
The Convergence of Lexicalist Perspectives in 
Psycho linguistics and Computational Linguistics* 

Albert E. Kim, Bangalore Srinivas and John C. Trueswell 

1 Introduction 

In the last fifteen years, there has been a striking convergence of perspectives 
in the fields of linguistics, computational linguistics, and psycholinguistics 
regarding the representation and processing of grammatical information. 
First, the lexicon has played an increasingly important role in the representa­
tion of the syntactic aspects of language. This is exemplified by the rise of 
grammatical formalisms that assign a central role to the lexicon for charac­
terizing syntactic forms, e.g., LFG (Bresnan and Kaplan 1982), HPSG (Pol­
lard and Sag 1994), CCG (Steedman 1996), Lexicon-Grammars (Gross 
1984), LTAG (Joshi and Schabes 1996), Link Grammars (Sleator and Tern­
perley 1991) and the Minimalist Program (Chomsky 1995). Second, theories 
of language processing have seen a shift away from 'rule-governed' ap­
proaches for grammatical decision-making toward statistical and constraint­
based approaches. In psycholinguistics, this has been characterized by a 
strong interest in connectionist and activation-based models (e.g., Lewis 
1993, McRae, Spivey-Knowlton and Tanenhaus 1998, Stevenson 1994, Ta­
bor, Juliano and Tanenhaus 1996). In computational linguistics, this is found 
in the explosion of work with stochastic approaches to structural processing 
(cf. Church and Mercer 1993, Marcus 1995). In linguistics, this interest is 
most apparent in the development of Optimality Theory (Prince and Smolen­
sky 1997). 

In this paper, we highlight how the shift to lexical and statistical ap­
proaches has affected theories of sentence parsing in both psycholinguistics 
and computational linguistics. In particular, we present an integration of 
ideas developed across these two disciplines, which builds upon a specific 
proposal from each. Within psycholinguistics, we discuss the development of 
the Constraint-Based Lexicalist (CBL) theory of sentence processing (Mac­
Donald, Pearlmutter and Seidenberg 1994, Trueswell and Tanenhaus 1994). 
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Within computational linguistics, we discuss the development of statistical 
approaches to processing Lexicalized Tree-Adjoining Grammar (LTAG, 
Joshi and Schabes 1996). Finally, we provide a description of the CBL the­
ory, which is based on LTAG. 

2 A Constraint-Based Theory of Sentence Processing 

Psycholinguistic thinking about the syntactic aspects of language compre­
hension has been deeply influenced by theories that assign a privileged role 
to supra-lexical syntactic representations and processes. This view has been 
most extensively developed in the theory of Frazier (1979, 1989), which 
proposed that syntactic processing is controlled by a two-staged system. In 
the first stage, a single syntactic representation of the input is computed us­
ing a limited set of phrase structure rules and basic grammatical category 
information about words. When syntactic knowledge ambiguously allows 
multiple analyses of the input, a single analysis is selected using a small set 
of structure-based processing strategies. In a second stage of processing, the 
output of this structure-building stage is integrated with and checked against 
lexically specific knowledge and contextual information, and initial analyses 
are revised if necessary. The basic proposal of this theory-that syntactic 
processing is, at least in the earliest stages, independent from lexically spe­
cific and contextual influences-has been one of the dominant ideas of sen­
tence processing theory (e.g., Ferreira and Clifton 1986, Perfetti 1990, 
Mitchell1987, 1989, Rayner, Carlson and Frazier 1983). 

A diverse group of recent theories has challenged this two-stage struc­
ture-building paradigm by implicating some combination of lexical and 
contextual constraints and probabilistic processing mechanisms in the earli­
est stages of syntactic processing (Crocker 1994, Corley and Crocker 1996, 
Ford, Bresnan and Kaplan 1982, Gibson 1998, Jurafsky 1996, MacDonald et 
al. 1994, Pritchett 1992, Stevenson 1994, Trueswell and Tanenhaus 1994). 
We focus in this paper on the body of work known as the Constraint-Based 
Lexicalist theory (MacDonald et al. 1994, Trueswell and Tanenhaus 1994), 
which proposes that all aspects of language comprehension, including the 
syntactic aspects, are better described as the result of pattern recognition 
processes than the application of structure building rules. Word recognition 
is proposed to include the activation of rich grammatical structures (e.g., 
verb argument structures), which play a critical role in supporting the se­
mantic interpretation of the sentence. These structures are activated in a pat­
tern shaped by frequency, with grammatically ambiguous words causing the 
temporary activation of multiple structures. The selection of the appropriate 
structure for each word, given the context, accomplishes much of the work 
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of syntactic analysis. That is, much of the syntactic ambiguity in language is 
proposed to stem directly from lexical ambiguity and to be resolved during 
word recognition.1 The theory predicts that initial parsing preferences are 
guided by these grammatical aspects of word recognition. 

The CBL framework can be illustrated by considering the role of verb 
argument structure in the processing of syntactic ambiguities like the Noun 
Phrase I Sentence Complement (NP/S) ambiguity in sentences like (la) and 
(lb). 

(1) a. 
b. 

The chef forgot the recipe was in the back of the book. 
The chef claimed the recipe was in the back of the book. 

In (la), a temporary ambiguity arises in the relationship between the noun 
phrase the recipe and the verb forgot. Due to the argument structure possi­
bilities for forgot, the noun phrase could be the direct object or the subject of 
a sentence complement. In sentences like this, readers show an initial prefer­
ence for the direct object interpretation of the ambiguous noun phrase, re­
sulting in increased reading times at the disambiguating region was in ... 
(e.g., Holmes, Stowe and Cupples 1989, Ferreira and Henderson 1990, Ray­
ner and Frazier 1987). On the CBL theory, the direct object preference in 
( la) is due to the lexical representation of the verb forgot, which has a strong 
tendency to take a direct object rather than a sentence complement. The CBL 
theory proposes that word recognition includes the activation of not only 
semantic and phonological representations of a word, but also detailed syn­
tactic representations. These texico-syntactic representations, and the proc­
esses by which they are activated, are proposed to play critical roles in the 
combinatory commitments of language comprehension. The preference for 
the direct object in (Ia) should therefore be eliminated when the verb forgot 
is replaced with a verb like claimed, which has a strong tendency to take a 
sentence complement rather than a direct object. These predictions have been 
confirmed experimentally (Trueswell, Tanenhaus and Kello 1993, Garnsey, 
Pearlmutter, Myers and Lotocky 1997), and connectionist models have been 
constructed which capture these preferences (Juliano and Tanenhaus 1994, 
Taboret al. 1996). 

Experimental work has also indicated that the pattern of processing 

1The amount of syntactic structure that is lexically generated goes beyond the 
classical notion of argument structure. In lexicalized grammar formalisms such as 
LTAG, the entire grammar is in the lexicon. For instance, the attachment site of a 
preposition can be treated as a lexically specific feature. Noun-attaching prepositions 
and verb-attaching prepositions have different senses. We will discuss this in further 
detail in the following sections. 
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commitments is not determined solely by individual lexical preferences, but 
involves an interaction between argument structure preference and lexical 
frequency. NP-biased verbs result in strong direct object commitments re­
gardless of the lexical frequency of the verb. S-bias verbs, on the other hand, 
show an effect of frequency, with high frequency items resulting in strong S­
complement commitments and low frequency items resulting in much 
weaker S-complement commitments (Juliano and Tanenhaus 1993, though 
see Garnsey et al. 1997). This interaction between frequency and structural 
preference is explained by Juliano and Tanenhaus (1993) as occurring be­
cause the argument structure preferences of S-bias verbs must compete for 
activation with the regular pattern of the language-that an NP after a verb is 
a direct object. The ability of the S-bias verbs to overcome this competing 
cue depends upon frequency. Juliano and Tanenhaus (1994) present a 
connectionist model that shows that such interactions emerge naturally from 
constraint-based lexicalist models, since the models learn to represent more 
accurately the preferences of high frequency items. In later sections, we re­
turn to the issue of interactions between lexical frequency and 'regularity' 
and discuss its implications for the architecture of computational models of 
language processing. 

The CBL theory has provided an account for experimental results in­
volving a wide range of syntactic ambiguities (e.g., Boland, Tanenhaus, 
Garnsey and Carlson 1995, Garnsey et al. 1997, Juliano and Tanenhaus 
1993, Trueswell and Kim 1998, MacDonald 1993, 1994, Spivey-Knowlton 
and Sedivy 1995, Trueswell et al. 1993, Trueswell, Tanenhaus and Garnsey 
1994, cf. MacDonald et al. 1994). As this body of experimental results has 
grown, there has been a need to expand the grammatical coverage of com­
putational modeling work to match that of the most comprehensive descrip­
tions of the CBL theory, which have been wide in scope, but have not been 
computationally explicit (MacDonald et al. 1994, Trueswell and Tanenhaus 
1994). Existing computational models have focused on providing detailed 
constraint-based accounts of the pattern of processing preferences for par­
ticular sets of experimental results (McRae et al. 1998, Tabor et al. 1996, 
Spivey-Knowlton 1996, Juliano and Tanenhaus 1994). These models have 
tended to be limited syntactic processors, with each model addressing the 
data surrounding a small range of syntactic ambiguities (e.g., the NP/S am­
biguity). This targeted approach has left open some questions about how 
CBL-based models 'scale up' to more complicated grammatical tasks and 
more comprehensive samples of the language. For instance, the Juliano and 
Tanenhaus model learns to assign seven different verb complement types 
based on co-occurrence information about a set of less than 200 words. The 
full language involves a much greater number of syntactic possibilities and 
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more complicated co-occurrence relationships. It is possible that the com­
plexities of computing the fine-grained statistical relationships of the full 
language may be qualitatively greater than in these simple domains, or even 
intractable (Mitchell, Cuetos, Corley and Brysbaert 1995). It is also possible 
that these targeted models are so tightly focused on specific sets of experi­
mental data that they have acquired parameter settings that are inconsistent 
with other data (see Frazier 1995). Thus, there is a need to examine whether 
the principles of the theory support a model that provides comprehensive 
syntactic coverage of the language but which still predicts fine-grained pat­
terns of argument structure availability. 

3 Lexicalized Grammars and Supertagging 

In developing a broader and more formal account of psycholinguistic find­
ings, we have capitalized on a convergence between the CBL movement in 
psycholinguistics and similar movements in theoretical and computational 
linguistics. Theoretical linguistics has increasingly treated the lexicon, rather 
than supra-lexical rules, as the repository of syntactic information, giving 
rise to "lexicalist" grammars (Bresnan and Kaplan 1982, Pollard and Sag 
1994, Joshi and Schabes 1996, Steedman 1996). In a parallel development, 
computational linguistics has produced an extensive body of work on statis­
tical techniques for ambiguity resolution such as part-of-speech tagging and 
stochastic parsing methods. Within this work, methods that have focused on 
the statistics of lexical items have generally outperformed methods that focus 
on the statistics of supra-lexical structural events, such as statistical context 
free grammars (Marcus 1995). The success of these approaches to process­
ing has expanded the set of computational mechanisms made available to 
psycholinguistics as conceptual tools. Both of these developments have been 
similar in spirit to CBL thinking. We have attempted to advance the formal 
specification of constraint-based proposals in psycholinguistics by building 
upon the foundation of one lexicalist grammatical formalism, Lexicalized 
Tree-Adjoining Grammar (LTAG, Joshi and Schabes 1996). We have also 
drawn insights from work on statistical techniques for processing over LTAG 
(Srinivas and Joshi 1998). This section introduces LTAG and representa­
tional and processing issues within it. 

The idea behind LTAG is to localize the computation of linguistic 
structure by associating lexical items with rich descriptions that impose 
complex combinatory constraints in a local context. Each lexical item is as­
sociated with at least one "elementary tree" structure, which encodes the 
"minimal syntactic environment" of a lexical item. This includes such in­
formation as head-complement requirements, filler-gap information, tense, 
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and voice. Figure 1 shows some of the elementary trees associated with the 
words of the sentence The police officer believed the victim was lying.2 The 
trees involved in the correct parse of the sentence are highlighted by boxes. 
Note that the highlighted tree for believed specifies each of the word's argu­
ments, a sentential complement and a noun phrase subject. 

~[(j 

the 

NP 
I 
N 

I ... ~ 

s 

1\ 
NPIA 

V NP 
I I 

N 

I -
police 

s 

1\ 
NPI)\ 

l i 
< N 

I 
..mea-

N 

1\ 
N N• 

I ...,_ 

[I] 
officer 

s 

1\ 
NPIA 

V NP 
I ....... 
s 

1\ 
NPI s 

1\ 
NP VP 

II\ 
E v s• 

I ........ 
s 

1\ NPI)\ 
v s• 

I ....... 

believed 

[t1 [] 

the 

s 

1\ 
NPI)\ 

V NP 
I I 

N 

I 
vkllm 

N 

1\ i ... 
vkllm 

victim 

s 

1\ 
NPIA 

v NPI 
I 

s 

1\ 
NPIA 

NPIA 

1 i . 

[i3 
was 

s 

1\ 
NPI i 

v 

I .,. ... 
s 

1\ 
NPI s 

1\ 
i i . 1 

lyi•l 

N 

1\ 
v ... 

I .,. .. 

lying 

Figure I: A partial illustration of the elementary tree possibilities for the 
sentence the police officer believed the victim was lying. Trees involved 
in the correct parse of the sentence are highlighted in boxes. 

Encoding combinatory information in the lexicon rather than in supra­
lexical rules has interesting effects on the nature of structural analysis. One 
effect is that the number of different descriptions for each lexical item be­
comes much larger than when the descriptions are less complex. For in-

1'he down-arrows and asterisks in the trees mark nodes at which trees make 
contact with each other during the two kinds of combinatory operations of Tree Ad­
joining Grammar, substitution and adjunction. Down-arrows mark nodes at which the 
subsitution operation occurs, and asterisks mark footnodes, which participate in the 
adjunction operation. The details of the combinatory operations of TAG are beyond 
the scope of this paper. See Joshi and Schabes (1996) for a discussion. 
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stance, the average elementary tree ambiguity for a word in Wall Street Jour­
nal text is about 47 trees (Srinivas and Joshi 1998). In contrast, part-of­
speech tags, which provide a much less complex description of words, have 
an ambiguity of about 1.2 tags per word in Wall Street Journal text. Thus, 
lexicalization increases the local ambiguity for the parser, complicating the 
problem of lexical ambiguity resolution. The increased lexical ambiguity is 
partially illustrated in Figure 1, where six out of eight words have multiple 
elementary tree possibilities. The flip-side to this increased lexical ambigu­
ity, however, is that resolution of lexical ambiguity yields a representation 
that is effectively a parse, drastically reducing the amount of work to be done 
after lexical ambiguity is resolved (Srinivas and Joshi 1998). This is because 
the elementary trees impose such complex combinatory constraints in their 
own local contexts that there are very few ways for the trees to combine once 
they have been correctly chosen. The elementary trees can be understood as 
having 'compiled out' what would be rule applications in a context-free 
grammar system, so that once they have been correctly assigned, most syn­
tactic ambiguity has been resolved. Thus, the lexicalization of grammar 
causes much of the computational work of structural analysis to shift from 
grammatical rule application to lexical ambiguity resolution. We refer to the 
elementary trees of the grammar as supertags, treating them as complex 
analogs to part-of-speech tags. We refer to the process of resolving supertag 
ambiguity as supertagging. One indication that the work of structural analy­
sis has indeed been shifted into lexical ambiguity resolution is that the run­
time of the parser is reduced by a factor of thirty when the correct supertags 
for a sentence are selected in advance of parsing. 3 

Importantly for the current work, this change in the nature of parsing has 
been complemented by the recent development of statistical techniques for 
lexical ambiguity resolution. Simple statistical methods for resolving part-of­
speech ambiguity have been one of the major successes in recent work on 
statistical natural language processing ( cf. Church and Mercer 1993, Marcus 
1995). Several algorithms tag part-of-speech with accuracy between 95% 
and 97% (cf. Charniak 1993). Applying such techniques to the words in a 
sentence before parsing can substantially reduce the work of the parser by 
preventing the construction of spurious syntactic analyses. Recently, Srinivas 
and Joshi (1998) have demonstrated that the same techniques can be effec­
tive in resolving the greater ambiguity of supertags. They implemented a tri-

3This is based on run-times for a sample of 1300 sentences of Wall Street Jour­
nal text, reported by Srinivas and Joshi (1998). Running the parser without supertag­
ging took 120 seconds, while running it with correct supertags pre-assigned took 4 
seconds. 
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gram Hidden Markov Model of supertag disambiguation. When trained on 
200,000 words of parsed Wall Street Journal text, this model produced the 
correct supertag for 90.9% of lexical items in a set of held out testing data. 

Thus, simple statistical techniques for lexical ambiguity resolution can 
be applied to supertags just as they can to part-of-speech ambiguity. Due to 
the highly constraining nature of supertags, these techniques have an even 
greater impact on structural analysis when applied to supertags than when 
applied to part-of-speech tagging. These results provide a demonstration that 
much of the computational work of linguistic analysis, which has tradition­
ally been understood as the result of structure building operations, might 
instead be seen as lexical disambiguation. This has important implications 
for how psycholinguists are to conceptualize structural analysis. It expands 
the potential role in syntactic analysis of simple pattern recognition mecha­
nisms for word recognition, which have played a very limited role in classi­
cal models of human syntactic processing. 

Note that the claim here is not that supertagging accomplishes the entire 
task of structural analysis. After elementary trees have been selected for the 
words in a sentence, there remains the job of connecting the trees via the 
LTAG combinatory operations of adjunction and substitution. The principal 
claim of this section is that in designing a system for syntactic analysis there 
are sound linguistic and engineering reasons for storing large amounts of 
grammatical information in the lexicon and for performing much of the work 
of syntactic analysis with something like supertagging. If such a system is 
also to be used as a psycholinguistic model, it is natural to predict that many 
of the initial processing commitments of syntactic analysis are made by a 
level of processing analogous to supertagging. In the following section, we 
discuss how an LTAG-based supertagging system resolves at the lexical level 
many of the same syntactic ambiguities that have concerned researchers in 
human sentence processing, suggesting that a supertagging system might 
provide a good psycholinguistic model of syntactic processing. Thus, al­
though the question of how such a system fits into a complete language 
processing system is an important one, it may be useful to begin exploring 
the psychological implications of supertagging in advance of a thorough un­
derstanding of how to design the rest of the system.4 

4Srinivas (1997) has suggested that this can be done by a process that is simpler 
than full parsing. He calls this process "stapling". 
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4 A Model of the Grammatical Aspects of Word 
Recognition Using LTAG 

In the remaining sections of this paper, we describe an on-going project 
which attempts to use LTAG to develop a more fully-specified account of the 
CBL theory of human sentence processing. We argue that the notion of su­
pertagging can become the basis of a model of the grammatical aspects of 
word recognition, provided that certain key adjustments are made to bring it 
in line with the assumptions of psycholinguistic theory (Kim et a!., in prepa­
ration). Before introducing this model, we outline how LTAG can be used to 
advance the formal specification of the CBL theory.5 We then turn to some of 
the findings of the model, which capture some of the major phenomena re­
ported in the human parsing literature. 

LTAG lexicalizes syntactic information in a way that is highly consistent 
with descriptions of the CBL theory, including the lexicalization of head­
complement relations, filler-gap information, tense, and voice. The value of 
LTAG as a formal framework for a CBL account can be illustrated by the 
LTAG treatment of several psycholinguistically interesting syntactic ambi­
guities, e.g., prepositional phrase attachment ambiguity, the NP/S comple­
ment ambiguity, the reduced relative/main clause ambiguity, and the com­
pound noun ambiguity. In all but one of these cases, the syntactic ambiguity 
is characterized as stemming from a lexical ambiguity. 

Figure 2 (below) presents the LTAG treatment of these ambiguities. 
Each of the sentence fragments in the figure ends with a syntactically am­
biguous word and is accompanied by possible supertags for that word. First, 
the prepositional phrase attachment ambiguity is illustrated in Figure 2a. The 
ambiguity lies in the ability of the prepositional phrase with the ... to modify 
either the noun phrase the cop (e.g., with the red hair) or modify the verb 
phrase headed by saw (e.g., with the binoculars). Within LTAG, prepositions 
like with indicate lexically whether they modify a preceding noun phrase or 
verb phrase. This causes prepositional phrase attachment ambiguities to 
hinge on the lexical ambiguity of the preposition. Similarly, the NP/S ambi­
guity discussed in the Introduction arises directly from the ambiguity be­
tween the elementary trees shown in Figure 2b. In this case, these trees en­
code the different complement-taking properties of the verb forgot (e.g., the 
recipe vs. the recipe was ... ) Figure 2c shows a string that could be parsed as 
a Noun-Noun compound (e.g., the warehouse fires were extinguished) or a 

50f course, formal specification of this theory can be achieved by using other 
lexicalized grammatical frameworks, e.g., LFG (Bresnan and Kaplan 1982), HPSG 
(Pollard and Sag 1994), CCG (Steedman 1996). 
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Subject-Verb sequence (e.g., the warehouse fires older employees.). In non­
lexicalist grammars, this ambiguity is treated as arising from the major cate­
gory ambiguity of fires. In LTAG, this ambiguity involves not only the cate­
gory ambiguity but also a more fine-grained ambiguity regarding the previ­
ous noun warehouse. Due to the nature of combinatory operations of LTAG, 
nouns that appear as phrasal heads or phrasal modifiers are assigned different 
types of elementary trees (i.e., the Alpha-/Beta- distinction in LTAG, see Do­
ran, Egedy, Hockey, Srinivas and Zaidel 1994). Figure 2d illustrates there­
duced relative/main clause ambiguity (e.g., the defendant examined by the 
lawyer was ... vs. the defendant examined the pistol.). Here again, the critical 
features of the phrase structure ambiguity are lexicalized. For instance, the 
position of the gap in an object-extraction relative clause is encoded at the 
verb (right-hand tree in Figure 2d). This is because LTAG trees encode the 
number, type, and position of all verb complements, including those that 
have been extracted. Finally, Figure 2e illustrates a structural ambiguity that 
is not treated lexically in LTAG As in Figure 2a, the preposition with is as­
sociated with two elementary trees, specifying verb phrase or noun phrase 
modification. However, in this example, both attachment possibilities in­
volve the same tree (NP-attachment), which can modify either general or 
secretary. The syntactic information that distinguishes between local and 
non-local attachment is not specified lexically. So, within LTAG, this final 
example is a case of what we might call true attachment ambiguity. This ex­
ample illustrates the point made earlier that even when a lexical tree is se­
lected, syntactic processing is not complete, since lexical trees need to be 
combined together through the operations of substitution and adjunction. In 
the first four examples, the selection of lexical trees leaves only a single way 
to combine these items. In the final example, however, multiple combinatory 
possibilities remain even after lexical selection. 

The examples in Figure 2 illustrate the compatibility of LTAG with the 
CBL theory. Both frameworks lexicalize structural ambiguities in similar 
ways, with LTAG providing considerably more linguistic detail. This sug­
gests that LTAG can be used to provide a more formal statement of the rep­
resentational claims of the CBL theory. For instance, one can characterize 
the grammatical aspects of word recognition as the parallel activation of pos­
sible elementary trees. The extent to which a lexical item activates a par­
ticular elementary tree is determined by the frequency with which it has re­
quired that tree during an individual's linguistic experience. The selection of 
a single tree is accomplished through the satisfaction of multiple probabilis­
tic constraints, including semantic and syntactic contextual cues. The CBL 
theory has traditionally focused on the activation of verb argument structure. 
The introduction of a wide-coverage grammar into this theory generates 
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(a) The spy saw the cop with ... (d) The defendent examined ... 
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Figure 2: LTAG treatment of several psycholinguistically interesting 
syntactic ambiguities: (a) PP-attachment ambiguity; (b) NP/S ambigu­
ity; (c) NN category ambiguity; (d) reduced relative/main clause ambi­
guity; (e) PP-attachment ambiguity with both attachment sites being 
nominal. 
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clear predictions about the grammatical representations of other words. In 
particular, the same ambiguity resolution processes occur for all lexical items 
for which LTAG specifies more than one elementary tree. 

The grammatical predictions of LTAG are worked out in an English 
grammar, which is the product of an ongoing grammar development project 
at the University of Pennsylvania (Doran et al. 1994). The grammar provides 
lexical descriptions for 37,000 words and handles a wide range of syntactic 
phenomena, making it a highly robust system. The supertagging work de­
scribed in this paper makes critical use of this grammar: The 
comprehensiveness of the grammar makes it a valuable tool for psycholin­
guistic work, by allowing formal statements ~bout the structural properties of 
a large fragment of the language. In our case, it plays a critical role in our 
attempt to 'scale up' CBL models in order to investigate the viability of such 
models on closer approximations to the full language than they have been 
tested on before. 

4.1 Implementation 

In this section, we describe preliminary results of a computational modeling 
project exploring the ability of the CBL theory to integrate the representa­
tions of LTAG. We have been developing a connectionist model of the 
grammatical aspects of word recognition, which attempts to account for 
various psycholinguistic findings pertaining to syntactic ambiguity resolu­
tion (Kim et al., in prep.). Unlike previous connectionist models within the 
CBL approach (McRae et al. 1998, Tabor et al. 1997, Spivey-Knowlton 
1996, Juliano and Tanenhaus 1994), this model has wide coverage in that it 
has an input vocabulary of 20,000 words and is designed to assign 304 dif­
ferent LTAG elementary trees to input words. The design of the model was 
not guided by the need to match a specific set of psycholinguistic data. 
Rather, we applied simple learning principles to the acquisition of a wide 
coverage grammar, using as input a corpus of highly-variable, naturally oc­
curring text. Certain patterns of structural preferences and frequency effects, 
which are characteristic of human data, fall directly out of the model's sys­
tem of distributed representation and frequency-based learning. 

The model resembles the statistical supertagging model of Srinivas and 
Joshi 1998, which we briefly described above. We have, however, made key 
changes to bring it more in line with the assumptions behind the CBL 
framework. The critical assumptions are that human language comprehen­
sion is characterized by distributed, similarity-based representations (cf. Sei­
denberg 1992) and by incremental processing of a sentence. The Srinivas 
and Joshi model permits the use of information from both left and right con-
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text in the syntactic analysis of a lexical item (through the use of Viterbi de­
coding). Furthermore, their model has a 'perfect' memory, which stores the 
structural events involving each lexical item separately and without error. In 
contrast, our model processes a sentence incrementally, and its input and 
internal representations are encoded in a distributed fashion. Distributed rep­
resentations cause each representational unit to play a role in the representa­
tion of many lexical items, and the degree of similarity among lexical items 
to be reflected in the overlap of their representations. 

These ideas were implemented in a connectionist network, which pro­
vided a natural framework for implementing a distributed processing sys­
tem.6 The model takes as input information about the orthographic and se­
mantic properties of a word and attempts to assign the appropriate supertag 
for the word given the local left context. The architecture of the model con­
sists of three layers with feed-forward projections, as illustrated in Figure 3 
on the next page. 

The model's output layer is a 95 unit array of syntactic features which is 
capable of uniquely specifying the properties of 304 different supertags. 
These features completely specify the components of an LTAG elementary 
tree: 1) part-of-speech, 2) type of 'extraction', 3) number of complements, 4) 
category of complement, and 5) position of complements. Each of these 
components is encoded with a bank of localist units. For instance, there is a 
separate unit for each of 14 possible parts of speech, and the correct activa­
tion pattern for a given supertag activates only one of these units (e.g., 
"Noun"). The model was given as input rudimentary orthographic informa­
tion and fine-grained distributional information about a word. 107 of the 
units encoded orthographic features, such as the 50 most common three­
letter word-initial segments (e.g., ins), the 50 most common two-letter word­
final segments (e.g., ed), and seven properties such as capitalization, hy­
phenation, etc. The remaining 40 input units provide a 'distributional profile' 
of each word, which was derived from a co-occurrence analysis. 

ITitis is not to say that left-to-right processing and overlapping representations 
cannot be incorporated into a symbolic statistical system. However, most attempts 
within psycholinguistics to incorporate these assumptions into a computationally 
explicit model have been made within the connectionist framework (e.g., Elman 
1990, Juliano and Tanenhaus 1994, Seidenberg and McClelland 1989). By using a 
connectionist architecture for the current model, we are following this precedent and 
planning comparisons with existing modeling results. 
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OH model: Context Units = Output pattern from previous word 

2W model: Context Units = Input pattern from previous word 

Figure 3: Architecture of the model 

The orthographic encoding scheme served as a surrogate for the output 
of morphological processing, which is not explicitly modeled here but is 
assumed to be providing interactive input to lexico-syntactic processes that 
are modeled. The scheme was chosen primarily for its simplicity-it was 
automatically derived and easily applied to the training and testing corpus, 
without requiring the use of a morphological analyzer. It was expected to 
correlate with the presence of common English morphological features. 

Similarly, the distributional profiles were used as a surrogate for the ac­
tivation of detailed semantic information during word recognition. Although 
space prevents a detailed discussion, we note that several researchers have 
found that co-occurrence-based distributional profiles provide detailed in­
formation about the semantic similarity between words ( cf. Burgess and 
Lund 1997, Landauer and Dumais 1997, Schiitze 1993). The forty­
dimensional profiles used here were created by first collecting co-occurrence 
statistics for a set of 20,000 words in a large corpus of newspaper text.7 The 
co-occurrence matrix was compressed by extracting the 40 principal compo-

7For each of the 20,000 target words, we counted co-occurences with a set of 
600 high frequency "context" words in 14 million words of Associated Press news­
wire. Co-occurrences were collected in a six-word window around each target word 
(three words to either side of the word). 
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nents of a Singular Value Decomposition (see Kim et al., in preparation, for 
details). An informal inspection of the space reveals that it captures certain 
grammatical and semantic information. Table 1 shows the nearest neighbors 
in the space for some selected words. These are some of the better examples, 
but in general the information in the space consistently encodes semantic 
similarities between words. 

Word 
scientist 
london 
literature 
believed 
bought 
smashed 
confident 
certainly 
From 

Nearest Neighbors by Distributional Profile 
researcher, scholar, psychologist, chemist 
tokyo, chicago, atlanta, paris 
poetry, architecture, drama, ballet 
feared, suspected, convinced, admitted 
purchased, loaned, borrowed, deposited 
punched, cracked, flipped, slammed 
hopeful, optimistic, doubtful, skeptical 
definitely, obviously, hardly, usually 
with, by, at, on 

Table 1: Nearest neighbors of sample words based on distributional 
profiles. 

We implemented two architectural variations on the basic architecture 
described above, which gave the model an ability to maintain information 
over time so that its decisions would be context sensitive. The first variation 
expanded the input pattern to provide on each trial a copy of the input pattern 
from the previous time step along with the current input. This allowed the 
network's decisions about the current input to be guided by information 
about the preceding input. We will call this architecture the two-word input 
model (2W). The second variation provided simple recurrent feedback from 
the output layer to the hidden layer so that on a given trial the hidden layer 
would receive the previous state of the output layer. This again allowed the 
model's decision on a given trial to be contingent on activity during the pre­
vious trial. We call this architecture the output-to-hidden architecture (OH). 
For purposes of brevity, we discuss only the results of the 2W architecture. 
In all statistical analyses reported here, the OH architecture produced the 
same effects as the 2W architecture. 

The model was trained on a 195,000 word corpus of Wall Street Journal 
text, which had been annotated with supertags. The annotation was done by 
translating the annotations of a segment of the Penn Treebank (Marcus, 
Santorini and Marcinkiewicz 1993) into LTAG equivalents (Srinivas 1997). 
During training, for each word in the training corpus, the appropriate ortho-
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graphic units and distributional profile pattern were activated in the input 
layer. The input activation pattern was propagated forward through the hid­
den layer to the output layer. Learning was driven by back propagation of the 
error between the model's output pattern and the correct supertag pattern for 
the current word (Rumelhart, Hinton and Williams 1986). 

We tested the overall performance of the model by examining its super­
tagging accuracy on a 12,000 word subset of the training corpus that was 
held out of training. The network's syntactic analysis on a given word was 
considered to be the supertag whose desired activation pattern produced the 
lowest error with respect to the model's actual output (using least squares 
error). On this metric, the model guessed correctly on 72% of these items. 
Using a slightly relaxed metric, the correct supertag was among the model's 
top three choices (the three supertags with the lowest error) 80% of the time. 
This relaxed metric was used primarily to assess the model's potential for 
increased overall accuracy in future work, if the correct analysis was highly 
activated even when it was not the most highly activated analysis, then fu­
ture changes might be expected to increase the model's overall accuracy 
(e.g., improvements to the quality of the input representation). Accuracy for 
basic part of speech on the relaxed metric was 91%. The performance of the 
network can be compared to 79% accuracy for a 'greedy' version of the tri­
gram model of Srinivas and Joshi (1998), which was trained on the same 
corpus. The greedy version eliminated the previously mentioned ability of 
the original model to be influenced by information from right context in its 
decisions about a given word. 

Although these results indicate that the model acquired a substantial 
amount of grammatical knowledge, the main goal of this work is to examine 
the relationship between the model's operation and human behavioral pat­
terns, including the patterns of misanalysis characteristic of human process­
ing. In pursuing this goal, we measure the model's degree of commitment to 
a given syntactic analysis by the size of its error to that analysis relative to its 
error to other analyses. We make the linking hypothesis that reading time 
elevations due to misanalysis and revision in situations of local syntactic 
ambiguity should be predicted by the model's degree of commitment to the 
erroneous syntactic analysis at the point of ambiguity. For example, in the 
NP/S ambiguity of example (1), the model's degree of commitment to the 
NP-complement analysis over the S-complement analysis should predict the 
amount of reading time elevation at the disambiguating region was in .... 

We conducted experiments on the model that mimic the structure of on­
line processing experiments. The following section discusses the results of 
two experiments, which investigate the model's processing of the NP/S am­
biguity and the noun/verb lexical category ambiguity. 



THE CONVERGENCE OF LEXICALIST PERSPECTIVES 91 

4.2 Modeling the NP/S Ambiguity 

One set of behavioral data that our model aims to account for is the pattern 
of processing difficulty around the NP/S ambiguity discussed in section 2 
and exemplified in (1), repeated here as (2). 

(2) a. 
b. 

The chef forgot the recipe was in the back of the book. 
The chef claimed the recipe was in the back of the book. 

In (2a), comprehenders can initially treat the noun phrase the recipe as either 
the NP-complement of forgot or the subject of a sentential complement to 
forgot. Numerous experiments have found that readers of locally ambiguous 
sentences like (2a) often erroneously commit to a NP-complement interpre­
tation (Holmes et al. 1989, Ferreira and Henderson 1990, Trueswell et al. 
1993, Garnsey et al. 1997). 

Several experiments have found that the general processing bias toward 
the NP-complement is modulated by the structural bias of the main verb 
(Trueswell et al. 1993, Garnsey et al. 1997). Erroneous commitments to the 
NP-complement interpretation are weakened or eliminated when the main 
verb has a strongS-bias (e.g., claimed). Recently, Trueswell and Kim (1998) 
have shown similar effects when verb bias information is introduced to proc­
essing through a lexical priming technique. Thus, the language processing 
system appears to be characterized simultaneously by an overall bias toward 
the NP-complement analysis and by the influence of the lexical preferences 
of S-bias verbs. 

The coexistence of these two conflicting sources of guidance may be 
explained in terms of "neighborhoods of regularity" in the representation of 
verb argument structure (Seidenberg 1992, Juliano and Tanenhaus 1994). 
NP-complement and S-complement verbs occupy a neighborhood of repre­
sentations, in which the NP-complement pattern dominates the "irregular" S­
complement pattern, due to greater frequency. The ability of S-complement 
items to be represented accurately is dependent on frequency. High fre­
quency S-complement items are accurately represented, but low frequency 
S-complement items are overwhelmed by their dominant NP-complement 
neighbors. Juliano and Tanenhaus (1993) found evidence in support of this 
hypothesis in a study in which the ability of verb bias information to guide 
processing was characterized by an interaction between the frequency and 
the subcategory of the main verb. The ability of S-complement verbs to 
guide processing commitments was correlated with the verb's lexical fre­
quency. Low frequency S-complement verbs allowed erroneous commit­
ments to the NP-complement analysis in spite of the verb's bias, while high 
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frequency S-complement items caused rapid commitments to the correct S­
complement analysis. 

We examined the model's processing of NP/S ambiguous sentence 
fragments like (3). Detailed results are reported by Kim et al. (in prep.). 

(3) The economist decided ... 

Twenty-eight verbs were selected on the basis of their frequency properties 
in the model's training corpus. Half of these strongly tended to take S­
complements and half strongly tended to take NP-complements. Within each 
verb-bias type, half of the target verbs were high in frequency and half were 
low in frequency. Each NP-biased item was matched in frequency to a S­
biased item. These verbs were then embedded in a sentence fragment, which 
was presented to the model. Table 2 shows examples of each of the four con­
ditions that resulted from crossing verb bias with frequency. 

Example _ Frequency 
The economist decided High 
The economist elected High 
The economist denied Low 
The economist achieved Low 

Structural Bias 
S-complement 
NP-complement 
S-complement 
NP-complement 

Table 2: Examples of materials used to examine the model's NP/S 
subcategorization performance. Verb frequency and structural bias were 
determined from the properties of the training corpus. 

The results of the experiment are summarized in Table 3. The model 
clearly recognizes NP/S verbs, as demonstrated by the consistency with 
which it assigned either a NP- or a S-complement supertag to the experi­
mental items (27 of 28 items). Closer examination of the model's perform­
ance reveals major qualities of human comprehension data, including a gen­
eral bias toward the NP-complement structure, which can be overcome by 
lexical information from high frequency S-complement verbs. As illustrated 
in Table 3, all 14 NP-biased verbs were correctly analyzed, but S-biased 
verbs were misanalyzed on 9 of 14 trials, with 8 of the 9 misanalyses being 
to the NP-complement. The dominance of the NP-complement analysis, 
however, is modulated by the frequency of exposure to S-complement items, 
matching the interaction between frequency and verb subcategory in human 
processing shown by Juliano and Tanenhaus (1994). The model showed high 
accuracy on S-biased verbs when they were high in frequency (5 out of 7 
items were correctly analyzed) but showed a tendency to misanalyze low 
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frequency S-biased items as NP-complement items (all 7 were misanalyzed, 
with 6 of the errors being to the NP-complement). 

Verb Sub- Frequency S- NP- Other Commitment 
category comp comp Supertags to S-comp 
S-comp High 5 2 0 0.013 
S-comp Low 0 6 1 -1.0021 
NP-comp High 0 7 0 -1.1541 
NP-comp Low 0 7 0 -1.3343 

Table 3: The model's structural analyses of NP/S Verbs. 

We quantified the model's degree of commitment to the S-complement 
supertag over the NP-complement supertag by subtracting the model's error 
to the S-complement supertag from its error to the NP-complemept supertag 
(NP-complement error-S-complement error).8 On this quantification, nega­
tive values indicate commitment to an NP-complement analysis while posi­
tive values indicate commitment to the S-complement analysis. This value 
was subjected to an Analysis of Variance with Frequency and Verb Bias as 
factors, which showed an interaction between Frequency and Verb Bias, 
F(1,24) = 7.04; p < 0.05, as well as main effects of Frequency, 
F(1,24)=14.42; p < 0.001 and Verb Bias, F(l,24) = 22.69, p < 0.0001. 

Verb Subcategory 
Tokens 
S-complement 
NP-complement 
Other 

All 

This 
Model 
2708 
10583 
17367 
(11436 
auxiliaries) 
30658 

Juliano & Tanenhaus 
(1994) 
1997 
5686 
5368 

13051 

Penn Treebank 

8502 
31935 
89625 

130062 

Table 4: Frequency properties of various training corpora with respect 
to the NP/S ambiguity. 

The model's frequency-by-subcategory interaction arises from its system of 
distributed representation and frequency sensitive learning. S-complement 

8Both S-complement and NP-complement verbs come in multiple versions, cor­
responding to different constructions such as Wh-extraction, passivization, etc. In 
both cases, we computed error with respect to the unextracted, main clause tree. 
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verbs and NP-complement verbs have a substantial overlap in input repre­
sentation, due to distributional and orthographic similarities (-ed, -ng, etc.) 
between the two types of verbs and the fact that S-complement verbs are 
often NP/S ambiguous. NP-complement tokens dominate S-complement 
tokens in frequency (4 to 1, as shown in Table 4), causing overlapping input 
features to be more frequently associated with the NP-complement output 
than the S-complement output during training. The result is that a portion of 
the input representation of S-complement verbs becomes strongly associated 
with the NP-complement output, causing a tendency for the model to 
misanalyze S-complement items as NP-complement items. The model is able 
to identify non-overlapping input features that distinguish S-complement 
verbs from their dominant neighbors, but its ability to do so is affected by 
frequency. When S-complement verbs are seen in high frequencies, their 
distinguishing features are able to influence connection weights enough to 
allow accurate representation; however, when S-complement verbs are seen 
in low frequencies, their NP-complement-like input features dominate their 
processing. The explanation here is similar to the explanation given by Sei­
denberg and McClelland (1989) for frequency-by-regularity interactions in 
word naming (e.g., the high frequency irregularity of have vs. the regularity 
of gave, wave, save) and past tense production. 

The theoretical significance of this interaction lies partly in its emer­
gence in a comprehensive model, which is designed to resolve a wide range 
of syntactic ambiguities over a diverse sample of the language. These results 
provide a verification of conclusions drawn by Juliano and Tanenhaus (1994) 
from a much simpler model, which acquired a similar pattern of knowledge 
about NP-complement and S-complement verbs from co-occurrence infor­
mation about verbs and the words that follow them. It is important to provide 
such follow-up work for Juliano and Tanenhaus (1994), because their simpli­
fications of the domain were extreme enough to allow uncertainty about the 
scalability of their results. Although their training materials were drawn from 
naturally occurring text (the Wall Street Journal and Brown corpora), they 
sampled only a subset of the verbs in that text and the words occurring after 
those verbs. S-complement tokens were more common in their corpus than 
in the full language (2.5 times more common than in the full corpus from 
which their training materials were drawn), and only past-tense tokens were 
sampled. This constitutes a substantial simplification of the co-occurrence 
information available in the full language. In our sample of the Wall Street 
Journal corpus, non-auxiliary verbs account for only 10.8% of all tokens, 
suggesting that the full language may contain many co-occurrence events 
that are 'noise' with respect to the pattern detected by the Juliano and Ta­
nenhaus (1994) model. For instance, as they observe, their domain restricts 
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the range of contexts in which the determiner the occurs, obscuring the fact 
that in the full language, the often introduces a subject noun phrase rather 
than an object noun phrase. It is conceivable that the complexity of the full 
language would obscure the pattern of co-occurrences around the NP/S am­
biguity sufficiently to prevent a scaled up constraint-based model from ac­
quiring the pattern of knowledge acquired by the Juliano and Tanenhaus 
1994 model. Our results demonstrate that the processing and representational 
assumptions that allow constraint based models to naturally express fre­
quency-by-regularity interactions are scalable-they continue to emerge 
when the domain is made very complex. 

4.3 Modeling the Noun/Verb Lexical Category Ambiguity 

Another set of behavioral data that our model addresses is the pattern of 
reading times around lexical category ambiguities like that of fires in (4). 

(4) a. 
b. 

the warehouse fires burned for days. 
the warehouse fires many workers every spring. 

The string warehouse fires can be interpreted as a subject-verb sequence (4a) 
or a compound noun phrase (4b). This syntactic ambiguity is anchored by 
the lexical ambiguity of fires, which can occur as either a noun or a verb. 

Several experiments have shown that readers of sentences like (4a) often 
commit erroneously to a subject-verb interpretation, as indicated by proc­
essing difficulty at the next word (burned), which is inconsistent with the 
erroneous interpretation and resolves the temporary ambiguity. Corley 
(1998) has shown that information about the category bias of the ambiguous 
word is rapidly employed in the resolution of this ambiguity. When the am­
biguous word is one that tends statistically to be a verb, readers tend to 
commit erroneously to the subject-verb interpretation, but when the word 
tends to occur as a noun, readers show no evidence of misanalysis. Mac­
Donald (1993) has found evidence of more subtle factors, including the rela­
tive frequency with which the preceding noun occupies certain phrase­
structural positions, the frequency of co-occurrence between the preceding 
noun and ambiguous word, and semantic fit information. Most importantly 
for the current work, MacDonald found that when the ambiguous word was 
preceded by a noun that tended to occur as a phrasal head, readers tended to 
commit to the subject-verb interpretation. However, when the preceding 
noun tended to occur as a noun modifier, readers tended to commit immedi­
ately to the correct noun-noun compound analysis. 

The overall pattern of data suggests a relatively complex interplay of 
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constraints in the resolution of lexical category ambiguity. Lexically specific 
information appears to be employed very rapidly and processing commit­
ments appear to be affected by multiple sources of information, including 
subtle cues like the modifier/head likelihood of a preceding noun. 

We examined the ability of the model to resolve lexical category ambi­
guities by presenting it with strings containing noun/verb ambiguous words, 
as exemplified by (5). 

(5) a. The emergency plans ... 
b. The division plans ... 

The experiment examined the effect of the category bias of the ambiguous 
word and the modifier/head likelihood of the preceding noun. 

Sixty noun/verb ambiguous words were collected from the training cor­
pus. These words were either biased toward a noun interpretation, biased 
toward a verb interpretation, or equi-biased (20 of each category). The mem­
bers of the three categories of bias were matched item-wise for overall 
training frequency. 

Eight nouns were selected from the training corpus to occupy the pre­
ceding noun position of the experimental materials. Four of these were nouns 
that tended to occur as phrasal heads in the corpus (e.g., division), and the 
other four were nouns that tended to occur as noun modifiers in the corpus 
(e.g., emergency). Context nouns were matched pair-wise for overall training 
frequency. 

Experimental items consisted of a determiner, a context noun, and a 
noun/verb ambiguous item. Each of the eight context nouns was paired with 
each of the 60 NN ambiguous items, creating 480 items like those in Table 
5. The complete set of materials are described in Kim et al. (in prep.). 

Example Item Context Support Lexical Category Bias 
The emergency plans Noun N-Bias 
The emergency bid Noun EQ-Bias 
The emergency pay Noun V-Bias 
The division plans Verb N-Bias 
The division bid Verb EQ-Bias 
The division pay Verb V-Bias 

Table 5: Examples of materials used to examine the model's resolution 
of the noun/verb category ambiguity. 

The model clearly recognized the target words to be either nouns or 
verbs. Only 16 out of 480 items were assigned a supertag that was neither a 
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noun supertag nor a verb supertag. The model's resolution of the noun/verb 
ambiguity showed effects of the category bias of the ambiguous word and 
the Head/Modifier likelihood of the preceding noun, both of which have 
been shown in human processing (Corley 1998, MacDonald 1993). The 
model showed strong commitments to the contextually supported category 
for equi-biased words and also for biased words when the context supported 
the dominant sense of the word. The model had difficulty activating the sub­
ordinate sense of biased word, even when supported by context. This is il­
lustrated by examining the activation values of the noun and verb part-of­
speech units separately from the rest of the output layer, as shown in Table 6 
(Column 3). For biased words occurring in contexts that supported the 
word's dominant category, the contextually supported part-of-speech unit 
had higher activation than the contextually unsupported unit for 159 of 160 
items (80/80 for N-bias word inN-support context and 79/80 for V-bias word 
in V-support context). For equi-biased items, the contextually supported unit 
was more highly active for 130/160 items (68/80 for N-support and 62/80 for 
V-support). However, for biased words occurring in contexts that support the 
subordinate category, the model showed difficulty activating the contextually 
supported unit, with the contextually supported unit showing superior acti­
vation for only 47 out of 160 items (46/80 for N-support with V-bias and 
11/80 for V-support with N-bias). 

Context Type 

N-Support 
N-Support 
N-Support 
V-Support 
V-Support 
V-Support 

Verb Bias 

N-Bias 
EQ-Bias 
V-Bias 
N-Bias 
EQ-Bias 
V-Bias 

Superior Activa- Degree of Com-
tion contextually mitment to Noun 
supported unit. Interpretation 
80/80 0.99 
68/80 0.82 
11180 0.50 
47/80 0.76 
62/80 0.32 
79/80 0.08 

Table 6: The proportion of times that the contextually supported part-of­
speech unit was given superior activation for noun/verb ambiguous 
words in each of six conditions (column 3) and the model's degree of 
commitment to a Noun analysis (column 4). 

We quantified the model's degree of commitment to the noun analysis by 
dividing the noun unit activation by the total activation across the noun and 
verb units (Noun-Activation I (Noun-Activation + Verb-Activation)). This is 
summarized in Table 6. The closer this value is to 1.0, the greater the 
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model's commitment to the noun analysis over the verb analysis, and the 
closer to 0.0, the greater the commitment to a verb analysis. This value was 
subjected to an Analysis of Variance with Context (N-Support, V-Support) 
and Category Bias (N-bias, EQ-bias, V-bias) as factors. The model showed a 
clear effect of lexical category bias, with N-bias items causing a mean noun 
commitment of 0.88, EQ-bias items causing 0.57, and V-bias items causing 
0.29, F(2,57) = 58.23; p < 0.0001. Second, there was an effect of context: in 
the context of N-support nouns, the model tended to commit more strongly 
to noun analyses (mean noun commitment 0.77) than in the context of V­
support nouns (mean noun commitment 0.39), F(l,57) = 238.01; p < 0.0001. 
Finally, the model showed an interaction between Context and Category­
Bias with a strong tendency to activate a context-supported pattern for words 
whose bias agreed with the context and for EQ-biased words, but not when 
the category bias disagreed with the context, F(2,57) = 0.0001; p < 0.0001. 

Interestingly, the interaction between word bias and context resembles 
the "subordinate bias" effect observed in the semantic aspects of word rec­
ognition (Duffy, Morris and Rayner 1988). When semantically ambiguous 
words are encountered in biasing contexts, the effects of context depend on 
the nature of the word's bias. When the context supports the subordinate 
sense of a biased ambiguous word, processing difficulty occurs. When the 
context supports the dominant sense or when it supports either sense of an 
equi-biased word, no processing difficulty occurs. Our model shows a 
qualitatively identical effect with respect to category ambiguity. We take this 
as further support for the idea, central to lexicalist theories, that lexical and 
syntactic processing obey many of the same processing principles. On the 
basis of this kind of effect in the model, we predict that human comprehend­
ers should show subordinate bias effects in materials similar to the ones used 
here. Furthermore, because the subordinate bias effects found here are quite 
natural given the model's system of representation and processing, we would 
expect similar effects to arise in the model and in humans with respect to 
other syntactic ambiguities that are affected by local left context (see 
Trueswell 1996, for similar predictions about subordinate bias effects in­
volving the main clause/relative clause ambiguity). 

The model's use of fine-grained contextual cues in resolving category 
ambiguities strongly suggests the viability of using such cues to inform syn­
tactic decisions in human language processing. This goes against suggestions 
in the literature that such fine-grained information is often too sparse to ac­
curately drive a statistical model of the language (Mitchell et al. 1995, Cor­
ley and Crocker 1996). We return to this issue in the next section. 
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5 General Discussion 

In this paper, we have attempted to advance the grammatical coverage and 
formal specification of Constraint-based Lexicalist models of language com­
prehension. A convergence of perspectives between constraint-based theory 
in psycholinguistics and work in theoretical and computational linguistics 
has supported and guided our proposals. We have attempted to give a con­
crete description of the syntactic aspects of the CBL theory by attributing to 
human lexical knowledge the grammatical properties of a wide coverage 
Lexicalized Tree Adjoining Grammar (Doran et al. 1994). In developing a 
processing model, we have drawn insight from work on processing with 
LTAG which suggests that statistical mechanisms for lexical ambiguity 
resolution may accomplish much of the computation of parsing when applied 
to rich lexical descriptions like those ofLTAG (Srinivas and Joshi 1998). We 
have incorporated these ideas about grammar and processing into a psycho­
logically motivated model of the grammatical aspects of word recognition, 
which is wide in grammatical coverage. 

The model we describe is general in purpose; it acquires mappings be­
tween a large sample of the lexical items of the language and a large number 
of rich grammatical representations. Its design does not target any particular 
set of syntactic ambiguities or lexical items. Nevertheless, it is able to quali­
tatively capture subtle patterns of human processing data, such as the fre­
quency-by-regularity interaction in the NP/S ambiguity (Juliano and Tanen­
haus 1993) and the use of fine-grained contextual cues in resolving lexical 
category ambiguities (MacDonald 1993). 

The wide range of grammatical constructions faced by the model and 
the diversity of its sample of language include much of the complexity of the 
full language and support the idea that constraint-based models of sentence 
processing are viable, even on a large grammatical scale. The model pro­
vides an alternative to the positions of Mitchell et al. (1995) and Corley and 
Crocker (1996), which propose statistical processing models with only 
coarse-grained parameters such as part-of-speech tags. Their argument is that 
the sparsity of some statistical data causes the fine-grained parameters of 
constraint-based models to be "difficult to reliably estimate" (Corley and 
Crocker 1996) and that the large number of constraints in constraint-based 
models causes the management of all these constraints to be computationally 
intensive. Such arguments assume that a coarse-grained statistical model is 
more viable and more 'compact' than a fine-grained model. 

The issue of whether fine-grained statistical processing is viable may 
hinge on some basic computational assumptions. The observation that the 
sparsity of statistical data affects the performance of statistical processing 
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systems is certainly valid. But there are a number of reasons why this does 
not support arguments against fine-grained statistical processing models. 
First, there is a large class of statistical processing models, including 
connectionist systems like the one used here, that are well suited to the use 
of imperfect cues. For instance, a common strategy employed by statistical 
NLP systems to deal with sparse data is to 'back off to statistics of a coarser 
grain. This is often done explicitly, as in verb subcategorization methods, 
where decisions are conditionalized on lexical information (individual verbs) 
when the lexical item is common, but are conditionalized on (backed off to) 
basic category information (all verbs), when the lexical item is rare (Collins 
1996). In connectionist systems like ours, statistical back-off is the flip-side 
of the network's natural tendency to generalize but also to be guided by fine­
grained cues when those cues are encountered frequently. Fine grained fea­
tures of a given input pattern are able to influence behavior when they are 
encountered frequently, because they are given repeated opportunities to 
influence connection weights. When such fine-grained features are not en­
countered often enough, they are overshadowed by coarser-grained input 
features, which are by their very nature more frequent. Systems like our 
model can be seen as discovering back-off points. We argue that systems that 
do such backing off are the appropriate class of system for modeling much of 
sentence processing. As a back-propagation learning system with multiple 
grammatical tasks competing for a limited pool of processing resources, our 
model is essentially built to learn to ignore unreliable cues. 

Thus, the interaction between frequency and subcategory that we have 
discussed emerges naturally in the operation of statistical processing devices 
like the model described here. Fine-grained information about S-complement 
verbs is able to guide processing when it is encountered often enough during 
training to influence connection weights in spite of the dominance of NP­
complement signals. The ability of Head/Modifier likelihood cues about 
nouns to influence connection weights is similarly explained. 

In general, we view the sparsity of data as an inescapable aspect of the 
task of statistical language processing rather than as a difficulty that a system 
might avoid by retreating to more easily estimable parameters. Even part-of­
speech tagging models like Corley and Crocker's (1996) include a lexical 
component, which computes the likelihood of a lexical item given a candi­
date part-of-speech for that word, and their model is therefore affected by 
sparsity of data for individual words-this is true for any tagger based on the 
dominant Hidden Markov Model framework. Furthermore, as mentioned 
earlier, work in statistical NLP has increasingly indicated that lexical infor­
mation is too valuable to ignore in spite of the difficulties it may pose. Tech­
niques that count lexically specific events have generally out-performed 
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techniques that do not, such as statistical context-free grammar parsing sys­
tems (see Marcus 1995). It seems to us that, given a commitment to statisti­
cal processing models in general, there is no empirical or principled reason 
to restrict the granularity of statistical parameters to a particular level, such 
as the part-of-speech tags of a given corpus. Within the engineering work on 
part-of-speech tagging, there are a number of different tag-sets, which vary 
in the granularity of their tags for reasons unconnected to psychological re­
search, so that research does not motivate a psychological commitment to 
any particular level of granularity. Furthermore, the idea that the language 
processing system should be capable of counting statistical events at only a 
single level of granularity seems to be an assumption that is inconsistent with 
much that is known about cognition, such as the ability of the visual proc­
essing system to combine probabilistic cues from many levels of granularity 
in the recognition of objects. The solution to the data sparsity problem, as 
manifested in humans and in successful engineering systems, is to adopt the 
appropriate learning and processing mechanisms for backing off to more 
reliable statistics when necessary. 

We have argued that the complexities of statistical processing over fine­
grained lexical information do not warrant the proposal of lexically-blind 
processing mechanisms in human language comprehension. Although the 
complexities may be unfamiliar, they are tractable, and there are large pay­
offs to dealing with them. An increasingly well-understood class of con­
straint-satisfaction mechanisms is well suited to recognizing fine-grained 
lexical patterns and also to backing off to coarser-grained cues when fine­
grained data is sparse. The modeling work described here and research in 
computational linguistics suggests that such mechanisms, when applied to 
the rich lexical representations of lexicalized grammars, can accomplish a 
substantial amount of syntactic analysis. Furthermore, the kind of mecha­
nism we describe here shows a pattern of processing that strongly resembles 
human processing data, suggesting that such mechanisms are good models of 
human processing of speech and text. 
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