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Abstract

Analyzing massive data sets has been one of the key motivations for studying streaming algorithms.
In recent years, there has been significant progress in analysing distributions in a streaming setting, but
the progress on graph problems has been limited. A main reason for this has been the existence of
linear space lower bounds for even simple problems such as determining the connectedness of a graph.
However, in many new scenarios that arise from social and other interaction networks, the number of
vertices is significantly less than the number of edges. This has led to the formulation of the semi-
streaming model where we assume that the space is (near) linear in the number of vertices (but not
necessarily the edges), and the edges appear in an arbitrary (and possibly adversarial) order.

However there has been limited progress in analysing graph algorithms in this model. In this paper we
focus on graph sparsification, which is one of the major building blocks in a variety of graph algorithms.
Further, there has been a long history of (non-streaming) sampling algorithms that provide sparse graph
approximations and it a natural question to ask: since the end result of the sparse approximation is a
small (linear) space structure, can we achieve that using a small space, and in addition using a single
pass over the data? The question is interesting from the standpoint of both theory and practice and we
answer the question in the affirmative, by providing a one pass Õ(n/ε2) space algorithm that produces
a sparsification that approximates each cut to a (1 + ε) factor. We also show that Ω(n log 1

ε ) space is
necessary for a one pass streaming algorithm to approximate the min-cut, improving upon the Ω(n)
lower bound that arises from lower bounds for testing connectivity.

1 Introduction

The feasibility of processing graphs in the data stream model was one of the early questions investigated in
the streaming model [9]. However the results were not encouraging, even to decide simple properties such
as the connectivity of a graph, when the edges are streaming in an arbitrary order required Ω(n) space. In
comparison to the other results in the streaming model, [1, 16] which required polylogarithmic space, graph
alogithms appeared to difficult in the streaming context and did not receive much attention subsequently.

However in recent years, with the remergence of social and other interaction networks, questions of
processing massive graphs have once again become prominent. Technologically, since the publication of
[9], it had become feasible to store larger quantities of data in memory and the semi-streaming model was
proposed in [6, 15]. In this model we assume that the space is (near) linear in the number of vertices (but
not necessarily the edges). Since its formulation, the model has become more appealing from the contexts
of theory as well as practice. From a theoretical viewpoint, the model still offers a rich potential trade-off
between space and accuracy of algorithm, albeit at a different threshold than polylogarithmic space. From
a practical standpoint, in a variety of contexts involving large graphs, such as image segmentation using
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graph cuts, the ability of the algorithm to retain the most relevant information in main memory has been
deemed critical. In essence, an algorithm that runs out of main memory space would become unattractive
and infeasible. In such a setting, it may be feasible to represent the vertex set in the memory whereas the
edge set may be significantly larger.

In the semi-streaming model, the first results were provided by [6] on the construction of graph spanners.
Subsequently, beyond explorations of connectivity [5], and (multipass) matching [14], there has been little
development of algorithms in this model. In this paper we focus on the problem of graph sparsification
in a single pass, that is, constructing a small space representation of the graph such that we can estimate
the size of any cut. Graph sparsification [2, 17] remains one of the major building blocks for a variety
of graph algorithms, such as flows and disjoint paths, etc. At the same time, sparsification immediately
provides a way of finding an approximate min-cut in a graph. The problem of finding a min-cut in a graph
has been one of the more celebrated problems and there is a vast literature on this problem, including
both deterministic [7, 8] as well as randomized algorithms [10, 11, 13, 12] – see [3] for a comprehensive
discussion of various algorithms. We believe that a result on sparsification will enable the investigation of a
richer class of problems in graphs in the semi-streaming model.

In this paper we will focus exclusively on the model that the stream is adversarially ordered and a single
pass is allowed. From the standpoint of techniques, our algorithm is similar in spirit to the algorithm of Alon-
Matias-Szegedy [1], where we simultaneously sample and estimate from the stream. In fact we show that in
the semi-streaming model we can perform a similar, but non-trivial, simultaneous sampling and estimation.
This is pertinent because sampling algorithms for sparsification exist [2, 17], which use O(npolylog(n))
edges. However these algorithms sample edges in an iterative fashion that requires the edges to be present
in memory and random access to them.

Our Results: Our approach is to recursively maintain a summary of the graph seen so far and use that
summary itself to decide on the action to be taken on seeing a new edge. To this end, we modify the
sparsification algorithm of Benczur and Karger [2] for the semi–streaming model. The final algorithm uses
a single pass over the edges and provides 1± ε approximation for cut values with high probability and uses
O(n(log n+ logm)(log m

n )(1 + ε)2/ε2) edges for n node and m edge graph.

2 Background and Notation

Let G denote the input graph and n and m respectively denote the number of nodes and edges. V AL(C,G)
denotes the value of cut C in G. wG(e) indicates the weight of e in graph G.

Definition 1 [2] A graph is k-strong connected if and only if every cut in the graph has value at least
k. k-strong connected component is a maximal node-induced subgraph which is k-strong connected. The
strong connectivity of an edge e is the maximum k such that there exists a k-strong connected component
that contains e.

In [2], they compute the strong connectivity of each edge and use it to decide the sampling probability.
Algorithm 1 is their algorithm. We will modify this in section 3.
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Benczur-Karger([2])
Data: Graph G = (V,E)
Result: Sparsified graph H
compute the strong connectivity of edge cGe for all e ∈ G;
H ← (V, ∅);
foreach e do

pe = min{ρ/ce, 1};
with probability pe, add e to H with weight 1/pe;

end
Algorithm 1: Sparsification Algorithm

Here ρ is a parameter that depends on the size of G and the error bound ε. They proved the following
two theorems in their paper.

Theorem 2.1 [2] Given ε and a corresponding ρ = 16(d+ 2)(lnn)/ε2, every cut in H has value between
(1− ε) and (1 + ε) times its value in G with probability 1− n−d.

Theorem 2.2 [2] With high probability H has O(nρ) edges.

Throughout this paper, e1, e2, · · · , em denotes the input sequence. Gi is a graph that consists of e1,e2,· · · ,ei.
c
(G)
e is the strong connectivity of e in G and wG(e) is weight of an edge e in G. Gi,j = {e : e ∈ Gi, 2j−1 ≤
c
(Gi)
e < 2j}. Each edge has weight 1 in Gi,j . Fi,j =

∑
k≥j 2j−kGi,j where scalar multiplication of a

graph and addition of a graph is defined as scalar multiplication and addition of edge weights. In addition,
H ∈ (1±ε)G if and only if (1−ε)V AL(C,G) ≤ V AL(C,H) ≤ (1+ε)V AL(C,G). Hi is a sparsification
of a graph Gi, i.e., a sparsified graph after considering ei in the streaming model.

3 A Semi-Streaming Algorithm

We cannot use Algorithm 1 in the streaming model since it is not possible to compute the strong connectivity
of an edge in G without storing all the data. The overall idea would be to use a strongly recursive process,
where we use an estimation of the connectivity based on the current sparsification and show that subsequent
addition of edges does not impact the process. The modification is not difficult to state, which makes us
believe that such a modification is likely to find use in practice. The nontrivial part of the algorithm is in the
analysis, ensuring that the various dependencies being built into the process does not create a problem. For
completeness the modifications are presented in Algorithm 2.

Stream-Sparsification
Data: The sequence of edges e1, e2, · · · , em
Result: Sparsified graph H
H ← ∅;
foreach e do

compute the connectivity ce of e in H;
pe = min{ρ/ce, 1};
add e to H with probability pe and weight 1/pe;

end
Algorithm 2: Streaming Sparsification Algorithm

We use ρ = 32((4+d) lnn+lnm)(1+ε)/ε2 given ε > 0; once again d is a constant which determines the
probability of success. We prove two theorems for Algorithm 2. The first theorem is about the approximation
ratio and the second theorem is about its space requirement. For the simplicity of proof, we only consider
sufficiently small ε.
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Theorem 3.1 Given ε > 0, H is a sparsification, that is H ∈ (1± ε)G, with probability 1−O(1/nd).

Theorem 3.2 If H ∈ (1± ε)G, H has O(n(d log n+ logm)(logm− log n)(1 + ε)2/ε2) edges.

We use a sequence of ideas similar to that in Benczur and Karger [2]. Let us first discuss the proof in
[2].

In that paper, Theorem 2.1 is proved on three steps. First, the result of Karger [11], on uniform sampling
is used. This presents two problems. The first is that they need to know the value of minimum cut to get
a constant error bound. The other is that the number of edges sampled is too large. In worst case, uniform
sampling gains only constant factor reduction in number of edges.

To solve this problem, Benczur and Karger [2] decompose a graph into k-strong connected components.
In a k-strong connected component, minimum-cut is at least k while the maximum number of edges in k-
strong connected component(without (k + 1)-strong connected component as its subgraph) is at most kn.
They used the uniform sampling for each component and different sampling rate for different components.
In this way, they guarantee the error bound for every cut.

We cannot use Karger’s result [11] directly to prove our sparsification algorithm because the probability
of sampling an edge depends on the sampling results of previous edges. We show that the error bound of
a single cut by a suitable bound on the martingale process. Using that we prove that if we do not make an
error until ith edge, we guarantee the same error bound for every cut after sampling (i+ 1)th edge with high
probability. Using union bound, we prove that our sparsification is good with high probability.

4 Proof of Theorem 3.1

4.1 Single Cut

We prove Theorem 3.1 first. First, we prove the error bound of a single cut in Lemma 4.1. The proof will
be similar to that of Chernoff bound [4]. p in Lemma 4.4 is a parameter and we use different p for different
strong connected components in the later proof.

Lemma 4.1 Let C = {ei1 , ei2 , · · · , eil} with i1 < i2 < · · · < il be a cut in a graph G such that wG(eij ) ≤
1 and V AL(C,G) = c. The index of the edges corresponds to the arrival order of the edges in the data
stream. Let AC be an event such that pe ≥ p for all e ∈ C. Let H be a sparsification of G. Then,
P[AC ∧ (|V AL(C,H)− c| > βc)] < 2 exp(−β2pc/4) for any 0 < β ≤ 2e− 1.

Let Xj = pwH(eij ) and µj = E[Xj ] = pwG(eij ). Then, |V AL(C,H) − c| > βc if and only if
|
∑

j Xj − pc| > βpc. As already mentioned, we cannot apply Chernoff bound because there are two
problems:

1. Xj are not independent from each other and

2. values of Xj are not bounded.

The second problem is easy to solve because we have AC . Let Yj be random variables defined as follows:

Yj =
{
Xj if peij ≥ p
µj otherwise.
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If AC happens, Yj = Xj . Thus,

P[AC ∧ (|V AL(C,H)− c| > βc)] = P[AC ∧ (|
∑
j

Xj −
∑
j

µj | > βpc)]

= P[AC ∧ (|
∑
j

Yj −
∑
j

µj | > βpc)]

≤ P[|
∑
j

Yj −
∑
j

µj | > βpc] (1)

The proof of (1) is similar to Chernoff bound [4]. However, since we do not have independent Bernoulli
random variables, we need to prove the upperbound of E[exp(t

∑
j Yj)] given t. We start with E[exp(tYj)].

Lemma 4.2 E[exp(tYj)|Hij−1] ≤ exp(µj(et − 1)) for any t and Hij−1.

Proof: There are two cases. Given Hij−1, peij ≥ p or peij < p. At the end of each case, we use the fact
that 1 + x < ex.

Case 1 : If peij < p, Yj = µj .

E[exp(tYj)|Hij−1] = exp(tµj)
< exp(µj(et − 1)).

Case 2 : If peij ≥ p, Yj = Xj . So E[exp(tYj)|Hij−1] = peij exp(tµj/peij ) + (1 − peij ). Let
f(x) = x exp(tµj/x) + (1 − x). Observe that f ′(x) ≤ 0 for x > 0. So f(x) is decreasing function. Also
we have µj = pwG(eij ) ≤ p ≤ peij since wG(eij ) ≤ 1. Hence,

peij exp(tµj/peij ) + (1− peij ) ≤ µj exp(t) + (1− µj).

Therefore,

E[exp(tYj)|Hij−1] ≤ µj(exp(t)− 1) + 1
≤ exp(µj(et − 1)).

From case 1 and 2, E[exp(tYj)|Hij−1] ≤ exp(µj(et − 1)) for any Hij−1. �
Now, we prove the upperbound of E[exp(t

∑
j Yj)].

Lemma 4.3 Let Sj =
∑l

k=j Yk. For any t and Hij−1, E[exp(tSj)|Hij−1] ≤ exp(
∑l

k=j µj(e
t − 1)).

Proof: We prove by induction. For j = l, E[exp(tSj)|Hij−1] = E[exp(tYl)|Hij−1] ≤ exp(µl(et − 1))
by Lemma 4.2.
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Assume that E[exp(tSj+1)|Hij+1−1] ≤ exp(
∑l

k=j+1 µk(e
t − 1)) for any Hij+1−1. Then,

E[exp(tSj)|Hij−1] =
∑
y

P[Yj = y|Hij−1]
∑

Hij+1−1

E[exp(t(y + Sj+1))|Hij+1−1]P[Hij+1−1|Yj = y,Hij−1]

=
∑
y

exp(ty)P[Yj = y|Hij−1]
∑

Hij+1−1

E[exp(tSj+1)|Hij+1−1]P[Hij+1−1|Yj = y,Hij−1]

≤
∑
y

P[Yj = y|Hij−1] exp

 l∑
k=j+1

µk(et − 1)


= exp

 l∑
k=j+1

µk(et − 1)

E[Yj |Hij−1]

≤ exp

 l∑
k=j

µk(et − 1)


Therefore, E[exp(tSj)|Hij−1] ≤ exp(

∑n
k=j µk(e

t − 1)) for any Hij−1 and t. �
Now we prove Lemma 4.1. Remember that we only need to prove P[|

∑
j Yj−pc| > βpc] < 2 exp(−β2pc/4)

by (1).
Proof:[Proof of Lemma 4.1] Let S = S1 =

∑
j Yj and µ =

∑
j µj = pc. We prove in two parts:

P[S > (1 + β)µ] ≤ exp(−β2µ/4) and P[S < (1− β)µ] ≤ exp(−β2µ/4).
We prove P[S > (1 + β)µ] < exp(−β2µ/4) first. By applying Markov’s inequality to exp(tS) for any

t > 0, we obtain

P(S > (1 + β)µ) <
E[exp(tS)]

exp(t(1 + β)µ)

≤ exp(µ(et − 1))
exp(t(1 + β)µ)

.

The second line is from Lemma 4.3. From this point, we have identical proof as Chernoff bound [4] that
gives us bound exp(−β2µ/4) for β < 2e−1. To prove that P[S < (1−β)µ] < exp(−β2pc/4) we applying
Markov’s inequality to exp(−tS) for any t > 0, and proceed similar to above. Using union bound to these
two bounds, we obtain a bound of 2 exp(−β4µ/4). �

4.2 k-strong Connected Component

Now we prove the following lemma given a k-strong connected component and parameter p. This corre-
sponds to the proof of uniform sampling method in [11].

Lemma 4.4 Let Q be a k-strong component such that each edge has weight at most 1. HQ is its sparsified
graph. Let β =

√
4((4 + d) lnn+ lnm)/pk for some constant d > 0. Suppose that AQ be an event

such that every edge in Q has sampled with probability at least p. Then, P[AQ ∧ (HQ /∈ (1 ± ε)Q)] =
O(1/n2+dm).

Proof: Consider a cut C whose value is αk in Q. If AQ holds, every edge in C is also sampled with
probability at least p. By Lemma 4.1, P[AQ ∧ |V AL(C,HQ) − αk| > βαk] ≤ 2 exp(−β2pαk/4) =
2(n4+dm)−α. Let P (α) = 2(n4+dm)−α.
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Let F (α) be the number of cuts with value less or equal to αk. By union bound, we have

P[AQ ∧ (HQ /∈ (1± ε)Q)] ≤ P (1)F (1) +
∫ ∞

1
P (α)

dF

dα
dα.

The number of cuts whose value is at most α times minimum cut is at most n2α. Since the value of minimum
cut of Q is k, F (α) ≤ n2α. Since P is a monotonically increasing function, this bound is maximized when
F (α) = n2α. Thus,

P[AQ ∧ (HQ /∈ (1± ε)Q)] ≤ F (1)P (1) +
∫ ∞

1
P (α)

dF

dα
dα

≤ n2P (1) +
∫ ∞

1
P (α)(2n2α lnn)dα

≤ 2
n2+dm

+
∫ ∞

1

lnn
nα(2+d)mα

dα

= O(1/n2+dm).

�

4.3 Error Bound for Hi and H

Lemma 4.5 The probability of i being the first integer such that Hi /∈ (1± ε)Gi is O(1/ndm).

Proof: If Hj ∈ (1±β)Gj for all j < i, cej ≤ (1 + ε)c(Gj)ej ≤ (1 + ε)c(Gi)ej . Remember that c(G)
e denotes

the strong connectivity of e in graph G.

Hi =
∞∑

j=−∞
Hi,j

=
∞∑

j=−∞

(
Hi,j +

1
2
Fi,j+1

)
−

∞∑
j=−∞

1
2
Fi,j+1

Hi,j + (1/2)Fi,j+1 is a sparsification of Gi,j + (1/2)Fi,j+1 = Fi,j . Fi,j consists of 2j−1-strong connected
components. For every e ∈ Gi,j , c(Gi)e < 2j . So it is sampled with probability at least p = ρ/(1+ε)2j . If we
consider one 2j−1-strong connected component and set ρ = 32((4 + d) lnn+ lnm)(1 + ε)/ε2, by Lemma
4.4, every cut has error bound ε/2 with probability at least 1 − O(1/n2+dm). Since there are less than n2

such distinct strong connected components, with probability at least 1−O(1/ndm), Hi,j + (1/2)Fi,j+1 ∈
(1± β)Fi,j for every i, j. Hence,

Hi ∈
∞∑

j=−∞
(1± ε/2)Fi,j −

∞∑
j=−∞

1
2
Fi,j+1

⊆ (2± ε)Gi −Gi
= (1± ε)Gi.

Therefore, P[(∀j < i.Hj ∈ (1± ε)Gj) ∧ (Hi /∈ (1± ε)Gi)] = O(1/ndm). �
From Lemma 4.5, Theorem 3.1 is obvious. P[H /∈ (1 ± ε)G] ≤

∑m
i=1 P[(∀j < i.Hj ∈ (1 ± ε)Gj) ∧

(Hi /∈ (1± ε)Gi)] = O(1/nd).
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5 Proof of Theorem 3.2

For the proof of Theorem 3.2, we use the following property of strong connectivity.

Lemma 5.1 [2] If the total edge weight of graph G is n(k− 1) or higher, there exists a k-strong connected
components.

Lemma 5.2 H ∈ (1± ε)G, total edge weight of H is at most (1 + ε)m.

Proof: Let Cv be a cut ({v}, V − {v}). Since H ∈ (1 ± ε)G, V AL(Cv, H) ≤ (1 + ε)V AL(Cv, G).
Total edge weight of H is (

∑
v∈V V AL(Cv, H))/2 since each edge is counted for two such cuts. Similarly,

G has (
∑

v∈V V AL(Cv, H))/2 = m edges. Therefore, if H ∈ (1± ε)G, total edge weight of H is at most
(1 + ε)m. �

Let Ek = {e : e ∈ H and ce ≤ k}. Ek is a set of edges that sampled with ce = k. We want to bound
the total weight of edges in Ek.

Lemma 5.3
∑

e∈Ek wH(e) ≤ n(k + k/ρ).

Proof: Let H ′ be a subgraph of H that consists of edges in Ek. H ′ does not have (k + k/ρ+ 1)-strong
connected component. Suppose that it has. Then there exists the first edge e that creates a (k + k/ρ + 1)-
strong connected component inH ′. In that case, ei must be in the (k+k/ρ+1)-strong connected component.
However, since weight e is at most k/ρ, that component is at least (k+ 1)-strong connected without e. This
contradicts that ce ≤ k. Therefore, H ′ does not have any (k + k/ρ + 1)-strong connected component. By
Lemma 5.1,

∑
e∈Ek wH(e) ≤ n(k + k/ρ). �

Now we prove Theorem 3.2.
Proof:[Proof of Theorem 3.2] If the total edge weight is the same, the number of edges is maximized

when we sample edges with smallest strong connectivity. So in the worst case,∑
e∈Ek−Ek−1

wH(e) = nk(1 + ρ)− n(k − 1)(1 + ρ) = n(1 + ρ).

In that case, k is at most (1 + ε)m/n(1 + 1/ρ). Let this value be km. Then, total number of edges in H is

km∑
i=1

n(1 + 1/ρ)
i/ρ

= n(ρ+ 1)
km∑
i=1

1
i

= O(n(ρ+ 1) log(km))
= O(nρ(logm− log n))
= O(n(d log n+ logm)(logm− log n)(1 + ε)2/ε2).

�

6 Space Lower bounds

First, we prove a simple space lowerbound for weighted graphs, where the lowerbound depends on ε.

Theorem 6.1 For 0 < ε < 1, Ω(n(logC + log 1
ε )) bits are required in order to sparsify every cut of a

weighted graph within (1± ε) factor where C is maximum edge weight and 1 is minimum edge weight.
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Proof: Let F be a set of graphs such that there is a center node u and other nodes are connected to u by

an edge whose weight is one of 1,
(

1+ε
1−ε

)
,
(

1+ε
1−ε

)2
, · · · , C. Then, |F | = (log( 1+ε

1−ε)
C)n−1. For G,G′ ∈ F ,

they must have different sparsifications. So we need Ω(log |F |) bits for sparsfication. It is easy to show that
log |F | = Ω(n(logC + log 1

ε )). �
Now we use the same proof idea for unweighted simple graphs. Since we cannot assign weight as we

want, we use n/2 nodes as a center instead of having one center node. In this way, we can assign degree of
a node from 1 to n/2.

Theorem 6.2 For 0 < ε < 1, Ω(n(log n+ log 1
ε )) bits are required in order to sparsify every cut of a graph

within (1± ε).

Proof: Consider bipartite graphs where each side has exactly n/2 nodes and each node in one side has

a degree 1,
(

1+ε
1−ε

)
,
(

1+ε
1−ε

)2
, · · · , or n/2. For each degree assignment, there exists a graph that satisfies it.

Let F be a set of graphs that has different degree assignments. Then, |F | =
(

log( 1+ε
1−ε)

n
2

)n−1
. G,G′ ∈ F

cannot have the same sparsification. So we need at least Ω(log |F |) = Ω(n(log n+ log 1
ε )) bits. �

Another way of viewing the above claim is a direct sum construction, where we need to use Ω(log 1
ε )

bits to count upto a precision of (1 + ε).

7 Conclusion and Open Problems

We presented a one pass semi-streaming algorithm for the adversarially ordered data stream model which
uses O(n(d log n + logm)(logm − log n)(1 + ε)2/ε2) edges to provide ε error bound for cut values with
probability 1 − O(1/nd). If the graph does not have parallel edges, the space requirement reduces to
O(dn log2 n(1 + ε)2/ε2). We can solve the minimum cut problem or other problems related to cuts with
this sparsification. For the minimum cut problem, this provides one-pass ((1 + ε)/(1 − ε))-approximation
algorithm.

A natural open question is to determine how the space complexity of the approximation depends on ε.
Our conjecture is that the bound of n/ε2 is tight up to logarithmic factors.
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