
University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Philadelphia, Pennsylvania

TECHNICAL rnPORT

A COMMAND AND QUERY LANGUAGE ASSEMBLER FOR
AN EXTENDED DATA MANAGEMENT SYSTEM

Jorge Gana

Apri l 1971

Submitted t o the
Office of Naval Research

Information Systems Branch
Arlington, Virginia

under
Contract ~00014-67-A-0216-0014

Research Project NR 049-153

Reproduction i n whole or i n par t i s
permitted f o r any purpose of the

United S ta tes Government

Moore School Report No. 71-22

A C W N D AND QUERY LANGUAGE ASSEMBLER FOH
AN EXTENDED DATA MKNAGEMENT SYSTEM

Abstract

For a data management system with information storage and r e t r i eva l
cXapabili t ies a language i s needed by which a user of the system can
specify the records he wishes t o re t r ieve and the operations he wishes
t o perform on these records. The Command and Query Language under d i s -
cussion was developed t o meet these needs f o r the extended data manage-
ment system. I ts development was divided i n t o two spheres of responsi-
b i l i t y . The f i r s t sphere, referred t o a s the Assembler, centers on the
routines needed f o r accepting and t r ans l a t i ng user requests. The second
sphere centers on those routines needed f o r executing the t rans la ted
requests. These routines a r e ca l led col lect ively t he In te rpre te r . The
design of the Command and Query Language and the implementation of the
Assembler i s the topic of t h i s report .

Basically, the Language enables the user t o specify the records by
means of the l og ica l and ari thmetic expression of keywords. Since pro-
gram names may be keywords, the user can specify operations (t o be per-
formed on records) with keyword expressions a s well

The design of the Language involves the following steps:

(1) Define the requirements of the Language.
(2) Define the (external) syntax and semantics of the Language.
(3) Design an in t e rna l form of the Language t o allow e f f i c i e n t

processing by the In te rpre te r .

The design and implementation of the Assembler w i l l r e s u l t i n the
necessary routines which can check the syntax of the Language and t rans-
from the Language from i t s external syntax t o i n t e rna l form.

I A COMMAND AND QUERY LANGUAGE ASSEMBLER FOR AN EXTENDED DATI MANA-T SYS'PEM; I

(Serurfty rlaeei/lratlon o f tltle, body o f ab8tnrt m d Indexln(.nnol8llm muat be enfOwd when the overall report I8 rla8aIMed)

T

4. D E s C R l P r l V e N O T E S (n p e o f report a4inclueive &tea)

Technical Report
8 . AU T n O R (S) (Firat fume, mlddle inttiml, la81 nam)

Jorge Gana

1. O R I O I N A T I N C A C T l V I T Y (C O ~ ~ O I . ~ # . ~ t h ~)

University of Pennsylvania
The Moore School of Electr ical Engineering
Philadelphia, Pa. 19104

U. R P P O R T S C C U R l T Y C L A S S I F I C A T I O N

zb. GROUP

~00014-67-~-0216-0014
b. P R O J C C T N O .

3. R E P O R T T I T L E

6. R C e O R T D A T E

April 1971
U. C O N T R A C T O R G R A N T N O . I Moore School Report No. 71-22 I

7.. T O T A L NO. O F P A O L S 7b. NO. OF RIPS ;

70 . ~. 8 I

O.. O R I G I N A T O R ' S R C P O R T NUMOIER(8)

I Reproduction i n whole or i n par t i s permitted f o r any purpose of the
U.S. Government.

NR 049-153
C.

d.

11. I U P P L L M C N T A R V N O T E * 12. SPONSORING M I L I T A R Y A C T I V I T Y

eb. 0 THCR RCPORT RO~SI (AW olhw M ~ N *at br rme1m.d
Ihie aport)

Office of Naval Research
Information Systems Branch

(3. A O S T R A C T
ArlinRton, Virginia

For a data management system with information storage and re t r ieval capabili-
ties a language i s needed by which a user of the system can specify the records he
wishes t o retr ieve and the operetione he wishes t o perform on these records. The
Command and Query Language under discussion was developed t o meet these needs f o r the
extended data management system. I t 6 development was divided in to two spheres of
responsibili ty. The f i r s t sphere, rhferred t o a s the Aeseuibler, centers on the routine
needed f o r accepting and translat ing ' user requests. The second sphere centera on
those routines needed for executing the t ranslated requests. These routines are
called collectively the Interpreter. The design of the Command and Query Language and
the implementation of the Assembler i s the topic of t h i s report.

10. D I S T R I B U T I O N S T A T S M L N T

I Basically, the Language enables the user t o specify the records by means of 1 ' the logical and arithmetic expression of keywords. Since program names may be keywords
the user can specify operations (t o be performed on records) with keyword expressions
a s well.

The design of the Language involves the following steps:
(1) Define the requirements of the Language.
(2) Define the (external) p t a x and semantics of the Language.
(3) Design an internal form of the Language t o allow e f f i c i en t proceseing

by the Interpreter.

I The design and implementation of the ~ssemble r w i l l r e su l t i n the necessary I I

S/N 01 01 -807-681 1 Security Classification
A - 3 l U I

Security Classification 4 - 3 1 1 0 9

TABLE OF CONTENTS

W r n R 1 INTROmCmON

CHAPTER 2 OVERALL SYSTEM DESIGN CONSIDFAATIONS

2.1 Interfacing with the Existing Operating System

2.2 Use of High-Level Source Programming Language

2.3 TSOS Compatibility

CHAPTER 3 M E COMMAND AND QUERY LANGUAGE

3.1 The Interpreter

3.1.1 TSOS Procedure (PROC) Files

3.1.2 PROC File Commands

3.1.3 Use of TSOS PROC Files

3.1.4 Terminal Command Processor

3.1.5 Interface with the Assembler and Interpreta-
tion Flow

3.2 The Assembler

3.2.1 Syntax and Semantics

3.2.2 Additional Requirements of the Assembler

3.2.3 Service Request Options

3.2.4 Adding and Testing New Supervisor Calls

CHAPTER 4 DESIGN AND IMPLEMENTATION OF ME ASSEMBLE3

4.1 Logical Expressions Translation Routine (LOGTRAN)

4.2 Statements Translation Routine (s~TRA.N)

4.3 Format of the Command Elements

4.3.1 The F o d Parameter Command

4.3.2 The Retrieve Command

4.3.3 The Continue Command

4.3.4 me Restore Command

Page

1

mBLE OF CONTENTS (continued)

CIIflPTER 5 CONCLUSIONS

DIBLIOGRAPHY

APPENDIX A RCUTINE LOGTRAN

A .1 Entry Points

A . 2 Exit Points

A . 3 Input Parameter L i s t

~ . 4 LOGTRAN Output

A.5 Return Codes

A . 6 Register Conventions

A . 7 In te rna l Work Area

~ . 8 In te rna l Codes

A. 9 Flowchart

&'PENDM B RWTINE STATRAN

B . l Entry Point

B.2 Exit Point

B . 3 External Subroutine Calls

B .4 Register Conventions

B . 5 In te rna l Work Area

B .6 Flowchart

APPENDIX C RESTORE COMMAND SERVICING ROUTINE

C . l Input

C.2 External Subroutine Calls

C .3 Flowchart

APPENDIX D EXAMPLES OF PROCEDURE FILE CREClTION

APPENDIX E RFXR1EVA.L SESSION

Page

35

37

A-1

A - 1

A-1

A- 1

A- 1

A- 3

A- 3

A-4

A- 5

A-6

B-1

B-1

B- 1

B-1

B- 2

B- 3

B- 4

C- 1

C - 1

C- 1

c- 5

D- 1

E- 1

In information storage and retrieval a language is needed by which

a user of the facility can specify the records he wishes to retrieve,

and the operations he wishes to perform on those records. We called

the language "Query Language" [l] . The Query Language for an Ektended

Data Management System should not be restricted to any standard informa-

tion retrieval language, (e.g., languages suitable for document retrieval

only) particularly since it is going to be used by a large number of users

of different disciplines who need to share the resources and data of the

system in a common storage. Tne Query Language should be capable of

providing flexibility in all levels, e.g., enabling the user to.bring

a program from his file for execution and providing this program with

parameters or data which in turn can be new executable programs or

records. For specifying records, the language should allow the user to

describe records in terms of the logical and arithmetic expression of

keywords. These records m y be data records or programs. They are

both stored in files. Records may be processed by system programs or

by user's programs. The former is accomplished through the use of

commands, and the latter through the use of the query language.

The subject of this report is the design and implementation of a

Command and Query Language in agreement with the requirements just

described above, which can be summarized as follows:

1) 'Be user must be able to write procedures, have them executed,

and, if desired, have them stored for repeated use at a later time.

2) The user must be able to request the execution of any of his

own programs stored in his files, any pre-defined system routines, any

procedures he has defined, and any programs or procedures of other

users to which he has access rights.

3) The user must be able to supply input parameters and data to

programs or procedures he is using, providing format information about

these parameters or data where necessary.

4) The user must be able to provide logical expressions of key-

words as data, and provide abbreviations (called local names) for long

expressions to facilitate procedure writing.

The Command and Query Language under discussion was developed to

meet these needs for an extended data management system.

The language format was designed with the following requirements

in mind:

1) The format mst allow the writing of statements to satisfy

all the above requirements.

2) The format should be as simple as possible to facilitate the

ease of using the language.

3) The format should not require writing excessive amount of

material unless the material aids in the user's understanding.

Its development was divided into two spheres of responsibility.

m e first sphere, referred to as the Assembler, centers on the routines

needed for accepting and translating user requests from external to

internal encoded format. The second sphere centers on those routines

needed for executing the translated request. These routines are

called collectively the Interpreter.

me design of the Command and Query Language involves the follow-

ing steps:

1) Define the requirements of the Language.

2) Define the (external) syntax and semantics of the Language.

3) Design an internal form of the Language t o allow an ef f ic ient

processing by the Interpreter.

The design and implementation of the Assembler w i l l resul t i n the

necessary routines which can check the syntax of the Language and trans-

form the Language from i t s external syntax t o i t s internal form.

CHAPTER 2

OVERALL SYSTEM DESIGN CONSIDERCllTONS

In order t o define the requirements of the query language, it is

necessary f i r s t t o specify the objectives and design goal of the Extended

Data Management System [2]. Many suggestions were made a t the beginning

of the design development of the system as to ways the system should be

implemented, areas of useful research or things the system should do.

The more important suggestions, that have relevance i n relation t o the

query language design, together with the result of the consideration of

these suggestions, are presented below.

2.1 Interfacing with the Ekisting Operating System

me RCA Spectra 70/46, on which the -tended Data Management System

i s t o operate, has a powerful general purpose, time-sharing operating

system (TSOS) . In order t o make available t o the users all our new

fac i l i t i e s , it was decided t o build our system as a part of the existing

TSOS system and t o make use of i t s f ac i l i t i e s as much as possible. This

adds the f lexibi l i ty that all f ac i l i t i e s are given t o the user a s part

of the general purpose system instead of a dedicated system. Tbis

decision involved three major areas of the operating system:

1. Use of Existing Control Program Elements

2. Use of Ekisting Data Management System (DMS)

3. Use of Existing Command Language Faci l i t ies

The Command Language for RCA TSOS not only has extensive features

i n i t s own right, but contains certain features which not only make for

flexible use of the Command Language, but are helpful i n adding new

commands t o the system. One of these features, i s the Interpretive

Scan Processor (ISP) , a table driven interpreter which allows new cammands

to be defined using existing system macro-instructions. Another is the

Tkmninal Command Processor ('PCP), which decodes the cammands as they

come in, calls the ISP to interpret them, then gives control to the

appropriate servicing routine to handle the command. It was decided

that this existing Cormand Language system, with certain modifications

would be completely suitable for handling our command initial processing

requirements .
2.2 Use of Hi&-Level Source Programming Languaae

Another consideration was that of using a high-level source

language (such as FOR'IRAN or CCISOL) for programming the system, rather

than assembly language - the traditional source language for system
programing.

The obstacle which forced the project to abandon this idea was

that our system routines, like most of the rest of the TSOS components,

have to be reentrant, i.e. usable by several programs at the sam time.

Special programming techniques must be used to produce reentrant pro-

grams, and it was found that the object programs produced by the high-

level programing languages available under TSOS could not be made

reentrant. The possibility of converting a high-level language com-

piler from another camputer (e.g. IBM 360 PL/~) which could produce

reentrant object programs was investigated, but it was found that the

conversion problems were too great for this idea to be used. It was

therefore decided to write our system routines in assembly laqgmge,

using reentrant coding techniques.

2.3 TSOS Compatibility

One of the design goals of the Extended Data Management Facility

was to have a non "dedicated" system to cur requirements, but rather a

general purpose time-sharing facility. By general purpose we mean that

it can be used by people who may use our special features, people who

may use only the existing system features and people who may want to

use both features. 'Bus it was decided that:

1) users who did not wish to make use of our advanced data

management features should be able to run standard TS05 programs on

the new system without change; and

2) the use of our components by some users should not degrade

performance for other users of the system.

These considerations affected the decision on whether or not to

use the existing Data Management System and how to modify the Command

Language.

CHAPTER 3

'ME COMMAND AND QUERY LANGUAGE

'IPne development of the Command and Query Language and i t s peripheral

requirements was divided into two dis t inc t spheres of responsibility.

The f i r s t of these spheres centers on routines referred t o a s the Assembler

needed f o r accepting and translating user request. Tbe basic assembly

routine (sTYI~RAN) , the logical expression translat ion routine (LOGZIIAN)

and other routines of the Assembler are discussed i n Chapter 4 of t h i s

thesis. !Be second sphere centers on those routines needed f o r trans-

forming the translated requests in to a form which the Supervisor of the

%tended Data Management Faci l i ty w i l l accept and ac t upon. &ese rou-

t ines are called collectively the Interpreter [3]. Based upon the user

requests, the f i r s t routine of the Interpreter s e t s up a modified TSOS

Cammand Language Procedure F i l e which i s the standard TSOS convention

fo r placing the incoming terminal commands and statements a s br ief ly

discussed i n Section 3.1. m e Conanand Language Procedure F i l e can then

be processed by other routines of the Interpreter f o r the appropriate

actions as requested by the user. Following i s a brief discussion of

some Interpreter functions followed by the complete Assembler require-

ments i n de ta i l .

3.1 m e Interpreter

Ihe following i s a brief discussion of same functions of the RCA

time sharing operating system which i s essent ial i n understanding the

mechanism of the Interpreter and i t s interface with the Assembler.

