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The energies and eigenvectors for long-wavelength acoustic spin waves in yttrium iron garnet are calcu-
lated neglecting spin-wave interactions, but including the effects of anisotropy and dipolar interactions. The
sublattice magnetization is found to be S '(T) =S—8 —cT—A, T'~ —B T5~'—C TI~2 ~ ~ . Here o. labels
the sublattice a or d, b„expresses the effect of zero-point motion, and cT is the Holstein-Primakoff correction
for dipolar interactions. Expressions in terms of the exchange integrals J „Jzz, J,~, and J,z', where J~z'
describes interactions between next-nearest-neighbor u and d sites, are given for A, 8, and, when J,q' ——0,
for C~. The spin-wave spectrum of some substituted garnets and the effect of spin-wave interactions on the
zero-point disordering are treated in appendices.

I. INTRODUCTION

HE use of nuclear magnetic resonance' ' as a tool
for the investigation of magnetic materials has

enabled one to make very accurate measurements of
the temperature variation of the spontaneous magnet-
ization of each magnetically inequivalent sublattice.
The possibility of such measurements in turn stimu-
lates detailed theoretical calculations of the sublattice
magnetizations, especially for low temperatures where
the spin-wave approximation is valid. Recently such
accurate measurements have been performed on
yttrium iron garnet (YIG)", so that by an accurate
spin-wave analysis one may hope to deduce reliable
values of the exchange coefficients. However, for YIG
an earlier spin-wave analysis gave results in disagree-
ment with both Wojtowicz's analysis' of the high-
temperature susceptibility data, ' and with evidence" "
obtained from substituted garnets. This discrepancy
has been largely removed by Gonano e] a/. "who have
analyzed their magnetization data using the calcu-
lation we present here.

It is well known'3 that, neglecting anisotropy and
dipolar interactions, linearized spin-wave theory pre-
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diets the sublattice magnetization of a ferrimagnet to
be of the form

M(T)/M(0) =1 nT31' —PT'~' —yT'" —. (1.1)

The purpose of the present paper is to calculate the
coef5cients n, p, and y for each sublattice in terms of
the exchange coefFicients. Previously' we had obtained
expressions for n and P in the analogous expansion for
the total magnetization. In order to obtain the sub-
lattice magnetization we study in more detail the
transformation to normal modes. In addition we will
calculate corrections to Kq. (1.1) when the effects of
anisotropy, externally applied magnetic field, and di-
polar interactions are included. We show that the
simplest phenomenological extension of the Holstein-
Primakoff'4 results to the case of an anisotropic ferri-
magnet is valid. We give these results since it has been
shown' "that dioplar and anisotropy effects cannot be
neglected when analyzing the Iow-temperature sub-
lattice magnetizations of YIG.

In Appendix A we show that the ground-state value
of the total magnetization of a ferrimagnet one obtains
treating spin-wave interactions perturbatively is the
same as the value in the Neel state. Appendix 8 is
devoted to algebraic details involved in deriving ex-
pressions for the coeKcients of Kq. (1.1). Finally, in
Appendix C we give formulas for the spin-wave spectra
of substituted garnets in which only the a or d sub-
lattice is occupied by magnetic ions and antiferro-
magnetism results.

One may question the desirability of calculating
analytically the terms in the expansion of Kq. (1.1)
since the energies of all the normal modes (optical as
well as acoustic) and hence the sublattice magneti-
zations could be calculated numerically on an elec-
tronic computer. Such a calculation is not trivial,
however. In the first place the exchange integrals are
not known precisely, so that the computer program
would have to provide for evaluation of the sublattice
magnetization over a range of parameters with a cri-
terion for selecting the best 6t to the experimental data.

"T.Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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500 A. B. HARRIS 155

Also, for each set of parameters the eigenvalues of a
20X20 matrix must be evaluated for a mesh of points
in reciprocal space. Such a computation would be
time-consuming and would involve sophisticated pro-
gramming. In contrast, our results were obtained with
only a few weeks labor and in fact appear to be sufficient,
at least at low temperatures, for the analysis of the
experimental data, as is explained by Gonano et al."

R= R(22,,n2, 222) =-'2a(n&i+222j+222k), (2.1)

where u is the lattice constant, a, y, and 0 are unit
vectors in the x, y, and s directions, respectively, and
n~, e2, and ms are integers either all even or al1. odd.
Let SR+,(„,) denote the spin operator associated with
the lattice site at R+e(22a), where e(22a) is the position
of the 22th a site (22=1, 8) within the unit cell. Let
SR+,&„d& denote the spin operator associated with the
lattice site at R+e(22d), where e(22d) is the position
of the 22th d site (22=1, 12) within the unit cell. The
labeling of the u and d sites in the unit cell is the same
as in a previous treatment. 7

Initially we treat the case of isotropic exchange inter-
actions governed by a Heisenberg Hamiltonian. The
application of linearized spin-wave theory to such a
system is well known. "We give here a brief review
mainly to 6x the notation. For YIG we take the
Hamiltonian to be

II. CALCULATION OF THE SPIN-WAVE
SPECTRUM OF YTTRIUM IRON GARNET

The notation we use is as follows. R is a vector of the
bcc lattice

the Hamiltonian (2.2) is considered. Therefore the
magnetization is expected to be the same throughout
the entire a (or d) sublattice. When dipolar interactions
are considered, this argument breaks down because the
Hamiltonian is not invariant under rotation of the
direction of magnetization. ""However, this eGect is
probably too small to be observed.

The simplest spin-wave theory which neglects spin-
wave interactions can be obtained by substituting boson
operators for the spin operators at each site as follows:

S'= W [S—ata],
S+= (25) '/2at

gm —(2$)1/2a

(2.3a)

(2.3b)

(2.3c)

where we take the upper choice of sign for the a sites
and the lower choice of sign for the d sites. We trans-
form to momentum variables

a„,t(k) = V„ /2 P exp(ik [R+e(na)])a„,t(R), (2.4a)

a„dt(k) =E„."'P exp(ik [R+e(/2d)])a„dt(R), (2.4b)

where E„is the number of bcc unit cells, so that

1V„,=p 1; V=-2,X„,a2.
k

(2 5)

Using the substitutions (2.3) and (2.4) in the Hamilton-
ian of Eq. (2.2) we find

x= P M „„.-(k)a.„t(k)a. (k)
k, n, n'

1ad 2 SRyr (aa) ' SR'+ r' (a'a)
k, n, n'

M„„""(k)ad."(k)ad. (k)

Jdd p SRd. r(ad) ' SR'+r'( d)a

—2Jad Q SR+r(aa) SR~+r'(a'd)

+ g (M„„."(k)a. t(k)ad t(—k)
R,n, n

+ Pr„„,d(k)]*a..(1)a,„.(-k)j, (2.6)

T~& ag / SR+~(na) ' SR~+a'(n'd) p (2.2) TABLE I.The matrix M" (k). Here 2 =40Jaa —80Jad 30&'ad
and (one) =—10J, cos(Elk, +mk„+nk ga/8).

where the subscripts mm indicate that the 6rst three
summations are taken over R, R', e, and n' such that
R+e and R'+~' are nearest-neighbor pairs of lattice
sites in the sublattice in question. The last term of
Eq. (2.2) is summed over values of R, R', 22, and 22' such
that R+e and R'+e' are next-nearest-neighbor pairs
of ions in the a and d sublattices. The exchange inter-
actions are governed by the coupling constants J „J,~, J~~, and J„d'. The effect of dipolar interactions and
crystalline anisotropy will be discussed in Sec. III. We
remark that the Hamiltonian (2.2) is invariant under
rotations so that the various a (or d) sites which are
completely equivalent to each other with respect to
nonmagnetic interactions will remain equivalent when

g22' 1 2
22+

A 0
2 0 A

3 0 0
4 0 0
5 (222) (222)
6 (222) (222)
7 (222) (222)
8 (222) (222)

3 4 5 6 7 8

0 0 (222) (222)
0 0 (222) (222)
A 0 (222) (222)
0 A (222) (222)

(222) (222) A 0
(222) (222) 0 A

(222) (222) 0 0
(222) (222) 0 0

(222) (222)
(222) (222)
(222) (222)
(222) (222)

0 0
0 0
A 0
0 A

"J. O. Dimmock and R. G. Wheeler, Phys. Rev. 127, 39
(&962).
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TABLE II. The matrix —M'"(k). Here lml =3J,d exp[iu(ik, +mk„+nk, )/8] and (lma) =51',z exp[is(lk, +mk„+ak, )/87.

10

(023)
021
021

(023)
201

(203)
(203)
201

(3o2)
(302)
102
102
120
120

(32o)
(320)

(23o)
210

(230)
210
012

(032)
012

(o32)

021
(023)
(023)
021

(2o3)
201
201

(203)

102
102

(302)
(3o2)
(320)
(320)
120
120

210
(23o)
210

(230)
(o32)
012

(032)
012

021
(o23)
(023)
021

(203)
201
201

(2o3)

102
102

(302)
(302)
(320)
(32o)
120
120

210
(230)
210

{230)
(032)
012

(o32)
012

(023)
021
021

(o23)
201

(203)
{203)
201

(302)
(3o2)
102
102
120
120

(320)
(320)

(230)
210

(23o)
210
012

(o32)
012

(032)

with

M ~ (k) =2J,+{8„„.L+ y„„'(0)]—y„„"(k)}

—2S3„„+{y».'"(0)J,q+y»- "(0)J,q'}, (2.7a)

R' is summed over values, if any, such that g(na) and
c(n'd)+R are next-nearest-neighbor pairs of a and d
sites. The matrices M~&(k) of Eq. (2.7) are displayed
in Tables I, II, and III.

The normal-mode operators, Q, t(k) or Q,(—k)
satisfy

iV„"(k)=2JgaS{3 PP y.;""(0)]—v~ ~""(k)} L3C, Q, t(k)]= A(a, (k)Q, t(k), (2.9a)

L3('., Q, (—k)]= —A(o, (—k) Q,(—k) . (2.9b)

M ~ "(k)= —2S{J.gLy„."(k)]*

—2~4- 2 {7---"(0)~"+7---"(0)I"'} (2.7b)
Here p is an index to distinguish between different
normal modes. Solutions for Q, t(k) or Q, (—k) are
of the form

where

y„„~s(k)=P exp(ik Ls(nu) —R'—e(n'P)]), (2.8a)
R'

n=l, s

+ Q l„"(k)ag„(—k), (2.10a)
n=1, 12

.~"(k)=P exp(ik L~(na) —R'—s(n'd)]) . (2.8b)
where 1.&p&8 and

R'

Q,(-k)= P l„,'"( )k.a„ (t)k
n=1,8

n=1, 12

In Eq. (2.8a) cr and P each assume the values a or d,
and R' is summed over the values, if any, such that
~(nn) and ~(n'P)+R' are nearest-neighbor lattice sites
within the sublattices a and P, respectively. In (2.8b) with 9&p&20. Substituting these expressions into

Tmzz III. The matrix —M""(—k). Here D=20J,g+20J,g'—20Jgg and 1mn =5Jpg exp(iul lk +mk„+nk, g/8).

12

1
2
3

5
6
7
8
9

10
11
12

D
0
0
0
0
0
0

121
211
0

121
211

0
D
0
0
0
0

12i
0

112
121
0

112

0
0
D
0
0
0

211
112
0

211
112
0

0
0
0
D
0
0
0

121
2ii
0

121
211

0
0
0
0
D
0

121
0

112
121
0

112

0
0
0
0
0
D

211
ii2
0

211
112
0

0
121
2ii
0

121
2ii
D
0
0
0
0
0

121
0

112
121
0

ii2
0
D
0
0
0
0

211
112
0

211
112
0
0
0
D
0
0
0

0
12i
211
0

121
211
0
0
0
D
0
0

121
0

ii2
121
0

112
0
0
0
0
D
0

211
ii2
0

211
112
0
0
0
0
0
0
D
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Here means transpose, t means Hermitian conjugate,
and I,", etc. are column vectors. In solving (2.11), if
ha&„(k) is negative then one has found the transfor-
mation to Q~(—k) since (2.11b) differs from (2.11a)
only in the sign of Aar, (k). Hence the columns of

(1- 1")L=i
(p~ p&

(2.12)

are the right eigenvectors of the matrix in (2.11) and
give the transformation from the a t(k) and ay~( —k)
to the normal modes. The left eigenvectors are the
rows of

t
[I-]' —[I"7i

&—[I "]' Ll'")'&
(2.13)

since M' (k) and M""(k) are Hermitian. The normal-
ization of these eigenvectors is such that I 'L= 1, since
we demand [(}„(k),Q, (k') t]=l)» 5),), . The matrix L'
therefore provides the inverse transformation which is
what we wish to 6nd. Using these row vectors one
can express the a,„t(k) and uq„(k) which create spin
deviations on a particular sublattice in terms of the
normal mode operators.

However, since the magnetization of all the sub-
lattices of each type (a or d) is the same, we can obtain
a simpliication by computing the total magnetization
of all the u and d sublattices, respectively. To do this
it is convenient to add to the Hamiltonian a term V con-
taining the indicator fields II, and II~.

V= —gP Q [H Q SR+,(~~)'
R n=1,8

+Hd 2 SR+.(~~)'] (2.14)
n=1, 12

Then one Gnds the total sublattice magnetizations at
temperature T as

BF )(~.b=
I

' (~~)r=—
BH.i r

(2.15)
~II@ T

where E is the free energy, and the derivatives are

Eq. (2.9) we obtain

(M-(k) -M "(k) i l,-(k)~

([M"(k)]t —3II"'(-k)i I "~(k)i

pl, -(k)=k, (k)~
'

( I '(k)

t
M-(k) -M "(k) i I,'"(k)i

&[M'"(k)]t —M"(—k) i Ip""(k)i

~1,"(k)),= —A(o, (—k)
i i

. (2.11b)

evaluated for H, =Hz=0. Explicitly, Eq. (2.15) is

(S,)~ ()h(a, (k)=1—8,—(8'„,gPS) 'Q
S 8X„,gpS )*,I BH,

X {exp(ko,(k)/ksT) —1} ', (2.16a)

(Sg)r (Mg) r aha, (k)=1—bg —(12K„,gPS) ' Q
S BIJg12$„,gPS

X {exp(k(0,(k)/kpT) —'1} '. (2.16b)

Note that excitation of any mode decreases the sub-
lattice magnetizations, whereas the total magnetization
decreases or increases according to the choice of sign in

aks) p(k) ()h(op(k)
(2.17)

IIR(k) =P R, (2.19)

where R„varies as ~k~":
8

IIRD ——SR(0); NI~ —-p k& NI(k) ~), 0, etc. (2.20)
Bk"

Because of zero-point motion (S,)r and (Sq)r are
somewhat less than their values in the Neel state.
Walker, " however, has pointed out that the total
magnetization at zero temperature is given by its
value in the Neel state, which implies that

(2.18)

As we discuss in Appendix A, spin-wave interactions
do not affect this relationship.

Recently, Brinkman and Klliott' have pointed out
that the spin-wave matrix equation, (2.11), becomes
simpler when k lies along certain symmetry directions.
In a previous treatment' we overlooked some of the
syrrunetry operations and therefore did not obtain the
maximum simpli6cation. As a result our numerical
computations were more time consuming than neces-
sary. In order to determine analytic expressions for
the coeKcients in Eqs. (2.21) and (2.22) below, one
needs to calculate the acoustic eigenvalue for at least
three orientations of k. Rather than make separate
calculations for each direction of k, we will undertake
one calculation for general orientation of wave vector
using perturbation theory. In order to obtain analytic
results, we will henceforth completely neglect the optical
modes. Thus our results will be valid at temperatures
such that k~T is much less than the energy of the
lowest optical mode. By replacing the optical modes by a
suitable number of wave-vector-in. dependent (Einstein)
oscillators, one may profitably use our results at some-
what higher temperatures.

Our procedure is as follows: We denote the matrix
in Eq. (2.11) by 9R(k) and expand it in powers of the
components k~(p=x, y, or s) as
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We take Ro, whose eigenvectors and eigenvalues are
known, '~ to be the unperturbed Hamiltonian, and treat
the remaining terms in Eq. (2.19) as the perturbation.
The formula' for an eigenvalue inclusive of fourth-
order terms in the perturbation can be used with the
slight modification that since R(k) is not Hermitian,
bras and kets in the formula should be interpreted as
left and right eigenvectors according to the definitions
of Eqs. (2.12) and (2.13), respectively. Because of the
cubic symmetry~+one thus obtains the acoustic-mode
energy in the form

Aa&„=DK'+FK'+ F(K,'K„'+K.'E,'+K„'K.')
+G(K,'+K„'+K,')+HK'(K, 4+K„4+K,')

+IK,'K„'K.'. , (2.21)

where K=—ah. Likewise one obtains the expansion

~~ac= —2gP{1—AK'+PK4
BII

+C(K,'K„'+K,'E,'+K„'K,') }, (2.22)

which can be combined with Eq. (2.17) to find
Bko&„/BHq. Substituting these expansions into Eq.

(2.16) we find the sublattice magnetization to be

6s„s—js,) (k r)"'= ~,+l|-(-:)I
kD

kriT kaT '
x 1+a,'I +v.'I — I+ "

&D &Di
where

f (-,'&x1
{15F+3F+6)„AD},

f (-;)x4D

, t-(-:) 1
{945''+378EFy45F' —180DG

f (-.) 32D'

(2.24a)

4=1 4=3 ~ (2.25)

It remains to calculate the coeKcients A, 8, C, etc."
introduced in Eqs. (2.12) and (2.22). The acoustic mode
energy is given by the perturbation series'

252DH —4DI+42—0)„AFD+84/„AFD

+120(,BD'+24),CD'}, (2.24b)

where {(I) is the Riemann zeta function, v assumes the
values a and d, and

, &0le I ~&(~le
I o& &o INl41 ~&&~ I &2I o&—k -(k)=&olll2lo&+&ol&4lo& —E' +(0IRjjl0&—2 Re P'

E E

, (o I &2I ~&(~ I Nl2I ~&&~ I ~2 I o&p/ +2' —+2 Re P'
E EE EE

&o I ~of2I &&&~ I ill&«l il ~&&~ I }lif2l o&Pl (2.26)
2 +n+nSl

where primes indicate omission of terms with zero denominators,
I 0) is the acoustic eigenvector for 0=0 which has

zero energy, and IN) an optical mode eigenvector for k=o with eigenvalue E„.We have already simplified this
formula by taking account of the cubic symmetry and the fact that

Similarly, we find
pg, lo&=o. (2.27)

1 aha). ,(k) &oil. l~&&min, lo& &oil„l~ &~&,+,Io)—2Reg'
gj9 8H ji E E

+2Reg'
(0 I 1lg I I)('+ I pL I ~)&il I m, I o) (o I 2 I ~&(~ I

l. I ri)&ii' I 2 I 0&
+Pl

E„E E2

, «l2I~&&~l&210&(ol4lo) &olpg, lo&&oil~le&(elm, lo&Pf ——2Reg' (2.28)E2

where lq is a unit operator in the space of d sublattice excitations. In Appendix 8 we tabulate the eigenvectors,
~7R. L. Douglass, Phys. Rev. 120, 1612 (1960); B. Dreyfus, J. Phys. Chem. Solids 23, 287 (1962).' K. F. Niessenp Phys. Rev. 34, 253 (1929).' We here give expressions only for P,' and &„'. The expression for A is given in Ref. 5 and those for 8 and Ii when J @'=0 are

given in Ref. 7. We point out an inconsistency in the signs of Eqs. (16), (17), and (18) in Ref. 7; namely, the left-hand side of these
equations should be —D, —E, and —F, respectively.
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eigenvalues, and matrix elements required for the evaluation of Eqs. (2.26) and (2.28). Thus we ffnd

&'=[f(l)/4f(l)D] l&.D
—48J,+25j,g+65J g' —12jdg

16(j.g+J.g')

5
+ [—288J.,+75J.g—54jgg+507 J.g'

4096

+5(—48J„+25j,g+65J,g' —12jdg)'/(J, g+J,g')+2(3 Jgd —2J,g+14J g')'/(2j, g+2j,g' —3jgg)

+48(3J.~' A—a)'/(3A~+3jed 4jua)] (2 29)

and for J,q' ——0,

327.'f(l)/f (l) = 1o5—
1 (25—48x—12y) ' 1 1+— 1

64
256 (5—Sx—3y) 256 (5—8x—3y)

1 (25—48x—12y)' 1 1+—
256 (5—Sx—3y) 256 (5—Sx—3y)

(5x—Sx')
64

(6—Sx) (25—40x—15y)

Sx—8x'5 175

16 (3—4x) (5—Sx—3y) 128(3—4x) ' 2048

(25—48x—12y) 2(2—4x—y)

(5—Sx—3y)

175

1 100 25—48x—12y) ' 25
~
+ (2—4x—y) (25—48x—12y), (2.30)

768 3 64 l 128

7(25—48x—12y) 19 25 (125—576x—72y) 1 1—y 3
(25—48x—12y)— ———x +-,'$, + + +

Si92 192(5—Sx—3y) 32 3 256 16(3—4x) 128 16(3—4x) 2

where

D= (40J„—25j,g
—65j,g'+15jgg)/16, (2.31a)

x=J../J g,

y=As/J. e

(2.31l )

(2.31c)

We remark that our results agree with, where they
overlap, previous numerical and analytical results. '
In Table IV we have summarized these results by
giving numerical values of P„' and y„' for the cases
J,q'=0 as a function. of x and y. Using these numerical
results curves of the sublattice and total magnetizations
are readily constructed. An experimental value for D
can be very accurately determined in this way providing
dipolar interactions and anisotropy are not neglected. ' "
From Table IV we see that unfortunately the low-

temperature magnetization curves are not very sensi-
tive to variations in y, so that from experimental values

of the coefficients P„' and y„' one can probably only
determine x. However, when the contribution of the
optical modes is taken into account the magnetization
curves will depend on y, thus enabling its determination.

Finally we comment that our previous' erroneous
conclusion from analysis of low-temperature magneti-
za.ion data'0 that J /J, q=0.2 was due to a poor
choice for the parameter D. Had we chosen the value
recently deduced from the high-resolution nuclear
magnetic resonance data, " we would have obtained
a much smaller value of J,/J, q in agreement with
studies" "of substituted garnets. It is perhaps relevant
to point out that a high-temperature analysis such as
that performed by Wojtowicz' is expected to give
somewhat different values of the exchange integrals
than those obtained from a spin-wave analysis due to
thermal expansion. According to Bloch et ul."exchange
integrals in the iron garnets vary as the —(10/3)

TABLE IV. Values of p„' and y„' for J,rf'=0. x=J«/J, d and y= Jrfrf/J, rf.

0.3
0.2
0.1
0.0
yjx

0.3
0.2
0.1
0.0
y/x

0.287
0.255
0.222
0.0

—3.0—4.6—6.1
0.0

10p.'

0.144
0.113
0.087
0.1

10'y '

—1.7—2.5—3.6
0.1

0.026
0.003—0.020—0.043
0.2

+0,2—0.2—0.6—0.9
0.2

—0.122

0.3

+1.3

0.3

0.3
0.2
0.1
0.0
yjx

0.3
0.2
0.1
0.0
y/x

1.20
1.21
1.22
0.0

18.2
17.5
16.3
0.0

10 P'g

0.858
0.877
0.897
0.1

10'yg'

9.7
9.3
8.5
0.1

0.501
0.526
0.549
0.575
0.2

44
4.2
4.2
3.8
0.2

0.204

0.3

1.5

0.3

~ I. H. Solt, Jr., J. Appl. Phys. 33, 1189S (1962).
2' D. Bloch, F. Chaisse, and R. Pautheaet, J. Appl. Phys. 37, 1401 (1966).
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power of the volume. Using the observed" temperature
variation of the lattice constant, we have thus estimated
that the exchange integrals in VIG are approximately
10% less at 800'K than at zero temperature. Accord-
ingly, from Wojtowiczs analysis one would predict
J,q= —24.6 cm ', Jdq= —2.5 cm ', and J„=—0.2
cm ' at zero temperature. These values give a value
of D some 15% larger than that obtained by the high-
resolution nuclear-magnetic-resonance data. This re-
maining discrepancy may be caused by inaccuracies in
Alhonard's' susceptibility data due to imputities. As
evidence for this statement we cite the discrepancy
between Anderson's" susceptibility measurements and
those of Aleonard. Also, as Aleonard has indicated, the
volume dependence of the exchange integrals implies
a temperature dependence of the form J=Jp(1 yT)—
where y 10 ' per 'K. Thus thermal expansion has
the effect of renormalizing the coefFicients given by
Wojtowicz for temperature-independent exchange inte-
grals. Accordingly it is quite possible that use of more
reliable high-temperature susceptibility data in a more
refined analysis would resolve the discrepancy between
the interpretations of high-temperature and low-
temperature data.

S; S; 3(S; r, ,)(S,"r,,)
Kz&=-', P

. .5rij
g'gP' (31)

in the usual notation. If we use the substitutions (2.3)
and (2.4) in this Hamiltonian and neglect, terms higher
than quadratic in the boson operators, we obtain an
effective dipolar Hamiltonian of the form

K,«=P Q {C„„.(k)a„t(k)a„(k)
k nn'

+D (k)a '(k) u.'(—k)

+[D. (k)]*a„(k)a„(-k) }, (3.2)

where e and n' are summed over all the a and d sub-
lattices. The omission of terms higher than quadratic
in the boson operators corresponds to the neglect of
spin-wave interactions and is consistent with the
accuracy of the calculations of the previous section.
The constant term and terms linear in the boson

"S. Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30
(~957'."E. E. Anderson, Phys. Rev. 134, A1581 (j.964).

III. THE EFFECT OF DIPOLAR INTERACTIONS,
ANISOTROPY) AND EXTERNAL MAGNETIC

FIELD ON THE SUBLATTICE
MAGNETIZATION

In this section we discuss the modifications neces-
sary to take account of dipolar interactions, crystalline
anisotropy, and externally applied magnetic field.

We first discuss the effect of dipolar interactions.
The Hamiltonian for dipolar interactions is

As is well known, the first-order energy shifts are found
by keeping only the semidiagonal part of II,«. Thus
for the optical modes the effect of dipolar interac-
tions"" is to reduce the degeneracy of the optical
modes. For the acoustic mode one thus has the following
effective Hamiltonian:

&0«p {Co(k)Qot(k)Qo(k)+Do(k)Qot(k)Qot( —k)

where
+LDo(k)j*Qo(k)Qo( —k)}, (34)

(3 cos'8 —1)5 '
C,(1)=-;g&p'S P., ",R )R'+~'+~[oS *

X{2+exp(—ik'L~ —R'—~'])}, (3.5a)

sin'8 exp(2i io)S,*
Dp(k) = —ioo g'j9'S ., ",R ~R'+.' ~)'s,"

X{exp(—ik L~—R' —~'])}. (3.5b)

In Eq. (3.5) the sum is over all sites ~ and ~' within the
unit cell and over all R' except that R'+~'=~ is
excluded. 5&' is the value of the z component of spin
of the lattice site at ~ in the Noel state (S,'= +-', ).Also

cos8=(R'+~' —~) z/~R'+~' ~~, (36a)

sin8 cos oo = (R'+ ~'—~) *"/
~

R'+ c'—~ j, (3.6b)

where X and z are unit vectors along the x and z axes,
respectively. Evaluating these lattice sums in the

'4 M. H. Cohen and P. KeGer, Phys. Rev. 99, 1I28 I',1955).

operators have also been omitted in Eq. (3.2), since
they do not effect the frequencies of the normal modes.
We assume that the dipolar wave sums, C (k) etc.,
which appear in Eq. (3.2) are translationally invariant.
This approximation is expected to be valid'4 unless
1/k is comparable to the sample dimensions. The lattice
sums, C„„(k)etc., are in general complicated and are
not readily evaluated. However, an important simpli-
fication occurs if we attempt a solution of the normal
mode problem for small k and we keep only those
terms which are smaller than the exchange terms by
order (iV/H~) where Hs is a typical exchange field.
Such an approximation is obtained by substituting for
the a„t(k) the expressions for k=0 for the transfor-
mation to the normal modes neglecting dipolar inter-
actions. We can neglect the k dependence of the
transformation coeS.cients because terms of order k'
lead to corrections which are smaller than those we
consider by a factor on the order of (ksT/gPHJ). Thus
X,~~ takes the form

&.«=2 2 {C„(k)Q,'(k)Q. (k)
I P'

+D„.(k)Q,t(k)Q, t(—k)

+LD, '(k) j*Q~(k)Q'(—k) } (3 3)
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manner of Holstein and Primako8, ' we Gnd

Cp(k) = g—pN, M+2m gpM sino8k (3 7a)

Dp(k) =org9M srn'8o, (3.7b)

where cos8o=k z/! k! and M is the magnetic moment
per unit volume. Thus we obtain results identical to
those for a single sublattice. This does not surprise us,
since for long wavelength all the sublattices are in
phase and the spin-wave energy is independent of
structure assuming cubic symmetry. As we have argued
previously, "when there is no external Geld the domain
arrangement is such that the demagnetizing Geld is
small. In other words we take E,=O for this case in
Eq. (3.7a). More generally we take

Cp(k) = gjSHg)+2m. gPM sin'8o, (3.8)

where the demagnetizing Geld, Hg, is assumed to be

Hg) =0, 0&HO&%,3f,
Hg) = —X,M, X~(Hp,

(3.9a)

(3.9b)

where Ho is the externally applied magnetic field.
Next we consider the effects of anisotropy. We will

show that the anisotropy of acoustic spin waves must
be of the form

gPHgQpt(k) Qo(k) . (3.10)

We assume the anisotropy to originate from a single-ion
crystal-Geld Hamiltonian:

Kg=+~V, (S,). (3.11)

'5 A. B. Harris, Phys. Rev. 143, 353 (1966).

Here V;(S,) is some polynomial in the spin operators
of the ith site which is consistent with the local sym-
metry. Again we use the substitutions of Kqs. (2.3)
and (2.4) and keep only terms quadratic in the boson
operators. At this stage, because of the local nature of
the Hamiltonian (3.11), the coefficients in the trans-
formed Hamiltonian are independent of wavevector.
Just as for the dipolar interactions we will neglect the
k dependence of the coefficients one obtains when the
transformation to the normal modes is made. We then
conclude that the diagonal part of the Hamiltonian
which refers to the acoustic spin-wave mode isof the
form of Eq. (3.10).Note that terms of the type

EQot(k)Qot( —k) (3.12a)

are inconsistent with the over-all cubic symmetry of
the lattice. The term (3.12a) corresponds to an anisot-
ropy energy of the form

E(M,,
' M, ,o+2iM~„), (—3.12b)

which is incompatible with the threefold symmetry
about the easy, i.e., [111],axis along which the magneti-
zation is assumed to lie. The coeKcient gPH~ can be

Har= Ho+H~+Hn. (3.15)

The thermodynamic properties follow in a straight-
forward way'4:

S„

3 1 n gPH, gg)
'~'

1——
2 f'(-o, ) kpT i

H. +4M gP i'I'
p 4 M

sin '!
2i (', ) 4-nMkpT) (H,n+4+Mi

kpT kpT '
+~' I+~ 'I

I
+ " (3 16)

Di &Di

Note that the correction proportional to (M/T)'~'
only affects the T'~' term. Note also that there is an
additional zero-point motion due to dipolar inter-
actions. We have neglected this eBect, since 3f is so
much smaller than H~. When the condition gPH, q&&k~ T
is not satisfied, the usual demagnetizing Geld treatment
is more appropriate.

IV. CONCLUSION

We have calculated the magnetization of the u and d
sublattices of VIG at low temperatures. The e6ect of
dipolar interactions is significant and has been taken
into account. We have neglected spin-wave inter-
actions and have not included the e6ects of the optical
modes. Thus the formulas given here can only be
expected to be reliable below say 100'K. Although in
principle our analytic expressions for the coefBcients
of the T't', T' ', and T~ ' terms in the sublattice
magnetizations can be used to determine experi-
mentally three different linear combinations of the
exchange integrals, in practice only two linear combi-
nations are essentially independent. Thus it is necessary
to study the effects of the optical modes in order to
determine experimentally the values of J„,J,d, and

"S. Geschwind, J. Appl. Phys. 32, 263S (1961); Phys. Rev.
121, 363 (1961).

27 L. R. Walker, J. Appl. Phys. 12, 264S (1961).

related to the microscopic crystal Geld parameters. "'7
Collecting the results, (3.8) and (3.10) with those of
the previous section, and allowing for an externally
applied magnetic Geld, we Gnd the Hamiltonian for
acoustic spin waves to be

X= o(k) Qp&(k) Qp(k) + Dp(k) Qp t(k) Qpt( —k)
+[Do(k)]*Qp(k)Qp( —k), (3.13)

where

o(k) =DE'+EE'
+Ii (E,'E„'+E,'E,'+E„'E,')+G(E '+E„'+E,')
+HE2(E 2E 2+E 2E o+E oE o)+IE 2E 2E 2

+2m.gPM sin'8q+gPH, qr, (3.14)

where H,H is deGned as
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J~d from low-temperature magnetization data. Never-
theless, our present results, when supplemented by
rough estimates of the contributions from the optical
modes, have been used" to resolve the discrepancy
between Wojtowicz's analysis' of the high-temperature
susceptibility' and studies'0 "of substituted garnets on
the one hand, and the spin-wave analysis of low-
temperature magnetization data on the other.
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APPENDIX A: ZERO-POINT MOTION IN THE
PRESENCE OF SPIN-WAVE INTERACTIONS

Actually the total magnetization in the ground
state, Mo will be given by BAN- ~, its value in the Neel
state, to all orders of temperature-independent per-
turbation theory when spin-wave interactions are taken
into account. If, for example, one treats the transverse
terms as a perturbation on an Ising model Hamilton-
ian, " the proposition is obvious, because 5;+5; com-
mutes with PP,'. In spin-wave theory using the
Dyson-Maleev transformation" the perturbation in-
cludes terms like

(A1)

where i refers to an a sublattice and j to a d sublattice.
In the boson representation the total s component of
spin is

Z&"+Z S~'=Z (S 1~) —Z'(S—~~), (A2)

which again commutes with the perturbation terms in
Eq. (A1). Similarly, using the Holstein-Primakoff trans-
formation" one has terms in the perturbation of the
type

e;~'ls) n,, q'l'

2S) E 2'
e;~'l'p n

a;tu, t
i

1——
i i

1—— —1,e,rs; (A3).
2si l 2S

Again, all such terms commute with the operator in
Eq. (A2).

&0l4I0&=3,

&0 Its l
»= —&1II.lo&= —g6,

(1[4[1&=—2,

&~]4[~&=0, 2&&&4

What this argument says is that perturbation terms
cannot deform the wave function by the addition of
amplitudes for any value of PS,' which was not
present in the zero-order wave function. Suppose,
however, that 3f0 is not equal to MN;, i. Then the only
possible way one could obtain a correct result using
perturbation theory would be to do a finite-temperature
calculation and then let T —+ 0. However, as Katz' has
discussed, to obtain such a crossing of energy levels
one must sum over an infinite set of graphs. Clearly
in this event a sophisticated calculation would be
necessary.

Experimentally" Mo for YIG is found to be 10.02
Bohr magnetons per molecule as compared to MN;, i,
which is Sg Bohr magnetons per molecule, where the

g value at low temperatures is" 2.001+0.002. However,
even a theory based on noninteracting spin waves
would predict Mo to diBer from MN;, ~ due to anisotropy
and dipolar eBects. Using Geschwind's" determination
of the loca1 crystal-field parameters and Boutron and
Robert' s" evaluation of the dipolar lattice sums, one
can calculate the anisotropy and Lorentz fields at each
lattice site. Although these local fields are an order of
magnitude larger than the average fields appearing in
the acoustic spin-wave dispersion law, they are re-
sponsible for a decrease in 3f's of only about 0.01% and
hence can be neglected. Thus, from a practical stand-
point one may say that MD=AN~, i. From a theoretical
point of view it would be interesting to display a
calculation of Mo—MN;, ~ which gives a nonzero result
introducing for this purpose, if need be, a nonzero
external magnetic field.

APPENDIX 8: MATRIX ELEMENTS REQUIRED
TO EVALUATE EQS. (2.26) AND (2.28)

In Table V we give the optical mode eigenvectors
and eigenvalues necessary for the evaluation of matrix
elements appearing in Eqs. (2.26) and (2.28). The left
eigenvectors may be obtained from the right eigen-
vectors using Eq. (2.13). Using these eigenvectors one
can evaluate the matrix elements required. Some such
matrix elements are conveniently displayed in matrix
form as we have done in Tables VI and VII. The
remaining necessary matrix elements are

(B1)

(B2)

(B3)

(B4)

(~[i,[~&=1, 5&~&12 (BS)
'8 D. 1.Bullock, Phys. Rev. 137, A1877 (1965)."S.V. Maleev, Zh. Eksperirn. i Teor. Fiz. 33, 1010 i1957) LEnglish transl. : Soviet Phys. —JETP 6, 776 {1938)7;T. Oguchi, Progr.

Theoret. Phys. (Kyoto} 25, 721 (1961).
"A. Katz, Nucl. Phys. 43, 128 (1963).

.
'~ S. Geller, H. J.Williams, R. C. Sherwood, and G. P. Espinosa, J. Phys. Chem. Solids 23, 1525 (1962).
32 G. P. Rodrigue, H. Meyer, and R. V. Jones, J. Appl. Phys. 31, 376S (1960)."F.Boutron and C. Robert, Compt. Rend. 253, 433 (1961).
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—5J 11Jdg 325J,g
(oIR, Io)=(z.s+z 6+K ) — + +(K «z ~+K «z'+z «K '+z «z '+K z '+z K ')

6 I256 4 T
216 6!2"

(—75J„1575Jgg 25J,g)
—15J„5400Jgg

xI — + -I+(K.z z ) —,(86)
k 6!256 6!2" 4!2"j 4!256 6!2«

(ol R«I o)= (K«(160J.. 85J—.d+45 Jdg)+F, (K)(640J.,+SOJ.g+45Jaz),
3, 212

vr here
F,(K)=K 'K„'+qK,'K, '+q'K„'K, ', q= 1, X;

5/6
(1IR«I 0)= (K'(—1925„+85J,g

—36Jgg)+Fg(z) (—768'„—SOJ,g
—36Jgg) })

9 2'4

—25+6J g

(2IR, lo)= G,(K),9.213
where

G,(K)=K,K„(K„~+K,')+qz, z,(K ~+K,')+q~z, z„(K ~+Ky'), q=1,
—25+6J,g

(3IR Io&=(4IR Io&*= G *(K);
9, 212

5v3
(5I R«I 0)= (6 I R«I 0)*= p.'F),*(K)(24J,g+ 18Jdg)+(Kg'+X'K, '+Xz„«)(14J,g 15Jgg)];—

9 2'4
Ski Jgg

(7IR, I0)= z,z„z„.
6

(87)

(88)

(810)

(812)

(813)

(816)

(817)

TABLE V. Some right eigenvectors' for & =0.

(SIR,I0)=(9IR,I0)=0;
5&3i

(10IR«IO)= (3Jqd+4J, q)[K,(K '—K ')+K (K '—K ')+K (K ' E')]—
1536

5&3i
(11IR«IO&=(12IRBIO&*= (3Jdg+4J.g)[K.-(K '—K ')+&'K (K '—K ')+XK (z' K')]—'

1536

state !0) ! 1)

81 1 3
$2 1 3
83 1 3
u4 1 3
a5 1 3
c6 1 3
67 1 3
a8 1 3

3 0—1 1—1 X—1
3 0

—1—1

!4)

0
1
j2
X
0

X2

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

!io& !i~& !u&

d1 1 2
d2 1 2
d3 1 2
d4 1 2
d5 1 2
d6 1 2
d7 1 2
d8 1 2
d9 1 2

d10 1 2
d11 1 2
d12 1 2

4 24

E„b 0 —10g~d

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

24 6
L

40J, —30$ d

1
X'

1 1

1
X X~

1 1

12 12
Y

20$ d —30Jdd

I
1
1
1
1
1—1—1—1—1—1—1

12

X~

1

—1—'A~

—1—'A~

12

y2

X
X~

—1

—1

—X~

12
Y

20/, d
—10Jdd

1
1—1—1—1

1
1—1—1—1

12

1

—1

—X~

1

—1

12
Y

20$ d —20Jdd

1

X—1

1
) 2

—1—X~

12
J

ese vectors are unnormalized. The proper normalization is obtained by multiplying the unnormalized eigenvectors by the factor ¹
~ We use the

notation X =exp(2vri/3) .
b ASSOCiated With the eigenVeCtOr ) n) iS the eigenValue, E&. We define gad =Jad+ Jad'.
o P7 =20/ad -40Jdd.
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TAnLz VI. Some matrix elements of 3fq h~.=E,+gE„+gsE, with g= 1, X. Cr= (Serai/12) J,s Cs= (eJqsi/12) (Xs—X).

(N(M&~m)
10

—C1h1—CIhh—CIhh*
0
0

2X'CIhh*
2X'CIh1
2X'CIhh

0
0

2XCIh),
2XCIh),*
2XCIh1

0
0

0
C,() -X)h&
C,(X-X )h,*

XC2hh
X'C2hh*

CI(X—1)h&*
C1(1—X)h1

0
C2h1
XC2hh

CI, (X2—1)h&
0

C,(1—X2)h,
X'Cghh*

C2hI

Terms involving matrix elements which are not listed upper six rows of —Il""(—k) which was displayed in
above or in Tables VI and VII (and whose transposes Table II. For k lying along the [111jdirection the
are not so listed) vanish. vectors P, and g, associated with the acoustic mode are

multiples of the unit vector:

+m 0

0 —DKR
1 —CRKR

2 Cef1
3 Ce fh+

Cefh
5 C11hgh+
6 C11hsgh

CRKR

C4KR

Cef1
jhow

C1phgh+

C1phsgh

—Ce f1
Cef1
2Csf1

sf
—Csfh

Cvhs fh*
Cvh fh

(~(ms]m&
3

Ce fh
—Csfh
—Cs f1
2Csf
Cvhs f1
Cvh fh*

Ce jhow

ef
fhg

2Cs fh
—Cs f1

C7h2 fh
Cvh f1

Cllh gh
—C1phgh+
—Cvh fh
—Cvh f1
—Cvh fp,+

CRKR
—Cshsgh*

Tmx, z VII. Some matrix elements of M2.'

C11hgh*
—Cyphgh+
—Cvh' fh*
—Cvh2 fh
—Cvhs f1
—Cshgh
CRKR

1
1
1

p.,=n(k) 1,
1
1

1
1

g..=P(k) 1,
1

so that Eq. (C1) reduces to

—4n(k)+ [1+2exp(ika/4)+exp( ika/2—)jP(k)

(C2)

a CS = pJad(25 —48X —12@)/64) X (5+6/3)
C4 =Jad( —25+60X+10y)/16
Ce =5+6Jad/48 Ce =5Jad/24
C7 =52Jad/96 Cs =5Jaa/12
Cs =5Jdd/32 Clp =5g(Jdd —Jad)/64

C11= 5~3Jdd —2Jad)/192
fry =Kv/Kg+qKIsKs+qsK&Kvl with q =1,h.
gq =K R+qK2ts+qRKas with q =i,h.

~ac
n(k), (C3a)

5Jdg

—[1+2 exp( —ika/4)+ exp(ika/2) 7n(k)+4P(k)

APPENDIX C: THE SPIN-WAVE SPECTRUM
OF SOME SUBSTITUTED GARNETS

One finds for small k:

P(k). (C3b)
~A~

In this Appendix we derive expansions for the sub-
lattice magnetization in substituted garnets" where
magnetic ions occupy, in the first case, only the d sites
(e.g. , YsSc&FesOrs) and, in the second case, only the a
sites (e.g. , CasFesSisO»). Assuming only nearest-
neighbor antiferromagnetic interactions, it is easy to
verify that in the classical ground state there are two
oppositely magnetized sublattices. One sublattice con-
sists of the d sites at ~(ed)1&tr&6 and the other
consists of d sites at ~(N'd)7&e'&12. This array has
the property that a lattice site in one sublattice has
nearest neighbors only in the other sublattice. The
linear equations for the excitation operators of the
normal modes are found exactly as for YIG. The matrix
equation analogous to (2.11) is

Ato. ,= (5@2/2)J„„ak. (c4)

Using the normalization condition,

one obtains
ln(k)l' —IP(k)l'= +1

n(k) P(k) (V2/3)(ak) '

(CS)

(C6)

The choice of sign in the normalization condition corre-
sponds to the twofold degeneracy of the acoustic mode
of an antiferromagnet. The sublattice magnetization
at low temperatures is found to be

k—x' —1D)c&,J (&,) (C1)

Here 1 is the 6X6 unit matrix, P, and g, are six com-
ponent column vectors, D= —20J~d, and X is the 6&&6
matrix formed from the right-hand six columnsand

As for YIG the effect of zero-point motion, as embodied
in the term 8, is dificult to calculate, since it requires a
complete calculation of the spectrum for arbitrary k
values.

Calculations for the case of Ca3Fe~Si3012 are less
likely to be valuable since the ordering temperature
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(AS)

5

1 (kpT) '
—I+"

6000&~..l(cg)Ace„=10J,uk

for this compound is so low. "The calculations parallel and the sublattice magnetization is
the ones given above, so we only quote the results. For
small k

(C9)
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Inhuence of the Anomalous Skin Effect on the Ferromagnetic-
Resonance Linewidth in Iron*

S. M. BHAGAT, J. R. ANDERSON, AND ¹NG WU

University of N urylund, College Purk, j/Iurylund

(Received 20 October 1966)

The ferromagnetic-resonance linewidth has been measured in iron single-crystal whiskers over a tem-
perature range from 300 to 4.2'K at frequencies of 9.2, 22.2, and 34.8 kMc/sec. The measurements of line-
width and line shape clearly indicate the importance of nonlocal conductivity eGects.

I. INTRODUCTION

'HE first measurements of ferromagnetic resonance
(FMR) in single-crystal iron whiskers at room

temperature were carried out by Rodbell' at frequencies
of 9 and 20 kMc/sec. The most important conclusion
resulting from this work was that the linewidth in iron
is dominated by the exchange-conductivity mechanism.
Our recent measurements' at room temperature and
frequencies of 9.2, 22.2, 34.8, and 57.8 kMc/sec con-
firmed Rodbell's results. In addition, with these higher
frequencies, we were able to obtain a rough estimate of
the Landau-Lifshitz parameter X. However, at 20
kMc/sec, Rodbell's linewidth is some 30 Oe narrower
than ours. In nickel, ' we noted a similar discrepancy
with Rodbell's results at low frequencies, but the
linewidths agreed at the higher frequencies. Presumably,
as was suggested. for the nickel case, the discrepancy
in iron is also due to the better surfaces of Rodbell's
samples with a resulting reduced surface anisotropy.
This diBerence is not expected to aGect our conclusions.

Rodbell' also measured linewidths in iron below
300'K, but very few details were given apart from the
comment that there was a distinct change in the
character of the resonance on cooling; this he attributed
to the onset of the anomalous-skin-effect region. On the
other hand, the theory of Hirst and Prange' indicated
that the onset of anomalous conductivity should have
no pronounced effect upon the ferromagnetic resonance,

*Supported in part by Advanced Research Projects Agency
Contract No. SD-101.' D. S. Rodbell, J.Appl. Phys. 30, 187S (1959); Physics 1, 279
(1965).

~ S. M. Bhagat, L. L. Hirst, and J. R. Anderson, J. Appl. Phys.
37, 194 (1966).

'L. L. Hirst and R. K. Prange, Phys. Rev. 139, A892 (1965).

and our preliminary measurements on iron' seemed to
support this prediction. In addition, we found that the
observed linewidths did not increase as rapidly as
expected from normal conductivity theory, in agreement
with the presence of anomalous conductivity at tem-
peratures below 77'K. The present paper is a more
detailed report of our low-temperature measurements
in iron, and confirms the preliminary conclusions of
Ref. 4.

Q. EXPEMMEÃTAL METHOD

The samples used were thick iron single-crystal
whiskers with axes along [100) and [111].The [100j
samples and a few of the [111jsamples were given to us
by Professor A. V. Gold of Iowa State University, and
these whiskers were used to study FMR at 22 and 35
kMc/sec. However, at lower frequencies (9 kMc/sec),
because of the large magnetocrystalline anisotropy at
300'K and below, [100]whiskers could not be used, and
it became necessary to grow additional [111jwhiskers
for this study. Although the general techniques for
iron-whisker growth have been described by Brenner, '
a few details are included here.

The whiskers were grown by hydrogen reduction of
FeCl& which had previously been prepared by baking
FeC12 4H~O in an, inert atmosphere. The FeC1~ was
held in a quartz boat; quartz was used to facilitate
removal of whiskers. The optimum hydrogen-Qow rate
was determined to be about 300 ml/min, and the
optimum reduction temperature was 750'C. Further-
more, better results were obtained using hydrogen
saturated with water vapor at room temperature. Only
about 3%%u~ of the "raw" whiskers were found to be

4 S. M. Bhagat, J. R. Anderson, and L. L. Hirst, Phys. Rev.
Letters 16, 1099 (1966).' S. S. Brenner, Acta Met 4, 62 (1956). .


