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ABSTRACT

DETECTING AND CONTROLLING INSECT VECTORS IN URBAN ENVIRONMENTS: NOVEL

BAYESIAN METHODS FOR COMPLEX SPATIAL DATA

Erica Marie Weinmann Billig

Jason A. Roy

Michael Z. Levy

Efforts to control the spread of vector-borne diseases often focus on the vector itself. Here, we

develop novel methods to strategically guide the search for vectors over urban landscapes. The

methodology is motivated by Triatoma infestans, the vector of Chagas disease, a re-emerging vec-

tor in Arequipa, Peru. We first propose a novel stochastic epidemic model that incorporates both

the counts of disease vectors at each observed house and the complex spatial dispersal dynam-

ics. The goal of our analysis is to predict and identify houses that are infested with T. infestans

for entomological inspection and insecticide treatment. A Bayesian method is used to augment

the observed data, estimate the insect population growth and dispersal parameters, and determine

posterior infestation probabilities of households. We investigate the properties of the model through

simulation studies and implement the strategy in a region of Arequipa by inspecting houses with the

highest posterior probabilities of infestation and report the results from the field study. After piloting

this model in the field and assessing the strengths and weaknesses, we propose a much faster

method that extends a Gaussian Field (GF) model to incorporate the urban landscape. GF models

can be used to create risk maps of vector presence across large urban environments. However,

these models do not typically account for the possibility that city streets function as permeable bar-

riers for insect vectors. We extend GF models to account for this urban landscape. We demonstrate

our method on simulated datasets and then apply it to data on T. infestans. We estimate that streets

increase the effect of distance on the probability of vector presence at least 1.5 fold compared to

the undivided environment. Lastly, we propose a Bayesian generalized multivariate conditional au-

toregressive approach to jointly model the distribution of vectors, T. infestans, with the proportion

of vectors that carry the parasite of Chagas disease, Trypanosoma cruzi. We demonstrate the

properties of the model using simulation studies, and apply the method to data from Arequipa.
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CHAPTER 1

INTRODUCTION

1.1. Vector-borne diseases

Vector-borne diseases are increasingly common in urban areas, and efforts to control these dis-

eases are often targeted at the vector itself. However, detecting populations of disease vectors in

large urban environments is especially complex (Weaver, 2013, Knudsen and Slooff, 1992). Poor

and unplanned urban environments can create ideal breeding grounds for many vectors, facilitating

increased transmission of vector-borne diseases in population dense areas (Knudsen and Slooff,

1992, Bowman et al., 2008, Levy et al., 2006). Several arboviruses, including Dengue, Chikun-

gunya, West Nile, and Zika, have emerged repeatedly in urban areas (Haley, 2012, Sikka et al.,

2016). Parasitic diseases, such as malaria and Chagas disease, once considered rural problems,

have become common in cities (LaDeau et al., 2015, Delgado et al., 2013). In this dissertation, we

develop methods for real-time surveillance of the re-emerging vector of Chagas disease, Triatoma

infestans, in Arequipa, the second largest city in Peru.

1.2. Motivation: Chagas disease

Chagas disease has long been endemic in Central and South America and is caused by the parasite

Trypansoma cruzi (Mathers, Fat, and Boerma, 2008, Bern, 2015, Rassi and Marin-Neto, 2010).

Once infected with the parasite, the host will first suffer from the acute phase of the disease, which

presents symptoms like that of the flu. Infected individuals may suffer symptoms such as fever,

swollen lymph nodes, and, rarely, the classic sign of Chagas, Romana’s sign, where the periorbita

becomes inflamed (Bern, 2015). The acute phase typically lasts 4-8 weeks, at which point the

disease enters the chronic phase. During this phase, the patient is unlikely to have symptoms.

Approximately 20-30% of individuals in this phase will suffer a cardiac event over the course of a

lifetime, while others will enter a symptomatic chronic phase, which affects the nervous, digestive,

and cardiac systems (Bern, 2015). One of the challenges of assessing the burden of Chagas

disease lies in the complex and wide range of symptoms. Patients often go undiagnosed and

deaths are mis-attributed.
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An estimated 5.7 million people are currently living with Chagas disease (Bern, 2015). The preva-

lence has dropped substantially over the last few decades, largely due to a successful public health

campaign to control vector populations (Dias, Silveira, and Schofield, 2002). Arequipa has only one

vector of T. cruzi transmission, T. infestans, a species of triatomine that thrives in urban settings.

The species prefers environments such as guinea pig pens, common in Peru, and housing materi-

als with dark cracks and crevices (Levy et al., 2006). Since the insect rarely flies, there is a highly

spatial aspect to the observed vector distribution patterns. Previous studies have shown that the

vectors are much more likely to move within city blocks than cross a street (Barbu, Dumonteil, and

Gourbière, 2010, Barbu et al., 2013).

To control the spread of Chagas disease, Arequipa began an inspection and spray campaign to

target T. infestans in 2003 (Barbu et al., 2014). During the first phase of the campaign, prelimi-

nary inspections were conducted on a locality level, followed by a treatment phase during which

insecticide was applied to the targeted areas. These phases were followed by surveillance, during

which residents report infestations, which are followed-up by an inspection to that location, and

surrounding locations if a true vector is found. From the spray campaign and subsequent surveil-

lance, detailed data was collected on vector prevalence, including the date, location, and number

of vectors observed at houses throughout the city. We are motivated to use this data to guide a

new campaign to target the vectors that have re-emerged since the initial campaign – we want to

inspect high risk houses for vectors, and update the risk as inspections are completed.

Here, we develop methods to search urban environments for disease vectors, and apply them to the

ongoing efforts to eliminate the spread of T. infestans, in Arequipa, Peru. Different from other types

of search strategies, where the coveted item is not moving or spreading, controlling the spread of

disease vectors in real time requires identifying and treating infested households before they move

or infest others. We also present a method to estimate the proportion of vectors infected with T.

cruzi, conditional on the distribution of T. infestans. Our methods expand upon existing Bayesian

spatial, temporal, and epidemic modeling tools.

1.3. Statistical background and developments

In the second chapter, we propose a novel stochastic compartmental model to estimate the prob-

ability of infestation, in the context of the re-emerging Chagas disease vector, Triatoma infestans,

2



in Arequipa, to guide our inspection strategy. Stochastic epidemic models are a popular tool to

describe the course of an infectious disease epidemic. Using this approach, we treat the spread

of T. infestans through houses in the city like an infectious disease spreading through a population

of individuals. Fitting stochastic epidemic models to data is challenging due to the detailed data

necessary to retain a tractable likelihood (Andersson and Britton, 2012). We use a susceptible-

infected-removed (SIR) model: every house in the system is in one of these three states (suscep-

tible, infected, or treated) at any given time point, and parameters describe the rates of transition

between states. However, the likelihood of this model includes the time of infestation and treatment

of every house (Becker, 1989). In practice, we do not observe the true infestation time of each

house, and many houses in the system have never been inspected. O’Neill et al. developed an

approach to augment the data and retain a tractable likelihood when the infestation times and total

number of infested houses are unobserved (O’Neill and Roberts, 1999). His key development is the

use of a reversible-jump Markov chain Monte Carlo, an estimation algorithm used when the number

of parameters is unknown. In this case, the total number of infested houses is unknown, and thus

there is an unknown number of unobserved infestation times, which are treated as parameters in

the model.

We expand off more recent methods, Jewell et al., 2009a and Jewell et al., 2009b, that incorporate

the ‘notification time’ of the house, or the time that the house is observed as infested into O’Neill’s

approach. Jewell’s method uses a susceptible-infected-notified-removed (SINR) model and there-

fore has additional parameters to capture the transition from the infected to notified, and notified to

removed, states of the system. The approach was developed in the context of notifiable diseases,

and the critical assumption necessary for a tractable likelihood of the SINR model, is a known

distribution that captures the true infestation time as a function of the later, observed notification

time. Due to the nature of how our data was collected, as part of both the spray campaign and

subsequent surveillance, we cannot make that key assumption.

We incorporate a house-level vector population growth model and use the counts of disease vec-

tors at each observed house to estimate the unobserved infestation time, by assuming houses with

more observed insects were infested less recently than houses with fewer insects. In addition,

we attempt to capture the complex spatial dispersal dynamics by using a kernel that incorporates

city streets (Barbu et al., 2013). The goal of our analysis is to predict and identify houses that

3



are infested with T. infestans for entomological inspection and insecticide treatment. Our Bayesian

method is used to augment the observed data, estimate the insect population growth and disper-

sal parameters, and determine posterior infestation probabilities of households. We investigate

the properties of the model through simulation studies. We implement the strategy in a region of

Arequipa by inspecting houses with the highest posterior probabilities of infestation and report the

results from the field study. After implementing this model in the field, we identify strengths and

weaknesses of this approach. While the model captures the spatial heterogeneity and dynamic

movement of the vectors, the reversible-jump Markov chain Monte Carlo used for estimation is

computationally intensive and does not consistently converge quickly enough for real-time updates.

In the third chapter, we are motivated to develop a model to improve upon the weaknesses we en-

countered in our field implementation, including speed of convergence, while estimating the effect

of the urban landscape on the vector distribution. We use Gaussian field (GF) model, a type of

spatial model used for point-process, or geostatistical, data. Recent advances, both in theory and

computation, have enabled fast parameter estimation using this approach. Lindgren et al. found

a link between the GF and Gaussian Markov Random Field (GMRF) with the use of the Matérn

covariance function, popular for geostatistical data (Lindgren, Rue, and Lindström, 2011). Using

this link, we can estimate the parameters of the Matérn covariance function using nested integrated

Laplace approximations. Rue et al. developed a sophisticated R package, ‘INLA’, to implement

this estimation algorithm, an alternative to Markov chain Monte Carlo, greatly easing the speed and

computational burden (Rue, Martino, and Chopin, 2009). Using a GF, we assume the observed

vector distributions are a realization of a stochastic process that is occurring over the landscape.

However, the GF assumes the process is occurring over a continuous, smooth, space, but the city

streets of the urban landscape create barriers for vector dispersal. Unlike true barriers, vectors

can cross city streets, but previous studies have shown that T. infestans are more likely to move a

given distance within a city block than between city blocks (Barbu et al., 2013). We propose using

an additional parameter to capture the heterogeneity of the city landscape, by effectively distorting

the city map and widening the streets by an estimated distance, creating permeable barriers. Our

approach fits into the existing estimation software, making it accessible for researchers across dis-

ciplines, and easy to apply to different districts of Arequipa while maintaining the ability to regularly

update the model for ‘real-time’ estimation. Including the spatial structure of city streets may more

accurately describe spatial associations characteristic of insect infestations and therefore help in
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developing effective public health interventions to reduce transmission in population dense areas

(Weaver, 2013). We demonstrate our method on simulated datasets and then apply it to data on

Triatoma infestans, the principal vector of Chagas disease in Arequipa Peru.

In the fourth chapter, we develop a multivariate spatial model to study the proportion of vectors

infested with the parasite, T. cruzi, conditional on the count and spatial distribution of the population

of vectors themselves. In this approach, we build off of the traditional conditional autoregressive

(CAR) spatial model (Besag, 1975). Jin et al. developed a bivariate generalized conditional autore-

gressive model that uses linking parameters to create dependencies between spatial models (Jin,

Carlin, and Banerjee, 2005). We extend this model to link three CAR models: a logistic model of

the proportion of T. cruzi infected vectors, and the two pieces of the zero-inflated Poisson mixture

model of the vector distributions. This approach has an inherent order in the structure and inter-

pretation. We first model the probability of vector presence, including a spatial random effect. We

then model the count of vectors, with a different spatial random effect, conditional on the probability

of vector presence. These two models together are the zero-inflated Poisson model and are linked

through the multivariate distribution of the random effects. We then model the proportion of vectors

infested with T. cruzi conditional on the zero-inflated Poisson model, and estimate the parameters

linking these three pieces. Again, this logistic model is linked to the zero-inflated Poisson model

through the multivariate distribution of the random effects. We fit the model using OPENBugs, verify

the model on simulated data, and apply the data to an area in Arequipa, Peru.

Lastly, in the fifth chapter, we discuss our conclusions, on-going field work, and further directions

for the study.
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CHAPTER 2

REAL-TIME EPIDEMIOLOGICAL SEARCH STRATEGY

2.1. Introduction

Over the past twenty years, the prevalence of Chagas disease, a deadly disease caused by the par-

asite Trypanosoma cruzi, has dropped substantially, largely due to successful campaigns to control

insect vectors (Dias, Silveira, and Schofield, 2002, Tarleton et al., 2007). During this time, however,

some of the species have invaded urban environments creating new control challenges (Longo

and Bern, 2015, Levy et al., 2006). The city of Arequipa, Peru, is at the tail end of a campaign

to eliminate T. infestans. Over 140,000 households have been treated with insecticide during the

‘attack’ phase of this effort. Following the ‘attack’ phase of this campaign, households then enter a

community-based surveillance phase, during which residents are encouraged to report suspected

infestations. Reported households are verified by a trained entomological inspector, and, if found

to be positive, retreated with insecticide along with their immediate neighbors. To complement the

community based efforts, trained vector control personnel proactively inspect houses where the

infestation status is unknown. Thus, we are motivated to develop a search strategy that adapts to

real time information on the distribution of vectors as we identify new infestations and treat older

ones. It is in this context that we developed and fielded a method to proactively search a landscape

for infested households.

Our models build on a rich literature of susceptible-infectious-removed (SIR) models. Likelihood-

based methods have been developed to fit SIR models to data when the infection times and total

epidemic size are known (Becker, 1989, Andersson and Britton, 2012, Ross, 1996). These methods

were extended, using a reversible-jump Markov Chain Monte Carlo algorithm (RJMCMC), to cases

when these parameters are unobserved (Gibson and Renshaw, 1998, O’Neill and Roberts, 1999,

O’Neill, 2002). Jewell et al. extended the methodology further to notifiable diseases by describing

the length of time from the unobserved infection time to some later, observed ‘notification’ time

(Jewell et al., 2009b, Jewell et al., 2009a). We extend these methods to both cross-sectionally

and longitudinally collected data on insect populations. By adding structured growth of the insect

populations, we are able to estimate the infectious period and thereby fit an SIR model to the
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data. Our model incorporates both spatial heterogeneity and the severity of infestation into the

transmission process.

We first present our model and methods, both theoretically and in the field, and verify the approach

using simulations. We then discuss the successes and failures in its implementation on the spread

of T. infestans in Arequipa, Peru.

2.2. Methods

We use a stochastic epidemic modeling approach to estimate the posterior probabilities of infesta-

tion of each house within a given region. Our SIR model is set on the household level. We begin

by describing the observed data and some model assumptions. We then describe the model, its

components, and the RJMCMC algorithm used for estimation.

At any given time point, a house may be in one of the following states:

1. Currently infested and not yet treated: We assume that these houses continue to be in-

fested until treatment.

2. Previously infested and treated within the last 100 days: We assume these houses are

removed from the system and not susceptible to re-infestation.

3. Previously infested and treated more than 100 days ago: We assume these houses are

susceptible and may be infested any time after the effective interval of insecticide, thought to

be 100 days post-treatment (Palomino et al., 2008).

4. Previously inspected and known to have been uninfested at some point in the past: We

assume these houses are susceptible at any point after the previous inspection.

5. Never inspected and without known information: We assume these houses are suscepti-

ble at any time point since the initial infestation in the area.

We incorporate data from multiple sources into our approach. In some houses, a resident has re-

ported an infestation, while in other houses inspectors have pro-actively searched during a surveil-

lance campaign. In the vast majority of inspected houses no bugs are found; we assume the house

is uninfested at the time of inspection, but may have been infested since.
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Our model uses the number of bugs found in each inspected house at the most recent inspection,

in combination with a household-level insect population growth model, to estimate the unobserved

true infestation time. Insecticide treatment times were all observed and treatment was assumed to

be 100% effective.

2.2.1. Notation

Before introducing the model and likelihood, we define some notation:

• Define Ii, Di, and Ri as the infestation time, detection time, and treatment time of the ith

house, respectively

• Define hij(t) as the probability that house i infests house j at time t

• Define bi,t as the number of bugs in the ith house at time t, and bi is the set of all bug counts

of house i over all time points.

• Define r as the growth rate of the insect population. We describe the growth rate as the bug

population increase per time unit t of 90 days. We may estimate r from the data if there are

enough observed infestations. Otherwise, we fix r to values identified from previous studies

(Rabinovich, 1972).

• Define K as the carrying capacity, or the number of bugs a single household can ecologically

support. We assume each house to have the same carrying capacity, and pick K to be large

enough that it is a reasonable estimate of a carrying capacity seen in Arequipa.

• Define λt as the expected number of bugs at time t given the time of infestation Ii according

to the assumed population growth model (we assume one insect at the time of infestation).

• Define N , NI , and ND as the total number of houses, number of infested houses, and number

of detected infested houses respectively at the current time (today), Tmax. N and ND are

observed data. However, NI is unobserved and is presumably larger than ND.

• Define β as the probability of successful invasion given a migrating bug. We estimate β from

the data.

• Define tinsp,i as the inspection time of the ith house and Tmax as the current time
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2.2.2. Likelihood

Next, we introduce the complete-data likelihood (the likelihood if we observe infection status and

bug counts at all houses at all times) and then go on to describe models for each part of the

likelihood. We will then describe prior distributions and inference algorithms.

The complete-data likelihood is:

L(I,R, b | Θ) ∝
NI∏
j 6=k

( ∑
Ii<Ij

hij(Ij)
)
× exp

(
−
∫ Tmax

Ik

NI∑
i=1

N∑
j=1

hij(t)dt
)

×
NI∏
j=1

τi∏
t≥Ij

λ
bj,t
t

bj,t
exp (−λt)

where Θ = {β, r,K, λt, Iκ}, τi = min(Ri, Tmax) and Iκ is the initial infestation time. The parameters

β and r are unknown, and therefore will need to be assigned prior distributions. We fix K and Iκ to

plausible field estimates. If we do not have many infestations in a region of the city, we may also

fix r, but we demonstrate that our model is capable of estimating both β and r in our simulations.

In our model, Ri, Tmax, ND, N are observed and NI and Ij is unobserved. We observe bi,tinsp but

all other bi,t are unobserved and will be imputed using a household-level insect population growth

model. λt is estimated using the population growth model, described later.

The first piece of the likelihood describes the probability that the ith house infests the jth house at

the time the jth house was infested, Ij . The second piece of this likelihood describes the cumulative

infectious pressure. The infectious pressure captures the effect over time of each infested house

on every other uninfested house. In other words, at a given time t, a house that is surrounded by

infested houses will be much less likely to escape infestation than a house that is surrounded by

bug-free houses. This kind of pressure, over time, is captured by the second term in the likelihood.

The third piece of the likelihood describes the probability of observing the number of bugs at each

time point of each infested house, which we assume follows a Poisson distribution. Specific models

for the transmission process hij(t), which incorporates spatial heterogeneity, and the bug count

rate λt, are described below.

It has previously been shown that the integral in the likelihood can be written in a simpler and
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intuitive way (Jewell et al., 2009b):

∫ Tmax

Iκ

∑
j∈I

∑
i∈S

hij(t)dt =

NI∑
i=1

N∑
j=1

Hij(t) =

NI∑
i=1

N∑
j=1

tij∑
s=1

hij(s)

where tij = min(Ri, Ij , Tmax)−min(Ii, Ij). The likelihood then becomes:

L(I,R, b | Θ) ∝
NI∏
j 6=k

( ∑
Ii<Ij

hij(Ij)
)
× exp

(
−

NI∑
i=1

N∑
j=1

tij∑
s=1

hij(s)
)

×
NI∏
j=1

τi∏
t≥Ij

λ
bjt
t

bjt
exp (−λt).

(2.1)

To account for the possibility that a given house j is infested by two houses at the same time point,

we calculate the probability that house j is infested at time t by calculating

1− P (house j avoids infestation at time t):

pj,t = P (house j becomes infested at time t|Θ)

= 1− P (house j does not become infested at time t|Θ)

= 1−
∏
i6=j

(
1− hij(t)

)
.

In addition, since we are working in the Bayesian framework, we put prior distributions on the

parameters that we are estimating. We chose a beta prior distribution on β and a gamma prior

distribution on r.

2.2.3. Bug infectiousness

We allow for heterogeneous transmission relative to the number of insects in each infested house.

We assume that houses with more vectors are more likely to infest their neighbors than houses with

only a few vectors. We characterize this heterogeneity in infectivity using a house-level population

growth model. We use the Beverton-Holt model, which has two parameters: a house-level carrying

capacity and bug growth rate (Beverton and Holt, 2012, Varley, Gradwell, and Hassell, 1974). The

Beverton-Holt model is a key element of our extension that captures the distribution of the infectious
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period.

The model is:

λt =
Kλ0

λ0 + (K − λ0)r−t
,

where λ0 is the number of bugs at the initial time, λt is the expected number of bugs at time t, K is

the carrying capacity, and r is the growth rate per generation. In our Chagas disease example, we

assume that λ0 = 1 and K = 1000, implying that that each household infestation begins with one

bug and has a carrying capacity of 1000 bugs. In truth, the carrying capacity is unknown, and we

have conducted sensitivity analyses on this assumption (Appendix A.2). However, we believe this

is a realistic estimate of carrying capacity because although we do find approximately 1000 bugs in

a house, we rarely find more than that. We estimate r through the RJMCMC algorithm.

Using this model, when there are an expected λt insects in a given house, the time of the first bug

can be solved for explicitly:

t =
− log K−λt

λt(K−1)

log(r)
.

We assume that the rate at which bugs migrate to find new houses is the difference between the

unbounded and bounded growth rates. As described above, the expected bug population size at

time t under the bounded (Beverton-Holt) model is λt. The bounded growth rate is therefore dλ
dt .

If there were unlimited resources, then bug populations would grow exponentially. Define λ′t as

the number of bugs expected at time t assuming exponential growth, λ′t = λ0r
t. The unbounded

growth rate is dλ′

dt . The bug infectiousness of each house is the difference in slope between these

two models at a given time point t.

In practice, we are unable to observe the bug count at every time point. At each inspected house,

we observe the bug count at one time point and the rest can be imputed using data augmentation.

We assume bug counts follow a Poisson distribution, centered around the Beverton-Holt function,

λt−Ii where t− Ii is the time since infestation:

bi,t ∼ Poisson(λt−Ii)

where bi,t is the number of bugs in house i at time t. This Poisson distribution is the third component
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in likelihood (2.1).

We can now incorporate information about bug counts, spatial heterogeneity, and bug infectivity

into the vector transmission function. We assume the following vector transmission function hij(t):

hij(t) = 1− (1− βij)
dλ′
dt −

dλ
dt

where βij = β × δij . We estimate β through the RJMCMC and δij is the estimated spatial kernel,

described below.

Although this transmission function is mathematically complex, it has a nice interpretation. Given

the infestation status of house i and the distance between houses i and j, βij describes the prob-

ability that house i infests house j. Thus, 1 − βij describes the probability that house j escapes

infestation from house i. The probability that house j escapes infection exponentially decreases

as the number of bugs in house i increases. We characterize the dynamic of migrating bugs as

the difference in population growth between unbounded population growth and bounded population

growth. Thus, subtracting this quantity from one gives the probability that house i does in fact infest

house j.

The transmission function appears twice in likelihood (2.1), both as the infectious pressure of each

infested i house on every j house,
∫ Tmax

Ik
hij(t)dt and cumulative hazard function of each infested

house i on each j house, Hij(t) =
∑t
s=1 hij(s).

2.2.4. Spatial Dynamics

There is a highly spatial component to the movement of T. infestans, and we also incorporate this

spatial heterogeneity into the hazard function, hij(t). It is important to note that any number of

spatial kernels can be implemented into this approach. A modified exponential transmission kernel

was identified that incorporates both distance between houses and a city block indicator (Barbu

et al., 2013). We use this kernel to describe the probability of a bug migrating from house i to

house j given the distance dij between the two houses. Using this kernel, we also incorporate city

streets as barriers, since previous studies have shown T. infestans are less likely to move a given

distance between city blocks compared to within city blocks (Barbu et al., 2013). We use normal
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prior distributions on ζ and ρ, centered around values identified from previous work (Barbu et al.,

2013):

δij = ρ exp
(dij
ζ

)
,

where dij defines the Euclidean distance between houses i and j, ζ ∼ N(9.00, σζ), and ρ = 1

if houses i and j are on the same city block. If houses i and j are not on the same city block,

ρ ∼ N(0.30, σρ).

2.2.5. Implementation

To fit our model, we use a reversible-jump Markov Chain Monte Carlo (RJMCMC) algorithm using

R v3.2 and the ‘Rcpp’ package (Eddelbuettel et al., 2011). The RJMCMC algorithm allows for

changes in the dimensionality of the parameter space (Green, 1995, Gibson and Renshaw, 1998).

We allow for the possibility of ‘adding’ a potential unobserved infestation, removing an already

added unobserved infestation, or shifting an infestation in time. Although the parameter estimates

converge quickly, we run the RJMCMC for much longer for adequate convergence of the posterior

probabilities of infestation. We run the algorithm for a minimum of 1 million iterations, which takes

about 12 hours. The algorithm is run using the Sun Grid Engine, which is comprised of a variety of

hosts running Red Hat Linux, and RAM is dynamically allocated. After running the algorithm for M

iterations, each house with an unknown infestation status is added as infested formi ≤M iterations.

Thus, the calculated posterior probability of infestation of each house is P (infestation) = mi
M . The

simulation code is available at https://github.com/ebillig/Search-Strategy.

We update the likelihood using the following RJMCMC algorithm:

1. Initialize β1 and r1.

2. Initialize infection times I1. Initial infestation Iκ = 1 and all other observed infestations initial-

ized at I = 2. All other infestations set to I =∞.

3. Initialize tinsp,i and Ri. If house i has been inspected andor treated, these are set to the re-

spective times. All dates are converted to time since initial infestation, using 90 day intervals.

For example, if house i was infested 200 days after the initial infestation, this infestation time
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is considered Ii = 3. If a house has not yet been inspected and treated, tinsp,i = Ri = ∞.

Tmax is set to the present day.

4. Initialize bug counts of each infested house given the infestation times I1. This is done using

the Beverton-Holt Model:

λt =
K

1 + (K − 1)r−t

bi,Ii = 1

bi,t−Ii ∼ Poisson(λt−Ii)

Replace bi,tinsp,i = Bi,tinsp,i , the observed bug counts.

5. Update rm+1. Propose r? ∼ Normal(rm, 0.05). Update all bug counts b? given r? using the

Beverton-Holt model.

R = min
(

1,
L(r?|I, βm, λt)
L(rm|Im, βm, λt)

p(r?)

p(rm)

)
where p is the prior distribution of r. We define p ∼ Gamma(ar, br).

U ∼ Uniform(0, 1)

If U < R then rm+1 = r?. Else, rm+1 = rm.

6. Update βm+1. Propose β? ∼ Normal(βm, 0.2). The proposal is constrained to (0, 1).

R = min
(

1,
L(β?|Im, rm+1, λt)

L(βm|Im, rm+1, λt)

p(β?)

p(βm)

)

where p is the prior distribution of β. We define p ∼ Beta(aβ , bβ).

U ∼ Uniform(0, 1)

If U < R then βm+1 = β?. Else, βm+1 = βm.

7. Propose moving, adding or removing an infestation, each with equal probability.

To move an infestation:

(a) Update I. Select uniformly from the set of infested houses, NI . If i has not yet been
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inspected, propose new infestation time I?i ∼ Uniform(Ik + 1, Tmax). If i has been

inspected but no bugs were found at that time, propose new infestation time I?i ∼

Uniform(tinsp,i, Tmax). If i has been inspected and at least one bugs was found at that

time, propose new infestation time I?i ∼ Uniform(Ik + 1, tinsp,i).

R = min
(

1,
L(I?|βm+1, rm+1, λt)

L(Im|βm+1, rm+1, λt)

)

U ∼ Uniform(0, 1)

If U < R then Im+1 = I?. Else, Im+1 = Im. If Im+1 = I?, update bi (all bug counts

corresponding to this infestation) so that at Ii, bi1 = 1.

To add an infestation:

(a) Propose i uniformly from S, the set of susceptible houses.

(b) If i has not yet been inspected, propose I?i ∼ Uniform(Ik + 1, Tmax). If i has been

inspected, propose I?i ∼ Uniform(tinsp,i, Tmax). Propose b?i ∼ Poisson(λt−I?i ).

R = min
(

1,
L(I?|rm, βm, λt)

L(Im|rm+1, βm+1, λt)
∗ pi(I?i ) ∗ 1

q(b?i |λt−Ii)

)

where pi is the prior probability that house i is infested and q is the proposal distribution

of the bug counts bi (Poisson).

U ∼ Uniform(0, 1)

If U < R then Im+1 = I?. Else, Im+1 = Im. If a house is added, the corresponding bug

counts but also be added.

To remove an infestation:

(a) Propose i uniformly from the set of occult infestations (previously added, but unobserved,

houses).

R = min
(

1,
L(I?|rm, βm, λt)

L(Im|rm+1, βm+1, λt)
∗ 1

pi(I?i )
∗ q(b?i |λt−Ii)

)
where pi is the prior probability that house i is uninfested and q is the distribution of the
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bug counts bi (Poisson).

U ∼ Uniform(0, 1)

If U < R then Im+1 = I?. Bug counts corresponding with the removed infestation must

also be deleted. Else, Im+1 = Im.

8. Repeat steps (e) - (g) for a total of M iterations.

In the field implementation, r was not estimated, and thus step 5 was omitted. In general, the

acceptance rates of parameters ranged from 15% to 60%, including those in the reversible-jump

component. Posterior probabilities of infestation ranged from 0% to 20%, but mostly stayed below

10%.

Parameter estimates converge quickly, but it is difficult to assess convergence of posterior probabil-

ities of infestation. We visually assess convergence by plotting the ranking of each house between

chains of the RJMCMC (Appendix A.2). Rankings are consistent in that top ranked houses were

ranked highly across all chains. However, the specific ranking of a given house varies between

chains. A typical convergence plot is shown in Figure A.2. A few houses seemed to get stuck at

high rankings each chain that did get picked up in other chains. By using the median ranking for

each house across chains, we hope to minimize this effect on inspections.

We pilot our model in near real-time in the city of Arequipa. Inspectors search houses with the

highest posterior probability of infestation in three adjacent localities of the city. Each night, we run

five chains and obtain a ranking for each house by using the median ranking across the chains for

each locality. After a day of inspections, we re-run the model to include observed data from the most

recent day, creating a new ranking list for the following day. Houses that refuse or do not answer

are kept in the algorithm as unknown infestations; those that did not answer may be revisited at a

later date, while those that refuse inspection are removed from the pool. Abandoned houses are

assumed to be uninfested and are not included in the algorithm. We believe this is a reasonable

assumption because these sites contain no food sources for vectors. Each night, we run the model

for as many iterations as possible for a daily update, over a million iterations. Houses outside of the

study site, but within 50 meters of the border of the study site, are included in the model, however

they are not included in the potential inspection pool. Including these nearby houses allows for the

possibility that vectors enter the study site from a neighboring locality.
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2.3. Simulations

We test our algorithm on simulated data generated on a real landscape. We choose a subset of the

study region (173 houses) on which to simulate an epidemic. We randomly selected one house to

be the initial infestation, κ, and set this house to have 1 bug at time t = 1, bκ,1 = 1. We then forward

simulate, using the Beverton-Holt model bκ,t ∼ Poisson(λt) until tmax. At time t = 2, house κ infests

each other house j, j 6= κ with probability hκj(t) = hκj(2). As more houses become infested, these

houses can then infest other houses. If house i is not yet infected at time t, then hij(t) = 0 (ie.

the probability that house i infests house j at time t is zero). The inspection time of each house

is randomly selected tinsp,i ∼ Uniform(Ii, tmax). The initial infestation time Iκ is the only infestation

time that is considered observed. To simulate unreported infestations, we randomly choose 1/3 of

the infestations to treat as unobserved.

We simulate the data under three sets of parameter values {β, r} = {0.3, 2.0}, {0.7, 2.5}, {0.05, 3.0}.

To create realistic data, we are limited to simulated datasets under a subset of parameter regimes

in which vector spread occurs. For each simulation, a wide beta prior distribution is used for β and

a wide gamma distribution is used for r, both centered around the true value.

Under each set of parameter regimes, we simulate 200 datasets. For each dataset, we run 3 chains

at different starting values. We run each chain for 500,000 iterations, and discard the first 5000

iterations as burn-in. We assess convergence by plotting the rankings of all chain pairs (more details

in Appendix A.2). From each simulation, we calculate the sensitivity and specificity by recovering

occult infestations under various thresholds of inspection criteria. We create receiver operating

characteristic (ROC) curves to examine the simulation results (Figure 2.1). We also estimate the

parameters of interest, β and r. For each simulated dataset, we record the median, 95% credible

interval and AUC and report the mean of all datasets (Table 2.1). The credible intervals for our

parameter estimates are wide, however we are trying to estimate a lot of information with little

observed data. From the simulation results, we verify that our approach accurately estimates the

parameters of interest, as our median estimates were close to the true values. In all cases, the AUC

shows that our model performs better than random inspections. In addition, the AUC suggests that

the model performs best under low values of β. With high values of β, the success of the model

varies. This may result from a larger number of vectors traveling farther distances, compared to rare
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long-distance movements when β is small. If these maps become very saturated with infestations,

the model may miss large foci of unobserved infestations. The acceptance rate of the RJMCMC

ranged from 20-50%.
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Figure 2.1: ROC curves describing the ability of the RJMCMC to uncover unreported infestations in
a simulated vector-borne epidemic. In each simulation, 1/3 of infestations were randomly removed
to recover. 50 randomly selected ROC curves of each parameter regime are shown. (a) {β, r} =
{0.02, 1.6} (b) {β, r} = {0.7, 1.8} (c) {β, r} = {0.3, 2.1}

Parameter Estimation
β̂ r̂ AUC

2.5% 50% 97.5% 2.5% 50% 97.5%
β = 0.02, r = 1.60 0.0004 0.03 0.60 1.27 1.62 1.94 0.83
β = 0.70, r = 1.80 0.31 0.76 0.98 1.21 1.73 1.95 0.57
β = 0.30, r = 2.10 0.05 0.26 0.62 1.94 2.04 2.13 0.61

Table 2.1: Simulation results. Each estimate represents the mean of given quartile for the set of
200 replicates. We use the median estimate to verify our approach obtains accurate parameter
estimates and report the median AUC of each parameter set.

2.4. Data Results

We implement our approach across three communities of the city of Arequipa, Peru. Each com-

munity had been treated with insecticide in 2004; we use data collected during this treatment to

calculate prior probabilities of infestation for each household following Barbu (Barbu et al., 2014).

Since 2004, residents have reported suspected infestations, which were then verified by our field

staff and the Minstry of Health entomological inspectors. If a true infestation was reported, adjacent

houses were inspected. Thus, houses were inspected at unique time points, either due to a resi-

dent report, or due to a positively infested neighboring house. The communities contain between
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551 and 669 houses. There had been 11, 10 and 9 infestations observed at communities 1, 2,

and 3 respectively at time points between 2004 and 2014. The observed bug counts range from 0

to 212, and the median bug count of an infested house across all communities is 3. Due to small

number of infestations and the low bug counts in these areas, we do not attempt to estimate the

bug growth rate, r. Instead, we draw r from a normal distribution centered around 3.66 as found in

Rabinovich, 1972 and only estimate β. The posterior distribution of β at the beginning of the study

is summarized in Figure 2.2. The estimates are similar between communities. We observe a wide

95% credible interval on the posterior distribution of β across the three communities. The estimates

of β remain consistent throughout the implementation.
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(a)
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Figure 2.2: Posterior estimate of β, the probability of successful invasion of a migrating bug, at
the beginning of the inspection campaign in each community, indicating median and 95% credible
interval of RJMCMC chains: (a) Community 1: 0.67 (0.33, 0.91) (b) Community 2: 0.59 (0.22, 0.90)
(c) Community 3: 0.51 (0.15, 0.85)

Between October and December of 2015 we made a total of 835 household visits to 409 distinct

households across the three study communities. Within each day, inspectors traveled within the

same community. Only 135 households agreed to participate and permitted us to inspect their

premises. We did not find a single instance of infestation. The low participation rate was due

to many factors. Some people refused inspection or did not answer the door. Additionally some

houses were abandoned.

Despite the low participation rate (33%), the absolute absence of vectors in the 135 high-risk

houses that we inspected indicates that the prevalence of infestation in the area is extremely low,

much lower than we had anticipated at the beginning of the study. From the map, we can see that
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inspectors were directed to areas near previous reports of infestation (Figure 2.3). Based on the

results (of not finding any bugs), we conclude that this region may have lower levels of infestation

than we anticipated, a very promising result more than 10 years after the original control campaign.
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Figure 2.3: Path of inspectors in study region from October 2015 through December 2015. Sites
of attempted inspections (blue circles) and successfully inspected houses (black circle) shown, as
well as daily routes (blue lines). Previous confirmed infestations (red plus signs) also shown. Points
are jittered to de-identify data.

2.5. Discussion

Vector-borne diseases continue to emerge and spread, especially throughout developing nations

where observing detailed data, such as the time of individual infections, can be difficult (Hong et al.,

2015, Weaver, 2013, Tarleton et al., 2007). We present a novel dynamic method that can guide

the control of re-emerging insects by updating posterior probabilities of infestation as inspection

data are collected. We demonstrate our method through simulations and then implement it in a

campaign to curb the re-emergence of triatomine vectors of Chagas disease.

Methods have been developed to handle the incomplete data often encountered when observing in-

fectious disease outbreaks, including unobserved infection times and incomplete epidemics (O’Neill

and Roberts, 1999, Jewell et al., 2009b). We commonly observe the status of a subset of individu-

als at some time point after the true infection has occurred. Several alternatives to likelihood-based
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methods have been developed, including approximate Bayesian computation (ABC) (Csilléry et al.,

2010, Beaumont, 2010) and the synthetic likelihood (Wood, 2010). In addition, alternative methods

of inference have been used, such as iterated particle filtering (Ionides et al., 2011). We extend

previous methods using a Bayesian model developed by Jewell et al., 2009a for notifiable diseases

to cross-sectional observations of insect infestations. We provide a framework that can be easily

extended to other insect infestations, including the recent bed bug epidemic. We then implement

this method in the field in near real-time, updating the model daily to reflect the latest known obser-

vations. Real-time implementation creates additional challenges that are not present in simulated

epidemic-control studies, such as resident participation (Buttenheim et al., 2014), geographic con-

straints, and computational power.

In addition to limitations of the model, the merging of the theoretical approach with practical con-

straints raises limitations that need to be addressed in future studies. The model itself is dependent

on several assumptions made to retain a tractable likelihood. We assume a specific spatial ker-

nel and insect population growth model. The insect population growth model is key to our ability

to perform a likelihood-based analysis by enabling the estimation of the unobserved infestation

times. Using these models, we must fix some parameters. We test the sensitivity of our results

to these parameters (see Appendix A.2). In addition, we assume perfect inspections and spray

effectiveness. Although the inspectors are highly skilled and search thoroughly, they may miss the

presence of insects, especially the early stage nymphs which are small and difficulty to see. In

addition, there is heterogeneity in their detection accuracy (Hong et al., 2015). Similarly, while the

insecticide treatments are known to be highly effective, we cannot verify that the infestations were

eliminated, especially in severe cases. Lastly, determining convergence of the posterior probabili-

ties of infestation is difficult. The chains are qualitatively consistent in their rankings of houses (in

terms of posterior probability of infestation) but the rankings themselves are not identical between

chains, indicating limited convergence. We use the median ranking across chains to minimize this

limitation.

Logistically, we encountered several limitations during the field implementation. The algorithm often

sent our fieldworkers back and forth on semi-arduous treks across hillsides (Figure 2.3). In the

future, we could gain efficiency by balancing visits to highest risk houses with decreasing daily travel

costs. In addition, the inspectors often gather additional information on possible infestations based
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on local knowledge–such information, while crucial, is not easily incorporated into our models.

We are working to implement an inspection campaign that combines model-based risk maps with

inspector knowledge.

Our modeling approach is purely exploitative, as opposed to exploratory. Inspectors go to houses

with the highest posterior probability of infestation given the current knowledge of the system. Due

to our exploitative approach, our conclusion of low prevalence may be incorrect if people from dif-

ferent areas of the city report infestations at different rates. Our model cannot uncover infestations

in areas mistakenly considered to be low risk. In this case, our infestation estimates would be artifi-

cially low. An inspection algorithm that appropriately balances both an exploitative and explorative

model may be more appropriate in a search strategy.

We have developed a model to search for vectors of disease by understanding their movement

through an urban landscape. Our method could also be applied to other settings where little infor-

mation is known about the pathogen, but more is known about the vector. Our framework enables

a dynamic approach to make informed vector surveillance decisions and efficiently inspect houses

for disease agents.
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CHAPTER 3

RISK MAPS FOR CITIES: INCORPORATING STREETS INTO GEOSTATISTICAL

MODELS

3.1. Introduction

This chapter is motivated by the need to understand vector distribution patterns in the urban envi-

ronment of Arequipa, Peru. In particular, we are interested in models that can help guide search

strategies for Triatoma infestans, the principal vector of Chagas disease in the region. Chagas dis-

ease, caused by the parasite Trypansoma cruzi, causes significant mortality in the Americas (Dias,

Silveira, and Schofield, 2002, Bern, 2015). Due to successful vector control campaigns and surveil-

lance, both the parasite and vector are currently relatively rare in metropolitan Arequipa (Barbu et

al., 2014).

Risk maps can be used to guide search strategies. Creating risk maps using Gaussian fields (GFs)

is an area of active research and development (Oluwole et al., 2015, Adigun et al., 2015, Jaya et al.,

2016). Until recently, fitting GF models was computationally difficult, due to large matrix calculations

(the big n problem) in covariance estimation. However, recent advances in theory and computation,

discussed below, have alleviated this problem. Lindgren et al. described the relationship between

GFs and Gaussian Markov Random fields (GMRFs); an R package was developed to implement

these analyses using nested integrated Laplace approximations, easing the computational burden

of these models (Blangiardo et al., 2013, Lindgren, Rue, and Lindström, 2011, Rue, Martino, and

Chopin, 2009).

However, geostatistical models using Gaussian fields do not typically incorporate the structure of

urban landscapes (Diggle, Ribeiro Jr, and Christensen, 2003). Vector-borne diseases are increas-

ingly common in urban areas (Weaver, 2013). Poor and unplanned urban environments can create

ideal breeding grounds for many vectors, facilitating increased transmission of vector-borne dis-

eases in population dense areas (Knudsen and Slooff, 1992, Bowman et al., 2008, Levy et al.,

2006). Several arboviruses, including Dengue, Chikungunya, West Nile, and Zika, have emerged

repeatedly in urban areas (Haley, 2012, Sikka et al., 2016). Parasitic diseases, such as malaria and
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Chagas disease, once considered rural problems, have become common in cities (LaDeau et al.,

2015, Delgado et al., 2013). Including the spatial structure of city streets may more accurately

describe spatial associations characteristic of insect infestations and therefore help in developing

effective public health interventions to reduce transmission in population dense areas (Weaver,

2013).

In this paper we develop an approach to predict the probability of urban insect vector infestation

using a geostatistical model that incorporates city streets as permeable barriers. Our approach es-

timates the reduced movement of vectors between blocks, compared to within blocks, and predicts

the heterogeneous urban vector distributions using a Gaussian field. Our model is computation-

ally efficient and easily adaptable to other cities and vectors. Here, we present our methodology,

demonstrate our approach on simulated data, and apply it to data on Chagas disease vectors in a

district of the city of Arequipa, Peru.

3.2. Methods

3.2.1. Gaussian field approach

In this subsection we review the Gaussian field approach that can be used to create risk maps,

ignoring the issue of streets as barriers. Gaussian fields are often used to model various types

of point-level data, also known as geostatistical data. These models are popular for their flexibility

and ability to capture complex processes across a wide range of applications such as epidemiology,

ecology, and imaging (Rossi et al., 1992, Brooker, 2007, Diggle, Ribeiro Jr, and Christensen, 2003).

Using this modeling approach, we assume the data, the presence of T. infestans, is a continuous

stochastic process, with observations over a two-dimensional landscape, at locations c.

Denote by yi the indicator variable for vector presence at house i. We can model the probability of

vector presence at house i, πi, using a logistic model with intercept and Gaussian field. Although

we do not use any household-level covariates in our model, they can easily be incorporated into

the formula (3.1) with additional regression parameters. We use the model:

logit(πi) = β0 + ui

u ∼ N(0,Σ)

(3.1)
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where ui is a realization of the GF, x(ci), and ci is the location of house i. We use a Matérn

covariance structure, which is commonly used in spatial statistics. Specifically, the covariance

between ui and uj is

Σij = σ2
u

21−ν

Γ(ν)

(
κ‖ci − cj‖

)ν
Kν

(
κ‖ci − cj‖

)
where σ2

u is the marginal variance of the random effect, ‖ · ‖ is the Euclidean distance, Kν is

the modified Bessel function of the second order, and κ and ν are parameters. The parameter

ν describes the smoothness of the stochastic process and therefore controls the shape of the

covariance function (the function is bν − 1c times differentiable). The κ parameter characterizes

how quickly the correlation between two points decreases as the distance between them increases,

capturing the scale of the relationship.

The Matérn covariance structure has become widely accepted for GF models because of its link to

GMRFs (Besag, 1975, Rue and Held, 2005, Rue, Martino, and Chopin, 2009, Lindgren, Rue, and

Lindström, 2011). Using the Matérn covariance, x(c) is a solution to the linear fractional stochastic

partial differential equation (SPDE):

W (c) = x(c)(κ2 −∆)α/2

where α = ν + d/2 and ∆ is the Laplacian

∆ =

d∑
i=1

∂2

∂x(c)2i

and d = 2 since c ∈ <2 (Whittle, 1954, Whittle, 1963).

Using this solution, Lindgren, Rue, and Lindström, 2011 found a direct link between the GF and

GMRF, which greatly eases the computational burden of GF estimation. Using this link, we can

estimate the precision matrix that represents the GF accurately, over a wide range of marginal

variances, with sparse matrix calculations. For more details on this relationship, see Lindgren,

Rue, and Lindström, 2011.

We follow the parameterization of Lindgren, Rue, and Lindström, 2011 and Krainski and Lindgren,
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2013, defining the covariance function in terms of θ = {θ1, θ2}, functions of κ, the scale parameter,

and σ2
u, the marginal variance:

θ1 = − log(4πκ2σ2
u)/2

θ2 = log(κ)

We also fix α, as defined earlier, to α = 2. This setting is a natural choice for two dimensional prob-

lems, as argued in Whittle, 1954, but researchers may vary the value of α as needed. Together, θ

and α define the Matérn covariance, Σ, of the GMRF.

3.2.2. Incorporating streets as barriers

The Gaussian field assumes a continuous, non-linear, yet smooth relationship between houses

as a function of the Euclidean distance between them. However, urban streets create an uneven

landscape on which the stochastic process occurs. Previous studies have shown the vector of

Chagas disease, T. infestans, is less likely to move between city blocks compared to within blocks

(Barbu et al., 2013).

One option to capture the heterogeneity of the urban grid would be to add a parameter into the

covariance function to indicate whether two points are on the same city block as each other. This

approach would allow the relationship of the outcome and distance to depend on whether or not

streets separate the points. However, the Matérn covariance is the key element that links the GF

to GMRF and changing the function itself may impact the relationship, which is key to efficient

parameter estimation. We propose an alternative approach that fits into existing GF estimation

software and incorporates an additive effect, so if points are separated by multiple streets, the

barrier increases.

Our approach uses a single additional parameter, S, that influences the covariance function directly

through the distances between houses by distorting the city map. Using S, we create additional

Euclidean distances between houses on different blocks, but maintain the Euclidean distances

between houses on the same block, creating permeable barriers. We define S as the ratio of the

distorted distance between geographic block medians, calculated as the median c of each block,
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Figure 3.1: A) S = 1, which corresponds to the true map of section in Mariano Melgar, Arequipa,
Peru used for simulations. There is no map distortion at this scale. B) Distorted map to a scale of
S = 1.5, where the distance between geographic medians of blocks are 1.5 fold the true distance.
C) Map distorted to scale S = 2.5, where distance between geographic medians of blocks are
2.5 fold the true distance. Note distance between houses within block is maintained but distance
between houses on different blocks is stretched.

compared to the true distance (Figure 3.1). This additional distance between blocks influences the

model directly through the spatial covariance structure, ‖ci − cj‖ by widening the streets between

blocks. With this approach, if S is known, the Gaussian field model can be directly used. In addition,

this approach has an additive barrier effect, rather than simply an indicator of whether or not two

houses are on the same block. If points are more than one block apart, the width of each street

between the points is modified. We assume streets do not facilitate improved vector movement and

restrict S ≥ 1, with S = 1 representing the true map.

In other words, S reduces the correlation between houses that are a distance apart but on different

city blocks. In practice, this additional parameter is a flexible, usable tool to characterize a hetero-

geneous landscape using a continuous latent field. On different types of landscapes, S could be

used to define other potential permeable barriers such as rivers, valleys, or mountains.

3.2.3. Estimation and Interpretation

We now describe our approach to incorporate S into the model, interpret the map distortion, and

estimate the parameters. Each house i is located on a known city block j. We first mark the spatial

center of each block by finding the median coordinates of each block,

{XM
j , YMj } = {median(Xj),median(Yj)}.
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We then define the location of each house in relation to the center of the house’s block,

{X̄i, Ȳi} = {Xi −XM
j , Yi − YMj }.

We stretch the map by moving the block centers by scale S and recording house coordinates

relative to the block center, {X̄i, Ȳi}, at the true distance. The distorted map coordinates, {X̂j , Ŷj},

become

{X̂i, Ŷi} = {XM
j S + X̄i, Y

M
j S + Ȳi}.

This approach retains the block structure but enables the manipulation of blocks relative to each

other. The interpretation of the distorted map is somewhat dependent on the map itself due to

the irregular size and shape of each individual city block. S describes the additional distance

between the geographic median of each city block relative to the true distance. For example,

S = 1.5 corresponds to adding 50% of the true distance between the geographic medians of each

block. Due to the irregular grid, this distortion corresponds to varying degrees of street distortion

depending on the size of the blocks on either side of the street. The effect of the map distortion

of the width of streets in the map in Figure 3.1 is summarized in Table 3.1. Larger city blocks

result in greater distortion because the houses are located farther from the geographic median of

the block. If blocks are all the same shape and size, the increase in street width will be proportional

for all streets, however this is rare in practice. For more details on the interpretation of how S

corresponds to the width of the street, see Figure 3.2.

To use the GMRF representation on irregular points, we divide our landscape into non-intersecting

triangles, as described in Lindgren, Rue, and Lindström, 2011. A Delaunay triangulation is created

over the landscape, forming a mesh. Each house is located at a vertex in the mesh. To ensure

a regular triangulation, the maximum edge length is specified to be 100S to appropriately adjust

for map distortion. Although meshes are not identical between grid samples of S, controlling the

maximum edge length as a function of S ensures that the triangulation is similar (Figure 3.3).

We implement this methodology using the R package ‘INLA’ (Rue, Martino, and Chopin, 2009, Rue

et al., 2014, Krainski and Lindgren, 2013). The ability of this approach to fit into the existing R pack-

age makes the method easy to implement for researchers in different fields. INLA is a relatively
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S = 1 S = 1.5 S = 2.5
Average distance (and sd) between
nearest neighbors on the same block
(ie. no barrier)

1.0 (0.3) 1.0 (0.3) 1.0 (0.3)

Average distance (and sd) between
nearest neighbors on different blocks
(ie. one barrier)

3.6 (1.1) 8.0 (1.5) 16.0 (2.3)

Ratio of average distance between
nearest neighbors on different blocks
compared to same distance when S =
1

- 2.2 (0.4) 4.4 (0.9)

Table 3.1: Description of map distortion in Figure 3.1 scaled so the spatial unit is the average
distance between nearest neighbors on the same block. Interpretation of S varies by specific
map due to variability in sizes and shapes of city blocks. S describes ratio of distance between
geographic median of each city block relative to the true map (which is equivalent to S = 1). Table
summarizes how this distortion corresponds to additional distance between houses on different
blocks using mean and standard deviation (sd). The distortion varies block by block due to irregular
grid.
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Figure 3.2: In this figure, we demonstrate how streets between larger blocks result in a larger barrier
effect. A. Four hypothetical blocks super-imposed. The smallest block is simply one house. The
largest block has an X distance of 4 from the block median to the edge of the block. B. Same
hypothetical blocks after distortion with S = 2. C. The ratio of street width for this distortion at S = 2
compared to no distortion at S = 1. The street width doubles if the block is a single house and the
distance from block median to edge is zero. Otherwise, the street width more than doubles, and the
effect increases as the block size increases.

new, yet powerful tool, and the package is designed for flexible and complex model development.

The package is continually updated to incorporate new developments in spatial statistics. We chose

to implement our approach using INLA due to the speed, package flexibility, and ease of implemen-

tation for future researchers. We plan to use our method in real-time in the field to guide vector

surveillance, and therefore these strengths are of particular significance.

In the last few years, INLA has become a popular method to fit GFs. The algorithm is an alternative

to Markov chain Monte Carlo algorithms, which are common for geostatistical models but can be
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A B

Figure 3.3: Mesh over the map of the simulation region (houses in blue). Maximum edge length is
constrained to 100S to keep meshes consistent between scales. A. S = 1 B. S = 1.5

problematic in GF estimation due to non-convergence and long computation times. The latent field

u tend to be highly correlated, and u also tend to be dependent on the model hyperparameters, a

common issue that arises in MCMC algorithms. Rue et al. found estimation of GMRF models using

integrated nested Laplace approximations was more precise and significantly faster (Rue, Martino,

and Chopin, 2009). This approach uses Gaussian approximations, nested Laplace approximations,

and numerical integration to estimate the marginal distributions of the latent field and hyperparam-

eters. The approximations are especially precise for GF estimation. For details on the algorithm,

see Rue, Martino, and Chopin, 2009.

To estimate S, we fit the model at several values of S and compare the log-likelihoods. We estimate

S as the value that maximizes the log-likelihood of the model. Using the INLA estimation algorithm,

it is not possible to update the estimate of S in the same way as an MCMC algorithm. In addition,

changing S changes the mesh used in the model. However, for the purposes of creating risk maps,

estimating a full posterior distribution for S does not provide a benefit over using the estimate of S

directly.

3.3. Simulations

To evaluate the performance of our proposed method, we simulate data on a subset of the study

region consisting of 2265 houses over 93 city blocks (Figure 3.1A). Our barrier effect parameter,

S, and three parameters (κ, σu, β0) in the model (3.1) with 2x2x2=8 simulation scenarios with a
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True values Estimates
κ σ2

u S β0 Ŝ β̂0 Coverage (β0) Identification (S)
0.005 5 1.5 -3 1.57 (0.35) -3.11 (0.89) 1.00 0.95

2.5 -3 2.48 (0.53) -3.13 (0.61) 1.00 0.73
10 1.5 -3 1.61 (0.33) -3.13 (1.26) 0.97 0.98

2.5 -3 2.77 (0.55) -3.05 (0.94) 0.97 0.89
0.01 5 1.5 -3 1.64 (0.27) -2.97 (0.53) 0.97 1.00

2.5 -3 2.76 (0.48) -2.91 (0.35) 0.96 0.76
10 1.5 -3 1.58 (0.19) -3.16 (0.77) 0.96 1.00

2.5 -3 2.76 (0.55) -3.00 (0.49) 0.95 0.92

Table 3.2: Results from 100 Monte Carlo simulations for each parameter set. The parameter esti-
mates are shown with the corresponding estimated standard deviations with the true values set for
the simulations. The coverage of (β̂0) is the average rate that the credible interval captures the true
value of β0 for identified simulation cases. The last column is the proportion of identifiable simulated
datasets.

fixed intercept β0 = −3 are considered: (1) κ is either 0.005 or 0.01, (2) σ2
u is either 5 or 10, and

(3) S is either 1.5 or 2.5. We choose these parameter values because they reflect those similar to

those that we observe in our data. Additional simulation scenarios are considered in Appendix B.1.

Each simulated data is generated with respect to the true values of the four parameters in each

simulation scenario.

Table 3.2 shows the simulation results from 100 Monte Carlo simulations for each scenario. The

table summarizes the true parameter values, the parameter estimates using our approach, and the

proportion of simulations with successful identification of S. It is important to tune the parame-

ters so that they produce realistic infestation patterns; under some parameter regimes, extremely

sparse or over-saturated landscapes will be produced. In some cases, the log-likelihood continu-

ally increases, discussed in more detail later, resulting in cases we call unidentifiable. These cases

are not exactly unidentifiable, as these likelihoods suggest that in these cases streets are imper-

meable barriers, and S is large. These cases occurred most frequently under large true values of

S and small values of σ2
u. We believe this occurs because this parameter combination produces

sparse landscapes more often than other parameter combinations. We remove these cases in our

summarized simulation results. The simulation results demonstrate the ability of this approach to

successfully identify S in most cases. The estimates of β0 are very close to the true value in all

conditions. The coverage of β0 was high for very small κ and σ2
u, but otherwise coverage was close

to 95%.
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In addition, the model captures the covariance function remarkably well, using only observed binary

data (Figure 3.4). The specific parameter estimates of κ and σ2
u have a slight bias, but when

combined, the overall covariance function captures the true covariance function well. We are not

interested in the underlying parameter values but in the covariance function as a whole, and thus

report our results in Figure 3.4.
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Figure 3.4: Comparing the estimated Matérn covariance function (gray) with the true Matérn co-
variance function (black) under four parameter sets.

We conduct additional simulations to quantify the gain in infestation prediction using permeable

barriers. To do so, we simulate datasets and fit the model assuming one-third of the infestations

are observed. We simulate the data under S = 1 (true map – no additional barrier effect), S = 2.5,

and S = 4, and fit the model using both the true map and distorted map under the estimated scale,

Ŝ (Table 3.3). To describe the results, we report the difference in number of positive houses dis-

covered if inspectors searched the unobserved houses with the top 30% of probabilities. These

simulation results indicate that the model using barriers better guides risk-based searches, espe-

cially when streets are strong barriers (Table 3.3). When streets are not barriers (S = 1), using the

approach does not hinder the number of positive houses discovered, but also does not improve it. In

addition, even when the majority of houses are unobserved, our approach identifies and estimates

S reasonably well (Table 3.3).
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κ σ2
u S Ŝ + houses under Ŝ + houses under S = 1 Difference

0.005 20 4 4.4 316 302 14
2.5 3.1 324 319 5
1 1.1 315.5 316.5 -1

10 4 4.3 230 216 14
2.5 3.4 245 241 4
1 1.1 252 252 0

Table 3.3: Difference in number of positive houses in the top 30% of probabilities of infestation using
our approach of map distortion compared to using the true map with no distortion (S = 1). Model
fit with true values of S = 1, S = 2.5, and S = 4 when a randomly selected one-third of points were
observed. Intercept fixed at β0 = −5. 100 simulated datasets were run at each value. We report
number of positive houses in the top 30% of probabilities which were treated as unobserved (ie. no
gain for houses that were observed as positive).

From the simulations, we identified two issues. First, for a small subset of simulated infestation

patterns, it is difficult to identify the scale parameter S (Figure 3.5). The identification issue can

be understood from the following example. Consider two infected houses on separate blocks and

assume that the spatial components of the two locations are weakly correlated. This weak correla-

tion can appear either due to a large value of the street barrier effect parameter S, or to a rapidly

decreasing Matérn covariance function. The identification issue is easily overcome when a larger

number samples is provided–but in the case of very scarce infestations, it is difficult to capture S

(Figure 3.5ac). Rarely, we observe an oversaturated landscape, with few uninfested blocks, which

also creates an unidentifiable pattern (Figure 3.5b). For more details on identification of S, see Ap-

pendix B.1. Secondly, the estimation of Matérn covariance parameters κ and σ2
u is not consistent.

In Figure 3.4, each estimated covariance function is plotted and compared with the true covariance

function. We can see that though κ̂ and σ̂2
u are biased, the estimated covariance function itself is

remarkably close to the true function (Figure 3.4). Our main interest lies in capturing the function,

rather than the individual covariance parameters, to create useful risk maps.
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Figure 3.5: Three unidentifiable and identifiable log-likelihoods and the corresponding simulated
datasets. Unidentifiable landscapes were uncommon, (rates varied based on the true parameter
values of κ and σ2

u) and in most cases had scarce infestations (panels a and c). Occasionally, an
unidentifiable landscape was oversaturated and also unidentifiable (panel b). For comparison, most
simulated datasets were identifiable with clear maximums of the log-likelihoods (panels d, e, and f)

3.4. Data Results

We apply the method to data collected during a vector control campaign in the district of Mariano

Melgar in Arequipa in 2009. The district contains 12,069 houses, of which 586 were found to be

infested with insect vectors (Figure 3.6). To fit the model to the dataset, we sample S over (1, 4)

by increments of 0.1 and also estimate κ, ν, and β0. We use the value of S that maximizes the

log-likelihood of the model as our estimate, Ŝ, and the corresponding model parameters, θ̂, and β̂0.
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Figure 3.6: Map of the study region, the district of Mariano Melgar, Arequipa, Peru, which consists
of 12,069 houses and 724 blocks. Color corresponds to number of known infested houses on the
block.

Using this approach, we find the the log-likelihood is maximized at S = 1.5. Our result indicates

that streets are permeable barriers in the distribution of T. infestans, in agreement with previous

studies (Barbu et al., 2013). We conclude that streets create barriers at least 1.5 fold the additional

width. Our map contains blocks of varying sizes and shapes, and therefore our estimate, Ŝ, means

the average minimum distance between houses on different blocks is increased 2.1 fold with a

standard deviation of 0.5. A scaled subsection of the map, incorporating this additional distance,

can be seen in Figure 3.1B. Using this S, the covariance function is described using the estimates of

κ = 0.009 with a 95% posterior credible interval of (0.007, 0.013) and σ2
u = 7.716 with a 95% posterior

credible interval of (5.492, 10.047) (Figure 3.7). We estimate the model intercept, β0 = −6.10 (0.41).

Estimates of all parameters across values of S are summarized in Appendix B.2.
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Figure 3.7: Posterior distributions of estimated parameters when S = 1.5. A. Posterior distribution
of σ2

u B. Posterior distribution of κ. C. Estimated posterior distribution of Matérn covariance, as
a function of distance. For reference, when the map is scaled to S = 1.5, the average distance
between nearest neighbors on the same block is 10.2 (sd = 5.5) and the average distance between
nearest neighbors on different blocks is 62.4. (sd = 18.0)

Using the scale of S = 1.5, we develop a risk map, representing the probability of infestation for

each household (Figure 3.8). For comparison, we also present the risk map at S = 1, the true city

map, and S = 3, additional widening of the barriers. Using this map, we can visualize the areas

with elevated probability of infestation and compare the risk to the analysis without incorporating

streets as barriers. Our estimates of the additional parameters, the covariance parameters θ, and

the model intercept β0, suggest there is significant spatial correlation between houses both within

and between city blocks.
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Figure 3.8: Risk map of predicted probabilities of infestation using A) S = 1 (true map) B) S = 1.5
and C) S = 3. The last panel shows differences in risk between scales of the area enclosed in the
black rectangle in more detail. The color scale shows P (infestation) and ranges from 0.74 (red) to
0.00 (purple)

3.5. Discussion

We presented an approach to assess the significance of the urban landscape on the spatial dis-

tribution of disease vectors and quantify the effect of city streets in the distribution of the Chagas

disease vector T. infestans in Arequipa, Peru. We estimated that streets add a distance of 50% to

the true street width in the spatial distribution of vectors in the study region. Our estimate is quali-

tatively similar to Barbu et al. who estimated a fixed additional distance for each street regardless

of the original width, however a direct comparison is difficult due to the difference in approaches

(Barbu et al., 2013). The flexibility, generalizability, and computational efficiency make our approach

a promising tool for real-time risk map creation.

Risk maps are often used to develop epidemic predictions and intervention strategies. The obser-
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vation of identifiable permeable barriers raises new potential targets for public health interventions

in urban landscapes. For example, given our results, it may be more effective to inspect houses

on the same city block as known infested houses rather than inspect houses within a set radius

of them. We intend to use this modeling approach to guide inspections in Arequipa, Peru. As

inspections are completed, we will update the model to reflect the latest observed infestations.

Our model has limitations, both theoretically and in its interpretation. From our simulation studies,

we observed specific unidentifiable datasets. We suspect that these parameter values occasionally

generate simulated datasets where the pattern of infested houses is clustered such that the S is

difficult to identify, including heavy clustering within a city block and lower total numbers of infested

houses. From the likelihood plots (Figure 3.5), it is clear which datasets are unidentifiable, as they

peak and then do not decrease as S increases. The unidentifiability of certain datasets is also a

practical limitation, as scarce infestations are expected after control actions, and thus the barrier

may not be identifiable.

In addition, our model assumes a constant scale factor for all barriers. In fact some streets, such

as paved streets, may present more of a hindrance to insects than others. It would be quite difficult

to incorporate covariates in the effects of barriers within the framework presented here. Hong

developed a method that considers barriers such as streets as ‘sunken’ in relation to the remainder

of the Gaussian field, rather than stretching the streets as we do here (Hong, 2013). Using grid

methods similar to those we employ he estimated the degree of ‘sinkage’ of each barrier. His

method would allow for greater flexibility to assess barriers of different types. In addition, his method

is not affected by the irregularities of the specific urban grid. However ‘sinking’ the streets requires

enormous and tedious manipulation of the triangulation used to approximate the Gaussian field,

while stretching the streets is simple and easily incorporated into the existing R package, INLA.

The ability to quickly incorporate our approach into existing software makes our method accessible

to researchers across many disciplines for real-time risk map creation.
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CHAPTER 4

GENERALIZED MULTIVARIATE CONDITIONAL AUTOREGRESSIVE MODEL FOR

VECTOR-BORNE DISEASE DATA

4.1. Introduction

The complex transmission dynamics of vector-borne diseases make analyzing spatial patterns es-

pecially difficult (Jones et al., 2008, Ostfeld, Glass, and Keesing, 2005, Reisen, 2010, Focks et al.,

1999). For successful disease transmission between hosts, the pathogen must be successfully

transmitted from host to vector, and then from the infected vector to a new host. Thus, the spatial

dynamics and external factors associated with the pathogen, infected hosts, and both infected and

uninfected vectors can be especially difficult to tease apart. Statistical spatial analyses of vector-

borne diseases tend to focus on one element of the system, or model the vector and pathogen

independently (Winters et al., 2010, Kitron and Kazmierczak, 1997). However, the distribution of

a pathogen is dependent on the distribution of the vector due to the inherent dependency of the

biological transmission process. We develop a generalized multivariate conditional autoregressive

model to examine the proportion of pathogen infected vectors conditional on the spatial distribution

of all observed vectors, both infected and uninfected.

We are motivated to understand the spatial heterogeneity of the primary Chagas disease vector,

both infected and uninfected, Triatoma infestans, in our study region, Arequipa, Peru. Chagas

disease, caused by the parasite Trypansoma cruzi causes significant mortality in the Americas

(Dias, Silveira, and Schofield, 2002, Bern, 2015). After more than a decade of vector control

campaigns and surveillance, both the parasite and vector are currently relatively rare in the city

of Arequipa (Barbu et al., 2014). We observe spatially correlated clusters of vectors (Figure 4.1),

although the number of vectors varies from 1 to more than 1,000 in a given house (Levy et al., 2006).

The proportion of vectors that contain parasite also varies – most houses contain low proportions

of positive vectors, but some houses contain very high proportions (Figure 4.1). It is unknown

what causes the high observed proportion of infected vectors. We are interested in understanding

whether the number of vectors in a given house is associated with the proportion of infected vectors,

and whether there is additional spatial correlation among positive vectors once adjusted for the
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Figure 4.1: Data used in analysis. Dataset contains 577 sites (contained within 67 houses; house
level data not shown). Sites with vectors (red) and number of vectors (size of point on log scale)
shown with number of vectors that tested positive for T. cruzi (size of yellow point on log scale).

distribution of all vectors.

To analyze parasite and vector data, we use a multivariate conditional autoregressive spatial model.

Conditional autoregressive (CAR) models are popular spatial models due to their flexible param-

eterization and robust estimation (Wall, 2004, Besag, 1974). Until recently, spatial data analyses

were entirely focused on univariate outcomes. Then, within a short period of time, several authors

introduced multivariate CAR models, but with improper posterior distributions (ie. the normaliz-

ing constant was unidentifiable) (Kim, Sun, and Tsutakawa, 2001, Sain and Cressie, 2002). In

2003, Gelfand and Vounatsou developed an approach to extend these multivariate models to ob-

tain a proper posterior distribution (Gelfand and Vounatsou, 2003). Then, Jin, Carlin, and Banerjee,

2005. developed an approach to obtain an explicit joint distribution of the multivariate spatial field,

through simple conditional distributions. We extend the work of Jin, Carlin, and Banerjee, 2005,

which was originally applied to two Poisson models on related cancers using the generalized multi-

variate conditional autoregressive (GMCAR) model. We develop a three-dimensional spatial model

using a zero-inflated Poisson distribution for vector counts, and a binomial model for the proportion

of positive vectors. We fit the spatial random effects conditionally, demonstrate the applicability
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of the method on zero-inflated data and outcomes from different distributions on simulations, and

apply the method to our Chagas vector and parasite data in Arequipa, Peru.

4.2. Methods

4.2.1. Univariate CAR

First, we briefly introduce the univariate CAR model on which the multivariate model is based. We

define a univariate spatially random variable φi at n locations. Then, the full conditional distribution

is

p(φi|φj,j 6=i, τ−1i ) = N
(
α
∑
i∼j

bijφj , τ
−1
i

)
where i ∼ j means i and j are neighbors.

The joint conditional distribution is

φ ∼ N
(
0, [Dτ (I − αB)]−1

)

where Dτ = Diag(τi), and τ is a precision parameter. B is nxn with bii = 0 and bij > 0 if houses

are neighbors; the definition of bij varies depending on the specific CAR implementation. α is a

smoothing parameter varying from 0 to 1 that describes the spatial association (Besag, 1974, Wall,

2004, Waller and Gotway, 2004).

4.2.2. Generalized Multivariate CAR

Before describing the multivariate structure of the model, we first introduce the notation and struc-

ture for our zero-inflated Poisson and binomial models. We use a zero-inflated Poisson model to

describe the distribution of all vectors, and a binomial model for the distribution of positive vectors,

conditional on the observed number of vectors.

Define Zi as the total number of vectors found at house i and Yi as the total number of positive

vectors found at house i. Yi is always less than or equal to Zi, as it is a subset of the sample.

We use a zero-inflated Poisson model to describe the distribution of all vectors, Zi, and a binomial

model for the distribution of positive vectors, Yi, conditional on the observed number of vectors.
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Consider Zi to be zero-inflated Poisson, with probability π of being in the Poisson distribution where

π is Bernoulli 1 or 0.

Zi ∼ πiPoisson(λi) + (1− πi)δ0

Then, we define the models on Zi as:

logit(πi) = Xi3βk3 + φi3

log(λi) = Xi2βk2 + φi2

where X is a n x k matrix of k − 1 fixed covariates. In our analysis, we include covariables that

have previously been shown to be associated with Chagas disease vectors, including the presence

of guinea pigs, dogs, and birds (chickens and ducks). We also include information on housing

materials that are known to be good habitats for vectors, including stacked bricks, cement blocks,

and adobe, as well as housing materials that are known to be poor vector habitats, including chicken

wire and smooth stucco. In our analysis, we use the same covariables between models. However,

the method allows for the covariables to differ between models.

We similarly define a zero-inflated binomial model, however the distribution probability is observed,

conditional on Zi:

Yi|Zi ≥ 1 ∼ Binomial(Zi, pi)

logit(pi) = Xi1βk1 + φi1

We restrict this model so sites may only contain positive vectors if at least one vector was observed.

Otherwise, pi = 0. In this model, we use the same covariables as the other models (ie. Xi1 = Xi2 =

Xi3), however they may vary if different covariables are associated with different outcomes.
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In each model, we have unique spatial random effects, φ1, φ2, φ3. If these three models were esti-

mated using three univariate CAR models, the random effects would be spatially correlated within

each model, but treated independently between models. Using the multivariate CAR approach,

these random effects are dependent both within and between models.

We now introduce the GMCAR structure, which links the previously described models (Jin, Carlin,

and Banerjee, 2005). Define

φ =


φ1

φ2

φ3

 ∼ N
(


0

0

0

 ,


Σ11 Σ12 Σ13

Σ′12 Σ22 Σ23

Σ′13 Σ′23 Σ33


)

where each Σij is an nxn covariance matrix. We can extend the bivariate case in Jin et al. to the

trivariate case, by specifying the conditional distributions,

p(φ1|φ2, φ3)

p(φ2|φ3)

and the marginal distribution

p(φ3)

By describing our models as three conditional models, we can easily then write out the joint distri-

bution. The joint distribution becomes:

p(φ) = p(φ1|φ2, φ3)p(φ2|φ3)p(φ3)

To describe the conditional distributions, it is easiest to use partitioning to write out the components

of the variance matrix. To define p(φ1|φ2, φ3), we can partition the distribution into
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N
(


0

0

0

 ,


Σ11 Σ12 Σ13

Σ′12 Σ22 Σ23

Σ′13 Σ′23 Σ33


)

= N
(0

0

 ,
 Σ11 Σ12:13

Σ′12:13 Σ22:33

)

where

Σ12:13 =

[
Σ12 Σ13

]

and

Σ22:33 =

Σ22 Σ23

Σ32 Σ33



Define A2 = Σ12:13Σ−122:33 (which will be n x 2n), and we can define

E(φ1|φ2, φ3) = A2(φ2, φ3)

V ar(φ1|φ2, φ3) = Σ11 −A2Σ′12:13

from the bivariate normal conditional distribution.

Define A3 as the lower half (n x n) of A2, (Σ23Σ−133 ). We can also define

E(φ2|φ3) = A3φ3

V ar(φ2|φ3) = Σ22 −A3Σ′23

and φ3 ∼ N(0,Σ33).

We then rewrite the conditional and marginal distributions into the form presented as the univariate

case. By writing the distribution in this form, we can interpret the parameters similarly to that of the
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univariate case, with a within-model spatial association parameter, α, and a precision parameter,

τ , which eases the interpretation.

φ1|φ2, φ3 = N(A2(φ2, φ3), [(D − α1W )τ1]−1)

φ2|φ3 = N(A3φ3, [(D − α2W )τ2]−1)

φ3 ∼ N(0, [(D − α3W )τ3]−1)

where D = Diag(mi) where mi is the number of neighbors of house i and W is the adjacency

matrix (ie. 1 if houses are neighbors and 0 otherwise) and 0 < αi < 1.

These models are linked through the matrix A2 and A3, which describes the between-model spatial

association. We define the components of A2 and A3 as:

aij =


ηk0 if j = i

ηk1 if j ∼ i

0 otherwise

where i and j index sites 1 to N and k = 2, 3 correspond to the appropriate model link.

We interpret the η parameters as the between-model spatial association parameters.The parameter

ηk0 describes the spatial association of a given site to that site in other models. The parameter ηk1

describes the spatial association of a given to site to neighboring sites between models. And, to-

gether with α, which describes the within-model association, these parameters capture the system

spatial heterogeneity.

We then re-write A2 and A3, and the expectation of φ1 and φ2 accordingly:

A2 =

η20I
η30I

+

η21W
η31W



45



and

A3 = η30I + η31W

Putting all this together, we can write out the joint distribution


φ1

φ2

φ3

 ∼ N
(

0

0

0

 ,


Σ11 +AΣ22:33A
′ A2Σ22 +A3Σ33A

′
3 A2A3Σ33 +A3Σ33

(A2Σ22 +A3Σ33A
′
3)′ Σ22 +A3Σ33A

′
3 A3Σ33

(A2A3Σ33 +A3Σ33)′ (A3Σ33)′ Σ33


)

When interpreting the results, it is important to note the conditional interpretation of the parameters.

For example, α2 describes the spatial association of the number of vectors conditional on the spatial

random effects, φ3, estimated for vector presence. Similarly, α1 describes the spatial association of

the proportion of positive vectors conditional on the spatial effects of the vector distribution, captured

by φ2 and φ3. η30 describes the spatial association between the same house in the Poisson model

with the probability of the house having zero vectors. Similarly, η31 describes the spatial association

between a house in the Poisson model with the neighboring houses of the probability of having zero

vectors.

In addition, the order of the models is important. There is a one-directional interpretation of the

conditional relationship. While in some contexts, this may be a barrier, the order of the distributions

aligns well with the application of parasite infection and vector distributions – it makes sense to

interpret parasite presence conditional on the vector distributions, but not vice versa.

We put prior distributions on parameters. We use normal priors with precision of 0.1 for the re-

gression coefficients and a precision of 1 for the linking η parameters, all with mean 0. We tested

simulated data with smaller precisions, but the results did not vary much for precisions smaller than

those we chose. We use gamma prior distributions with shape of 1 and scale of 50 on the precision

parameters τ , and we use uniform priors [0,1] on the within-model spatial association parameters

α. The model was sensitive to priors on the precision and α parameters. We chose a gamma

prior to keep the precision small, which allows the probabilities to vary from 0 to 1, but with values

distributed throughout that range and not only at the extremes. We chose an uninformative prior
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for α that restricted the possible values to those used by other authors (Jin, Carlin, and Banerjee,

2005).

The simulations and data analysis are conducted using MCMC algorithms in OPENBugs. In OPEN-

Bugs, the built-in function car.proper is used to define the spatial associations within models, which

decreases the computation time to run the analysis. The computational time is heavily dependent

on the size of the dataset and the number of neighbors per each site.

4.3. Simulations

To conduct simulations, we randomly simulate n sites on an nxn grid. We define a neighbor as

sites within a radius of n/8 and require each site to have at least one neighbor. We generate sim-

ulated outcome variables of interest, Y and Z, the count of vectors and positive vectors, using the

conditional distributions. Each simulated dataset was run with n = 160 for 10,000 iterations, with a

burn-in period of 5,000. All parameter estimates converged with a Gelman-Rubin statistic < 1.10.

We first run our model on simulated data to verify the model and examine the computational prop-

erties. We run 40 simulated datasets under 2 parameter regimes to ensure the model is working

correctly. In Table 4.1 we summarize our simulation results. Overall, the model estimates the pa-

rameters well, although there is some variation in the estimates compared to the true value. The

estimates of the β converged quickly to the true values. The estimates of α, in particular for small

values, were sensitive to changes in the true value of τ . In general, the estimates of τ and α were

correlated. The credible intervals for α were very large, however they did converge well. For all

parameters, the median of the 95% credible interval contained the true parameter value.
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True Value Estimate (Median 95% CI) True Value Estimate (Median 95% CI)
α1 0.20 0.31 (0.02, 0.71) 0.20 0.33 (0.01,0.72)
α2 0.50 0.43 ( 0.03, 0.87) 0.80 0.73 (0.15, 0.93)
α3 0.80 0.77 (0.23, 0.96) 0.20 0.23 (0.01, 0.63)
β10 1.00 1.05 (0.40, 1.59) -1.00 -0.80 (-1.46, -0.18)
β20 3.00 3.04 (2.64, 3.39) 3.00 3.05 (2.70, 3.40)
β30 1.00 0.70 (0.20, 1.42) 0.00 0.07 (-1.17, 1.01)
η20 0.20 0.27 (-0.24, 0.70) 0.30 0.16 (-0.75, 1.12)
η21 0.05 0.03 (-0.09, 0.18) 0.10 0.12 (-0.24, 0.52)
η30 0.20 0.16 (-0.17, 0.57) 0.01 -0.01 (-0.15, 0.11)
η31 0.05 0.08 (0.01, 0.28) 0.01 0.003 (-0.02, 0.03)
τ1 0.10 0.11 (0.07, 0.15) 0.08 0.06 (0.04, 0.09)
τ2 0.40 0.44 (0.29, 0.91) 1.00 1.15 (0.69, 2.32)
τ3 0.06 0.16 (0.02, 0.78) 0.08 0.02 (0.002, 0.09)

Table 4.1: Median estimates with median of the 95% credible interval of 40 simulated datasets.

4.4. Data Results

The dataset analyzed contains 577 sites within 67 houses (Figure 4.1). Each site has a unique set

of coordinates. Vectors were found at 98 of these sites; the median number of T. infestans at sites

where at least one triatomine was found was 4, and the maximum number of triatomines found in

one site was 1106. Of all triatomines analyzed, there were 29 sites containing triatomines with T.

cruzi. Of sites with at least one triatomine infected with T. cruzi, the median proportion of infected

triatomines was 0.50, but in some sites 100% of triatomines collected contained parasite.

The dataset is analyzed on the site-level; multiple sites are contained within a house, such as

rooms of a house and outdoor spaces. We ran 10,000 iterations and used a burn-in period of 3,000

iterations, and all parameters converged with a Gelman-Rubin statistic of < 1.10. The following

models are used for the analysis of the data:

logit(π) = β30 + β31Cuy + β32Dog + β33Poultry + β34Materials1 + β35Materials2 + φ3 (4.1)

log(λ) = β20 + β21Cuy + β22Dog + β23Poultry + β24Materials1 + β25Materials2 + φ2 (4.2)
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logit(p) = β10 + β11Cuy + β12Dog + β13Poultry + β14Materials1 + β15Materials2 + φ1 (4.3)

These models contain five covariates that have previously been associated with our outcomes

(Levy et al., 2006). We incorporate the presence of guinea pigs, or cuy, at each site, as well as the

presence of dogs, and chickens or ducks (poultry). The variable ‘Materials1’ defines the presence

of walls or animal corrals made of adobe, cement blocks with or without mortar, and bricks with or

without mortar. These are materials that are good habitats for T. infestans. ‘Materials2’ defines the

presence of walls or animal corrals out of materials that are poor habitats for T. infestans, including

wire cage and smooth stucco.

To fit the data, we fit three variations of the multivariate model. First, we fit the full model, allowing all

parameters to vary. We compare this model to a reduced multivariate model, where we fix ηi1 = 0

for i = 1, 2, but allow ηi0 to vary. In the reduced model, by fixing ηi1 = 0 we do not directly link sites

to neighboring sites between models. However, we still allow sites to directly link to themselves

between models. In this reduced models, sites are still indirectly linked to neighboring sites through

the within spatial association parameter, α. We also compare these models to independent CAR

models, where ηij = 0 for all i and j. The results from the data analysis are summarized in Table

B.4. We report the DIC for each model, and use the model with the smallest DIC as the model as

best fit. We define DIC as

DIC = D(θ) + ˆV ar(D(θ))

where D(θ) = −2ll (Gelman et al., 2014).

We run the model on our dataset and report the results in Table 4.2. From the DIC, it is clear the

partially multivariate model, where sites are only linked between models to themselves, fits the data

better than the fully multivariate model, where sites are linked between models both to themselves

and neighboring sites (Table 4.2). Both the fully and partially multivariate models fit the data bet-

ter than the independent model, where there is only within-model spatial association and no link

between models. From these results, we visualize the predicted probability of vector presence, ex-

pected number of vectors conditional on the expected presence of vectors, and expected proportion

of vectors that contain parasite conditional on the expected distribution of vectors (Figure 4.2).
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Full Model ηi1 = 0 (Reduced Multivariate) ηij = 0 (Independent Models)
DIC 1192.2 1153.3 1214.7
α1 0.92 (0.08, 0.98) 0.98 (0.93, 0.99) 0.97 (0.94, 0.98)
α2 0.89 (0.09, 0.98) 0.61 (0.03, 0.96) 0.52 (0.03, 0.92)
α3 0.25 (0.01, 0.69) 0.96 (0.47, 0.98) 0.96 (0.84, 0.98)

Presence
of
Vectors

β30 3.76 (1.61, 7.12) -1.24 (-4.32, 2.29) -1.95 (-5.59, 1.14)
β31 (Cuy) 0.06 (-5.23, 6.08) 1.67 (-2.85, 6.37) 2.25 (-1.76, 6.09)
β32 (Dog) -0.41 (-5.19, 5.90) 1.17 (-3.02, 6.63) 0.79 (-3.67, 5.65)
β33 (Poultry) 0.97 (-3.93, 6.67) 0.27 (-3.54, 5.16) -0.34 (-4.69, 2.77)
β34 (Mat1) 1.64 (-2.57, 6.59) 3.16 (0.31, 6.91) 2.57 (0.48, 6.28)
β35 (Mat2) 2.08 (-2.68, 7.30) 0.40 (-3.37, 5.05) -1.19 (-4.99, 2.46)

Number
of
Vectors

β20 -6.82 (-8.77, -5.13) -2.34 (-4.42, -0.79) -0.95 (-2.45, 0.21)
β21 (Cuy) 3.79 (1.76, 5.37) 3.50 (1.80, 5.17) 4.36 (0.87, 5.89)
β22 (Dog) 1.40 (-0.91, 3.65) 0.17 (-1.45, 2.75) 0.77 (-1.19, 3.57)
β23 (Poultry) 0.98 (-0.48, 2.46) 1.59 (-0.23, 2.67) 2.93 (-0.23, 4.21)
β24 (Mat1) 1.37 (0.74, 2.25) 0.71 (-0.51, 1.64) 0.51 (-0.44, 1.41)
β25 (Mat2) -1.22 (-2.18, -0.22) -1.71 (-2.99, -0.54) -1.03 (-2.33, 2.74)

Prop. of
Infected
Vectors

β10 -11.10 (-14.64, -8.32) -7.38 (-10.13, -5.09) -5.64 (-7.74, -4.04)
β11 (Cuy) 3.32 (1.35, 5.38) 3.72 (1.49, 6.04) 4.13 (2.68, 5.95)
β12 (Dog) -0.06 (-3.68, 3.33) 1.59 (-0.23, 2.67) 0.11 (-3.02, 2.72)
β13 (Poultry) -1.43 (-3.58, 0.93) -0.28 (-2.70, 1.63) 0.65 (-0.86, 2.13)
β14 (Mat1) 0.09 (-1.27, 1.46) 0.02 (-1.19, 1.32) 0.24 (-0.84, 1.50)
β15 (Mat2) -1.77 (-3.57, 0.03) -1.99 (-3.87, -0.33) -1.46 (-2.74, -0.17)
τ1 0.01 (0.006, 0.04) 0.01 (0.005, 0.02) 0.01 (0.005, 0.01)
τ2 0.01 (0.007, 0.03) 0.01 (0.003, 0.01) 0.01 (0.004, 0.01)
τ3 0.03 (0.005, 0.09) 0.004 (0.001, 0.03) 0.003 (0.0002, 0.02)
η20 -0.06 (-0.37, 0.33) 0.55 (0.11, 0.96) -
η21 0.02 (0.005, 0.04) - -
η30 0.62 (-1.76, 1.65) 0.37 (-0.03, 1.18) -
η31 -0.54 (-1.30, 1.19) - -

Table 4.2: Data results using three models (Eq. 4.1, 4.2, 4.3). The full model allows all parameters
to vary. The partial model allows η20 and η30 to vary, but fixes η21 = 0 and η31 = 0. The independent
model fixes all linking parameters, η = 0. In all models, covariables are the same: βi0 corresponds
to the model intercept, βi1 is the estimated effect of guinea pigs (cuy), βi2 is the estimated effect
of dogs, βi3 is the estimated effect of poultry, βi4 estimates the effect of the presence of housing
materials that are good habitats for vectors, and βi5 estimates the effect of the presence of housing
materials that are poor habitats for vectors for i = 1, 2, 3. Coefficient credible intervals of covariables
that did not contain 0 are highlighted in red.

4.5. Discussion

The GMCAR approach enables a desirable conditional interpretation of spatial parameters, which is

not possible using independent models, due to inherent dependencies and associations between

the biological components of the parasite-vector system. Vector-borne pathogens have complex

spatial dynamics, and it is difficult to tease apart factors associated with different components of

the transmission process. However, identifying variables associated with specific elements of the

vector-borne cycle may help to target these elements for effective control measures. Using this

conditional modeling approach, we can describe our data on Chagas disease in parts: presence of

vectors, number of vectors, and number of infected vectors, and condition our models accordingly.
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Figure 4.2: Unfilled gray points indicate all sites. (a) Expected probability of vector presence at
each site (size of red point relative to gray point) (b) Expected count of vectors, conditional on the
probability of vector presence (size proportional to log count) (c) Expected proportion of positive
vectors, conditional on expected vector distribution (size of gold point relative to red point). Red
point is relative to the size of the log of the number of observed T. infestans at that site.

We determined the reduced multivariate GMCAR model fit the data better than the full multivariate

GMCAR model and independent model because it had the smallest DIC. In the reduced multivariate

model, we observed that housing materials with non-smooth surfaces, including stacked bricks and

cement blocks, were positively associated with the presence of vectors, but not our other outcomes.

This finding supports those found by previous studies, and supports the hypothesis that T. infestans

prefer dwelling in the dark cracks and crevices of these materials (Levy et al., 2006, Barbu et al.,

2014). In this model, we also found that guinea pigs, or cuy, were positively associated with both

the number of vectors observed and the proportion of vectors that are infected with T. cruzi. This

finding supports previous studies and the hypothesis that T. infestans use guinea pigs as a food

source (Levy et al., 2006, Barbu et al., 2014). Often, guinea pig corrals are made of stacked

bricks or cement blocks, which was found to be associated with the presence of vectors. Thus,

the combination of guinea pigs and corrals made from these materials may fuel vector growth. We

found that housing materials that are poor habitats for vectors, including chicken wire and smooth

stucco, were negatively associated with the number of T. infestans expected at a given site. This

finding supports previous studies that have found that vectors were less likely to be found in these

environments, as they did not contain dark cracks or crevices the insects prefer (Levy et al., 2006).
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Interestingly, we found that the same covariates that were associated with the number of bugs in a

given site, were also associated with the proportion of vectors that were infected with parasite. We

found that guinea pigs were positively associated with the proportion of vectors that were infected

with T. cruzi, and poor habitat materials were negatively associated with the proportion of vectors

that were infected.

In the reduced multivariate GMCAR model, both linking parameters, η20 and η30 were positive, sug-

gesting positive spatial association between both the number of vectors and vector presence, as

well as the proportion of vectors infected with T. cruzi and the distribution of vectors. In addition,

the smaller DIC of the reduced multivariate model compared to the full model indicates that out-

comes are linked between models for a given site, but are not directly linked between outcomes

between neighboring sites. However, there is still spatial association between outcomes between

neighboring sites indirectly in the reduced model, through the η and α parameters.

These results highlight the dependencies of the outcomes – there is significant spatial association

between them. In Figure 4.1, we can see the spatial clustering of the vectors and positive vectors.

However, it is difficult to visually assess whether there is additional spatial association within the

proportion of vectors that are infected with T. cruzi, once accounting for the spatial association of

vectors in general. In our analysis, we estimate α1 = 0.98, suggesting high spatial association of

positive vectors, conditional on the distribution of vectors. This analysis suggests it is important to

find infected vectors to reduce Chagas disease transmission. In Arequipa, vectors are present in

low levels, and positive vectors are rare. Infected vectors tend to be highly spatially clustered, and

it is essential to find infected clusters to eliminate the presence of infected vectors.

Compared to analyzing the data independently, we were able to identify more significant covariables

using the multivariate model. In the independent model, poor habitat materials was not significantly

associated with lower numbers of vectors. However, this covariable was significantly associated

with lower number of vectors in the multivariate analysis.

This analysis had several limitations. At each site, we only considered T. infestans that were then

tested for T. cruzi. 14% of captured T. infestans were not tested for the presence of T. cruzi and were

not used in this analysis. There may be some sampling error, as young T. infestans are difficult to

observe due to their small size. In addition, we limited our analysis to a small subset of data due to
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the computational time of the analysis. In the future, we hope to use this method on the full dataset

and analyze the results.

Our results suggest that covariables associated with large numbers of T. infestans are also associ-

ated with high proportions of infected vectors. Thus, control efforts should be targeted at controlling

large populations of T. infestans to limit the transmission of T. cruzi. In addition, due to the high

spatial associations both within and between outcomes, searches for vectors should be focused

around sites that are known to be infested with vectors. We hope to expand our models by continu-

ing to identify covariables that are associated with our outcomes to develop the model of best fit. In

addition, we could extend to the model to include more components of the biological system, such

as T. cruzi infected host data.
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CHAPTER 5

DISCUSSION

5.1. Conclusions

In this dissertation, we developed Bayesian methods to detect and control the insect vector, Tri-

atoma infestans in the city of Arequipa, Peru. In addition, we presented a method to model the

proportion of vectors infected with Trypansoma cruzi, the parasite that causes Chagas disease,

conditional on the distribution of insect vectors. In Chapter 2, we developed a novel stochastic

epidemic model that we used to guide searches for T. infestans in Arequipa, Peru. Stochastic

epidemic models are particularly difficult to fit to real-time data due to the detailed-level of data

needed for a tractable likelihood. Using a reversible-jump Markov chain Monte Carlo algorithm, we

were able to augment the data and retain a tractable likelihood even though we did not observe

the true infestation time of each house. To augment the data, we presented a house-level insect

population growth model that accounted for the number of insects each house was able to support

(ie. house-level carrying capacity), assuming additional insects dispersed to neighboring houses.

In addition, we incorporated a spatial kernel that assumes insects were more likely to disperse to

neighboring houses, and further were more likely to disperse to houses on the same city block than

those across city streets. We demonstrated our method on simulated data, and piloted the algo-

rithm over three months in the field. During the pilot, inspectors searched houses with the highest

posterior probabilities of infestation, and we updated the model to reflect the latest observed data.

No positive infestations were found during the pilot, and it may be useful to use this method again

in an area of the city with higher prevalence of infestations. Alternatively, it may be interesting to

use other measurements to determine high risk houses. For example, houses with large infectious

pressure, or houses that would are most infectious, may be most important to treat.

During this pilot, we encountered implementation barriers, such as long computation times, con-

vergence issues, and inefficient search paths throughout the city. To address these constraints, we

worked to develop an algorithm, presented in Chapter 3, that was more computationally efficient

and could be used with efficient search paths.

In Chapter 3, we presented an alternative algorithm that fit the data using iterative nested Laplace
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approximations (INLA), an alternative to the traditional MCMC algorithms. Using this estimation

approach, we were able to fit much larger datasets in minutes. In addition, we presented our results

as a risk map, rather than an ordered list of houses, and we are currently piloting this approach in

the field. Using the risk map, inspectors can use the visualization of house-level risk to guide their

path, rather than searching houses in a specific order, such as a list. Using a map, inspectors

can search a given locality in a path that is most convenient for them, while still using the latest

observed data.

Using INLA, we developed a novel method to incorporate the urban landscape into a geostatistical

model. Gaussian fields (GFs) are a popular tool used for creating risk maps of point-level data.

However, GFs assume a smooth landscape. Previous studies showed the urban grid of Arequipa

significantly affected the distribution of T. infestans; insects were more likely to move within a city

block than between city blocks (cite). The objective of our method was to incorporate city streets

into a logistic Gaussian field, treating the streets as permeable barriers in the distribution of vectors.

To create permeable barriers, we presented an approach, with one additional parameter, S, that

distorted the city map by widening the distance between city blocks but retained the distance be-

tween houses within the city block. We demonstrated the identifiability of the distortion parameter,

S, through simulations, and applied the method to a district of Arequipa. We found that the effect of

the width of streets was equivalent to at least 1.5 times the true width. In other words, for a given

distance, houses located on the same block had higher spatial correlation than houses located on

different city blocks. Using the results from this approach, we are currently implementing this model

in the field; inspectors can view the current risk-map on tablets or smart phones in the field, enter

the results, and the model can be updated each night. Based on the outcome of the pilot study, we

can continue to improve the model as needed.

Using this approach, there were some patterns of data that resulted in an unidentifiable distortion

parameter, S. In these cases, the log-likelihood continued to increase over S, suggesting streets

were impermeable barriers. By examining these patterns individually, we suspect both very sparse

and heavily saturated landscapes may have unidentifiable S. In cases where a map is very sparsely

infested, it may be more beneficial to conduct ring-searches around houses that were observed as

infested. In cases where the map is heavily saturated, it is most likely necessary to inspect as many

houses as possible. Thus, this identifiability restraint may not have implications for field inspections.
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In Chapter 4, we presented an approach to jointly model the distribution of vectors, and vectors

infected with T. cruzi. Analyzing the patterns of vector-borne disease pathogens is especially dif-

ficult due to the complex transmission dynamics. For example, T. cruzi can infect many hosts,

including humans, dogs, and guinea pigs, all prevalent in Arequipa, Peru, but must be transmitted

between hosts through the vector. Thus, it is difficult to statistically differentiate factors associated

with vectors, and infected vectors.

In our approach, we had three unique spatial random effects in three distinct models: the proba-

bility of vector presence, the expected count of vectors (together a zero-inflated Poisson), and the

proportion of infected vectors expected given the distribution of observed vectors. We then linked

these models through additional spatial parameters, capturing spatial dependencies between mod-

els. Thus, in addition to covariables, the models accounted for both within-model spatial correlation

and between-model spatial correlation. Using this structure, we were able to interpret the models

conditionally on each other. Thus, the covariate effects associated with the number of vectors was

interpreted conditional on the probability of vector presence. Similarly, the covariates associated

with observed T. cruzi infected vectors was conditional on the distribution of all vectors. This con-

ditional interpretation of parameters is desirable for modeling infected vectors, as it is difficult to

decipher variables associated with infected vectors compared to those associated with vectors in

general, especially given the highly spatial nature of the data. In the future, more consideration into

model covariables may provide insight into stronger relationships with vectors and infected vectors.

5.2. Limitations

Throughout this work, we encountered many statistical and epidemiological challenges. In Chap-

ter 2, we attempted to implement a sophisticated, yet computational intensive model. Using this

approach, we were able to capture the spatio-temporal dynamics using compartmental stochastic

methods. To implement this type of model using limited data, we made many strong assumptions.

If these assumptions were incorrect, the model may not perform well. Since our data was limited,

it was difficult to verify some of assumptions, such as the rate of vector growth in houses. Without

strong prior information and limited data, it may not be possible to apply this type of model. In

addition, we encountered difficulties with convergence. This model was developed for use with a

real-time field implementation, and the computational barriers were significant. The model had to

57



be run for at least twelve hours on a cluster for adequate convergence, although after this amount

of time convergence was still not ideal.

In the third chapter, we developed an alternative approach where we attempted to improve upon

these restraints. The logistic spatial model we developed used less assumptions and was signif-

icantly faster computationally. However, this model does not incorporate the dynamic aspect of

the infectious process that was captured using the stochastic model. It is difficult to assess how

much detail we lose by not incorporating the dynamic aspect of the infectious process. The model

presented in Chapter 3 does not incorporate vector counts, however this model could easily be

extended to a Poisson regression to do so. In the future, a comparison of these approaches, in par-

ticular comparing the stochastic epidemic model to the Poisson, urban-grid, Gaussian field model,

may be valuable to quantify the differences between these approaches.

These models also contain many additional constraints. Often, much more data was collected

than we were able to incorporate into the models. Inspectors take detailed notes of each site,

including housing and animal corrals, inhabitants, and more. We were only to incorporate some

of the collected data, and we may have missed key observations in our analysis. Inspectors may

observe characteristics of a site that are not able to be quantified or recorded in a dataset easily.

In addition, participation of residents in vector surveillance was limited. Many residents do not wish

to have their homes inspected with such detail. It may be beneficial to incorporate participation

analysis into future models to add additional information. Previous studies have shown that houses

that do not participate are less likely to be infested (Hong et al., 2015). Therefore, this information

could be used to add information to models where many houses have not been inspected.

Additional details were not included in our model, such as quality of inspections, inspector sensi-

tivity, and quality of treatments. Often, inspectors are able to search part of a residence, but not

the entire premises; including this information in the model is difficult. Previous studies have shown

inspections may vary by inspector (Hong et al., 2015).

5.3. Future directions

In this dissertation, we attempted to capture spatial heterogeneity to guide vector search inspec-

tions. The goal of our work was to find the highest risk houses. In Chapter 2, we presented a
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method that incorporated the number of vectors found at each house, which seems to be impor-

tant in the probability that a given house infects a neighbor. In Chapter 3, we presented a more

computationally efficient approach. While the approach in Chapter 3 incorporates a more detailed

spatial model, it simply models the probability of vector presence and does not incorporate other

covariates, such as the number of vectors observed at infested houses, housing material, or ani-

mals present. Including these additional elements into this spatial model may result in a better risk

map, which may provide more information to inspectors. It may be possible to incorporate multiple

types of barriers into this Gaussian field model. For example, in Arequipa, there are both streets

and water channels. It may be possible to first distort the map by city block and estimate S1. Then,

by subsequently distorting the map by regions divided by water channels, it may be possible to

estimate a second barrier, S2.

In Chapter 4, we presented a method to jointly, spatially model the presence of vectors, the count of

vectors, and the proportion of vectors infected with T. cruzi. Using this approach, variable selection

is complex, and more thought should be put into the covariables used. In addition, the analysis

was done on the site level. However, it may be important to include additional effects on the house-

level, since sites within a house are more likely related than sites between houses. Lastly, it may

be possible to incorporate a more sophisticated spatial correlation structure into the joint model.

We used a conditional autoregressive model, but it maybe possible to jointly model these outcomes

using a Gaussian field approach.

Using our presented methods, inspectors searched the highest-risk houses for infestations. How-

ever, we suspect there is value in inspecting both high-risk houses, and houses where the risk

level is unknown. For example, an area in which little inspection has been done may become high

risk if inspected. Using our approaches, these areas may never be inspected. Thus, in the future,

work should be done to examine the optimal amount of time that should be spent searching around

high-risk houses (ie. ‘exploitation’ of data) compared to the amount of time that should be spent

searching areas with little information (ie. ‘exploring’ to collect data). This balance may be challeng-

ing to quantify – how do we measure the gain in information of each inspected houses? A positive

house provides important data, but negative houses also provide data, especially in areas where

no inspections have been done.

We have not addressed or answered the question of whether a unified search strategy is beneficial.
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For ease of implementation, a unified, continuing search strategy is clear to inspectors, who know

what to expect and gain experience. However, switching search strategies at different stages of

an epidemic may result in finding more infested houses. In the beginning of an epidemic, it may

be better to ‘explore’ and gather as much information as possible. Later in an epidemic, it may be

better to ‘exploit’ and use what has been collected.

Currently, we are piloting a tablet and smartphone application that creates a real-time visualization

of a risk-map for inspectors to use in the field. Using this application, inspectors searching the

landscape for vectors, can see house-level risk in the current location using GPS tracking. The

inspectors can also input the results of their work directly into the application for real-time model

updates. Each time a model is re-run incorporating new results, the inspectors instantly see the new

risk-map on the tablet or smart phone. In this pilot, we are using a variation of the model presented

in Chapter 3 of this dissertation. This space-time variation of the model in INLA incorporates a

map distortion of S = 1.5 (see Chapter 3 for more details on this method and parameter), and

inspection data that has been collected since 2004 to predict the presence of vectors on a locality

level in Arequipa. In this model, we also use covariate information from the spray campaign in

2004, including insecticide participation history. From the results of this pilot, we hope to identify

further future directions for our research. We have not yet studied how to motivate inspectors

to use the risk-map provided. Inspectors may not be interested in traveling longer distances to

inspect more high-risk houses, compared to inspecting more low-risk houses in a smaller area. We

are interested in studying how inspectors use the information presented in the risk-map, and how

different motivation schemes may affect their search path.

Throughout this dissertation, we applied our methods to control the re-emerging vector of Chagas

disease, T. infestans in Arequipa, Peru. However, our methods are appropriate to many types

of vector-borne diseases, including Chikungunya, West Nile, and Dengue, as well as the recent

outbreak of the Zika virus. Vector-borne diseases are increasingly occurring in cities, facilitated

by rapid transmission and creating new challenges. Understanding how to efficiently control these

outbreaks is becoming increasingly crucial as diseases travel quickly between cities and countries.

As data is collected faster and better, updating risk maps and models in real time is essential to

understand the current state of any epidemic. In the future, we hope to extend our methods to other

diseases and vectors, with unique spatial kernels and population dynamics. Our methods have the
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potential to assess real-time risk across large sets of data across many types of urban outbreaks.
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APPENDIX A

CHAPTER 2 DETAILS

A.1. Growth Dynamics

Figure A.1: Bounded growth using the Beverton-Holt model compared to unbounded growth. Differ-
ence in slopes at time of new infestation was incorporated into hazard function to quantify infestation
severity into the probability of infesting a neighboring house.

A.2. Sensitivity Analysis

For all simulations and data applications, we fixed the carrying capacity, K = 1000. We did some

sensitivity analyses to assess the importance of this assumption. We ran 3 RJMCMC chains on

one locality with 5 different carrying capacities, K = {100, 500, 800, 1000, 1500}. We obtained the

median ranking of each house across the chains for each K, and then plotted the rankings against

each other (Figure A.3). We can see the heterogeneity in ranking is similar to that between chains

within each carrying capacity. Interestingly, the rankings stayed the same between K = 1000 and

K = 1500.
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Figure A.2: Ranking of each house across 3 RJMCMC chains. There were a few houses that
changed significantly, but most houses remained within a few rankings between chains. We use
the median ranking between chains to give inspectors.

63



0
10

0
20

0
30

0
40

0
50

0
60

0

Carrying Capacity (K)

R
an

ki
ng

100 500 800 1000 1500

Figure A.3: Ranking of each house across 5 potential carrying capacities. There were a few houses
that changed significantly, but most houses remained within a few rankings between carrying ca-
pacity values.
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APPENDIX B

CHAPTER 3 DETAILS

B.1. Detailed simulation results

Our simulation studies suggest we need a minimum amount of observed information to identify

the scale parameter. More research must be done to identify the requirements for identifiability of

S. Our initial investigations suggest that the scale is identifiable when at least 2% of houses are

infested, however this approximation also seems sensitive to the specific infestation pattern. The

requirements may vary by the specific map and model used. In our testing, when the parameter is

unidentifiable, the log-likelihood sharply increases near the true value but then does not decrease

as the scale increases. It may be possible to identify specific patterns when these unidentifiable

cases occur. As a general rule, we noticed unidentifiable likelihoods in cases with very low levels of

infestation. Occasionally, we observed an unidentifiable likelihood when there was a high number

of infested houses.

κ = 0.01, σ2
u = 5, S = 2.5 are fixed. The intercept β0 varies from -6 to -3. The intercept plays a

Table B.1: Simulation results with the variation in intercept β0.
True values Estimates

κ σ2
u S β0 Ŝ β̂0 Coverage (β0) Identification

0.01 5 2.5 -3 2.68 (0.48) -2.92 (0.35) 0.96 0.76
10 2.69 (0.55) -2.99 (0.49) 0.95 0.92
25 2.65 (0.45) -3.11 (0.79) 0.97 0.93
50 2.65 (0.40) -3.42 (1.21) 0.95 0.94
100 2.67 (0.44) -3.31 (1.86) 0.95 0.98
200 2.64 (0.38) -4.02 (3.24) 0.97 0.98
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Table B.2: Simulation results with the variation in intercept κ.
True values Estimates

κ σ2
u S β0 Ŝ β̂0 Coverage (β0) Identification

0.001 5 1.5 -3 1.42 (0.52) -2.35 (4.19) 0.93 0.69
0.002 1.52 (0.51) -2.56 (1.34) 0.98 0.89
0.005 1.57 (0.35) -3.11 (0.89) 1.00 0.95
0.01 1.64 (0.27) -2.97 (0.53) 0.97 1.00
0.001 10 1.5 -3 1.70 (0.64) -4.24 (6.78) 0.97 0.73
0.002 1.55 (0.45) -2.63 (1.99) 1.00 0.93
0.005 1.61 (0.33) -3.13 (1.26) 0.97 0.98
0.01 1.58 (0.19) -3.16 (0.77) 0.96 1.00

Table B.3: Simulation results with the variation in intercept β0.
True values Estimates

κ σ2
u S β0 Ŝ β̂0 Coverage (β0) Identification

0.005 5 2.5 -3 2.76 (0.48) -2.91 (0.35) 0.96 0.76
-4 2.64 (0.53) -4.07 (0.46) 0.98 0.69
-5 2.52 (0.58) -5.06 (0.67) 0.92 0.66
-6 2.12 (0.74) -6.25 (1.17) 0.94 0.52

important role that decides the total number of infestations. A larger value of the intercept β0 implies

more infestations. Table B.3 shows the simulation results with the variation in β0. As β0 decreases,

the variation in the estimation of S increases and the identification rate decreases.
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Figure B.1: Log-likelihood analysis across different scales, S. In most cases, S is clearly identifiable,
but in some cases (red rectangles) it is not.
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B.2. Additional Data Results
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Figure B.2: Log-likelihood analysis across different scales, S. Likelihood is maximized at S = 1.5
indicating the model of best fit.
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Table B.4: Results of grid sampling S on dataset, including estimates and standard deviations of
θ1, θ2, and β0. The log-likelihood is maximized when S = 1.5, and the bolded results are reported
in the main text.

S θ̂1 θ̂2 β̂0 ll
1.0 2.06 (0.14) -4.30 (0.14) -6.14 (0.45) -1809.18
1.1 2.08 (0.15) -4.36 (0.17) -6.16 (0.44) -1799.65
1.2 2.13 (0.16) -4.41 (0.20) -6.15 (0.43) -1795.19
1.3 2.19 (0.18) -4.47 (0.21) -6.13 (0.42) -1793.33
1.4 2.36 (0.23) -4.63 (0.21) -6.10 (0.42) -1793.35
1.5 2.35 (0.18) -4.63 (0.17) -6.10 (0.41) -1791.74
1.6 2.45 (0.19) -4.71 (0.19) -6.07 (0.42) -1793.44
1.7 2.49 (0.18) -4.75 (0.19) -6.06 (0.42) -1793.56
1.8 2.54 (0.19) -4.79 (0.19) -6.06 (0.42) -1793.02
1.9 2.61 (0.19) -4.86 (0.18) -6.04 (0.42) -1794.38
2.0 2.66 (0.19) -4.91 (0.18) -6.03 (0.42) -1794.74
2.1 2.71 (0.19) -4.96 (0.18) -6.03 (0.42) -1794.87
2.2 2.77 (0.19) -5.00 (0.17) -6.02 (0.43) -1795.97
2.3 2.82 (0.15) -5.07 (0.15) -6.00 (0.42) -1795.65
2.4 2.85 (0.20) -5.09 (0.18) -6.01 (0.42) -1796.46
2.5 2.88 (0.21) -5.12 (0.19) -6.01 (0.42) -1796.70
2.6 2.95 (0.20) -5.15 (0.18) -6.01 (0.43) -1797.74
2.7 3.00 (0.19) -5.19 (0.17) -6.00 (0.43) -1798.51
2.8 3.02 (0.15) -5.26 (0.15) -5.99 (0.42) -1797.84
2.9 3.06 (0.20) -5.25 (0.18) -6.00 (0.43) -1799.25
3.0 3.11 (0.16) -5.31 (0.15) -5.99 (0.43) -1799.15
3.1 3.11 (0.16) -5.36 (0.16) -5.97 (0.43) -1799.84
3.2 3.16 (0.16) -5.34 (0.15) -5.98 (0.43) -1800.82
3.3 3.21 (0.16) -5.38 (0.15) -5.98 (0.44) -1801.66
3.4 3.24 (0.16) -5.40 (0.15) -5.97 (0.44) -1802.66
3.5 3.30 (0.15) -5.48 (0.14) -5.97 (0.44) -1802.78
3.6 3.31 (0.17) -5.48 (0.16 ) -5.97 (0.45) -1803.63
3.7 3.37 (0.15) -5.54 (0.14) -5.96 (0.45) -1804.08
3.8 3.35 (0.16) -5.68 (0.19) -5.93 (0.44) -1803.83
3.9 3.39 (0.16) -5.72 (0.19) -5.93 (0.44) -1804.50
4.0 3.40 (0.17) -5.76 (0.19) -5.92 (0.45) -1805.19
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America: a review. Memórias do Instituto Oswaldo Cruz 97.5, 603–612.

Diggle, PJ, Ribeiro Jr, PJ, and Christensen, OF (2003). An introduction to model-based geostatis-
tics. In: Spatial statistics and computational methods. Springer, 43–86.

Eddelbuettel, D, François, R, Allaire, J, Chambers, J, Bates, D, and Ushey, K (2011). Rcpp: Seam-
less R and C++ integration. Journal of Statistical Software 40.8, 1–18.

Focks, DA, Brenner, RJ, Chadee, DD, and Trosper, JH (1999). The use of spatial analysis in the
control and risk assessment of vector-borne diseases. American Entomologist 45.3, 173–183.

Gelfand, AE and Vounatsou, P (2003). Proper multivariate conditional autoregressive models for
spatial data analysis. Biostatistics 4.1, 11–15.

Gelman, A, Carlin, JB, Stern, HS, and Rubin, DB (2014). Bayesian data analysis. Vol. 2. Taylor &
Francis.

Gibson, GJ and Renshaw, E (1998). Estimating parameters in stochastic compartmental models
using Markov chain methods. Mathematical Medicine and Biology 15.1, 19–40.

Green, PJ (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika 82.4, 711–732.

Haley, RW (2012). Controlling urban epidemics of West Nile virus infection. JAMA 308.13, 1325–
1326.

Hong, AE (2013). Gaussian Markov random field models for surveillance error and geographic
boundaries. PhD thesis. University of Pennsylvania.

Hong, AE, Barbu, CM, Small, DS, Levy, MZ, et al. (2015). Mapping the spatial distribution of a
disease-transmitting insect in the presence of surveillance error and missing data. Journal of
the Royal Statistical Society: Series A (Statistics in Society) 178.3, 641–658.
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