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ABSTRACT

RECONSTRUCTING 3D HUMANS FROM IMAGES

Nikolaos Kolotouros

Kostas Daniilidis

The past decade we have seen remarkable progress in Computer Vision, fueled by the

recent advances in Deep Learning. Unsurprisingly, human perception has been the center of

attention. We now have access to systems that can work remarkably well for traditional 2D

tasks like segmentation or pose estimation. However, scaling this to 3D remains particularly

challenging because of the inherent ambiguities and the scarcity of annotations.

The goal of this dissertation is to describe our contributions towards automating 3D human

reconstruction from images. First, we will explore the use of different representations for

human mesh recovery, discuss their advantages and show how they can be useful for learning

deformations beyond standard parametric body models. Next, motivated by the limited

availability of annotated data, we will present a method that leverages a collaboration

between regression and optimization methods to successfully address this. Subsequently,

we will describe our work on modeling the ambiguities in 3D human reconstruction and

demonstrate its usefulness for solving a variety of downstream tasks, such as human body

model fitting. Last, we will move beyond single-person 3D pose estimation and show how

we can scale our methods to work on challenging real-world scenes with multiple humans.
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y(p) 6= ŷ(p), we penalize the corresponding depth estimates at this

pixel with an ordinal depth loss. The pixel depths Dy(p)(p) and
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CHAPTER 1 : Introduction

Figure 1: Outline of the thesis. This dissertation explores 4 important problems in 3D
human reconstruction: The limited availability of annotated data, learning deformations
beyond standard parametric models, modeling the reconstruction ambiguities, and scaling
methods to work for scenes with more than one person.

Understanding humans has been one of the most important and well-studied topics in

Computer Vision. Researchers have devised methods for detecting humans in images [30,

29, 106], segmenting them from the background [36, 13] estimating their pose [136, 91],

and modeling their interactions with the environment. Human understanding also extends

beyond just static images to tasks such as motion prediction [8, 82], tracking [145, 23],

re-identification [24, 156] and action recognition [141, 44].

This dissertation focuses on estimating the pose and shape of humans in 3D. Traditionally,

most methods attempt to reason about humans in 2D, by predicting their silhouettes [13] or

2D pose in the form of a skeleton [9]. This is indeed easier, and convolutional neural networks

have been proven really successful for this task. However, constraining our reasoning only

in 2D is sub-optimal since humans are 3-dimensional entities.

1



Estimating 3D human pose from images has been a long-standing problem. Early ap-

proaches such as the seminal works of Lee and Chen [68] and Taylor [130] assume a kine-

matic chain structure of the human body and then attempt to predict the 3D pose from

2D landmarks using a combination of geometric constraints and hand-crafted priors. More

recent works have also made significant advances in the frontier of skeleton-based 3D hu-

man pose estimation from single images, with many approaches achieving impressive re-

sults [83, 87, 111, 126, 133, 160]. Although these skeleton-based methods have boosted the

interest for 3D human pose estimation, in this thesis we will focus specifically on model-

based pose estimation. Approaches in this category consider a parametric model of the

human body, like SMPL [78] and the goal is to estimate the full body 3D pose and shape

of a person given an input signal, e.g . an image containing a person.

A standard learning-based pipeline for reconstructing 3D humans would be to collect a

dataset with model parameter annotations and use this to supervise the neural network

output directly. However such data is generally not available. Most datasets with 3D

annotations are typically captured in studio environments and use special equipment or

multiple cameras [118, 40, 84], while other datasets captured in outdoor settings [140] do

not have enough pose and subject diversity. Consequently, models trained only on these

datasets fail to generalize in challenging new scenes. There exist however large-scale datasets

like COCO [73] and MPII [3] with large scene variation, but unfortunately they come with

only 2D annotations. Thus it is crucial to find efficient ways of exploiting all the available

data to improve the performance of our trained models.

At the same time, estimating 3D human pose from 2D evidence is an inherently ambiguous

problem. There are three main sources of ambiguities. First, we often have truncations

that happen when part of the body is not observed at all in the image. Next, there are

occlusions. These occlusions can be from other people, objects, the environment, or even

self-occlusions. However, the most common ambiguities that are almost always present in

single-image reconstruction are depth ambiguities. Since we only observe the 2D projection
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of the different body parts, it is very hard to recover the relative depths of the different

body parts. In fact, Lee and Chen [68] showed that without pose priors, the problem of

lifting 2D landmarks to 3D has an exponential number of plausible solutions in the worst

case.

Outline and contributions. This dissertation will present our contributions towards au-

tomating 3D human reconstruction from images. These are outlined in Figure 1. Chapter 2

explores the use of different output representations for human mesh recovery and discusses

their advantages, as shown in [64]. We also discuss how our model can be used for learn-

ing deformations beyond standard parametric models and capture details such as hair or

clothing. Chapter 3 focuses on the limited availability of annotated 3D data. More specifi-

cally, in this chapter we describe SPIN [63] that proposes to leverage a close collaboration

between regression and optimization methods to train a network for 3D human pose and

shape estimation from images. Chapter 3 presents ProHMR [65], our work on modeling the

ambiguities in 3D human reconstruction . In ProHMR we propose to learn a mapping from

an input image to a distribution of plausible poses, and we demonstrate the usefulness of

our probabilistic framework for solving a variety of downstream tasks such as body model

fitting. Last, Chapter 5 moves beyond single-person 3D pose estimation and shows how we

can scale our methods to work on scenes with multiple humans. We present our work on

reconstructing scenes with multiple people [45] that achieves this by using 2 novel geometric

losses that encourage the coherency of the holistic result.

Future directions. This thesis focused on reconstructing one or more humans in from

image data. However, our work [64, 63, 65, 45] considered humans in isolation, indepen-

dently from their surroundings. It is important to note that our environment defines a set of

affordances that dictate how we live and move inside it. Conversely, humans also constrain

their environment. Typically, reconstructing general scenes is harder than reconstructing

humans, and an accurate human reconstruction should give us a strong signal about their

surroundings. There is already work on multi-person modeling or human-scene interactions
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[154, 153, 45, 88, 127, 34, 155], but previous work did not go beyond imposing geometric

constraints, such as collision avoidance. Human interactions are much more complex than

modeling simple spatial proximities. Often times there is additional semantic context in-

volved, and to take reconstruction and scene understanding to the next level we need to take

it into account. Chairs are an example of an object that we interact with in a particular way.

People normally sit rather than stand on them. Similarly when people grab objects such as

forks, knives, hammers, scissors Thus the next important step is to tackle the problem of

modeling humans jointly with the environment, both at the level of reconstructing people

in scenes and at a finer level where we model hand-object interactions. These 2 problems

have a lot of applications in augmented and virtual reality. The key insight here is that

we should reason about humans and their environment jointly. We need to incorporate

semantics and move beyond purely geometric methods because scene understanding and

context are more important.

In parallel, another observation is that in this thesis we only considered static images as

input and did not explore the use of time as an additional source of information. Indeed,

there are works that make use of time for human pose estimation or forecasting [54, 62, 82,

102], but they operate on short-time intervals. Short-term motion prediction is all about

modeling the biomechanics of human bodies. Predicting human motion long term in the

future, more than a couple of seconds, requires reasoning about intent and the context we

are currently in. In fact this is still an open problem, and has a lot of applications in

autonomous driving and robots that actively interact with people.
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CHAPTER 2 : Convolutional Mesh Regression for Single-Image Human Shape

Reconstruction

2.1 Introduction

Figure 2: Summary of our approach. Given an input image we directly regress a 3D
shape with graph convolutions. Optionally, from the 3D shape output we can regress the
parametric representation of a body model.

Analyzing humans from images goes beyond estimating the 2D pose for one person [91, 143]

or multiple people [11, 103], or even estimating a simplistic 3D skeleton [83, 87]. Our

understanding relies heavily on being able to properly reconstruct the complete 3D pose

and shape of people from monocular images. And while this problem is well addressed in

settings with multiple cameras [38, 51], the excessive ambiguity, the limited training data,

and the wide range of imaging conditions make this task particularly challenging in the

monocular case.

Traditionally, optimization-based approaches [7, 67, 153] have offered the most reliable

solution for monocular pose and shape recovery. However, the slow running time, the
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of every vertex i. We then process it through a series of Graph Convolutional layers and
regress the 3D vertex coordinates (x̂i, ŷi, ẑi) of the deformed mesh.

reliance on a good initialization and the typical failures due to bad local minima have

recently shifted the focus to learning-based approaches [52, 67, 92, 101, 129, 137], that

regress pose and shape directly from images. The majority of these works investigate what

is the most reliable modality to regress pose and shape from. Surface landmarks [67], pose

keypoints and silhouettes [101], semantic part segmentation [92], or raw pixels [52] have all

been considered as the network input. And while the input representation topic has received

much debate, all the above approaches nicely conform to the SMPL model [78] and use its

parametric representation as the regression target of choice. However, taking the decision

to commit to a particular parametric space can be quite constraining itself. For example,

SMPL is not modeling hand pose or facial expressions [51, 112]. What is even more alarming

is that the model parameter space might not be appropriate as a regression target. In the

case of SMPL, the pose space is expressed in the form of 3D rotations, a pretty challenging

prediction target [80, 89]. Depending on the selected 3D rotation representation (e.g., axis

angle, rotation matrices, quaternions), we might face problems of periodicity, non-minimal

representation, or discontinuities, which complicate the prediction task. And in fact, all

the above model-based approaches underperfom in pose estimation metrics compared to
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approaches regressing a less informative, yet more accurate, 3D skeleton through 3D joint

regression [18, 83, 99, 125].

In this work, we propose to take a more hybrid route towards pose and shape regression.

Even though we preserve the template mesh introduced by SMPL, we do not directly

regress the SMPL model parameters. Instead, our regression target is the 3D mesh vertices.

Considering the excessive number of vertices of the mesh, if addressed naively, this would be

a particular heavy burden for the network. Our key insight though, is that this task can be

effectively and efficiently addressed by the introduction of a Graph-CNN. This architecture

enables the explicit encoding of the mesh structure in the network, and leverages the spatial

locality of the graph. Given a single image (Figure 3), any typical CNN can be used for

feature extraction. The extracted features are attached on the vertex coordinates of the

template mesh, and the processing continues on the graph structure defined for the Graph-

CNN. In the end, each vertex has as target its 3D location in the deformed mesh. This allows

us to recover the complete 3D geometry of the human body without explicitly committing

to a pre-specified parametric space, leaving the mesh topology as the only hand-designed

choice. Conveniently, after estimating the 3D position for each vertex, if we need our

prediction to conform to a specific model, we can regress its parameters quite reliably from

the mesh geometry (Figure 2). This enables a more hybrid usage for our approach, making it

directly comparable to model-based approaches. Furthermore, our graph-based processing

is largely agnostic to the input type, allowing us to attach features extracted from RGB

pixels [52], semantic part segmentation [92], or even from dense correspondences [33]. In all

these cases we demonstrate that our approach outperforms the baselines that regress model

parameters directly from the same type of features, while overall we achieve state-of-the-art

pose estimation results among model-based baselines.

Our contributions can be summarized as follows:

• We reformulate the problem of human pose and shape estimation in the form of

regressing the 3D locations of the mesh vertices, to avoid the difficulties of direct
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model parameter regression.

• We propose a Graph CNN for this task which encodes the mesh structure and enables

the convolutional mesh regression of the 3D vertex locations.

• We demonstrate the flexibility of our framework by considering different input rep-

resentations, always outperforming the baselines regressing the model parameters di-

rectly.

• We achieve state-of-the-art results among model-based pose estimation approaches.

2.2 Related work

There is rich recent literature on 3D pose estimation in the form of a simplistic body

skeleton, e.g., [18, 71, 79, 83, 87, 99, 100, 109, 110, 125, 132, 133, 134, 159, 161]. However,

in this Section, we focus on the more relevant works recovering the full shape and pose of

the human body.

Optimization-based shape recovery: Going beyond a simplistic skeleton, and recover-

ing the full pose and shape, initially, the most successful approaches followed optimization-

based solutions. The work of Guan et al . [31] relied on annotated 2D landmarks and

optimized for the parameters of the SCAPE parametric model that generated a mesh op-

timally matching this evidence. This procedure was made automatic with the SMPLify

approach of Bogo et al . [7], where the 2D keypoints where localized through the help of a

CNN [103]. Lassner et al . [67] included auxiliary landmarks on the surface of the human

body, and additionally considered the estimated silhouette during the fitting process. Zan-

fir et al . [153] similarly optimized for consistency of the reprojected mesh with semantic

parts of the human body, while extending the approach to work for multiple people as well.

Despite the reliable results obtained, the main concern for approaches of this type is that

they pose a complicated non-convex optimization problem. This means that the final solu-

tion is very sensitive to the initialization, the optimization can get stuck in local minima,

and simultaneously the whole procedure can take several minutes to complete. These draw-
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backs have motivated the increased interest in learning-based approaches, like ours, where

the pose and shape are regressed directly from images.

Direct parametric regression: When it comes to pose and shape regression, the vast

majority of works adopt the SMPL parametric model and consider regression of pose and

shape parameters. Lassner et al . [67] detect 91 landmarks on the body surface and use

a random forest to regress the SMPL model parameters for pose and shape. Pavlakos et

al . [101] rely on a smaller number of keypoints and body silhouettes to regress the SMPL

parameters. Omran et al . [92] follow a similar strategy but use a part segmentation map

as the intermediate representation. On the other hand, Kanazawa et al . [52] attempt to

regress the SMPL parameters directly from images, using a weakly supervised approach

relying on 2D keypoint reprojection and a pose prior learnt in an adversarial manner.

Tung et al . [137] present a self-supervised approach for the same problem, while Tan et

al . [129] rely on weaker supervision in the form of body silhouettes. The common theme of

all these works is that they have focused on using the SMPL parameter space as a regression

target. However, the 3D rotations involved as the pose parameters have created issues in

the regression (e.g., discontinuities or periodicity) and typically underperform in terms of

pose estimation compared to skeleton-only baselines. In this work, we propose to take an

orthogonal approach to them, by regressing the 3D location of the mesh vertices by means

of a Graph-CNN. Our approach is transparent to the type of the input representation we

use, since the flexibility of the Graph network allows us to consider different types of input

representations employed in prior work, like semantic part-based features [92], features

extracted directly from raw pixels [52], or even dense correspondences [33].

Nonparametric shape estimation: Recently, nonparametric approaches have also been

proposed for pose and shape estimation. Varol et al . [138] use a volumetric reconstruction

approach with a voxel output. Different tasks are simultaneously considered for interme-

diate supervision. Jackson et al . [42] also propose a form of volumetric reconstruction by

extending their recent face reconstruction network [41] to work for full body images. The
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main drawback of these approaches adopting a completely nonparametric route, is that

even if they recover an accurate voxelized sculpture of the human body, there is none or

very little semantic information captured. In fact, to recover the body pose, we need to

explicitly perform an expensive body model fitting step using the recovered voxel map, as

done in [138]. In contrast to them, we retain the SMPL mesh topology, which allows us to

get dense semantic correspondences of our 3D prediction with the image, and in the end we

can also easily regress the model’s parameters given the vertices 3D location.

Graph CNNs: Wang et al . [142] use a Graph CNN to reconstruct meshes of objects from

images by deforming an initial ellipsoid. However, mesh reconstruction of arbitrary objects

is still an open problem, because shapes of objects even in the same class, e.g., chairs,

do not have the same genus. Contrary to generic objects, arbitrary human shapes can

be reconstructed as continuous deformations of a template model. In fact, recently there

has been a lot of research in applying Graph Convolutions for human shape applications.

Verma et al . [139] propose a new data-driven Graph Convolution operator with applications

on shape analysis. Litany et al . [74] use a Graph VAE to learn a latent space of human

shapes, that is useful for shape completion. Ranjan et al . [105] use a mesh autoencoder

network to recover a latent representation of 3D human faces from a series of meshes. The

main difference of our approach is that we do not aim to learn a generative shape model

from 3D shapes, but instead perform single-image shape reconstruction; the input to our

network is an image, not a 3D shape. The use of a Graph CNN alone is not new, but we

consider as a contribution the insight that Graph CNNs provide a very natural structure to

enable our hybrid approach. They assist us in avoiding the SMPL parameter space, which

has been reported to have issues with regression [83, 101], while simultaneously allowing

the explicit encoding of the graph structure in the network, so that we can leverage spatial

locality and preserve the semantic correspondences.
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2.3 Technical approach

In this Section we present our proposed approach for predicting 3D human shape from a

single image. First, in Subsection 2.3.1 we briefly describe the image-based architecture

that we use as a generic feature extractor. In Subsection 2.3.2 we focus on the core of

our approach, the Graph CNN architecture that is responsible to regress the 3D vertex

coordinates of the mesh that deforms to reconstruct the human body. Then, Subsection 2.3.3

describes a way to combine our non-parametric regression with the prediction of SMPL

model parameters. Finally, Subsection 5.3.5 focuses on important implementation details.

2.3.1 Image-based CNN

The first part of our pipeline consists of a typical image-based CNN following the ResNet-50

architecture [37]. From the original design we ignore the final fully connected layer, keeping

only the 2048-D feature vector after the average pooling layer. This CNN is used as a

generic feature extractor from the input representation. To demonstrate the flexibility of

our approach, we experiment with a variety of inputs, i.e., RGB images, part segmentation

and DensePose input [33]. For RGB images we simply use raw pixels as input, while for the

other representations, we assume that another network [33], provides us with the predicted

part segmentation or DensePose. Although we present experiments with a variety of inputs,

our goal is not to investigate the effect of the input representation, but rather we focus our

attention on the graph-based processing that follows.

2.3.2 Graph CNN

At the heart of our approach, we propose to employ a Graph CNN to regress the 3D

coordinates of the mesh vertices. For our network architecture we draw inspiration from

the work of Litany et al . [74]. We start from a template human mesh with N vertices as

depicted in Figure 3. Given the 2048-D feature vector extracted by the generic image-based

network, we attach these features to the 3D coordinates of each vertex in the template

mesh. From a high-level perspective, the Graph CNN uses as input the 3D coordinates of

each vertex along with the input features and has the goal of estimating the 3D coordinates
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for each vertex in the output, deformed mesh. This processing is performed by a series of

Graph Convolution layers.

For the graph convolutions we use the formulation from Kipf et al . [61] which is defined as:

Y = ÃXW (2.1)

where X ∈ RN×k is the input feature vector, W ∈ Rk×` the weight matrix and and Ã ∈

RN×N is the row-normalized adjacency matrix of the graph. Essentially, this is equivalent

to performing per-vertex fully connected operations followed by a neighborhood averaging

operation. The neighborhood averaging is essential for producing a high quality shape

because it enforces neighboring vertices to have similar features, and thus the output shape

is smooth. With this design choice we observed that there is no need of a smoothness loss

on the shape, as for example in [55]. We also experimented with the more powerful graph

convolutions proposed in [139] but we did not observe quantitative improvement in the

results, so we decided to keep our original and simpler design choice.

For the graph convolution layers, we make use of residual connections as they help in

speeding up significantly the training and also lead in higher quality output shapes. Our

basic building block is similar to the Bottleneck residual block [37] where 1×1 convolutions

are replaced by per-vertex fully connected layers and Batch Normalization [39] is replaced

by Group Normalization [146]. We noticed that Batch Normalization leads to unstable

training and poor test performance, whereas with no normalization the training is very

slow and the network can get stuck at local minima and collapse early during training.

Besides the 3D coordinates for each vertex, our Graph CNN also regresses the camera

parameters for a weak-perspective camera model. Following Kanazawa et al . [52], we predict

a scaling factor s and a 2D translation vector t. Since the prediction of the network is already

on the camera frame, we do not need to regress an additional global camera rotation. The

camera parameters are regressed from the graph embedding and not from the image features
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directly. This way we get a much more reliable estimate that is consistent with the output

shape.

Regarding training, let Ŷ ∈ RN×3 be the predicted 3D shape, Y the ground truth shape

and X the ground truth 2D keypoint locations of the joints. From our 3D shape we can

also regress the location for the predicted 3D joints Ĵ3D employing the same regressor that

the SMPL model is using to recover joints from vertices. Given these 3D joints, we can

simply project them on the image plane, X̂ = sΠ(Ĵ3D) + t. Now, we train the network

using two forms of supervision. First, we apply a per-vertex L1 loss between the predicted

and ground truth shape, i.e.,

Lshape =
N∑

i=1

||Ŷi − Yi||1. (2.2)

Empirically we found that using L1 loss leads to more stable training and better performance

than L2 loss. Additionally, to enforce image-model alignment, we also apply an L1 loss

between the projected joint locations and the ground truth keypoints, i.e.,

LJ =
M∑

i=1

||X̂i −Xi||1. (2.3)

Finally, our complete training objective is:

L = Lshape + LJ . (2.4)

This form of supervised training requires us to have access to images with full 3D ground

truth shape. However, based on our empirical observation, it is not necessary for all the

training examples to come with ground truth shape. In fact, following the observation of

Omran et al . [92], we can leverage additional images that provide only 2D keypoint ground

truth. In these cases, we simply ignore the first term of the previous equation and train only

with the keypoint loss. We have included evaluation under this setting of weaker supervision
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Regressed shape Parametric shape

MLP

θ

β

SMPL

Figure 4: Predicting SMPL parameters from regressed shape. Given a regressed 3D shape
from the network of Figure 3, we can use a Multi-Layer Perceptron (MLP) to regress the
SMPL parameters and produce a shape that is consistent with the original non-parametric
shape

in the Sup. Mat.

2.3.3 SMPL from regressed shape

Although we demonstrate that non-parametric regression is an easier task for the network,

there are still many applications where a parametric representation of the human body can

be very useful (e.g., motion prediction). In this Subsection, we present a straightforward

way to combine our non-parametric prediction with a particular parametric model, i.e.,

SMPL. To achieve this goal, we train another network that regresses pose (θ) and shape

(β) parameters of the SMPL parametric model given the regressed 3D shape as input. The

architecture of this network can be very simple, i.e., a Multi-Layer Perceptron (MLP) [113]

for our implementation. This network is presented in Figure 4 and the loss function for

training is:

L = Lshape + LJ + Lθ + λLβ. (2.5)

Here, Lshape and LJ are the losses on the 3D shape and 2D joint reprojection as before,

while Lθ and Lβ are L2 losses on the SMPL pose and shape parameters respectively.

As observed by previous works, e.g., [101, 83], it is challenging to regress the pose parameters

θ, which represent 3D rotations in the axis-angle representation. To avoid this, we followed

the strategy employed by Omran et al . [92]. More specifically, we convert the parameters

from axis-angle representation to a rotation matrix representation using the Rodrigues
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formula, and we set the output of our network to regress the elements of the rotation

matrices. To ensure that the output is a valid rotation matrix we project it to the manifold

of rotation matrices using the differentiable SVD operation. Although this representation

does not explicitly improve our quantitative results, we observed faster convergence during

training, so we selected it as a more practical option.

2.3.4 Implementation details

An important detail regarding our Graph CNN is that we do not operate directly on the

original SMPL mesh, but we first subsample it by a factor of 4 and then upsample it again

to the original scale using the technique described in [105]. This is essentially performed

by precomputing downsampling and upsampling matrices D and U and left-multiply them

with the graph every time we need to do resampling. This downsampling step helps to

avoid the high redundancy in the original mesh due to the spatial locality of the vertices,

and decrease memory requirements during training.

Regarding the training of the MLP, we employ a 2-step training procedure. First we train

the network that regresses the non-parametric shape and then with this network fixed we

train the MLP that predicts the SMPL parameters. We also experimented with training

them end-to-end but we observed a decrease in the performance of the network for both

the parametric and non-parametric shape.

2.4 Empirical evaluation

In this Section, we present the empirical evaluation of our approach. First, we discuss

the datasets we use in our evaluation (Subsection 5.4.1), then we provide training details

for our pipeline (Subsection 2.4.2), and finally, the quantitative and qualitative evaluation

(Subsection 2.4.3) follows.

2.4.1 Datasets

We employ two datasets that provide 3D ground truth for training, Human3.6M [40] and

UP-3D [67], while we evaluate our approach on Human3.6M and the LSP dataset [46].
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Human3.6M: It is an indoor 3D pose dataset including subjects performing activities like

Walking, Eating and Smoking. We use the subjects S1, S5, S6, S7 and S8 for training, and

keep the subjects S9 and S11 for testing. We present results for two popular protocols (P1

and P2, as defined in [52]) and two error metrics (MPJPE and Reconstruction error, as

defined in [161]).

UP-3D: It is a dataset created by applying SMPLify [7] on natural images of humans and

selecting the successful fits. We use the training set of this dataset for training.

LSP: It is a 2D pose dataset, including also segmentation annotations provided by Lassner et

al . [67]. We use the test set of this dataset for evaluation.

2.4.2 Training details

For the image-based encoder, we use a ResNet50 model [37] pretrained on ImageNet [19].

All other network components (Graph CNN and MLP for SMPL parameters) are trained

from scratch. For our training, we use the Adam optimizer, and a batch size of 16, with

the learning rate set to 3e – 4. We did not use learning rate decay. Training with data only

from Human3.6M lasts for 10 epochs, while mixed training with data from Human3.6M and

UP-3D requires training for 25 epochs, because of the greater image diversity. To train the

MLP that regresses SMPL parameters from our predicted shape, we use 3D shapes from

Human3.6M and UP-3D. Finally, for the models using Part Segmentation or DensePose [33]

predictions as input, we use the pretrained network of [33] to provide the corresponding

predictions.

2.4.3 Experimental analysis

Regression target: For the initial ablative study, we aim to investigate the importance

of our mesh regression for 3D human shape estimation. To this end, we focus on the Hu-

man3.6M dataset and we evaluate the regressed shape through 3D pose accuracy. First,

we evaluate the direct regression of the 3D vertex coordinates, in comparison to generating

the 3D shape implicitly through regression of the SMPL model parameters directly from
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Method MPJPE Reconst. Error

SMPL Parameter Regression [52] - 77.6
Mesh Regression (FC) 200.8 105.8
Mesh Regression (Graph) 102.1 69.0
Mesh Regression (Graph + SMPL) 113.2 61.3

Table 1: Evaluation of 3D pose estimation in Human3.6M (Protocol 2). The numbers
are MPJPE and Reconstruction errors in mm. Our graph-based mesh regression (with
or without SMPL parameter regression) is compared with a method that regresses SMPL
parameters directly, as well as with a naive mesh regression using fully connected (FC)
layers instead of a Graph-CNN.

Input Regression Type
MPJPE Reconst. Error

P1 P2 P1 P2

RGB
Parameter [52] 88.0 - 58.1 56.8

Mesh (Graph + SMPL) 74.7 71.9 51.9 50.1

Parts
Parameter [92] - - - 59.9

Mesh (Graph + SMPL) 80.4 77.4 56.1 53.3

DP[33]
Parameter [52] 82.7 79.5 57.8 54.9

Mesh (Graph + SMPL) 78.9 74.2 55.3 51.0

Table 2: Comparison of direct SMPL parameter regression versus our proposed mesh regres-
sion on Human3.6M (Protocol 1 and 2) for different input representations. The numbers
are mean 3D joint errors in mm, with and without Procrustes alignment (Rec. Error and
MPJPE respectively). Our results are computed after regressing SMPL parameters from
our non-parametric shape. Number are taken from the respective works, except for the
baseline of [52] on DensePose images, which is evaluated by us.
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Image FC Graph CNN

Figure 5: Using a series of fully connected (FC) layers to regress the vertex 3D coordinates
severely complicates the regression task and gives non-smooth meshes, since the network
cannot leverage directly the topology of the graph.

images. The most relevant baseline in this category is the HMR method of [52]. In Ta-

ble 1, we present the comparison of this approach (SMPL parameter regression) with our

non-parametric shape regression (Mesh Regression - (Graph)). For a more fair compari-

son, we also include our results for the MLP that regresses SMPL parameters using our

non-parametric mesh as input (Mesh Regression - (Graph + SMPL)). In both cases, we

outperform the strong baseline of [52], which demonstrates the benefit of estimating a more

flexible non-parametric regression target, instead of regressing the model parameters in one

shot.

Beyond the regression target, one of our contributions is also the insight that the task of

regressing 3D vertex coordinates can be greatly simplified when a Graph CNN is used for

the prediction. To investigate this design choice, we compare it with a naive alternative

that regresses vertex coordinates with a series of fully connected layers on top of our image-
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Input Output shape
MPJPE Reconst. Error

P1 P2 P1 P2

RGB
Non parametric 75.0 72.7 51.2 49.3

Parametric 74.7 71.9 51.9 50.1

Parts
Non parametric 78.0 73.4 54.6 50.6

Parametric 80.4 77.4 56.1 53.3

DP[33]
Non parametric 78.0 72.3 55.3 50.3

Parametric 78.9 74.2 55.3 51.0

Table 3: Comparison on Human3.6M (Protocol 1 and 2) of our non-parametric mesh with
the SMPL parametric mesh regressed from our shape. Numbers are 3D joint errors in mm.
The performance of the two baselines is similar.

Method Reconst. Error

Lassner et al . [67] 93.9
SMPLify [7] 82.3

Pavlakos et al . [101] 75.9
NBF [92] 59.9
HMR [52] 56.8

Ours 50.1

Table 4: Comparison with the state-of-the-art on Human3.6M (Protocol 2). Numbers are
Reconstruction errors in mm. Our approach outperforms the previous baselines.

based encoder (Mesh Regression - (FC)). This design clearly underperforms compared to our

Graph-based architecture, demonstrating the importance of leveraging the mesh structure

through the Graph CNN during the regression. The benefit of graph-based processing is

demonstrated also qualitatively in Figure 5.

Input representation: For the next ablative, we demonstrate the effectiveness of our mesh

regression for different types of input representations, i.e., RGB images, Part Segmentation

as well as DensePose images [33]. The complete results are presented in Table 2. The

RGB model is trained on Human3.6M + UP-3D whereas the two other models only on Hu-

man3.6M. For every input type, we compare with state-of-the-art methods [52, 92] and show

that our method outperforms them in all setting and metrics. Interestingly, when train-

ing only with Human3.6M data, RGB input performs worse than the other representations

(Table 1), because of over-fitting. However, we observed that RGB features capture richer

information for in-the-wild images, thus we select it for the majority of our experiments.
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FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify oracle [7] 92.17 0.88 88.82 0.67
SMPLify [7] 91.89 0.88 87.71 0.64
SMPLify on [101] 92.17 0.88 88.24 0.64
Bodynet [138] 92.75 0.84 - -

HMR [52] 91.67 0.87 87.12 0.60
Ours 91.46 0.87 88.69 0.66

Table 5: Segmentation evaluation on the LSP test set. The numbers are accuracies and f1
scores. We include approaches that are purely regression-based (bottom) and approaches
that perform some optimization (post)-processing (top). Our approach is competitive with
the state-of-the-art.

SMPL from regressed shape: Additionally we examine the effect of estimating the

SMPL model parameters from our predicted 3D shape. As it can be seen in Table 3, adding

the SMPL prediction, using a simple MLP on top of our non-parametric shape estimate,

only has a small effect in the performance (positive in some cases, negative in others). This

means that our regressed 3D shape encapsulates all the important information needed for

the model reconstruction, making it very simple to recover a parametric representation (if

needed), from our non-parametric shape prediction.

Comparison with the state-of-the-art: Next, we present comparison of our approach

with other state-of-the-art methods for 3D human pose and shape estimation. For Hu-

man3.6M, detailed results are presented in Table 4, where we outperform the other base-

lines. We clarify here that different methods use different training data (e.g., Pavlakos et

al . [101] do not use any Human3.6M data for training, NBF et al . [92] uses only data from

Human3.6M, while HMR [52] makes use of additional images with 2D ground truth only).

However, here we collected the best results reported by each approach on this dataset.

Besides 3D pose, we also evaluate 3D shape through silhouette reprojection on the LSP

test set. Our approach outperforms the regression-based approach of Kanazawa et al . [52],

and is competitive to optimization-based baselines, e.g., [7], which tend to perform better

than regression approaches (like ours) in this task, because they explicitly optimize for the
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Image Non-parametric Parametric

Figure 6: Examples of erroneous reconstructions. Typical failures can be attributed to
challenging poses, severe self-occlusions, or interactions among multiple people.

image-model alignment.

Qualitative evaluation: Figures 6 and 7 present qualitative examples of our approach,

including both the non-parametric mesh and the corresponding SMPL mesh regressed using

our shape as input. Typical failures can be attributed to challenging poses, severe self-

occlusions, as well as interactions among multiple people.

Runtime: On a 2080 Ti GPU, network inference for a single image lasts 33ms, which is

effectively real-time.
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Figure 7: Successful reconstructions of our approach. Rows 1-3: LSP [46]. Rows 4-5:
Human3.6M [40]. With light pink color we indicate the regressed non parametric shape and
with light blue the SMPL model regressed from the previous shape.

2.5 Summary

The goal of this paper was to address the problem of pose and shape estimation by at-

tempting to relax the heavy reliance of previous works on a parametric model, typically

SMPL [78]. While we retain the SMPL mesh topology, instead of directly predicting the

model parameters for a given image, our target is to first estimate the locations of the

3D mesh vertices. For this to be achieved effectively, we propose a Graph-CNN architec-

ture, which explicitly encodes the mesh structure and processes image features attached

to its vertices. Our convolutional mesh regression outperforms the relevant baselines that

regress model parameters directly for a variety of input representations, while ultimately,
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it achieves state-of-the-art results among model-based pose estimation approaches. Future

work can focus on current limitations (e.g., low resolution of output mesh, missing details

in the recovered shape), as well as opportunities that this non-parametric representation

provides (e.g., capture aspects missing in many human body models, like hand articulation,

facial expressions, clothing and hair).

2.6 Supplementary Material

This supplementary material provides additional details about the training and model ar-

chitecture as well as some extra evaluations. First, in Section 2.6.1 we provide additional

informations about the training process. Then, we investigate the potential of regressing

details like hair and clothing with our approach (Section 2.6.2) and extend our empirical

evaluation (Section 2.6.3). Finally, in Section 2.6.4 we describe in detail the architecture of

the models used in our experiments.

2.6.1 Training Details

During training we randomly rotate and flip the input images, rescale the bounding boxes

and also introduce color jittering in the RGB input case. All input images are rescaled to

224 × 224 before feeding them in the encoder. For mixed training with Human3.6M [40]

and UP-3D [67], since UP-3D is significantly smaller than Human3.6M we do not uniformly

sample from all images. Instead, first we randomly pick one of the two datasets with

probability 0.5, and then we select an image from this dataset uniformly at random. This

ensures that an equal number of in-the-wild and indoor examples are included in our batch.

2.6.2 Clothing and hair

As suggested in the main manuscript, our approach should be able to capture details like

hair and clothing which are not modeled by typical human body models. To demonstrate

this potential, we use the data of Alldieck et al . [1] for training and apply our model on

hold-out sequences. Interestingly, our regressed mesh (Fig. 8) indeed captures some rough

details (e.g., hair bun and shorts). We clarify that these results are purely to demonstrate

feasibility and the data is limited for a proper evaluation, but we believe this is a promising
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direction for future work.

Image Regressed mesh Shape + Texture

Figure 8: Qualitative results on the data of Alldieck et al . [1]. From left to right: input
image, regressed mesh, ground truth texture applied on the regressed mesh.

2.6.3 Further experimental exploration

In the main manuscript we report results using images from Human3.6M and UP-3D, that

provide 3D shape ground truth for training. Although we can expect to have access to such

ground truth for indoor datasets (i.e., Human3.6M), in-the-wild examples do not typically

come with 3D annotations. Here we demonstrate that our approach is applicable even when

these annotations are not available. To this end, we ignore the UP-3D data, and instead
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Method MPJPE Rec. Error

HMR [52] 88.0 58.1
Ours (H3.6M + LSP,MPII) 78.6 56.6

Ours (H3.6M + UP-3D) 74.7 51.9
Ours (H3.6M + UP-3D + LSP,MPII,COCO) 73.3 51.3

Table 6: Evaluation of our approach on Human3.6M (Protocol 1) for weaker 2D annotations.
The numbers are mean joint errors in mm. Training with 2D ground truth only for in-the-
wild examples leads to less accurate results compared to our model trained on UP-3D data.
However, we are still able to outperform [52] which is trained on significantly more data
than our approach. Unsurprisingly, combining our best model with more data that include
2D annotations can further improve our accuracy.

train with images from MPII [3] and LSP [46] that provide only 2D keypoint annotations.

Effectively, for these examples, we use only the 2D reprojection loss and not the 3D shape

loss. The results for this setting are reported in Table 6. We have also included the

results of [52] that trains in a similar setting, i.e., using only 2D annotations for in-the-wild

examples. Although the results of this training setting are worse compared to our best

model trained on Human3.6M and UP-3D, we are still able to outperform [52] although

they use significantly more data (i.e., COCO [73] and MPI-INF-3DHP [87]).

Besides being an alternative to UP-3D data, in-the-wild images with 2D annotations can

also be combined with data that have 3D ground truth shape. In this case, we follow a

mixed training strategy, using data from Human3.6M, UP-3D (3D ground truth), as well

as LSP [46], MPII [3] and COCO [73] (2D ground truth). Unsurprisingly, this combination

can further improve performance (Table 6). This last model also achieves the best results

on the UP-3D dataset, where we evaluate surface reconstruction accuracy and report the

vertex-to-vertex error. Our model achieves 99.8mm error, compared with 102.5mm error of

BodyNet [138] and 127.8mm error of Pavlakos et al . [101].

Moreover, in Figure 9 and Figure 10 we include qualitative results when using part seg-

mentations and DensePose [33] images respectively as the input representation. We can see

that even with non-perfect detections, i.e., parts of the body missing in some difficult poses,

the network is still able to correctly regress the 3D shape.
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Figure 9: Qualitative results on Human 3.6M with parts segmentation input. With light
pink color we indicate the regressed non parametric shape and with light blue the SMPL
model regressed from the previous shape.
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Figure 10: Qualitative results on Human3.6M with DensePose input. With light pink
color we indicate the regressed non parametric shape and with light blue the SMPL model
regressed from the previous shape.
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Image Non-parametric Side view Parametric Side view

Figure 11: Visualization of our results from novel viewpoints. Rows 1-5: LSP [46]. Rows 6-7:
Human3.6M [40]. From left to right: Input image, Non-parametric shape, Non-parametric
shape (side view), Parametric shape, Parametric shape (side view).
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Figure 12: Graph Residual Block. Our basic building block for the Graph CNN is a redesign
of the Bottleneck Residual Block [37]. GN stands for Group Normalization [146], and the
Linear layers are simply per-vertex fully connected layers.
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Figure 13: Graph Residual Block v2. This is the modified version of the Graph Residual
Block when the number of input features is different from the number of output features.

Finally, in Figure 11 we present results of our approach visualized also from a novel view-

point. This type of visualization allows us to inspect the accuracy of our results beyond the

visible side which, and focus on the non-visible parts which is where we typically observe

most errors.
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Figure 14: Graph CNN. Our Graph CNN makes use of the Graph Residual Block (GRB)
of Figure 12 and Figure 13. The network eventually splits in 2 branches that predict the
3D shape and camera parameters s, tx, ty respectively.

2.6.4 Model Architecture

Graph CNN

As discussed in the main manuscript, the basic building block that we use in the Graph CNN

is the Graph Residual Block depicted in Figure 12. It resembles the Bottleneck Residual

Block [37], but we replace 1×1 convolutions with per-vertex Linear (fully connected) layers,

3× 3 convolutions with the Graph convolutions proposed in [61] and Batch Normalization

[39] with Group Normalization [146]. Whenever the number of input channels is different

from the number of output channels, we feed the input to an additional Linear layer that

maps it to the correct feature map size before adding it to the output, as seen in Figure 13.

Using this Graph Residual Block, the full network architecture used in all our experiments
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Figure 15: Fully Connected Residual Block. This figure depicts the residual block that is
used in the MLP that regresses the SMPL parameters from the 3D shape. BN stands for
Batch Normalization [39].
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Figure 16: SMPL Regressor. This figure presents the architecture of the MLP that regresses
the SMPL parameters from the 3D shape. RB stands for the Fully Connected Residual
Block of Figure 15.

is depicted in Figure 14.

SMPL regressor

To estimate the SMPL parameters from the regressed shape we use a simple MLP with skip
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connections. The input to the MLP is the regressed 3D shape together with the template

SMPL shape, both subsampled by a factor of 4. Subsampling here is essential to avoid

the explosion in the number of parameters for the fully connected layers. Also, we found

that including the template 3D shape in the input speeds up the learning significantly. The

network architecture is shown in Figure 16. The input size is 1723 × 3 × 2 (3D vertex

coordinates for both the output and the template mesh), whereas the output size is 24 ×

3 × 3 + 10 (rotation matrices for each of the 24 joints and 10-dimensional SMPL shape

parameters).
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CHAPTER 3 : Learning to Reconstruct 3D Human Pose and Shape via

Model-fitting in the Loop

3.1 Introduction

Input image Optimization result Regression result

Figure 17: Both optimization and regression approaches have successes and failures, so this
motivates our approach to build a tight collaboration between the two.

With the emergence of deep learning architectures, the dilemma between regression-based

and optimization-based approaches for many computer vision problems has been more rel-

evant than ever. Should we regress the relative camera pose, or use bundle adjustment?

Is it more appropriate to regress the parameters of a face model, or fit the model to facial

landmarks? These types of questions are ubiquitous within our community. Among oth-

ers, 3D model-based human pose estimation has initiated similar discussions, since both

optimization-based [7, 67] and regression-based approaches [52, 92, 101] have had signifi-
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Figure 18: Overview of the proposed approach. SPIN trains a deep network for 3D hu-
man pose and shape estimation through a tight collaboration between a regression-based
and an iterative optimization-based approach. During training, the network predicts the
parameters Θreg of the SMPL parametric model [78]. Instead of using the ground truth
2D keypoints to apply a weak reprojection loss, we instead propose to use our regressed
estimate to initialize an iterative optimization routine that fits the model to 2D keypoints
(SMPLify). This procedure is done within the training loop. The optimized model param-
eters Θopt are used to explicitly supervise the output of the network and supply it with
privileged model-based supervision, that is beneficial compared to the weaker and typically
ambiguous 2D reprojection losses. This collaboration leads to a self-improving loop, since
better fits help the network train better, while better initial estimates from the network
help the optimization routine converge to better fits.

cant success recently. However, one can argue that both paradigms have weak and strong

points (Figure 17). Based on this, in this work we advocate that instead of focusing on

which paradigm is better, if we aim to push the field forward, we need to consider ways for

collaboration between the two.

Although 3D model-based human pose is a very challenging and highly ambiguous problem,

there have been fundamental works that attempt to address it. Optimization-based meth-

ods [7, 31, 67], are pretty well explored and understood. Given a parametric model of the

human body, e.g., SMPL [78], an iterative fitting approach attempts to estimate the body

pose and shape that best explains 2D observations, most typically 2D joint locations. Since

we explicitly optimize for the agreement of the model with image features, we typically get a
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good fit, but the optimization tends to be very slow and is quite sensitive to the choice of the

initialization. On the other hand, recent deep learning advances have shifted the spotlight

towards purely regression-based methods, using deep networks to regress the parameters of

the model directly from images [52, 92, 101]. In theory, this is a very promising direction,

since the deep regressor can take all pixel values into consideration, instead of relying only

on a sparse set of 2D locations. Unfortunately, this type of one-shot prediction might lead

to mediocre image-model alignment, while at the same time a large amount of data is nec-

essary to properly train the network. So naturally, there is a large list of arguments in favor

and against each method.

In this work, we advocate that instead of arguing over one paradigm or the other we should

embrace the strengths and the weaknesses of each method and use them in a tight collabo-

ration during training. In our approach, a deep network is used to regress the parameters

of the SMPL parametric model [78]. These regressed values initialize the iterative fitting

routine that aligns the model to the image given the 2D keypoints. Subsequently, the

parameters of the fitted model are used as supervision for the network, closing the loop be-

tween the regression and the optimization method. This is the core of our approach, within

the training loop, and uses it as a privileged form of supervision for the neural network

(Figure 18). A critical characteristic of our proposed approach is that it is self-improving

by nature. In the early training stages, the network will produce results close to the mean

pose meaning that the iterative fitting will be prone to make errors. As more examples

are provided to the network as supervision by the iterative fitting module, it will learn

to produce more meaningful shapes that will also lead the optimization to more accurate

model fits. Moreover, since the iterative fitting requires only 2D keypoints to fit the model,

our network can be trained even when no image with corresponding 3D ground truth is

available, since the 3D supervision will be provided by the optimization module. Finally,

and most crucially in terms of performance, our network is trained with explicit 3D super-

vision, in the form of model parameters and full shape instead of weaker 2D reprojection

errors as in previous works [52, 101]. This privileged form of supervision turns out to be
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very important to improve the regression performance. Our approach is benchmarked in

different settings and in a variety of indoor and in-the-wild datasets and it outperforms

state-of-the-art model-based approaches by a significant margin.

We summarize the contributions of our approach below:

• We present SPIN , a self-improving approach for training a neural network for 3D

human pose and shape estimation, through the tight collaboration of a regression-

and an optimization-based method.

• Since the supervision is supplied by the iterative fitting module, training is feasible

even when no image with 3D ground truth is available for training.

• The fitted model supplies our network with explicit model-based supervision which is

crucial to improve performance compared to weaker 2D supervision (e.g., reprojection

losses).

• We achieve state-of-the-art results in model-based 3D pose and shape estimation

across many benchmarks.

3.2 Related work

Recent works have made significant advances in the frontier of skeleton-based 3D hu-

man pose estimation from single images, with many approaches achieving impressive re-

sults [83, 87, 111, 126, 133, 160]. Although this line of work has boosted the interest for

3D human pose estimation, here we will focus our review on model-based pose estimation.

Approaches in this category consider a parametric model of the human body, like SMPL [78]

or SCAPE [4], and the goal is to estimate the full body 3D pose and shape.

Optimization-based methods: Optimization-based approaches used to be the leading

paradigm for model-based human pose estimation. Early work in the area [31, 117] at-

tempted to estimate the parameters of the SCAPE model using silhouettes or keypoints

and often there was some manual user intervention needed. Recently, the first fully auto-
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matic approach, SMPLify, was introduced by Bogo et al . [7]. Using an off-the-shelf keypoint

detector [103], SMPLify fits SMPL to 2D keypoint detections, using strong priors to guide

the optimization. Beyond SMPLify, different updates to the standard pipeline have inves-

tigated incorporating in the fitting procedure, silhouette cues [67], multiple views [38], or

even handle multiple people [153]. More recently, works have demonstrated fits for more

expressive models in the multi-view [51], as well as the single-view setting [101, 147]. In this

work, we exploit the particular effectiveness of optimization-based approaches to produce

pixel-accurate fittings, but instead of using them to produce good predictions at test time,

our goal is to leverage them to supply direct supervision for a neural network.

Regression-based methods: On the other end of the spectrum, recent works rely exclu-

sively on regression to address the problem of 3D human pose and shape estimation. In most

cases, given a single RGB image, a deep network is used to regress the model parameters.

Considering the lack of images with full 3D shape ground truth, the majority of these works

have focused on alternative supervision signals to train the deep networks. Most of them

rely heavily on 2D annotations including 2D keypoints, silhouettes, or parts segmentation.

This information can be used as input [137], intermediate representation [92, 101], or as

supervision, by enforcing different reprojection losses [52, 92, 101, 129, 137]. Although these

constraints are very useful, they are providing weak supervision for the network. Instead,

we argue that strong model-based supervision, i.e., direct supervision on the model param-

eters and/or output mesh is crucial to improve performance. Although this type of ground

truth is rarely available, we use a fitting routine in the training loop to provide the strong

supervision signal to train the network.

Iterative fitting meets direct regression: Ideas of using regression approaches to im-

prove fitting and vice versa have also been considered before in the literature. Early opti-

mization methods required a good initial estimate which could be obtained by a discrimi-

native approach [117]. Lassner et al . [67] used SMPLify to get good model fits, which could

be later used for regression tasks (e.g., part segmentation or landmark detection). Rogez et
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al . [111] also employed 3D pose pseudo annotations for training. Pavlakos et al . [101] used

an initial prediction from their network to initialize and anchor the SMPLify optimization

routine. Varol et al . [138] proposed an extension of SMPLify to fit SMPL on the regressed

volumetric representation of their network. Although previous works have also considered

the benefits of these two approaches, in our work we propose a much tighter collaboration

by incorporating the fitting method within the training loop, in a self-improving manner,

to harness better supervision for the network.

To put our approach in a larger context, the idea of combining direct regression networks

with different optimization routines has also emerged in different settings. Training a net-

work jointly with a graphical model has been proposed by Tompson et al . [135] in the

context of 2D human pose estimation. Similarly, for segmentation, it is popular to use a

CRF on top of the segmentation network [13], while, unrolling the CRF optimization to

train the network jointly with the optimization has also been investigated [114, 158]. These

ideas have also translated to 3D, where Paschalidou et al . [95] unrolls the MRF optimization

to train it jointly with a network for depth regression. Although we draw inspiration from

these works, our motivation is different since instead of unrolling the optimization, or doing

a simple post-processing, we leverage the iterative fitting to provide strong supervision to

the network.

3.3 Technical approach

In the following, we describe the parametric human body model, SMPL [78], and we define

the basic notation. Then we provide more details about the regression network and the

iterative optimization routine, based on SMPLify [7]. Finally, we describe our approach,

SPIN , and give the necessary implementation details.

3.3.1 SMPL model

The SMPL body model [78], provides a function M(θ, β) that takes as input the pose

parameters θ and the shape parameters β, and returns the body mesh M ∈ RN×3, with

N = 6890 vertices. Conveniently, the body joints X of the model can be defined as a linear
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combination of the mesh vertices. A linear regressor W can be pre-trained for this task, so

for k joints of interest, we define the major body joints X ∈ Rk×3 = WM .

3.3.2 Regression network

For the regression model, we use a deep neural network. Our architecture has the same

design with Kanazawa et al . [52] with the only difference that we use the representation

proposed by Zhou et al . [162] for the 3D rotations, since we empirically observed faster

convergence during training. Let us now denote with f the function approximated by the

neural network. A forward pass of a new image provides the regressed prediction for the

model parameters Θreg = {θreg, βreg} and the camera parameters Πreg. These parameters

allow us to estimate the 2D projection of the joints Jreg = Πreg(Xreg). Our prediction allows

us to generate the mesh corresponding to the regressed parameters, Mreg =M(θreg, βreg),

as well as the joints and their reprojection Jreg. In this setting, a common supervision is

provided using a reprojection loss on the joints:

L2D = ||Jreg − Jgt||, (3.1)

where Jgt are the ground truth 2D joints. However, in this work, we argue that this

supervisory signal is very weak and puts an extra burden on the network, forcing it to search

in the parameter space for a valid pose that agrees with the ground truth 2D locations.

3.3.3 Optimization routine

The iterative fitting routine follows the SMPLify work by Bogo et al . [7]. We give a short

introduction here, but we also refer the reader to [7] for more details. SMPLify tries to

fit the SMPL model to a set of 2D keypoints using an optimization-based approach. The

objective function it minimizes consists of a reprojection loss term and a number of pose

and shape priors. More specifically, the total objective is:

EJ(β, θ;K,Jest) + λθEθ(θ) + λaEa(θ) + λβEβ(β) (3.2)
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where β and θ are the parameters of the SMPL model, Jest the detected 2D joints and K

the camera parameters. The first term EJ(β, θ;K,Jest) is a penalty on the weighted 2D

distance between Jest and the projected SMPL joints. Eθ(θ) is a mixture of Gaussians pose

prior trained with shapes fitted on marker data, Ea(θ) is a pose prior penalizing unnatural

rotations of elbows and knees, while Eβ(β) is a quadratic penalty on the shape coefficients.

We did not include the interpenetration error term of [7], since it makes fitting slower, while

having little performance benefit.

The first step of SMPLify involves an optimization over the camera translation and body

orientation, while keeping the model pose and shape fixed. After estimating the camera

translation, SMPLify attempts to minimize (3.2), using a 4-stage fitting procedure. The

4-stage optimization is crucial to avoid getting trapped in local minima because the opti-

mization is initialized from the mean pose. In contrast, since our approach uses the network

prediction to initialize the optimization, we observed that a single optimization stage, with

a small number of iterations, is typically enough to converge to a good fit. Also instead

of estimating the initial translation using triangle similarity as in [7] we can also use the

predicted camera translation from the network. This can be helpful in cases where the

assumptions made in [7] (e.g., person is always standing) are not valid.

Another modification aiming at faster runtime is that we run SMPLify in batch mode. In-

stead of optimizing for each image sequentially, the optimization runs in parallel. Although

SMPLify can have high latency that makes it unsuitable for single-image inference, we can

achieve high throughput on a modern GPU by optimizing for several examples concurrently.

Moreover, while SMPLify uses joints Jest along with their detection confidences provided

by DeepCut [103], for our ground truth, we can only assume that all joints have the same

confidence. This can affect negatively the fitting procedure, since typically there are small

annotation mistakes, e.g., annotating joints under occlusion, or generally geometrically in-

consistent annotations. To alleviate this problem, we combine the provided ground truth

2D joints for each person with the corresponding OpenPose detections [9, 11, 119, 143].
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This enables us to leverage the confidence in each detection and avoid mistakes because of

high-confidence erroneous annotations.

Deep
Regressor

Iterative
fitting

Initialize optimization

Supervise regression

Figure 19: SPIN builds a tight collaboration between an optimization-based and a
regression-based approach. A reasonable regressed estimate from the network initializes
properly the optimization, thus leading to a better optimum. Similarly, a value optimized
by iterative fitting can act as supervision to better train the network. The two procedures
continue this collaboration forming a self-improving loop.

3.3.4 SPIN

Our approach, SPIN , builds on the insight that the previous two paradigms can form a tight

collaboration to train a deep regressor for human pose and shape estimation (Figure 19).

During a typical training loop, an image is forwarded through the network providing the

regressed parameters Θreg. Instead of applying the typical 2D reprojection losses right

away, the regressed parameters are instead used to initialize the optimization routine. This

optimization is usually very slow if we start from the mean pose as an initial value. However,

given a reasonable initial estimate, it can be greatly accelerated. This enables us to employ

the fitting routine within the training loop. Let us now denote with Θopt = {θopt, βopt}

the set of model parameters produced by the iterative fitting. These values are explicitly

41



optimized such that the produced shape Mopt = M(θopt, βopt) and reprojected joints Jopt,

align with the 2D keypoints. Given these optimized values, we can directly supervise the

network function f on the parameter level:

L3D = ||Θreg −Θopt||, (3.3)

and/or the mesh level:

LM = ||Mreg −Mopt||. (3.4)

In practice, this has a very different effect than applying a reprojection loss for the 2D

joints. Instead of forcing the network to identify a set of parameters that satisfy the joints

reprojection, we supply it directly with a parametric solution that corresponds to a feasible

3D shape. Intuitively, we bypass the search of the network on the parameter space, and

we directly provide a privileged set of parameters Θopt which tend to be very close to the

actual optimal solution.

Another crucial characteristic of SPIN is that it is self-improving by nature. A good initial

network estimate Θreg will lead the optimization to a better fit Θopt, while a good fit from the

iterative routine will provide even better supervision to the network. This makes running the

routine in the loop particularly important, since it enables the close collaboration between

the two components.

Moreover, since the optimization routine uses only 2D joints for the fitting, and the network

relies primarily on this routine for the necessary model-based supervision, our approach is

applicable even in cases where no image with corresponding 3D ground truth is available for

training. This resembles the unpaired setting of [52], where only 2D keypoint annotations

are available, and an adversarial prior is trained to penalize invalid poses/shapes. The

benefit of our approach in this setting is that instead of providing a yes/no answer to the

network as the discriminator does, we explicitly supervise it with a valid pose, which leads

to better performance empirically, as we demonstrate in our evaluation.
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3.3.5 Implementation details

Here we discuss in more detail some further implementation details that were important

for the training procedure. Although SMPLify is quite accurate, for some cases we can

still get bad failures. These bad fits can make training unstable and potentially decrease

performance. This motivated us to use a criterion to reject supervision from these shapes.

Empirically, a simple thresholding based on the joint reprojection error worked very well in

our case. For the images with rejected fits, we only supervise the regression network with

a reprojection loss on the joints. Additionally, to avoid training with improbable values for

the shape parameters (i.e., beyond ±3σ), when SMPLify returns shape values outside this

range, we only supervise the β parameters with a simple L2 loss, i.e., pushing it close to

the mean shape.

To improve and accelerate training, we also incorporated a dictionary, such that for each

image in our training set we can keep track of the best fit we have seen for it over all epochs.

In practice, every time we compute a new optimized shape in the loop, we compare with

the best fit we have seen until that point in time and if the new fit is better, we update the

dictionary accordingly. To compare the quality of the fits, we again use the reprojection

error on the joints. Our dictionary is initially populated with SMPLify fits, a process done

offline before the training starts. To initialize SMPLify for this process, we can start from

the mean pose, or use a more accurate pose, regressed from the 2D keypoints (e.g., using

a network similar to Martinez et al . [83]). For our empirical evaluation we focus on the

second strategy, but we also present similar results with the first approach in the Sup.Mat.

We run the SMPLify optimization for a total of 50 iterations for each batch.

3.4 Empirical evaluation

3.4.1 Datasets

Here we give a quick description of the datasets we use for training and evaluation. We

report results on Human3.6M [40], MPI-INF-3DHP [84], LSP [46], and 3DPW [140]. We

train using the first three datasets (no training data from 3DPW), while similarly to [52],
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we also incorporate training data with 2D annotations from other datasets, i.e., LSP-

Extended [47], MPII [3], and COCO [73]. For the different settings we investigate, e.g.,

training with/without in the loop update, or training with/without 3D ground truth), we

train a single model per setting and we use it to report results on all datasets, without

fine-tuning on each particular dataset. Moreover, we clarify, that we always evaluate the

network’s output. No additional fitting-based post-processing is applied, as is done for

example in [32]. Also, since different datasets often use different error metrics to report

results, we use the metrics that are more often met in the literature for each dataset. We

give a detailed definition of the various metrics in Sup.Mat.

Human3.6M: It is an indoor benchmark for 3D human pose estimation. It includes mul-

tiple subjects performing actions like Eating, Sitting and Walking. Following typical proto-

cols, e.g., [52], we use subjects S1, S5, S6, S7, S8 for training and we evaluate on subjects

S9 and S11.

MPI-INF-3DHP: It is a dataset captured with a multi-view setup mostly in indoor en-

vironments. No markers are used for the capture, so 3D pose data tend to be less accurate

compared to other datasets. We use the provided training set (subjects S1 to S8) for training

and we report results on the test set of the dataset.

LSP: It is a standard dataset for 2D human pose estimation. Here we employ the test set

for evaluation, using the silhouette/parts annotations from Lassner et al . [67].

3DPW: It is a very recent dataset, captured mostly in outdoor conditions, using IMU

sensors to compute pose and shape ground truth. We use this dataset only for evaluation

on its defined test set.

3.4.2 Quantitative evaluation

Ablative studies: First we evaluate the components of our approach. We use in-the-wild

datasets for this, since they are much more challenging, compared to the indoor benchmarks,

where the models tend to overfit [40, 84].
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Rec. Error

HMR [52] 81.3
Kanazawa et al . [54] 72.6
Arnab et al . [5] 72.2
Kolotouros et al . [64] 70.2
Ours - static fits 66.3
Ours - in the loop 59.2

Table 7: Evaluation on the 3DPW dataset. The numbers are mean reconstruction errors in
mm. The model-based supervision alone (Ours - static fits) outperforms similar architec-
tures trained on the same ([52, 64]) or more data ([5, 54]). Incorporating the fitting in the
loop (Ours - in the loop) further improves performance.

FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify oracle 92.17 0.88 88.82 0.67
SMPLify 91.89 0.88 87.71 0.64
SMPLify on [101] 92.17 0.88 88.24 0.64
HMR [52] 91.67 0.87 87.12 0.60
Ours - static fits 91.07 0.86 88.48 0.65
Ours - in the loop 91.83 0.87 89.41 0.68

Table 8: Evaluation on foreground-background and six-part segmentation on the LSP test
set. The numbers are accuracies and f1 scores. Using the model-based supervision without
updating the fits achieves very competitive results, while the incorporation of the fitting in
the loop propels our approach beyond the state-of-the-art. The numbers for the first two
rows are taken from [67].

On the new 3DPW dataset, we evaluate pose estimation. In Table 7, we provide the results

for two versions of our approach, one where the network is supervised only with the initial

dictionary fits, without running the optimization in the loop (Ours - static fits), and a

second where we run the optimization in the loop, and the network can benefit from the

improved fits that the iterative fitting tends to produce (Ours - in the loop). To put our

results into perspective, we also compare with four recent baselines ([5, 52, 54, 64]). As

we can see, the use of model supervision is enough to improve performance over the other

baselines. Unsurprisingly, running the iterative fitting in the loop, we can further improve

the performance of the network, since it gradually gets access to better and better fits.

The same comparison is performed for the LSP dataset. In this case, we evaluate 3D shape

implicitly through mesh reprojection and evaluation of silhouette and part segmentation
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Rec. Error

Lassner et al . [67] 93.9
SMPLify [7] 82.3
Pavlakos et al . [101] 75.9
HMR (unpaired) [52] 66.5
Ours (unpaired) 62.0

NBF [92] 59.9
HMR [52] 56.8
Ours 41.1

Table 9: Evaluation on the Human3.6M dataset. The numbers are mean reconstruction
errors in mm. We compare with approaches that output a mesh of the human body.
Approaches on the top part require no image with 3D ground truth, while approaches
on the bottom part make use of 3D ground truth too. In both settings, our approach
outperforms the state-of-the-art by significant margins.

accuracy. The full results for this setting are presented in Table 8. The trend here is similar

to the 3DPW results. Using a static set of fits and providing model-based supervision

achieves very compelling results. However, it is the incorporation of the optimization in the

loop that propels our approach beyond the state-of-the-art.

To better illustrate the degree of improvement for fits in our dictionary, we provide some

typical examples in Figure 20. As the training progresses, the fits improve significantly,

giving to the network access to better supervision.

Comparison with the state-of-the-art: For further comparison with the state-of-the-

art, we report results in additional datasets for 3D human pose estimation. Based on the

different settings, proposed in the literature, we report results both when we use 3D ground

truth whenever it is available (e.g., Human3.6M), and also when no image with 3D ground

truth is available for training. Similarly to [52], we call this setting “unpaired”, since images

and 3D ground truth do not come in pairs for training.

In Table 9, we present the results of our approach on Human3.6M against other approaches

that also output a full mesh of the human body (SMPL, in particular). Our approach

outperforms the previous baselines when 3D ground truth is not available for training (top

of the table) and when it is (bottom). We highlight that for the case that no 3D ground
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Absolute Rigid Alignment

PCK AUC MPJPE PCK AUC MPJPE

HMR (unpaired) [52] 59.6 27.9 169.5 77.1 40.7 113.2
Ours (unpaired) 66.8 30.2 124.8 87.0 48.5 80.4

Mehta et al . [84] 75.7 39.3 117.6 - - -
VNect [87] 76.6 40.4 124.7 83.9 47.3 98.0
HMR [52] 72.9 36.5 124.2 86.3 47.8 89.8
Ours 76.4 37.1 105.2 92.5 55.6 67.5

Table 10: Evaluation on the MPI-INF-3DHP dataset. The comparison is under different
metrics before (left) and after (right) rigid alignment. Our approach outperforms the pre-
vious baselines. (For PCK and AUC, higher is better, while for MPJPE, lower is better).

truth is available (e.g., unpaired setting), our network does not have access to poses from

Human3.6M as Kanazawa et al . [52], since our pose prior is trained only on CMU data.

Despite that, we still outperform [52].

Similarly, we also report results on the MPI-INF-3DHP dataset, for the two settings (paired/unpaired

supervision). Again, we outperform [52], while being very competitive against two ap-

proaches that do not use a parametric model of the human body [84, 87].

Finally, Figure 21 includes qualitative results of our approach from the different datasets

involved in our evaluation, while Figure 24 includes some failure cases. A larger variety of

results can also be found in the Sup.Mat.

3.5 Summary

This work describes SPIN , an approach that proposes a close collaboration between a

regression method and an optimization-based method to train a deep network for 3D human

pose and shape estimation. Our approach uses the network to provide an initial estimate

to the optimization routine, which then fits the model in the loop and provides model-

based supervision for the training of the network. Thus, the optimization-module and

regression-module form a self-improving cycle since they can both benefit through their

tight collaboration. Moreover, the privileged model-based supervision is valuable to improve

the training of our network, which is also demonstrated by the empirical results, where our

approach outperforms previous approaches by large margins. Simultaneously, since the
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fitting routine requires only 2D keypoints to fit the model, we can train our deep network

even in the absence of 3D annotations. Future work could consider extending this approach

to capture multiple people [153, 154], or incorporate more expressive models of the human

body [51, 97].

3.6 Supplementary Material

The goal of this Supplementary Material is to provide additional details and evaluations.

Section 3.6.1, aims to provide additional qualitative results for a wide range of settings,

including: qualitative results from novel viewpoints, typical failure cases, comparison with

the approach of Kanazawa et al . [52], comparison of the “unpaired” version and the version

that has access to 3D ground truth, etc. Then, in Section 3.6.2, we provide more details

about the training procedure. Finally, in Section 3.6.3, we discuss the evaluation metrics

used to report results in the main manuscript.

3.6.1 Further qualitative evaluation

In this Section we provide more qualitative results of our approach, that were not included

in the main manuscript due to space constraints.

Side views: Figure 5 of the main manuscript provides a variety of qualitative results of

our approach for all the datasets involved in our quantitative evaluation. Here we provide

even more examples, with the addition of visualizations from novel viewpoints, which is a

typical way to evaluate qualitatively 3D human pose estimation methods. These additional

visualizations including novel viewpoints have been collected in Figure 23.

Failure cases: Despite achieving state-of-the-art results, there are still challenging cases

where SPIN fails to recover a successful reconstruction of the human body. We have collected

some of these failures in Figure 24. to provide further intuition regarding the potential

improvements we can achieve. From inspection, the failures can be attributed to very

challenging poses, viewpoints that are not common in the training set, as well as ordinal

depth ambiguities.
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SMPLify failures: In the main manuscript (Subsection 3.5), we discuss the typical failure

modes of SMPLify. Here we provide more visual results of these failures in Figure 25. These

errors motivate our decision to avoid training with some very bad fits that SMPLify can

provide to our network. From inspection, these failures include wrong orientation of the

body and/or extreme shape parameters. In the second case of extreme shape parameters,

we observed that the camera translation is typically off (estimated to be too close or too

far), because the assumptions of [7] are violated (i.e., the person is not standing parallel to

the image plane). It is important to clarify though, that these failures happen when the

optimization starts from the mean pose, and results are typically improved over the course

of training, when the SMPLify routine is initialized with a reasonable pose estimate from

the network.

Comparison with HMR [52]: Based on the results of the main manuscript, our closest

competitor is the HMR approach of Kanazawa et al . [52]. To provide additional intuition

over the benefits of our approach with respect to [52], (beyond the quantitative results), here

we include further qualitative comparison with our approach, by applying HMR and our

network on the same images. Example reconstruction from both approaches are presented

in Figure 26. Based on this comparison, we identify that although HMR is quite robust,

it has more issues with estimating the global orientation correctly, while it is less accurate

for the body extremities. In contrast, our network is trained with successful SMPLify fits,

which tend to get these cases correctly, so we observe more successful reconstructions also

from a qualitative point of view.

“Paired” vs “Unpaired” supervision: Although for our best models we do use examples

where 3D ground truth is available for training (e.g., Human3.6M and MPI-INF-3DHP), our

approach is applicable even when we have access to no image with corresponding 3D ground

truth. Here, we provide a qualitative comparison between these two training settings. The

corresponding results are presented in Figure 27. Interestingly, our “unpaired” network

produces very similar results to the network that has been trained with limited access to
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3D ground truth. Significant differences can be observed only in cases with very challenging

poses, or in cases with ordinal depth ambiguities, where SMPLify itself is also prone to

failure.

3.6.2 Training details

Our model follows the architecture of Kanazawa et al . [52]. The only difference is that

instead of using an axis-angle representation for the 3D rotations (as done by [52]), we

instead change the output to regress the representation of Zhou et al . [162]. Our models

were trained using the Adam optimizer with a batch size of 64, and the learning rate

set to 3e − 5. We did not use learning rate decay. Training with SPIN lasts for 350k

iterations. The model without access to any form of 3D ground truth (“unpaired”) was

initialized from a model pretrained on ImageNet. The model with limited access to 3D

ground truth (“paired”) was initialized with a model pretrained on Human3.6M [40] using

full 3D pose and shape ground truth. Pretraining in this case was useful, such that the

model provides better initial 3D shape estimates for the iterative fitting. All the training

losses were equally weighted using a multiplier equal to 60. The only exception is the weight

on the shape parameters where the multiplier is equal to 6.

The SMPLify optimization in the loop is done using the Adam optimizer in batch mode.

The learning rate is equal to 1e−2 and and the maximum number of iterations is set to 100.

In these conditions, for a batch size of 64 images, the optimization takes about 3 seconds

on a GeForce 1080Ti GPU, allowing us to include it within the training loop.

3.6.3 Evaluation metrics

In the main manuscript, we report results using a variety of different metrics, always fol-

lowing the literature and computing the metrics the same way that competing approaches

do. In this Section, we provide more details about the relevant metrics and give pointers

to previous works that use or define them.

Rec. Error: In Tables 1 and 3 of the main manuscript we report results on 3DPW and
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Human3.6M respectively using the Reconstruction error. This error computes the mean

Euclidean error over all the joints after aligning the prediction with the ground truth 3D

pose through Procrustes alignment. A definition of this error is given formally in [161]

Segmentation: In Table 2 of the main manuscript we evaluate 3D shape implicitly through

mesh reprojection using segmentation accuracy metrics. We report accuracy scores and f1

scores when considering only the silhouette (FB - Foreground/Background case), and also

considering Part segmentation. The evaluation on LSP using these segmentation metrics is

originally done by Lassner et al . [67].

MPI-INF-3DHP evaluation: The evaluation on MPI-INF-3DHP [84] in Table 4 of the

main manuscript includes a variety of metrics reported with or without rigid alignment, i.e.,

with or without aligning our prediction with the ground truth using Procrustes alignment.

In this case, MPJPE stands for the mean Euclidean error over all the joints. PCK is the

percentage of correctly localized keypoints, where a keypoint is considered to be correctly

localized if its Euclidean error is below a specific threshold (here 150mm). Finally AUC

stands for Area Under the Curve and is computed as in [84], by estimating the PCK for a

variety of thresholds, from 0 to 150, with a step equal to 5.
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Input image Initial fit Final fit

Figure 20: Examples of SMPLify fits in our dictionary at the beginning of training and at the
end of training. Although SMPLify can fail when starting from an inaccurate pose (second
column), given a good prediction from our network as initialization, the optimization can
converge to an accurate solution (third column).
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Figure 21: Qualitative results from various datasets, LSP (rows 1-3), 3DPW (rows 4-5),
H36M (rows 6-7) and MPI-INF-3DHP (row 8).
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Image Result Image Result

Figure 22: Erroneous reconstructions of our network. Typical failure cases can be attributed
to challenging poses, ordinal depth ambiguities, viewpoints which are rare in the training
set, as well as confusion due to the existence of multiple people in the scene.
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Image Our result View 1 View 2 Image Our result View 1 View 2

Figure 23: Successful results of SPIN. For each example from left to right: Image, Our
reconstruction result in the camera frame, Our reconstruction result from a novel view (top
view), Our reconstruction result from a novel view (side view).
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Image Result Image Result

Figure 24: Erroneous reconstructions of our network. Typical failure cases can be attributed
to challenging poses, viewpoints which are rare in the training set, as well as confusion due
to the existence of multiple people in the scene.
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Image Result Image Result

Figure 25: Typical erroneous reconstructions of SMPLify. The majority of failures occur
because of errors in the orientation of the body or specific parts (first and second row), or
in the estimated shape parameters (third and fourth row). In the second case, the distance
from the camera has been heavily over- or under-estimated, which can produce extreme
values for the shape parameters.
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Image HMR Ours

Figure 26: Comparison of SPIN with HMR [52] on the LSP dataset [46]. From left to right:
Input image, HMR result, Our result. HMR failures include errors in the estimation of the
global orientation and the pose of the extremities (arms and legs). In contrast, SPIN is
more robust in these cases, because adding the optimization in the training loop, provides
more accurate supervision to the network.
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Image Paired Paired (top) Paired (side) Unpaired
Unpaired
(top)

Unpaired
(side)

Figure 27: Comparison of “unpaired” model (no access to images with 3D ground truth)
with the “paired” version (limited access to images with 3D ground truth). For each row
from left to right: Image, Reconstruction result of “paired” model in the camera frame,
Reconstruction result of “paired” model from top view, Reconstruction result of “paired”
model from side view, Reconstruction result of “unpaired” model in the camera frame, Re-
construction result of “unpaired” model from top view, Reconstruction result of “unpaired”
model from side view. Interestingly, in most cases the two versions recover similar human
shapes. Important differences can only be observed in the presence of very challenging
poses.
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CHAPTER 4 : Probabilistic Modeling for Human Mesh Recovery

4.1 Introduction

Figure 28: Probabilistic modeling for 3D human mesh recovery. We propose to recast the
problem of 3D human reconstruction as learning a mapping from the input to a distribution
of 3D poses. The output distribution has high probability mass on a diverse set of poses
that are consistent with the 2D evidence.

Reconstructing 3D human pose from any form of 2D observations (image, 2D keypoints,

silhouettes) is a fundamentally ambiguous problem. Of course, this is a very old insight,

identified even from the very first approaches [68] dealing with the problem of single-view

human pose reconstruction. However, the current norm for the state-of-the-art approaches

is to return a single 3D estimate which is typically computed in a deterministic manner.

In this work, we argue that there is great value at capturing a distribution of 3D poses

conditioned on the preferred input.

Our reliance on systems that return a single deterministic 3D pose output often happens

out of convenience; it makes comparison on conventional benchmarks straightforward and

fair, while a single output is enough for many downstream applications. Recent literature

for 3D human pose reconstruction is currently dominated by such approaches and they

are very popular for image [63] or keypoint [121] input, for skeleton-based [83] or mesh-

based [64] reconstruction, as well as regression [52] or optimization-based [7] approaches.
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Figure 29: The value of probabilistic modeling for 3D human mesh estimation. We demon-
strate that probabilistic modeling in the case of 3D human mesh estimation can be partic-
ularly useful because of its elegant and flexible form, which enables a series of downstream
applications. First row: In the typical case of 3D mesh regression, we can naturally use
the mode of the distribution and perform on par with approaches regressing a single 3D
mesh. Second row: When keypoints (or other types of 2D evidence) are available we can
treat our model as an image-based prior and fit a human body model to the keypoints by
combining it with a 2D reprojection term. Third row: When multiple views are available,
we can naturally consolidate all single-frame predictions by adding a cross-view consistency
term. We underline that all these applications refer to test-time behavior and they use the
same trained probabilistic model (no per-task training required).

On the other end of the spectrum, there have always been approaches that advocate in favor

of generating multiple predictions per input. Recent efforts have demonstrated interesting

potential [6, 70], but often rely on ensemble-type prediction, modifying current systems

into combining N output heads instead of one. This can lead to cumbersome architectural

choices, inability to scale and/or limited expressivity for the output distribution.

Our approach aims to bridge this gap and demonstrate the value of predicting a distribution

of 3D poses conditioned on the provided 2D input. To achieve this, we propose an elegant

and efficient approach with many desirable properties missing from recent work, and we
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demonstrate its effectiveness. Instead of regressing a single estimate for the provided input,

we use Normalizing Flows to regress a distribution of plausible poses. This allows us to

train a network which returns a conditional distribution of 3D poses as a function of the

input (e.g ., image or 2D keypoints), as depicted in Figure 28. Our probabilistic model

allows for fast sampling of diverse outputs, we can efficiently compute the likelihood of

each sample, and there is a fast and closed form solution to compute the mode of the

distribution. The importance of the above is manifested in a variety of ways, which are

summarized in Figure 29. First, we can easily compute the mode of the distribution, which

returns the most likely 3D pose for the particular input. This is convenient, when a single

estimate is required for some applications. Interestingly, this regressed value is on par

with the state-of-the-art deterministic methods, so our model can be valuable even in the

more conventional settings. More importantly though, by treating our trained probabilistic

model as a conditional distribution, we can use it in many downstream applications to

combine information from different sources. For example, when 2D keypoints are available,

optimization approaches [7, 97], are used to fit parametric human body models to these 2D

locations. In this case, our model can act as a powerful image-based prior that can guide

the optimization towards accurate solutions that satisfy both 2D keypoint reprojection and

image evidence. Similarly, when multiple views are available, we can consolidate information

from all conditional distributions, by optimizing for cross-view consistency and recover a

3D result that is consistent with the available observations. Last but not least, we highlight

that all these applications are available at test-time with the same trained probabilistic

model, without any need for task-specific retraining.

We conduct extensive experiments to demonstrate the importance of our learned probabilis-

tic model. We focus primarily on image-based mesh recovery [52], proposing the ProHMR

model, but we also investigate 2D keypoint input [83]. We achieve particularly strong perfor-

mance across different tasks and evaluation settings. Our contributions can be summarized

as follows:
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• We propose a probabilistic model for human mesh recovery and demonstrate its value

in various tasks.

• In the conventional evaluations with single estimate methods, our model is on par

with the state of the art.

• We demonstrate that in the presence of additional information sources, e.g ., multiple

views or 2D keypoints, our model offers an elegant and effective way to consolidate

said sources.

• In the setting of human body model fitting, our model acts as a powerful image-based

prior, achieving significant boost over previous baselines.

4.2 Related work

Although our formulation is quite general and can handle different inputs/outputs, here we

focus mainly on human mesh recovery from a single image [52], while we briefly touch upon

other settings, specifically 3D pose estimation from 2D keypoints [83]. Since the related

work is vast, here we discuss the more relevant approaches. We direct the interested reader

to a recent and extensive survey [157].

4.2.1 Human mesh recovery from a single image

Regression: Recent approaches for mesh recovery are following the regression paradigm,

where the parameters of a parametric model [78, 97, 149, 93] are regressed from a deep

network, given a single image as input. The canonical example here is HMR [52], with

many of the design decisions being adopted also by follow-up works, e.g ., [5, 32, 64, 98, 16,

27, 45]. Here, our regression network also follows the principles of HMR, however, instead

of regressing a single 3D pose estimate, it regresses a whole distribution of plausible 3D

poses given the input image.

Optimization: These methods estimate iteratively the parameters of the body model, such

that it is consistent with a set of 2D cues. The canonical example of SMPLify [7] optimizes

SMPL parameters given 2D keypoints. Follow-up works investigate other inputs, e.g .,
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silhouettes [67], POFs [147], dense correspondences [32] or contact [90, 128]. However, most

recent approaches [5, 63, 97] rely almost exclusively on 2D keypoints; losing the majority of

pictorial cues, but gaining robustness. In this work, we demonstrate how our probabilistic

model can leverage image-based information to guide the keypoint-based optimization.

Optimization-Regression hybrids: The idea of building a hybrid between the two

paradigms has been explored extensively in recent work. HMR [52] and HUND [152] use a

network to mimic the optimization steps and regress the updates to the model parameters.

Song et al . [121] use the reprojection error of the model joints to guide their learning-based

gradient descent approach. SPIN [63] initializes the optimization with a regression network

and supervises the network with the output of the optimization. EFT [49] builds on that

by updating the network weights during the fitting procedure. Our probabilistic model also

investigates this type of collaboration by regressing a distribution of poses which can then

be used as a prior term for the fitting.

4.2.2 Multiple hypotheses for 3D human pose

Multiple hypotheses methods have been used in the context of 3D human pose estimation

to deal with the inherent ambiguities of the reconstruction such as occlusions, truncations

or depth ambiguities. Jahangiri and Yuille [43] use a compositional model and anatomical

constraints to generate multiple hypotheses consistent with 2D keypoint evidence. Li and

Lee [70] use a Mixture Density Network instead and generate a fixed number of proposals

based on the centroids of the Gaussian kernels, while Sharma et al . [116] tackle the same

problem using a Conditional VAE. Recently, Biggs et al . [6] extend HMR [53] with N

prediction heads. This leads to a discrete set of hypotheses, instead of a full probability

of poses as we do. In a concurrent work, Sengupta et al . [115] use a Gaussian posterior

to model the uncertainty in the parameter prediction. Differently from these methods, our

approach is not limited to learning a generative model of plausible 3D poses, but rather

shows how one can use such a model for useful downstream applications.

64



4.2.3 Normalizing Flows

Normalizing Flows are used to represent complex distributions as a series of invertible

transformations of a simple base distribution. They were originally developed for mod-

eling posterior distributions for variational inference [107, 59]. Popular examples include

MADE [28], NICE [20], MAF [94], RealNVP [21] and Glow [58].

Normalizing Flows have been used in the context of 3D human pose estimation to learn a

prior on the distribution of plausible poses [6, 149, 151]. These priors are usually trained

using unpaired MoCap data [81]. Our work is fundamentally different from these methods

in the sense that we are interested in learning a pose prior conditioned on 2D image evidence

rather than a generic prior on the 3D pose space.

4.3 Method

Figure 30: Architecture of the proposed probabilistic model for human mesh recovery,
ProHMR. Left: Our image encoder regresses a hidden vector c, which is used as the con-
ditioning input to the flow model. In parallel, it is also decoded to shape parameters β
and camera π. Right: Our flow model learns an invertible mapping which allows for two
processing directions; depending on the desired function, we can perform both sampling
and fast likelihood computation.

In this Section, we present in detail our proposed approach. We start with an outline of

Normalizing Flows [107] and the SMPL body model [78]. Then, we describe the model

architecture and the training procedure. Finally, we show how our trained model can be

used in downstream applications in a simple and straightforward manner.
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4.3.1 Normalizing Flows

Let Z ∈ Rd be a random variable with distribution pZ(z) and f : Rd → Rd an invertible

mapping. If we transform Z with f , then the resulting random variable X = f(Z) has

probability density function:

pX(x) = pZ(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣
−1

(4.1)

Normalizing Flow models are used to model arbitrarily complex distributions as a series

of invertible transformations of a simple base distribution. Typically, the base distribution

pZ(z) is chosen to be the standard multivariate Gaussian N (0, I). If we write f as a

composition of invertible transformations {fk}Kk=1 with Z0 = Z, Zi = fi(Zi−1) and ZK = X,

then the log-probability density of X can be computed as:

ln pX(x) = ln pZ(z)−
K∑

k=1

ln

∣∣∣∣det
∂fi
∂zi−1

∣∣∣∣ . (4.2)

Winkler et al . [144] extended Normalizing Flow models to model conditional distributions

pX|Y (x|y) by using transformations x = f(z; y) that are bijective in x and z.

4.3.2 SMPL model

SMPL [78] is a parametric human body model. It defines a mapping M(θ,β) that takes

as input a set of pose parameters θ and shape parameters β and outputs a body mesh

M ∈ RN×3, where N = 6890 is the number of mesh vertices. Additionally, given an output

mesh, the body joints J can be expressed as a linear combination of the mesh vertices,

J = WM , where W is a pretrained linear regressor.

4.3.3 Model design

Without loss of generality, we present our pipeline for the case where the input is an image

of a person and the target output is the set of SMPL body model parameters. We call this

model ProHMR, with the goal of Probabilistic Human Mesh Recovery. At the end of this
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section we also show how the same method can be applied in alternative scenarios with

different input and output representations.

In our setting, we are given an input image I containing a person, and our goal is to learn a

distribution of plausible poses for that person conditioned on I. Since we do not have access

to accurate pairs of images-shape annotations, we choose to only model the uncertainty of

the SMPL pose parameters θ. Our architecture follows closely the HMR paradigm [52].

The output of our network is the conditional probability distribution pΘ|I(θ|I) as well as

point estimates for the shape and camera parameters β and π respectively.

The complete pipeline is depicted in Figure 30. Given an input image I, we encode it

using a CNN g and obtain a context vector c = g(I). We model pΘ|I(θ|c = g(I)) using

Conditional Normalizing Flows. We learn a mapping f : Rd × Rc → Rd that is bijective in

z and θ, i.e., θ = f(z; c) and z = f−1(θ; c).

We employ Normalizing Flows instead of simpler alternatives such as Mixture Density

Networks (MDN) [70] because of their expressiveness and ability to model more complex

distributions, as we show later in the evaluation section. In our setting, Normalizing Flows

have also clear advantages over VAEs, since VAEs do not offer an easy way to compute the

likelihood of a given output sample, which is crucial when using our model in downstream

tasks.

Our Normalizing Flow model is based on the Glow architecture [58]. Each building block

fi is comprised of 3 basic transformations:

fi = fcoupl ◦ flin ◦ fnorm, (4.3)

where fnorm(z) = a � z + b (Instance Normalization), flin(z) = Wz + b (Linear transfor-

mation) and fcoupl = [z1:k, zk+1:d + t(z1:d, c)] (Additive coupling). To make the inversion

and the Jacobian computation faster, in the linear transformation we parametrize the LU

decomposition of W . The final flow model is obtained by composing four of these building
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blocks.

The selected flow model allows us to perform both fast likelihood computation and fast

sampling from the distribution. At the same time, a very important property is that the

determinant of the Jacobian does not depend on z, which in turn means that the mode of

the output distribution is:

θ∗I = argmaxθ pΘ|I(θ|c) = f(0; c). (4.4)

This result allows us to use our model as a predictive model in a straightforward way; in

the absence of any additional side-information, we make predictions using the mode of the

output distribution.

To regress the camera and the SMPL shape parameters, we use a small MLP h that takes as

input the context vector c and outputs a single point estimate, i.e., [β,π] = h(c). We also

experimented with having β and π depend on θ, but there was no observable improvement.

4.3.4 Training objective

Let us assume that we have a collection of images paired with SMPL pose annotations.

Typically, Normalizing Flow models are trained to minimize the negative log-likelihood of

the ground truth examples θgt, i.e. the loss function is:

Lnll = − ln pΘ|I(θgt|c). (4.5)

However, for the task of 3D pose estimation, 3D annotations are generally not avail-

able except for a small number of indoor datasets captured in constrained studio envi-

ronments [40, 84] and methods trained on those datasets fail to generalize in challenging

in-the-wild scenes. Consequently, previous methods like [52] propose to use examples with

only 2D keypoint annotations and minimize the keypoint reprojection loss jointly with an

adversarial prior. To make such a mixed training possible within our framework, we propose
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to minimize the expectation of the above error with respect to the learned distribution, i.e.,

Lexp = Eθ∼pΘ|I [L2D(θ,β,π) + Ladv(θ,β)]. (4.6)

To make this loss differentiable we use the Law of the Unconscious Statistician and rewrite

the expectation as:

Lexp = Ez∼pZ [L2D(f(z; c),β,π) + Ladv(f(z; c),β)]. (4.7)

Conceptually, even though we do not have ground truth annotations, to maximize the

conditional probability of these examples we can still constrain the form of the output

distribution by forcing the output samples to have low reprojection error on average and lie

on the manifold of valid poses. As in the case of VAEs [60], we approximate the expectation

by drawing a single sample from the prior.

As mentioned previously, our goal is to use our model not only as a generative model but

also as a predictive model. Thus, we propose to exploit the property that for each image

I, the mode θ∗I of the output distribution corresponds to the transformation of z = 0.

We do this by explicitly supervising θ∗I with all the available annotations as in a standard

regression framework and minimize:

Lmode = L3D(θ∗I ,β) + L2D(θ∗I ,β,π) + Ladv(θ
∗
I ,β), (4.8)

where L3D is the loss on the available 3D annotations (3D joints and/or SMPL parameters)

whenever they are available. As we show in the experimental section, this explicit super-

vision of the mode of the output distribution helps boost the performance of our model in

predictive tasks.

It is important to mention that Lexp is not redundant in the presence of Lmode; the be-

havior of the mode is not indicative of the full distribution, whereas Lexp encourages the
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distribution to have certain desirable properties.

Finally, for modeling rotations we use the 6D representation proposed in [162]. One issue

with this particular representation is that it is not unique. For example, for any 3D vectors

x and y, [x, y] and [αx, βx + γy] are mapped to the same rotation matrix. Empirically

we found that putting no constraints on the 6D representation results in large discrepancy

between examples with full 3D SMPL parameter supervision and examples with only 2D

keypoint annotations. Among other things, this caused mode collapse for the examples

without 3D ground truth. Thus, we introduce another loss function Lorth that forces the

6D representations of the samples drawn from the distribution to be close to the orthonormal

6D representation.

Eventually, the final training objective becomes:

L = λnllLnll + λexpLexp + λmodeLmode + λorthLorth. (4.9)

4.3.5 Downstream applications

In this part we show how our learned conditional distribution can be used in a series

of downstream applications. We highlight that all these applications refer to test-time

processing with the same trained model without any special per-task training. Examples of

such tasks are shown in Figure 29. These applications fall under the more general umbrella

of Maximum a Posteriori estimation where we use all available evidence to make more

informed predictions.

3D pose regression As already discussed in previous sections, we can use our model

in conventional tasks such as 3D pose regression from a single image. In the absence of

additional evidence, the most appropriate choice for making predictions is to pick the mode

θ∗I of the distribution.
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Body model fitting SMPLify [7] is a popular method that fits the SMPL body model

to a set of 2D keypoints using a traditional optimization approach. The objective is:

λJEJ + λθEθ + λαEα + λβEβ, (4.10)

where EJ penalizes the weighted 2D distance between the projected model joints and the

detected joints, Eθ is a Mixture of Gaussian 3D pose prior, Eα is a pose prior penaliz-

ing unnatural rotations of elbows and knees and Eβ is a quadratic penalty on the shape

coefficients.

Fitting a parametric body model to 2D image landmarks is a very challenging and inherently

ambiguous problem. The data term EJ is purely driven by the 2D keypoints and disregards

rich information contained in the input image. SPIN [63] partially addresses this issue

by using an image-based regression network that provides a good initialization for the

optimization, helping the fitting to converge to a better minimum. However, the image

information is only used in the initialization phase, as SMPLify does not incorporate explicit

image-specific priors that prevent the pose to deviate arbitrarily far from the set of plausible

poses for the given image. The drifting problem is also an important limitation of [49],

forcing the approach to rely on good initialization and carefully chosen stopping criteria.

Motivated by these limitations, we propose to replace the weaker generic 3D priors Eθ and

Eα with an explicit pose prior Eθ|I = − ln pΘ|I(θ|c) that models the likelihood of a given

pose conditioned on the image evidence. Thus, the final optimization objective becomes:

λJEJ − ln pΘ|I(θ|c) + λβEβ. (4.11)

As initialization for the fitting we use the mode θ∗I of the conditional distribution. In the

experimental section we show that by using this learned image-based prior we are able to

consistently improve the fitting results, both qualitatively and quantitatively, as reflected

in the 3D metrics.
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Multiple views fusion Although our model has been trained for single-image reconstruc-

tion, we can still use the learned conditional distribution to obtain refined pose estimates

in the presence of multiple views of a person. Let us assume that we have a set {In}N1
of uncalibrated views of the same subject. We partition the pose vector of each frame as

θn = (θgn,θbn) where θgn corresponds to the global rotation of the model and θbn is the body

pose. We propose to refine the pose by minimizing the following objective:

−
N∑

n=1

ln p(θn|cn) + λ
N∑

n=1

||θbn − θ̄b||22, (4.12)

where θ̄b = 1
N

∑N
n=1 θ

b
n. The second term of the objective is equivalent to minimizing the

squared distance between all pairs of poses.

4.3.6 Additional details

ProHMR. Following previous works [52, 63] we use ResNet-50 [37] as the encoder. For

the Normalizing Flows we use 4 building blocks fi. For more details about the architec-

ture, datasets and the training hyperparameters we refer the reader to the supplementary

material.

2D pose lifting. Complementary to ProHMR, we use our approach to lift 2D poses to

3D skeletons, as in Martinez et al . [83]. We use the same Normalizing Flow architecture as

in ProHMR. In this case the input is a set of 2D Hourglass detections [91] and the output

is the 3D pose coordinates. For the encoder g, instead of a CNN, we use the backbone

from [83]. Since all examples have full 3D supervision, our training objective consists only

of Lnll and Lmode.

Downstream tasks. For the fitting procedure employed in the downstream tasks, we

found it beneficial to perform the optimization in the latent space instead of the pose space

directly (similarly to SMPLify-X [97]). Thus, we leave z as a free variable and decode it into

the pose vector θ = f(z; c). Also, since for our Normalizing Flow model the determinant of

the Jacobian does not depend on z, the likelihood term becomes ln p(θ|c) = −||z||22 +const.
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4.4 Experimental evaluation

In this Section we present the experimental evaluation of our approach. First we provide

an outline of the datasets used for training and evaluation and then we will present detailed

quantitative and qualitative evaluation results.

4.4.1 Datasets

We report results on Human3.6M [40], MPI-INF-3DHP [84], 3DPW [140] and Mannequin

Challenge [72], where we use the annotations produced by Leroy et al . [69]. For training, we

use datasets with 3D ground truth (Human3.6M [40] and MPI-INF-3DHP [84]), as well as

datasets with 2D keypoint annotations (COCO [73] and MPII [3]) augmented with pseudo

ground truth SMPL parameters from SPIN [63], whenever they are available.

4.4.2 Quantitative evaluation

In this part we evaluate different aspects of our proposed approach. We compare the predic-

tive accuracy of our model with standard regression methods and show that it achieves com-

parable performance with the state of the art in human mesh recovery. We also benchmark

the generative capabilities of our method in multiple hypotheses scenarios, where we out-

perform previous approaches. Finally, we demonstrate that our learned image-conditioned

prior can boost the performance in downstream applications such as model fitting and

multi-view refinement.

Human mesh recovery. First, we focus on the predictive performance of our model,

comparing it against other state-of-the-art methods that regress SMPL body model param-

eters. For the evaluation of ProHMR, we use the mode θ∗I of the learned distribution. For

Biggs et al . [6] we report the metrics after quantizing to n = 1 sample. Based on the results

of Table 11, using ProHMR as a regressor, leads to performance comparable to the state of

the art. This shows that we can indeed recast the problem from point to density estimation

without any significant loss in performance.

Multiple hypotheses. Next, we compare the representational power of ProHMR with

73



Figure 31: Samples from the learned distribution. Pink colored mesh corresponds to the
mode.

3DPW H36M MPI-INF-3DHP

HMR [52] 81.3 56.8 89.8
SPIN [63] 59.1 41.1 67.5

Biggs et al . [6] 59.9 41.6 N/A
ProHMR 59.8 41.2 65.0

Table 11: Evaluation on human mesh recovery. Our model achieves accuracy comparable
with the state of the art. Numbers reported are PA-MPJPE in mm.

different multiple hypotheses baselines, including Biggs et al . [6], as well as the MDN and

Conditional VAE variants explored in the same paper. Following [6], we report results for

small sample sizes n. Since we are interested in measuring the representational power of the

learned distribution, we also compare the minimum 3D pose error of samples drawn from

each distribution as proposed in [116]. We present the detailed results for Human3.6M and

3DPW in Table 12.

n = 5 n = 10 n = 25 min

[140] [40] [140] [40] [140] [40] [140] [40]

[6] (MDN) 61.2 43.3 60.7 43.0 60.1 42.7 60.1 42.7
[6] (CVAE) 60.7 46.4 60.5 46.3 60.3 46.2 60.3 46.2
[6] (NF) 57.1 42.0 56.6 42.2 55.6 42.2 55.6 41.6
ProHMR 56.5 39.4 54.6 38.3 52.4 36.8 40.8 29.9

Table 12: Multiple hypotheses evalutation. Numbers are PA-MPJPE in mm. We report
errors for small n and the minimum error over samples drawn from the distribution.
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Figure 32: Model fitting results. Pink: Regression. Green: ProHMR + fitting. Grey:
Regression + SMPLify

Model fitting. In this part we evaluate the accuracy of different methods that fit the

SMPL body model to a set of 2D keypoints. The body model fitting baselines we compare

include the standard SMPLify [7, 97], EFT [49], and our proposed fitting with the learned

image-conditioned prior. For both SMPLify and EFT we use publicly available implemen-

tations and initialize the fitting process with SPIN, while for SMPLify we use two different

versions for the pose prior, GMM [7] and VPoser [97]. For a fair evaluation of the perfor-

mance benefit, we compare methods that are trained on the same datasets and have similar

regression performance. The results are presented in Table 13. While performing SMPLify

on top of regression improves the model-image alignment, it increases the 3D pose errors,

especially when using OpenPose detections [9]. We hypothesize that this happens because

of the generic 3D pose prior terms of SMPLify. EFT on top of regression improves the 3D

pose metrics, however our method manages to push the accuracy even further. In 3DPW

our approach has a 4.7mm relative error improvement vs. 2.6mm for EFT, while if we use

the ground truth 2D keypoints in Human3.6M we get a 6.3mm improvement vs 3.1mm for

EFT.

Multi-view refinement. We evaluate the effect of our learned image-conditioned prior

at refining the pose predictions in uncalibrated multi-view scenarios. For benchmarking,
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3DPW H36M (OP) H36M (GT)

SPIN [63] 59.2 41.8 41.8
SPIN+SMPLify (GMM) [7] 66.5 54.6 43.3
SPIN+SMPLify (VPoser) [97] 70.9 53.5 39.9
SPIN+EFT [49] 56.6 41.6 38.7

ProHMR 59.8 41.2 41.2
ProHMR + fitting 55.1 39.3 34.8

Table 13: Evaluation of different model fitting methods. The fitting algorithms are initial-
ized by the corresponding regression results. All numbers are PA-MPJPE in mm.

H36M Mannequin

MPJPE PA-MPJPE MPJPE PA-MPJPE

ProHMR 65.1 43.7 176.0 91.9
ProHMR + rot avg 64.8 35.2 174.4 85.1
ProHMR + fitting 62.2 34.5 171.3 83.9

Table 14: Evaluation of multi-view refinement. We compare single-image 3D reconstruction
with a baseline refinement using rotation averaging and the proposed optimization-based
refinement scheme.

we use Human3.6M and the more challenging Mannequin Challenge dataset. We compare

our fitting-based method against the individual per-view predictions and a baseline that

performs rotation averaging in Table 14. For the rotation averaging we first average the

per-view rotation matrices and then project them back to SO(3) using SVD.

Ablation study. We also assess the significance of the term Lmode that we use to explicitly

supervise the mode of the learned distribution. We report results for training ProHMR with

and without this loss in Table 15. We can see that including Lmode is crucial to achieve

competitive performance in conventional regression tasks.

Additional evaluations. Finally, we show that the proposed modeling is general enough

to handle different input and output representations. Here, we consider the setting of lifitng

3DPW H36M MPI-INF-3DHP

ProHMR (w/o Lmode) 67.4 54.8 76.5
ProHMR 59.8 41.2 65.0

Table 15: Ablation for Lmode. Numbers are PA-MPJPE.
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MPJPE PA-MPJPE

Martinez et al . [83] 62.9 47.7
Li and Lee [70] (mode) 64.5 47.8
Ours 62.9 47.6

Li and Lee [70] (min) 42.6 34.4
Ours (min) 42.4 32.9

Table 16: Evaluation of 3D pose accuracy for skeleton-based 2D pose lifting on Human3.6M.
Top: Regression accuracy. Bottom: Minimum error of the distributions.

a 2D pose input to a 3D skeleton output [83] and present results in Table 16. Our model

performs on par with an equivalent regression approach [83], while it outperforms the MDN

method of Li and Lee [70].

4.4.3 Qualitative results

In Figure 31 we show sample reconstructions of our method. Additionally, in Figure 32 we

show comparisons of our model fitting approach with SMPLify. Our method produces more

realistic reconstructions overall, particularly in cases where there are missing or very low

confidence keypoint detections. In cases like that (e.g ., example of last row), our image-

based prior, unlike SMPLify, does not let the pose deviate far from the image evidence.

4.5 Summary

This work presents a probabilistic model for 3D human mesh recovery from 2D evidence.

Unlike most approaches that output a single point estimate for the 3D pose, we propose

to learn a mapping from the input to a distribution of plausible poses. We model this

distribution using Conditional Normalizing Flows. Our probabilistic model allows for sam-

pling of diverse outputs, efficient computation of the likelihood of each sample, and a fast

and closed-form solution for the mode. We demonstrate the effectiveness of our method

with empirical results in several benchmarks. Future work could consider extending our

approach to other classes of articulated or non-articulated objects and potentially model

other ambiguities like the depth-size trade-off.
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4.6 Supplementary

In this Supplementary Material we provide additional details that were not included in

the main paper due to space constraints. In Section 4.6.1 we extend the discussion about

probabilistic pose models. In Section 4.6.2 we describe in detail the architecture of our

model. Section 4.6.3 includes all training details whereas Section 4.6.4 describes the datasets

used for training and evaluation. FInally, in Section 4.6.5 we report additional quantitative

and qualitative evaluations.

4.6.1 Additional discussion

Heatmap-based methods One additional class of non-parametric probabilistic models

for 3D human pose estimation is the heatmap-based methods [100]. Heatmap-based meth-

ods allow for pose sampling (for each joint, we first sample a voxel and then sample again

uniformly inside each voxel), as well as likelihood evaluation for a given pose. However the

main issue with heatmap-based methods is that by design the probability distribution is

factorized, i.e.,

p(θ|I) =
∏

i

p(θi|I), (4.13)

for all joints θi = (xi, yi, zi). This type of model is problematic for sampling because it

can lead to unrealistic poses, e.g ., in ambiguous cases where the output heatmaps are not

unimodal, since each joint location is sampled independently of the other joints. Moreover,

it is not possible to extend heatmap-based methods to non-Euclidean output spaces such

as the space of SMPL parameters.

4.6.2 Architecture details

In this Section we describe in detail the architecture of the proposed model. In Figure 33 we

show the design of the proposed flow model and the information flow both in forward and

reverse mode. The implementation of fcoupl is shown in Figure 34, whereas Figure 35 depicts

the architecture of the residual block used in fcoupl. The number of channels in the residual

block is n = 1024. For the partitioning of x = (x1, x2), we alternate between the odd
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and even dimensions of x in each successive coupling layer to allow sufficient information

propagation. The flow architecture is the same for both ProHMR and the probabilistic

version of Martinez et al . [83]. The only difference is that for ProHMR the latent dimension

is d = 6 · 24 = 144, whereas for the 2D skeleton lifting is d = 16 · 3 = 48. We use 16 joints

instead of 17, since the pelvis location is always at (0, 0, 0).

Figure 33: Normalizing Flow architecture. The figure shows the implementation of f(θ; c)
and its inverse using Normalizing Flows. Left: Behavior of our model in the sampling
phase (map z→ θ). Right: Behavior of our model in the likelihood evaluation phase (map
θ → z).

Figure 34: Coupling layer architecture. The figure shows the implementation of fcoupl and
its inverse. Left: Behavior of our model in the forward phase. Right: Behavior of our model
in the inverse phase.

Figure 35: Residual architecture. The figure shows the implementation of the residual block
used in the coupling layers fcoupl and its inverse.

4.6.3 Training details

We implemented our model using PyTorch [96]. Our Normalizing Flow implementation was

based on the nflows package [22].
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ProHMR We trained our model for 500K iterations with a batch size of 64 using the

Adam optimizer [57] with learning rate 0.0001 and weight decay 0.0001. Training takes

about 2.5 days on a NVIDIA RTX2080Ti using mixed precision. For the final loss and

loss weights, we use a more fine-grained distinction than the generic described in the main

manuscript. The final training loss is written as:

L = λnllLnll

+ λexp,2DLexp,2D + λexp,advLexp,adv

+ λmode,2DLmode,2D + λmode,advLmode,adv

+ λmode,θLmode,θ + +λmode,βLmode,β

+ λmode,3DLmode,3D + λorthLorth,

where Lmode,∗ and Lexp,∗ refer to the corresponding terms included in the loss functions.

More specifically, Lmode,2D and Lexp,2D are the reprojection loss for the mode and the

expected reprojection loss respectively, Lmode,θ and Lmode,β and Lmode,3D are penalties on

the SMPL parameters and 3D joint locations and Lmode,adv and Lexp,adv are the adversarial

priors. We use `1 penalty for the losses on the 2D and 3D keypoints and `2 penalty for the

loss on the SMPL parameters. For all losses we sum over all dimensions and then divide by

the batch size. The loss weights are: λprob = 0.001, λexp,2D = 0.001, λexp,adv = λmode,adv =

0.0005, λmode,2D = 0.01, λmode,3D = 0.05, λmode,θ = 0.001, λmode,β = 0.0005 and λorth = 0.1.

2D pose lifting We trained our model for 300K iterations with a batch size of 64 using

the Adam optimizer [57] with learning rate 0.0001 and no weight decay. Training takes

about 7 hours on a NVIDIA RTX2080Ti. Since we have full 3D supervision, the final loss

function is:

L = λnllLnll + λmode,3DLmode,3D,

with loss weights λprob = 0.001 and λmode,3D = 1.0.
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4.6.4 Datasets

In this part we give a short description of the datasets used for training and evaluation.

The dataset that we use are Human3.6M [40], MPI-INF-3DHP [84], 3DPW [140], MPII [3],

COCO [72] and Mannequin Challenge [72].

Human3.6M It is a studio-captured benchmark for 3D human pose estimation. It includes

several different actions performed by various subjects We follow standard practices in the

literature and use subjects S1, S5, S6, S7, S8 for training and subjects S9 and S11 for

evaluation.

MPI-INF-3DHP It contains data captured primarily in indoor studio environments and

the 3D pose data is captured using a marker-less setup. We use the predefined training and

testing splits for training and evaluation respectively.

3DPW It is a dataset captured in a variety of indoor and outdoor locations and uses

IMU sensors combined with a 2D pose detector to compute pose and shape ground truth.

Following standard practice, we use this dataset only for evaluation in the predefined test

split.

MPII It is a dataset containing images of people annotated with 2D keypoint locations.

We use this dataset for training.

COCO It is a large scale dataset used among other applications for object detection,

segmentation and pose estimation. We use 2D keypoint annotations from the train2014

split to train our model.

Mannequin Challenge It is a dataset of videos of people staying frozen in diverse natural

poses. We use the SMPL annotations generated by [69] and employ the entire dataset

(train, test, validation) for evaluation.

81



4.6.5 Additional evaluations

Evaluation metrics

Here we give an outline of the metrics used for evaluation. To evaluate the 3D pose we

use the Mean Per Joint Position Error (MPJPE) which computes the mean Euclidean error

between the predicted and ground truth joints, after aligning the two poses at the pelvis.

With PA-MPJPE we refer to the error after aligning the prediction with the ground truth

pose by performing Procrustes alignment.

ProHMR Consistently with HMR [52], CMR [64] and SPIN [63], for evaluating the mod-

els that predict SMPL parameters we report the error on the 14 common LSP joints, except

for MPI-INF-3DHP where we use all 17 joints provided by the dataset. For Human3.6M

with the exception of the multiview experiment (Table 4 of the main manuscript) we eval-

uate using the frontal camera, whereas for the multiview experiment we use all available

cameras.

2D pose lifting To evaluate on Human3.6M we report MPJPE and PA-MPJPE com-

puted on the 17 body joints and use frames from all available cameras.

Additional details

We clarify that for the model fitting experiment (Table 3 of the main manuscript) “H36M

(OP)” refers to fitting the SMPL model to the OpenPose detectioins, whereas for “H36M

(GT)” we use the ground truth 2D keypoints. Also, when we refer to the minimum error of

samples from the learned distribution (Table 2 of the main manuscript), we use n = 4096

samples. For results with smaller n, we sample n = 4096 random poses from the posterior

and following [6], we “quantize” them using K-Means. We would also like to highlight that

theoretically our model can generate an arbitrary number of samples from the posterior,

whereas for the multi-head architecture of Biggs et al . [6], increasing the maximum number

of proposals requires a linear increase in the model size as well as retraining a new model.
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Quantitative evaluation

It is interesting to study how the minimum error of our method scales with the number of

samples. Figure 36 shows the minimum PA-MPJPE with respect to the number of samples

drawn for the 2D pose lifting network. We can see that the minimum error for our method

decreases almost linearly in log-scale. At the same time we show that sampling a large

number of poses from our learned posterior achieves significantly lower error than sampling

the same number of poses from the training distribution.
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Figure 36: The effect of sampling on 3D errors. We report the minimum PA-MPJPE on
Human3.6M for different number of samples. To eliminate the effect of extra data, we
report results for the 2D pose lifting network [83] trained on Human3.6M. Left: Error vs
number of samples from the learned posterior p(θ; c). Right: Comparison with drawing an
equal number of random poses from the training set.

In a similar setting, we compare the minimum error of ProHMR using 4096 samples with

drawing an equal number of samples from a Gaussian distribution centered around the pre-

diction. While ProHMR achieves a minimum PA-MPJPE of 29.9mm, drawing 4096 samples

from N (θ∗, σI) results in a minimum PA-MPJPE of 35.2, 41.1, 42.2 for σ = 1, 10, 20 cm

respectively. This is in part related to the fact that Gaussian posteriors are unimodal. Ad-

ditionally, sampling directly from high dimensional Gaussians is known to be problematic.

Finally, we also provide another quantitative comparison. We use the AH36M dataset

(ambiguous version of Human36M [40]) from Biggs et al . [6] and compare directly with the

result of Table 1 from their paper, reporting the full results in Table 17. Again, our approach
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n = 1 n = 25

Biggs et al . [6] 67.8 64.2
ProHMR 67.3 60.1

Table 17: Comparison with the approach of Biggs et al . [6] on their AH36M dataset.
Numbers are PA-MPJPE in mm.

outperforms the baseline of [6] in this comparison, particularly when increasing the number

of samples n. Furthermore, we assess the effect of our method in the downstream task

of fitting on AH36M. Even under the truncations of this dataset, our image-based fitting

outperforms SMPLify, with SMPLify achieving a PA-MPJPE of 67.8mm, while our fitting

version achieves 61.4mm for the same metric.

Qualitative Results

In Figure 40 we show additional reconstructions of ProHMR. We use pink color for the

mode of the posterior distribution. Moreover, in Figure 42 we include additional compar-

isons between our fitting method and SMPLify initialized by our regression. An important

observation is that by using our image-based prior, the body orientation after the fitting is

significantly more accurate compared to SMPLify, especially in cases with truncated people.

In Figure 37 we show how the optimization-based pose refinement is able to get more

accurate pose estimates by fusing information from multiple views. In the first view the

hands are mostly occluded and the recovered pose is not very accurate, however after the

joint pose refinement the consolidated pose captures the true pose more faithfully.

Additionally, Figure 41 depicts examples of performing interpolation in the learned latent

space. Starting from z = 0, we pick two random directions in Rd and then move along those

directions. Please note that there are no semantics or explicit disentanglement in the latent

space.

Finally, we highlight some failure cases of our method. First, in Figure 38 we show failure

cases for the regression network. Remarkably though, if we have access to accurate 2D

keypoint detections, then it is possible to recover from such errors using our image-based
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Figure 37: Multiview refinement. Pink: Regression. Green: Multiview refinement. Fitting
with multiple views fixes the position of the right hand.

model fitting. However, the model fitting can in turn fail when there are wrong keypoint

detections with high confidence, or when there are too few detected keypoints as we show

in Figure 39.
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Figure 38: Failure cases of pose regression. Some failure cases of the regression (pink mesh)
in challenging poses. In these examples, the model fitting (green mesh) is able to improve
the pose reconstruction

Figure 39: Failure cases for the model fitting. The optimization can fail if there are wrong
keypoint detections with high confidence (rows 1 and 2) or very few detected keypoints (row
3).
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Figure 40: Samples from the learned distribution. The pink colored mesh corresponds to
the mode whereas we use purple and yellow for the additional samples.

Figure 41: Interpolation in the latent space. We pick two random directions in the latent
space and visualize the transformed samples on each direction from a side view.
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Figure 42: Model Fitting results. Pink: Regression. Green: ProHMR + fitting. Grey:
Regression + SMPLify
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CHAPTER 5 : Coherent Reconstruction of Multiple Humans from a Single Image

5.1 Introduction

Figure 43: Coherent reconstruction of pose and shape for multiple people. Typical top-down
regression baselines (center) suffer from predicting people in overlapping positions, or in
inconsistent depth orderings. Our approach (right) is trained to respect all these constraints
and recover a coherent reconstruction of all the people in the scene in a feedforward manner.

Recent work has achieved tremendous progress on the frontier of 3D human analysis tasks.

Current approaches have established impressive performance for 3D keypoint estimation [83,

126], 3D shape reconstruction [25, 138], full-body 3D pose and shape recovery [32, 52, 63, 98],

or even going beyond that and estimating more detailed and expressive reconstructions [97,

147]. However, as we progress towards more holistic understanding of scenes and people

interacting in them, a crucial step is the coherent 3D reconstruction of multiple people from

single images.

Regarding multi-person pose estimation, on one end of the spectrum, we have bottom-up

approaches. The works following this paradigm, first detect all body joints in the scene

and then group them, i.e., assigning them to the appropriate person. However, it is not

straightforward how bottom-up processing can be extended beyond joints (e.g., use it for

shape estimation, or mesh recovery). Different from bottom-up, top-down approaches first

detect all people in the scene, and then estimate the pose for each one of them. Although

they take a hard decision early on (person detection), they typically rely on state-of-the-

art methods for person detection and pose estimation which allows them to achieve very

compelling results, particularly in the 2D pose case, e.g., [15, 124, 148]. However, when

reasoning about the pose of multiple people in 3D, the problems can be more complicated

than in 2D. For example, the reconstructed people can overlap each other in the 3D space,

or be estimated at depths that are inconsistent with the actual depth ordering, as is demon-
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Figure 44: Overview of the proposed approach. We design an end-to-end framework for
3D pose and shape estimation of multiple people from a single image. An R-CNN-based
architecture [36] detects all people in the image and estimates their SMPL parameters [78].
During training we incorporate constraints to promote a coherent reconstruction of all the
people in the scene. First, we use an interpenetration loss to avoid people overlapping each
other. Second, we apply a depth ordering-aware loss by rendering the meshes of all the
people to the image and encouraging the rendered instance segmentation to match with the
annotated instance masks.

strated in Figure 43. This means that it is crucial to go beyond just predicting a reasonable

3D pose for each person individually, and instead estimate a coherent reconstruction of all

the people in the scene.

This coherency of the holistic scene is the primary goal of this work. We adopt the typ-

ical top-down paradigm, and our aim is to train a deep network that learns to estimate

a coherent reconstruction of all the people in the scene. Starting with a framework that

follows the R-CNN pipeline [106], a key decision we make is to use of the SMPL parametric

model [78] as our representation, and add a SMPL estimation branch to the R-CNN. The

mesh representation provided by SMPL allows us to reason about occlusions and interpene-

trations enabling the incorporation of two novel losses towards coherent 3D reconstruction.

First, a common problem of predictions from regression networks is that the reconstructed

people often overlap each other, since the feedforward nature does not allow for holistic

feedback on the potential intersections. To train a network that learns to avoid this type

of collisions, we introduce an interpenetration loss that penalizes intersections among the
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reconstructed people. This term requires no annotations and relies on a simple property

of natural scenes, i.e., that people cannot intersect each other. Besides collisions, another

source of incoherency in the results is that the estimated depths of the meshes are not

respecting the actual depth ordering of the humans in the scene. Equipped with a mesh

representation, we render our holistic scene prediction on the 2D image plane and penalize

discrepancies of this rendering from the annotated instance segmentation. This loss enables

reasoning about occlusion, encouraging the depth ordering of the people in the scene to

be consistent with the annotated instance masks. Our complete framework (Figure 44)

is evaluated on various benchmarks and outperforms previous multi-person 3D pose and

shape approaches, while the proposed losses improve coherency of the holistic result both

qualitatively and quantitatively.

To summarize, our main contributions are:

• We present a complete framework for coherent regression of 3D pose and shape for

multiple people.

• We train with an interpenetration loss to avoid regressing meshes that intersect each

other.

• We train with a depth ordering-aware loss to promote reconstructions that respect

the depth ordering of the people in the scene.

• We outperfrom previous approaches for multi-person 3D pose and shape, while recov-

ering significantly more coherent results.

5.2 Related work

In this Section we provide a short description of prior works that are more relevant to ours.

Single-person 3D pose and shape: Many recent works estimate 3D pose in the form of

a skeleton, e.g., [83, 87, 99, 104, 126, 133, 134, 159], or 3D shape in a non-parmetric way,

e.g., [25, 120, 138]. However, here we focus on full-body pose and shape reconstruction in
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the form of a mesh, typically using a parametric model, like SMPL [78]. After the early

works on the problem [31, 117], the first fully automatic approach, SMPLify, was proposed

by Bogo et al . [7]. SMPLify iteratively fits SMPL on the 2D joints detected by a 2D pose

estimation network [103]. This optimization approach was later extended in multiple ways;

Lassner et al . [67] use silhouettes for the fitting, Varol et al . [138] use voxel occupancy grids,

while Pavlakos et al . [97] fit a more expressive parametric model, SMPL-X.

Despite the success of the aforementioned fitting approaches, recently we have observed an

increased interest in approaches that regress the pose and shape parameters directly from

images, using a deep network for this task. Many works focus on first estimating some form

of intermediate representation before regressing SMPL parameters. Pavlakos et al . [101]

use keypoints and silhouettes, Omran et al . [92] use semantic part segmentation, Tung et

al . [137] append heatmaps for 2D joints to the RGB input, while Kolotouros et al . [64]

regress the mesh vertices with a Graph CNN. Regressing SMPL parameters directly from

RGB input is more challenging, but it avoids any hand-designed bottleneck. Kanazawa et

al . [52] use an adversarial prior to penalize improbable 3D shapes during training. Arnab et

al . [5] use temporal context to improve the regression network. Güler et al . [32] incorporate

a test-time post-processing based on 2D/3D keypoints and DensePose [33].

Multi-person 3D pose: For the multi-person case, the top-down paradigm is quite popu-

lar for 3D pose estimation, since it capitalizes on the success of the R-CNN works [29, 106,

36]. The LCR-Net approaches [110, 111] first detect each person, then classify its pose in a

pose cluster and finally regress an offset for each joint. Dabral et al . [17] first estimate 2D

joints inside the bounding box and then regress 3D pose. Moon et al . [88] contribute a root

network to give an estimate of the depth of the root joint. Zanfir et al . [153] rely on scene

constraints to iteratively optimize the 3D pose and shape of the people in the scene. Alter-

natively, there are also approaches that follow the bottom-up paradigm. Mehta et al . [86]

propose a formulation based on occlusion-robust pose-maps, where Part Affinity Fields [11]

are used for the association problem. Follow-up work [85], improves, among others, the
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robustness of the system. Finally, Zanfir et al . [154] solve a binary integer linear program

to perform skeleton grouping.

In the context of pose and shape estimation in particular, there is a limited number of

works that estimate full-body 3D pose and shape for multiple people in the scene. Zanfir et

al . [153] optimize the 3D shape of all the people in the image using multiple scene con-

straints. Our approach draws inspiration from this work and shares the same goal, in the

sense of recovering a coherent 3D reconstruction. In contrast to them, instead of optimizing

for this coherency at test-time, we train a feedforward regressor and use the scene con-

straints at training time to encourage it to produce coherent estimates at test-time. Using

a feedforward network to estimate pose and shape for multiple people has been proposed

by the work of Zanfir et al . [154]. However, in that case, 3D shape is regressed based on 3D

joints, which are the output of a bottom-up system. In contrast, our approach is top-down,

and SMPL parameters are regressed directly from pixels, instead of using an intermediate

representation, like 3D joints. In fact, it is non-trivial to design a framework for SMPL

parameter regression in a bottom-up manner.

Coherency constraints: An important aspect of our work is the incorporation of loss

terms that promote coherent 3D reconstruction of the multiple humans. Regarding our

interpenetration loss, Bogo et al . [7] and Pavlakos et al . [97] use a relevant objective to

avoid self-interpenetrations of the human under consideration. In a more similar spirit to

us, Zanfir et al . [153] use a volume occupancy loss to avoid humans intersecting each other.

In different applications, Hasson et al . [35] penalize interpenetrations between the object and

the hand that interacts with it, while Hassan et al . [34] penalize interpenetrations between

humans and their environment. The majority of the above works uses the interpenetration

penalty to iteratively refine estimates at test-time. With the exception of [35], our work

is the only one that uses an interpenetration term to guide the training of a feedforward

regressor and promote colliding-free reconstructions at test time.

Regarding our depth ordering-aware loss, we follow the formulation of Chen et al . [14],
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which was also used in the context of 3D human pose by Pavlakos et al . [99]. In contrast

to them, we do not use explicit depth annotations, but instead, we leverage the instance

segmentation masks to reason about occlusion and thus, depth ordering. The work of

Rhodin et al . [108] is also relevant, where inferring depth ordering is used as an intermediate

abstraction for scene decomposition from multiple views. Our work also aims to estimate

a coherent depth ordering, but we do so from a single image with the guidance of instance

segmentation, while we retain a more explicit human representation in terms of meshes.

Finally, using instance segmentation via render and compare has also been proposed by

Kundu et al . [66]. However, their multi-instance evaluation includes only rigid objects,

specifically cars, whereas we investigate the, significantly more complex, non-rigid case.

5.3 Technical approach

In this Section, we describe the technical approach followed in this work. We start with pro-

viding some information about the SMPL model (Subsection 5.3.1) and the baseline regional

architecture we use (Subsection 5.3.2). Then we describe in detail our proposed losses pro-

moting interpenetration-free reconstruction (Subsection 5.3.3) and consistent depth ordering

(Subsection 5.3.4). Finally, we provide more implementation details (Subsection 5.3.5).

5.3.1 SMPL parametric model

For the human body representation, we use the SMPL parametric model of the human

body [78]. What makes SMPL very appropriate for our work, in comparison with other

representations, is that it allows us to reason about occlusion and interpenetration enabling

the use of the novel losses we incorporate in the training of our network. The SMPL

model defines a functionM(θ,β) that takes as input the pose parameters θ, and the shape

parameters β, and outputs a mesh M ∈ RNv×3, consisting of Nv = 6890 vertices. The

model also offers a convenient mapping from mesh vertices to k body joints J , through

a linear regressor W , such that joints can be expressed as a linear combination of mesh

vertices, J = WM .
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5.3.2 Baseline architecture

In terms of the architecture for our approach, we follow the familiar R-CNN framework [106],

and use a structure that is most similar to the Mask R-CNN iteration [36]. Our network

consists of a backbone (here ResNet50 [37]), a Region Proposal Network, as well as heads for

detection and SMPL parameter regression (SMPL branch). Regarding the SMPL branch,

its architecture is similar to the iterative regressor proposed by Kanazawa et al . [52], re-

gressing pose and shape parameters, θ and β respectively, as well as camera parameters

π = {s, tx, ty}. The camera parameters are predicted per bounding box but we later update

them based on the position of the bounding box in the full image (details in the Sup.Mat.).

Although there is no explicit feedback among bbox predictions, the receptive field of each

proposal includes the majority of the scene. Since each bounding box is aware of neighbor-

ing people and their poses, it can make an informed pose prediction that is consistent with

them.

For our baseline network, the various components are trained jointly in an end-to-end

manner. The detection task is trained according to the training procedure of [36], while

for the SMPL branch, the training details are similar to the ones proposed by Kanazawa et

al . [52]. In the rare cases that 3D ground truth is available, we apply a loss, L3D, on the

SMPL parameters and the 3D keypoints. In the most typical case that only 2D joints are

available, we use a 2D reprojection loss, L2D, to minimize the distance between the ground

truth 2D keypoints and the projection of the 3D joints, J , to the image. Additionally, we

also use a discriminator and apply an adversarial prior Ladv on regressed pose and shape

parameters, to encourage the output bodies to lie on the manifold of human bodies. Each

of the above losses is applied independently to each proposal, after assigning it to the

corresponding ground truth bounding box. More details about the above loss terms and

the training of the baseline model are included in the Sup.Mat.

95



Figure 45: Illustration of interpenetration loss. Left: Collision between person i (red) and
j (beige). Center: Distance field φi for person i, Right: Mesh Mj of person j. The vertices
of Mj that collide with person i, i.e., located in non-zero areas of φi and visualized with
soft red, are penalized by the interpenetration loss.

5.3.3 Interpenetration loss

A critical barrier towards coherent reconstruction of multiple people from a single image is

that the regression network can often predict the people to be in overlapping locations. To

promote prediction of non-colliding people, we introduce a loss that penalizes interpenetra-

tions among the reconstructed people. Our formulation draws inspiration from [34]. An

important difference is that instead of a static scene and a single person, our scene includes

multiple people and it is generated in a dynamic way during training.

Figure 46: Illustration of depth ordering-aware loss. For an RGB image (first image), we
consider the annotated instance segmentation (second image), and the instances based on
the rendering of the estimated meshes on the image plane (third image). In case that
there is a disagreement between the person index, e.g., for pixel p, where y(p) 6= ŷ(p), we
penalize the corresponding depth estimates at this pixel with an ordinal depth loss. The
pixel depths Dy(p)(p) and Dŷ(p)(p) are estimated by rendering the depth map independently
for each person mesh (fourth and fifth image). This allows gradients to be backpropagated
even to the non-visible vertices.
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Let φ be a modified Signed Distance Field (SDF) for the scene that is defined as follows:

φ(x, y, z) = −min (SDF(x, y, z), 0) , (5.1)

According to the above definition, inside each human, φ takes positive values, proportional

to the distance from the surface, while it is simply 0 outside of the human. Typically, φ

is defined on a voxel grid of dimensions Np × Np × Np. The näıve generation of a single

voxelized representation for the whole scene is definitely possible. However, we often require

a very fine voxel grid, which depending on the extend of the scene, might make processing

intractable in terms of memory and computation. One critical observation here is that we

can compute a separate φi function for each person in the scene, by calculating a tight

box around the person and voxelizing it. This allows us to ignore empty scene space that

is not covered by any person and we can instead use a fine spatial resolution to get a

detailed voxelization of the body. Using this formulation, the collision penalty of person j

for colliding with person i is defined as:

Pij =
∑

v∈Mj

φ̃i(v), (5.2)

where φ̃i(v) samples the φi value for each 3D vertex v in a differentiable way from the 3D

grid using trilinear interpolation (Figure 49). The φi computation for person i is performed

by a custom GPU implementation. This computation does not have to be differentiable;

φi only defines a distance field from which we sample values in a differentiable way. By

definition, Pij is non-negative. It takes value 0 if there is no collision between person i

and j and increases as the distance of the surface vertices for person j move farther from

the surface of person i. In theory, Pij can be used by itself as an optimization objective

for interpenetration avoidance. However, in practice, we observed that it results in very

large gradients for the person translation, leading to training instabilities when there are

heavy collisions. Instead of the typical term, we use a robust version of this objective. More
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specifically, our final interpenetration loss for a scene with N people is defined as follows:

LP =

N∑

j=1

ρ




N∑

i=1,i 6=j
Pij


 (5.3)

where ρ is the Geman-McClure robust error function [26]. To avoid penalizing intersections

between boxes corresponding to the same person, we use only the most confidence box

proposal assigned to a ground truth box.

5.3.4 Depth ordering-aware loss

Besides interpenetration, another common problem in multi-person 3D reconstruction is

that people are often estimated in incorrect depth order. This problem is more evident in

cases where people overlap on the 2D image plane. Although it is obvious to the human eye

which person is closer (due to the occlusion), the network predictions can still be incoherent.

Fixing this depth ordering problem would be easy if we had access to pixel-level depth

annotations. However, this type of annotations is rarely available. Our key idea here is

that we can leverage the instance segmentation annotations that are often available, e.g.,

in the large scale COCO dataset [73]. Rendering the meshes of all the reconstructed people

on the image plane can indicate the person corresponding to each pixel and optimize based

on the agreement with the annotated instance annotation.

Although this idea sounds straightforward, its realization is more complicated. An obvious

implementation would be to use a differentiable renderer, e.g., the Neural Mesh Renderer

(NMR) [56], and penalize inconsistencies between the actual instance segmentation and the

one produced by rendering the meshes to the image. The practical problem with [56] is that

it backpropagates errors only to visible mesh vertices; if there is a depth ordering error, it

will not promote the invisible vertices to move closer to the camera. In practice, we observed

that this tends to move most people farther away, collapsing our training. Liu et al . [76]

attempt to address this problem, but we observed that their softmax operation across the

depths can result in vanishing gradients, while we also faced numerical instabilities.
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Instead of rendering only the semantic segmentation of the scene, we also render the depth

image Di for each person independently using NMR [56]. Assuming the scene has N people,

we assign a unique index i ∈ {1, 2, . . . , N} to each one of them. Let y(p) be the person index

at pixel location p in the ground truth segmentation, and ŷ(p) be the predicted person index

based on the rendering of the 3D meshes. We use 0 to indicate background pixels. If for a

pixel p the two estimates indicate a person (no background) and disagree, i.e., y(p) 6= ŷ(p),

then we apply a loss to the depth values of both people for this pixel, y(p) and ŷ(p), to

promote the correct depth ordering. The loss we apply is an ordinal depth loss, similar in

spirit to [14]. More specifically, the complete loss expression is:

LD =
∑

p∈S
log
(
1 + exp

(
Dy(p)(p)−Dŷ(p)(p)

))
(5.4)

where S = {p ∈ I : y(p) > 0, ŷ(p) > 0, y(p) 6= ŷ(p)} represents the set of pixels for image I

where we have depth ordering mistakes (Figure 46). The key detail here is that the loss is

backpropagated to the mesh (and eventually the model parameters) of both people, instead

of backpropagating gradients only to the visible person, as a conventional differentiable

renderer would do. This promotes a more symmetric nature to the loss (and the updates),

and eventually makes this loss practical.

5.3.5 Implementation details

Our implementation is done using PyTorch and the publicly available mmdetection li-

brary [12]. We resize all input images to 512x832, keeping the same aspect ratio as in

the original COCO training. For the baseline model we train only with the losses specified

in Subsection 5.3.2, while for our full model we include in our training the losses proposed

in Subsections 5.3.3 and 5.3.4. Our training uses 2 1080Ti GPUs and a batch size of 4

images per GPU.

For the SDF computation, we reimplemented [122, 123] in CUDA. Voxelizing a single mesh

in a 32×32×32 voxel grid requires about 45ms on an 1080Ti GPU. For efficiency, we perform

3D bounding box checks to detect overlapping 3D bounding boxes, and voxelize only the
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relevant meshes. Additionally, we reimplemented parts of NMR [56] to make rendering large

images more efficient. This allowed us to have more than an order of magnitude of speedup

since the forward pass complexity dropped from O(Fwh) to O(F + wh) on average, where

F is the number of faces and w and h the image width and height respectively.

5.4 Experiments

In this Section, we present the empirical evaluation of our approach. First, we describe

the datasets used for training and evaluation (Subsection 5.4.1). Then, we focus on the

quantitative evaluation (Subsections 5.4.2 and 5.4.3), and finally we present more qualitative

results (Subsection 5.4.4).

5.4.1 Datasets

Human3.6M [40]: It is an indoor dataset where a single person is visible in each frame.

It provides 3D ground truth for training and evaluation. We use Protocol 2 of [52], where

Subjects S1,S5,S6,S7 and S8 are used for training, while Subjects S9 and S11 are used for

evaluation.

MuPoTS-3D [86]: It is a multi-person dataset providing 3D ground truth for all the people

in the scene. We use this dataset for evaluation using the same protocol as [86].

Panoptic [48]: It is a dataset with multiple people captured in the Panoptic studio. We

use this dataset for evaluation, following the protocol of [153].

MPI-INF-3DHP [84]: It is a single person dataset with 3D pose ground truth. We use

subjects S1 to S8 for training.

PoseTrack [2]: In-the-wild dataset with 2D pose annotations. Includes multiple frames for

each sequence. We use this dataset for training and evaluation.

LSP [46], LSP Extended [47], MPII [3]: In-the-wild datasets with annotations for 2D

joints. We use the training sets of these datasets for training.

COCO [73]: In-the-wild dataset with 2D pose and instance segmentation annotations. We
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Method HMR [52] Arnab et al . [5] Ours

Reconst. Error 56.8 54.3 52.7

Table 18: Results on Human3.6M. The numbers are mean 3D joint errors in mm after
Procrustes alignment (Protocol 2). The results of all approaches are obtained from the
original papers.

use the 2D joints for training as we do with the other in the-wild datasets, while the instance

segmentation masks are employed for the computation of the depth ordering-aware loss.

5.4.2 Comparison with the state-of-the-art

For the comparison with the state-of-the-art, as a sanity check, we first evaluate the perfor-

mance of our approach on a typical single person baseline. Our goal is always multi-person

3D pose and shape, but we expect our approach to achieve competitive results, even in

easier settings, i.e., when only one person is in the image. More specifically, we evaluate the

performance of our network on the popular Human3.6M dataset [40]. The most relevant

approach here is HMR by Kanazawa et al . [52], since we share similar architectural choices

(iterative regressor, regression target), training practices (adversarial prior) and training

data. The results are presented in Table 18. Our approach outperforms HMR, as well as

the approach of Arnab et al . [5], that uses the same network with HMR, but is trained with

more data.

Having established that our approach is competitive in the single person setting, we continue

the evaluation with multi-person baselines. In this case, we consider approaches that also

estimate pose and shape for multiple people. The most relevant baselines are the works of

Zanfir et al . [153, 154]. We compare with these approaches in the Panoptic dataset [48, 50],

using their evaluation protocol (assuming no data from the Panoptic studio are used for

training). The full results are reported in Table 19. Our initial network (baseline), trained

without our proposed losses, achieves performance comparable with the results reported by

the previous works of Zanfir et al . More importantly though, adding the two proposed losses

(full), improves performance across all subsequences and overall, while we also outperform
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Method Haggling Mafia Ultim. Pizza Mean

Zanfir et al . [153] 140.0 165.9 150.7 156.0 153.4
Zanfir et al . [154] 141.4 152.3 145.0 162.5 150.3
Ours (baseline) 141.2 140.3 160.7 156.8 149.8

Ours (full) 129.6 133.5 153.0 156.7 143.2

Table 19: Results on the Panoptic dataset. The numbers are mean per joint position errors
after centering the root joint. The results of all approaches are obtained from the original
papers.

the previous baselines. These results demonstrate both the strong performance of our

approach in the multi-person setting, as well as the benefit we get from the losses we

propose in this work.

Another popular benchmark for multi-person 3D pose estimation is the MuPoTS-3D dataset [84].

Since no multi-person 3D pose and shape approach reports results on this benchmark, we

implement two strong top-down baselines, based on state-of-the-art approaches for single-

person 3D pose and shape. Specifically, we select a regression approach, HMR [52], and

an optimization approach, SMPLify-X [97], and we apply them on detections provided by

OpenPose [10] (as is suggested by their public repositories), or by Mask-RCNN [36] (for

the case of HMR). The full results are reported in Table 20. As we can see, our baseline

model performs comparably to the other approaches, while our full model trained with

the proposed losses improves significantly over the baseline. Similarly with the previous

results, this experiment further justifies the use of our coherency losses. Besides this, we

also demonstrate that näıve baselines trained with a single person in mind are suboptimal

for the multi-person setting of 3D pose. This is different from the 2D case, where a single-

person network can perform particularly well in multi-person top-down pipelines as well,

e.g., [15, 124, 148]. For the 3D case though, when multiple people are involved, making the

network aware of occlusions and interpenetrations during training, can actually be beneficial

at test-time too.
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Method All Matched

OpenPose + SMPLify-X [97] 62.84 68.04
OpenPose + HMR [52] 66.09 70.90

Mask-RCNN + HMR [52] 65.57 68.57
Ours (baseline) 66.95 68.96

Ours (full) 69.12 72.22

Table 20: Results on MuPoTS-3D. The numbers are 3DPCK. We report the overall accuracy
(All), and the accuracy only for person annotations matched to a prediction (Matched).

Method MuPoTS-3D PoseTrack

Our baseline 114 653
Our baseline + LP 34 202

Table 21: Ablative for interpenetration loss. The results indicate the number of collisions
on MuPoTS-3D and PoseTrack.

5.4.3 Ablative studies

For this work, our interest in multi-person 3D pose estimation extends beyond just esti-

mating poses that are accurate under the typical 3D pose metrics. Our goal is also to

recover a coherent reconstruction of the scene. This is important, because in many cases

we can improve the 3D pose metrics, e.g., get a better 3D pose for each detected person,

but return incoherent results holistically. For example, the depth ordering of the people

might be incorrect, or the reconstructed meshes might be positioned such that they overlap

each other. To demonstrate how our proposed losses improve the network predictions un-

der these coherency metrics even if they are only applied during training, we perform two

ablative studies for more detailed evaluation.

First, we expect our interpenetration loss to naturally eliminate most of the overlapping

people in our predictions. We evaluate this on MuPoTS-3D and PoseTrack, reporting the

number of collisions with and without the interpenetration loss. The results are reported in

Table 21. As we expected, we observe significant decrease in the number of collisions when

we train the network with the LP loss.

Moreover, our depth ordering-aware loss should improve the translation estimates for the
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Method Moon et al . [88] Our baseline Our baseline + LD

Accuracy 90.85% 92.17% 93.68%

Table 22: Ablative for depth-ordering-aware loss. Depth ordering results on MuPoTS-3D.
We consider all pairs of people in the image, and we evaluate whether the approaches
recovered the ordinal depth relation between the two people correctly. The numbers are
percentages of correctly estimated ordinal depth relations.

people in the scene. Since for monocular methods it is not meaningful to evaluate metric

translation estimates, we propose to evaluate only the returned depth ordering. More

specifically, we consider all pairs of people in the scene, and we evaluate whether our method

predicted the ordinal depth relation for this pair correctly. In the end, we report the

percentage of correctly estimated ordinal relations in Table 22. As expected, the depth

ordering-aware loss improves upon our baseline. In the same Table, we also report the

results of the approach of Moon et al . [88] which is the state-of-the-art for 3D skeleton

regression. Although [88] is skeleton-based and thus, not directly comparable to us, we

want to highlight that even a state-of-the-art approach (under 3D pose metric evaluation)

can still suffer from incoherency in the results. This provides evidence that we often might

overlook the coherency of the holistic reconstruction, and we should also consider this aspect

when we evaluate the quality of our results.

Finally, we underline that we do not apply these coherency losses at test time. Instead,

during training, our losses act as constraints to the reconstruction and ultimately provide

better supervision to the network, for images that no explicit 3D annotations are available.

The improved supervision leads to more coherent results at test time too.

5.4.4 Qualitative evaluation

In this Subsection, we present more qualitative results of our approach. In Figure 47 we

compare our baseline with our full model trained with the proposed losses. As expected,

our full model generates more coherent reconstructions, improving over the baseline as far

as interpenetration and depth ordering mistakes are concerned. Errors can happen when

there is significant scale difference among the people and there is no overlap on the image
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Figure 47: Qualitative effect of proposed losses. Results of our baseline model (center) and
our full model trained with our proposed losses (right). As expected, we improve over our
baseline in terms of coherency in the results (i.e., fewer interpenetrations, more consistent
depth ordering for the reconstructed meshes).

Figure 48: Qualitative evaluation. We visualize the reconstructions of our approach from
different viewpoints; front (green background), top (blue background) and side (red back-
ground). More qualitative results can be found in the Sup.Mat.

plane (last row of Figure 48). More results can be found in the Sup.Mat.

5.5 Summary

In this work, we present an end-to-end approach for multi-person 3D pose and shape esti-
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mation from a single image. Using the R-CNN framework, we design a top-down approach

that regresses the SMPL model parameters for each detected person in the image. Our

main contribution lies on assessing the problem from a more holistic view and aiming on

estimating a coherent reconstruction of the scene instead of focusing only on independent

pose estimation for each person. To this end, we incorporate two novel losses in our frame-

work that train the network such that a) it avoids generating overlapping humans and b)

it is encouraged to position the people in a consistent depth ordering. We evaluate our

approach in various benchmarks, demonstrating very competitive performance in the tra-

ditional 3D pose metrics, while also performing significantly better both qualitatively and

quantitatively in terms of coherency of the reconstructed scene. In future work, we aim to

more explicitly model interactions between people (besides the overlap avoidance), so that

we can achieve a more accurate and detailed reconstruction of the scene at a finer level as

well. In a similar vein, we can incorporate further information towards a holistic reconstruc-

tion of scenes. This can include constraints from the ground plane [153], background [34],

or the objects that humans interact with [35, 131].

5.6 Supplementary Material

This supplementary material includes additional details that were not included in the main

manuscript due to space constraints. We start with more implementation details (Sec-

tion 5.6.1). We continue with a short discussion about the effect of the model and the losses

in our approach (Section 5.6.2). Then, we provide further results from our quantitative

experiments (Section 5.6.3). Finally we extend our qualitative evaluation, including more

examples of our approach, including successes, failures and comparisons with the baseline

model (Section 5.6.4).

5.6.1 Implementation details

Architecture

Our architecture follows the typical Faster-RCNN pipeline [106], where we add an additional

branch for SMPL parameter regression. This branch follows the architecture choices of the
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iterative regressor proposed by Kanazawa et al . [52]. Ultimately, the output of the SMPL

branch includes the estimated pose and shape parameters for the corresponding bounding

box, θ and β respectively, as well as the camera parameters π = {s, x, y}. In the original

HMR formulation [52], the camera parameters include a scaling factor s, as well as a 2D

translation tx, ty for a weak perspective camera. However, in order to produce a coherent

scene we need to move away from the original weak perspective camera assumption. To do

that, we propose a way of converting the camera parameters π to the actual translation of

each person in the scene.

Let us represent with Mi, πi = {si, xi, yi}, the regressed mesh and camera parameters

respectively for the ith bounding box Bi in an image I with width w and height h. For

each image, we assume we have a single camera located at the origin of the coordinate

system with focal length f and its principal point at the center of the image. We underline

that the camera parameters we regress are not for weak perspective projection. Instead,

we assume a fully perspective camera model, where the focal length f is known. Let

Bi = [xmin, ymin, xmax, ymax], with center ci = [(xmin + xmax)/2, (ymin + ymax)/2] and size

αi = max (xmax − xmin, ymax − ymin). Given these parameters, the depth of the person is

calculated as:

di =
2f

siαi
(5.5)

Using the computed depth, we then define the person translation as:

ti =




di (xiαi + ci,x − w/2) /f

di (yiαi + ci,y − h/2) /f

di




(5.6)

The above transformation performs a “coordinate change” from the local, per-bounding

box camera to the single global scene camera. This choice ensures that the projection

of t̂i = [xi, yi, di] given a camera with principal point at the center of the bounding box,

projects to the same point, as ti given a camera with principal point in the image center.
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Intuitively, the SMPL branch predicts camera parameters for each box independently. These

parameters are relative to the bounding box size, because the input to the SMPL head is

the 14× 14 output of the ROI Align, so they have to be scaled accordingly.

Interpenetration loss

Here we will elaborate more on how the interpenetration loss works in cases where there are

collisions between different people. In the main text we defined the interpenetration loss

for a scene as:

LP =
N∑

j=1

ρ




N∑

i=1,i 6=j
Pij


 . (5.7)

As explained in the main text, the loss for each person is applied at the vertex level; for

person j, we penalize all the vertices that lie inside another person i and that penalty

specifically is:

Pij =
∑

v∈Mj

φ̃i(v). (5.8)

Because the loss is applied at the vertex level, Pij is not symmetric. This is depicted with

an example showing a collision between two people in Figure 49.

Training strategy

We observed that the tasks of detection and 3D shape reconstruction behave quite differ-

ently during training, with the reconstruction branch needing significantly more training

iterations than the detection branch. For this reason, before training the full network end-

to-end, we pretrained the SMPL head with cropped images for roughly 350K iterations.

The pretraining was done using single-person examples from Human3.6M [40], MPI-INF-

3DHP [84], COCO [73], LSP [46], LSP Extended [47] and MPII [3]. After this step, training

continues with multi-person images for 400k more iterations. For our full model, our pro-

posed losses are also active in this second step, while for the results reported as “baseline”,

they are not. We trained our full model in 2 1080Ti GPUs with a learning rate of 1e − 4

using the Rectified Adam optimizer [75]. Regarding the weights for the different loss func-

tions, we use 4 for the keypoint reprojection loss, 4 for the 3D keypoint loss, 1 for the loss
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Figure 49: Illustration of interpenetration loss. Top: Collision between two people. Center:
Distance field φ2 for person 2 and penalized vertices of person 1. Bottom: Distance field φ1

for person 1 and penalized vertices of person 2.

on the SMPL θ parameters, 1/100 for the loss on the SMPL β parameters, 1/60 for the

adversarial prior, 1/100 for the collision loss, 100 for the depth ordering loss, and 1 for the

detection and RPN losses.

Before applying the 2D keypoint loss, we normalize the keypoints inside each box proposal

by subtracting the box center and dividing by the box width. The other losses of the SMPL

branch (3D keypoint loss, loss on the SMPL parameters, loss on the adversarial prior) are

computed the same way as in HMR [52].

5.6.2 Effect of model and losses

For the ResNet50 backbone, each neuron has a receptive field of size 483× 483 pixels. This

means that for a h×w bounding box, the receptive field is (h+482)×(w+482). Considering

that the input images have resolution 512× 832 pixels, for a bounding box, we expect most

109



of its neighboring people to be within its receptive field. The most interesting scenario is

when we have three people, A, B and C, where A overlaps with B, B overlaps with C, but

A does not overlap with C. This is challenging, since C might not be “visible” from A and

vice versa. In that case, it would be hard to get a coherent prediction for the whole group.

To examine how often this occurs, we investigated the statistics of the datasets we used.

Specifically we focused in this (A,B,C), scenario, where B can correspond to more than one

person, i.e., we can have a longer chain. Considering the receptive field of our architecture,

we observed that in most cases C is “visible” from A. Particularly, across all the cases where

this (A,B,C) scenario happens, in 88% of cases for Panoptic, in 92% of cases for MuPoTS,

and in 91% of cases for PoseTrack, person C is included in the receptive field of A. We

expect that with a deeper network, that has a larger receptive field, e.g., ResNet152, these

percentages will be even higher.

Regarding our proposed losses, they belong in the category of cross-instance supervision.

Cross-instance losses have also been applied successfully in recent works, e.g., [35, 66].

Effectively, during training, to decrease these losses, the network needs to develop features

that help avoid coherency errors. The learned features can be related to depth, occlusion,

segmentation of the person, etc. Since the losses decrease during training, the network does

generate helpful features. More importantly, this translates also to improvement at test

time (Tables 4,5 in main manuscript present improvements in unseen datasets particularly

for collisions and depth ordering). This is a strong indication that the network is not

overfitting, but it is indeed learning features that generalize across scenes, and encourage it

to make coherent predictions at test time too.

5.6.3 Quantitative results

First we provide a more detailed evaluation of our proposed losses on the MuPoTS-3D

dataset [86]. We have already reported the results of our baseline and our full model in

Table 3 of the main manuscript, but here we extend to a more fine-grained ablative study.

The complete results for different versions of our model are presented in Table 23. Based
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Method All Matched

Our baseline 66.95 68.96
Our baseline + LP 67.84 70.00
Our baseline + LD 66.59 68.43
Our baseline + LP + LD 69.12 72.22

Table 23: Ablative on MuPoTS-3D. The numbers are 3DPCK. We report the overall accu-
racy (All), and the accuracy only for person annotations matched to a prediction (Matched).

on the results, we see that the use of the interpenetration loss alone improves slightly the

results over the baseline, while with the depth ordering-aware loss alone we observe a small

decrease in the accuracy. However, when we combine the two losses together, we achieve

better results, both compared to the baseline, as well as compared to the versions using

only one of the two losses alone.

Regarding the comparison with the state-of-the-art in the main manuscript, our evaluation

has focused on approaches that estimate 3D pose and shape in the form of the SMPL

parametric model [78]. This is common in the literature, where SMPL-based approaches,

e.g., [52, 92, 101] do not directly compare with skeleton-based approaches, e.g. [83, 126],

and vice versa, because of the different output they provide. Typically, skeleton-based

approaches report better quantitative results when compared on metrics using 3D joints,

but SMPL-based approaches still output a more informative representation in the form of

3D rotations for each part, making the task harder than only estimating 3D joint locations.

Although we are not directly comparable with skeleton-based approaches, we observe that

on MuPoTS-3D [86] our approach still performs better than [110, 86], it is competitive

to [111] and is underperforming only when it is compared to the most recent baseline,

i.e., [88]. However, this comparison is done under the traditional 3D pose metrics, which

are computed on 3D joints of individual people only. When the evaluation is performed on

a metric that requires coherent estimation for all the people in the scene, e.g., on depth

ordering, we observed that even the state-of-the-art approach of Moon et al . [88] performs

worse than our approach. Concerning the evaluation with the single-person pose and shape
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Method TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18 TS19 TS20 Avg

All
Ours (baseline) 76.42 65.75 71.59 66.26 76.89 32.89 74.01 67.68 60.52 78.88 57.81 55.55 64.38 59.68 70.87 75.01 69.84 69.60 75.19 70.18 66.95

Ours (full) 80.60 68.65 67.02 68.19 77.78 38.99 74.01 67.88 54.69 77.11 63.77 64.73 64.40 60.37 72.71 83.68 75.53 76.91 74.40 70.67 69.12

Matched
Ours (baseline) 76.42 71.91 71.77 66.48 79.16 32.92 74.30 68.93 60.52 78.88 57.81 55.55 66.80 70.80 70.87 75.71 69.95 73.08 76.55 80.89 68.96

Ours (full) 80.60 76.59 67.19 68.42 80.24 40.33 74.71 70.77 54.69 77.11 64.88 64.73 67.92 72.91 72.84 85.03 75.97 81.89 78.52 89.04 72.22

Table 24: Full results on MuPoTS-3D. The numbers are 3DPCK. We report the over-
all accuracy (All), and the accuracy only for person annotations matched to a prediction
(Matched).

baselines our comparison focuses primarily on HMR [52], that is more similar to us in

terms of architecture, training details, and training data. Some more recent approaches,

e.g., [32, 63, 98, 150] report improved results on single-person datasets, but they rely on

improved training techniques or architectures. These improvements are orthogonal to ours,

since we focus on improving the multi-person results, and not the single-person case as they

do.

For the evaluation on MuPoTS-3D, we only presented the mean accuracy over all sequences.

Here we also provide a more detailed evaluation for each sequence. The complete results

are included in Table 24. As we can see, for most sequences, and overall, the version of our

model trained with the proposed losses outperforms our baseline.

Besides the above experiments, we also present additional ablatives to clarify the effect of

using different datasets to train our system. Similar to Kanazawa et al . [52], we use a large

set of datasets to train our network, since we observed that this diverse set of images is

helpful for better generalization to in-the-wild settings. However, for simpler indoor settings,

like Human3.6M [40] and Panoptic [48, 50], using only COCO [73] and Human3.6M [40] for

training provides comparable results. To focus on the effect of the data specifically on pose

reconstruction, we investigate a simpler setting where we train only the ResNet backbone

and the SMPL head, providing ground truth bounding boxes during testing. As we can see

in Table 25 for Panoptic and Table 26 for Human3.6M, for these indoor datasets, training

with all the data achieves similar performance with training only with Human3.6M and

COCO. It is also interesting to observe that using ground truth bounding boxes instead of

detections improves performance for Human3.6M, but it hurts performance on Panoptic.
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Data MoSh Haggling Mafia Ultim. Pizza Mean

All data Yes 155.4 178.6 179.7 186.1 175.0
COCO+H36M Yes 157.5 180.3 178.3 191.7 177.0
COCO+H36M No 158.7 176.4 175.0 190.4 175.1

Table 25: Ablative on the Panoptic dataset. We focus on the ResNet backbone and the
SMPL head (i.e., we use ground truth bounding boxes) and we ablate different training
strategies; using all training data (first row), reducing the training data to COCO and
Human3.6M datasets only (second row), and abandoning MoSh parameters (third row).
All the different versions have comparable results.

Data MoSh Reconst. Error

All data Yes 48.6
COCO + H36M Yes 50.5
COCO + H36M No 51.4

Table 26: Ablative on Human3.6M dataset. We focus on the ResNet backbone and the
SMPL head (i.e., we use ground truth bounding boxes) and we ablate different training
strategies; using all training data (first row), reducing the training data to COCO and
Human3.6M datasets only (second row), and abandoning MoSh parameters (third row).
The different versions have comparable results. The numbers are mean 3D joint errors in
mm after Procrustes alignment (Protocol 2).

This can be attributed to the fact that Panoptic has many truncated human instances, so

learning to jointly crop the most informative bounding box along with reconstructing the

person can be beneficial compared to be given an arbitrary bounding box at test time.

Additionally, we also ablate the type of supervision we use for Human3.6M. Similar to [52],

we use SMPL parameters provided by fitting SMPL to surface markers through MoSh [77].

To see if we can relax this constraint, we also use SMPL parameters provided by fitting

SMPL to Human3.6M 3D keypoints, using a procedure similar to SMPLify [7]. Again the

results are comparable (Tables 25 and 26), which means that our performance does not rely

explicitly on the availability of MoSh parameters.

5.6.4 Qualitative results

For our qualitative evaluation, in Figure 50, we provide more comparisons between our

baseline model and our full model trained with our proposed losses. Then, in Figures 51

and 52 we provide more successful reconstructions from the datasets we use in our evalua-
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tion. Finally, in Figure 53 we present some representative failure cases of our approach.

Figure 50: Qualitative effect of our proposed losses. Given an input image (first column), we
provide results of the baseline model (second and third column) and our full model trained
with our proposed losses (fourth and fifth column). As expected, we improve over our
baseline in terms of coherency in the results (i.e., fewer interpenetrations, more consistent
depth ordering for the reconstructed meshes). For the first image, the visualization focuses
only on the two people in the foreground and the rest are ignored.
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Figure 51: Successful reconstructions (1). We visualize the reconstructions of our approach
from different viewpoints.
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Figure 52: Successful reconstructions (2). We visualize the reconstructions of our approach
from different viewpoints.

Figure 53: Failure cases. We visualize the reconstructions of our approach from different
viewpoints. For the first image, the person on the right is slightly shorter than the person
on the left, but this is hard to perceive by our model, that estimates roughly the same
height for both people and positions the person on the right to be farther away from the
camera. For the second image, our model estimates the depth ordering correctly, but clearly
overestimates the distance between the two people, which are almost in contact.
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