (2014), and Mellers et al. (2014), have also discussed ex-
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tremization of probability forecasts. Intuitively, extremization increases confidence by ex-

plicitly moving the aggregate closer to the most confident values of zero and one. Naturally,

the same intuition applies to probability forecasts of any categorical outcome. However, if

the outcome and forecasts are real-valued, it is not clear anymore what values represent the

most confident forecasts. Consequently, it seems that extremization, as described above,

lacks direction and cannot be applied. Furthermore, the idea of extremizing may seem

counter-intuitive given the large amount of literature attesting to the benefits of shrinkage

(James and Stein, 1961). These may be the main reasons why, to the best of our knowledge,

no previous literature has discussed extremization of real-valued forecasts.

Therefore it is perhaps somewhat surprising that our second contribution shows that

extremizing can improve aggregation also when the individual forecasts are real-valued.

First, the notion of extremizing is made precise. This involves introducing a general defini-

tion that differs slightly from the above heuristic. In particular, extremizing is redefined as

a shift away from the least confident forecast, namely the marginal mean of the outcome,

instead of towards the most confident (potentially undefined) values. Second, our definition

and theoretical analysis motivate a convex optimization procedure that linearly extremizes

the optimally weighted average of real-valued forecasts. The technique is illustrated on

simple examples involving both synthetic and real-world data. In each example extremiz-

ing leads to improved aggregation with many of the optimal properties enumerated in the

beginning of the analysis.

The rest of the paper is structured as follows. Section 7.2 briefly introduces the general

partial information framework and discusses some properties of the optimal aggregation

within that framework. The class of weighted averages is then analyzed in the light of these

properties. Section 7.3 describes the optimization technique for extremizing the weighted

average of real-valued forecasts. Section A.4.3 illustrates this technique and our theoretical

results over synthetic data. Section 7.5 repeats the analysis over real-world data. The final
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section concludes and discusses future research directions.

7.2 Forecast and Aggregation Properties

7.2.1 Optimal Aggregation

Consider N forecasters and suppose forecaster j predicts Xj for some (integrable) quantity

of interest Y . The partial information framework assumes that Y andXj , for j = 1, . . . , N ,

are measurable random variables under some common probability space (Ω,F ,P). Akin to

Murphy and Winkler (1987b), Ranjan and Gneiting (2010), Jolliffe and Stephenson (2012),

and many others, the forecasters are assumed to be reliable, that is, conditionally unbiased

such that E(Y |Xj) = Xj for all j = 1, . . . , N . To interpret this assumption, observe

that the principal σ-field F holds all possible information that can be known about Y .

Each reliable forecast Xj then generates a sub-σ-field σ(Xj) := Fj ⊆ F such that Xj =

E(Y |Fj). Conversely, suppose that Xj = E(Y |Fj) for some Fj ⊆ F , then

E(Y |Xj) = E[E(Y |Xj,Fj)|Xj] = E[E(Y |Fj)|Xj] = E(Xj|Xj) = Xj.

Therefore a forecast is reliable if and only if it represents the optimal use of some informa-

tion set, that is, it is consistent with some partial information Fj ⊆ F . Given that at this

level of specificity the framework is highly general and hence likely to be a good approx-

imation of real-world prediction polling, it offers an ideal platform for analyzing different

aggregators.

In this paper an aggregator is defined to be any forecast that is measurable with respect

to F ′′ := σ(X1, . . . , XN), namely the σ-field generated by the individual forecasts. For

the sake of notational clarity, aggregators are denoted with different versions of the script

symbol X . If E (Y 2) < ∞, the conditional expectation X ′′ := E(Y |F ′′) minimizes the
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expected quadratic loss among all aggregators (see, e.g., Durrett 2010). This forecast is

called the revealed aggregator because it optimally utilizes all the information that the

forecasters’ reveal through their forecasts. Even though X ′′ is typically too abstract to be

applied in practice, it provides an optimal baseline for aggregation efficiency. Therefore

studying its properties gives guidance for improving aggregators currently used in practice.

Some of these properties are summarized in the following theorem. The proof is deferred

to the Appendix.

Theorem 7.2.1. Suppose that Xj = E(Y |Xj) for all j = 1, . . . , N and denote the re-

vealed aggregator with X ′′ = E(Y |F ′′), where F ′′ = σ(X1, . . . , XN). Let δmax :=

maxj{Var (Xj)} be the maximal variance among the individual forecast. Then the fol-

lowing holds.

i) Marginal Consistency. X ′′ is marginally consistent: E(X ′′) = E(Y ) := µ0.

ii) Reliability. X ′′ is reliable: E(Y |X ′′) = X ′′.

iii) Variance Expansion. X ′′ is expanding: δmax ≤ Var (X ′′). In words, the variance of

X ′′ is always at least as large as that of the most variable forecast.

Marginal consistency states that the forecast and the outcome agree in expectation. If

Xj is reliable, then E(Xj) = E[E(Y |Xj)] = E(Y ) = µ0. Consequently, all reliable

forecasts (individual or aggregate) are marginally consistent. The converse, however, is not

true. For instance, Theorem 7.2.2 (see Section 7.2.2) shows that any non-trivial weighted

average is marginally consistent but unreliable. This is an important observation because it

provides a technique for proving lack of reliability via marginal inconsistency – a task that

is generally much easier than disproving reliability directly.

Given that each reliable forecast can be associated with a sub-σ-field and that condi-

tional expectation is a contraction in L2 (Durrett, 2010, Theorem 5.1.4.), the variance of
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any reliable forecast (individual or aggregate) is always upper-bounded by Var (Y ). The-

orem 7.2.1 further shows that the corresponding lower bound for Var (X ′′) is the maxi-

mum variance among the forecasters. To interpret this lower bound, consider an increas-

ing sequence of σ-fields F0 = {∅,Ω} ⊆ F1 ⊆ · · · ⊆ FR ⊆ F and the corresponding

forecasts Xr = E(Y |Fr) for r = 0, 1, . . . , R. According to Satopää et al. (2016, Proposi-

tion 2.1), the variances of these forecasts respect the same order as their information sets:

Var (X0) ≤ Var (X1) ≤ · · · ≤ Var (XR) ≤ Var (Y ). This suggests that the amount of in-

formation used in a reliable forecast is reflected in its variance. Naturally, if an aggregator

collects information from a group of forecasters, it should use at least as much information

as the most informed individual forecaster; that is, its variance should exceed that of the

individual forecasters’. Therefore any aggregator that expands variance and satisfies this

condition is considered a collector of information.

Recall that in probability forecasting a well-established goal is to maximize resolution

subject to reliability. This goal can be easily interpreted intuitively with the help of partial

information. First, conditioning on reliability requires the forecast to be consistent with

some set of information about Y . Maximizing the resolution of this forecast takes it as far

from µ0 as possible. This is equivalent to increasing the variance of the forecast as close

to the theoretical upper bound Var (Y ) as possible. Therefore the goal is equivalent to

maximizing the amount of information that the forecast is consistent with. Intuitively, this

is very reasonable and should be considered as the general goal in forecasting.

7.2.2 Weighted Averaging

The rest of the paper analyzes the most commonly used aggregator, namely the weighted

average. The following theorem shows that a non-trivial weighted average is neither ex-

panding nor reliable and therefore can be considered suboptimal. The proof is again de-

ferred to the Appendix. A similar result does not hold for all linear combinations of the
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individual forecasts. For instance, Section A.4.3 describes a model under which the optimal

aggregator X ′′ is always a linear combination of the individual Xj’s.

Theorem 7.2.2. Suppose that Xj = E(Y |Xj) for j = 1, . . . , N . Denote the weighted

average with Xw :=
∑N

j=1wjXj , where wj ≥ 0, for all j = 1, . . . , N , and
∑N

j=1wj = 1.

Let m = arg maxj{Var (Xj)} identify the forecast with the maximal variance δmax =

V ar(Xm). Then the following holds.

i) Xw is marginally consistent.

ii) Xw is not reliable, that is, P [E(Y |Xw) 6= Xw] > 0 if there exists a forecast pair i 6= j

such that P(Xi 6= Xj) > 0 and wi, wj > 0. In words, Xw is necessarily unreliable if it

assigns positive weight to at least two different forecasts.

iii) Under the conditions of item ii), Xw lacks resolution. More specifically, if X ′w :=

E(Y |Xw) is the reliable version of Xw, then E(Xw) = E(X ′w) = µ0 but Var (Xw) <

Var (X ′w). In other words, Xw is under-confident in a sense that it is closer to the

marginal mean µ0 than its reliable version X ′w.

iv) Xw is not expanding. In particular, Var (Xw) ≤ δmax, which shows that Xw is under-

confident in a sense that it is as close or closer to the marginal mean µ0 than the

revealed aggregator X ′′. Furthermore, Var (Xw) = Var (X ′′) if and only if both Xw =

X ′′ = Xm; that is, Xm provides all the information necessary for X ′′, and Xw assigns

all weight to Xm (or to a group of forecasts all equal to Xm).

This theorem discusses under-confidence under two different baselines. Item iii) is a

generalization of Ranjan and Gneiting (2010, Theorem 2.1.). Intuitively, it states that if

Xw is trained to use its information accurately, the resulting aggregator is more confident.

Therefore under-confidence is defined relative to the reliable version of Xw. Under this

kind of comparison, however, a reliable aggregator is never under-confident. For instance,
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an aggregator that ignores the individual forecasts and always returns the marginal mean

µ0 is reliable and hence would not be considered under-confident. Intuitively, however, it

is clear that no aggregate forecast is more under-confident than the marginal mean µ0. To

address this drawback, item iv) defines under-confidence relative to the revealed aggregator

instead. Such a comparison estimates whether the weighted average is as confident as it

should be given the information it received through the forecasts. Item iv) shows that this

happens only if all the weight is assigned to a forecaster whose information set contains

every other forecasters’ information. However, even ifXw could pick out the most informed

forecaster ex-ante, the chances of a single forecaster knowing everything that the rest of the

forecasters know is extremely small in practice. In essentially all other cases, Xw is under-

confident, unreliable, and hence not consistent with some set of information about Y .

Unfortunately, this shortcoming spans across all measures of central tendency. These

aggregators reduce variance and hence are separated from the revealed aggregator by the

maximum variance among the individual forecasts. For instance, Papadatos (1995) discuss

the maximum variance of different order statistics and show that the variance of the median

is upper bounded by the global variance of the individual forecasts. Given that such aggre-

gators are not expanding, they cannot be considered to collect information. To illustrate,

consider a group of forecasters, each independently making a probability forecast of 0.9 for

the occurrence of some future event. If these forecasters are using different evidence, then

clearly the combined evidence should give an aggregate forecast somewhat greater than

0.9. In this simple scenario, however, measures of central tendency will always aggregate

to 0.9. Therefore they fail to account for the information heterogeneity among the forecast-

ers. Instead, they reduce “measurement error,” which is philosophically very different to

the idea of information aggregation discussed in this paper.

Theorem 7.2.2, however, is not only negative in nature; it is also constructive in several

different ways. First, it motivates a general and precise definition of extremizing:
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Definition 7.2.3. Extremization. Consider two reliable forecasts Xi and Xj . Denote their

common marginal mean with E(Xi) = E(Xj) = µ0. The forecast Xj extremizes Xi if and

only if either Xj ≤ Xi ≤ µ0 or µ0 ≤ Xi ≤ Xj always holds.

It is interesting to contrast this definition with the popular extremization heuristic in the

context of probability forecasting. Definition 7.2.3 suggests that simply moving, say, the

average probability forecast closer to zero or one improves the aggregate if and only if the

marginal probability of success is 0.5. In other cases naively following the heuristic may

end up degrading the aggregate. For instance, consider a geographical region where rain

is known to occur on 20% of the days. If the average probability forecast of rain tomor-

row is 0.30, instead of following the heuristic and shifting this aggregate towards zero and

hence closer to the marginal mean of 0.20, the aggregate should be actually shifted in the

opposite direction, namely closer to one. Second, Theorem 7.2.2 suggests that extremiza-

tion, as defined formally above, is likely to improve the weighted average of any type of

univariate forecasts. This justifies the construction of a broader class of extremizing tech-

niques. In particular, the second part of item iv) states that extremizing is likely to improve

the weighted average when the single most informed forecaster knows a lot less than all

the forecasters know as a group. To illustrate this, the next section introduces a simple

optimization procedure that extremizes the weighted average of real-valued forecasts.

7.3 Extremizing Real-Valued Forecasts

Estimating the weights and the amount of extremization requires the forecasters to address

more than one related problems. For instance, they may participate in separate yet similar

prediction problems or give repeated forecasts on a single recurring event. Across such

problems the weights and the resulting under-confidence are likely to remain stable, allow-

ing the aggregator parameters to be estimated based on multiple predictions per forecaster.
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Therefore, from now on, suppose that the forecasters address K ≥ 2 problems. Denote the

outcome of the kth problem with Yk ∈ R and let Xjk ∈ R represent the jth forecaster’s

prediction for this outcome.

Extremization requires at least two parameters: the marginal mean, which acts as the

pivot point and decides the direction of extremizing, and the amount of extremization itself.

Extremization, of course, could be performed in many different ways. However, if X ∗k

denotes the extremized version of the weighted average for the kth problem, then probably

the simplest and most natural starting point is the following:

X ∗k = α (w′Xk − µ0) + µ0,

where Xk = (X1k, . . . , XNk)
′ collects the forecasts for the kth outcome, w = (w1, . . . , wN)′

is the weight vector, and α ∈ (1,∞) (or α ∈ [0, 1)) leads to extremization (or contraction

towards µ0, respectively). If α = 1, then X ∗ is equal to the weighted average Xw. This

linear form is particularly convenient because it leads to efficient parameter estimation and

also maintains marginal consistency of Xw; that is, E(X ∗) = µ0 for all values of α. How-

ever, Var (X ∗) increases in α such that Var (X ∗) = α2Var (Xw) > Var (Xw) for all α > 1.

Therefore, for a large enough α, X ∗ is both marginally consistent and expanding. These

properties hold even if the weighted average is replaced by some other marginally con-

sistent aggregator. However, given that the main purpose of this procedure is to illustrate

Theorem 7.2.2, this paper only considers the weighted average.

Recall that the forecasts are assumed calibrated and hence marginally consistent with

the outcomes. Therefore an unbiased estimator of the prior mean µ0 is given by the aver-

age of the forecasts 1
NK

∑K
k=1

∑N
j=1Xjk or, alternatively, by the average of the outcomes

1
K

∑K
k=1 Yk. Estimating µ0 in this manner, however, leads to a two-step estimation pro-

cedure. A more direct approach is to estimate all the parameters, namely α, µ0, and w,

jointly over some criterion. If Yk has an explicit likelihood in terms of X ∗, then the pa-
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rameters can be estimated by maximizing this likelihood. Assuming an explicit parametric

form, however, can be avoided by recalling from Section 7.2.2 that the revealed aggregator

X ′′ utilizes the forecasters’ information optimally and minimizes the expected quadratic

loss among all functions measurable with respect to F ′′. Ideally, X ∗ would behave simi-

larly to X ′′. Therefore it makes sense to estimate its parameters by minimizing the average

quadratic loss over some training set. Section A.4.3 shows that this is likely to improve

both the resolution and reliability of the weighted average.

These considerations lead to the following estimation problem:

minimize
K∑
k=1

[α (w′Xk − µ0) + µ0 − Yk]2

subject to wj ≥ 0 for j = 1, . . . , N,

N∑
j=1

wj = 1, and

α ≥ 0.

(7.1)

To express this problem in a form that is more amenable to estimation, denote an N × N

identity matrix with IN , a vector of K ones with 1K , and a vector of N zeros with 0N . If

Y = (Y1, . . . , YK)′, X = (1K , (X1, . . . ,XK)′), and A = (0N , IN), then problem (7.1) is

equivalent to

minimize
1

2
β′X′Xβ −Y′Xβ

subject to −Aβ ≤ 0N ,

(7.2)

where the inequality is interpreted element-wise and β is a vector of N + 1 optimization

parameters. Given that X′X is always positive semidefinite, problem (7.2) is a convex

quadratic program that can be solved efficiently with standard optimization techniques.

If β∗ = (β∗0 , . . . , β
∗
N)′ represents the solution to (7.2), the optimal values of the original
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parameters can be recovered by

α∗ =
N∑
j=1

β∗j ,

w∗j = β∗j /α
∗ for j = 1, . . . , N, and

µ∗0 = −β∗0/(1− α∗).

The next two sections apply and evaluate this method both on simulated and real-world

data.

7.4 Simulation Study

This section illustrates Theorem 7.2.2 on data generated from the Gaussian partial informa-

tion model introduced in Satopää et al. (2016, 2015) as a close yet practical specification

of the general partial information framework. The simplest version of this model occurs

when the outcome Y and the forecasts Xj are real-valued with mean zero. The observables

for the kth problem are then generated jointly from the following multivariate Gaussian

distribution:



Yk

X1k

...

XNk


∼ NN+1


0,

 1 diag(Σ)′

diag(Σ) Σ

 :=



1 δ1 δ2 . . . δN

δ1 δ1 ρ1,2 . . . ρ1,N

δ2 ρ2,1 δ2 . . . ρ2,N

...
...

...
. . .

...

δN ρN,1 ρN,2 . . . δN




,

(7.3)

where the covariance matrix describes the information structure among the forecasters.

In particular, the maximum amount of information is 1.0. The diagonal entry δj ∈ [0, 1]

168



(a) No Information Overlap (b) High Information Overlap

Figure 7.1: Information Distribution Among N = 5 Forecasters. The top bar next to Full

Information represents all possible information that can be known about Y . The bar leveled

horizontally with Forecaster j represents the information used by that forecaster.

represents the amount of information used by forecaster j such that if δj = 1 (or δj =

0), the forecaster always reports the correct answer Yk (or the marginal mean µ0 = 0,

respectively). The off-diagonal ρi,j , on the other hand, can be regarded as the amount of

information overlap between forecasters i and j. Using the well-known properties of a

conditional multivariate Gaussian distribution, Satopää et al. (2016, 2015) show that under

this model the forecasts are reliable and that the revealed aggregator for the kth problem is

X ′′k = E(Yk|Xk) = diag(Σ)′Σ−1Xk.

The distribution (7.3) is particularly useful because it provides a realistic model for

testing aggregation under different information structures. This section considers N = 5

forecasters under two different structures:

No Information Overlap. Fix δj = 0.1 + 0.02j for j = 1, . . . , 5 and let ρi,j = 0

for all i, j. Therefore the forecasters have independent information sources. This

information structure is illustrated in Figure 7.1a. Summing up the individual vari-

ances shows that as a group the forecasters know 80% of the total information. The
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revealed aggregator reduces to X ′′k =
∑5

j=1Xjk, has variance 0.80, and therefore

efficiently uses all the forecasters’ information.

High Information Overlap. Fix δj = 0.1 + 0.02j for j = 1, . . . , 5 and let ρi,j = 0.12

for all i, j. Therefore the forecasters have significant information overlap and as a

group know only 32% of the total information. This information structure is illus-

trated in Figure 7.1b. The revealed aggregator reduces toX ′′k =
(∑5

j=2Xjk

)
−3X1k,

has variance 0.32, and therefore efficiently uses all the forecasters’ information.

The competing aggregators are the equally weighted average X̄ , the optimally weighted

average Xw, the extremized version of the optimally weighted average X ∗, and the revealed

aggregator X ′′. The parameters in X ∗ and Xw are first estimated by minimizing the average

quadratic loss over a training set of 10, 000 draws from (7.3). After this, all the competing

aggregators are evaluated on an independent test set of another 10, 000 draws from (7.3).

Therefore all the following results, apart from the parameter estimates, represent out-of-

sample performance.

In probability forecasting the quality of the predictions is typically assessed using a

reliability diagram. The idea is to first sort the outcome-forecast pairs into some number of

bins based on the forecasts and then plot the average forecast against the average outcome

within each bin. Figures 7.2 and 7.3 generalize this to continuous outcomes by replacing

the conditional empirical event frequency with the conditional average outcome. The bins

are chosen so that they all contain the same number of forecast-outcome pairs. The vertical

dashed line represents the marginal mean µ0 = 0. The plots have been scaled such that the

identity function shows as the diagonal. Any deviation from this diagonal suggests lack of

reliability. The grey area represents the reliability diagrams of a 1, 000 bootstrap samples of

the forecast-outcome pairs. Therefore it serves as a visual guide for assessing uncertainty.

The inset histograms help to assess resolution by comparing the empirical distribution of

the forecasts against the prior distribution of Y , namely the standard Gaussian distribution
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Table 7.1: Synthetic Data. Estimated parameter values.

Scenario Forecast µ0 α w1 w2 w3 w4 w5

No Overlap
Xw 0.0000 0.1080 0.2293 0.3025 0.3601
X ∗ 0.0004 5.0137 0.1964 0.2023 0.2008 0.2006 0.2000

High Overlap
Xw 0.0000 0.0000 0.0440 0.4262 0.5298
X ∗ -0.0077 1.3048 0.0000 0.0000 0.1456 0.3959 0.4585
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(d) X ′′

Figure 7.2: Synthetic Data. Out-of-sample reliability under no information overlap.
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(d) X ′′

Figure 7.3: Synthetic Data. Out-of-sample reliability under high information overlap.

represented by the red curve. In particular, if the forecast is reliable, then the closer its

empirical distribution is to the standard Gaussian, the more information is being used in

the forecast.

Figures 7.2d and 7.3d present the reliability diagrams for X ′′ under no and high infor-

mation overlap, respectively. Comparing these plots to the corresponding reliability dia-

grams of X̄ and Xw in the same figures, reveals that X̄ and Xw are not only unreliable but
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also have smaller variance than X ′′. Furthermore, the manner in which the plotted points

deviate from the diagonal suggests that X̄ and Xw are under-confident in both information

scenarios. The level of under-confidence is particularly startling in Figures 7.2a and 7.2b

but decreases as information overlap is introduced in Figures 7.3a and 7.3b. Given that

averaging-like techniques do not behave like information aggregators, that is, they are not

expanding, it is not surprising to see them perform better under high information overlap

when aggregating information is less important for good performance. Table 7.1 shows the

parameter estimates for Xw and X ∗. The weights in Xw increase in the forecaster’s amount

of information and differ noticeably from the equal weights employed by X̄ . More impor-

tantly, however, in both information scenarios α > 1. This reflects the need to correct the

under-confidence of Xw. The resulting X ∗ is more reliable and confident as can be seen in

Figures 7.2c and 7.3c. Furthermore, it behaves very similarly to the optimal aggregator X ′′

under both information structures.

In addition to performing visual assessment, the aggregators can be compared based on

their out-of-sample average quadratic loss. To make this specific, let Y = (Y1, . . . , YK)

collect all the outcomes of the testing problems and X = (X1, . . . ,XK) be a vector of

some aggregate forecasts for the same problems. Then, the average quadratic loss for this

aggregator is

L (Y,X ) =
1

K

K∑
k=1

(Yk −Xk)2 .

If the forecasts are probability estimates of binary outcomes, the above loss is known to

have a decomposition that permits a closer analysis of reliability and resolution (Brier,

1950; Murphy, 1973). The decomposition, however, is not limited to probability fore-

casts. To see this, suppose that the real-valued aggregate Xk ∈ {f1, . . . , fI} for some

finite number I . Let Ki be the number of times fi occurs, Ȳi be the empirical average of
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Table 7.2: Synthetic Data. The average quadratic loss, L(Y,X ) with its three additive

components: reliability (REL), resolution (RES), and uncertainty (UNC). The final column,

s2 gives the estimated variance of the forecast.

Scenario Forecast L(Y,X ) REL RES UNC s2

No Overlap

Best Individual 0.8024 0.0050 0.2108 1.0081 0.200
Median 0.7322 0.2928 0.5688 1.0081 0.046
X̄ 0.7185 0.5140 0.8036 1.0081 0.032
Xw 0.7016 0.2913 0.5979 1.0081 0.055
X ∗ 0.1971 0.0022 0.8132 1.0081 0.799
X ′′ 0.1969 0.0021 0.8132 1.0081 0.807

High Overlap

Best Individual 0.8141 0.0061 0.2195 1.0275 0.199
Median 0.8492 0.0087 0.1870 1.0275 0.125
X̄ 0.8254 0.0137 0.2157 1.0275 0.128
Xw 0.7889 0.0166 0.2552 1.0275 0.150
X ∗ 0.7758 0.0056 0.2573 1.0275 0.228
X ′′ 0.6837 0.0057 0.3496 1.0275 0.318

{Yk : Xk = fi}, and Ȳ = 1
K

∑K
k=1 Yk. Then,

L (Y,X ) =
1

K

I∑
i=1

Ki(fi − Ȳi)2

︸ ︷︷ ︸
REL

− 1

K

I∑
i=1

Ki(Ȳi − Ȳ )2

︸ ︷︷ ︸
RES

+
1

K

K∑
k=1

(Yk − Ȳ )2

︸ ︷︷ ︸
UNC

. (7.4)

See the Appendix for the derivation of this decomposition. The three components of the

decomposition are highly interpretable. In particular, low REL suggests high reliability.

If the aggregate is reliable, then RES is approximately equal to the sample variance of

the aggregate and is increasing in resolution. The final term, UNC does not depend on

the forecasts. This is the sample variance of Y and therefore gives an approximate upper

bound on the variance of any reliable forecast. As has been mentioned before, the goal is

to maximize resolution subject to reliability. This decomposition shows how the quadratic

loss addresses reliability and resolution simultaneously and therefore provides a convenient

loss function for learning aggregation parameters.
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Table 7.2 presents the quadratic loss, its additive components, and the estimated vari-

ance s2 for each of the different forecasts under both information scenarios. In addition

to the aforementioned X̄ , Xw, X ∗, and X ′′, the table also presents scores for the median

forecast and the individual forecaster with the lowest quadratic loss. Even though the best

individual is reliable by construction, it is highly unresolute and hence gains an overall poor

quadratic loss. Under no information overlap, however, this individual is better than both

the median and X̄ because these aggregators assign too much importance to the individual

forecasters with very little information. As predicted by Theorem 7.2.2, the median and

the averaging aggregators X̄ and Xw are neither reliable nor expanding. The remaining

two aggregators, namely X ∗ and X ′′, on the other hand, are reliable and expanding. Table

7.1 shows that X ∗ is in fact almost equivalent to X ′′ under no information overlap. Un-

der high information overlap, however, X ′′ gains slight advantage over X ∗. In this case

X ∗ cannot take the same form as X ′′. Consequently, it has an estimated variance of 0.228

which is well below the amount of information known to the group, namely 0.320. It fails

to use information optimally because it cannot subtract off the shared information X1 and

hence avoid double-counting of information. However, despite it using information less

efficiently, it is as reliable as X ′′.

Of course, under the Gaussian model, X ∗ may seem redundant because the optimal X ′′

can be computed directly. In practice, however, Σ is not known and must be estimated

under a non-trivial semidefinite constraint (see Satopää et al. 2016 for more details). Given

that this involves a total of
(
N
2

)
+ N parameters, the estimation task is challenging even

for moderately large N , say, greater than 100. Furthermore, accurately estimating such a

large number of parameters requires the forecasters to attend a large number of prediction

problems. Applying X ∗ instead is significantly easier because it involves only N + 1

parameters that can be estimated via a standard quadratic program (7.2). Therefore this

aggregator scales better to large groups of forecasters. On the other hand, problem (7.2)
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requires a training set with known outcomes whereas Σ can be learned from the forecasts

alone. Therefore the two aggregators serve somewhat different purposes and should be

considered complementary rather than competitive.

7.5 Case Study: Concrete Compressive Strength

Concrete is the most important material in civil engineering. One of its key properties is

compressive strength that depends on the water-to-cement ratio but also on several other in-

gredients. Yeh (1998) illustrated this by statistically predicting compressive strength based

on age and seven mixture ingredients. The associated dataset is freely available at the UC

Irvine Machine Learning Repository (Lichman, 2013) and consists of 1, 030 observations

with the following information:

Y : Compressive Strength

MF



M1



v1 : Cement (kg in a m3 mixture)

v2 : Coarse Aggregate (kg in a m3 mixture)

v3 : Fly Ash (kg in a m3 mixture)

M3

v4 : Water (kg in a m3 mixture)

M2



v5 : Superplasticizer (kg in a m3 mixture)

v6 : Fine Aggregate (kg in a m3 mixture)

v7 : Blast Furnace Slag (kg in a m3 mixture)

v8 : Age (days)

(7.5)

This particular dataset is appropriate for illustrating our results because it is simple yet large

enough to allow the computation of reliability diagrams and the individual components of

the average quadratic loss.

The individual forecasters are emulated with three linear regression models,M1,M2,
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andM3, that predict Y based on different sets of predictors. In particular, modelM1 only

uses predictors v1, v2, v3, v4, whereas modelM2 uses the remaining predictors v5, v6, v7, v8.

Therefore their predictor sets are non-overlapping. The third modelM3 uses the middle

four predictors v3, v4, v5, v6, and hence has significant overlap with the other two models.

The results are compared against a linear regression modelMF that has access to all eight

predictors. This is not an aggregator and only represents the extent to which the predictors

can explain the outcome Y . Therefore it provides interpretation and scale. The predictor

sets corresponding to the different models are summarized by the curly braces in (7.5).

Overall, this setup can be viewed as a real-valued equivalent of the case study in Ranjan and

Gneiting (2010) who aggregate probability forecasts from three different logistic regression

models.

The evaluation is based on a 10-fold cross validation. The modelsM1,M2, andM3

are first trained on one half of the training set and then used to make predictions for the

second half and the entire testing set. Next, the aggregators are trained on the models’ pre-

dictions over the second half of the training set. Finally, the trained aggregators are tested

on the models’ predictions over the testing set. Therefore all the following results, apart

from the parameter estimates, represent out-of-sample performance. Similarly to Section

A.4.3, the evaluation is performed separately under two different information structures:

the No Information Overlap scenario considers only predictions from modelsM1 andM2,

whereas the High Information Overlap scenario involves only predictions from modelsM1

andM3.

Figures 7.4, 7.5, and 7.6 present the reliability diagrams of the individual models and

the aggregators under no and high information overlap, respectively. Unlike in Section

A.4.3, the marginal distribution of Y is not known. Therefore the red curve over the inlined

histogram represents the empirical distribution of Y . Similarly, the dashed vertical line rep-

resents the sample average of the outcomes instead of the marginal mean µ0. According to
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Figure 7.4: Real-World Data. Out-of-sample reliability of the individual models.
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Figure 7.5: Real-World Data. Out-of-sample reliability of aggregators under no informa-

tion overlap.

these plots, the individual forecasts are mostly reliable, except at extremely small or large

forecasts. The averaging aggregators X̄ and Xw, on the other hand, are both unreliable and

under-confident. Similarly to Section A.4.3 and in accordance with Theorem 7.2.2, this

under-confidence decreases as the forecasters’ information overlap increases from Figure

7.5 to Figure 7.6. Table 7.3 gives the parameter estimates for Xw and X ∗. These aggrega-

tors employ very similar weights. In both information scenarios α > 1, suggesting that Xw

is under-confident and should be extremized as it is. Based on Figures 7.5c and 7.6c, the re-

sulting aggregator X ∗ is noticeably more reliable and appears to approximate the empirical

distribution of Y quite closely. Simply based on visual assessment X ∗ performs as well as
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Figure 7.6: Real-World Data. Out-of-sample reliability of aggregators under high informa-

tion overlap.

Table 7.3: Real-World Data. Estimated parameter values.

Scenario Forecast µ0 α w1 w2

No Overlap
Xw 0.5327 0.4673
X ∗ -36.2051 1.6950 0.5269 0.4731

High Overlap
Xw 0.5931 0.4069
X ∗ -37.6776 1.4382 0.5375 0.4625

MF under low information overlap but loses some resolution once overlap is introduced.

This makes sense because the models considered in the high information overlap scenario,

namelyM1 andM3 have access only to the first six predictors whileMF uses all eight

predictors and hence should have a higher level of information.

Table 7.4 provides a numerical comparison by presenting the average quadratic loss, its

additive components, and the estimated variance s2 for the individual models and the com-

peting aggregators. Given that all aggregators perform better than the individual forecast-

ers, aggregation is generally beneficial. However, there are large performance differences

among the aggregators. In particular, the variances of X̄ and Xw do not exceed that of the

individual forecasters’, suggesting that neither of them is expanding. Furthermore, they are

much less reliable than the individual forecasters. In contrast, X ∗ is able to maintain the
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Table 7.4: Real-World Data. The average quadratic loss, L(Y,X ) with its three additive

components: reliability (REL), resolution (RES), and uncertainty (UNC). The final column,

s2 gives the estimated variance of the forecast.

Scenario Forecast L(Y,X ) REL RES UNC s2

M1 187.80 9.70 100.72 278.81 82.83
M2 185.74 12.01 105.08 278.81 92.51
M3 197.03 12.81 94.59 278.81 73.27
MF 110.91 9.46 177.36 278.81 157.87

No Overlap
X̄ 155.69 30.99 154.10 278.81 56.33
Xw 156.32 31.45 153.94 278.81 56.21
X ∗ 133.23 9.86 155.45 278.81 161.89

High Overlap
X̄ 177.45 16.77 118.13 278.81 61.92
Xw 176.59 14.37 116.59 278.81 63.32
X ∗ 169.92 8.20 117.09 278.81 128.69

forecasters’ level of reliability. Even though this aggregator is expanding, it is less resolute

and has a lower variance thanMF under high information overlap. This can be expected

because in the high information overlap scenario X ∗ has access only to a subset of the in-

formation thatMF uses. Under no information overlap, all the predictors are used by the

individual forecasters, but this does not mean that this information is actually revealed to

X ∗ through the reported forecasts.

7.6 Summary and Discussion

This paper discussed forecast aggregation under a general probability model, called the

partial information framework. The forecasts and outcomes were assumed to have a joint

distribution but no restrictions were placed on their dependence structure. The analysis

led to an enumeration (Theorem 7.2.1) of several properties of optimal aggregation. Even

though the optimal aggregator is typically intractable in practice, its properties provide

guidance for developing and understanding other aggregators that are more feasible in
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practice. In this paper these properties shed light on the class of weighted averages of

any type of univariate forecasts. Even though these averages are marginally consistent,

they fail to satisfy two of the optimality properties, namely reliability and variance expan-

sion (Theorem 7.2.2). As a result, they are under-confident in a sense that they are overly

close to the marginal mean. This shortcoming can be naturally alleviated by extremizing,

that is, by shifting the weighted average further away from the marginal mean. Section

7.3 introduced a simple linear procedure (Equation 7.1) that extremizes the weighted av-

erage of real-valued forecasts and maintains marginal consistency. This procedure and the

theoretical results were illustrated on synthetic (Section A.4.3) and real-world data (Sec-

tion 7.5). In both cases the optimally weighted average was shown to be both unreliable

and under-confident, especially when the forecasters used very different sets of informa-

tion. Fortunately, extremization was able to largely correct these drawbacks and provide

transformed aggregates that were both reliable and more resolute.

Forecast aggregation literature by and large agrees that the goal is to collect and com-

bine information from different forecasters (see, e.g., Dawid et al. 1995; Armstrong 2001;

Forlines et al. 2012). At the same time aggregation continues to be performed via weighted

averaging or perhaps some other measure of central tendency, such as the median (Levins,

1966; Armstrong, 2001; Lobo and Yao, 2010). Section 7.2.2 explained that these popular

techniques do not behave like aggregators of information. Instead, they are designed to

reduce measurement error which is philosophically very different from information diver-

sity (Satopää et al., 2016). Therefore some details of their workings seem to have been

misunderstood. Unfortunately, it is unlikely that this paper will prevent aggregation with

measures of central tendency all together. However, it is hoped that our contributions will

at least prompt interest and provide direction in discovering alternative aggregation tech-

niques.

This paper illustrated that good information aggregation can arise from a simple linear

180



transformation that extremizes the weighted average. Of course, under a large number of

prediction problems, a non-linear extremizing function can lead to further improvements

in aggregation. The linear function, however, is a simple and natural starting point that

suffices for illustrating the benefits of extremizing. Is extremizing then guaranteed to be

beneficial in every prediction task? Probably not. Therefore, for the sake of applications,

it is important to discuss conditions under which extremizing is likely to improve the com-

monly used aggregators. Item iv) of Theorem 7.2.2 and the empirical results in Sections

A.4.3 and 7.5 suggest that extremizing is likely to be more beneficial under no or low

information overlap. This aligns with Satopää et al. (2015) who use the Gaussian par-

tial information model to show empirically that extremizing probability forecasts becomes

more important a) as the amount of the forecasters’ combined information increases, and b)

as the forecasters’ information sets become more diverse. This means that, for instance, the

average forecast of team members working in close collaboration require little extremizing

whereas forecasts coming from widely different sources must be heavily extremized.

Unfortunately, the amount and direction of extremization depends on a training set with

known outcomes. Such a training set may not always be available. In the most extreme

case the decision-maker may have only a set of forecasts of a single unknown outcome.

How should the forecasts be aggregated in such a low-data setting? The results in this pa-

per suggest that any type of weighted average (or some other measure of central tendency)

is a poor choice. A better alternative was discussed by Satopää et al. (2015). They as-

sume that the forecasters’ covariance matrix is compound symmetric and then aggregate

the probability forecasts with the optimal aggregator under the corresponding Gaussian

partial information model. Developing more general aggregators that place less constraints

on the joint dependence structure while satisfying at least two of the optimality properties

of Theorem 7.2.1 is certainly an interesting future research direction. The first step is to

develop a simple aggregator that is both marginally consistent and expanding. Finding an
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aggregator that maintains forecasters’ reliability seems more difficult.
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8
Conclusion and Future Work

This dissertation proposed an alternative to a core statistical concept, namely measurement

error, and therefore led to a new modeling paradigm that is fundamentally different from

classical statistics. Given that the contribution is at the root of statistical theory, the basic

theory of information diversity suggests a range of theoretical and applied projects in statis-

tics and other related fields. The following enumeration illustrates some specific projects.

1. So far, the Gaussian model has been mostly applied to forecasters predicting multi-

ple related outcomes. Therefore a natural next step is to develop an aggregator for

a set of forecasts of a single outcome. One idea is to first derive the revealed aggre-

gator based on the Gaussian model and then integrate out any unknown parameters

with respect to their posterior distribution. Chapter 6 introduced such an aggregator

for two probability forecasts under some restrictive assumptions on their information

structure. An extension to N forecasters with less restrictions on the information

structure is certainly needed. One idea is to treat the forecasters as exchangeable

and hence model their information structure with a compound symmetric covariance

matrix. A slightly more involved version would treat the forecasters as partially ex-

changeable and model their information structure with a covariance matrix consisting

of compound symmetric blocks.
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2. Satopää et al. (2016) estimate the information structure based on multiple predictions

per forecaster. The rest of the model parameters are estimated separately, leading to

an overall procedure with multiple steps. A more principled approach would estimate

all parameters jointly. Such joint estimation tasks are often easier within the Bayesian

paradigm where many numerical tools exists for estimating complex hierarchical

models. The only non-standard challenge here is to develop a prior distribution for

the information structure – a problem that seems interesting in itself.

3. Information diversity is not only relevant in statistical estimation but also offers new

directions in other areas of statistics. For instance, information diversity can be ap-

plied to testing hypotheses about a binary outcome. Such testing procedures can be

expected to yield higher power when information diversity is the dominant source of

data variation.

4. Most aggregation procedures use one estimate per forecaster, even though it is com-

mon for experts to update their beliefs over time. Motivated by this, Chapter 3 consid-

ered a dynamic context in which experts can update their beliefs at random intervals.

The aggregator therein, however, is an empirical procedure that requires a training

set of multiple prediction problems with known outcomes. Therefore, an interesting

future project is to use martingale theory within the partial information framework

and construct a time-series aggregator that can operate directly on the forecasts.

5. Information diversity can be also applied to model predictions. This suggests many

contributions in machine learning. For instance, semi-supervised learning refers to a

setup with a large amount of data of which only a relatively few have been labeled.

While the commonly used ensemble techniques, such as stacking or Bayesian aver-

aging, require labeled observations to combine the individual models’ predictions,

partial information aggregators do not. This suggests an opportunity for improved
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aggregation efficiency.

6. In many applications all the forecasts may not be available at any given moment but

instead arrive in a sequential manner. In such settings, re-computing the information

structure every time a new prediction arrives can be computationally demanding or

infeasible. This motivates the development of a sequential aggregation approach.

Such a procedure could keep track of the current consensus and the information it is

based upon. Any new forecast is then aggregated directly into this running consensus.

Therefore aggregation always involves only two forecasts: the current consensus

and the new forecast. This significantly reduces the dimension of the problem and

hence can facilitate estimation techniques that are both theoretically sound and more

efficient.

7. Under the Gaussian model a forecast that is further away from the marginal mean is

considered more informed. Of course, the more informed forecasters typically have

a higher impact on the final aggregate. This suggests that an uncalibrated forecaster

who gives overly extreme predictions can interfere with proper aggregation. One so-

lution to such ill-behaved forecasts is to develop a more robust version of the revealed

aggregator. This can be achieved by explicitly controlling the amount of information

that any forecaster can have, or alternatively by deriving the revealed aggregator un-

der a distribution with heavy tails, such as the multivariate t-distribution.

8. Even though a large literature attests to the benefits of collective problem solving and

crowd wisdom, it is generally less clear how groups should be formed, that is, what

kind of individuals brought together yield optimal results. Page (2008) argues in

favor of diversity: more diverse groups yield better results. This general statement,

however, requires some further analysis. In particular, it is unlikely that diversity

helps in every forecasting application, and in all those applications where diversity
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helps, it is unlikely that the type of beneficial diversity remains stable. For instance,

in predicting the success of a new blockbuster, it is important to have both men

and women in the group. On the other hand, men are likely to be less helpful in

predicting the demand of a new designer dress. The importance of diversity could

be investigated by developing a partial information model that allows the covariance

matrix to depend on the forecasters’ personal characteristics such as sex, education,

ethnicity, age, and so on. Such a model could pinpoint the beneficial type of diversity

in any given application and then use this knowledge to automatically choose the

right group of individuals to contribute in the final the aggregate forecast.

9. One theoretical direction is to show that no measure of central tendency collects

information. Proving such a statement, of course, would need a general characteriza-

tion of measures of central tendency. One option is to analyze aggregators that cannot

leave the convex hull of the individual forecasts. This result would naturally lead to

a discussion about the functional form of aggregators that do preserve good proper-

ties, such as calibration, of the individual forecasts. Given that information manifests

itself in terms of variance, it is unlikely that an aggregator that depends only on the

first moment can preserve calibration. This all, however, must be investigated and

made precise.

10. Another theoretical direction involves estimation of information overlap. First, given

that Cov (Xi, Xj) can be slightly negative, it cannot be a precise measure of infor-

mation overlap. This overlap is given by Fij = Fi ∩ Fj . Given that Fij is a σ-field,

there exists a forecast Xij such that Xij = E(Y |Fij). The variance of this fore-

cast, namely Var (Xij) quantifies the information overlap Fij . How can this partial

variance be captured in practice, and how does it relate to Cov (Xi, Xj)? Second,

the Gaussian model only incorporates pairwise information overlaps. DeGroot and

Mortera (1991) show that considering pairwise overlaps is enough for weighted av-
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eraging. Intuitively, a similar result should not hold under the partial information

framework because the revealed aggregator aims to use the group’s combined infor-

mation. The amount of this information cannot be determined only based on the sizes

of the individual information sets and their pairwise overlaps. If higher order over-

laps turn out to matter, the Gaussian model should be replaced by a new specification

that can incorporate such overlaps. This is likely to involve generalizing the usual

covariance to a new measure of how much any number of random variables change

together.
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A
Appendices

A.1 Supplement for Chapter 2

Appendix

Unfortunately, the full real-world dataset is not accessible for the public at the moment.

We have, however, requested a permission to publish the data online in the near future. For

the time being, we have included the following table that shows a complete list of the 69

problems in our dataset. For each problem, six summary statistics have been provided:

p̂G = Our aggregate estimate based on the forecasts made within the

first three days. The bias term, a, was estimated with âMLE .

p̄ = Sample average of the forecasts made within the first three days.

sp = Sample standard deviation of the forecasts made within the first

three days.

N = Number of forecasts made within the first three days.

T = Number of days that the problem was open.

Z = Indicator on whether the event happened (Z = 1) or did
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not happen (Z = 0).

Even though this paper does not focus on dynamic data, we report the time-frame of each

problem because this is somewhat indicative of the uncertainty and difficulty of the prob-

lem.

Question Text p̂G p̄ sp N T Z

Will the Six-Party talks (among the US,

North Korea, South Korea, Russia, China,

and Japan) formally resume in 2011?

0.04 0.27 0.22 102 123 0

Will Serbia be officially granted EU can-

didacy by 31 December 2011?

0.03 0.27 0.24 96 124 0

Will the United Nations General Assem-

bly recognize a Palestinian state by 30

September 2011?

0.01 0.23 0.27 128 29 0

Will Daniel Ortega win another term as

President of Nicaragua during the late

2011 elections?

0.78 0.61 0.19 109 65 1

Will Italy restructure or default on its debt

by 31 December 2011?

0.28 0.44 0.26 86 124 0

By 31 December 2011, will the World

Trade Organization General Council or

Ministerial Conference approve the ’ac-

cession package’ for WTO membership

for Russia?

0.43 0.48 0.21 98 106 1

Will the 30 Sept 2011 “last” PPB for Nov

2011 Brent Crude oil futures exceed $115?

0.23 0.40 0.21 302 23 0
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Will the Nikkei 225 index finish trading at

or above 9,500 on 30 September 2011?

0.06 0.29 0.21 290 22 0

Will Italy’s Silvio Berlusconi resign, lose

re-election/confidence vote, OR otherwise

vacate office before 1 October 2011?

0.03 0.24 0.20 333 23 0

Will the London Gold Market Fixing price

of gold (USD per ounce) exceed $1850 on

30 September 2011 (10am ET)?

0.78 0.60 0.22 269 23 0

Will Israel’s ambassador be formally in-

vited to return to Turkey by 30 September

2011?

0.02 0.22 0.19 334 23 0

Will PM Donald Tusk’s Civic Platform

Party win more seats than any other party

in the October 2011 Polish parliamentary

elections?

0.80 0.61 0.19 281 31 1

Will Robert Mugabe cease to be President

of Zimbabwe by 30 September 2011?

0.01 0.16 0.20 358 23 0

Will Muqtada al-Sadr formally withdraw

support for the current Iraqi government of

Nouri al-Maliki by 30 September 2011?

0.08 0.30 0.19 282 23 0

Will peace talks between Israel and Pales-

tine formally resume at some point be-

tween 3 October 2011 and 1 November

2011?

0.02 0.23 0.21 309 28 0
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Will the expansion of the European bailout

fund be ratified by all 17 Eurozone nations

before 1 November 2011?

0.64 0.55 0.26 395 9 1

Will the South African government grant

the Dalai Lama a visa before 7 October

2011?

0.03 0.28 0.25 647 2 0

Will former Ukrainian Prime Minister Yu-

lia Tymoshenko be found guilty on any

charges in a Ukrainian court before 1

November 2011?

0.50 0.51 0.20 364 6 1

Will Abdoulaye Wade win re-election as

President of Senegal?

0.79 0.62 0.16 200 173 0

Will the Freedom and Justice Party win

at least 20 percent of the seats in the first

People’s Assembly (Majlis al-Sha’b) elec-

tion in post-Mubarak Egypt?

0.86 0.65 0.19 207 108 1

Will Joseph Kabila remain president of

the Democratic Republic of the Congo

through 31 January 2012?

0.93 0.72 0.16 166 119 1

Will Moody’s issue a new downgrade of

the sovereign debt rating of the Govern-

ment of Greece between 3 October 2011

and 30 November 2011?

0.83 0.64 0.22 203 57 0

Will the UN Security Council pass a mea-

sure/resolution concerning Syria in Octo-

ber 2011?

0.11 0.35 0.24 231 27 0
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Will the U.S. Congress pass a joint resolu-

tion of disapproval in October 2011 con-

cerning the proposed $5+ billion F-16 fleet

upgrade deal with Taiwan?

0.02 0.23 0.22 297 17 0

Will the Japanese government formally

announce the decision to buy at least 40

new jet fighters by 30 November 2011?

0.30 0.44 0.20 193 57 0

Will the Tunisian Ennahda party offi-

cially announce the formation of an in-

terim coalition government by 15 Novem-

ber 2011?

0.70 0.57 0.23 508 7 0

Will Japan officially become a member

of the Trans-Pacific Partnership before 1

March 2012?

0.47 0.49 0.22 150 113 0

Will the United Nations Security Council

pass a new resolution concerning Iran by

1 April 2012?

0.59 0.53 0.27 193 145 0

Will Hamad bin Isa al-Khalifa remain

King of Bahrain through 31 January 2012?

0.99 0.82 0.17 163 84 1

Will Bashar al-Assad remain President of

Syria through 31 January 2012?

0.95 0.71 0.24 143 84 1

Will Italy’s Silvio Berlusconi resign, lose

re-election/confidence vote, OR otherwise

vacate office before 1 January 2012?

1.00 0.83 0.22 523 4 1

Will Lucas Papademos be the next Prime

Minister of Greece?

0.94 0.70 0.24 388 2 1
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Will Lucas Papademos resign, lose re-

election/confidence vote, or vacate the of-

fice of Prime Minister of Greece before 1

March 2012?

0.17 0.38 0.24 231 79 0

Will the United Kingdom’s Tehran em-

bassy officially reopen by 29 February

2012?

0.02 0.21 0.20 237 79 0

Will a trial for Saif al-Islam Gaddafi begin

in any venue by 31 March 2012?

0.41 0.48 0.26 215 110 0

Will S&P downgrade the AAA long-term

credit rating of the European Financial

Stability Facility (EFSF) by 30 March

2012?

0.69 0.57 0.22 259 33 1

Will North Korea successfully detonate

a nuclear weapon, either atmospherically,

underground, or underwater, between 9

January 2012 and 1 April 2012?

0.02 0.22 0.22 215 83 0

By 1 April 2012, will Egypt officially an-

nounce its withdrawal from its 1979 peace

treaty with Israel?

0.01 0.18 0.19 227 83 0

Will Kim Jong-un attend an official, in-

person meeting with any G8 head of gov-

ernment before 1 April 2012?

0.02 0.21 0.22 238 82 0

Will Christian Wulff resign or vacate the

office of President of Germany before 1

April 2012?

0.16 0.37 0.23 241 38 1
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Will the daily Europe Brent Crude FOB

spot price per barrel be greater than or

equal to $150 before 3 April 2012?

0.04 0.27 0.23 206 84 0

Will the Taliban begin official in-person

negotiations with either the US or Afghan

government by 1 April 2012?

0.08 0.32 0.24 184 69 0

Will Yousaf Raza Gillani resign, lose con-

fidence vote, or vacate the office of Prime

Minister of Pakistan before 1 April 2012?

0.18 0.38 0.22 146 68 0

Will Yemen’s next presidential election

commence before 1 April 2012?

0.34 0.46 0.25 222 28 1

Will Traian Basescu resign, lose referen-

dum vote, or vacate the office of President

of Romania before 1 April 2012?

0.08 0.31 0.21 149 68 0

Will the UN Security Council pass a

new measure/resolution directly concern-

ing Syria between 23 January 2012 and 31

March 2012?

0.39 0.47 0.26 156 68 0

Before 1 April 2012, will South Korea of-

ficially announce a policy of reducing Ira-

nian oil imports in 2012?

0.46 0.49 0.24 170 68 0

Will Israel release Palestinian politician

Aziz Duwaik from prison before 1 March

2012?

0.05 0.29 0.23 210 37 0
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Will Iran and the U.S. commence offi-

cial nuclear program talks before 1 April

2012?

0.01 0.17 0.20 225 61 0

Will Serbia be officially granted EU can-

didacy before 1 April 2012?

0.07 0.30 0.23 253 31 1

Will the IMF officially announce before

1 April 2012 that an agreement has been

reached to lend Hungary an additional 15+

Billion Euros?

0.51 0.51 0.23 177 61 0

Will Libyan government forces regain

control of the city of Bani Walid before 6

February 2012?

0.18 0.38 0.24 500 6 0

Will a run-off be required in the 2012 Rus-

sian presidential election?

0.04 0.29 0.25 277 34 0

Will the Iraqi government officially an-

nounce before 1 April 2012 that it has

dropped all criminal charges against its VP

Tareq al-Hashemi?

0.04 0.27 0.22 200 61 0

Will Egypt officially announce by 15

February 2012 that it is lifting its travel

ban on Americans currently in Egypt?

0.44 0.50 0.25 321 16 0

Will a Japanese whaling ship enter Aus-

tralia’s territorial waters between 7 Febru-

ary 2012 and 10 April 2012?

0.17 0.37 0.27 213 63 0
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Will William Ruto cease to be a candidate

for President of Kenya before 10 April

2012?

0.16 0.37 0.25 192 62 0

Will Marine LePen cease to be a candidate

for President of France before 10 April

2012?

0.04 0.26 0.22 214 62 0

Between 21 February 2012 and 1 April

2012, will the UN Security Council an-

nounce any reduction of its peacekeeping

force in Haiti?

0.20 0.41 0.25 168 40 0

Will Mohamed Waheed Hussain Manik

resign or otherwise vacate the office of

President of Maldives before 10 April

2012?

0.08 0.32 0.23 155 48 0

Will Japan commence parliamentary elec-

tions before 1 April 2012?

0.04 0.28 0.23 182 39 0

Before 13 April 2012, will the Turkish

government officially announce that the

Turkish ambassador to France has been re-

called?

0.06 0.29 0.22 143 51 0

Will Standard and Poor’s downgrade

Japan’s Foreign Long Term credit rating at

any point between 21 February 2012 and 1

April 2012?

0.08 0.32 0.25 172 40 0
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Will Myanmar release at least 100 more

political prisoners between 21 February

2012 and 1 April 2012?

0.55 0.52 0.25 170 40 0

Will a civil war break out in Syria between

21 February 2012 and 1 April 2012?

0.54 0.51 0.24 191 40 0

Will Tunisia officially announce an exten-

sion of its current state of emergency be-

fore 1 April 2012?

0.77 0.61 0.24 198 26 1

Before 1 April 2012, will Al-Saadi

Gaddafi be extradited to Libya?

0.02 0.22 0.20 225 26 0

Before 1 April 2012, will the Sudan and

South Sudan governments officially an-

nounce an agreement on oil transit fees?

0.04 0.27 0.23 202 26 0

Will Yemeni government forces regain

control of the towns of Jaar and Zinjibar

from Al-Qaida in the Arabian Peninsula

(AQAP) before 1 April 2012?

0.04 0.28 0.24 192 26 0

Figure A.1 summarizes the data by giving a scatterplot of p̂G(âMLE) against p̄. Notice

how the points are above (or below) the 45-degree dashed line when p̂G(âMLE) is less (or

more) than 0.5. This implies that p̂G(âMLE) is a much sharper aggregator than p̄.

A.2 Supplement for Chapter 3

This supplementary material accompanies the paper “Probability Aggregation in Time-

Series: Dynamic Hierarchical Modeling of Sparse Expert Beliefs”. It provides a technical

description of the sampling step of the SAC-algorithm.
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Figure A.1: A summarizing comparison of the aggregators p̂G(âMLE) and p̄.

Technical Details of the Sampling Step

The Gibbs sampler (Geman and Geman (1984)) iteratively samples all the unknown param-

eters from their full-conditional posterior distributions one block of parameters at a time.

Given that this is performed under the constraint b3 = 1 to ensure model identifiability, the

constrained parameter estimates should be denoted with a trailing (1) to maintain consis-

tency with earlier notation. For instance, the constrained estimate of γk should be denoted

by γ̂k(1) while the unconstrained estimate is denoted by γ̂k. For the sake of clarity, how-

ever, the constraint suffix is omitted in this section. Nonetheless, it is important to keep in

mind that all the estimates in this section are constrained.

A.2.1 Sample Xt,k

The hidden states are sampled via the Forward-Filtering-Backward-Sampling (FFBS) al-

gorithm that first predicts the hidden states using a Kalman Filter and then performs a

backward sampling procedure that treats these predicted states as additional observations
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(see, e.g., Carter and Kohn (1994); Migon et al. (2005) for details on FFBS). More specifi-

cally, the first part, namely the Kalman Filter, is deterministic and consists of a predict and

an update step. Given all the other parameters except the hidden states, the predict step for

the kth question is

Xt|t−1,k = γkXt−1|t−1,k

Pt|t−1,k = γ2
kPt−1|t−1,k + τ 2

k ,

where the initial values, X0|0,k and P0|0,k, are equal to 0 and 1, respectively.

Algorithm 2 The update step of the FFBS algorithm. Nt,k denotes the number of forecasts
made at time t for question k. The subindex j(i) denotes the ith expert’s self-assessed
expertise group.

for i = 1, 2, . . . , Nt,k do
ei,t,k = Yi,t,k − bj(i)Xt|t−1,k

Si,t,k = σ2
k + b2

j(i)Pt|t−1,k

Ki,t,k = Pt|t−1,kbj(i)S
−1
i,t,k

Xt|t,k = Xt|t−1,k +Ki,t,kei,t,k
Pt|t,k = (1−Ki,t,kbj(i))Pt|t−1,k

if i 6= Nt,k then
Xt|t−1,k = Xt|t,k
Pt|t−1,k = Pt|t,k

end if
end for

The update step is given by Algorithm 2. The update is repeated sequentially for each

observation Yi,t,k given at time t. For each such repetition, the previous posterior values,

Xt|t,k and Pt|t,k, are considered as the new prior values, Xt|t−1,k and Pt|t−1,k. If the obser-

vation Y t,k is completely missing at time t, the update step is skipped and

Xt|t,k = Xt|t−1,k

Pt|t,k = Pt|t−1,k
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After running the Kalman Filter up to the final time point at t = Tk, the final hidden state

is sampled from XTk,k ∼ N (XTk|Tk,k, PTk|Tk,k). The remaining states are obtained via the

backward sampling that is performed in reverse from

Xt−1,k ∼ N
(
V

(
γkXt,k

τ 2
k

+
Xt|t,k

Pt|t,k

)
, V

)
,

where

V =

(
γ2
k

τ 2
k

+
1

Pt|t,k

)−1

This can be viewed as backward updating that considers the Kalman Filter estimates as

additional observations at each given time point.

A.2.2 Sample b and σ2
k

First, vectorize all the response vectors Y t,k into a single vector denoted

Y k =
[
Y T

1,k, . . . ,Y
T
Tk,k

]T
.

Given that each Y t,k is matched with Xt,k via the time index t, we can form a |Y k| × J

design-matrix by letting

Xk =
[
(M kX1,k)

T , . . . , (M kXTk,k)
T
]T

Given that the goal is to borrow strength across questions by assuming a common bias

vector b, the parameter values must be estimated in parallel for each question such that the

matricesXk can be further concatenated intoX = [XT
1 , . . . ,X

T
K ]T during every iteration.

Similarly, Y k must be further vectorized into a vector Y = [Y T
1 , . . . ,Y

T
K ]T . The question-
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specific variance terms are taken into account by letting Σ = diag(σ2
111×T1 , . . . , σ

2
K11×TK ).

After adopting the non-informative prior p(b, σ2
k|Xk) ∝ σ−2

k for each k = 1, . . . , K, the

bias vector is sampled from

b| . . . ∼ NJ
(
(XTΣ−1X)−1XTΣ−1Y , (XTΣ−1X)−1

)
(A.1)

Given that the covariance matrix in Equation (A.1) is diagonal, the identifiability constraint

can be enforced after sampling a new value of b by letting b3 = 1. The variance parameters

are then sampled from

σ2
k| . . . ∼ Inv-χ2

(
|Y k| − J,

1

|Y k| − J
(Y k −Xkb)

T (Y k −Xkb)

)
,

where the distribution is a scaled inverse-χ2 (see, e.g., Gelman et al. (2003)). Given that

the experts are not required to give a new forecast at every time unit, the design matrices

must be trimmed accordingly such that their dimensions match up with the dimensions of

the observed matrices.

A.2.3 Sample γk and τ 2
k

The parameters of the hidden process are estimated via a regression setup. More specifi-

cally, after adopting the non-informative prior p(γk, τ 2
k |Xk) ∝ τ−2

k , the parameter values

are sampled from

γk| . . . ∼ N

(∑Tk
t=2Xt,kXt−1,k∑Tk−1

t=1 X2
t,k

,
τ 2
k∑Tk−1

t=1 X2
t,k

)

τ 2
k | . . . ∼ Inv-χ2

(
Tk − 1,

1

Tk − 1

Tk∑
t=2

(Xt,k − γkXt−1,k)
2

)
,

where the final distribution is a scaled inverse-χ2 (see, e.g., Gelman et al. (2003)).
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A.3 Supplement for Chapter 4

Appendix A: Proofs and Derivations

A.3.1 Proof of Proposition 4.3.3

Denote the set of all coherent information structures with QN . Consider Σ22 ∈ QN and

its associated Borel sets {Bi : i = 1, . . . , N}. Given that Σ22 is coherent, its information

can be represented in a diagram such as the one given by Figure 1 in the main manuscript.

Keeping the diagram representation in mind, partition the unit interval S into 2N disjoint

parts Cv := ∩i∈vBi \ ∪i/∈vBi, where v ⊆ {1, . . . , N} denotes a subset of forecasters and

each Cv represents information used only by the forecasters in v. Given that
∑

v |Cv| = 1,

it is possible to establish a linear function L from the probability simplex

∆N := conv{ev : v ⊆ {1, . . . , N}}

=
{
z ∈ R2N : z ≥ 0,1′z = 1

}

to the space of coherent information structures QN . In particular, the linear function L :

z ∈ ∆N → Σ22 ∈ QN is defined such that ρij =
∑
{i,j}⊆v zv and δi =

∑
i∈v zv. Therefore

L(∆N) = QN . Furthermore, given that ∆N is a convex polytope,

L(∆N) = conv{L(ev) : v ⊆ {1, . . . , N}} (A.2)

= conv
{
xx′ : x ∈ {0, 1}N

}
= COR(N),

which establishes COR(N) = QN . Equality (A.2) follows from the basic properties of

convex polytopes (see, e.g., McMullen and Shephard 1971, pp. 16). Each Σ22 ∈ COR(N)

has N(N+1)
2

=
(
n+1

2

)
parameters and therefore exists in

(
n+1

2

)
dimensions.
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A.3.2 Proof of Proposition 4.4.1

The proposition is proved by showing E(1A|{XBi}Ni=1, XB′) = E(1A|XB′). First, append

XB′ to the multivariate Gaussian distribution (2) of the main manuscript:



XS

XB′

XB1

XB2

...

XBN


∼ N


0,

Ω11 Ω12

Ω21 Ω22

 =



1 δ′ δ1 δ2 . . . δN

δ′ δ′ δ1 δ2 . . . δN

δ1 δ1 δ1 ρ1,2 . . . ρ1,N

δ2 δ2 ρ2,1 δ2 . . . ρ2,N

...
...

...
...

. . .
...

δN δN ρN,1 ρN,2 . . . δN




.

Denote XΩ = (XB′ , XB1 , . . . , XBN )′. If e1 is the first standard basis vector of length

N + 1 and the above multivariate Gaussian distribution is non-degenerate, then Ω21 =

e′1Ω22 ⇔ Ω21Ω
−1
22 = e′1. This identity together with the well-known results of the condi-

tional Gaussian distributions (see, e.g., Ravishanker and Dey 2001, Result 5.2.10) give

E(1A|{XBi}Ni=1, XB′) = Φ

(
Ω12Ω

−1
21 XΩ√

1−Ω12Ω
−1
21 Ω21

)

= Φ

(
e′1XΩ√

1− e′1Ω21

)

= Φ

(
XB′√
1− δ′

)
= E(1A|XB′)
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A.3.3 Proof of Proposition 4.4.2

Given that

P ′ ∼ N
(

0, σ2
1 :=

δ′

1− δ′

)
1

N

N∑
i=1

Pi ∼ N

(
0, σ2

2 :=
1

N2

{
N∑
i=1

δi
1− δi

+ 2
∑
i,j:i<j

ρij√
(1− δj)(1− δi)

})
,

the amount of extremizing α is a ratio of two correlated Gaussian random variables. The

Pearson product-moment correlation coefficient for them is

κ =

∑N
i=1

δi√
1−δi√

δ′
{∑N

i=1
δi

1−δi + 2
∑

i,j:i<j
ρij√

(1−δj)(1−δi)

}

It follows that α has a Cauchy distribution as long as σ1 6= 1, σ2 6= 1, or κ ± 1 (see,

e.g., Cedilnik et al. 2004). These conditions are very mild under the Gaussian model.

For instance, if no forecaster knows as much as the oracle, the conditions are satisfied.

Consequently, the probability density function of α is

f(α|x0, γ) =
1

π

γ

(α− x0)2 + γ2
,

where x0 = κσ1/σ2 and γ =
√

1− κ2σ1/σ2. The parameter x0 represents the location (the

median and mode) and γ specifies the scale (half the interquartile range) of the Cauchy

distribution. The location parameter simplifies to

x0 = κ
σ1

σ2

=
N
∑N

i=1
δi√

(1−δi)(1−δ′)∑N
i=1

δi
1−δi + 2

∑
i,j:i<j

ρij√
(1−δj)(1−δi)
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Given that all the remaining terms are positive, the location parameter x0 is also positive.

Compare the N terms with a given subindex i in the numerator with the corresponding

terms in the denominator. From δ′ ≥ δi ≥ ρij , it follows that

δi
1− δi

=
δi√

(1− δi)(1− δi)
≤ δi√

(1− δi)(1− δ′)
(A.3)

ρij√
(1− δj)(1− δi)

≤ δi√
(1− δi)(1− δ′)

(A.4)

Therefore

N

N∑
i=1

δi√
(1− δi)(1− δ′)

≥
N∑
i=1

δi
1− δi

+ 2
∑
i,j:i<j

ρij√
(1− δj)(1− δi)

,

which gives that x0 ≥ 1. Given that the Cauchy distribution is symmetric around x0, it must

be the case that P(α > 1|Σ22, δ
′) ≥ 1/2. Based on (A.3) and (A.4), the location x0 = 1

only when all the forecasters know the same information, i.e., when δi = δj for all i 6= j.

Under this particular setting, the amount of extremizing α is non-random and always equal

to one. Any deviation from this particular information structure makes α random, x0 > 1,

and hence P(α > 1|Σ22, δ
′) > 1/2.

A.3.4 Derivation of Equation 4.4

Clearly, any δ ∈ [0, 1] is plausible. Conditional on such δ, however, the overlap parameter

λ must be within a subinterval of [0, 1]. The upper bound of this subinterval is always

one because the forecasters may use the same information under any δ and N . To derive

the lower bound, note that information overlap is unavoidable when δ > 1/N , and that

minimum overlap occurs when all information is used either by everyone or by a single

forecaster. In other words, if δ > 1/N and Bi ∩ Bj = B with |B| = λδ for all i 6= j,

the value of λ is minimized when λδ + N(δ − δλ) = 1. Therefore the lower bound

205



for λ is max {(N − δ−1)/(N − 1), 0}, and Σ22 is coherent if and only if δ ∈ [0, 1] and

λ|δ ∈ [max {(N − δ−1)/(N − 1), 0} , 1].

A.3.5 Proof of Proposition 4.5.1

(i) This follows from direct computation:

α =

 1
(N−1)λ+1

∑N
i=1 XBi√

1− Nδ
(N−1)λ+1

/(
1

N

N∑
i=1

XBi√
1− δ

)

=

N
√

1−δ
(N−1)λ+1√

1− Nδ
(N−1)λ+1

, (A.5)

which simplifies to the given expression after substituting in γ. Given that this quan-

tity does not depend on any XBi , it is non-random.

(ii) For a given δ, the amount of extremizing α is minimized when (N − 1)λ + 1 is

maximized. This happens as λ ↑ 1. Plugging this into (A.5) gives

α =

N
√

1−δ
(N−1)λ+1√

1− Nδ
(N−1)λ+1

↓
√

1− δ√
1− δ

= 1

(iii) Assume without loss of generality that P̄ > 0. If max{p1, p2, . . . , pN} < 1, then

setting δ = 1/N and λ = 0 gives an aggregate probability p′′ = 1 that is outside the

convex hull of the individual probabilities.
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Appendix B: Parameter Estimation Under Symmetric In-

formation

This section describes how the maximum likelihood estimates of δ and λ can be found

accurately and efficiently. Denote a N × N matrix of ones with JN . A matrix Σ is called

compound symmetric if it can be expressed in the form Σ = INA+JNB for some constants

A andB. The inverse matrix (if it exists) and any scalar multiple of a compound symmetric

matrix Σ are also compound symmetric (Dobbin and Simon, 2005). More specifically, for

some constant c,

cΣ = IN(cA) + JN(cB)

Σ−1 = IN
1

A
− JN

B

A(A+NB)
(A.6)

Define

Σ22 := Cov (X) = INAX + JNBX

ΣP := Cov (P ) = Σ22/(1− δ) = INAP + JNBP (A.7)

Ω := Σ−1
P = INAΩ + JNBΩ

To set up the optimization problem, observe that the Jacobian for the map P → Φ (P ) =

(Φ(P1),Φ(P2), . . . ,Φ(PN))′ is J(P ) = (2π)−N/2 exp (−P ′P /2). If h(P ) denotes the

multivariate Gaussian density of P ∼ NN (0,ΣP ), the density for p = (p1, p2, . . . , pN)′ is

f (p|δ, λ) = h(P )J(P )−1 ∝ |ΣP |−1/2 exp

[
−1

2
P ′Σ−1

P P

]
,

207



where P = Φ−1(p). Let SP = PP ′ be the (rank one) sample covariance matrix of P . The

log-likelihood then reduces to

log f (p|δ, λ) ∝ − log det ΣP − tr
(
S−1
P ΣP

)
This log-likelihood is not concave in ΣP . It is, however, a concave function of Ω = Σ−1

P .

Making this change of variables gives us the following optimization problem:

minimize − log det Ω + tr (SPΩ) (A.8)

subject to δ ∈ [0, 1]

λ ∈
[
max

{
N − δ−1

N − 1
, 0

}
, 1

)
,

where the open upper bound on λ ensures a non-singular information structure Σ22. Un-

fortunately, the feasible region is not convex (see, e.g., Figure 3 in the main manuscript)

but can be made convex by re-expressing the problem as follows: First, let ρ = δλ denote

the amount of information known by a forecaster; that is, let AX = (δ − ρ) and BX = ρ.

Solving the problem in terms of δ and ρ is equivalent to minimizing the original objective

(A.8) but subject to 0 ≤ ρ ≤ δ and 0 ≤ ρ(N − 1) − Nδ + 1. Given that this region is

an intersection of four half-spaces, it is convex. Furthermore, it can be translated into the

corresponding feasible and convex set of (AΩ, BΩ) via the following steps:

Σ22 ∈ {Σ22 : 0 ≤ ρ ≤ δ, 0 ≤ ρ(N − 1)−Nδ + 1}

⇔ Σ22 ∈ {Σ22 : 0 ≤ BX , 0 ≤ AX , 0 ≤ 1−BX +NAX , }

⇔ ΣP ∈ {ΣP : 0 ≤ AP ≤ 1/(N − 1), 0 ≤ BP}

⇔ Ω ∈ {Ω : 0 ≤ AΩ −N + 1, 0 ≤ AΩ +BΩN, 0 ≤ −BΩ}
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According to Rao (2009), log det(Ω) = N logAΩ + log (1 +NBΩ/AΩ). Plugging this

and the feasible region of (AΩ, BΩ) into the original problem (A.8) gives an equivalent but

convex optimization problem:

minimize −N logAΩ − log

(
1 +

NBΩ

AΩ

)
+ AΩ tr(SP ) +BΩ tr(SPJN)

subject to 0 ≤ AΩ −N + 1

0 ≤ AΩ +BΩN

0 ≤ −BΩ

The first term of this objective is both convex and non-decreasing. The second term is a

composition of the same convex, non-decreasing function with a function that is concave

over the feasible region. Such a composition is always convex. The last two terms are affine

and hence also convex. Therefore, given that the objective is a sum of four convex func-

tions, it is convex, and globally optimal values of (AΩ, BΩ) can be found very efficiently

with interior point algorithms such as the barrier method. There are many open software

packages that implement generic versions of these methods. For instance, our implemen-

tation uses the standard R function constrOptim to solve the optimization problem.

Denote optimal values with (A∗Ω, B
∗
Ω). They can be traced back to (δ, λ) via (A.6) and

(A.7). The final map simplifies to

δ∗ =
B∗Ω(N − 1) + A∗Ω

A∗Ω(1 + A∗Ω) +B∗Ω(N − 1 +NA∗Ω)
and λ∗ = − B∗Ω

B∗Ω(N − 1) + A∗Ω
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A.4 Supplement for Chapter 5

Appendix A: Proofs and Derivations

A.4.1 Proof of Proposition 5.2.1

Proof. This follows from direct computation and the definition of conditional expectation

as follows:

EP(Y |Fj)EQ

(
dP
dQ

∣∣∣∣Fj) = EQ

(
EP(Y |Fj)

dP
dQ

∣∣∣∣Fj) (since EP(Y |Fj) ∈ Fj)

⇔
∫
A

EP(Y |Fj)EQ

(
dP
dQ

∣∣∣∣Fj) dQ =

∫
A

EP(Y |Fj)
dP
dQ

dQ (for all A ∈ Fj)

=

∫
A

EP(Y |Fj)dP

=

∫
A

Y dP

=

∫
A

dP
dQ

Y dQ,

which then gives that EQ( dP
dQY |Fj) = EP(Y |Fj)EQ

(
dP
dQ |Fj

)
. Dividing both sides by

EQ

(
dP
dQ |Fj

)
gives the final answer.

A.4.2 Proof of Proposition 5.2.2

Proof. Denote the mean of the target outcome Y with µ0 := E(Y ). Each item is then

proved as follows.

i) Given that E(Y |Xj) = Xj , the law of iterated expectation gives

E(Xj) = E(E(Y |Xj)) = E(Y )

for all j = 1, . . . , N .
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iii)

Cov (Xj, Xi) = E((Xj − µ0)(Xi − µ0))

= E(XjXi)− µ2
0

= E(E(Xj|Xi)Xi)− µ2
0

= E(E(E(Y |Xj)|Xi)Xi)− µ2
0

= E(E(Y |Xi)Xi)− µ2
0 (the smallest σ-field wins)

= E(X2
i )− µ2

0

= Var (Xi)

ii)

Var (Xi) = Cov (Xi, Xj) (by item iii)

= E((Xi − µ0)(Xj − µ0))

≤ E((Xi − µ0)2)1/2E((Xj − µ0)2)1/2 (by Cauchy-Schwarz’ inequality)

=
√

Var (Xi)Var (Xj),

which then provides Var (Xi) ≤ Var (Xj). This inequality is tight because Xi = Xj

for Fi = Fj .

A.4.3 Finding µ∗ for Psd(· : κ)

This section describers a binary-search-like algorithm to solve

µ∗ = arg min
µ≥0

π(µ) = arg min
µ≥0

N∑
i=1

(
(µ− li)2

+ + (li − κµ)2
+

)
(A.9)
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Algorithm 3 This procedure solves (A.9) efficiently using the structure of the problem and
binary-search.
Require: Condition number threshold κ ≥ 1 and sample eigenvalues in ascending order

l1 ≤ l2 ≤ · · · ≤ lN+1.
1: procedure BINARY-SEARCH OPTIMIZATION

2: Initialize D ← max{l1, 0} and U ← lN+1/κ.
3: µ0 ← (D + U)/2
4: for n = 0, 1, . . . do
5: Compute µ∗n, dn, and un.
6: if µ∗n < 0 and dn < 0 then
7: return 0
8: else if µ∗n < dn then
9: U ← dn

10: else if µ∗n > un then
11: D ← un
12: else
13: return µ∗n
14: end if
15: µn+1 ← (D + U)/2
16: end for
17: return µ∗n
18: end procedure

First, it can be assumed that cond(h(SZ)) /∈ [1, κ]; otherwise, the projection can simply

return h(SZ). Second, max{0, l1} ≤ µ ≤ lN+1/κ because otherwise moving µ closer to

the nearest sample eigenvalue decreases π(µ). Now, consider some value µn ≥ 0 and two

index sets Dn = {i : li ≤ µn} and Un = {i : µnκ ≤ li}. Then,

π(µn) =
∑
i∈Dn

(µn − li)2 +
∑
i∈Un

(li − κµn)2 ,

which has a global minimum at

µ∗n =

∑
i∈Dn li + κ

∑
i∈Un li

|Dn|+ κ2|Un|

The operator |A| denotes the number of elements in the set A. Let dn and un denote the

minimum and maximum, respectively, of the interval where any value of µ gives the index
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sets Dn and Un. To make this specific, define two operators:

d(µ) = max{li : li ≤ µ} and u(µ) = min{li : li ≥ µ}.

If no value is found, then d(µ) = 0 and u(µ) = +∞. Then,

dn = max{d(µn), d(µnκ)/κ}

un = min{u(µn), u(µnκ)/κ}

Of course, µ∗n is the solution to (A.9) as long as µ∗n ∈ (dn, un]. If, on the other hand, µ∗n

is less than dn (or greater than un), the global minimum µ∗ must be smaller than dn (or

greater than un). If µ∗n is, say, less than dn, then a natural approach is to update µn to µn+1

that is somewhere between dn and some known lower bound of µ. This gives rise to a

binary-search-like algorithm described in Algorithm 3.

Appendix B: Synthetic Data Analysis

This supplementary section evaluates the models under synthetic data generated directly

from the multivariate Gaussian distribution (7.3). The analysis provides insight into the be-

havior of the estimation procedure and also introduces the simplest instance of the Gaussian

model.

Model Instance. The link function g(·) is the identity. Thus, the target quantity

is Yk = g(Z0k) = Z0k, and the forecasts are Xjk = E(Yk|Zjk) = Zjk for all

j and k. The revealed aggregator for event k is X ′′k = diag(Σ)′Σ−1Xk, where

Xk = (X1k, . . . , XNk)
′.

Simulating forecasts from (7.3) requires a Σ such that h(Σ) ∈ SN+1
+ . One approach is

to generate a random N × N positive definite matrix from a Wishart distribution, scale it
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such that all diagonal entries are within [0, 1], and accept this scaled version if it satisfies

h(Σ) ∈ SN+1
+ . However, based on a brief simulation study that is not presented here for

the sake of brevity, the rate at which the randomly generated matrix is accepted decreases

in N and is very close to zero already for N > 5. Therefore this section adopts a different

approach that samples Σ with full acceptance rate but only within a subset of all informa-

tion structures: first pick δj
i.i.d.∼ U(0.1, 0.9) and then set ρij = δiδj for all i 6= j. This

way Σ − diag(Σ)diag(Σ)′ = Diag((δ1 − δ2
1, . . . , δN − δ2

N)′) ∈ SN+ , which, by the Schur

complement, satisfies h(Σ) ∈ SN+1
+ . Finally, the outcome and forecasts for the kth event

are drawn from (Yk,Xk) = (Z0k, Z1k, . . . , ZNk)
′ i.i.d.∼ NN+1(0, h(Σ)). These forecasts are

aggregated in the following ways:

1. X ′′k (SX) = diag(SX)′S−1
X Xk, where SX is the sample covariance matrix. Given

that SX is singular when K < N , its inverse is computed with the (Moore-Penrose)

generalized inverse.

2. X ′′cov = X ′′k (Σcov) = diag(Σcov)
′Σ−1

covXk, where Σcov = PLSE(SX : κcov). The

condition number constraint κcov is found over a grid of 100 values between 10 and

1, 000.

3. X ′′out = X ′′k (Σout) = diag(Σout)
′Σ−1

outXk, where Σout = PLSE(SX : κout) and κout is

found using cross-validation as proposed by Won and Kim (2006). More specifically,

they suggest choosing κ by maximizing the expected predictive log-likelihood. More

specifically, if Z1, . . . ,ZK , Z̃
i.i.d.∼ NN(0,Σ), they recommend using

κ = arg max
ν≥1

E
{
EZ̃

[
`(Z̃,PLSE(S : ν))

]}
,

where `(·) denotes the log-likelihood and S is computed only based on Z1, . . . ,ZK .

They approximate the expected predictive log-likelihood with cross validation. This

partitions the data Z = (Z1, . . . ,ZK)′ intoR subsets such that Z =
(
Z(1), . . . ,Z(R)

)′.
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Figure A.2: Estimation of the information structure and the average condition numbers of

the estimates. Both are important for accurate prediction of Yk. The vertical dashed lines

represents the number of forecasters fixed at N = 20.

During the rth iteration, Z(r) functions as Z̃ and the remainingR−1 subsets form the

estimated covariance matrix, denoted with S(r). In this section, the cross-validation

uses five folds and κout is found using the same grid as in X ′′cov.

4. X ′′true = X ′′k (Σ) = diag(Σ)′Σ−1Xk. This aggregator assumes the knowledge of the

true Σ and hence represents optimal performance.

5. The average forecast

6. The median forecast

The overall process is repeated 5, 000 times under different values of K and N , each rang-

ing from 5 to 35 with constant increments of 5. The final results then represent average

performance across those 5, 000 iterations.
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Recall that accurate revealed aggregation arises from a precise estimate of Σ and a

low condition number. This allows different strategies for achieving good aggregation.

In fact, the two selection procedures discussed in Section 5.3.4 and item 3 above make

slightly different tradeoffs. This is illustrated in Figure A.2 that varies K between 5 and

35 but keeps N fixed at 20. More specifically, Figure A.2a examines how Σcov, Σout,

and SX capture Σ. Even though all estimators become more accurate as K grows, Σout

and SX improve at a higher rate than Σcov. In fact, if K > N , SX and Σout perform

better than Σcov. On the other hand, if K < N , Σcov is more accurate than the other two.

Figure A.2b presents the corresponding (average) condition numbers of these estimates.

This plot omits cond(SZ) because this was overall very large and hence made the scale

too wide for a proper comparison of cond(Σcov) and cond(Σout). Notice that in this figure

cond(Σout) increases while cond(Σcov) generally decreases as K grows larger. In fact,

whenK > N , cond(Σcov) is smaller than cond(Σout). From the prediction perspective, this

makes conditional-validation more forgiving towards error in the estimated Σ. Therefore,

while Σcov incorporates the actual prediction process and looks for a fine balance between

a precise estimate of Σ and a low condition number, Σout is unaware of the details of

revealed aggregation and hence simply focuses on estimating Σ as accurately as possible.

These two strategies lead to slightly different predictive behavior as is illustrated in

Figure A.3. This plot shows the average RMSEs of the competing aggregators in pre-

dicting Yk. Figure A.3a varies K but fixes N = 20. Figure A.3b, on the other hand,

varies N but fixes K = 20. Given that Yk = Z0k ∼ N (0, 1), the RMSE of the prior

mean E(
√

(Yk − 0)2) = E(|Yk|) =
√

2/π ≈ 0.8 can be considered as the upper bound

in prediction error. The lower bound, on the other hand, is given by X ′′true. The revealed

aggregator X ′′(SX) typically received a loss much larger than 0.8 and is therefore not in-

cluded in the figure. Overall, the two measurement-error aggregators, namely average and

median perform very similarly, with RMSE around 0.5. They both show slight improve-
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Figure A.3: The accuracy to predict Yk under different values of N and K. The aggregator

X ′′true assumes knowledge of the true information structure and hence represents optimal

accuracy.

ment as N increases. In all cases, however, their RMSE is uniformly well above that of

the revealed aggregators, suggesting that measurement-error aggregators are a poor choice

when forecasts truly arise from a partial information model. The revealed aggregators X ′′cov

andX ′′out perform very similarly whenK ≥ 15. They collect information and appear to im-

prove at the optimal rate as N increases. This can be seen in the way the performance gap

from Xtrue to X ′′out and X ′′cov remains approximately constant in Figure A.3b. They both,

however, approach X ′′true as K grows larger. When K is small, say less than 15, X ′′cov is

more robust and clearly yields better results than X ′′out. This is an important consideration

because in prediction polling K is often much smaller than N . For all these reasons only

X ′′cov is considered in this paper.
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A.5 Supplement for Chapter 6

A.5.1 Proof of Proposition 6.2.1

Under the Gaussian model the joint distribution of XS, XB1 and XB2 is


XS

XB1

XB2

 ∼ N
0,

Σ11 Σ12

Σ21 Σ22


 .

where

Σ11 Σ12

Σ21 Σ22

 :=


2 1 1

1 1 ρ

1 ρ 1

 .

The inverse of Σ22 is

Σ−1
22 =

1

1− ρ2

 1 −ρ

−ρ 1

 .

Using the well-known properties of a conditional multivariate Gaussian distribution (see,

e.g., Ravishanker and Dey 2001, Result 5.2.10), the distribution ofXS givenX = (XB1 , XB2)
′

is XS|X ∼ N (µS, σ
2
S), where

µS = Σ12Σ
−1
22X =

1

1 + ρ
(XB1 +XB2), and

σ2
S = Σ11 −Σ12Σ

−1
22 Σ21 =

2ρ

1 + ρ
.
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Denoting p(1) and p(2) respectively by p and q, we recall that the individual forecasts are

p = Φ(XB1) and q = Φ(XB2). The synthesized forecast is then

gρ(p, q) = P(XS > 0|p, q)

= P(XS > 0|XB1 , XB2)

= 1− Φ

− 1
1+ρ

(XB1 +XB2)√
2ρ

1+ρ


= Φ

(
Φ−1(p) + Φ−1(q)√

2ρ(1 + ρ)

)
.

A.5.2 Proof of Proposition 6.2.1

To compute λρ(p, q), recall that Z1 and Z2 are standard normals with covariance ρ and

that (Z1, Z2) maps to (p, q) by Φ in each coordinate. The density of (Z1, Z2) at (x, y) is

proportional to

(2π)−1(detQ)1/2 exp

[
1

2
Q(x, y)

]
where the quadratic form Q is the inverse of the covariance matrix:

Q =
1

1− ρ2

 1 −ρ

−ρ 1

 .

Thus the density h(x, y) of (Z1, Z2) at (x, y) is equal to

1

2π
(1− ρ2)−1/2 exp

[
−x

2 + y2 − 2ρxy

2(1− ρ2)

]
. (A.10)

The Jacobian of the map (x, y) 7→ (Φ(x),Φ(y)) at (x, y) is given by

1

2π
exp

[
−1

2

(
x2 + y2

)]
(A.11)
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and therefore

λρ(p, q) = h(x, y)J(x, y)−1
∣∣
x=Φ−1(p),y=Φ−1(q)

= c(1− ρ2)−1/2 exp

[
−ρ

2x2 − 2ρxy + ρ2y2

2(1− ρ2)

]
.

Putting this together with (6.3) and (6.4) gives

g(p, q) = A0/B0, (A.12)

where

A0 =

∫
Φ

(
Φ−1(p) + Φ−1(q)√

2ρ(1 + ρ)

)
(1− ρ2)−1/2

× exp

[
−ρ

2Φ−1(p)2 − 2ρΦ−1(p)Φ−1(q) + ρ2Φ−1(q)2

2(1− ρ2)

]
dρ

B0 = (1− ρ2)−1/2 exp

[
−ρ

2Φ−1(p)2 − 2ρΦ−1(p)Φ−1(q) + ρ2Φ−1(q)2

2(1− ρ2)

]

By symmetry, we may assume without loss of generality that p < q. Removing a factor of

exp

[
1

2

(
Φ−1(p)2 + Φ−1(q)2

)]
from both numerator and denominator of (A.12) gives

g(p, q) = A1/B1, (A.13)

where

A1 =

∫ 1

0

Φ

(
Φ−1(p) + Φ−1(q)√

2ρ(1 + ρ)

)
1√

1− ρ2

exp

(
−Φ−1(p)2 − 2ρΦ−1(p)Φ−1(q) + Φ−1(q)2

2(1− ρ2)

)
dρ

B1 =

∫ 1

0

1√
1− ρ2

exp

(
−Φ−1(p)2 − 2ρΦ−1(p)Φ−1(q) + Φ−1(q)2

2(1− ρ2)

)
dρ
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We compute first the denominator of (A.13), then the numerator, which uses similar

techniques but is a little more involved.

Computation of the denominator

Denote the denominator of (A.13) by

I2 :=

∫ 1

0

1√
1− ρ2

exp

(
−Φ−1(p)2 − 2ρΦ−1(p)Φ−1(q) + Φ−1(q)2

2(1− ρ2)

)
dρ . (A.14)

Denote the density, CDF and tail of the bivariate standard normal with correlation parame-

ter ρ ∈ (−1, 1) respectively by

φ2(x, y; ρ) =
1

2π
√

1− ρ2
e
−x

2−2ρxy+y2

2(1−ρ2)

Φ2(b1, b2; ρ) =

∫ b1

−∞

∫ b2

−∞
φ2(x, y; ρ)dydx

L(b1, b2, ρ) = Φ2(−b1,−b2, ρ) .

Plackett’s formula (Plackett, 1954) gives

∂L(b1, b2, ρ)

∂ρ
=

exp

(
−b

2
1 − 2ρb1b2 + b2

2

2(1− ρ2)

)
2π
√

1− ρ2

specializes to the integrand in (A.14) when b1 = Φ−1(p) and b2 = Φ−1(q), whence

I2 =

∫ 1

0

2π
∂

∂ρ
L
(
Φ−1(p),Φ−1(q), ρ

)
dρ .
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Using the identities L(b1, b2, 0) = Φ(−b1)Φ(−b2) and L(b1, b2, 1) = Φ(−max{b1, b2})

along with p < q gives

I2 = 2π
[
L(Φ−1(p),Φ−1(q), 1)− L(Φ−1(p),Φ−1(q), 0)

]
= 2π

[
Φ(−max{Φ−1(p),Φ−1(q)})− Φ(−Φ−1(p))Φ(−Φ−1(q))

]
= 2π(1− q)p . (A.15)

Computation of the numerator

Denote the numerator of (A.13)

I1 =

∫ 1

0

Φ

(
Φ−1(p) + Φ−1(q)√

2ρ(1 + ρ)

)
1√

1− ρ2
(A.16)

× exp

(
−Φ−1(p)2 − 2ρΦ−1(p)Φ−1(q) + Φ−1(q)2

2(1− ρ2)

)
dρ . (A.17)

Extending the notation from before, denote the trivariate normal CDF by

Φ3(b1, b2, b3;R) =
1

(2π)3/2|R|1/2

∫ b1

−∞

∫ b2

−∞

∫ b3

−∞
exp

(
−x

TR−1x

2

)
dx3 dx2 dx1, (A.18)

where R = (ρij) is the correlation matrix. In Plackett (1954) there is a formula as well for

the partial derivative of the trivariate CDF with respect to the coefficient ρ12, meaning that

the (1, 2) and (2, 1) entries of R change while all other entries remain constant:

∂Φ3(b1, b2, b3;R)

∂ρ12

=
exp

(
− b21−2ρ12b1b2+b22

2(1−ρ2)

)
2π
√

1− ρ2
12

Φ(u3(ρ12)) , (A.19)

where

u3(ρ) =
b3(1− ρ2)− b1(ρ31 − ρρ32)− b2(ρ32 − ρρ31)√

(1− ρ2)(1− ρ2 − ρ2
31 − ρ2

32 + 2ρρ31ρ32)
. (A.20)
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Plugging in

b1 = −Φ−1(p), b2 = −Φ−1(q), b3 = 0, and ρ31 = ρ32 =
1√
2

gives

u3(ρ12) =

1− ρ12√
2

(
Φ−1(p) + Φ−1(q)

)
√

(1− ρ2
12)(ρ12 − ρ2

12)
=

Φ−1(p) + Φ−1(q)√
2ρ12(1 + ρ12)

leading to

∂Φ3

(
−Φ−1(p),−Φ−1(q), 0;

(
1 ρ12

√
1/2

ρ12 1
√

1/2√
1/2

√
1/2 1

))
∂ρ12

=

exp

(
−Φ−1(p)2 − 2ρ12Φ−1(p)Φ−1(q) + Φ−1(q)2

2(1− ρ2
12)

)
2π
√

1− ρ2
12

× Φ

(
Φ−1(p) + Φ−1(q)√

2ρ12(1 + ρ12)

)
. (A.21)

Integrating (A.21) as ρ12 goes from 0 to 1 and comparing to (A.16) we see that

I1 (A.22)

= 2π

∫ 1

0

∂

∂ρ12

Φ3

(
−Φ−1(p),−Φ−1(q), 0;

(
1 ρ12

√
1/2

ρ12 1
√

1/2√
1/2

√
1/2 1

))
dρ12

= 2π
[
Φ3

(
−Φ−1(p),−Φ−1(q), 0;R

)
− Φ3

(
−Φ−1(p),−Φ−1(q), 0;R∗

)]
,(A.23)

where the matrices R, R∗ are given by

R =


1 1 1√

2

1 1 1√
2

1√
2

1√
2

1

 , R∗ =


1 0 1√

2

0 1 1√
2

1√
2

1√
2

1

 . (A.24)
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Figure A.4: The darker region has probability P(Y1 ≤ a)2/2

Computing first Φ3(−Φ−1(p),−Φ−1(q), 0;R), we remark that R forces X1 = X2, whence

Φ3(a, b, c;R) = Φ2(−max{a, b}, c;R′) where R′ =

 1
√

1/2√
1/2 1

. If (X1, X2) is

Gaussian with covariance R′ then X1 = Y1 and X2 = (Y1 + Y2)/
√

2 where (Y1, Y2) are

independent standard normals. Thus, using p < q,

Φ3

(
−Φ−1(p),−Φ−1(q), 0;R

)
= Φ2

(
−Φ−1(q), 0;R′

)
= P(X1 ≤ −Φ−1(q), X2 ≤ 0)

= P(Y1 ≤ −Φ−1(q), Y2 ≤ −Y1) .

Meyer (2009) remarks (see Figure A.4) that

P(Y1 ≤ a, Y2 ≤ −Y1) = P(Y1 ≤ a)− 1

2
P(Y1 ≤ a)2 .

Thus,

Φ3

(
−Φ−1(p),−Φ−1(q), 0;R

)
= (1− q)− (1− q)2

2
. (A.25)
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Next, we compute Φ3 (−Φ−1(p),−Φ−1(q), 0;R∗). In this case,

(X1, X2, X3) = (Y1, Y2, (Y1 + Y2)/
√

2),

where again (Y1, Y2) is a pair if independent standard normals. We need therefore to com-

pute

P(Y1 ≤ −Φ−1(p), Y2 ≤ −Φ−1(q), Y1 + Y2 ≤ 0).

We claim that

P(Y1 ≤ −Φ−1(p), Y2 ≤ −Φ−1(q), Y1 + Y2 ≤ 0)

=


(1− p)(1− q) if p+ q ≥ 1;

1− p2 − q2

2
if p+ q < 1.

(A.26)

When p+q ≥ 1, then Y1 ≤ −Φ−1(p) and Y2 ≤ −Φ−1(q) together imply Y1 +Y2 ≤ 0. Thus

the probability is Φ2(−Φ−1(p),−Φ−1(q)) − (1 − p)(1 − q) as claimed. When p + q < 1,

the claimed result follows as illustrated in Figure A.5.

Finally, we can plug in (A.25) and (A.26) into the expression (A.23) we find that

I1 =


2π
[
(1− q)− (1−q)2

2
− (1− q)(1− p)

]
if p < q and p+ q ≥ 1

2π
[
(1− q)− (1−q)2

2
− 1−p2−q2

2

]
if p < q and p+ q ≤ 1

Dividing by I2 now gives our desired result:

g(p, q) =


(1− q)− (1−q)2

2
− (1− q)(1− p)

p(1− q)
=
q − (1− 2p)

2p
if p < q and p+ q ≥ 1

(1− q)− (1−q)2
2
− 1−p2−q2

2

p(1− q)
=

p

2(1− q)
if p < q and p+ q ≤ 1.
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b

a

Prob = 

Prob = 

1−q

1−p

A B

C

Figure A.5: Area of quadrant {Y1 ≤ a, Y2 ≤ b} is (1− p)(1− q). Subtract from this areas

A,B and C, which are respectively (1/2− p)2/2, (1/2− p)(1/2− q) and (1/2− q)2/2

A.6 Supplement for Chapter 7

Appendix

A.6.1 Proof of Theorem 7.2.1

i) The law of total expectation gives:

E(X ′′) = E[E(Y |X ′′)] = E(Y ) = µ0.

ii) Recall that X ′′ = E(Y |F ′′), X ′′ ∈ F ′′, and F ′′ = σ(X1, . . . , XN). Then,

E(Y |X ′′)

= E[E(Y |X ′′,F ′′)|X ′′] (as X ′′ ∈ F ′′)
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= E[E(Y |F ′′)|X ′′]

= E(X ′′|X ′′)

= X ′′.

iii) This relies on the observation that σ(Xm) = Fm ⊆ F ′′ = σ(X1, . . . , XN). Then,

δmax = Var (Xm)

= E
(
X2
m

)
− µ2

0

= E[E(Y |Fm)Xm]− µ2
0 (as Xm = E(Y |Fm))

= E{E[E(Y |F ′′)|Fm]Xm} − µ2
0 (the smallest σ-field wins)

= E[E(X ′′|Fm)Xm]− µ2
0

= E[E(X ′′Xm|Fm)]− µ2
0

= E(X ′′Xm)− µ2
0 (reverse iterated expectation)

= E[(X ′′ − µ0)(Xm − µ0)]

≤
√

Var (X ′′)δmax (by the Cauchy-Schwarz inequality).

Squaring and diving both sides by δmax gives the desired result.

A.6.2 Proof of Theorem 7.2.2

Items ii) and iii) are generalizations of the proof in Ranjan and Gneiting (2010).

i) This follows from direct computation:

E(Xw) = E(w′X) = w′E(X) = µ0w
′1N = µ0.
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ii) Consider some reliable aggregate X such that E(Y |X ) = X . Then,

E[(Y −X )2]

= E
{
E
[
(Y −X )2|X

]}
= E

[
E
(
Y 2 − 2Y X + X 2|X

)]
= E

[
E
(
Y 2|X

)
−X 2

]
= E(Y 2)− E(X 2).

The rest of the proof shows that if X = Xw = w′X, then the above identity cannot

hold. This gives a contradiction and hence proves the desired result. First, note that∑N
i=1

∑N
j=1wiwj = 1. Then,

E
[
(Y −Xw)2]

= E
[
(Y −w′X)

2
]

= E


[

N∑
j=1

wj(Y −Xj)

]2


=
N∑
i=1

N∑
j=1

wiwjE[(Y −Xi)(Y −Xj)]

=
N∑
i=1

N∑
j=1

wiwjE
(
Y 2 − Y Xi − Y Xj +XjXi

)
=

N∑
i=1

N∑
j=1

wiwjE
[
E
(
Y 2|Xi

)
− E (Y Xi|Xi)− E (Y Xj|Xj) +XjXi

]
=

N∑
i=1

N∑
j=1

wiwjE
[
E
(
Y 2|Xi

)
−X2

i −X2
j +XjXi

]
=

N∑
i=1

N∑
j=1

wiwjE
[
E
(
Y 2|Xi

)
+ (XjXi −XjXi)−X2

i −X2
j +XjXi

]
=

N∑
i=1

N∑
j=1

wiwjE
[
E
(
Y 2|Xi

)
−XjXi − (Xi −Xj)

2]
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=
N∑
i=1

N∑
j=1

wiwjE
[
E
(
Y 2|Xi

)
−XjXi

]
−

N∑
i=1

N∑
j=1

wiwjE
[
(Xi −Xj)

2]
= E

(
Y 2
)
−

N∑
i=1

N∑
j=1

wiwjE (XjXi)−
N∑
i=1

N∑
j=1

wiwjE
[
(Xi −Xj)

2]
= E

(
Y 2
)
− E (w′XX′w)−

N∑
i=1

N∑
j=1

wiwjE
[
(Xi −Xj)

2]
=
[
E
(
Y 2
)
− E

(
X 2
w

)]
−

N∑
i=1

N∑
j=1

wiwjE
[
(Xi −Xj)

2] .
This leads to a contradiction because the double sum on the final line is strictly positive

as long as there exists a forecast pair i 6= j such that P(Xi 6= Xj) > 0 and wi, wj > 0.

iii) The fact that E(X ′w) = µ0 follows similarly to the proof of item i) of Theorem 7.2.1.

This item continues under the conditions of the previous item. Therefore it can be

assumed that Xw is not calibrated, that is, P(X ′w 6= Xw) > 0. Then,

E
[
(Y −Xw)2]

= E
(
Y 2 − 2Y Xw + X 2

w

)
= E

(
Y 2 + 2

(
X ′2w −X ′2w

)
− 2Y Xw + X 2

w

)
= E

(
Y 2 − 2Y X ′w + 2X ′2w − 2X ′wXw + X 2

w

)
= E

[
(Y −X ′w)

2
]

+ E
[
(Xw −X ′w)

2
]

= E(Y 2)− E(X ′2w ) + E
[
(Xw −X ′w)

2
]

(because X ′w is reliable)

> E(Y 2)− E(X ′2w ).

Furthermore, from the previous item, E
[
(Y −Xw)2] < E(Y 2)− E(X 2

w). Putting this

all together gives

E(Y 2)− E(X ′2w ) < E(Y 2)− E(X 2
w)
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⇔ E(X ′2w )− µ2
0 > E(X 2

w)− µ2
0

⇔ Var (X ′w) > Var (X 2
w).

iv) The fact that Var (Xw) ≤ δmax follows from direct computation:

Var (Xw) = E[(µ0 −Xw)2]

= E(X 2
w)− µ2

0

= w′E(XX′)w −w′1Nµ
2
01
′
Nw

= w′
[
E(XX′)− µ2

01N1′N
]
w

= w′E[(X− 1Nµ0)(X− 1Nµ0)′]w

= w′Cov (X)w

≤ δmax1
′
Nw

= δmax.

To see the identity part of the statement, note that

Var (Xw) = w′Cov (X)w = ΣN
i=1ΣN

j=1wijCov (Xi, Xj),

where wij = wiwj ∈ [0, 1] and
∑N

i=1

∑N
j=1wij = 1. First, suppose that Var (Xm) =

δmax > Var (Xi) = δi for all i 6= m. Then, if wii > 0 for some i 6= m, the term

wiiCov (Xi, Xi) brings Var (Xw) below δmax. This decrease cannot be compensated

by any other term because no element in Cov (X) is larger than δmax. Consequently,

it must be case that wi = 0 for all i 6= m. Now, if there exists j 6= m such that

δj = δmax and wj > 0, then Var (Xw) = δmax only if all weight is given to Xm and

Xj , and Cov (Xj, Xm) = δmax. This covariance implies that Corr (Xj, Xm) = 1.

Thus, σ(Xj) = σ(Xm) and hence that Xj = E[Y |σ(Xj)] = E[Y |σ(Xm)] = Xm.
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Consequently, Var (Xw) = δmax only if all weight is distributed among Xi such that

Xi = Xm.

From the Theorem 7.2.1, δmax ≤ Var (X ′′), where the inequality arises from the

Cauchy-Schwarz inequality. It is well-known that this reduces to an equality if and

only if X ′′ and Xm are linearly dependent. Such a linear dependence would imply

that σ(X ′′) = σ(Xm) and hence that Xm = E[Y |σ(Xm)] = E[Y |σ(X ′′)] = X ′′.

Now, if there exists j 6= m such that δj = δmax, then by the same argument σ(X ′′) =

σ(Xm) = σ(Xj) and consequently Xj = Xm = X ′′.

Putting this all together gives that w′X = X ′′ if and only if σ(Xm) = σ(X ′′) and

wi > 0 only for all Xi = Xm.

A.6.3 Derivation of Equation 7.4

Suppose that Xk ∈ {f1, . . . , fI} for some finite I . Let Ki be the number of times fi occurs,

Ȳi be the empirical average of {Yk : Xk = fi}, and Ȳ = 1
K

∑K
k=1 Yk. Then,

1

K

K∑
k=1

(Yk −Xk)2

=
1

K

(
K∑
k=1

X 2
k − 2

K∑
k=1

YkXk +
K∑
k=1

Y 2
k

)

=
1

K

[
I∑
i=1

Kif
2
i − 2

I∑
i=1

KifiȲi +

(
2

I∑
i=1

KiȲiȲ − 2
I∑
i=1

KiȲiȲ

)

+

(
I∑
i=1

KiȲ
2 −

I∑
i=1

KiȲ
2

)
+

K∑
k=1

Y 2
k

]

=
1

K

[
I∑
i=1

Ki

(
f 2
i − 2fiȲi + 2ȲiȲ − Ȳ 2

)
+

K∑
k=1

(Y 2
k − 2ȲkȲ + Ȳ 2)

]

=
1

K

[
I∑
i=1

Ki

(
f 2
i − 2fiȲi + (Ȳ 2

i − Ȳ 2
i ) + 2ȲiȲ − Ȳ 2

)
+

K∑
k=1

(Yk − Ȳ )2

]

231



=
1

K

[
I∑
i=1

Ki

(
f 2
i − 2fiȲi + Ȳ 2

i

)
−

I∑
i=1

Ki

(
Ȳ 2
i − 2ȲiȲ + Ȳ 2

)
+

K∑
k=1

(Yk − Ȳ )2

]

=
1

K

I∑
i=1

Ki

(
fi − Ȳi

)2 − 1

K

I∑
i=1

Ki

(
Ȳi − Ȳ

)2
+

1

K

K∑
k=1

(Yk − Ȳ )2.
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Satopää, V. A., Jensen, S. T., Pemantle, R., and Ungar, L. H. (2016). Partial information framework: Ag-
gregating estimates from diverse information sources. Journal of the American Statistical Association
(arXiv:1505.06472) (Under Review).
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Ungar, L., Mellers, B., Satopää, V., Tetlock, P., and Baron, J. (2012). The good judgment project: A large
scale test of different methods of combining expert predictions. The Association for the Advancement of
Artificial Intelligence Technical Report FS-12-06.

Vislocky, R. L. and Fritsch, J. M. (1995). Improved model output statistics forecasts through model consen-
sus. Bulletin of the American Meteorological Society, 76(7):1157–1164.

Wallace, B. C. and Dahabreh, I. J. (2012). Class probability estimates are unreliable for imbalanced data (and
how to fix them). In Institute of Electrical and Electronics Engineers (IEEE) 12th International Conference
on Data Mining (International Conference on Data Mining), pages 695–704. Institute of Electrical and
Electronics Engineers (IEEE).

Wallsten, T. S., Budescu, D. V., and Erev, I. (1997). Evaluating and combining subjective probability esti-
mates. Journal of Behavioral Decision Making, 10:243–268.

Wallsten, T. S. and Diederich, A. (2001). Understanding pooled subjective probability estimates. Mathemat-
ical Social Sciences, 41(1):1–18.

Wilson, A. G. (1994). Cognitive Factors Affecting Subjective Probability Assessment. Citeseer.

Wilson, P. W., DAgostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., and Kannel, W. B. (1998).
Prediction of coronary heart disease using risk factor categories. Circulation, 97(18):1837–1847.

Winkler, R. L. and Jose, V. R. R. (2008). Comments on: Assessing probabilistic forecasts of multivariate
quantities, with an application to ensemble predictions of surface winds. TEST, 17(2):251–255.

Winkler, R. L. and Murphy, A. H. (1968). Good probability assessors. Journal of Applied Meteorology,
7(5):751–758.

Won, J. H. and Kim, S.-J. (2006). Maximum likelihood covariance estimation with a condition number
constraint. In Signals, Systems and Computers, 2006. ACSSC’06. Fortieth Asilomar Conference on, pages
1445–1449. IEEE.

Wright, G., Rowe, G., Bolger, F., and Gammack, J. (1994). Coherence, calibration, and expertise in judg-
mental probability forecasting. Organizational Behavior and Human Decision Processes, 57(1):1–25.

Yates, J. F. (1990). Judgment and decision making. Prentice-Hall, Inc.

Yeh, I.-C. (1998). Modeling of strength of high-performance concrete using artificial neural networks. Ce-
ment and Concrete research, 28(12):1797–1808.

240

http://fivethirtyeight.blogs.nytimes.com/fivethirtyeights-2012-forecast
http://fivethirtyeight.blogs.nytimes.com/fivethirtyeights-2012-forecast


Zhang, H. and Maloney, L. T. (2012). Ubiquitous log odds: A common representation of probability and
frequency distortion in perception, action, and cognition. Frontiers in Neuroscience, 6:1–14.

Ziegler, G. M. (2000). Lectures on 0/1-polytopes. In Kalai, G. and Ziegler, G. M., editors, Polytopes -
Combinatorics and Computation, volume 29, pages 1–41, Basel. Springer, Birkhäuser.
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