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The energies and eigenvectors for long-wavelength acoustic spin waves in yttrium iron garnet are calcu-
lated neglecting spin-wave interactions, but including the effects of anisotropy and dipolar interactions. The
sublattice magnetization is found to be So*(T)=S—86oa—cT —AoT32—BT52—CoT"2- - -, Here a labels
the sublattice @ or d, 8. expresses the effect of zero-point motion, and ¢T is the Holstein-Primakoff correction
for dipolar interactions. Expressions in terms of the exchange integrals Jaa, Jad, Jad, and Jaq', where Jad’
describes interactions between next-nearest-neighbor ¢ and d sites, are given for A «, Ba, and, when Jos' =0,
for Ca. The spin-wave spectrum of some substituted garnets and the effect of spin-wave interactions on the

zero-point disordering are treated in appendices.

I. INTRODUCTION

HE use of nuclear magnetic resonance'™ as a tool
for the investigation of magnetic materials has
enabled one to make very accurate measurements of
the temperature variation of the spontaneous magnet-
ization of each magnetically inequivalent sublattice.
The possibility of such measurements in turn stimu-
lates detailed theoretical calculations of the sublattice
magnetizations, especially for low temperatures where
the spin-wave approximation is valid. Recently such
accurate measurements have been performed on
yttrium iron garnet (YIG)®$; so that by an accurate
spin-wave analysis one may hope to deduce reliable
values of the exchange coefficients. However, for YIG
an earlier’ spin-wave analysis gave results in disagree-
ment with both Wojtowicz’s analysis® of the high-
temperature susceptibility data,® and with evidence!®-1!
obtained from substituted garnets. This discrepancy
has been largely removed by Gonano et al.'? who have
analyzed their magnetization data using the calcu-
lation we present here.
It is well known!® that, neglecting anisotropy and
dipolar interactions, linearized spin-wave theory pre-
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dicts the sublattice magnetization of a ferrimagnet to
be of the form

M(T)/M(0)=1—aT32—BT5/2—nT7/2. ... (1.1)

The purpose of the present paper is to calculate the
coefficients a, B, and v for each sublattice in terms of
the exchange coefficients. Previously” we had obtained
expressions for a and 8 in the analogous expansion for
the total magnetization. In order to obtain the sub-
lattice magnetization we study in more detail the
transformation to normal modes. In addition we will
calculate corrections to Eq. (1.1) when the effects of
anisotropy, externally applied magnetic field, and di-
polar interactions are included. We show that the
simplest phenomenological extension of the Holstein-
Primakoff results to the case of an anisotropic ferri-
magnet is valid. We give these results since it has been
shown® 12 that dioplar and anisotropy effects cannot be
neglected when analyzing the low-temperature sub-
lattice magnetizations of YIG.

In Appendix A we show that the ground-state value
of the total magnetization of a ferrimagnet one obtains
treating spin-wave interactions perturbatively is the
same as the value in the Néel state. Appendix B is
devoted to algebraic details involved in deriving ex-
pressions for the coefficients of Eq. (1.1). Finally, in
Appendix C we give formulas for the spin-wave spectra
of substituted garnets in which only the ¢ or d sub-
lattice is occupied by magnetic ions and antiferro-
magnetism results.

One may question the desirability of calculating
analytically the terms in the expansion of Eq. (1.1)
since the energies of all the normal modes (optical as
well as acoustic) and hence the sublattice magneti-
zations could be calculated numerically on an elec-
tronic computer. Such a calculation is not trivial,
however. In the first place the exchange integrals are
not known precisely, so that the computer program
would have to provide for evaluation of the sublattice
magnetization over a range of parameters with a cri-
terion for selecting the best fit to the experimental data.

14T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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Also, for each set of parameters the eigenvalues of a
20X 20 matrix must be evaluated for a mesh of points
in reciprocal space. Such a computation would be
time-consuming and would involve sophisticated pro-
gramming. In contrast, our results were obtained with
only a few weeks labor and in fact appear to be sufficient,
at least at low temperatures, for the analysis of the
experimental data, as is explained by Gonano et al.12

II. CALCULATION OF THE SPIN-WAVE
SPECTRUM OF YTTRIUM IRON GARNET

The notation we use is as follows. R is a vector of the
bcce lattice

R=R(n1,n9,m5) = 2a(nsi+nsj+nsk) (2.1)

where a is the lattice constant, 4, 7, and £ are unit
vectors in the x, 9, and 2 directions, respectively, and
n1, ne, and ng are integers either all even or all odd.
Let Srir(nay denote the spin operator associated with
the lattice site at R++(na), where =(na) is the position
of the nth ¢ site (=1, 8) within the unit cell. Let
Srir(nay denote the spin operator associated with the
lattice site at R+=(nd), where =(nd) is the position
of the nth d site (r=1, 12) within the unit cell. The
labeling of the @ and d sites in the unit cell is the same
as in a previous treatment.’

Initially we treat the case of isotropic exchange inter-
actions governed by a Heisenberg Hamiltonian. The
application of linearized spin-wave theory to such a
system is well known.!* We give here a brief review
mainly to fix the notation. For YIG we take the
Hamiltonian to be

L= -Jma Z SR+1(na) . SR’+1" (n'a)
nn
—Jaa 2 Sryrnay* Sretrr (way
nn
- 2]ad Z SR+1(na) * SR’+1' (n’d)
nn

—2Jod 2 Srir(nay  Srrtr ()

nnn

(2.2)

where the subscripts ## indicate that the first three
summations are taken over R, R’, #, and #’ such that
R+< and R’++" are nearest-neighbor pairs of lattice
sites in the sublattice in question. The last term of
Eq. (2.2) is summed over values of R, R’, %, and #’ such
that R4+ and R’+4-<’ are next-nearest-neighbor pairs
of ions in the ¢ and d sublattices. The exchange inter-
actions are governed by the coupling constants J,q,
Jady Jaa, and Jo4. The effect of dipolar interactions and
crystalline anisotropy will be discussed in Sec. ITI. We
remark that the Hamiltonian (2.2) is invariant under
rotations so that the various e (or d) sites which are
completely equivalent to each other with respect to
nonmagnetic interactions will remain equivalent when
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the Hamiltonian (2.2) is considered. Therefore the
magnetization is expected to be the same throughout
the entire ¢ (or d) sublattice. When dipolar interactions
are considered, this argument breaks down because the
Hamiltonian is not invariant under rotation of the
direction of magnetization.!5:16 However, this effect is
probably too small to be observed.

The simplest spin-wave theory which neglects spin-
wave interactions can be obtained by substituting boson
operators for the spin operators at each site as follows:

S*=F[S—a'a], (2.3a)
S*=(25)V/2", (2.3b)
S*=(28)"2a, (2.3¢)

where we take the upper choice of sign for the a sites
and the lower choice of sign for the d sites. We trans-
form to momentum variables

and (K)=Ny 123 exp(ik-[R+2(na) Dan.'R), (2.4a)

' (R)=N o2 S exp(ik:[R-+(nd) Dana' (R), (2.4b)
k

where IV, is the number of bce unit cells, so that

Nuw=221; V=3Nuwa’. (2.5)
k

Using the substitutions (2.3) and (2.4) in the Hamilton-
ian of Eq. (2.2) we find

2 Man(k)aon (K)aan (k)

k,n,n’

+ 2 Maw(K)aan' (k)aan (k)

k,n,n’

+ Z {Mnn'ad(k)aanT(k)ad”’f(_k)

k,n,n’

+ M wn(k) J*aan(k)aan (—k)}

JC=

(2.6)

TasBLE I. The matrix Maa (k). Here 4 =40J 46— 30J,a—30J "2
and (Imn) = —10J 4, cos ([lky+mky+nk.]a/8).

w1 2 3 4 5 6 7 8
X

1 4 0 0 0 (2220 (232) (223) (322)
2 0 4 0 0 (222) (322) (222) (222)
3 0 0 4 0 (322) (222) (222) (222)
4 0 0 0 A (232) (222) (322) (222)
5 (222) (220) (322) (2%2) 4 0 0 0
6 (222) (322) (223) (2220 O 4 0 0
7 (223) (222) (232) (322) O 0 A 0
8§ (322) (232) (222) (223) O 0 0 4

( 15 Jj O. Dimmock and R. G. Wheeler, Phys. Rev. 127, 39
1962).

16 W. Brinkman and R. J. Elliott, J. Appl. Phys. 37, 1457
(1966).
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TasLE II. The matrix —M?a4(k). Here Imn=>5J 4 exp[ia (Wks~+mk,+nk.)/8] and (Imn)=5J"sq explia (ke-+mby+nks.)/8].
\<’ 1 2 3 4 5 6 7 8 9 10 1 12
n
1 (023) (302) (230) 021 102 210 021 02 210 (023) (302) (230)
2 021 (302) 310 (033) 102 (230)  (023) 102 (230) 031 (302) 210
3 021 o2 (230) (023) (302) 210 (023) (302) 210 021 102 (230)
4 (023) i02 210 021 (302) (230) 021 (302) (230) (023) 102 210
5 201 120 012 (03) (3200  (032)  (203)  (320) (032 201 120 012
6 (203) 120 (032) 201 (320) 012 201 (320) 012 (203) 20 (032)
7 (203) (320) 012 201 20 (032) 201 120 (032) (203) (320) 0i2
8 201 (G20)  (032)  (303) 120 0i2 (203) 120 012 301 (320)  (032)

with

Mrm'“(k) = ZjaaS{ 6%'[2’; "/nn"“(o)]‘“')’n’n“(k)}
—Zsann’ Z {'Ynn"ad(o)]ad‘l"ynn"ad(O)]ad/} ) (273«)
M *() =27 2aS {0 [ Ynnr#40) ] = varn®(k)}

_zsa'rm’ Z {77&”nad(o)]ad"l_'}7n"nad<0)]ad/} b (27b)

Mnn’ad(k) = _ZS{]ﬂd[7"n'ad(k)]*

+Jad [Fnn®¥(k) J*},  (2.7¢)

where

maﬁ(k)=f{7 exp(ik-[x(na)—R'—=(/8)]), (2.8a)

Fanrt4(k)= % exp(ik-[x(na)—R'—x(n'd)]). (2.8b)

In Eq. (2.8a) o and B each assume the values a or d,
and R’ is summed over the values, if any, such that
w(na) and =(#'/8)+R’ are nearest-neighbor lattice sites
within the sublattices o and 8, respectively. In (2.8b)

R’ is summed over values, if any, such that <(za) and
<(#w'd)+R are next-nearest-neighbor pairs of ¢ and d
sites. The matrices M*(k) of Eq. (2.7) are displayed
in Tables I, II, and IIL.

The normal-mode operators, Q,f(k) or Q,(—k)
satisfy '

(3¢, Q, (k) ]=1iw,(k)Q, (k)
[SC, Qp(_k)]= _hwﬂ(_ k)Qp(—k) .

Here p is an index to distinguish between different
normal modes. Solutions for Q,i(k) or Q,(—k) are
of the form

QpT(k)= Z lnpaa(k)aanf(k)

n=1,8

(2.9a)
(2.9b)

+ 2 lp%(k)aa.(—k), (2.10a)

n=1,1

where 1<p<8 and
QP(_ k) = —-Zl . lnpad(k)aanT(k)
+ X L%k)aa.(—k), (2.10b)
12

n=l1,

with 9<p<20. Substituting these expressions into

TABLE ITI. The matrix —Md(—k). Here D=20J 044207 oi’—207 4 and Imn=57 14 exp (iallks-+mhy-+nk;]/8).

7 1 2 3 4 5 6 7 8 9 10 1 12
n\
1 D 0 0 0 0 0 0 121 211 0 121 211
2 0 D 0 0 0 0 121 0 ii2 121 0 12
3 0 0 D 0 0 0 211 112 0 211 112 0
4 0 0 0 D 0 0 0 i21 211 0 121 211
5 0 0 0 0 D 0 i21 0 1i2 121 0 112
6 0 0 0 0 0 D 211 112 0 211 ii2 0
7 0 121 211 0 121 211 D 0 0 0 0 0
8 121 0 ii2 121 0 112 0 D 0 0 0 0
9 211 112 0 211 112 0 0 0 D 0 0 0
10 0 i21 211 0 121 2ii 0 0 0 D 0 0
1 i21 0 112 121 0 112 0 0 0 0 D 0
12 211 112 0 211 ii2 0 0 0 0 0 0 D
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Eq. (2.9) we obtain

(yey o))
e 3). o

(wewr —sto0) )
= — o, (k) (ig) . (211b)

Here ~ means transpose, T means Hermitian conjugate,
and 1,%¢, etc. are column vectors. In solving (2.11), if
fw,(k) is negative then one has found the transfor-
mation to Q,(—k) since (2.11b) differs from (2.11a)
only in the sign of #w,(k). Hence the columns of

s lad
= 1
lda ldd
are the right eigenvectors of the matrix in (2.11) and

give the transformation from the @.,'(k) and ag.(—k)
to the normal modes. The left eigenvectors are the

rows of e e
L= B
(_ [lee]t []dd)f) ’

since M4e(k) and M4¢(k) are Hermitian. The normal-
ization of these eigenvectors is such that L‘L=1, since
we demand [Q,(k),Q, (k')1]=8,,8kx. The matrix L
therefore provides the inverse transformation which is
what we wish to find. Using these row vectors one
can express the @qnt(k) and asa(k) which create spin
deviations on a particular sublattice in terms of the
normal mode operators.

However, since the magnetization of all the sub-
lattices of each type (a or d) is the same, we can obtain
a simplification by computing the total magnetization
of all the ¢ and d sublattices, respectively. To do this
it is convenient to add to the Hamiltonian a term V con-
taining the indicator fields H, and Hj:

V=_gﬁZ[Ha Z SR+r(na)z
R n=1,8
+Hi 3 Srirmay®].

n=1,12

(2.12)

(2.13)

(2.14)

Then one finds the total sublattice magnetizations at
temperature T as

u _aF ” oF
( a>T—aHa)T, ( d>T—_BE)T’ (2.15)

where F is the free energy, and the derivatives are

A. B. HARRIS
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evaluated for H,= Hy=0. Explicitly, Eq. (2.15) is

Sa Ma Mp k
( >TE (M o)r e S (BNughS) 8w, (k)
S 8NugBS oo | oH,
X {exp(hw,(k)/ksT)—1}71, (2.16a)
Sayr (Mar (k)
=—=1—0— (12N ygBS)!
S 12N.g8S - (2NwgBS)™ 2 |
X {exp (i, (K)/ksT)=1}"1. (2.16b)

Note that excitation of any mode decreases the sub-
lattice magnetizations, whereas the total magnetization
decreases or increases according to the choice of sign in

3, () ’ahw,,(k)
9H. oH,

=6, (2.17)

Because of zero-point motion (S,)r and (Si)r are
somewhat less than their values in the Néel state.
Walker,!® however, has pointed out that the total
magnetization at zero temperature is given by its
value in the Néel state, which implies that

Sa=204=3. (2.18)

As we discuss in Appendix A, spin-wave interactions
do not affect this relationship.

Recently, Brinkman and Elliott!® have pointed out
that the spin-wave matrix equation, (2.11), becomes
simpler when k lies along certain symmetry directions.
In a previous treatment’ we overlooked some of the
symmetry operations and therefore did not obtain the
maximum simplification. As a result our numerical
computations were more time consuming than neces-
sary. In order to determine analytic expressions for
the coefficients in Eqgs. (2.21) and (2.22) below, one
needs to calculate the acoustic eigenvalue for at least
three orientations of k. Rather than make separate
calculations for each direction of k, we will undertake
one calculation for general orientation of wave vector
using perturbation theory. In order to obtain analytic
results, we will henceforth completely neglect the optical
modes. Thus our results will be valid at temperatures
such that k2T is much less than the energy of the
lowest optical mode. By replacing the optical modes by a
suitable number of wave-vector-independent (Einstein)
oscillators, one may profitably use our results at some-
what higher temperatures.

Our procedure is as follows: We denote the matrix
in Eq. (2.11) by M(k) and expand it in powers of the
components k#(u=x, ¥, or z) as

ME) =2 Ma, (2.19)

where MM, varies as | k|7

(V]
9)},0=m(0), mh:Z k“—*—%(k) ‘ k=0, etc. (220)
b Ak+
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We take Mo, whose eigenvectors and eigenvalues are
known,' to be the unperturbed Hamiltonian, and treat
the remaining terms in Eq. (2.19) as the perturbation.
The formula'® for an eigenvalue inclusive of fourth-
order terms in the perturbation can be used with the
slight modification that since MM(k) is not Hermitian,
bras and kets in the formula should be interpreted as
left and right eigenvectors according to the definitions
of Egs. (2.12) and (2.13), respectively. Because of the
cubic symmetrygone thus obtains the acoustic-mode
energy in the form

fwso=DK*+EK*+F(K 2K 4 K 2K >+ K K %)
+G(K S+ K+ K.+ HK*(K 4K 4K %)
+IK 2K K2+, (2.21)

where K= ¢k. Likewise one obtains the expansion

ahwac

=—2¢08{1— AK?*+BK*

+C(K 2K +K 2K 2+K K2 -}, (2.22)
which can be combined with Eq. (2.17) to find
0%wae/dH 4. Substituting these expansions into Eq.

(O] M| 7)(n| M| 0)
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(2.16) we find the sublattice magnetization to be

AS, S—(S)r NG
= ()

S,
kT keT\?
x[1+m’(——)+w(———) 4o ] . (2.23)
D D
where
5)%1
'=——@——{15E+3F+65,AD}, (2.24)
¢(3)X4D
f@ 1
' = {945E*+378 EF+45F*—180DG

Y=
¢(3) 3202
—252DH—4DI+44208,AED-+84£,AFD
+120£,BD*+24£,CD?},  (2.24b)

where {(x) is the Riemann zeta function, » assumes the
values ¢ and d, and

Lo=1, ta=3%. (2.25)

It remains to calculate the coefficients 4, B, C, etc.!?
introduced in Egs. (2.12) and (2.22). The acoustic mode
energy is given by the perturbation series'®

(O] 9Ma| n)(n| M| 0)

_hwac(k)= <0|9ﬁ210>+<0lgﬁ4‘0>_zl

n

+(0[Ms[0)—2 Re 22 E

E, E.E,

, O] Ms| 7)(| M 0) Ly (OIWZIWXﬂIWtZImeWRﬂO)} RS (O[9Mz| m)(m| M| m)(m | Ms| 0)

E.E,

E,?

, (0[9}32|0><019~'321")(”]WEZI())_Z, O] Ms] 72)(me | Mer | ){L| M| 7)o | M| O)

, (2.26)
EnEmEl

where primes indicate omission of terms with zero denominators, |0) is the acoustic eigenvector for =0 which has
zero energy, and |z) an optical mode eigenvector for k=0 with eigenvalue E,. We have already simplified this
formula by taking account of the cubic symmetry and the fact that

M1|0)=0. (2.27)
Similarly, we find
ac ld 2 4
Lohanlh)_ e OG0 OlLalnn D0)
g8 0H, E, E,
2 ReY <0|lallﬂ)(”lﬁ'?ﬂm)(ml9~'32|0>Jl s O] Mz n)(n| 14| n)m| M2 0)
E.E, E,?
s <0|9R2]n><n1%50)(0!1d10>_2RCZ, <0i9ﬁ2|0><011d|%><n193?zl0>, (2.28)

E,?

E,?

where 1; is a unit operator in the space of d sublattice excitations. In Appendix B we tabulate the eigenvectors,
7 R. L. Douglass, Phys. Rev. 120, 1612 (1960); B. Dreyfus, J. Phys. Chem. Solids 23, 287 (1962).

18 K. F. Niessen, Phys. Rev. 34, 253 (1929).

19 We here give expressions only for 8,/ and v,’. The expression for 4 is given in Ref. 5 and those for E and F when J,4'=0 are
given in Ref. 7. We point out an inconsistency in the signs of Egs. (16), (17), and (18) in Ref. 7; namely, the left-hand side of these

equations should be —D, —E, and —F, respectively.
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eigenvalues, and matrix elements required for the evaluation of Egs. (2.26) and (2.28). Thus we find

/= [c(®)/4@)D]{36D
8/=[c3)/43) J{s [ T

—487 4a+257 0a+657 o’ — 127 dd]

5
96[— 2887 gut 757 aa— 54T aa+507T i’

+5(—487 204257 aa+657 o’ — 127 42)%/ (J aatJ od’) +2(3T aa— 2J i+ 14T d')?/ (2T 027 od’ — 3T aa)

and for J,q¢'=0,

—I—48(3]ad,_]ad)2/(31ad+3jadl—‘4Jaa):|} ) (229)

» 1 (25—48x—12y)% 1 1 (25—48x—12y)® 1 1
S2/e )/ @)= 105 —— — & -— |
256 (5—8x—3y) 256 (5—8x—3y) 256 (5—8x—3y) 256 (5—8x—3y)
. (50— 842) } s[ Sx—8a? ]2 21 175 (25— 48x—12y)%(2—4dx—7)
* (6—8x)(25—400—15y)] ' 16L(3—4x)(5—8x—3y)] 128(3—4x)? 2048 (5—8x—3y)
175 7(25—48x—129)[19 25 (125—576x—72y) 1 1— 3
———(25—48x—12y)—————y—|:~———~—:| 3 { i 2
8192 192(5—8x—3y)L32 3 256 16(3—4x) 128  16(3—4x)?
1 100/ 25—48x_12y)2+ B ) (25— 4812 )} (2.30)
— —(2—4x— —48x—12y)t, (2.
768 3\ 64 128 g
where of the coefficients 8,” and v,” one can probably only
_ _ _ ’ determine x. However, when the contribution of the
D=(40J 00257 04— 65/0i +15/a0)/16,  (231a) optical modes is taken into account the magnetization
4=Jaa/J ad, (2.31b)  curves will depend on y, thus enabling its determination.
y="Taa) T aa. (2.310) Finally we comment that our previous’ erroneous

We remark that our results agree with, where they
overlap, previous numerical and analytical results.”
In Table IV we have summarized these results by
giving numerical values of 8, and v,” for the cases
Jed'=0 as a function of x and y. Using these numerical
results curves of the sublattice and total magnetizations
are readily constructed. An experimental value for D
can be very accurately determined in this way providing
dipolar interactions and anisotropy are not neglected.®1?
From Table IV we see that unfortunately the low-
temperature magnetization curves are not very sensi-
tive to variations in ¥, so that from experimental values

conclusion from analysis of low-temperature magneti-
zacion data? that J../Jw.a=~0.2 was due to a poor
choice for the parameter D. Had we chosen the value
recently deduced from the high-resolution nuclear
magnetic resonance data,'? we would have obtained
a much smaller value of J,./Jaq in agreement with
studies!®-!! of substituted garnets. It is perhaps relevant
to point out that a high-temperature analysis such as
that performed by Wojtowicz® is expected to give
somewhat different values of the exchange integrals
than those obtained from a spin-wave analysis due to
thermal expansion. According to Bloch et al.?! exchange
integrals in the iron garnets vary as the —(10/3)

TasLE IV. Values of 8,’ and v,/ for Jua'=0. =J4a/Jaa and y=JT4a/J aa.

108

0.3 0.026

0.2 0.287 0.144 0.003 —0.122

0.1 0.255 0.113 —0.020

0.0 0.222 0.087 —0.043

y/% 0.0 0.1 0.2 0.3
103y’

0.3 +0.2

0.2 —-3.0 —17 —0.2 +1.3

0.1 —46 —25 —0.6

0.0 —6.1 —-36 —0.9

y/% 0.0 0.1 0.2 0.3

1084
0.3 0.501
0.2 1.20 0.858 0.526 0.204
0.1 1.21 0.877 0.549
0.0 1.22 0.897 0.575
/% 0.0 0.1 0.2 0.3
1034’
0.3 4.4
0.2 18.2 9.7 4.2 1.5
0.1 17.5 9.3 4.2
0.0 16.3 8.5 3.8
y/% 0.0 0.1 0.2 0.3

2T, H. Solt, Jr., J. Appl. Phys. 33, 1189S (1962).

21 D. Bloch, F. Chaissé, and R. Pauthenet, J. Appl. Phys. 37, 1401 (1966).
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power of the volume. Using the observed?? temperature
variation of the lattice constant, we have thus estimated
that the exchange integrals in YIG are approximately
109 less at 800°K than at zero temperature. Accord-
ingly, from Wojtowicz’s analysis one would predict
Joa=—24.6 cm™, Jag=—2.5 cm™1, and J,,=—0.2
cm~! at zero temperature. These values give a value
of D some 15%, larger than that obtained by the high-
resolution nuclear-magnetic-resonance data. This re-
maining discrepancy may be caused by inaccuracies in
Aléonard’s® susceptibility data due to imputities. As
evidence for this statement we cite the discrepancy
between Anderson’s? susceptibility measurements and
those of Aléonard. Also, as Aléonard has indicated, the
volume dependence of the exchange integrals implies
a temperature dependence of the form J=J,1—+7T)
where y~10~* per °K. Thus thermal expansion has
the effect of renormalizing the coefficients given by
Wojtowicz for temperature-independent exchange inte-
grals. Accordingly it is quite possible that use of more
reliable high-temperature susceptibility data in a more
refined analysis would resolve the discrepancy between
the interpretations of high-temperature and low-
temperature data.

III. THE EFFECT OF DIPOLAR INTERACTIONS,
ANISOTROPY, AND EXTERNAL MAGNETIC
FIELD ON THE SUBLATTICE
MAGNETIZATION

In this section we discuss the modifications neces-
sary to take account of dipolar interactions, crystalline
aqisotropy, and externally applied magnetic field.

We first discuss the effect of dipolar interactions.
The Hamiltonian for dipolar interactions is

Si+S; 3(Si-ri)(S;e1i))

Xp=%2 3.1)

gigiB®
ij 7,‘,‘3 74

in the usual notation. If we use the substitutions (2.3)

and (2.4) in this Hamiltonian and neglect terms higher

than quadratic in the boson operators, we obtain an

effective dipolar Hamiltonian of the form

JCett= % Z’ {Cnn’ (k) anf (k)an’ (k)
+ D (K)an! (K)an'(—k)
F[Dun (k) J*an()an (—k)},

where # and #’ are summed over all the @ and d sub-
lattices. The omission of terms higher than quadratic
in the boson operators corresponds to the neglect of
spin-wave interactions and is consistent with the
accuracy of the calculations of the previous section.
The constant term and terms linear in the boson

(3.2)

(1;;% Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30
2 E. E. Anderson, Phys. Rev. 134, A1581 (1964).
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operators have also been omitted in Eq. (3.2), since
they do not effect the frequencies of the normal modes.
We assume that the dipolar wave sums, Cnn (k) etc.,
which appear in Eq. (3.2) are translationally invariant.
This approximation is expected to be valid* unless
1/k is comparable to the sample dimensions. The lattice
sums, Cnn (k) etc., are in general complicated and are
not readily evaluated. However, an important simpli-
fication occurs if we attempt a solution of the normal
mode problem for small £ and we keep only those
terms which are smaller than the exchange terms by
order (M/Hg) where Hy is a typical exchange field.
Such an approximation is obtained by substituting for
the a,'(k) the expressions for k=0 for the transfor-
mation to the normal modes neglecting dipolar inter-
actions. We can neglect the % dependence of the
transformation coefficients because terms of order k2
lead to corrections which are smaller than those we
consider by a factor on the order of (k3T/g8H ). Thus
JCets takes the form

K= (G (00,1 MQ, M
+D_pp’ (k)QpT(k)QP'T(_ k)
+0D,r (0 1*Q,(0)Q, (—K)} .  (3.3)

As is well known, the first-order energy shifts are found
by keeping only the semidiagonal part of Hets. Thus
for the optical modes the effect of dipolar interac-
tions'®16 is to reduce the degeneracy of the optical
modes. For the acoustic mode one thus has the following
effective Hamiltonian:

C‘Cefwg {Co(k) Qo' (k) Qo(k)+Do(k) Qo (k) Qot (— k)

where +[Do)*Qu)Qu(—k)}, (34)
caiges £ OIS
n R | R42'+42|35,.2
X (el [=-R=+D), (59
sin% exp(2i¢)S.*
p=—ags . SOOS
X {exp(—ik-[+—R'—=='D}. (3.5b)

In Eq. (3.5) the sum is over all sites = and «’ within the
unit cell and over all R’ except that R'++'== is
excluded. Sk is the value of the z component of spin
of the lattice site at = in the Néel state (S,7==£3). Also
cosf=(R'++'—=)-3/|R++'—=|, (3.6a)

sind cosp= (R'++'—x)-2/|R"++'—=|, (3.6b)

where £ and £ are unit vectors along the x and z axes,
respectively. Evaluating these lattice sums in the

2 M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).
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manner of Holstein and Primakoff,* we find
Co(k)=—gBN .M+ 2mwgBM sin%k,
Do(k) = TgBM sin20k ,

(3.7a)
(3.71)

where cosfy=k-8/|k| and M is the magnetic moment
per unit volume. Thus we obtain results identical to
those for a single sublattice. This does not surprise us,
since for long wavelength all the sublattices are in
phase and the spin-wave energy is independent of
structure assuming cubic symmetry. As we have argued
previously,? when there is no external field the domain
arrangement is such that the demagnetizing field is
small. In other words we take N,=0 for this case in
Eq. (3.7a). More generally we take

Co(k) = gBH p-+2mgBM sin2fy, (3.8)

where the demagnetizing field, Hp, is assumed to be
Hp=0, 0<H,<N.M, (3.92)
Hp=—N.M, N,M<ZH,, (3.9b)

where H, is the externally applied magnetic field.
Next we consider the effects of anisotropy. We will
show that the anisotropy of acoustic spin waves must

be of the form
gﬁHAQoT(k)Qo(k) .

We assume the anisotropy to originate from a single-ion
crystal-field Hamiltonian:

Jea=Y_:Vi(S)). 3.11)

Here V(S;) is some polynomial in the spin operators
of the ith site which is consistent with the local sym-
metry. Again we use the substitutions of Egs. (2.3)
and (2.4) and keep only terms quadratic in the boson
operators. At this stage, because of the local nature of
the Hamiltonian (3.11), the coefficients in the trans-
formed Hamiltonian are independent of wave vector.
Just as for the dipolar interactions we will neglect the
k dependence of the coefficients one obtains when the
transformation to the normal modes is made. We then
conclude that the diagonal part of the Hamiltonian
which refers to the acoustic spin-wave mode is of the
form of Eq. (3.10). Note that terms of the type

KQo'(k)Qot(—k) (3.12a)

are inconsistent with the over-all cubic symmetry of
the lattice. The term (3.12a) corresponds to an anisot-
ropy energy of the form

K(M 2—M.2+2iMM,),

(3.10)

(3.12b)

which is incompatible with the threefold symmetry
about the easy, i.e., [111], axis along which the magneti-
zation is assumed to lie. The coefficient g8H 4 can be

25 A, B. Harris, Phys. Rev. 143, 353 (1966).
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related to the microscopic crystal field parameters.26:27
Collecting the results, (3.8) and (3.10) with those of
the previous section, and allowing for an externally
applied magnetic field, we find the Hamiltonian for
acoustic spin waves to be

3¢= (k) Qo* (k) Qo(l) -+ Do (k) Qo (k) Qo'(— k)

+LDo(k) T*Qo(k)Qo(— k), (3.13)

where

e(k)=DK?+EK*
+F(K 2K *+K 2K 2+ K 2K 5 +G(K S+ K ,*+ K ,5)
+HK*(K ;2K 2+ K 2K 2+ K 2K %)+ 1K 2K 2K 2

+27g8M sin®+g8H o, (3.14)
where H;: is defined as
Het=Hot+Hs+Hp. (3.15)

The thermodynamic properties follow in a straight-
forward way!4:

AS, ksT \*?
Zeotr@() |1
s, 167D
HegtdnM (B 1z
) sm—l(_——_
2@)  \drMksT Hoet-duM

ksT keT" 2
+ﬁv,(_“‘)+“/vl<——-> + tte } . (3.16)
D D

31 (rgﬂHef;>1/2
28BN\ kT

drM )

Note that the correction proportional to (M/T)!?
only affects the 7% term. Note also that there is an
additional zero-point motion due to dipolar inter-
actions. We have neglected this effect, since M is so
much smaller than H . When the condition g8H +<<ksT
is not satisfied, the usual demagnetizing field treatment
is more appropriate.

IV. CONCLUSION

We have calculated the magnetization of the ¢ and d
sublattices of YIG at low temperatures. The effect of
dipolar interactions is significant and has been taken
into account. We have neglected spin-wave inter-
actions and have not included the effects of the optical
modes. Thus the formulas given here can only be
expected to be reliable below say 100°K. Although in
principle our analytic expressions for the coefficients
of the 732, T%2 and T7/? terms in the sublattice
magnetizations can be used to determine experi-
mentally three different linear combinations of the
exchange integrals, in practice only two linear combi-
nations are essentially independent. Thus it is necessary
to study the effects of the optical modes in order to
determine experimentally the values of Ja, Jaa, and

26 S. Geschwind, J. Appl. Phys. 32, 263S (1961); Phys. Rev.
121, 363 (1961).
® L. R. Walker, J. Appl. Phys. 12, 264S (1961).
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Jaa from low-temperature magnetization data. Never-
theless, our present results, when supplemented by
rough estimates of the contributions from the optical
modes, have been used!? to resolve the discrepancy
between Wojtowicz’s analysis® of the high-temperature
susceptibility? and studies!®:!! of substituted garnets on
the one hand, and the spin-wave analysis of low-
temperature magnetization data on the other.
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APPENDIX A: ZERO-POINT MOTION IN THE
PRESENCE OF SPIN-WAVE INTERACTIONS

Actually the total magnetization in the ground
state, Mo will be given by Mg, its value in the Néel
state, to all orders of temperature-independent per-
turbation theory when spin-wave interactions are taken
into account. If, for example, one treats the transverse
terms as a perturbation on an Ising model Hamilton-
ian,® the proposition is obvious, because S:*S;~ com-
mutes with > ;S In spin-wave theory using the
Dyson-Maleev transformation® the perturbation in-
cludes terms like

(A1)
where ¢ refers to an a sublattice and j to a d sublattice.

In the boson representation the total z component of
spin is

niai,  altaitng, nm;,

2SS =2 i(S—n)—2(S—ni), (A2)

which again commutes with the perturbation terms in
Eqg. (A1). Similarly, using the Holstein-Primakoff trans-
formation' one has terms in the perturbation of the

type
ni\Y2 o\ 12
[(=55) (=30) —bes
A 28
i\ i\
a,-“a-*[(l——) (1———) —1],%,%. A3
J 25 7S i (A3)

Again, all such terms commute with the operator in
Eq. (A2).

O]1a]1)=—(1[1a0)=—~/6,

(n|1a|n)=0, 2<n<4

(n|la|ny=1, 5<n<12
28 D. L. Bullock, Phys. Rev. 137, A1877 (1965).
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What this argument says is that perturbation terms
cannot deform the wave function by the addition of
amplitudes for any value of }.S:# which was not
present in the zero-order wave function. Suppose,
however, that M is not equal to M nee. Then the only
possible way one could obtain a correct result using
perturbation theory would be to do a finite-temperature
calculation and then let T'— 0. However, as Katz® has
discussed, to obtain such a crossing of energy levels
one must sum over an infinite set of graphs. Clearly
in this event a sophisticated calculation would be
necessary.

Experimentally®' M, for YIG is found to be 10.02
Bohr magnetons per molecule as compared to M neel,
which is 5g Bohr magnetons per molecule, where the
g value at low temperatures is®? 2.00124-0.002. However,
even a theory based on noninteracting spin waves
would predict M to differ from M ne¢e1 due to anisotropy
and dipolar effects. Using Geschwind’s?® determination
of the local crystal-field parameters and Boutron and
Robert’s?? evaluation of the dipolar lattice sums, one
can calculate the anisotropy and Lorentz fields at each
lattice site. Although these local fields are an order of
magnitude larger than the average fields appearing in
the acoustic spin-wave dispersion law, they are re-
sponsible for a decrease in M of only about 0.01% and
hence can be neglected. Thus, from a practical stand-
point one may say that Mo=Mne. From a theoretical
point of view it would be interesting to display a
calculation of My— M yeer which gives a nonzero result
introducing for this purpose, if need be, a nonzero
external magnetic field.

APPENDIX B: MATRIX ELEMENTS REQUIRED
TO EVALUATE EQS. (2.26) AND (2.28)

In Table V we give the optical mode eigenvectors
and eigenvalues necessary for the evaluation of matrix
elements appearing in Egs. (2.26) and (2.28). The left
eigenvectors may be obtained from the right eigen-
vectors using Eq. (2.13). Using these eigenvectors one
can evaluate the matrix elements required. Some such
matrix elements are conveniently displayed in matrix
form as we have done in Tables VI and VII. The
remaining necessary matrix elements are

(B1)
(B2)
(B3)
(B4)
(BS)

29 S, V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957) [English transl.: Soviet Phys.—JETP 6, 776 (1958)7; T. Oguchi, Progr.

Theoret. Phys. (Kyoto) 25, 721 (1961).
20 A. Katz, Nucl. Phys. 43, 128 (1963).

& S, Geller, H. J. Williams, R. C. Sherwood, and G. P. Espinosa, J. Phys. Chem. Solids 23, 1525 (1962).
3 G. P. Rodrigue, H. Meyer, and R. V. Jones, J. Appl. Phys. 31, 376S (1960).

3 F. Boutron and C. Robert, Compt. Rend. 253, 433 (1961).
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~5Jau 11Jaz 325
61256 41215 G215

(01m510>=(Kx6+Ky6+Kz6)( )-i—(Kz"KyLl—Kz“ 2K K 2K K 2K K K KLY

— 75T 4a 1575745 257 .4 —15740 54007 44
( | )+(KZZKE,ZKJ>( ) , (B6)
1 61256 61216 41215 41256 61216

(O] M4]0)= -3—;{[{4(160]%-— 85J wa+457 4a)+ F1(K) (6407 44+ 50] 0g+457 aa) , (B7)

where
Fq(K)=Kz2Ku2+qKz2K22+q2Ku2Kz2y g=1, X\; (B8)

54/6
(1|M4]0)= E%E{K4(* 1927 4o+ 85J wa—36J 4a)+ F1(K) (— 7687 4a— 507 sa— 36J aq) } , (B9)
- 25\/6]11
@M 0)=———"G,(K) , (B10)
9. 213

where

Gq(K) =K.K,(K2+K2+qK . K.(K2+K.>)+ K K (K2+K,2, ¢=1, X\. (B11)
—250/6J aa
(3193410):<4IW3410>*='—§—£TQ*(K); (B12)
5V3
| M| 0)=(6| M4 0)*= 5 214[)\2F>\*(K) (247 404187 4a) + (Kot +N2K A MK y*) (14T 0a— 15T 44) ]; (B13)
5V3iJ aa
(7|M3| 0)= KK (B14)
(8]Ms]0)=(9[Ms|0)=0; (B13)
5V3i

(10 l Ms|0)= E‘ég(sjdd+4jad) [KKp2—KD)+K(K2—KH)+K,(KL2—K2]; (B16)

5V3i
(11Wﬁs|0>=(1219533{0)*=1—532(3Jdd+4fad)[Kz(Ky2—K12)+>\2K,(Kz2—Kﬁ)-{—)\Ky(Kx"’—K})]. (B17)

TaBLE V. Some right eigenvectors® for £=0.

State  [0) [ 12) 13) 4 19 |6) |7 [8) |9 [10) |11) [12)
al 1 3 3 0 0 0 0 0 0 0 0 0 0
a2 1 3 -1 1 1 0 0 0 0 0 0 0 0
a3 1 3 -1 N A2 0 0 0 0 0 0 0 0
a4 1 3 —1 A2 A 0 0 0 0 0 0 0 0
aS 1 3 3 0 0 0 0 0 0 0 0 0 0
a6 1 3 —1 1 1 0 0 0 0 0 0 0 0
a7 1 3 —1 A A2 0 0 0 0 0 0 0 0
a8 1 3 —1 A2 A 0 0 0 0 0 0 0 0
dl 1 2 0 0 0 1 1 1 1 1 1 1 1
d2 1 2 0 0 0 A A2 1 A A2 1 A A2
d3 1 2 0 0 0 A2 A 1 A2 A 1 A2 A
d4 1 2 0 0 0 1 1 1 1 1 -1 -1 -1
ds 1 2 0 0 0 A A2 1 A A2 —1 —A —A?
d6 1 2 0 0 0 A2 A 1 A% )N -1 —\? —\
a7 1 2 0 0 0 1 1 -1 -1 -1 1 1 1
a8 1 2 0 0 0 A A2 -1 -\ —\? 1 A A2
d9 1 2 0 0 0 A2 PN -1 —\? -\ 1 A2 A

d10 1 2 0 0 0 1 1 -1 -1 —1 -1 —1 -1
d11 1 2 0 0 0 A A2 -1 -\ —\? -1 -\ —\?
d12 1 2 0 0 0 A2 A -1 —A? —\ -1 —\? -\
No2 4 24 24 6 6 12 12 12 12 12 12 12 12

— SR — - « v 7
E.p 0 —109aa 40J 00— 30Y0a 209aa—30J aa E* 2090a—10J 44 209aa—20J 4q

a These vectors are unnormalized. The proper normalization is obtained by multiplying the unnormalized eigenvectors by the factor No~1/2, We use the
notation N =exp(2wi/3).

b Associated with the eigenvector |#) is the eigenvalue, En. We define Jad =Jaa+Jad'.

¢ E7=2090d —40J ad.
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TaABLE VI. Some matrix elements of M1. hy=K,+¢K,+¢K, with ¢=1, \. C1=(5V2:/12)J4a Co= (5] aa?/12) \2—2).
(n| My|m)
7 7 8 11 12
m\
2 —Cil 2N2Ci* 2A\Cili 0 CiA—1)n\* Ci(Z2—1)h
3 —Cih 222Cin IACi1hy* C1(7\Z—)\)h)\ Cl(l—)\)hl 0
4 —Ciln* 2N2Ciln 2ACiln Ci(A—AD)In* 0 Ci(1 =\
5 0 0 0 ACaln Caoln AN2Coly*
6 0 0 0 N2Coli\¥ ACeliy Cahy

Terms involving matrix elements which are not listed
above or in Tables VI and VII (and whose transposes
are not so listed) vanish.

TABLE VII. Some matrix elements of M.

(n|Ma|m)
Y 0 1 2 3 4 5 6

2

0 —DK? C(C3K? —Csft —Csfy —Csfi* Cudlgy Cudgy\*
1 —C3K2 CsK2? Csfr Ceofy Cosfiy* —Cuag)\*  —Ciorgp*
2 Cshfr Csfr 2Csf1 —Csfy, —Csfii* —Cafy,  —CiNfp*
3 Cify*  Cofai* —Csfi* —Csfi 2Csf)\ —C\f —CNfy
4 Csfy Ceofy —Csfy 2CsfA* —Csfi  —Cafx*¥ —Ci\fa
5 Cuagp* Ciuagh\* Cf*  Ciifi Candfy,  CoK2? —CoNg)
6 Cung) CuNg\ Cnfy Caf* Cnfu —Cong\* CoK?2

& C3=[Jad(25—48x — 123')/64]><(5\/6/3)
Ci=Jada(— 25+60x+10 )/16

Cs=54/6J4d/48 Cs=5Jqd/24
C1=5V2Jad/96 Cs=5Jaa/12
Co=5J44/32 C1 =5V2(Jad —J aa) /64

Cu= 5V3Jaa—2Jad)/192
fo=KyK:+qKiK:.+@KzKy with q =1,\

8e=Kz24+qK,2+¢?K:2 with ¢=1,\

APPENDIX C: THE SPIN-WAVE SPECTRUM
OF SOME SUBSTITUTED GARNETS

In this Appendix we derive expansions for the sub-
lattice magnetization in substituted garnets!! where
magnetic ions occupy, in the first case, only the d sites
(e.g., Y3sSceFe3012) and, in the second case, only the a
sites (e.g., CasFesSiz015). Assuming only nearest-
neighbor antiferromagnetic interactions, it is easy to
verify that in the classical ground state there are two
oppositely magnetized sublattices. One sublattice con-
sists of the d sites at t=(nd)1<n<6 and the other
consists of d sites at =(n'd)7<#'<12. This array bas
the property that a lattice site in one sublattice has
nearest neighbors only in the other sublattice. The
linear equations for the excitation operators of the
normal modes are found exactly as for YIG. The matrix
equation analogous to (2.11) is

1D X P P
(Cxr —io))=d)
-Xt — 1D ‘pr ‘I!p

Here 1 is the 6X6 unit matrix, ¢, and 1, are six com-
ponent column vectors, D= —20J 44, and X is the 6X6
matrix formed from the right-hand six columnsand

(C1)

upper six rows of —IR%(—k) which was displayed in
Table II. For k lying along the [1117] direction the
vectors ¢, and 1, associated with the acoustic mode are
multiples of the unit vector:

ac=a(k) ) ‘kac=ﬁ(k) ’ (C2)

[ G T Ty
(e

so that Eq. (C1) reduces to

—4a(k)+[142 exp(ika/4)+exp(—ika/2) |8(k)

hwac
(C3a)
Jaa
—[142 exp(—ika/4)+exp(ika/2) Ja(k)+48(k)
(C3b)
One finds for small %:
hwac= (5\/7/2)],1,10]6 . (C4)
Using the normalization condition,
lee(l) | 2— | B(k) | 2= =1, (CS)
one obtains
a(k)~B(k)~ (V2/3)(ak). (C6)

The choice of sign in the normalization condition corre-
sponds to the twofold degeneracy of the acoustic mode
of an antiferromagnet. The sublattice magnetization
at low temperatures is found to be

@, 2 (Y,

S 1125\ J 4q

(C7)

As for YIG the effect of zero-point motion, as embodied
in the term §, is difficult to calculate, since it requires a
complete calculation of the spectrum for arbitrary k
values.

Calculations for the case of CasFesSisO;e are less
likely to be valuable since the ordering temperature
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for this compound is so low.!! The calculations parallel
the ones given above, so we only quote the results. For
small k

fiwsae=10J ooak (C8)
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and the sublattice magnetization is
(AS) 1 /ksT\?
-=6~——-( : )+ (c9)
S 6000\ J 44
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Influence of the Anomalous Skin Effect on the Ferromagnetic-
Resonance Linewidth in Iron*

S. M. BHAGAT, J. R. ANDERSON, AND NiNe Wu
University of Maryland, College Park, Maryland
(Received 20 October 1966)

The ferromagnetic-resonance linewidth has been measured in iron single-crystal whiskers over a tem-
perature range from 300 to 4.2°K at frequencies of 9.2, 22.2, and 34.8 kMc/sec. The measurements of line-
width and line shape clearly indicate the importance of nonlocal conductivity effects.

I. INTRODUCTION

HE first measurements of ferromagnetic resonance
(FMR) in single-crystal iron whiskers at room
temperature were carried out by Rodbell! at frequencies
of 9 and 20 kMc/sec. The most important conclusion
resulting from this work was that the linewidth in iron
is dominated by the exchange-conductivity mechanism.
Our recent measurements® at room temperature and
frequencies of 9.2, 22.2, 34.8, and 57.8 kMc/sec con-
firmed Rodbell’s results. In addition, with these higher
frequencies, we were able to obtain a rough estimate of
the Landau-Lifshitz parameter A. However, at 20
kMc/sec, Rodbell’s linewidth is some 30 Oe narrower
than ours. In nickel,> we noted a similar discrepancy
with Rodbell’s results at low frequencies, but the
linewidths agreed at the higher frequencies. Presumably,
as was suggested for the nickel case, the discrepancy
in iron is also due to the better surfaces of Rodbell’s
samples with a resulting reduced surface anisotropy.
This difference is not expected to affect our conclusions.
Rodbell' also measured linewidths in iron below
300°K, but very few details were given apart from the
comment that there was a distinct change in the
character of the resonance on cooling; this he attributed
to the onset of the anomalous-skin-effect region. On the
other hand, the theory of Hirst and Prange?® indicated
that the onset of anomalous conductivity should have
no pronounced effect upon the ferromagnetic resonance,

* Supported in part by Advanced Research Projects Agency
Contract No. SD-101.
(1;6%) S. Rodbell, J. Appl. Phys. 30, 187S (1959); Physics 1, 279

28, M. Bhagat, L. L. Hirst, and J. R. Anderson, J. Appl. Phys.
37, 194 (1966).

¢ L. L. Hirst and R. E. Prange, Phys. Rev. 139, A892 (1965).

and our preliminary measurements on iron* seemed to
support this prediction. In addition, we found that the
observed linewidths did not increase as rapidly as
expected from normal conductivity theory, in agreement
with the presence of anomalous conductivity at tem-
peratures below 77°K. The present paper is a more
detailed report of our low-temperature measurements
in iron, and confirms the preliminary conclusions of
Ref. 4.

II. EXPERIMENTAL METHOD

The samples used were thick iron single-crystal
whiskers with axes along [1007] and [111]. The [100]
samples and a few of the [1117] samples were given to us
by Professor A. V. Gold of Iowa State University, and
these whiskers were used to study FMR at 22 and 35
kMc/sec. However, at lower frequencies (9 kMc/sec),
because of the large magnetocrystalline anisotropy at
300°K and below, [100] whiskers could not be used, and
it became necessary to grow additional [1117] whiskers
for this study. Although the general techniques for
iron-whisker growth have been described by Brenner,?
a few details are included here.

The whiskers were grown by hydrogen reduction of
FeCl, which had previously been prepared by baking
FeCly-4H,0 in an inert atmosphere. The FeCl, was
held in a quartz boat; quartz was used to facilitate
removal of whiskers. The optimum hydrogen-flow rate
was determined to be about 300 ml/min, and the
optimum reduction temperature was 750°C. Further-
more, better results were obtained using hydrogen
saturated with water vapor at room temperature. Only
about 39, of the “raw” whiskers were found to be

4S. M. Bhagat, J. R. Anderson, and L. L. Hirst, Phys. Rev-

Letters 16, 1099 (1966).
6S. S. Brenner, Acta Met. 4, 62 (1956).



