University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
Philadelphia, Pennsylvania

TECHNICAL REPORT

A COMMAND AND QUERY LANGUAGE ASSEMBLER FOR
AN EXTENDED DATA MANAGEMENT SYSTEM

by

Jorge Gana

April 1971

Submitted to the
Office of Naval Research
Information Systems Branch
Arlington, Virginia

under
Contract NOOO1lL4-6T7-A-0216-001k
Research Project NR O49-153

Reproduction in whole or in part is
permitted for any purpose of the
United States Government

Moore School Report No. 71-22

A COMMAND AND QUERY LANGUAGE ASSEMBLER FOR
AN EXTENDED DATA MANACEMENT SYSTEM

For a data management system with information storage and retrieval
capabilities a language is needed by which a user of the system can
specify the records he wishes to retrieve and the operations he wishes
to perform on these records. The Command and Query Language under dis-
cussion was developed to meet these needs for the extended data manage-
ment system. Its development was divided into two spheres of responsi-
bility. The first sphere, referred to as the Assembler, centers on the
routines needed for accepting and translating user requests. The second
sphere centers on those routines needed for executing the translated
requests. These routines are called collectively the Interpreter. The
design of the Command and Query Language and the implementation of the
Assembler is the topic of this report.

Basically, the Language enables the user to specify the records by
means of the logical and arithmetic expression of keywords. Since pro-
gram nemes may be keywords, the user can specify operations (to be per-
formed on records) with keyword expressions as well

The design of the Language involves the following steps:

(l) Define the requirements of the Language.

(2) Define the (external) syntax and semantics of the Language.

(3) Design an internal form of the Language to allow efficient
processing by the Interpreter.

The design and implementation of the Assembler will result in the
necessary routines which can check the syntax of the Language and trans-
from the Language from its external syntax to internal form.

Securitx Classification —— .
DOCUMENT CONTROL DATA-R&D

(Security claasilication of title, body of abatract end lndoxfn} annotation muat be entered when the oversil report ts classified)
1. ORIGINATING ACTIVITY (Corporate author) 20, REPORT SECURITY CLASSIFICATION

University of Pennsylvania
The Moore School of Electrical Engineering 5 SNCLASSIHIED

Philadelphia, Pa. 1910k

3. REPORT TITLE

A COMMAND AND QUERY IANGUAGE ASSEMBLER FOR AN EXTENDED DATA MANAGEMENT SYSTEQQ

4. DESCRIPTIVE NOTES (Type of report and, Inclusive dates)

Technical Report

J 8- AUTHOR(S) (Firat name, middle initial, laat name)

Jorge Gana
6. NEPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1971 70 8 .
%a. CONTRACT OR GRANT NO. %8, ORIGINATOR'S REPORT NUMBER(S)
NOOO14-67-A~0216-0014 Moore School Report No. 71-22
b. PROJECT NO.
NR 049-153
c. 9b. O'm:a REPORT NO(S) (Any other numbers that may be assigned

this report)

d.
10. DISTRISBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Information Systems Branch
S— Arlington, Virginia

' For a data management system with information storage and retrieval capabili-
ties a language is needed by which a user of the system can specify the records he
wishes to retrieve and the operations he wishes to perform on these records. The
Command and Query Language under discussion was developed to meet these needs for the
extended date management system. Ite development was divided into two spheres of
responeibility. The first sphere, referred to as the Assembler, centers on the routineﬂ;
needed for accepting and translating user requests. The second sphere centers on ,
those routines needed for executing the translated requests. These routines are
called collectively the Interpreter. The design of the Command and Query Language and
the implementation of the Assembler is the topic of this report.

Basically, the Language enables the user to specify the records by means of
the logical and arithmetic expression of keywords. Since program names may be keywordsj
the user can specify operations (to be performed on records) with keyword expressions

as well.

The design of the Language involves the following steps:

(1) Define the requirements of the Language.

(2) Define the (external) syntax and semantics of the Language.

(3) Design an internal form of the Language to allow efficient processing
by the Interpreter.

The design and implementation of the Assembler will result in the necessary
routines which can check the syntax of the Language and transform the Language from its

: g)c,‘

DD o473 (Pace 1 IR

S/N 0101-807-6811 : . ' ity Classific
Security Classilication i 31408

Security Classification

KEY WORDS

LINK A LINK B

LINK C

ROLE

wT ROLE wT

ROLE wT

Assembler

COBOL

Command language
Control programs
Data management
FORTRAN
Interfacing
Interpreter
Logic

Query language
Semantics

Syntax

Systems design

Translation routine

D

|'u°onv“u1 4 73 (BACK)

S/N 0101-807-6821

Security Classification

A-31409

TABLE OF CONTENTS

Page
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 OVERALL SYSTEM DESIGN CONSIDERATIONS L
2.1 Interfacing with the Existing Operating System L4
2.2 Use of High-Level Source Programming Language P
2.3 TSOS Compatibility >
CHAPTER 3 THE COMMAND AND QUERY LANGUAGE 7
3.1 The Interpreter T
3.1.1 TSOS Procedure (PROC) Files 8
3.1.2 PROC File Commands 8
3.1.3 Use of TSOS PROC Files 9
3.1.4 Terminal Command Processor 9
3.1.5 Interface with the Assembler and Interpreta-
tion Flow 10
3.2 The Asseumbler 12
3.2.1 Syntax and Semantics 14
3.2.2 Additional Requirements of the Assembler 19
3.2.3 gervice Request Options 20
3.2.4 Adding and Testing New Supervisor Calls 21
CHAPTER 4 DESIGN AND IMPLEMENTATION OF THE ASSEMBLER . 23
4.1 TLogical Expressions Translation Routine (LOGTRAN) 23
4.2 Statements Translation Routine (STATRAN) 27
4.3 Format of the Command Elements 30
4.3.1 The Formal Parameter Command 30
4.,3.2 The Retrieve Command 31
4.3.3 The Continue Command 32
4.3.4 The Restore Command 32

TABLE OF CONTENTS (continued)

CHAPTER 5 CONCLUSIONS

BIBLIOGRAPHY

APPENDIX A ROUTINE LOGTRAN

Al
A.2
A.3
AL
A5
A6
A.T
A8

A.Q

Entry Points

Exit Points

Input Parameter List
LOGTRAN Output
Return Codes
Register Conventions
Internal Work Area
Internal Codes

Flowchart

APPENDIX B ROUTINE STATRAN

B.1
B.2
B.3
B.L
B.5
B.6

APPENDIX C RESTORE COMMAND SERVICING ROUTINE

Cc.1

C.2 External Subroutine Calls

C.3

APPENDIX D EXAMPLES OF PROCEDURE FILE CREATION

Entry Point

Exit Point

External Subroutine Calls

Register Conventions

Internal Work Aresa

Flowchart

Input

Flowchart

APPENDIX E RETRIEVAL SESSION

vi

Page

B-1
B-1
B-2
B-3

B-k

CHAPTER 1

INTRODUCTION

In information storage and retrieval a language 1s needed by which
a user of the facility can specify the records he wishes to retrieve,
and the operations he wishes to perform on those records. We called
the language "Query Language" [1]. The Query Language for an Extended
Data Management System should not be restricted to any standard informa-
tion retrieval language, (e.g., languages suitable for document retrieval
only) particularly since it is going to be used by a large number of users
of different disciplines who need to share the resources and data of the
system in a common storage. The Query Language should be capable of
providing flexibility in all levels, e.g., enabling the user to bring
a program from his file for execution and providing this program with
parsmeters or data which in turn can be new executable programs or
records. For specifying records, the language should allow the user to
describe records in terms of the logical and arithmetic expression of
keywords. These records may be data records or programs. They are
both stored in files. Records may be processed by system programs or
by user's programs. The former is accomplished through the use of
commands, and the latter through the use of the query language.

The subject of this report is the design and implementation of a
Command and Query Language in agreement with the requirements just
described above, which can be summarized as follows:

1) The user must be able to write procedures, have them executed,
and, if desired, have them stored for repeated use at a later time.

2) The user mist be able to request the execution of any of his

own programs stored in his files, any pre-defined system routines, any

-1 -

procedures he has defined, and any programs or procedures of other
users to which he has access rights.

3) The user must be able to supply input parameters and data to
programs or procedures he is using, providing format information about
these parameters or data where necessary.

4) The user must be able to provide logical expressions of key-
words as data, and provide abbreviations (called local names) for long
expressions to facilitate procedure writing.

The Command and Query Language under discussion was developed to
meet these needs for an extended data management system.

The language format was designed with the following requirements
in mind:

1) The format must allow the writing of statements to satisfy
all the above requirements.

2) The format should be as simple as possible to facilitate the
ease of using the language.

3) The format should not require writing excessive amount of
material unless the material aids in the user's understanding.

Its development was divided into two spheres of responsibility.
The first sphere, referred to as the Assembler, centers on the routines
needed for accepting and translating user requests from external to
internal encoded format. The second sphere centers on those routines

needed for executing the translated request. These routines are

called collectively the Interpreter.

The design of the Command and Query Languege involves the follow-
ing steps:

1) Define the requirements of the Language.

2) Define the (external) syntax and semantics of the Language.

3) Design an internal form of the Language to allow an efficient

processing by the Interpreter.

The design and implementation of the Assembler will result in the

necessary routines which can check the syntax of the Language and trans-

form the Language from its external syntax to its internal form.

CHAPTER 2

OVERALL SYSTEM DESIGN CONSIDERATIONS

In order to define the requirements of the query language, it is
necessary first to specify the objectives and design goal of the Extended
Data Management System [2]. Many suggestions were made at the beginning
of the design development of the system as to ways the system should be
implemented, areas of useful research or things the system should do.

The more important suggestions, that have relevance in relation to the
query language design, together with the result of the consideration of
these suggestions, are presented below.

2.1 Interfacing with the Existing Operating System

The RCA Spectra TO/46, on which the Extended Data Management System
is to operate, has a powerful general purpose, time-sharing operating
system (TSOS). In order to make available to the users all our new
facilities, it was decided to bulld our system as a part of the existing
TSOS system and to make use of its facilities as much as possible. This
adds the flexibility that all facilities are given to the user as part
of the general purpose system instead of a dedicated system. This
decision involved three major areas of the operating system:

1. Use of Existing Control Program Elements

2. Use of Existing Data Management System (DMS)

3. Use of Existing Command Language Facilities

The Commend Language for RCA TSOS not only has extensive features
in its own right, but contains certain features which not only make for
Tlexible use of the Command Language, but are helpful in adding new
commands to the system. One of these features, is the Interpretive

Scan Processor (ISP), a table driven interpreter which allows new commands

-4 -

-5 -

to be defined using existing system macro-instructions. Another is the
Terminal Command Processor (TCP), which decodes the commands as they
come in, calls the ISP to interpret them, then gives control to the
appropriate servicing routine to handle the command. It was decided
that this existing Command Language system, with certain modifications
would be completely suitable for handling our command initial processing
requirements.

2.2 Use of High-Level Source Programming Language

Another consideration was that of using a high-level source
language (such as FORTRAN or COBOL) for programming the system, rather
than assembly language - the traditional source language for system
programing.

The obstacle which forced the project to abandon this ldea was
that our system routines, like most of the rest of the TSOS components,
have to be reentrant, i.e. usable by several programs at the same time.
Special programming techniques must be used to produce reentrant pro-
grams, and it was found that the object programs produced by the high-
level programming languages available under TSOS could not be made
reentrant. The possibility of converting & high-level language com-
piler from another computer (e.g. IBM 360 PL/1) which could produce
reentrant object programs was investigated, but it was found that the
conversion problems were too great for this idea to be used. It was
therefore decided to write our system routines in assembly language,
using reentrant coding techniques.

2.3 TS0S Compatibility

One of the design goals of the Extended Data Management Facility

was to have a non "dedicated" system to our requirements, but rather a

general purpose time~sharing facility. By general purpose we meen that

it can be used by people who may use our special features, people who
maey use only the existing system features and people who may want to
use both features. Thus it was decided that:

1) users who did not wish to make use of our advanced data
management features should be able to run standard TSOS programs on
the new system without change; and

2) the use of our components by some users should not degrade
performance for other users of the system.

These considerations affected the decision on whether or not to

use the existing Data Management System and how to modify the Commend

Language.

CHAPTER 3

THE COMMAND AND QUERY LANGUAGE

The development of the Command and Query Language and its peripheral
requirements was divided into two distinct spheres of responsibility.
The first of these spheres centers on routines referred to as the Assembler
needed for accepting and translating user request. The basic assembly
routine (STATRAN), the logical expression translation routine (LOGTRAN)
and other routines of the Assembler are discussed in Chapter 4 of this
thesis. The second sphere centers on those routines needed for trans-
forming the translated requests into a form which the Supervisor of the
Extended Data Management Facility will accept and act upon. These rou-
tines are called collectively the Interpreter [3]. Based upon the user
requests, the first routine of the Interpreter sets up a modified TSOS
Command Language Procedure File which is the standard TSOS convention
for placing the incoming terminal commands and statements as briefly
discussed in Section 3.1. The Command Language Procedure File can then
be processed by other routines of the Interpreter for the appropriate
actions as requested by the user. Following is a brief discussion of
some Interpreter functions followed by the complete Assembler require-
ments in detail.

3.1 The Interpreter

The following is & brief discussion of some functions of the RCA
time sharing operating system which is essential in understanding the

mechanism of the Interpreter and its interface with the Assembler.

3.1.1 TSOS Procedure (PROC) Files

The RCA Time Sharing Operating System reads all commands from
a system logical file named SYSCMD. If the tasks are non-conversational
(i.e., entered from the card reader), SYSCMD is defined as the card
reader (or more specifically the SPOQI, file created from the card input).
For conversational tasks (entered from terminals), SYSCMD is defined
as the terminal the user is on, In this case, the user may directly
issue system commands from his terminal. TSOS also provides a method
whereby SYSCMD may be redirected so that the system accepts commands from
a temporary command file which has been cataloged in the system. Such
a temporary command file, created in the same way as any other file, is
referred to as a Procedure File or PROC File. Much of the detailed
information concerning PROC files is not pertinent in this thesis, and
may be obtained from the appropriate RCA publications. However, since
certain information about PROC files is considered critical and essential
to the understanding of how these PROC Files are used by the Assembler
and Interpreter, this material is covered below.
3.1.2 PROC File Commands

A TSOS PROC File must be a cataloged sequential or indexed-sequen-
tial file. It must contain nothing'but defined TSOS Command Language
statements. In particular, the PROC File must begin with the /PROCEDURE
(or /PROC) command and end with the /ENDP command. The command /DO [proc
file name] will direct the system to begin accepting commands from the
specified PROC file instead of the current command input file, i.e. the
SYSCMD. A PROC File can contain DO commands, and the PROC file thus
referenced can also contain DO commands to any level. However, a

PROC File cannot return control to the PROC File that called it. Control

L always returned to the original command file (reader or terminal).
'me /ENDP command is the command used to return control from a PROC File
to the primary command input file. There may be several /ENDP commands
in a PROC File. When it is encountered, anyone of these /ENDP commands
will return control to the primary command file.

3.1.3 Use of TSOS PROC Files

A typical use of the standard TSOS PROC File can be illustrated as
follows: the job of compiling, linkage editing and executing & source
program under TSOS requires approximately 12 Command language statements,
most of which are the same for any job of the same type. The PROC File
allows these common statements to be placed in a file once, to be called
by a programmer for repeated use without having to write out all of the
control statements each time they are used.

3.1.4 Terminal Command Processor

The existing TSOS Terminal Command Processor and certain of its
commands have shown to be useful to our implementation. Through the use
of these commands, the Terminal Command Processor is incorporated to do
a large share of the work assigned to the Interpreter.

To understand how the Terminal Command Processor is utilized we
should first briefly discuss how it works and also one special capability
that is associated with it.

When a user issues a command from a terminal, the Terminal Command
Processor reads this command and then scans & table consisting of the
names of each TSOS command and the address of the command servicing
routine for handling that particular command. It then branches to that
routine. The special capability mentioned above is that a user may

create a PROC File consisting of a list of TSOS commands, catalog and

- 10 -

store it, and then have the Terminal Command Processor process the

list of commands at some later time. Processing of the list is
initiated by issuing the command /DO [file name], where file name is the
name of the user created file containing the list of commands. The last
command of the list should be the /ENDP command. The routine associated
with this command is a "clean up" routine. It closes the PROC File,
releases any memory acquired by the /DO command, and resets switches to
allow the Terminal Command Processor to return to normal processing
methods, i.e., directing the system to accept commands from the SYSCMD
again. The above described functions were used extensively by our
Query Language processors. The concept of procedure is expanded in our
facility to include any set of storage and retrieval statements and new
commands in addition to the TSOS commands. Furthermore, the use of PROC
Files makes possible the use of formal parameters and local names in sets
of retrieval requests.

Since the addition of new commands and their respective servicing
routines can be done without too much difficulty to the existing Opera-
ting System, and since this would be a good way to make certaln functions
of the Data Management System quickly and easily available to the user,
the decision was made to add certain new system functions as commands to
the Command Language. These commands include a formal parameter command,
a retrieve command, an execute command, and a continue command. For
detailed informaetion about these commands and further Interpreter func-
tions see [3].

3.1.5 Interface With the Assembler and Interpretation Flow
The flow of events following the initiation of the assembly pro-

cesses will now be discussed. The Assembler itself is run as a user

- 11 -

program (a Class I program). This allows direct control by the user over
the assembly process, and enhances future modifications of the Assembler
and the use of the function BREAK to interrupt and resume the assembly
process.

Initially, after it takes control and before it accepts any data
from a terminal, the Assembler passes control to the Interpreter. At
this point the Interpreter catalogs, allocates, and opens a file to be
used as the PROC File. The name given to this file is the one specified
by the user as the name for his procedure. Also the command /PROC is
placed into the file as the first statement (sometimes called 'record')
of the file. Finally control passes back to the Assembler.

Whenever the Assembler accepts from the user an executable state-
ment, control is passed to the Interpreter again. The Interpreter now
does one of three things before passing control back to the Assembler.

1. If the statement was a TSOS command then the command is
entered as avrecord in the PROC File exactly as it came from the terminal;

2. If the stetement was a request for execution of a user program,
then the command /EXEC [program name] is entered as the record in the
PROC File. This command is an existing TSOS command when the user pro-
gram doesn't have any parameter. If the user requests the execution of
a program which requires parameters (e.g., the program may require a
logical expression or other data as parameters), then the command

/MEXEC, [program name],PARAM=C'[parameter]’
is entered as the new record in the PROC File. /MEXEC is a new command.
It is added for the introduction of parameters to a program. At the
moment this néw command accepts only one parameter. Considerations are

being given to implement it with the capability of accepting more than

- 12 -

one parsmeter. Eventually, the command /MEXEC will replace the present
/VXEC command of the Time Sharing Operating System.

3. If the statement was a request for the execution of a previously
written procedure (another stored PROC File), then that PROC File is
retrieved and each of its records (commands) is entered in the new PROC
File.

Finally, when the Assembler reads an end statement, control is
again passed to the Interpreter. This time it adds the command /ENDP
to the PROC File, closes the file, and then passes control back to the
Assembler.

Now, all the user has to do to execute the procedure that he has
written is to issue the command /DO [file name].

What has been discussed so far is basically the working of the
Interpreter and its interface with the Assembler as in Figure 1.

A capability that was added into the system was to include a param-
eter in the /PROC command (first command of a PROC File). The command is
in the form: /PROC C. Our previous description of PROC Files is not
changed by the addition of this new parameter 'C', whose only effect is,
at execution time, to point to a list of the actual records stored in
the PROC File being executed. Its use will be illustrated in the later
sections.

3.2 The Assembler

In order to translate a user request into a convenient internal
format for processing by the Interpreter, an Assembler was designed
which performs the following functions:

1. It checks the external syntax of the incoming requests, and

provides the user with appropriate guidance in sending correct

A SSHL..BL IR

INTERPRETER

—ortatr—
the query
procedure

name

obtain
statement

catalo?,

open Proc
—®1file;put
/PiR0C in it

]

put
/BXEC in g
Proc file
Y
put
process cormnand
local in Proc £f.
name
Y
stat.
into TSO
N lintern. conmand
form ?
Y
[]
end of put
procedure /endp in
statenent Proc file,
close it

Figure 1

- 14 -

requests.

~
.

It accepts data from the user's procedure and constructs a
record in special form which is used by the Interpreter in
processing the procedure.

3. It translates logical expressions of keywords into a variable

length internal record which contains all the necessary informa-
tion required by the Request Supervisory Subsystem [4]1, [5]
for processing the specific request.

We now describe the Query Language and its external syntax. We

will then describe the Assembler.
3.2.1 Syntax and Semantics

Normally the user communicates with & Data Management Facility by
writing procedures.

A procedure should contain the following elements, some of which
are optional, others required.

1) Procedure Name - The procedure name allows the procedure
to be retrieved by the user for later use. This requirement was also
present in the Operating System, since a name is associated with the
creation of a PROC File and in order to execute it at a later time the
user should issue the /DO [procedure name] command.

2) Formal Parameters - The formal parameters act as "dummy"
variables in the procedure and are given values when the procedure is
actually used. The use of formal parameters should be optional. This
option was not available in the operating system. By its nature, how-
ever, 1t was considered an option to be handled by the Interpreter
rather than by the Assembler, because substitution of parameter values

is done at the time of procedure interpretation. At first, the idea of

-15 -

incorporating this function into the DO command was considered. However
it was felt that it was no more difficult for the user to learn and use
the new /FPARAM command than to learn and use a modified version of the
existing /DO command. From the implementation point of view the con-
struction of a separate formal parameter command was mich better than
modifying the existing /DO command.

The format for this command is given in 4.3.1.

3) Local Names =~ ZLocal nemes are used to refer to or to abbreviate
long descriptions which are used frequently in a procedure. The use of
local names should be optional.

This facility was also not available in the present Operating System
and it was implemented as part of the program statements Translator Rou-
tine (STATRAN) of the Assembler, whose description is included in Chapter
L,

4) Statements - Statements are the most important elements of
the procedure. One or more statements must appear in any procedure.

A statement may have three sub-elements: a label (optional) to identify
it, an operation (required) to name the program, system routine or
stored procedure to be executed, and any input parameters or data needed
by the operation during execution.

T™is last requirement can be also realized in the new system. This
is done by means of the PROC file mechanism of the Command Language as
described before. The Assembler enables the new data management system
to accept user programs and parameters by plecing the following new
command in a PROC file:

/MEXEC[program name],PARAM=C'[parameter]

- 16 -

The Assembler was implemented in the same way as a Class I pro-
gram. By issuing the /EXEC PROC command, the user can bring in the
Assembler which in turn causes the STATRAN to process user's statements
and requests.

Types of statements accepted by the STATRAN are:

1) regular TSOS commands

2) new commands for the Extended Facility, and

3) user programs.

However, all these statements will have exactly the same syntex,
namely TSOS command language syntax. This relieves the user from learn-
ing another syntactical rule in using the new commands for the Facility.

An example of a sequence of commands in a procedure which will load
a user program TESTL, stop it at locations X'1OE' and X'1A6', execute
another user program TEST2 and then the TSOS "desk calculator" command
CALC is the following:

*LOAD TESTL

AT L'10E

*AT L'1A6"

*RESUME

*TEST2

*CALC
where the symbol '¥' is printed by the system and indicates that the
Assembler of the Facility is accepting data.

In the example RESUME and AT are regular TSOS commands of the

Interactive Debugging Aid facility.

- 17 -

Furthermore, STATRAN accepts two more special Assembler commands:
1) LOCNAME command which indicates to the Assembler the presence
of local names (synonyms to abbreviate long expressions)
in the procedure and

2) END* command which terminates a normal procedure.

The LOCNAME command should be followed by 1 or more (up to ten)
synonyms followed by the actual value the user wants to be replaced for
it in the procedure. Each synonym should be prefixed by an '#' symbol
and the whole LOCNAME statement is ended by three consecutive '#' symbols.

Before entering any statements to the procedure, a procedure name
should be given. This procedure name is assigned by the user when he
began the creation of the procedure by issuing the /EXEC PROC command.

An example of this initialization might be:

JEXEC PROC
ENTER PROCEDURE NAME

*SEARCH

BEGIN
*

After receiving the message from the Assembler, the user assigns
the name SEARCH to his procedure. The system responds with the message
Begin and the user can now input statements, one at a time.

Execution can be performed at a later time by issuing /DO SEARCH.

The following is a description of allowable Local Name statements

in Backus Normal Form:

- 18 -

< LOCAL NAMES STATEMENT > ::= LOCNAME < SPACE > < PARAM > #
< PARAM > ::= # < SYN > < SPACE > := < VALUE > |
< PARAM > < SPACE > < PARAM > | < PARAM > < SPACE >
< SPACE > ::= B | B < SPACE >
< SYN > ::= any alphanumeric string
< VALUE > ::= any expression the user wants to substitute by < SYN >

The following example might be such a local name statement:

*
*

*TESTL

*LOCNAME #4 :=C'AUTHOR=SMITH&YEAR=1968"

*RETRIEVE $HORTON, #4,1,

END

END OF PROCEDURE
/
The #A in the statement beginning with 'RETRIEVE' would be re-

placed by C'AUTHOR=SMITH&YEAR=1967' before control is passed to the
Interpreter. Effectively these statements are stored as records in a

PROC file for interpretation as follows:

/PROC C

/EXEC TESTL
/RETRIEVE $HORTON, C'AUTHOR=SMITH&YFAR=1968",1,
/ENDP
Upon receiving the END¥* Assembler command, the Assembler sends
the message END OF PROCEDURE to the user and passes control to the
Interpreter, which in turn closes the PROC file and the system returns
to the command mode which is indicated by the slash '/' character printed

at the terminal. From now on, the user can execute his procedure by

issuing the /DO [procedure name] command.

- 19 -

Examples of a typical procedure creation, and the way they are
called by the user can be seen in Appendix D.

3.2.2 Additional Requirements of the Assembler

So far we have not discussed how the user is going to use the
language in order to retrieve certain specific records and how he is
going to describe those specific records he wishes to retrieve and also
the operations he wishes to perform on those records, i)articularly when
the user doesn't want to write a complete procedure, but instead to
commnicate with the Facility by what may be a simple statement. This
requirement adds flexibility to the system and since a method for add-
ing new commands [6] was developed and was found to be relatively easy,
it was decided that those functions which are a part of the Extended
Data Management System should be quickly and easily available to the user
as commands. In particular the Retrieve Command, Formal Parameter Command,
Continue Command, and a new Execute Command were added as part of the
Interpreter implementation and a Restore Command was added as part of the
Assembler implementation since 1t requires more language précessing. This
Restore Command allows the user to make addition or deletion of specific
lines in a particular record and restore it to the file. Complete
description of the format of these commands, plus the RESTORE command in
detail can be found in k4.3.

As has been explained before, logical expressions of keywords are
very important in processing information storage on retrieval requests.
Wherever such an expression appears as a parameter (i.e. in the RETRIEVE
comnand) or input datum, a special routine is called in to translate the
expression into an internal form. Any logical expression must be trans-

latable into disjunctive rdormal form with at least one non-negated term

- 20 -

within each disjunct to prevent excessive file searching.

The allowable logical expressions can be described in Backus
Normal Form as follows:
< ATTRIBUTE > ::= any key attribute
< VAIUE > ::= any key value
< MULTIPLE VALUE > ::= < VALUE > | < VAIUE > 'TO' < VAIUE >
< RELATION > ::= 'LT' | 'GI' | 'LE' | 'cE'
< SIMPLE PRIMARY TERM > ::= < ATTRIBUTE > 'EQ' < MULTIPLE VAIUE > l

< SIMPLE PRIMARY TERM > 'OR' < MULTIPLE VAIUE >
< PRIMARY TERM > ::= < ATTRIBUTE > < RELATION > < VALUE > |
< SIMPLE PRIMARY TERM >
< SIMPLE TERM > ::= < ATTRIBUTE > 'NE' < MULTIPLE VALUE > |
< SIMPLE TERM > 'OR' < MULTIPLE VAIUE >
< TERM > ::= < PRIMARY TERM > | < SIMPLE TERM >
< DISJUNCT > ::= < PRIMARY TERM > | < DISJUNCT > 'AND' < TERM >
< LOGICAL EXPRESSION > ::= < DISJUNCT > | < LOGICAL EXPRESSION > 'OR‘
< DISJUNCT >

3.2.3 Service Request Options

The Request Supervisor Subsystem [4], [5] provides the user with
many service request options. This has been done in order that he can
use these facilities to manipulate his files as he desires, particularly
when he enters the Facility in a non-conversational mode, e.g., by cards
instead of from a terminal. Each request is in the form of a macro.
Bach macro instruction generates a group of assembly language statements.
One of the statements generated is a supervisor call. The supervisor
call instruction (SVC) enables the machine to switch from any state to

the Interrupt Control State (P3), i.e. the SVC causes an interrupt. 1In

- 21 -

this state, and through the use of the Interrupt Analyzer, the Subsystem
determines what to do. Statements that accompany the SVC in a macro
expansion supply the necessary parameters for processing the user's
request. Once the system knows how to respond to the particular interrupt,
it switches to state P2 ,» Where interrupt responses are handled.

Macro instructions are extremely useful since they are located in
a macro library accessible to all users. It was therefore decided to
incorporate the Logical Expressions Translating routine (LOGTRAN) as a
macro instruction. This will add the flexibility that not only the
system programs (e.g., the RETRIEVE command) can call upon it in order
to process their parameters consisting of logical expression of keywords,
but also the user program can call upon it if the program contains
logical expressions as parasmeters.

All the user needs to know in order to use it, is the proper way
of calling the macro; all the other steps, the generation of the assembly
language instructions and the SVC itself are done internally by the
Assembler.

3.2.4 Adding and Testing New Supervisor Calls

To be classified as an operating system component, 2 program must
be linked to the operating system before the system is loaded into the
computer. This linking process is normally very time consuming. It
involves up to six hours of computer time in the case of TSOS with slow
tape drives.

Obviously it would be prohibitive in terms of both computer and
programming time if each time a new routine must go through the above
linking process to be tested with the system. A better way was found

by which a special modified version of TSOS can be generated which allows

- 92 -

new routines to be added to the system and run as system components

very easily [6]. This, in particular, allows easier addition of SVC

servicing routines. This is the way by which the Logical Expressions

Translating routine (LOGTRAN) was tested and implemented.

CHAPTER 4
DESIGN AND IMPLEMENTATION OF THE ASSEMBLER
In order to accomplish the necessary language translation into
an internal format for processing the specific request, the Assembler
comprises the following programs:

a. Logical expressions translation routine (LOGTRAN) - The

purpose of this program is to translate into its internal form a Logical
Expression appearing in a statement given by the user to the Extended
Data Management Facility through the query language. Basically, the
internal form is composed of a Key Information Buffer and a Description
Control Block. At execution time of the statement the block is used by
the retrieval routines of the Supervisor to perform the required search
based on the attribute and value pairs in the block.

b. Statement translation routine (STATRAN) - This routine will

prepare and setup the necessary information about the user's statement
and pass it to the Interpreter. It will also process all Local Names,
if they are present in a statement, before passing control to the Inter-
preter.

4.1 Logical Expressions Translation Routine (LOGTRAN)

At present this program accepts as its input a Logical Expression
in "external" Disjunctive Normal Form (EDNF). Blanks are ignored pro-
vided they do not appear inside a keyword. For example, if we have a
logical expression as follows

John Smith 'OR' ..
then the blank space between John and Smith is stored as a blank character
wvhile the blanks between Smith and 'OR' are ignored. This enables the

user to use blank characters as part of the keywords.

- 23 -

- 24 -

The permitted relations and their user codes are as follows:

RELATION USER CODES
EQUAL 'mY, =
NOT EQUAL 'NE'

LESS THAN LT, <
LESS OR EQUAL THAN 'LE'
GREATER THAN 'GT, >
GREATER OR FQUAL THAN 'GE'

and the codes for the logical connections are:

TAND', &
'OR', V
lTol

If a keyword contains the relation NOT EQUAL, then this description
will be satisfied by any record with the same attribute and a different
value. Note that this does not exclude records that have the same attri-
bute and value as keyword.

Considerations are given to the design of the internal format
specifications of a logical expression. These are:

1. As much control information as possible should be removed
from the logical expression itself and stored in a separate block, the
Description Control Block, allowing dnly this block to be passed to
the Supervisor with pointers to the information required for a particular
retrieval. This arrangement permits the later information, the Key
Information Buffer, to be in a completely variable length format.

2. The control information in the Description Control Block

should be easily handled by the Interpreter.

- 25 -

Thus, the LOGTRAN program produces as its output a Key Information
Buffer and a Description Control Block. The Buffer and Block constitute
the internal representation of an external disjunctive normal form
received by the LOGTRAN.

Key Information Buffer (KIB):

This area contains the actual attribute and value pairs as given
by the user without any truncation. There are no delimiters or control
characters stored in this buffer. For example, the keywords

AUTHOR = SMITH 'AND' YEAR = 1940
wlll reside in the Key Information Buffer in the following way:
AUTHORSMITHYEAR19LO

The information needed to accomplish the necessary retrieval and
to sort out the keywords is stored in the Description Control Block (DCB).
Description Control Block (DCB):

It has two kinds of fixed length elements. The first one contains
three sections: 1) a relative address section, 2) a control code

section, and 3) format number pointers.

FORMAT

RELATIVE CONTROL NUMBER
ADDRESS CODES POINTERS

4 bytes 10 bytes 4 vytes

The control code section contains the following codes:

C L L L
i ay fvi zVi

1 byte 3 bytes 3 bytes 3 bytes

- 26 -

where Ci = code to indicate RELATION between attribute and value

Lai = length of ith attribute
Lfvi = length of 18 va1ue (or of first value of the 18 keyword
if a case of multiple values is implied)
szi = length of last value if a case of multiple values is implied.

If not, 1t is left blank.
The third section is for the pointers to format numbers. It is

used to help the record checking routine.

Address of format Counter

3 bytes 1 byte

The counter tells how many format numbers there are in a list of
format numbers which are associated with that particular keyword.

The second element in the DCB is of the same length of the previous
element. It is left empty with exception of the first byte, where a con-
trol code is set there to indicate the end of an elementary conjunct to
the search routines.

Both Key Information Buffer and the Description Control Block are
used by the Supervisor along with its Prime Key Stack. Those blocks
and stacks constitute the basic control information which enables the
Supervisor to direct the primitive storage, retrieval and dissemination
routines of the Storage and Retrieval Subsystem for honoring the user's
request. The interconnection of these blocks is presented in the figure

below.

- 27 -

Key Description Format
Information | Control —&={ Number
Buffer Block Stack
Prime
Keyword
Stack

In Appendix A, one can find a detailed description of the LOGTRAN.

4.2 Statements Translation Routine (STATRAN)

The sequence of steps performed by STATRAN are summarized as
follows:

1) Ask the user to give a name for the procedure he is creating
and then calls the routine PFOPEN (an Interpreter's routine) to open
the file needed for the PROC file.

2) Reads the user statement which will come in a format similar
to the TSOS Command Language. If the statement is a Local Name Assembler
cormand (LOCNAME), STATRAN processes each Local name parameter and enters
it into a Local Names Control Block (LNCB). This LNCB is a special
internal format which is used only by STATRAN itself in substituting the
Local Names appearing in a future statement.

The LNCB is a variable length block of up to ten elements of the

following format:

AS LS Av Lv

L4 bytes L bytes 4 bytes L bytes

where

L =
v

After

- 28 -

Address of a synonym or Local Name

Length of that synonym or Local Name

Address of the value, i.e. description, to be substituted

for the specific Local Name, and

Length of the value

this is done, it reads the next statement, searches for local

names and substitutes the appropriate values if encountered. Then it gees

to the following step, which is the same when no Local Name command is

present.

3) STATRAN sets up the internal format and branches to the PFRECADD

routine (another Interpreter's routine) which will make the addition of

the 'record' or statement to the file that was created in step (1).

The internal format is a parameter list that always must be

passed to each Interpreter's routines (collectively called PFRQOUT).

The format for this parameter list is:

0 -
72 -
14 -

149

159
167 -

177 -

T1
143
147
157
165
175
415

Reg. Save Area for Assembler Register
Reg. Save Area for PFROUT Register
Reserve Area (for use by Assembler)
Procedure File Name

Reserve Area for use by PFRQUT
Action or QOperation Name

Parameter list for the action name.

Steps 2) and 3) are repeated until the user enters the statement

END*

which terminates a normal procedure.

-29_

L) Calls the routine PFCLOSE (a third Interpreter's routine) to
close the now coumpleted PROC file.
The following is an example of an interactive session between the
user and the Assembler (the responses from the Assembler are underlined);
/EXEC PROC

ENTER PROCEDURE NAME

*SEARCH
BEGIN
*FLIST

XRETRIEVE FILEl,C'TOPIC=POPULATION "AND" CITY=PHILADELPHIA
"AND" YEAR=1969,11

*CALC
*STATICS
END

/

The above statements cause the STATRAN to set up a PROC file.

The user supplies the name SEARCH which becomes the name of the PROC
file. He then wants a list of the program in his file; this is done by
execution of the program FLIST. He then uses the RETRIEVE COMMAND to
request the retrieval of one record from FILEl. After the retrieval is
performed with the Logical Expression parameter of the RETRIEVE command,
the user wants a "calculator" program to be executed, which is done by
issuing the CALC command of the regular TSOS system. Finally it executes
a program of his own called STATICS and closes the PROC file by issuing
the END¥ Assembler command.

Appendix B gives more details of STATRAN together with its flowchart.

Examples of typical interactive sessions with the Assembler are found in

Appendix D.

- 30 -

4.3 Format of the Command Elements

The functions described below were considered to be an essential
part of the Extended Data Management System. Since these functions
should be quickly and easily available to the user, they were implemented
as commands. This section discussed the format of these commands.

4,3.1 The Formal Parameter Command

The Formal Parameter (FPARAM) command allows the user to supply
the actual values for formal parameters within a PROC file which has
previously been created.

The format for this command is

Operation erands
FPARAM PROC file neme, new PROC file name, formal

parameter 1, value 1 [,formal parameter 2,
value 2] [,formal parameter 3, value 3]
The operand has 3 required positional operands plus 2 optional
positional operands.
PROC file name - This operand specifies the name of the procedure
file created by the user. This operand is required.
new PROC file name -~ This operand specifies the name of a temporary
PROC file to be created which will contain the actual values
in place of the formal parameters. This operand is required.
formal paresmeter 1 - This operand specifies the first formal
paremeter. This operand is required.
value 1 - This operand specifies the actual value associated with
the first formal parameter. This operand is required.
formal parameter 2, value 2 -~ These four optional parameters

formal parameter 3, value 3
specify another possible one or

- 31 -

two formal parameters which are a part of the PROC file
and the actual values which they are to assume.

The user can replace more than three formal parameters by repeated
use of FPARAM.

In creating the PROC file the user should place a dollar sign ($)
in front of each formal parameter he wants to substitute at a later time.
The formal parameter must be ten characters or less in length. The
actual velue mey of course be more than ten characters. Examples of
the use of this command can be found in [3].

4.3.2 The Retrieve Command

The Retrieve Command (RETRIEVE) allows the user to retrieve records
from the files of the Extended Data Management System by logical expres-
slons of keywords associated with the records.

The format for this command is:

Operation erands
RETRIEVE file name, C'logical expression'

[,no. of records][,output spec.](,label]

where
file name - the name of the file from which the record(s) are to
be retrieved. This operand is required.
logical expression - The logical expression of keywords for the

retrieval request. This operand is required.

no. of records - This operand specifies the maximum number of
records which the user desires to have retrieved. The default
case is all records.

label - This operand specifies a label for referring to this

retrieve command in the continue command (Sect. L4.3.3).

- 32 -

output spec. - This is & parameter to specify the type of
output specification desired for the retrieved records.
Appendix E shows an actual retrieval from a date base.
4.3.3 The Continue Commend
The Continue command (CONTINUE) allows the user to continmie a
retrieval process which had previously been initiated by the RETRIEVE
command .

The format for this command is

Qperation erands
CONTINUE label [,no. of records)

The parameter descriptions are:
label - This operand is the name in the label field of a RETRIEVE
command which is to be continued. This operand is required.
no, of records - This operand specifies the number of records to
be retrieved. The operand is optional. The default case is
the same number as gppeared in the RETRIEVE command.
4.3.4 The Restore Command
After a retrieval this command will allow the user to make addition,
deletion or replacement of specific lines in the retrieved record and

restore it to the file. The format for this command is:

Qperation erands
RESTORE file name, record number

The description of the operands is:
file name - This operand specifies the name of the file from
which a retrieval has been performed and in which addition,

deletion or replacement of lines are going to be performed.

-33..

record number - A code for the retrieved record in which the

restore operation will be done.
After the user issues the RESTORE command, the system will respond
with an asterisk(*) which will indicate that it is waiting for data from
the user. He then uses the following input format for his data (under-
lined asterisks are printed by the system):
a) Replacement of line:
* line number attribute=value*

where
line number - The current line he wants to replace.
attribute - The new attribute he wants in the line.
value - The new value he wants in the line. |

b) for deletion

¥ line number 1 - line number 2

The command then will erase from line number 1 up to and including

line number 2 as specified.

c) for addition

The format is exactly as in a). Since all existing line numbers

are multiples of 100, the user must issue a new line number that

lies between the line numbers of the old ones and into which the
new line is to be inserted. For example, if in an 0ld record the

line numbers are as follows:

line text
300 TOPIC = LOGIC

400 YEAR = 1964

- 34 -

Then the specification of & line as follows will result in the
line being inserted between lines 300 and L40OO.
%305 AUTHOR=SMITH*

The new record will look as follows with line numbers adjuéted:

line text

300 TOPIC = LOGIC
4oo AUTHOR = SMITH
500 YEAR = 1964

To terminate the update and initiate the restore operations, the

user enters the following command:
¥END

It is assumed that if the user sends a line nuﬁber n, all lines
with numbers less than n are not going to be modified and hence they
will be a part of the new record. Then it will be impossible to modify
8 line number less than n once it has been sent, unless he issues the
RESTORE command again.

Basically the RESTORE servicing routines perform a retrieval based
on the 'record number' of the particular record the user wishes to update.
After the record has been retrieved, it is transformed from 'internal
format' into 'core format'. The routine then sets up a buffer in which
the new record is stored with the new or deleted lines. An update rou-
tine (UPDATCOM) is called to make the addition of the new record and
another routine (DELREC) performs thedeletion of the old one.

A flow chart for the servicing routine of this command is found in

Appendix C.

CHAPTER 5

CONCLUSIONS

We have provided the Extended Data Management Facility with a
simple but powerful interactive query language schema. The language
schems enables the user to define new problem solving procedures and to
make use of previously defined procedures.

A statement of a procedure enables the user to bring in a program
by neme for execution, and to provide the running program with parameters.

The user can perform the retrievel or other operations on records
of some files. He is merely required to specify the set of records with
a logical expression of their keywords, and to include the logical
expression in the statement of the operation.

We think that we have developed the basic command and query language
for a "generalized" system. By generalized system we mean that tools
and elements needed for future growth into more sophisticated language
schemata are present. These are:

1. standard methods for the addition of new commands and their
command processing routines into the Facility [67;

2. procedures of statements for Immediately or later execution;

3. statements for comprising standard TSOS commands, new commands
of the Facility and users' programs and their associated parameters;

4. parameters for including logical expression of keywords.

A1l the implementation has been done having "modularity" in mind.
By modularity we mean that each element of the language, and in many
cases the programs that comprise the command and query language are

"stand-alone" elements or programs. That is, the programs and elements
cen be used for some specific purpose without going through the normal

35

- 36 -

Assembler-Interpreter flow by any user (e.g. the FPARAM command of the
Interpreter and the LOGTRAN SVC implemented in the Assembler). This
in turn will make it easy to make improvements in the future tendent
toward & more sophisticated language or system.

Some of the improvements we can foresee for the Assembler are
given below.

As was explained before (Section 4.1) the Logical Expression
Translating routine (LOGTRAN) accepts a logical expression in "external"
disjunctive normal form. This restriction can be tedious for the user
in writing a description. For example, given the following description,

(AUTHOR=SMITH 'AND' YEAR=1964) 'OR' (AUTHOR=JONES 'AND' YEAR=196L)

'OR' (AUTHOR=MINSKY 'AND' YEAR=196k4)
we would like to shorten it as follows:

(AUTHOR=SMITH 'OR' JONES 'OR' MINSKY) 'AND' YFAR=1964

In other words what we need is a 'pre-processor' which will trans-
form any logical expression in "free external" form into DNF format.

To make the Extended Data Management Facllity a custom-tailored
system for a user, we believe the above mentioned basic tools and
language schemata would enable the user to build more sophisticated
language pre-processors and general purpose command and query language

repertoire.

5.

- 37 -

BIBLIOGRAPHY

Interim Technical Report, "An Integrated Information Storage,
Retrieval, and Dissemination Facility," Moore School of Electrical
Engineering, University of Pennsylvania, June 1, 1969.

Manola, F., "An Extended Data Management Facility for a General

Purpose Time Sharing System,” M.Sc. Thesis, The Moore School of

Electrical Engineering, University of Pemnsylvania, work in progress.
McDonald, J.N., "A Command and Query Language Interpreter for an

Extended Data Management System," M.Sc. Thesls, The Moore School of

Electrical Engineering, University of Pennsylvania, August 1970.
Ets. A.R., "The File Searching, Record Validating and Record For-
matting Functions of the Supervisor for an Extended Date Management

Facility," M.Sc. Thesis, The Moore School of Electrical Engineering,

University of Pennsylvania, August 1970.

Hirsch, J., "The Access Control and Retrieval Optimization Functions
of the Supervisor for an Extended Data Management Facility," M.Sc.
Thesis, The Moore School of Electrical Engineering, University of
Pennsylvania, August 1970.

Russell, R.N., "A Manual on Adding New Commands and SVC's to TSOS,"
Moore School of Electrical Engineering, University of Pennsylvania,
September 1969.

Horton, M., "Reading, Writing, Creating and Updating Records and

Files in a Generalized File Structure," M.Sc. Thesis, The Moore

School of Electrical Engineering, University of Pennsylvania, work
in progress.
Desiato, B., "Directory Constructing and Decoding in a Generalized

File Structure,"” M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, August 1970.

APPENDIX A

ROUTINE LOGTRAN

LOGTRAN - Logical Expressions translating routine. LOGTRAN function is
to translate an input string which is a logical expression of keywords
in disjunctive normal form (DNF) into an internal format to be processed
by an interpreter.

A.1 Entry Points

LOGTRAN has two entry points. LTRNENTA is the entry point for
system routines while LTRNENTB is the SVC entrance.
A.2 Exit Points

LOGTRAN has two normal exit points plus an exit point in case of
system error. SYSEXIT will return control when LOGTRAN is called by a
system routine. SVEXIT will do it when called as an SVC. ERREXIT will
terminate execution in case of a system abnormal task termination.

A.3 Input Parameter List

The address of the input parameter list (LTRPARM) must be in
Register 1. If the calling routine is a system program, Register 13 must

contain the address of a save area.

Name Length Content

LTRPARM DSECT

LTRADD F Address of the logical expression
LTRLNGTH F Length of the logical expression

A.4 LOGTRAN Output

LOGTRAN output is one block of information composed of a header
of 5 bytes with control information plus two sub-blocks: a Description
Control Block (DCB) and a Key Information Buffer (KIB). The complete

block is of variable length.

Header

Bytes

Description
Control
Block

Key
Information
Buffer

LOGTRAN Output Specifications

1 byte Internal code, not used by LOGTRAN
2 bytes Length of KIB and DCB
2 bytes Length of DCB
L 1 2 3 3 5
A C L L L F
1 1 a) fvl AN 1
A C L L L F
2 2 85 fv2 zvg 2
A F
| ¢ 3 3
v End of elementary conjunct
A,-l- * . * FLI-
A F
5 >
N
AN
\Rktquute Value Attribute Val
J
ue ~ Attribute Value

Figure A.1

Description of Control Block Areas for Figure A.l.

A1 is a pointer to the beginning of the ith keyword
that is stored in the Key Information Buffer.
Ci is the control code that indicates the relation between
the attribute and the value.
L is the lemgth of the 1'® attribute.
i
Lfv is the length of the first value of the ith keyword.
i
sz is the length of the last value of the ith keyword.
i
Fi' is the pointer to the beginning of a list of format

numbers associated with the attribute.

A.5 Return Codes

All return codes can be found in the right-most byte of Register

15 and they are listed below by hexadecimal digits.

X'00!
xro2!
X'06'
x'o8!

X'OA!

Everything K
Tmproper relation
Improper connective
Wrong multiple value

Missing value

Whenever an error occurs (right-most byte of Register 15 non zero),

Register 1 is loaded with the address of a parameter area with the

appropriate message.

A.6 Reglster Conventions

The registers in LOGTRAN are assigned in the following manner:

A.7 Internal Work Area

Register

0

1

ON W F w

-

10
11

12

13

14
15

BLKDSECT is the internal

It has the following format:

Neme
BLKDSECT
INTCODE
LENQUT
LENCLB

CLBLCK

Le h
DSECT
CLl

CL2

10c118

A-4

Utilization

Not used

Miscellaneous use

Miscellaneous use

Counter of elements of DCB.

Input index.

Base for ELEM DSECT. DCB element format.

Switch to indicate type of calling routine
(SVC or system routine).

Relative address of keywords.

Length of logical expression.

Index for KIB.

Base register for LOGTRAN.

Base register for BLKDSECT work area.
Not used.

Address of save area in calling system
routine.

Return address in calling system routine.

Error codes.

work area used by the LOGTRAN routine.

Content
Work area.
Not used by LOGTRAN.
Length of KIB and DCB.
Length of DCB.

Allocation for DCB.

Name Length Content

QUTPUT 200C Allocgtion for KIB.
LENGTHA F Length of attribute.
LENGTHV1 F Length of first value.
LENGTHV2 F Length of second value.
ADDR F Temporary storage.
LENQUTF F Temporary storage.

RELADD F Temporary storage.
LENCLBF F Temporary storage.

ETASTK F Address of EIA stack area.
ELEM DSECT * DCB Format.

ADDRESS1 CL4 Relative address of attribute.
RELATION CL1 Relation code.

LENPAT CL2 Length of attribute.
LENPVL1 | CL3 Length of first value.
LENPVL2 CL3 Length of second value.
FONUPT CL5 Format number pointer.

A.8 1Internal Codes

The internal codes in the LOGTRAN routine are listed below by hexa-
decimal digits:
RELATION - relation between Attribute and Value

a) Codes for normal Attribute-Value search

Internal Code User Code Relation
X'FO' ! NOT EQUAL or negation
X'F1! 'EQY, = EQUAL
X'F2! LT, < LESS THAN

X'F3' 'IE* 1ESS OR EQUAL THAN

Internal Code User Code Relation
X'Fht 'GT', > GREATER THAN
X'F5' 'GE' GREATER OR EQUAL THAN
X'F6! 'T0" Multiple value search

[value 1] 'T0' [value 2]

b) Codes for search on value only.

Internal Code User Code Relation
X'EO! 'NE' NOT EQUAL or negation
X'El’ 'R', = EQUAL
X'E2! 'L, < LESS THAN
X'E3! 'LE' LESS OR EQUAL THAN
X'Eh? 'GT', > GREATER THAN
X'ES! 'GE' GREATER OR EQUAL THAN
X'E6’ 'TO* Multiple value search

[value 1] 'TO' [value 2]

The end of a conjunct in the logical expression is indicated by:

Internal Code User Code
X'4E! "R,V , +

This code 1s found in the RELATION or code portion of an element
of the DCB. The remaining of this element of the DCB is filled with
zeros.

Each time the user code 'AND' (&) is found in the logical expression,
a new element is added to the DCB and it is filled with control informa-

tion from the keyword that follows that code.

A.9 TFlowchart

A-T

Enter LOGTRAN

Get keyword
from input buffer

‘ Attribute present?)l\lo__—

Set SW=X'00'
search on value
only
Yes
Set GW=X'11'
Attribute-value search
Get user relation
code
l Put internal
No relation code
(SW=X'11' }__., into DCB element
Yes ‘

Put internal relation
code into DCB
element

|

Move Attribute
into KIB

1

Put length of

element

Figure A.2.a
Attribute Processing

Put Attribute
length = O in
DCB element

) |

attribute in DCB -

Put relative
address of key-
word in DCB
element

A-8

Get value

!

No
(End of logical expressiong::}"'(:::)

‘Yes

Set switch SWh=X'11l'

.

Move value into KIB

!

(:i SWe=x'11"?

T

Store length of first
value into DCB element

'

Set up a new element
for the DCB

1
(:j' SW3=X'11"'?

Yes

Yes

No No
SWh=x'11"
Ye

S

Set SW3=X'00'

1

Move ‘'end of elementary
conjunction' code C'+' into
DCB element

Figure A.2.Db

'

First Value Processing

Set up a new element
for the DCB

~©

A-9

(Connective = 'AND'?)E’@
‘ No

Yes i
: Set switch
C Connective = 'OR'?)——‘—- SW3=X'11"

§ o

Gvalue 1] '10' [value 277 >£.®
1 Yes
(SW2 = X'11'% }ﬁso@

; No
Relation code was 'EQ'
(for this keyword?
} Yes

Put 'multiple value' code
into DCB element

!

Move first wvalue
into KIB

Store length of first
value into DCB element

!

Set switch
SWe=xX"'11"

Figure A.2.c

Multiple Value Processing

A-10

Set switch
SW2=X'00"

I

Store length of
second value into
DCB element

}

Set up & new

element for the
DCB

lNo

o

C Sswh = x'11°
N

Figure A.2.4

Second Value Processing

Yes

A-11

Put error code in
Register 15 of Calling
Routine

Yes

$FNDT

. LOGTRAN called No Exit to
as an SVC? calling
system routine

Move 'end of elementary
conjunction' code C'+' into
element of DCB

—

l

Calculate the 'block
header' constants

Figure A.2.e
LOGTRAN Exits

APPENDIX B

ROUTINE STATRAN

STATRAN routine is the Assembler section of the PROC routine.
PROC routine function is to create a Procedure file of TSOS commands
which can be executable later on by means of the /DO [procedure name’
command. The actual creation of this procedure is carried out by the
Interpreter. The STATRAN routine checks the input syntax and sets up
the appropriate parameters and internal format (if a statement is
accepted) to be passed to the Interpreter. The STATRAN routine also
processes the local names when they are encountered.
B.1 Entry Point

STATRAN has only one entry point at PROC. PROC is also the
name of the CSECT and should be used as [program name] when the user
wants to execute it.
B.2 Exit Point

There is only one exit point for this routine. It begins at
ENDTRAN where control is returned to the user in the command mode.

B.3 External Subroutine Calls

There are three external subroutines that are called by STATRAN.

These are:
Name of Entry Point Function
PFOPEN Procedure file open routine
PFRECADD Procedure file record addition routine
PFCLOSE Procedure file close routine

Tese Interpreter's routines are called collectively PFROUT.

Detailed specifications on PFROUT can be found in [31.

B-1

STATRAN sets up the internal format. This internal format is

nothing but a parameter list that always must be passed to each PFROUT

routine.

Following is the DSECT for this parameter list:

Name Length Content
PCFPM DSECT
SAVE CLT2 Register Save Area for Assembler Registers
CLT2 Register Save Area for PFROUT Registers
FILNAME OCL1L
CLh4 Reserved
PFNAME 10C Procedure file name
F Reserved area for PFRAUT
F Reserved area for PFRAUT
OPRTNM CL10 Action or Operation name
PARAMT cL2ko Parameter list for the Action name

B.4 Register Conventions

The registers are assigned in the following manner:

Register Utilization
0 Not used.
1 Temporary storage.
2 Temporary storage.
3 Temporary storage.
L Input index.
> Counter
6 Base Register for PFDS, work area for

STATRAN
T Address of Save Area
l 8 Address of PCFPM procedure file parameters

and temporary storage

Register Utilization

9 Counter of synonyms of Local Names

10 Base Register for STATRAN

11 Base Register for SYNON, DSECT used in
processing Local Names.

12 Pointer for processing Local Names

13 Not used.

14 Return address in STATRAN.

15 Called subroutines address.

B.5 Internal Work Area

PFDS is the internal work area used by the STATRAN routine. It
contains the parameter list (PCFPM) that is passed to the PFROUT rou-

tines. The work area has the following format:

Name Length Content
PFDS DSECT
INPUTO 0CL254
CONTROL CL4 Type V record header
INPUT 250C Input record
BK CL1 Delimiter

CLl
PAREA 0oCL12 Parameter area for RDATA macro.
EDIT CL1 EDIT option
ADD CL3 Address of type V record
LENGTH CLA4 Length of record
RES2 CL1 Reserved
ERRAD CL3 Address of error routine
ADDTEM F Temporary storage.

ERRADD1 F Temporary storage.

Name

LNBUFF

INPUTL

NUMBEL
CKBK
PCFPM

SAVE

FILNAME

PFNAM

OPRTNM
PARAMT

SYNON

ATTADD
LENAT
ADDVAL

VALEN

B.6 Flowchart

250C

250¢C

CL1

LoF

CLT2
cL72

OCL1k4
CL4

10C

CL10
cL2ko0

DSECT

e B IS

B-4

Content

Buffer for processing statements with
Local Names

Buffer for input statements with Local
Nemes

Switch indicator for Local Names
Number of synonyms

Control Block area for Local Nemes
Procedure file parameter list
Register Save Area for Assembler

Register Save Area for PFROUT

Reserved

Procedure file name

Reserved for PFROUT

Reserved for PFRQUT

Action or Operation name
Parameter list for the action name

Used to create a control block for Local
Names

Address of synonym or attribute
Length of attribute
Address of value for a Local Name

Length of Value

B-5

Enter STATRAN

&

Establish
work area

!

Get PROC file
name

I

Branch and link
to PFOPEN

(: >'_' Get statement

C SW=X'11'% e
1 No
Yes
END*?

No

(LOCNAME? bL: °

No

Put statement into
internal format

Branch afnd link :
to PFRECADD

Figure g.l1.a
Statements Processing

Get local name and
its value from input
buffer

'

Set up an element
in the LNCB

I

Store length of local
name and poilnter to
it into LNCB element

I

Store length of value
and pointer to it into
LNCB element for
particular local name

l

No
C Any more local names? j——‘- Set SW=X'1l1l'

Yes

Figure B.1.b

LOCNAME Statement Processing

No
Local name present
in statement?
J Yes

Search particular local
name by means of LNCB

|

Replace local name
by its value in statement

Branch and link
to PFCLOSE

.

Exit from
STATRAN

Figure B.l.c

Local Names Replacement and
Exit from STATRAN

APPENDIX C

RESTORE COMMAND SERVICING ROUTINE

After a retrieval this command allows the user to make addition
or deletion of specific lines in a particular record and restore it to
its position in the file.

RESTREC is the Command Servicing routine for the RESTORE command.
C.1 Input

Execution of this routine is initiated by the Terminal Command
Processor (TCP). The TCP passes the following information to RESTREC.

1) Register 1 contains the address of the Interpretative Scanner
Processor (ISP) parameter list.

2) Register 13 contains the address of the register save area to
be used by RESTREC.

3) Register O contains the address of an additional save area
which may be used by the called program when branching to ISP and any
other subprogram.

After calling on ISP, RESTREC has the following parameter list

available to it. (This list is the output of ISP.)

Name Length Content
ISPQUTPT DSECT

OF
RESFILNM CL54 File Name
RESRECNM F Record Number

C.2 External Subroutine Calls

There are 6 external subroutines that RESTREC call upon. These
subroutines together with their entry points and input parameter lists

are given below:

c-1

C.2.1 SSBCHECK

c-2

This routine will output the address of the SSB (Service Status

Block) in Register 1.

From the SSB block, RESTREC will get the FCB address and RFB

address, which are needed later on.

Entgz Point
SSBCHECK

Input Parameter List

Name

PARSSB
TASKADD
FILENGTH

FILNAME

Service Status Block (SSB)

CL5L

Neme
SSB
SSBHDR
SSBUAT
SSBFIF
SSBHLEN
SSBTXTD
SSBTXT
SSBFNAM
SSBCL

SSBLFIB

SSBFIB

Leggth
DSECT

OF

F

F
*-3SSBHOR
DSECT

OF

14F

F

*-SSBTXT

Content

Address of Task Control Block
Length of file name

File name

Content

SSB HEADER
Address of user suthority item
Address of FCB for FIF

Length of SSB HEADER

SSB Test
2 byte length, 5L bytes file name
Control information

Length from start of SSB text to FIB
entry

Address of FIB for file name

Name Length Content

SSBFCB F Address of FCB for file name
SSBOTBIN ocC X'FF' indicates description present
SSBOTAB F ADDR of user description block
SSBCREC F ADDR of core format record

SSBFSB F Address of FSB block

SSBTLG CL1 Control information for pointer
SSBPTR AL3 PTR to next SSB block

SSBTLEN *-SSBTXT Length of S8SB text.

C.2.2 RETRREC
This routine will perform a retrieval of a particular record in

internal format based upon the ISAM key of that particular record.

Entgz Point
RETRREC

Inygt Parameter List

Name Length Content
RESTFCB F FCB address
REINREAD F Buffer address
RESISAM CL5 ISAM key
REINRSIZ CL3 Size of buffer

C.2.3 COREFMT

This routine input is the record just retrieved in internal format
and outputs it in core format.
Entry Point

COREFMT

c-4

Input Parameter List

Name Length Content

COINREAD F Address of internal record
CORRFB F Address of RFB

CORFMADD F Address of core format buffer

C.2.4 DELREC
This routine will delete a record. It is used in RESTREC in

order to delete the old record just retrieved in internsl form.

Entzz Point
DELREC

InBut Parameter List

Name Length Content
RECADD F Address of record in internal form
FCBADDR F Address of FCB

D Reserved for use by DELREC routine

C.2.5 RESTORE

The actual update of the record is performed by this routine.
It gets the input data from the user with the information of the
particular line(s) he wishes to update or delete, checks the syntax of
the input statements and helps the user in issuing the right statements.
Finally it sets up a new updated record in core format.
Entry Point

RESTORE

Input Parameter List

Name Leggth Content

NWRECADD F Address of new record

OLDRECAD F Address of old COREFMT record

C-5

Figure C.1 shows the Core Format Record specification.
C.2.6 UPDATCOM

This routine restores the new record to its position in file.
Entry Point

UPDATCOM

Input Parameter List

Name Le h Content
FILADDR F Address of 54 bytes area with file name
ROCADDR F Address of core format record

For detailed specifications on some of these external routines,
the reader is referred to [T7].

C.3 Flowchart

c-6

3 bytes Size of Record

5 bytes Reference number, unpacked

1l byte Control information

3 bytes Length of attr.-value entry

1 byte Control information ATTRIBUTE
1 byte Number of Directory Lists Eﬁgg?

2 bytes Length of attribute

variable Attribute

3 bytes Length of Value

variable Value

3 bytes Length of attr.-value entry

1 byte Control Information

1 byte Number of Directory Lists

2 bytes Length of attribute

variable Attribute

3 bytes Length of Value

variable Value

Note: "Number of Directory Lists" field is used for those attribute-

value pairs which are used as keywords when file characteristics

allow a variable number of directory lists.

other attribute-value pairs.

Field is ignored for

The length specified in the 3 byte "Size of Record" emtry includes the

9 byte Header size.

Figure C.1

Core Format Record Specification

C-7

Enter RESTREC

l

Save TCP Registers

!

Request memory
for ISP output

Move address of Phrase

table to ISP parameter
list

I

Branch and link
to ISP

]

No
ISP errors?
l Yes

Print 'INVALID PARAMETER
FORMAT'

l

Return to TCP

Figure c.2.a

RESTREC Routine

c-8

Set up SSBCHECK
parameter list

l

Branch and link
to SSBCHECK

Yes Return to
SSBCHECK errors? ICP

T

Set up RETRREC
rarameter list

l

Branch and link
to RETRREC

Yes
Return to
l?
(:¥ RETRREC errors? f—-—*— T

Figure C.2.b

RESTREC Routine (cont.)

Set up COREFMT
parameter list

Braﬁch and link
to COREFMT =

Yes Return

|

‘ i N

| C COREFMT errors? to TCP
| : :

g I]mo ¢

| Set up DELREC
| parameter list

| % o . ..Branch and link.
| {‘ ' t ta DELREC

3 Yes Return
DELREC errors? . to TCP

. Figure C.2.c

k RESTREC Routine (cont.)

Cc-10

Set up RESTORE
parameter list

l

Branch and link
to RESTORE

l

Set up UPDATCOM
parameter list

l

Branch and link
to UPDATCOM

1 Yes
C UPDATCOM errors?)——‘ TP

No

Release all memory

l

Restore TCP registers

l

Return to TCP

Return to

Figure C.2.4
RESTREC Routine (cont.)

APPENDIX D

EXAMPLES OF PROCEDURE CREATIONS

IBOO| PLEASE LOGON,
/LOGON GANA
ZB002 LOGON ACCEPTED AT 1523 ON 89/15/70, TSN 8666 ASSIGNED,
/EXEC PROC
TL001 PROGRAM LOADING
ENTER PROCEBURE NAME
SEXAMPLEI
BEGIN
*EXEC $DESIATO.LOGTRAN
$CALC
*FLIST
*END»
END OF PROCEDURE
/D0 EXAWPLEL
Z/PROC C
X/EXEC SDESIATO.LOGTRAN
L0001 PROGRAM LOADING
*TOPIC:=LOGIC & YEAR=19¢4,
REQUEST IS BEING PROCESSED
ENTERED RCPCHX
ENTERED RCDCHX
ENTERED RCDCHX

000100 CODE NUMBER = BENNJGAI

600200 AUTHOR = BENNETT, J, K.

000300 AUTHOR = EASTON, V. B,

000400 AUTHOR = GUARD, J. R,

000500 AUTHOR = LOVEMAN, D, B,

000600 AUTHOR = MOTT, T, H. JR,

000700 TITLE = SEMI-AUTOMATED MATHEMATICS-SAM IV
000800 XEY PHRASES = SEMI-AUTOMATED MATHEMATICS
000900 XEY PHRASES = SAM IV

001000 COMPANY = APPLJED LOGIC CORPORATION
001100 COMPANY ADDRESS = PRINCETON, N, J.

001200 DOCUMENT NUMBER = AFCRL NO, €4-827 (CONTRACT NO, AF19(€28)-3230
» SCIENTIFIC REPORT NO, 3)

001300 MONTH = OCTOBER

001 400 YEAR = 1964

001300 PAGES = 85
001600 TOPIC = LOGIC
001700 TOPIC = THEORM y

001800 ABSTRACT = THIS REPORT IS THE FOURTH ON THE SUBJECT OF THE TITL
E, AND IS PRECEDED BY MOTTT630, GUARJCAO, AND BENNJGAG, NONALGORITHMI
C PROOF PROCEDURES ARE USED, AND THE HUMAN SUPPLIES INFORMATION TO ASS
IST IN THE PROOF, A LIMITED CLASS OF MATHEMATICAL STATEMENTS CAN BE H
ANBPLED. THIS PROGRAM IS ON THE IBN 7046,

REQUEST PROCESSING COMPLETED
X/CALC
*SQART(678)
26 = +26,0384331
#X=SQART (430)%x| €
X = +127,871796
W=34,5%%2,4
XY = +4906,.432%9
aA+Y
26 = +5034,30439
*END

T/EXEC FLIST

2001 PROGRAM LOADING

PROC 0005

RESTORE 0004

LOGTRAN 0004

COREFMT 0003

MULTRET 0012

TENP 0012

JORGE 0024

MACPROC 0003

SLAMS 0004

SLAM6 0003

EXAMPLE! 0002

2/ENDP

ALOGOFF

8003 LOGOFF AT 1332 ON 09/15/70, FOR TSN B666.
IB0O14 CPU TIME USEDs 000€.B513 SECONDS,

Example D.1l
Typical Procedure Creation Followed by

Immediate Execution

D-3

001 PLEASE LOGON.

/LOGON GANA

BO02 LOGON ACCEPTED AT 1144 ON 09/18/70, TSN 8939 ASSIGNED,
/EXEC PROC

2,001 PROGRAM LOADPING

ENTER PROCEDURE NAME
*EXAMPLE2

BEGIN

H_OCNAME #AA 3=SHORTON.MULTTES! #BB :=C°'YEAR=1964"' ##¢
*RETRIEVE #AA,#BB,!|

MESTORE #AA,05

*SAMPLE #BB

*FSTATUS #AA

*END %

END OF PROCEBURE

/EXEC (EBIT)

7.001 DYNAMIC LOADER INVOKED

v£¥s. 0009 OF FILE EDITOR READY

*0 N

OPENED T AS NEW V-TYPE FILE,

*GET EXAMPLEZ2

» 0S

/PROC C

/RETRIEVE S$HORTON.MULTTES1,C°'YEAR=196€4°,1
/RESTORE SHORTON.MULTTES!,05

/SAMPLE C°YEAR=1964"

/FSTATUS SHORTON.MULTTES!

/ENDP

|

AL OGOFF

78003 LOGOFF AT 1200 ON 09/18/70, FOR TSN 8939,
8014 CPU TIME USED: 0008,.,9271 SECONDS.

Example D.2

Use of Local Names in Creating a
Procedure for Later Execution

APPENDIX E

RETRIEVE SESSION EXAMPLE

X8001 PLEASE LOGON,
/LOGON GANA
18002 LOGON ACCEPTED AT 1534 ON 09/11/70, TSN 8472 ASSIGNED,
METRIEVE SHORTON.MULTTES!,C YEAR=1964°°TO**1968°AND* *TOPIC=L0GIC",2
REQUEST IS BEING PROCESSED
ENTERED RCDCHX
ENTERED RCDCHX

RECORD
000100
000200
000300
000400
000500
000600
000700
000800
000500
001000
001100

NO, 000014

CODE NUMBER = COOPD661

AUTHOR = COOPER, D, C.

TITLE = THEOREM-PROVING IN COMPUTERS

KEY PHRASES = THEOREM-PROVING

BOOK = ADVANCES IN PROGRAMMING AND NON-NUMERICAL COMPUTATION
PUBLISHER = PERGAMON PRESS

YEAR = 1966

PAGE LIMITS = 155-182

TOPIC = LOGIC

TOPIC = THEORM

ABSTRACT = THIS PAPER IS BASED ON SOME LECTURES GIVEN AT A
SUMMER COQURSE IN ENGLAND IN 1963, IT CONTAINS A GENERAL SURVEY
OF SOME OF THE BASIC. ISSUES AND WORK DONE, AS WELL AS SPECIFIC
PETAILS ABOUT THE VARIOUS ALGORITHMS FOR PROVING THEOREMS IN
LOGIC OF THE CITED WORKERS, THERE IS A LENGTHY DESCRIPTION OF
HERBRAND'S THEOREM,

- ENTERED RCDCHK

RECORD
000100
* - 000200
000300
000400
000500
000600
000700
000800
000500
001000
001100
001200

001300
001400
001500
001600
001700
001800

NO. 000002

CODE NUMBER = BENNJSAI

AUTHOR = BENNETT, J. H.

AUTHOR = EASTON, W. B, .
AUTHOR = GUARD, J. R,

AUTHOR = LOVEMAN, D, B,

AUTHOR = MOTT, T. H. JR,

TITLE = SEMI-AUTOMATED MATHEMATICS-SAM IV

KEY PHRASES = SEMI-AUTOMATED MATHEMATICS

KEY PHRASES = SAM IV

COMPANY = APPLIED LOGIC CORPORATION

COMPANY ADDRESS = PRINCETON, N, J.

DOCUMENT NUMBER = AFCRL NO, 64~827 (CONTRACT NO. AF19(628)-3250,
SCIENTIFIC REPORT NO, 3)

MONTH = OCTOBER

YEAR = 1964

PAGES = 85

TOPIC = LOGIC

TOPIC = THEORM

ABSTRACT = THIS REPORT IS THE FOURTH ON THE SUBJECT OF THE

TITLE, AND IS PRECEDED BY MOTTT630, GUARJG40, AND BENNJG4O,
NONALGORITHMIC PROOF PROCEDURES ARE USED, AND THE HUMAN SUPPLIES
INFORMATION TO ASSIST IN THE PROOF, A LIMITED CLASS OF
MATHEMATICAL STATEMENTS CAN BE HANDLED, THIS PROGRAM IS ON THE
IBM 7040,

- REQUEST PROCESSING COMPLETED

/ALOGOFF

i ZBO03 LOGOFF AT 1539 ON 09/11/70, FOR TSN 8472,

ZB014 CPU TIME USED: 0001,.,8480 SECONDS,

