
Overhead-aware deployment of runtime monitors

Teng Zhang1, Greg Eakman2, Insup Lee1, and Oleg Sokolsky1

1 University of Pennsylvania, Philadelphia PA 19104, USA,
{tengz,lee,sokolsky}@cis.upenn.edu

2 BAE Systems, Burlington MA 01803, USA,
gregory.eakman@baesystems.com

Abstract. One important issue needed to be handled when applying
runtime verification is the time overhead introduced by online monitors.
According to how monitors are deployed with the system to be moni-
tored, the overhead may come from the execution of monitoring logic or
asynchronous communication. In this paper, we present a method for de-
ciding how to deploy runtime monitors with awareness of minimizing the
overhead. We first propose a parametric model to estimate the overhead
given the prior knowledge on the distribution of incoming events and the
time cost of sending a message and executing monitoring logic. Then, we
will discuss how to statically decide the boundary of synchronous and
asynchronous monitors such that the lowest overhead can be obtained.

Keywords: Runtime verification · Monitor deployment · Overhead.

1 Introduction

Runtime verification (RV) has been widely used to check properties of software
systems. The time overhead brought by online monitors may influence the per-
formance of the system to be monitored (denoted as the target system). Multiple
factors can influence the overhead such as event sampling rate [6] or monitoring
algorithm [8]. Deployment of monitors may also have impact on the overhead [5].
According to how to interact with the target system, monitors can be deployed
synchronously or asynchronously with the target system. If multiple monitors
are involved, they can be deployed in a hybrid way. A generally accepted as-
sumption is that synchronous monitoring can detect the violation timely while
asynchronous monitoring can incur less overhead [4]. In the real world, however,
finding the deployment to achieve the least overhead is undecidable. Neverthe-
less, if the termination of monitors to handle each event is guaranteed and prior
knowledge about the distribution of incoming events is available, it is possible
to estimate the time overhead statically.

This paper presents an initial study on deciding deployment of monitors to
reduce the overhead. More specifically, we propose a model to estimate the time
overhead of SMEDL [12] monitors, parameterized by the distribution of incoming
events, the execution time of sending a message and making a transition. Then,
by analyzing the structure of monitors given the knowledge about the incoming

2 Teng Zhang et al.

event stream, we will present a way to decide the boundary of synchronous and
asynchronous monitors to obtain the lowest overhead.

Related Work. There are multiple approaches to reduce monitoring over-
head. Considerable number of studies focus on event sampling [6, 3, 9, 1, 7]. In [8],
efficient monitoring algorithms are proposed to reduce the overhead. By contrast,
we are concerned with the overhead of event propagation. The RV framework
in [5] supports tuning of deployments but does not offer a quantitative method.
In [4], a hybrid instrumentation technique to dynamically switch between syn-
chronous and asynchronous monitoring. The goal is to reduce the overhead by
minimizing the synchronous instrumentation while ensuring timely detections. In
their approach, synchronous monitoring is built upon the asynchronous commu-
nication and always has higher overhead. By contrast, we decide the deployment
statically based on quantitative overhead model.

2 Preliminaries

This section briefly introduces the syntax and semantics of SMEDL. A SMEDL
specification contains a set of monitor specifications and an architecture descrip-
tion that captures patterns of communication between them. During execution,
each monitor can be instantiated statically during system startup. Specified in
the architecture description, monitors can be deployed synchronously or asyn-
chronously with the target system.

Single monitor. A SMEDL monitor is a collection of EFSMs (Extended
Finite State Machines) in which the transitions are performed by reacting to
events sent from the environment, other monitors or raised within the monitor.
EFSMs interact with each other using shared state variables or by triggering
execution of other EFSMs through raised events. Each transition is triggered by
an event and attached to a guard condition and a list of actions to be executed
after the transition. Actions of transitions include raising events and updat-
ing state variables. Primitive data types, arithmetic and logical operations are
supported in SMEDL. The reader can refer to [13] for detailed description and
formal semantics.

Monitor network. The target system and monitors interact with each other
using events. Communication pattern of events among monitors is specified in
the architecture description. For instance, Fig.1(a) illustrates event connection
between the target system and three monitors M1,M2 and M3. During runtime,
multiple instances are created with different identities as shown in Fig.1(b). The
architecture description specifies how events raised by a monitor instance are sent
to specific instances of another monitor. For instance, when e4 is sent from M1

to M2 as e5, the first identity of M1(x) must be equal to the identity of M2(z). In
Fig.1(b), we can observe that instance M1(1 , 1) and M1(1 , 2) connect to M2(1)
while M1(2 , 1) connects to M2(2), which is complying with the static specifi-
cation. SMEDL supports specifying deployment form of monitors. As shown in
Fig.1(a), M1 is deployed synchronously with the target system while M2 and
M3 are asynchronous monitors. Event connection specification is independent of

Overhead-aware deployment of runtime monitors 3

deployment form but the communication is decided by how they are deployed.
The synchronous monitors interact with the target system by direct API calls
while asynchronous communication can be implemented using communication
middleware such as RabbitMQ [10].

Fig. 1: An example of connections between monitors and the target system

3 Estimation and comparison of monitoring overhead

Notations. The types of events generated by the target system sys is a set
ES = {e1, e2,, ek}. The event stream raised by sys and its corresponding
length are respectively denoted as S and n. Mons is the set of monitors in
the monitor network. Monssync and Monsasync are respectively the subsets of
monitors which are deployed synchronously and asynchronously with sys. Asyn-
chronous monitors can receive events from synchronous monitors or the tar-
get system, but not vice versa. The accumulated overhead of the system is de-
noted as OH (n), which is the sum of the overhead brought by the synchronous
(OHsync(n)) and the asynchronous part (OHasync(n)).

Assumptions. The time for sending an event asynchronously and making
a transition, respectively denoted as tm and ts, can be accurately measured or
estimated. Note that ts includes time to make transition and executing actions
in the transition. Actions are arithmetic/logical operations, raising and sending
events to other synchronous monitors. For simplicity of analysis, we assume that
transitions take approximately the same time to execute actions. It is straightfor-
ward to relax it by estimating execution time for each transition and aggregating
them. The prior knowledge about the distribution of incoming events in S is also
assumed to be available and simplified as the normalized frequency of appear-
ance in S for all events in ES, denoted as fe1 , ...fe2 ,, fek where Σe∈ESfe = 1.
This assumption is realistic in systems sending different types of events in a
regular rate and enough data can be collected to estimate the distribution.

Overhead model. Overhead for synchronous monitors come from execution
of transitions. The set of external events to be consumed by Monssync is denoted
as ESsync = {es1 , es2 , ..., esi}, which is a subset of ES . Each event e in ESsync

4 Teng Zhang et al.

may directly or indirectly trigger transitions in Monssync . The corresponding
overhead is ts ∗ tr(e,Monssync) ∗ fe. The denotation tr(e,MS) represents the number
of transitions triggered by e in the monitor set MS , which can be estimated by
static analysis. However, the transitions triggered by an event depend on the
dynamic state of the monitors and parameter values carried by the event so we
do not know which transitions will be executed statically. If we choose the largest
possible transition set, OHsync(n) may be overestimated while the smallest tran-
sition set leads to an underestimation of it. The accumulated overhead brought
by S can then be computed using the following formulae:

OHsync(n) = n ∗ ts ∗Σe∈ESsync
(tr(e,Monssync) ∗ fe)

OHasync(n) includes sending events raised by sys and Monssync to asynchronous
monitors. Denote ESasync = ES−ESsync as the events raised from sys and sent to
Monsasync . The set of events that are raised by Monssync and sent to Monsasync
is denoted as ESraised . Each event in ESraised is directly or indirectly triggered
by one or multiple events in ESsync . We use g(e′,e) to denote the number of
instances of e generated by each instance of e′. OHasync(n) can be computed
using the following formula:

OHasync(n) = n ∗ tm ∗ (Σe∈ESasync
fe +Σe∈ESraised∧e′∈ESsync

fe′ ∗ g(e′,e))

Note that to estimate the value of g and tr, we assume that all event instances
of the same type are dispatched to the same monitor instances regardless of their
parameter values. Furthermore, n will be ignored in the rest of the paper as both
formula are the linear function of n.

Determine the deployment. The SMEDL monitor network can be mod-
eled as a direct acyclic graph (DAG) where nodes are the target system and
monitors and edges are event connections. All instances of the same monitor
are treated as one node in DAG. M is a direct upstream monitor to M ′ when
M sends events to M ′ and M ′ is the direct downstream monitor of M . In this
paper, we consider a simpler case in which the monitor network is a chain of
monitors, which means each monitor in Mons only has one direct upstream and
downstream monitor and only one monitor directly receives events from the tar-
get system. Algorithm 1 computes Monssync , the set of monitors to be deployed
synchronously. While traversing the monitor chain (MonsChain) and the current
monitor is mon, the overall overhead OHcur including mon as the synchronous
monitor is computed (Line 4 to Line 9). If it is smaller than the least overhead
seen so far (denoted as OHmin), mon and all pending monitors in Tempsync are
added to Monssync (Line 11 to Line 14). Otherwise, add mon to Tempsync . Note
that the set of input events of mon is the set of output events of its direct up-
stream monitor. As a result, fe can be computed for every e in the set of output
events since values of all f ′e are already available.

To summarize, the method includes the following steps: 1) measure tm and ts
on the actual platform for executing the target system and monitors; 2) estimate
frequencies fei of events raised by the system 3) for each monitor m ∈ Mons with

Overhead-aware deployment of runtime monitors 5

Algorithm 1 Determination of synchronous monitors

1: Monssync ← ∅,Tempsync ← ∅,OHmin ← tm,OHasync ← tm,OHcur ← tm
2: while MonsChain 6= ∅ do
3: mon ← dequeue(MonsChain)
4: Ev ← inputEvents(mon)
5: tempOHsync ← ts ∗Σe′∈Ev(tr(e′,{mon}) ∗ fe′)
6: for e ∈ outputEvents(mon) do
7: fe ← Σe′∈Evf

′
e ∗ g(e′,e)

8: tempOHasync ← tm ∗Σe∈outputEvents(mon)fe
9: OHcur ← OHcur + tempOHasync + tempOHsync −OHasync

10: OHasync ← tempOHasync

11: if OHmin > OHcur then
12: Monssync ← Monssync ∪ {mon} ∪ Tempsync
13: Tempsync ← ∅
14: OHmin ← OHcur

15: else
16: Tempsync ← Tempsync ∪ {mon}

return Monssync

the set EIm and EOm of input and output events, compute g(e′,e) and tr(e′,{m})
where e′ ∈ EIm and e ∈ EOm; 4) compute Monssync using Algorithm 1.

4 Case study

We present two examples to illustrate the use of method presented above. Both
examples use a tracking application which receives sensor data of tracks. The
experiments were conducted on a virtual machine of Ubuntu 18.04 64-bit run on
a laptop with 2.5GHz Intel i7 processor and 16GB RAM. The first case study
is a single monitor checkFormat which takes the input messages collected from
the sensor. For each input event, one transition is taken to check whether the
format complies with certain protocol. Only fully asynchronous and synchronous
deployments need to be considered. The synchronous deployment has less over-
head if tm/ts > Σe∈ES (tr(e,{checkFormat}) ∗ fe). In this example, the right-hand
side is equal to 1 and tm/ts is around 16. The testing results validate the esti-
mation: the overhead of synchronous monitor is less than 5% while the overhead
of the asynchronous monitor is about 20%.

The second example is the track quality monitors [11]. The monitors check
output track quality of the tracking application by computing average duration
over a sliding window time interval. There are two types of events generated
from the target system, track which forms the track and detection which is used
to generate heartbeat event as the boundary of the sliding window. The struc-
ture of the monitor is illustrated in Fig. 2(a). We assume that both frontend
and slidingWindow have one instance. This monitor has three possible deploy-
ments: fully synchronous, fully asynchronous, and hybrid, where only frontend
is deployed synchronously.

6 Teng Zhang et al.

(a) Monitor structure (b) Overhead

Fig. 2: Track quality monitor and the overhead for 10000 detection events

Suppose the size of sliding window is 1000ms and the time gap between
each detection event is about 10ms, then g(detection,heartbeat) is 1/100. The input
event stream has the identical number of track and detection events so fdetection
and ftrack are equal to 1/2. The overhead of fully asynchronous monitoring is
tm. According to Algorithm 1, we first compute the overhead when frontend is
synchronously deployed. Each detection and track event trigger one transition
in the frontend monitor so tr(detection,{frontend}) and tr(track ,{frontend}) are equal
to 1. Moreover, frontend immediately resends the track event. Consequently, the
overhead is ts ∗ (1/2 + 1/2) + tm ∗ (1/2 + 1/2 ∗ 1/100) = ts + 0.505 ∗ tm. We
can deduce that if tm/ts > 200/99, frontend should be deployed synchronously.
Recall that tm is 15 times greater than ts. Fig. 2(b) illustrates that the overhead
of hybrid deployment is less than asynchronous deployment, which is consistent
with the model.

5 Future work

In this paper, we proposed a model to estimate the overhead of monitors stati-
cally given the prior knowledge of frequency among different type of events and
the static structure of the monitor specification. We give an intuitive method to
decide the deployment of chains of monitors. Although the model is specific to
SMEDL monitors, it can also be used in other automata-based RV techniques.
Moreover, the idea of trade-off between synchronous and asynchronous moni-
toring is not unique to specific formalisms and one future work would be the
generalization of the model and algorithm to other formalisms for monitoring
logics. For example, the model for rule-based monitors such as Eagle [2] can be
expressed in terms of the number of rule firings rather than transitions.

Avenues of on-going work include: 1) more experiments on multiple appli-
cations to yield conclusive results for validation of the model; 2) monitor anal-
ysis to estimate the number of transitions triggered by each input event; and
3) for dynamic instantiation of monitors, we will extend the model to account
for instantiation overhead. Finally, we will invest in a more accurate overhead
measurement infrastructure. Currently, for computationally intensive systems,
overhead calculation is often noisy, making it hard to validate predictions of
our model when differences between deployments are small, as in the case with
hybrid vs. synchronous deployment in the second example above.

Overhead-aware deployment of runtime monitors 7

References

1. Arnold, M., Vechev, M., Yahav, E.: Qvm: an efficient runtime for detecting defects
in deployed systems. ACM Sigplan Notices 43(10), 143–162 (2008)

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with
LTL in EAGLE. In: 18th International Parallel and Distributed Processing
Symposium (IPDPS) (Apr 2004). https://doi.org/10.1109/IPDPS.2004.1303336,
https://doi.org/10.1109/IPDPS.2004.1303336

3. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Sampling-based runtime ver-
ification. In: International Symposium on Formal Methods. pp. 88–102. Springer
(2011)

4. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. arXiv preprint arXiv:1502.03514 (2015)

5. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polylarva: runtime verifi-
cation with configurable resource-aware monitoring boundaries. In: International
Conference on Software Engineering and Formal Methods. pp. 218–232. Springer
(2012)

6. Fei, L., Midkiff, S.P.: Artemis: Practical runtime monitoring of applications for
execution anomalies. In: ACM SIGPLAN Notices. vol. 41, pp. 84–95. ACM (2006)

7. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller,
S.D., Zadok, E.: Software monitoring with controllable overhead. International
Journal on Software Tools for Technology Transfer 14(3), 327–347 (2012)

8. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. International Journal on Software Tools for Tech-
nology Transfer 14(3), 249–289 (2012)

9. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: International conference
on runtime verification. pp. 193–207. Springer (2011)

10. Videla, A., Williams, J.J.: RabbitMQ in action: distributed messaging for everyone.
Manning (2012)

11. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Flexible monitor deployment for run-
time verification of large scale software. In: International Symposium on Leveraging
Applications of Formal Methods. pp. 42–50. Springer (2018)

12. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: Combining synchronous and asyn-
chronous monitoring. In: International Conference on Runtime Verification. pp.
482–490. Springer (2016)

13. Zhang, T., Wiegley, J., Giannakopoulos, T., Eakman, G., Pit-Claudel, C., Lee, I.,
Sokolsky, O.: Correct-by-construction implementation of runtime monitors using
stepwise refinement. In: International Symposium on Dependable Software Engi-
neering: Theories, Tools, and Applications. pp. 31–49. Springer (2018)

