
Superquadric Library,
User Manual and Utility Programs

MS-CIS-92-11
GRASP LAB 300

Luca Bogoni

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

February 1992

Superquadric Library,
User Manual,

and Utility Programs

Luca Bogoni

GRASP Laboratory
Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104

February 3, 1992

Abstract

Superquadrics are a family of parametric shapes that have been used as primitives for shape representation
in computer vision and computer graphics. They can be used for modeling tapering and bending deformations
and are recovered efficiently by a stable numerical procedure.

This document introduces the superquadric library, SQ-lib, developed at the GRASP Lab at the Univer-
sity of Pennsylvania.

The manual is organized into three parts. The first part provides the reader with a description of
superquadrics models and deformations that can be performed. Furthermore, it introduces the coordinate
systems conventions which are used in the library.

The second part presents some examples of applications on how one can use the functions defined in the
library. It also lists utility programs which have been developed while conducting research. They provide a
good source of examples for the application of the library.

Finally, the last part describes the datatypes and each of the functions which are supported in the library.
The library itself is organized in two sets Fundamental and Auxiliary functions. A quick reference to all the
functions and an index is provided.

Some of the functions and examples supplied perform data preprocessing and are connected t o the PM
image description also available from the GRASP Lab. These functions are provided in isolation from
the remaining body of the library and can easily be excluded in the actual compilation of the library.
Furthermore, routines for the visualization of the data, using X11, are also provided.

CONTENTS

Contents

1 Introduction 1

2 Basic Definitions 3

. 2.1 A superquadric. what is it? 3

. 2.2 Applying Deformations to Superquadrics 3

. 2.2.1 Tapering 4

. 2.2.2 Bending 4

. 2.2.3 Combination of Tapering and Bending 4

. 2.3 Super Ellipses: 2D SuperQuadrics 5

. 2.4 Coordinate systems 5
. 2.5 references 6

3 User Manual 7

. 3.1 getting started: a tutorial 7

. 3.2 Examples 7

. 3.2.1 From points to Fitting parameters 7

. 3.2.2 From PM image to Fitting parameters 8

. 3.2.3 Displaying using XI1 10

. 3.3 Utility programs 13

. 3.3.1 Post processing and Visualization of data 13

. 3.3.2 DISP: a display program 15

. 3.4 Including, PM format, Compiling, etc 18

. 3.4.1 What to include? 18

. 3.4.2 PM-format for images 18
. 3.4.3 Compiling 19

. 3.4.4 The Labeling Convention 19

4 Library 20

. 4.1 Overview: functions descriptions by groups 20

. 4.2 Structures descriptions 21

. 4.3 Input and Output files 24

. 4.3.1 Fitfile format 24

. 4.3.2 Input Format 25
. 4.4 FundamentalFunctions 26

. 4.4.1 Deformatiolls 26

. 4.4.2 Inside Outside, and Normal Angles 29

CONTENTS

4.4.3 PM to Points Transformation . 30

4.4.4 Estimation . 31

4.4.5 Recovery: Quadric and SuperEllipse . 31

4.4.6 New Structures Allocation . 31

. 4.4.7 Command Parsing 33

4.4.8 I/O functions . 34

4.5 Auxiliary Functions . 35

4.5.1 Top Level Funcs . 35

4.5.2 Distance . 35

4.5.3 Edges Computation and Curvature . 36

4.5.4 Additional Points . 36

4.5.5 Math Functions . 37

4.5.6 Dynamic Allocation Routines . 38

4.5.7 Display . 40

4.5.8 XI1 Routines . 41

1 Introduction

This document introduces the Superquadric library, SQ-lib, developed at the GRASP Lab at the

University of Pennsylvania. The initial effort of implementing the recovery process is due to the

research of Frank Solina. Subsequent developnlent and restructuring where carried out both by Alok

Gupta and Bogoni Luca, who reorganized and enriched the initial routines and interface consolidating

it into the present package.

Organization

Section 2 provides the reader with a description of superquadrics models and deformations

that can be performed. Furthermore, it introduces the coordinate systems conventions which

are used in the library. At the end of this section, few references are provided.

Section 3 presents some examples of applications on how to use the library. It also lists few

utility programs which have been developed while conducting research. Some of them provide

a good source of examples for the application of the library.

Section 4 describes the data.types and each of the functions which are supported in the library.

Some of the functions and the examples provided here are concerned with data preprocessing

and are connected to the PM image description also developed at the GRASP Lab. These functions

are provided in isolation from the remaining body of the library and can easily be excluded in the

actual compilation of the library. The type of data which was preprocessed was laser range data but

the actual application of the core routines performing the recovery process is entirely unrelated t o

the origin and the nature of the data.

The visualization of the data, using X11, is not too sophisticated but provides for some of the

basic display operations. One might desire to modify it but that goes beyond the actual purpose of

the package provided here.

Acknowledgements

The work collected in the Superquadric library was matured through the years and the many people

who were involved in developing some of the functions now gathered in the library. I would like t o

thank Dr. Ruzena Bajcsy for the many discussions and for providing the resources in the GRASP

lab to make it possible. Alok Gupta was a major player in the development and test of actual

functions in this library and provided insight into the overall process. Frank Solina provided the

initial recovery process and some of the preprocessing routines. Furthermore, I would like to thank

2 1 INTRODUCTION

all my colleagues a t the GRASP lab who have been supportive and made it a pleasant environment

for the development of this library.

This research was supported by: Navy Grant N0014-88-K-0630, AFOSR Grants 88-0244,

AFOSR 88-0296; Army/DAAL 03-89-C-0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770,

and ASC 91 0813; and Du Pont Corporation.

2 Basic Definitions

2.1 A superquadric, what is it?

Superquadrics are a family of parametric shapes that have been used as primitives for shape repre-

sentation in computer vision and computer graphics.

Definition : A superquadric surface is defined as the closed surface spanned by the vector S

having x,y and z components specified as functions of the angles 77 and w in the given intervals :

We identify components as S,(q, w), S y (q , w), and S , (q , w)'.

The implicit superquadric equation can be derived from the above definition by eliminating q

and w :

Thus, alternatively we can define the superquadric in terms of its implicit equation, as the locus

of the points (z, y, r) satisfying the above equation.

The parameters a l , aa, and as determine the size of the superquadric in the x,y and z directions

(in object-centered coordinate system) respectively; while ~1 and E:, represent the shape parameters

in the latitude and in the longitude plane. Based on these parameters, superquadrics can model

a large set of standard geometric primitives, such as spheres, cylinders, parallelopipeds as well as

shapes in between.

If both and ~2 are equal to 1, the surface defines an ellipsoid. Cylindrical shapes are obtained

for EI << 1 and = 1. Parallelopipeds are obtained for both ~1 and E:! << 1. In our approach, the

model recovery procedure allows ~1 and t o assume values in the interval [0 . . . 11. For values of ~1

and s2 > 1 the resulting parameterized shapes define objects which are not, in the set of primitives

we are interested in portraying. For instance, &I,&:, = 2 yield objects which are diamond-shaped

bevels and as their value increases they become pinched.

2.2 Applying Deformations to Superquadrics

The representational power of superquadrics is augmented by the application of various deformations

to the basic model. The deformations which we have included in our vocabulary are tapering and

'Actually the component in the z-direction is independent of w but, we include it, at this point, only for symmetry.

However, when deformations are applied w becomes an effective component of the z-direction.

4 2 BASIC DEFINITIONS

bending. For notation purposes we define S' as the model to which deformations have been applied

and identify each of the components in the x,y, and z directions respectively by Sx, Sy , SZ and

alternatively as (X, Y, Z) , accordingly to the definition of the implicit equation.

2.2.1 Tapering

Linear tapering along the z-axis transforms the basic superquadric model from S to S', where (x, y, z)

is transformed to (X, Y, 2). The transformed model is given by :

x = fx(z)x where fx(z) = % z + l

Y = fy(z) y where f,(z) = 2 z + 1

z = z

where I<,, K y , -1 5 ICx, I<, < I , represent the tapering with respect to the x and y plane relative

to the z direction.

2.2.2 Bending

Bending deformation of the superquadric surface vector is defined by the following transformation :

X = x + cos(cr)(R - I*),

Y = + sin(cr)(R - r) ,

Z = s i n (y) (i - r) .

Where k is the curvature and r is the projection of x and y components onto the bending plane

L - T :

r = cos(a - tan- '(2)) Jm
x

Bending transforms r into

R = k-' - cos(-y)(k-' - r) .

Where y is the bending angle

y = zk-l

2.2.3 Combination of Tapering and Bending

The two independent. deformations are applied by computing the corresponding homogeneous trans-

formation matrices. It is possible to apply both transformations to a superquadric model sequen-

tially. However, since matrix multiplication is not commutative, the order in which deformations

are applied is important. The model recovery procedure has adopted the following structure t o

transform an object-centered superquadric model to a deformed superquadric in general position

and orientation.

S' = Trunslatio~z(Rotation(Bending(Tapering(S))))

2.3 Super Ellipses: 2 0 SuperQuadrics

Figure 1: Coordinate Frames

Thus, bending and tapering introduce two parameters each in the final superquadric equation,

bringing the total parameter count to 15. The minimization procedure is capable of recovering all

15 parameters simultaneously for a given data set. The above equation identifies the volumetric

model used to describe parts in our system.

2.3 Super Ellipses: 2D SuperQuadrics

While superquadric primitives are exclusively 3D primitive, the library contains a recovery process

which allows t o recover 2D primitives in the shape of superquadrics. Effectively their equations do

not involve the z conlponent.

2.4 Coordinate systems

In order t o understand the different references to the coordinate systems often discussed in this

article and used in the routines we define the conventions adopted.

Three coordinate system frames are defined.

Image Coordinate System (ICS) refers to the top left corner of the image. The x-axis corre-

spond to the rows and the y-axis corresponds to the columns and the z-axis is pointing out

of the plane. This right hand system was chosen in order to facilitate further interaction with

the manipulator. The parameters defining this coordinate system are fixed.

Object Coordinate System (OCS) located ate the centroid of the object. The parameters will

be adjusted in the recovery process.

World Coordinate Systein (WCS) located somewhere in the environment and it can be user

specified.

6 2 BASIC DEFINITIONS

We now describe the relation between the different coordinate frames and how one may apply

transformations between the different systems.

Points are described as a default with respect to the Image Coordinate system. If the user would

like to describe with respect to some other coordinate system (WCS) can easily do so by supplying

his/her own transformation matrix T, describing rotation and translation, as one of the parameters.

Given a transformation T , then a point, PI, specified in ICS is expressed in the world coordinate

system WCS by the expression:

pw = T - ~ P ~

Similarly we can express a point given in WCS by the expression:

The figure 2.2.3 gives an idea of the relation between the different coordinate frames. The OCS and

WCS are arbitrarily set to an angle, not necessarily perpendicular to the plane of the image. The

only restriction is the orientation of the coordinate frame identifying the ICS. The arches amongst

them represent the transformations between the different coordinate systems.

2.5 references

The references provided in this section are given as pointers to literature describing more in detail

the mathematical derivations and reasoning which is behind the functions implemented in the SQ-

library. Further applications of the library can be obtained by consulting the GRASP Newsletter.

For the details of the actual fitting procedure the user is referred to Franc Solina's Ph.D. dis-

sertation Technical Report MS-CIS-87-111 also appeared in IEEE PAMI, vol. 12, No. 2, Feb.

1990 Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global

Deformations", F. Solina and R. Bajcsy.

Additional references describing the ideas behind some of the functions can also be found in

A.Gupta, L. Bogoni, and R. Bajcsy: Quantitative and qualitative measures for the evaluation ofthe

superquadric models in Proceedings of the IEEE Workshop on Interpretation of 3D Scenes, pp. 162-

169, 1989. Further applications and procedures where developed in the context of A. Gupta's Ph.D.

dissertation, Surface and Volum~etric Segmentation o f Complex 3-0 Objects lising Parametric Shape

Models, Technical Report MS-CIS-91-45.

The actual minimization procedure mrqmin() is taken from Numerical Recipes in C, by Press et

al.

3 User Manual

3.1 getting started: a tutorial

To best describe how to handle functions in the library, we have provided some examples. They

illustrate some of the basic applications which can be performed using functions in this library. In

the next section a description of each individual function will be given more in detail. After a list

of the utility programs there is a list of topics pertaining compilation, inclusion of files, naming

conventions etc.

3.2 Examples

In this section we consider some examples to illustrate the application of functions calls in the library.

The description of the individual calls is only summary at this point. For further detail one should

refer to the specific functions descriptions in section 4.4.

We consider three particular instances. The first two are instances, quite similar in structure, of

functions calls required to set up the basic superquadric procedure both starting from laser-image,

in PM-format (see section 3.4.2). The last one exhibit the application of other functions which allow

the displaying the recovered parameters using X 11.

3.2.1 From poin ts to F i t t i ng pa rame te r s

The function described in the example below illustrates the basic process required to obtain a

superquadric fit of a set of 3D points. The user is supposed to provide a list of points in a WCS

(world coordinate system) frame.

The function takes as parameters a list of points in three dimensions and a pointer which upon

return will be set to the list of the structures describing the incremental recovery of the parameters

with the last fit being the best fit.

Initially the option flags are initialized. The number of iterations to be performed in the recovery

process is set to 5, and the deformations to be recovered are set to Bend and Taper.

Next the dimensions and orientation of the center of mass is recovered, sq-estimate.

The structure list is initialized and the number and the list of points is assigned to the structure.

The transformation matrix defining the relation of the points to the world coordinate system is

initialized to the identity rnatrix. Such initialization underlines that the points are already specified

in the appropriate coordinate system.

The recovery routine is invoked. Since we are not interested in displaying the superquadric during

the recovery process, we use the vanilla version without. any simple graphics interface.

3 USER MANUAL

perform-recoverycn-points,

point -list,

rec-sq)

i n t npoints ;

double **PO i n t - l i s t ;

SQ-STRUCTLIST *rec-sq;

I

/* number of points t o f i t */
/* array with point coordinates */
/* superquadric parameters */

/* Recovery Options */

f l g = sq-make-opts0 ; /* i n i t i a l i z e s t ruc tu re */
f lg ->f i t - type = -BEID-TAPER; /* type of recovery desired */
f lg ->n- i t e r = 5; /* mar It of i t e r a t i o n s allowed */

sq-estimatecrec-sq,flg) ; /* estimate the i n i t i a l sq param.s */

rec-sq = sq-make-struct-list(); /* i n i t i a l i z e l i s t of sq ' s t o t race

history of recovering process */

rec-sq->sq-points = point -list ;

rec-sq->sq~um-points = n-point s ;

sq- ident i tymtrix(rec-sq->TI; /* no transformations */

sq-quadric-plain(rec-sq, f l g) ; /* recover the SQ t o spec i n f l a g */

1

3.2.2 From PM image to F i t t i ng pa rame te r s

The following example is quite similar to the preceding one. The main difference is that it uses the

PM format for the image. It is very similar to the source code for the standalone program, sqsup,

one of the utility programs, for recovering the parameters for a superquadric from a PM-image.

The following program accepts a t command line the specification of parameters which are then

processed by the sq-cmdparse() routine. Additional functions for checking on the validity of parsing

the arguments are provided. The image is then processed and the points are recovered. Dimensions

and orientations are then determined, sq-estimate, determined. Finally, the parameters defining the

superquadric are recovered by the minimization process.

3.2 Examples 9

The optional setting of the flags from within the program are exemplified in the next example.

main(argc,argv)

int argc;

char **argv;

C
SQ-OPTS-FLAGS *f; /* parsing and initialization flags */
SQ-STRUCT-LIST *S; /* pointer to structure list */
char *pmfile = (char *) BULL; /* pm image to process */
char *o-f ile [I001 ; /* some name for output file */

FILE *fp;

pmpic *pm-img;

int i;

f = sqnake-opts () ;

if (argc == 1)

C
sq-usage (argv C01) ;
exit (0) ;

>

/* pm format */

sq-cmdparse(argv,argc,tf,Lpm-file); (bl)

if (sq-parse-errcheck()) (b2)

C
if (sq-param-ernusgo) (b3)

exit (0) ;

>

if ((fp = fopen(pm-file,"r")) == BULL)

C
printf ("file open error :Is \nu ,pm-f ile) ;

exit (0) ;

1
if ((pm-img = pm-read(fp,O)) == BULL)

C
printfCUerror in reading the pmfile %s",pm-file);

exit (0) ;

fclose(fp);

3 USER MANUAL

sq-quadric-plain(S,F); / * run the sq routine */

strcpy(o-file,infile);

sq-print-to-f ile(S ,strcat (0-file," .f itf ile")) ;

The initialization with defaults for flag structures is performed,al, a2, a 3 and parsing of the

arguments from cmd line, bl, b2, b3 constitutes the first phase of the program. Points are extracted

from the pm imagecl, and sequentially the major axis and basic transformation parameters are

estimated c2. Finally the minimization process to recover the parameters is invoked. In the last

step, all the recovered parameters are output to the fit-file.

3.2.3 Displaying using XI1

Visualization of the data is important aspect of the recovery process for in that way one may be able

to qualify the values which are returned by the fitting procedure. There are several utility programs

which allow the plotting of the parameters' history through the recovery procedure, either while in

progress or a posteriori. In this example, we show how one can use some of the displaying routines

incorporated in the library.

This example allows the user to specify at cmd line a superquadric fitfile, followed by a scaling

factor, and a time interval. The program will read the fitfile into a SQ-STRUCT-LIST structure

and display each one 011 the opened window, waiting the time period specified as input parameter.

After having checked the input parameters, it initializes the display structure. Some of the

parameters are set.(see section 4.2) The display is initialized by invoking sq-set-display-dev. Only

one display window is supported in the library.

In this specific case we also allow the user to specify the actual length of time between the display

of different superquadric wireframes.

The file is read in and then each of the superquadric is displayed. The lines defining the su-

perquadric are computed and displayed in sq-display. Other routines just for computations of the

wireframe are also provided. The lines are associated with one of the flags so that they night be

erased later. Routines for writing text at given locations are also provided.

Note that also <Sll/Xlib. h> file should be included.

char *strl ="Wait . . . Computing the lines";

3.2 Examples

char *s t r2 ="Superquadric # ";

char * s t r 3 ="lumber of l i n e s :";

main (argc, argv)

char *argv[] ; i n t argc;

C
char f name [I001 ;

char buff erL1001;

double s c ;

double TL41 C41;

i n t background;

i n t i ;

i n t wait ing-t h e ;

i n t i t e r ;

/* list of recovered f i t t i n g */
/* pointer f o r indexing * /
/* displaying f l a g s */

/* interim i n seconds */
/* counter f o r the i t e ra t ions */

i f (argc != 4)

I
pr in t f ("1s : superquadric f i l e , scal ing fac to r , waiting time between each display\n", argv[O1) ;

e x i t (0) ;

1
strcpy(fname,argvClI) ;

sscanf (argvL21 ,"%lf" .ksc) ;

wait ing-time = atoi(argv[3]) ;

i f (waiting-time < 1)

I
p r i n t f ("Pick a longer waiting time\nW) ;

e x i t (0) ;

1
i f (SC < 0)

I
printf("Values between 0 and 1 w i l l reduce the object , > 1 w i l l expand i t \ n ") ;

e x i t (0) ;

1

F = sq-make-disp-flg0;

F->scale-sq = sc ;

F->xoff = -100; /* off se t the posi t ion of coord */

sq-set-display-dev("Superquadric f i t f i l e display");

F->bg-color = ((WHITE - 1) /2) ; /* background color t o "gray" */
F->fg-color = WRITE; /* s e t the foreground */

3 USER MANUAL

F->i~atrix = 0; /* use identity viewing angle */
F->coordsup = 1; /* show the coordinates system */

s q f ill-xdisplay (F->bg-color) ; /* color of display: Gray level */

sq-readf ile (LSq.fname) ;

S = Sq->f irst; /* initialize to first sq */

iter = 0;

while (S)

I
strcpy(buffer,strl) ;

sq-draw-t ext (140,500, buffer , 0, 0, F->fg-color, F->bg-color) ;

sleep((unsigned) wait ing-t ime) ;

/* here we could also fill the screen but since we are testing out
the routines let's do that.

* /
sq~draw~lines~ptr(F->lines,F->nu~lines,F->bg~color,F->xoff,F->yoff);

sq-draw-text(120,500,buffer, 0, 0, F->bg-color, F->bg-color);

free(F->lines); /* ain't using them, return it */
F->lines = (int ***) BULL;
F->nu-lines = 0; /* to the pool */

Further examples can be obtained by looking at the source code for the utility programs.

3.3 Utility programs

3.3 Utility programs

In this section we describe some utility programs which were written using the superquadric library.

They are currently available in /pkg/local/sq/util/bin.

3.3.1 Pos t processing a n d Visualization of d a t a

The programs which have been listed here are used for the visualization of recovered models. Some

of the programs allow to generate postscript output of the models recovered.

sq sup This is actually the superquadric program as a stand alone. It allows the used to invoke the

program from the cmd shell. It initially parses the cmd line. It does that by invoking the

sq-cmdparse() routine. Upon successful parsing it invokes the sq-super-file() routine. It will

print the fitfile and if the user has specified the verbose switch in the cmdline, it will generate

the list of the points associated with the scanned image. The actual source code is labeled

sq-standalone

Here are a list of the specifications that the user can set:

sqsup :

-i (input f i l e) i n PH FORFIAT

-g (grid density)

-n (numb i terat ions)

-e (points t o erode)

-c (compensation) f o r the image

-s (termination check) f o r the f i t t i n g procedure

-V (verbose output)

-k (cal ibrat ion)

0 : Bon-uniform Gus image; [default]

1 : Unif o m Gus' image;

f i l e : User defined scanner parameters

-f (f i t type)

1 : no deformation (11 parameters); [default]

2 : tapering (13 parameters);

4 : bending (13 parameters) ;

24 : tapering and bending (15 parameters) ;

42 : bending and tapering (15 parameters) ;

-F (coordinate frame)

0 : Image Frame; [default]

1 : Base Frame;

2 : Object Frame (i . e . origin i s a t the centroid.)

f i l e : User defined reference frame

-X (X display of sq 's)

nd i sp simple program meant as an example on the use of the display interface for superquadrics. It

displays the sequence of superquadrics specified from a fitfile. It. is essentially the core of the

3 USER MANUAL

displaying of the superquadrics when the program sqsup is run with the '-X' option.

mindist program to compute stat,s on the minimum euclidean distance of points to a superquadric

model.

mintest designed originally to test the mindist program allows the user to visualize the position of

point vis-a-vis the superquadric model and the initial guess in the estimate.

sqxtr-fit this program extracts a given fit from the fitfile generated by the superquadric program.

sqmkg will read a fit file and generate output format for xgraph. If no file should be specified then

xgraph is automatically invoked. This program allows to trace the history of several parameters

for a give fitting procedure.

sqmkg-objs much like the previous program only that it allows to trace the history of a parameter through

a set of fitfiles. This is convenient when checking to see how a given parameter is varying in

several fitting procedures.

3.3 Utility programs

3.3.2 DISP: a display program

disp Interactive program to display superquadric, pm pictures, histograms, place text, relocate,

erase objects, etc. It maintains a small Data Base of the objects. It is meant for Visualization.

Current implementation uses a ccmd package and interface with X11. (This is local. The package

that it requires is used as an extremely user friendly interface.) It is extremely easy to use for by

typing help on any command or question mark the user can obtain directions as to how to proceed.

I t has effectively several types of commands. The first set is meant to input pictures, lines,

points, superquadric wireframes. They are internally maintained as objects. The second group is

meant to manipulate the objects. The third is meant to alter default setting of processing, such

as background color, or the color the position of a given object. Then there are commands to save

a portion of the screen, and general information access command. The following represent a very

simple sample session to show how to interact with the program.

X
%

% disp

XDisplay program Version 1 . 0 of Wed June.11 90

CCHD Version 1.48 of F r i Jun 17 01:26:02 1988

Disp>

Disp>

Disp> ? Command, one of the following:

3-dimesional c lea r coord-system draw edge

erase e x i t help histogram histrow

image-pts l i n e move nth-sup path

p ic p ixe l points refresh relabel

remove ro ta te s e t show superquadric

write version save

Disp>

Disp>

Disp> help 7 confirm with carriage return

or Command, one of the following:

3-dimesional c lea r coord-system draw edge

erase ex i t help histogram histrow

image -pt s l i n e move nth-sup path

pic p ixe l points refresh relabel

remove ro ta te s e t show superquadric

write version save

Disp>

Disp> help superquadric

Displays a l l the superquadric models specified i n a given f i t f i l e .

The l a s t model i s saved as the object to be displayed. I f you would l i k e

a spec i f i c model then use the command 'nth-sup' t o specify the f i t number

It takes as input the f i t f i l e .

3 USER MANUAL

Disp> s e t ? opt ion, one of t h e fo l lowing:

bg coord-sq co lo r f g '%
real-draw t ransformat ion x-of f s e t y-offset s c a l e

Disp>

Disp> s e t f o

?Does not match keyword - "fo"

Disp>

Disp>

Disp> s e t f g (color d i sp l ay bu f fe r) ? Decimal in teger

Disp> s e t f g (co lo r d i sp l ay bu f fe r) 31

S e t t i n g t h e f g t o 31.

Disp>

Disp> show (values) ? option, one of t h e following:

objec ts parameters

Disp> show (values) ob jec t s (l i s t) ? confirm with ca r r i age r e tu rn

Disp> show (values) ob jec t s (l i s t)

l o ob jec t s i n t h e l ist

Disp>

Disp> show (values) parameters (s e t t i n g s) ? confirm with ca r r i age r e tu rn

Disp> show (values) parameters (s e t t i n g s)

pos i t i on : x o f f s e t 0, y o f f s e t 0,

co lo r : bg 15 mg 31 f g 31

e u l e r angles : ph i 90 omega 45 p s i -90

s c a l e f o r p i c t u r e s : 1 .OO

s c a l e f o r sq : 1.00

a x i s with s q DISPLAYED

t ransformat ion s e t OH

Disp>

Disp> s e t ? opt ion, one of t h e fo l lowing:

bg coord-sq co lo r f g W
real-draw t ransformat ion x-off s e t y-offset s ca l e

Disp>

Disp>

Disp> s e t coord-sq (of superquadric) of f

Disp> sho parameters (s e t t i n g s)

p o s i t i o n : x o f f s e t 0, y o f f s e t 0,

c o l o r : bg 15 mg 31 f g 31

e u l e r angles : phi 90 omega 45 p s i -90

s c a l e f o r p i c t u r e s : 1 .OO

s c a l e f o r sq : 1.00

a x i s with s q HOT DISPLAYED

t ransformat ion s e t OH

Disp>

3.3 Utility programs

Disp> ? Command, one of the following:

3-dimesional c lear coord-system draw edge

erase e x i t help histogram histrow

image-pt s 1 ine move nth-sup path

pic p ixe l points refresh relabel

remove rotate se t show superquadric

write version save

Disp> quit

%
%

3 USER MANUAL

3.4 Including, P M format, Compiling, etc.

3.4.1 What to include?

Each program using functions from the library should incorporate <local/sq.h> as one of the include

file headers for the preprocessor. Furthermore, if X routines should be used, then <Xll/Xlib.h>

should also be included.

3.4.2 PM-format for images

PM is the the input for the files used in the routine which recovers the points from the image. The

image is in the form of a 2 4 ~ range image represented as a gray level image with points closer to

the scanner having higher gray values. PM is the internal image representation used in the GRASP

Lab.

We include in this section the relevant ii~formation for the PM format. The following structure

declaration defines an area of memory to be used for the picture and some of the associate data

types. It can be found in the include file for the pm library, pm.h.

#include <sys / types .h>

typedef s t r u c t 1
i n t pm-id; / * Hagic number f o r put format f i l e s . * /
i n t pm-np; /* Number of p lanes . Normally 1. * /
i n t pm-nrow; /* number of rows. Typically 512. * /
i n t pm-ncol; /* Number of columns. Typically 512. */
i n t pm-nband; /* Number of bands. Bumans use only 1. */
i n t pm-form; / * Pixe l format. */

i n t pm-cmtsize; /* Number connnent bytes . Includes BULL. * /
u-char *put-image; /* The image i t s e l f . */
char *put-cmt ; /* Description of operations performed. * /

1 pmpic;

The three other functions which have been used from pm are:

pm-isize() - obtain the size of the picture.

Size of t h e image i n bytes .

/

pm-free() - Free an allocated pmpic. All memory associated with pm is freed. This assumes
that memory for pm, pm-ipm-image and pm-ipm-cml have been mal- loc ed separately before.
This means that the memory pointed to by pm is no longer valid.

i n t pm-f ree(pm) ;

pmpic *pm;

3.4 Including, PM format, Compiling, etc. 19

pm-allot() - Pm-alloc allocates memory for the header of a pmpic. PM-MAGICNO is assigned
to Pm-id. Pm-np is set to 1. Pm-nrow and Pm-ncol are set to 512. Pm-nband is set to 1.
Pm-form is set to PM-C. Pm-cmtsize, pm-image , and pmcmt are set to 0.

pmpic * p m - a l l o c 0

For further details the reader is referred to the actual manual pages.

3.4.3 Compil ing

Compiling with this library is no different than any other library. One should include -1sq in the list

of libraries to be searched at linking time. In the case that the routines chosen use XI1 functions

or functions dealing with the display, one should also link -1X11 -1termlib. If you are also using PM,

then you must also include -1pmfb -Ipm.
Thus, for instance, if we were to compile our first example,(see section 3.2.2) we would issue the

following cmd:

%cc -a egl eg1.c -1sq -1pmfb -Im -1pm -1X11 -1termlib

3.4.4 The Labeling Convent ion

used in function names used in the library are all prefixed by the string sq-; while utility programs

are prefixed by sq.

The Predefined Cons t an t s are restricted to very few and are listed at the beginning of sec-

tion 4.2.

20 4 LIBRARY

4 Library

In this section we describe the different functions. Initially we present the groups into which the

functions for the library fall into. We then describe the data types which characterize the various

parameters used and passed among the different functions. A detailed description of the usage of

the functions follows.

4.1 Overview: functions descriptions by groups

The functions in the library are grouped in two categories. A Fundamental and an Auxiliary set

can be distinguished. The latter set is provided for some of these functions turned out to be quite

useful in manipulating the superquadrics or for computing specific functions often found useful.

Fundamen ta l funct ions include the following groups:

Deformations: direct and inverse for tapering, bending, cavity, and twist

Inside Outside and Normal Angles.

PM to Point computation.

Estimation: recovery of initial estimate for dimension and orientation.

Recovery: minimization process to recover parameters either for a superquadric or a superel-

lipse.

New Structures: initialization of structures and default setting

r I/O: Command parsing routines and I/O functions for reading and writing to files.

Auxiliary funct ions include:

Top Level functions: A list of functions provided for ease of programming to hide some of the

specific calls.

Distance: computation of the distance of a point from the superquadric surface. Iterative

minimization is involved in this process.

Edge and curvature: computes the edges and curvature

Additional points: provides a line of support points located on the background.

Math functions: set of routines to compute different nlathematical functions.

r Dynamic allocation: few dynamic allocation routines for arrays.

4.2 Structures descriptions

Display functions: t o compute and display superquadrics as well as coord frames.

X I 1 routines: basic X routines to draw lines, points, texts, etc..

4.2 Structures descriptions

The definitions and structures discussed below are available in the <sq.h> include file.

Constants predefined and used in the following declarations are mostly employed to define the

deformations parameters.

-NUM-DEF maximum number of deformation to be applied.'

-NO-DEF no deformation.

-TAPER tapering

-TWIST twisting.

-BEND bending.

-CAVITY cavity deformation.

-BEND-TAPER first apply the bend transformation then taper

-TAPER-BEND first taper then bend.

The last two are provided mostly as a convenience since it is one of the combinations applied.

SQ-STRUCT - this structure contains the basic parameters describing the superquadric (sq).
Deformations are described in the next struct.

typedef s t r u c t SQ-STRUCT I
double a1 , a2, a3,

a4, a5,

e l , e2,

ch i sq , gof ,

const C-HUH-DEF] [51 ;

s t r u c t SQ-STRUCT *next ;

) SQ-STRUCT;

/* sq axes */
/* sca l e s f o r t o r o i d */
/* epsi lon 1 and 2 */
/* Euler angles */

/* t r a n s l a t i o n i n image coord */
/* Chi squared, goodness of f i t */
/* deformation constants */
/* po in t e r t o a sq-s t ruct */

'currently set to 3

4 LIBRARY

SQ-STRUCT-LIST contains the basic information describing the list of superquadric fitting
which the superquadric program will have recovered in the minimization routine.

typedef s t r u c t SQ-STRUCT-LIST {

SQ-STRUCT * l a s t ;

Sq-STRUCT * f i r s t ;

i n t num;

i n t e r r ;

i n t def -t ype CJUH-DEF] ;

double TC41 C41;

double **sq-points;

i n t sq-num-points;

) SQ-STRUCT-LIST;

/* po in t e r t o a sq-s t ruct */
/* po in t e r t o first sq-s t ruct */
/* Number of i t e r a t i o n s */
/* e r r o r vector f o r f i t t i n g */
/* Type of deformation processing */
/* homog. t r a n s . t o o b j coord */
/* po in t s descr ib ing the objec t */
/* number of po in t s */

SQ-OPTS-FLAGS contains flags defining the type of preprocessing for the image - subsampling,
erosion, and scanner compensation - as well as directions for describing the type of fit vis-a-vis
deformations, number of iterations. It allows the user t o specify scanner calibration dependencies
and, the reference frame. If the user provides the points, then the flags which can be altered are
num-iter, fit-type, good-on and verbose.

s t r u c t {

char * f i l e ;

i n t v a l ;

SQ-FILE-VAL;

typedef s t r u c t SQ-OPTS-FLAGS I
i n t g r i d ,

f i t - t ype ,

num-it e r ,
good-on,

compen,

erode-pt ,
verbose,

x;

SQ-FILE-VAL

coord-frame ,
c a l i b ;

Sq-OPTS-FLAGS;

/* f i l e t o ge t values */
/* f l a g f o r opt ion */

/* g r i d dens i ty */
/* type of f i t t i n g */
/* number of i t e r a t i o n s */

/* number of po in t s t o erode */
/* verbose output */
/ * d i sp l ay us ing X I 1 */

/* new coordinate frame */
/* c a l i b r a t i o n parameters */

SQ-DISP-FLAGS these flags are available for the displaying the superquadric on the screen.

typedef s t r u c t Sq-DISP-FLAGS {

i n t real-draw; /* drawn r e a l t h e , e l s e a t once */
i n t hidden-line; /* hidden l i n e removal */
i n t coordsup; /* t o d i sp l ay the coordinates of s q */
i n t xoff ; /* x & y o f f s e t i n t h e d i sp . bu f f e r */

4.2 Structures descriptions

i n t yoff ;

i n t fg-color;

i n t bg-color;

i n t mg-color;

i n t i-matrix ;

double phi,omega,psi;

double tmatrix 141 [4] ;

double scale-pic ;

double scale-sq;

i n t ***lines;

i n t n u m l ine s ;

) SQ-DISP-FLAGS;

/* color f o r the foreground */

/* use the iden t i ty viewing angle */
/* ro ta t ion angles */
/* matrix from above angles */
/* scal ing fac to r f o r pic ture */
/* scal ing fac to r f o r s q */
/* l i n e s f o r t h e computed sq */

/* t o t a l number of l i n e s */

SQ-DIST-STRUCT This structure is employed in the computation of the distance of a point
from a superquadric.

typedef s t r u c t SQ-DIST-STRUCT I
double point [3] ;

double beta-dis t ;

double d i s t ;

double e s t im-angle [2] ;

double guess-angle C21;

i n t i t e r ;

sq-DIST-STRUCT;

/* point t o look f o r */
/* beta guess */
/* actual computed distance */
/* estimated e t a and omega * /
/* i n i t i a l guess of e t a and omega */
/* number of i t e r a t i o n s */

4 LIBRARY

4.3 Input and Output files

In this section we list the format of the fitfile, as well as the input specification of other files which

can be used to specify parameter for the scanner, or a given transformation matrix defining the

world coordinate frame with respect to which perform the recovery process.

4.3.1 Fitfile format

The name of the fitfile is is generated with the fitfile extension. Upon using sqxtr-fit, the utility

program for unpacking the fitfile or to extract any of the specific intermediary fitting, the file is

generated with the extension of the number corresponding t o the iteration of the recovery process

in which it was generated. Exception to this is the best fit, ie. the last one, which it is labeled with

with suffix fit-1000.
The format for a given fitfile is as follows:

n

phi omega

a1 a2

a4 a5

e l e2

d l d2

t x t y

cb zmin

chisq

of

-- number def in ing t h e f i t

p s i - - Euler angles , o r i e n t a t i o n of t he OCS

a 3 -- two sho r t e r ax i s and major a x i s (z i n OCS)
-- tw i s t and cav i ty deformations (ignore)
- - epsi lon1 and epsilon2 c o e f f i c i e n t s

d3 - - deformation ordering

- - t ape r ing with respect t o x and y

paax k a lpha -- cen te r of bending, m a r extension in negative
-- p o s i t i v e z a x i s , radius of curvature ,

-- angle of curvature

-- goodness of f i t (normalized c h i squared e r r o r)

- - pure normalized c h i sqrd e r r o r without t h e

-- t h e volume f a c t o r of (a l t a2 t a3)

These mnemonics are used consistently throughout the utility programs and this paper.

The following is an example of a fitfile. It represents the last fit recovered in the fitting process,

as the first line indicates.

4.3 Input and Output files

4.3.2 Input Format

Scanner dependent parameters, such as spatial and depth resolution vary from scanner to scanner.
When specifying the format for a specific scanner, one can use the provided built in defaults or
specify them by giving a file name. Two default formats are provided. The first one is mostly for
use here a t Penn, the second one present uniform ratio. The user can also specify his/her own by
means of a file. (see above SQ-OPTS-FLAGS).

static SCAB-PARAU SCAUC21 = C

/* V-RATIO */
/* H-RATIO */
/* Z-RATIO */
/* Background depth */
/* Threshold for bg segmentation */

Thus the form of the file should have contain the following five real numbers: small

double VERTICAL

double HORIZONTAL

double HEIGHT

double BACK-DEPTH

double THRESH

The file specification is assigned to the flag SQ-OPTS-FLAG as F->calib.file = f i lename;

4 LIBRARY

4.4 Fundamental Functions

In the following subsections we describe the routines which the library supports. They are organized

under headers which actually are the specific files comprising the library.

4.4.1 Deformat ions

In this subsection we have all the routines necessary to perform the deformation of a superquadric

as well as most of the inverse deformatioi~s.

The functions provided performed forward, inverse transformation of a point as well as the the

transformation for the normal on the superquadric at a given location.

In general in-V represent the input vector and ou t -V the resulting vector after the deformation

has been applied. constan represent the array containing the type of deformations which need to be

applied.

- sq-func-taper It performs the tapering transformation.

double SQ-FUBC-TAPERcz , a3, k)

double z , /* o r i g i n a l point */

a3, /* s q l eng th along z */

k; /* constant of deformation */

- sq-taper-position It transforms the position vector.

sq-taper-posit ion(in-V, out-V, a3, constan)

double in-V[4], /* o r i g i n a l point */
out-V [a, /* transformed point */

a3, /* s q length along z */
constanC51 ; /* deformation constants */

- s q - t a p e r a o r m a l changes the position of surface points and the surface normal vector after
tapering along z axis, with a different linear function for x and y axis

sq-taper-normalcin-V out-V, 8 , U-def, a3 , constan)

double in-V C41 , /* o r i g i n a l point */

out -V [41, /* transformed point */
UC41 , /* normal vector */

8-def C41, /* order of deformations */

a3, /* s q l eng th along z */
constanC51 : /* deformation constants */

- sq-inv-taper-position performs inverse transformation for tapering.

sq-inv-taper-vector(in-V, out -V, a3, constan)

double in-V [4] , /* o r i g i n a l point */

4.4 Fundamental Functions

out -V C41,

a3.

const an C51;

double SQ\-FUIIC-TWISTcz, a3, k)

double z ,

a3 ,

k ;

/* transformed point */
/* s q l eng th along z */
/* deformation constants */

/* o r i g i n a l point */
/* s q l eng th along z */
/ * constant of deformation */

sq-twist-posit ion(in-V, out-V, a3, constan)

double in-V [41 , /* o r i g i n a l point */
out -V C41 , / * transformed point */

a3, /* s q l eng th along z */
constanC51 ; /* deformation constants */

- sq-twist-normal

sq-twist-normal(in-V, out-V, B, U-def, a3, constan)

double in-V C41 , /* o r i g i n a l point */
out -V C41, /* t r ans f ormed point */

B C41 , /* normal vector */
B-def C41, /* order of deformations */

a3, /* s q l eng th along z */
constanC51; /* deformation constants */

- sq-bend-position transforms bending position vector according to bending parameters.

~ ~ - b e n d _ ~ o s i t i o n (i n - V , out -V, constan)

double in-V C41, /* o r i g i n a l point */

out-V C41, /* transformed point */
constanC51 ; /* deformation constants */

- sq-inv-bend-position transforms surface position vector according to bending parameters.

sq-inv-bend-position(i1. 11, constan)

double in-VC41 , /* o r i g i n a l point */

out-V C41, /* transformed point */
constan[5] ; /* deformation constants */

- sq-bend-normal transforms surface position vector according to bending parameters.

3sq-inv-twist-position This function is not currently supported by the library.

4 LIBRARY

sq-bend-normal(v1, v2, U, U-def, constan)

double in-V [I] , /* o r i g i n a l point */

out -V C41, /* transfonned point */
B C41, /* normal vector */
B-def C41, / * order of deformations */
constan[51; /* deformation constants */

- sq-cavity-position applies the cavity deformation at a given position.4

sq-cavity-posit ion(a1, a2, a3, il, 11, constan)

double a l , a2, a3, /* l eng th of ax i s of s q */

in-V C41 , /* o r i g i n a l point */

out -V C41, /* transformed point */
constanC51; /* deformation constants */

- sq-cavity-normal

sq-cavity-nomal(a1, a2, a3, in-V, out-V, ti, B-def, constan)

double a1 , a2, a3 , /* length of a x i s of s q */

in-V C41, /* o r i g i n a l point */

out -V C41 , /* transformed point */

BC41, /* normal vector */
B-def C41, /* order of deformations */
constan [51 ; /* deformation constants */

- sq-deform-position Apply the deformation to a point

def om-point (point ,def -type ,S)

double point [3] ; /* point t o be deformed */

i n t def -type[-UUH-DEF] ; /* deformation type */
SQ-STRUCT *S;

- sq-inv-deform-position Apply the deformation to a point

sq-inv-deform-position(point ,def -type ,S)

double po in t [31;

i n t def -type [-UUH-DEF] ;

SQ-STRUCT *S;

- sq-deform-normal It applies deformation rules to the given surface position vector p and
surface normal 111~. Tapering and Bendiiig allowed. (March 11,1989)

sq-def om-nomal(p ,M,def -type ,S)

double pC31 ;

double nnC31;

i n t def -type[-BUn-DEFI ;

SQ-STRUCT *S;

4sq-inv-cavity-position This function is not currently supported by library.

4.4 Fundamental Functions

4.4.2 Ins ide Outside, a n d Normal Angles

This set of functions and routines compute inside-outside function evaluation, computation of normal

angles,

- sq-compute-insideout computes inside outside function for the given point and superquadric

model. With no deformations are applied to the superquadric model.(see below for the inside-

outside function with deformations). It returns:

* if < 1 then point inside else

* if = 1 then point on the superquadric else

* if > 1 then point outside the superquadric.

double sq-compute-insideout (point ,S)

double point C31;

SQ-STRUCT *S;

- sq-compute-insideout-deformed computes Insideoutside function with deformations: It

first applies the deformation to the point and then it computes the inside-outside function

(uses the above defined function). For a given point, we first apply the inverse deformations

and then compute the inside outside function. Since the the equation for the inside outside

function is expressed in term of X , Y, Z, (already transformed), and we now have a point, x,y,z

we then need to take it to the non deformed superquadric, i.e. apply the inverse transformation.

This way, the inside outside function can be computed. It returns:

* if < 1 then point inside else

* if = 1 then point on the superquadric else

* if > 1 then point outside the superquadric.

double sq-computeinsideout-def ormed(x, S,def -type)

double x 131 ;
SQ-STRUCT *S;

int def -type [-lNH-DEFl ;

- sq-compute-normal-angles Computes the unit normal vector and the normalizing constant
at a point specified by eta and omega; deformations are taken into account.

sq~compute~normal~angles(ang,S,def~type,nn,norm)

double angC21;

SQ-STRUCT *S;

int def -type [-IiUH-DEF] ;

double nnC31 ;

double *norm;

4 LIBRARY

- sq-compute~normal~position computes the normal at point have specified the cartesian
coordinates Returns unit normal vector and the Normalizing constant. expects point expressed

as (x,y,z).

sq~compute~normal~position(point,S,def~type,nn,norm)

double point C31;

SQ-STRUCT *S;

int def -typeC31;

double nnC31 ;

double *norm;

- sq-find-position it returns the coordinates of the point on deformed superquadric given eta
and omega angles.

sq-f ind-posit ion(angles,p ,def -type ,S)

double anglesL21;

double p[3] ;

double def-type[-BUn-DEF];

SQ-STRUCT *S;

- sq-find-angle computes eta and omega angles having specified a point on the sq.

sq-find-angle(point,angles,def-type,S)

double point C31;

double angle 121 ;

int def -type[_HUN-DEF] ;

SQ-STRUCT *S;

4.4.3 PM to Po i n t s Transformation

It is PM-FORMAT dependent. It performs the following tasks:

It performs the compensation for the scanner, depending of the setting of the flag - defaults

to no compensation. The user can specify one of the two defaults flags setting or providing its

own by specifying a file in which these setting are given.

I t performs background segmentation for the image.

erosion of the image is performed, again this depend of the setting of the flag. Defaults is set

to no erosion.

points are extracted from the image. The specified default sampling rate is 0, i.e. all the points

are considered.

pmpic **put-image;

SQ-DPTS-FLAGS *F;

SQ-STRUCTLIST *S;

4.4 Fundamental Functions 31

4.4.4 Estimation

Performs the estimation of the dimension of object and orientation of the axis based on the moment

of inertia of the points. The z-direction is chosen to align with longest axis, followed by the x-axis

and the y-axis.

sq-estimate(SqJ.,F)

SQ-STRUCTLIST *Sq-L;

SQ-OPTS-FLAGS *F;

4.4.5 Recovery: Quadric and SuperEllipse

- sq-quadric This is actually the superquadric routine which performs the minimization. Fea-
tures are incorporated in the procedure so that if the user sets the X display flags, the su-
perquadric will be displayed as the recovery process progresses.

sq-quadric(S-1, Flags, Fdisp)

SQ-STRUCT-LIST *S-L;

SQ-OPTS-FLAGS *Flags;

SQ-DISP-FLAGS *Fdisp;

- sq-quadric-plain This function provides a "vanilla" version of the superquadric recovery
process. No output will be performed. Upon return the appropriate updates will have been
accomplished and the history list of the recovered superquadrics will be contained in the S-L
structure.

sq-quadric-plain (sJ ,Flags)

SQ-STRUCT-LIST *S-L;

SQ-OPTS-FLAGS *Flags;

- sq-ellipse It represents the two dimensional counter part of the sq-quadric routine. It derives
the superellipse fitting a given set of points. Deformations may be performed just as in the
regular sq-quadric function. AEok Gupta. M a y 4, 1990

sq-ellipse(S-L ,Flags)

SQ-STRUCTLIST * S L ;

SQ-OPTS-FLAGS *Flags;

4.4.6 New Structures Allocation

The routines listed in this section provide allocation for structures, with default setting.

- each one of the following calls return clean structures, no special setting of any parameters

4 LIBRARY

- returns a structure with the following default values

- grid density set: 1

- calibration set to Uniform : 0

- number of iterations to perform: 15

- no deformation when recovering the model: -NO-DEF

- no erosion on image around border :O

- coordinate frame, set to Image :O

- combined goodness of fit off: 0

- compensation for range image off: 0

- verbose mode off: 0

- Xdisplay mode off: 0

- returns a structure with the following default values for the displaying

SQ-DISP-FLAGS *sq-make-disp-flg0;

- real time drawing set off: 0

- hidden line removal on: 1;

- coordinate system displaying for the sq model off: 0

- i-matrix on : 1, no transformations

- x offset and y offset off: 0 (no translation)

- fg ground color : WHITE

- bg ground color : BLACK

- middle ground color : BLACK (to differentiate an object from others)

- number of lines :O

- scale for the intensity: 1

- scale for drawing of superquadric: 1 (eg. 2 to double in size)

- transformation matrix: IDENTITY

4.4 Fundamental Functions

4.4.7 C o m m a n d Pars ing

It contains routines to parse the flags in the SQ-OPTS-FLGS from the command line. It maintains

a status of the error which occurred a t parsing time which can also be accessed by function defined

in this module.

- sq-cmdparse Parses the input from command line or an array of options specified in as argv.
Upon success it returns the appropriate values set in the two structures and sets error flags in
an error vector accessible through routines defined below.

sq-cmdparse(argv,argc,F,infile)

char **argv;

int argc;

SQ-OPTS-FLAGS *F;

char **infile ;

The options which are considered valid are the following:

[i] (input file) in P M FORMAT . [string]

[g] (grid density) resolution for subsampling the image. This allows to consider relatively

space data. [int > 01

[n] (number of iterations) [int > 01

[e] (points to erode) this is specific to the preprocessing. Given the noise present at the

boundary of the object, it was resolved to provide an option to remove one, or more pixels

around the object. [int > 01

[c] (compensation) scanner dependent, allows to account for ratio of width and height

parameters in the scanner resolution. [switch]

[s] (termination check) for the fitting procedure in terms of the quality of fit desired. [switch]

[V] (verbose output) during iteration shows the state of the recovery and some of the pa-

rameters currently recovered. [switch]

[k] (calibration) [int 0 or 1, string]

0 : Non-uniform Gus image; [default]

1 : Uniform Gus' image;

file : User defined scanner parameters

[f] (fit type) [numerical encoding of the deformations]

1 : no deformation (1 1 parameters); [default]

2 : tapering (13 parameters);

4 : bending (13 parameters);

4 LIBRARY

24 : tapering and bending . . . (1 5 parameters);

42 : bending and tapering . . . (1 5 parameters);

[F] (coordinate frame) It provides the frame of reference respect to which to perform the

actual recovery process. [numerical encoding of the deformations]

0 : Image Frame; [default]

1 : Base Frame; (a particular frame of choice used by Frank Solina

2 : Object Frame (i.e. origin is at the centroid.)

file : User defined reference frame [specified as a string]

[X] (X display of sq's) [switch] enable the display during the recovery process.

- sq-parse-errcheck will return the number of errors occurred.

- sq-param-errmsg given that an error has occurred it will print to "stdout" the relevant error
messages. Also returns the number of errors encountered.

- sq-usage prints out the usage message.

4.4.8 110 funct ions

These are routines to perform reading and writing to a file using the fitfile format. (Reading also

from stdilz or from a specified file.)

- sq-read reads the parameters for the superquadric structure from stdin. It expects the same
format as fit-file

- sq- readf i le reads the parameters for the superquadric structure from specified file. The
format of the file is same as fit-file.

sq-f i l e (S ,f ilename)

Sq-STRUCT-LIST *S-L;
char *filename

- sq-print-to-file it outputs the list of the superquadric ~t~ructure to the specified file

sq-print-to-file(S,filename)

Sq-STRUCT-LIST *S-L;

char *filename

4.5 Auxiliary Functions

4.5 Auxiliary Functions

4.5.1 Top Level Funcs

Here are a group of function calls which allow the user t o run the superquadric minimization routine

just by specifying either a pn-~ file or a list of points. Some of these functions and others providing the

interface are collected to form the standalone program for the superquadric minimization process.

- sq-super-file I t takes a pm file, flags (F) t o qualify the type of processing t o be performed
on the input, flags (Fdisp) to specify, in case that X display flag is set, how to display the
superquadric.(X needs to be set up, see sq-standa1one.c for an example. It returns in S the
linked list of the fittings and a pointer to a list of the points associated with the minimization
process. I t invokes sq-pm-points, sq-estimate, sq-quadric.

sq-super-file(S, F, Fdisp, pm-file)

sq-STRUCTLIST *S;

SQ-OPTS-FLAGS *F;

SQ-DISP-FLAGS *Fdisp;

char *pm-f ile ;

- sq-super-file-d Same as above, uses the default settings for the flags.

sq-super-f ile-d(S ,pm-f ile)

sq-STRUCTJIST *S;

char *pm-file ;

- sq-super-points I t takes the points and returns the superquadric model recovered.

sq-super-points(S, F, Fdisp)

SQ-STRUCT-LIST *S;

Sq-OPTS-FLAGS *F;

SQ-DISP-FLAGS *Fdisp;

- sq-super-points-d Similar to above, default flags are used.

4.5.2 Dis tance

A function to compute the Euclidean distance from a superquadric model to a point. Function
tolerance may be specified. The returned structure D contains all the specifics for the distance.

sq-mindist(D,Sqptr,def -type,ftol)

sq-DIST-STRUCT *D;

SQ-STRUCT *Sqptr; /* superquadric structure associated */
int def -type [-IUH-DEFI ; /* type of deformations */
double ftol; /* function tolerance in evaluation */

4 LIBRARY

4.5.3 Edges C o m p u t a t i o n a n d Curva tu re

Edges C o m p u t a t i o n

- sq-edges computes the edges of the given superquadric model. The edge list return is a 2d
array with the list of the angles associated with the location of the edges. I t is computed by
holding one of the angle fixed, setting it to zero, then deriving the position of the others. Thus,
in the first array q is set to 0 and w varies, and vice-versa in the second one. The first value
in the arrays is a flag set either to 0 or 1. It is set to 0 if there are no edges with respect to the
direction of q or w . Consider for instance the case of a cylinder allined with the z-axis, that
would have no edges on the xy-plane.

sq-edges(S,edge-list)
SQ-STRUCT *S;
double edge-list [2] [5] ;

Sq-sample-angle Samples the surface in the specified interval and returns appropriate angle list.

- sq-sample-angles recursively dissects parameters q and w to get parallel and meridians such
that the dot product of unit normal is less that constant STEP

sq-sample-anglescnul, nu2, oml, om2, ABs, e l , e2)

double nul, nu2, oml, om2;

double ABs [HAXIWUn-LIUESI
double e l , e2;

4.5.4 Addi t iona l Poin ts

This file contains the function to supplement the original points on the object by returning a list

of points on the supporting plane. The procedure uses a list of supporting points (not the original

points), the transformation matrix from world coordinate system to the object coordinate system

(as returned by sq-estimate() for the original points), the dimension of the object along z axis in

object coordinate system (as returned by sq-estimate() for the original points), and three points on

the background plane expressed in world coordinate system.

Supporting points are defined as the 3-D points immediately next to the border of the object.

In the absence of any other information, the object is most likely to be supported (physically) by

them. The correct way of using this procedure is t o use it after getting initial estimates for the

original points. This makes the transformation matrix and dimz available. The three points on

the background are needed to define the background plane. Notice that the support points and the

background points are in WCS.

For theory, results etc. see: [Gupta, Lea and Wohn] Proceedings of SPIE's Intelligent Robots

and Computer Vision, VIII conference, Nov 1989 Philadelphia.

4.5 Auxiliary Functions

double ** sq-addpoints(~-points,np,na,T,pI,p2,p3,dimz)

double s-point s [I [3] ; /* list of support points */
int np; /* number of support points */
int na; /* number of points to add * /

double TI41 [41 ; / * Trans. matrix from world to obj */

double pl C31 ,p2 C31 ,p3 C31 ; / * 3 points on the bg in w.c.8 */
double dimz; /* estimated dim. along major axis * /

4.5.5 Math Functions

These are mathematical functions which are associated with the library.

- sq-pow-c, sq-pow-s. These two functions raise the cos() and sin() of the value x to the y
power handling special cases of the signs of the cos() and sin() functions.

double sq-pow-c(x ,y)

double x,y

double sq-pow-s(x,y)

double x, y

- sq-sqr standard square function

double sqr(x)

double x

- sq-dist-3D computes the distance between two points, A and B, in 3d.

double sq-dist -3D (A, B)

double A C31 , B C31 ;

- sq-matrix-mult Multiplies a vector with a matrix. The vector in question has 3 component
and in the actual matrix multiplication with a 4x4 matrix the fourth component is assumed
to be 1.

sq-matrix_mult(vector, matrix, result)

double vectorC41, rnatrix[4] [41 , result [4]

- sq-invert-matrix performs matrix inversion

invert_matrix(T, T-inv)

double T [4] C41 , T-inv [41 C41

- sq-mult2matrix performs two matrix multiplication T1 x T2 = T3

mult2matrix(TI, T2, T3)

double TI [41 [41 , T2 [41 C41 , T3 [4] C41

- sq-identitymatrix returns an identity matrix

4 LIBRARY

sq-identity_matrix(T)

double T C41 C41

- sqhomog-trans It returns the homogeneous transform (euler angles) [U s e s Z-Y-Z Euler

angles.]

- Euler's angles:

phi - rot. about the z-axis,

omega - rot. about the y-axis,

psi - rot. about the z-axis.

- translation vector x,y,z.

Start with the frame coincident with a known frame A. First rotate B about 'Zb' by an angle
'phi', then rotate about 'Yb' by an angle 'omega', and then rotate about 'Zb' by an angle 'psi'.

sq-homog-transcphi, omega, p s i , x , y , z , TR)

double phi , omega, p s i , x , y , z , TRC41[41;

- sq-fit-plane through three given points, p l , p2, p3

sq-fit-plane(p1, p2, p3, a , b, c , d)

double p l C31 , p2 C31, p3C31;

double *a, *b, * c , *d;

- sq-determinant returns the determinant of a 3x3 matrix.

double sq-determinant(matrix1

double matrixC31 C31 ;

4.5.6 Dynamic Allocation Routines

These routines perform dynamic allocation and reallocatioii of 2D and 3D arrays used in the sq

library.

The functions will return:

0 if the memory can not be allocated - same as malloc()

-1 on failure caused by one of the sizes being to small

1 upon success

4.5 Auxiliary Functions

"allocate" function will return a NULL pointer on failure due cases 0 or -1 above. "realloc" will

not modify the original pointer. In both cases the appropriate flags will be returned

CAVEAT: dimension restrictions are imposed on d l and d2 because, if a lower dimension is

specified, then one might expect to use the indexing specified by the type of array allocation routine

invoked. For example, allocating an array of size 1 would require indexing using a[i][O]. This would,

in effect, be a two dimensional array with only one element along one direction.

sq-alloc-2arr-int (s ,size,dim)

int ***s;

unsigned int size;

unsigned int dim;

sq-alloc-2arr-double(s,size,dim)

double ***s;

unsigned int size;

unsigned int dim;

- sq-realloc-2arrint reallocate to 's' a two dimensional array with rows of dimension 'dim'
resize the array. Also updates to the size of the smaller of the two.

sq-realloc-2arr-int (s ,size ,new-size ,dim)

int ***s;

unsigned int size ;

unsigned int nen-size;

unsigned int dim;

- sq-realloc-2arr-double reallocate to 's' a two dimensional array with rows of dimension 'dim'
resize the array. information is kept also updated to the size of the smaller of the two.

sq~realloc~2arr~double(s,size,new~size,dim~

double ***s;

unsigned int size;

unsigned int new-size;

unsigned int dim;

sq-alloc-3arr_int(s,size,dl,d2)

int ****s;

unsigned int size ;

unsigned int dl,d2;

4 LIBRARY

sq-realloc-3arr-int(s,size,nea_size,dl,d2)

int ****s;

int size;

int new-size;

int dl,d2;

4.5.7 Display

- sq-display accepts a superquadric structure and some specifications regarding the modality
of the display. It displays using X11 routines. The display should have been set up prior to
invocation.

sq-display(S,Flags,def-type)

sq-STRUCT *S;

SQ-DISP-FLAGS *Flags;

int def-type[_BUn-DEF];

- sq-compute-wireframe It computes the wireframe from the superquadric specification pro-
vided in S. The lines defining the superquadric are returned the flg structure.

sq-compute-aireframe(S,flg,def-type)

sq-STRUCT *S;

sq-DISP-FLAGS *flg;

int def -type [-I?UK-DEFI ;

- sq-compute-coord-frame It computes the coordinate frame, returned in coords. The user
can specify the length of the axis. Application of the transformation to the world coord system
as provided in the transformatmion matrix in fig.

sq~compute~coord~frame(S,flg,coords,axis~len)

sq-DISP-FLAGS *flg;

sq-STRUCT *S;

int coords [31 [21 [2] ; /* coordinate for axis */
int axis-len; / * length of axis */

- sq-compute-coord-frameM Similar to the previous function, the user may already have
both transformations instead of having the routine compute them from the superquadric pa-
rameters.

sq~compute~coord~framel4(tmatrix,T,coords,axis~len)

double tmatrix[4] [4] ;

double T [41 [41 ;

int coords 131 [2] [2] ; /* coordinate for axis */
int axis-len; /* length of axis */

- sq-draw-coordframe draw the actual frame as specified in coord. Foreground and Back-
ground color rnay be specified. Axes are labeled.

4.5 Auxiliary Functions

sq~draw~coord~frame(coord,color~obj ,bg-color ,xoff, yoff)

int coordC31[21 C21 ;

int color-obj;

int bg-color;

int xoff, yoff;

- sq-transf-line this function applies the transformation defined in T to the points A and B
and returns the line associated with the transformation.

sq-transf-line(line,T,A.B)

int line [21 C21;

double T C4IC41 ;

double A [3] ;

double BE31 ;

4.5.8 XI1 Routines

In most of these routines there are three variable which frequently appear. These are color, an

integer 0-31, and xoff, yofi offsets for the object to be dra.wn. This allows to have coordinates fixed

and then modify the position of the object by varying this two components.

- sq-InitX sets up the display and the color table

int sq-InitX(name,w,h)

char *name ; /* name to label it with */
int w,h; /* height and width of widget * /

- sq-draw-lline draw a single line specified starting and ending coordinates, color and possible
offset.

sq-draw-lline(x1, yl, x2, y2, color, xoff, yoff)

int xl, yl, /* initial point */

~ 2 , ~ 2 ; /* end point */
int color;

int xoff, yoff;

- sq-draw-lines draws a set of lines segments, specified by num-lines of the appropriate color.

sq-draw-lines(line, num-lines, color, xoff, yoff)

int line [I C2l [2l ;
int num-lines ,

color;

int xoff, yoff;

- sq-draw-lines-ptr similar to the previous one, only the lines can be specified by a different
type of pointer

4 LIBRARY

sq-draw-lines-ptr(line, number, color, xoff, yoff)

int ***line;

int number,

color;

int xoff, yoff;

- sq-draw-points draws a list of points

sq-draw-points(pt, number, color, xoff, yoff)

int **pt;

int number,

color;

int xoff, yoff;

- sq-draw-text displays text a t the specified x and y coords. User can specify color of fore-
ground and background.

sq-draw-textcx, y, text, xoff, yoff, fg-color, bg-color)

int x , y; /* coordinate of text string * /
char *text ; /* pointer to text string */
int xoff, yoff;

int f g-color , /* color used in the characters */
bg-color; /* background color */

- sq-fill-xdisplay Set the Xdisplay to a specified graylevel color.

sq-fill-xdisplay(grayvalue)

int grayvalue ;

- sq-fill-rect this function fills a rectangle on the screen from the specified coordinates (x,y) by
the extent specified by Dx and Dy

sq~fill~rect(x,y,Dx,Dy,grayvalue)

int x,y,

Dx,DY; /* size of rectangle */
int grayvalue ;

- sq-flush-xdisplay flush the display one the buffer is set up.

sq-flush-xdisplay 0 ;

- sq-set-display-dev Initialize the display and sets the header to specified character string.

sq-set -display-dev(str)

char *str;

4.5 Auxiliary Functions

- sq-draw-points-2arr places points on the screen at the coordinates specified in the pt array.

sq-draw_points_2arr(pt, n, c,xoff,yoff)

int pt C1 C21;
int n, c;

int xoff, yoff;

- sq-DrawImage8 display a pm picture.

sq-DrawImage8(p,x,y,w.h)

byte *p;

int x,y,w,h;

- sq-RedrawImage redraws the image at the given location from stored data instead of reload-
ing from file.

sq-RedrawImage(p,x,y,w,h)

byte *p;

int x,y.

w,h;

/* pointer to the image */
/* location to draw the image */

- sq-SaveImage8 Save a pm picture from current display. User can specify starting and ending
corners.

pmpic *sq-SaveImage8(s-row,s-col ,e-row ,e-col)

int s-row,s-col.

e-row ,e-col;

NOTE this routine alone is dependent on P M information.

Index
-REND 20

bend 26

-BEND-TAPER 20

best-fit 6

-CAVITY 20

cavity 27

compiling 18

constants 18, 20

conventions 18

cos 36

default values 3 1

deformations 25

disp 14

distance 34

estimation 30

Euler angles 37

function naming convention 18

I/O functions 33

math functions 36

mindist 13

minimization 30

mintest 13

ndisp 12

no-display 30

-NO-DEF 20

-NUM-DEF 20

pm 42

PM-FORMAT 29

postscript 12

predefined constants 18, 20

references 5

SCAN-PARAM 24

sin 36

sq.h 17

sq-addpoints 35

sq-alloc-2arr-double 38

sq-alloc-2arr-int 38

sq-alloc-3arr-int 38

sq-bend-normal 26

sq-bend-position 26

sq-cavity-normal 27

sq-cavity-position 27

sq-Clearscreen 41

sq-cmdparse 32

sq-compute-coord-frame 39

sq-compute-coord-fr ameM 39

sq-compute-insideout 28

sq-compute-insideout-deformed 28

sq-compute-normal-angles 28

sq~compute~normal~position 29

sq-compute-wireframe 39

sq-deform-normal 27

sq-deform-position 27

sq-determinant 37

SQ-DISP-FLAGS 21

sq-display 39

sq-dist-3D 36

SQ-DIST-STRUCT 22

sq-draw-lline 40

sq-draw-coord-frame 39

sq-DrawImage8 42

sq-draw-lines 40

sq-draw-lines-ptr 40

sq-draw-points 41, 42

INDEX

sq-draw-text 41

sq-edges 35

sq-ellipse 30

sq-estimate 30

sq-fill-rect 41

sq-fillxdisplay 41

sq-find-angle 29

sq-find-position 29

sq-fit-plane 37

sq-flushxdisplay 41
sq-func-taper 25

sq-func-twist 26

sq-homog-trans 37

sq-identity-matrix 37

sq-InitX 40

sq-inv-bend-position 26

sq-inv-deformposition 27

sq-invert-matrix 36

sq-inv-taper-position 25

sq-make-disp-flg 3 1

sq-make-dist-struct 30

sq-make-opts 31

sq-make-struct 30

sq-make-struct-list 30

sq-matrixmult 36

sq-mindist 34

sqmkg 13

sqmkg-objs 13

sq-mult2matrix 36

SQ-OPTS-FLAGS 21

sq-param-errmsg 33

sq-parse-errcheck 33

sq-pm-to-points 29

sq-pow-c 36
sq-print-to-file 33

sq-quadric 30

sq-quadric-plain 30

sq-read 33

sq-read-file 33

sq-realloc-2arr-double 38

sq-realloc-2arr-int 38

sq-realloc-3arr-int 38

sq-RedrawImage 42

sq-SaveImage8 42
sq-set-display-dev 41

sq-sqr 36
sqstandalone 12

SQ-STRUCT 20

SQ-STRUCT-LIST 21

sqsup 12

sq-super-file 34

sqsuper-file-d 34

sq-super-points 34

sq-super-points-d 34

sq-taper-normal 25

sq-taper-position 25

sq-transf-line 40

sq-twist-postion 26

sq-usage 33

sqxtr-fit 13

structures 30

-TAPER 20

taper 25

twist 26

-TWIST 20

utility progs 12

visualization 12

