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ABSTRACT

OVERALL MECHANICAL RESPONSE OF SOFT COMPOSITE MATERIALS WITH

PARTICULATE MICROSTRUCTURE AT FINITE STRAINS

Reza Avazmohammadi

Pedro Ponte Castañeda

Many soft, composite materials manufactured or found in nature consist of a homogeneous ma-

trix phase and a random distribution of micron-sized particles in the matrix. Examples among

engineering materials include reinforced elastomers, microgel suspensions and polymer-matrix com-

posites, whereas biological tissues and fluids, such as intervertebral disc and blood, provide examples

of natural materials. In this thesis, we present homogenization-based models for the overall consti-

tutive behavior of such composite materials when subjected to mechanical loadings. These models

account for the constitutive nonlinearities associated with the local behavior of the matrix and par-

ticle phases, as well as for the nonlinearities associated with possible evolution of the microstructure.

In this thesis, we present models for three different classes of particulate composite materials.

In the first part of this thesis, we propose a new model for the overall constitutive behavior

of particle-reinforced elastomers when subjected to three-dimensional, large deformations. A key

advantage of this model is that it incorporates the change in the orientation of rigid particles as the

deformation proceeds, and therefore also incorporates the major influence of such changes on the

development of material instabilities in the composites. We consider the application of this model

to composites consisting of incompressible elastomers reinforced by aligned, spheroidal particles,

undergoing non-aligned loadings.

In the second part of this work, we present a homogenization-based model for the rheological

behavior of suspensions of soft viscoelastic particles in Newtonian fluids as well as in yield stress

fluids under uniform, Stokes flow conditions. We investigate the effects of the shape dynamics and

constitutive properties of the fluid and particle phases on the macroscopic rheological behavior of

the suspensions.

In the last part of this work, we present a model to estimate the effective behavior of particulate

composites consisting of elasto-viscoplastic matrices and elastic, spheroidal particles, subjected to
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small strains. Here, we explore the effect of the local properties and loading conditions on the effective

behavior and field statistics in these composites for the case of elastic-ideally plastic matrices.
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the strain components ē2 = ln(λ̄2), ē3 = ln(λ̄3), respectively, as functions of the
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In this chapter, we propose an approximate homogenization method to obtain estimates for the

effective constitutive behavior and associated microstructure evolution in hyperelastic composites

undergoing finite-strain deformations. The method is a modified version of the “tangent second-

order” procedure of Ponte Castañeda and Tiberio (2000), and can be used to provide estimates

for the nonlinear elastic composites in terms of corresponding estimates for suitably chosen “linear

comparison composites.” The method makes use of the “tangent” moduli of the phases, evaluated

at suitable averages of the deformation gradient, and yields a constitutive relation accounting for

the evolution of characteristic features of the underlying microstructure in the composites, when

subjected to large deformations. Satisfaction of the exact, macroscopic incompressibility constraint

is ensured by means of an energy decoupling approximation splitting the elastic energy into a purely

“distortional” component, together with a “dilatational” component. The method is applied to

elastomers containing random distributions of aligned, rigid, ellipsoidal inclusions, and explicit ana-

lytical estimates are obtained for the special case of spherical inclusions distributed isotropically in

an incompressible neo-Hookean matrix. In addition, the method is also applied to two-dimensional

composites with random distributions of aligned, elliptical fibers, and the results are compared with

corresponding results of earlier homogenization estimates and finite element simulations.

1.1 Introduction

Particle- and fiber-reinforced elastomers are a prominent class of soft materials that have found a

wide range of applications in industry. A few examples of such applications include car tires, flexible

underwater vehicles, and compliant aircraft structures. In particular, carbon-filled and silica-filled

rubbers are two important groups of particle-reinforced elastomers used for technological purposes

(O’connor, 1977; Bergstrom and Boyce, 1999; Wang et al., 2001; Bouchart et al., 2010; Leblanc,

2010). Also, there is a large class of thermoplastic polymers, which exhibit elastomeric behavior,

and they are referred to as thermoplastic elastomers. These materials are block copolymers where

the hard glassy blocks self-aggregate into a particle phase that is embedded in a matrix of the soft

elastomeric blocks, thus leading to a particulate microstructure with an overall elastomeric response

(Honeker and Thomas, 1996; Park et al., 2003). Moreover, elastomer-like, heterogeneous materials

with particulate/fibrous microstructures are also naturally present in the form of biological tissues,

such as arterial walls, ligaments, annulus fibrosus, etc. (see, e.g., Quapp and Weiss, 1998; Loocke

et al., 2006; Limbert and Middleton, 2006; Chen et al., 2011; Miri et al., 2014).

As a consequence, investigations to characterize the effective behavior of elastomeric composites

with random particulate microstructures are very timely. With this goal in mind, two different

nonlinear homogenization methods have been developed recently for elastomeric composites under

large deformations by means of variational principles (Ponte Castañeda, 1991), namely, the so-

called “tangent second-order” (TSO) method (Ponte Castañeda and Tiberio, 2000; Lahellec et al.,

2004) and the “generalized second-order” (GSO) method (Ponte Castañeda, 2002; Lopez-Pamies

and Ponte Castañeda, 2004, 2006a). These methods make use of suitably designed variational

principles for the properties of appropriately defined “linear comparison composites” (LCC), which

are fictitious composites with the same microstructure as the original nonlinear composites, but
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with linear properties. The distinguishing features of the second-order methods are that: (1) they

rigorously incorporate full dependence on the nonlinear constitutive behavior of the constituent

phases, (2) they are exact to second-order in the heterogeneity contrast (hence their name), and

(3) they account for statistical information about the underlying microstructure in the undeformed

configuration, as well as for its evolution, resulting from the finite changes in geometry caused by

the applied finite deformations. The latter is essential in homogenization of hyperelastic composites

as the evolution of the microstructure can have significant geometric softening or stiffening effects

on the overall response of the material, which, in turn, may lead to the possible development of

macroscopic instabilities.

The TSO method, which was proposed by Ponte Castañeda and Tiberio (2000) building on ear-

lier work for viscoplastic composites (Ponte Castañeda, 1996; Ponte Castañeda and Willis, 1999),

identifies the modulus tensors of the phases in the LCC with the tangent modulus tensors of the

hyperelastic phases, evaluated at the phase averages of the deformation fields in the LCC. The GSO

method, which was developed by Lopez-Pamies and Ponte Castañeda (2004, 2006a) building on

earlier work for viscoplastic composites Ponte Castañeda and Tiberio (2000), makes use of addi-

tional information about the second moments of the fluctuations of the deformation gradients in

the LCC to define an alternative linearization of the nonlinear constitutive response of the hypere-

lastic phases leading to more accurate predictions, especially at higher concentration of the phases.

Given the highly nonlinear character of these homogenization problems in finite elasticity, the first

applications of these methods were carried out in the context of two-dimensional idealizations of the

microstructure. Thus, using the TSO method, elastomers with random and periodic distributions

of circular particles were considered by Ponte Castañeda and Tiberio (2000) and Lahellec et al.

(2004), respectively. Also, Lopez-Pamies and Ponte Castañeda (2006b) studied the application of

the GSO method to two-dimensional composites containing random distributions of aligned rigid,

elliptical fibers in an elastomeric matrix. More general results for fiber-reinforced elastomers sub-

jected to three-dimensional loading conditions with periodic and random distributions of fibers have

been provided by Brun et al. (2007) and Agoras et al. (2009a,b), respectively, by means of the GSO

method. In addition, Bouchart et al. (2010) have presented an application of the TSO method for

three-dimensional reinforced rubbers, while Racherla et al. (2010) provided an application of the

TSO method for polydomain thermoplastic elastomers with lamellar microstructures.

Also, it should be mentioned that a novel homogenization approach for hyperelastic composites

has been proposed recently by deBotton (2005), and developed further by deBotton et al. (2006)

and Lopez-Pamies and Idiart (2010), building on earlier work for nonlinear composites with “se-

quentially laminated” microstructures (Ponte Castañeda, 1992; Hariton and deBotton, 2003; Idiart,

2008). This approach is based on sequential lamination, which has been used extensively for linear

composites to demonstrate optimality of bounds (Milton, 2002a), and has been used more recently

in the context of finite elasticity (deBotton, 2005; deBotton et al., 2006; Lopez-Pamies and Idiart,

2010). These iterated methods have the distinct advantage of producing “exact” results, unlike the

linear comparison methods, which only provide variational approximations. However, the classes of

microstructures that can be considered are much more restrictive and there is no precise control on

the typical microstructural variables such as particle shape. Instead, use is made of two-point cor-
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relation functions for the particulate phase, which typically exhibits highly distorted and physically

unrealistic shapes. In addition, this technique generally leads to partial differential equations (of the

Hamilton-Jacobi type) for the effective behavior, which have only been solved exactly for some very

special geometric configurations and very specific constitutive models (essentially, neo-Hookean).

More generally, numerical (or other types of approximations) are required to obtain explicit results

by the lamination methods. By contrast, the linear comparison methods can handle much more

general classes of constitutive behavior for the phases, as well as microstructures, including, for

example, polydomain elastomeric systems (Racherla et al., 2010).

In spite of the significant progress that has been made to date, there are still significant barriers

for the general implementation of all the presently available nonlinear homogenization methods for

hyperelastic composites. The TSO method is the easiest to use, but it can give unreliable esti-

mates for large concentrations and strongly nonlinear behavior of the constituent phases, including

the failure to capture (unless appropriately modified) the overall incompressibility constraint for

incompressible phases. The GSO method seems to provide the most reliable predictions, but it is

more difficult to use than the TSO method and thus far has only been used for continuous fiber

composites. On the other hand, the “sequentially laminated” homogenization is the most recent,

and thus far it has only been used successfully for neo-Hookean phases, requiring the solution of

difficult nonlinear PDE more generally.

The main goal of this chapter is to develop a general, three-dimensional model based on the TSO

method of Ponte Castañeda and Tiberio (2000) for the effective behavior of elastomeric composite

materials subjected to finite deformations. In particular, in this chapter, we provide analytical

estimates for the effective behavior of dilute and non-dilute composites that are capable of accounting

for general (ellipsoidal) particle shapes and distribution, as well as general three-dimensional loading

conditions (including nonaligned loadings). In addition, evolution laws are provided for the relevant

microstructural variables, including particle orientations. The new estimates recover the exact overall

incompressibility constraint for the special case of rigidly reinforced elastomers with incompressible

matrix phases. Furthermore, in this chapter, the principal features of this model are examined

within the context of 2-D and 3-D examples. In the 2-D example, we consider elastomers reinforced

with cylindrical fibers of elliptical cross-section under (transverse) plane-strain loading, while in the

3-D example, we consider class of statistically isotropic composites consisting of an incompressible,

elastomeric matrix reinforced by rigid spherical inclusions. It is worth mentioning that the resulting

constitutive model can be used to detect macroscopic material failure in the form of loss of strong

ellipticity (or rank-one convexity) of the associated homogenized behavior (Geymonat et al., 1993),

although this will be pursued in detail in Chapters 2 and 3.

This chapter is organized as follows. Sections 1.2 and 1.3 describe in some detail the tangent

second-order homogenization method. Section 1.4 presents the main results of this chapter, namely,

the derivation of the homogenized constitutive relation for particle-reinforced elastomers with general

ellipsoidal microstructures and incompressible matrix behavior, including the development of evolu-

tion laws for the average orientation of the particles with the deformation. The principal features of

this model are examined within the context of 2-D and 3-D examples, respectively, in Sections 1.5

and 1.6. Thus, Section 1.5 deals with the application to elastomers reinforced with cylindrical fibers
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of elliptical cross-section under (transverse) plane-strain loading. More specific results are presented

and compared with corresponding GSO estimates for composites with circular fibers, as well as with

FEM results from the literature. In Section 1.6, the results of Section 1.4 are applied to the class

of statistically isotropic composites consisting of an incompressible, elastomeric matrix reinforced

by rigid spherical inclusions. In both examples, the influence of the particle volume fraction, ma-

trix properties and loading conditions on the macroscopic behavior of the composite is investigated.

Finally, some conclusion are drawn in Section 1.7.

1.2 Hyperelastic Composites

Consider a material consisting of N different (homogeneous) phases, which are assumed to be dis-

tributed randomly in a specimen occupying a volume Ω0 with boundary ∂Ω0 in the undeformed

configuration. Furthermore, the characteristic length-scale of the inhomogeneities (e.g., particles, or

voids) is much smaller than the size of the specimen and the scale of variation of the loading con-

ditions. Let the position vector of a material point in the undeformed configuration Ω0 be denoted

by X, with Cartesian components Xi, i ∈ {1, 2, 3} and the corresponding position vector in the

deformed configuration Ω be denoted by x, with components xi. The deformation gradient tensor

represented by F has components Fij = ∂xi/∂Xj and is required to satisfy the material impenetra-

bility condition: J = detF(X) > 0 for all X ∈ Ω0. In addition, let F = RU where U and R stand

for the stretch and (rigid-body) rotation tensors, respectively, and let C = FT F = U2 denote the

right Cauchy–Green deformation tensor.

We assume that the constitutive behavior of the phases is purely elastic and characterized by the

stored-energy functions W (r)(F) (r = 1, ..., N), which are taken to be nonconvex functions of the

deformation gradient tensor F, such that the local energy function of the composite may be written

as

W (X,F) =

N∑

r=1

χ(r)(X)W (r)(F). (1.1)

In the above equation, the characteristic functions χ(r), describing the distribution of the phases

in the reference configuration, are such that they equal 1 if the position vector X is inside the

phase r (i.e., X ∈ Ω
(r)
0 ) and zero otherwise. The stored-energy functions W (r)(F) are assumed

to be objective, namely, W (r)(QF) = W (r)(F) for all proper orthogonal tensors Q and arbitrary

deformation gradients F, so thatW (r)(F) =W (r)(U). The local or microscopic constitutive relation

for the composite is then given by

S =
∂W (X,F)

∂F
, (1.2)

where S stands for the first Piola-Kirchhoff stress tensor.

Following Hill (1972), the effective stored-energy function W̃ of the composite elastomer is defined
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by

W̃ (F̄) = min
F∈K (F̄)

〈W (X,F)〉 = min
F∈K (F̄)

N∑

r=1

c
(r)
0

〈
W (r)(F)

〉(r)
, (1.3)

where K (F̄) denotes the set of kinematically admissible deformation gradients:

K (F̄) =
{
F|∃x = x(X)withF = Gradx andJ > 0 inΩ0, x = F̄X on∂Ω0

}
. (1.4)

In the above expressions, the triangular brackets 〈·〉 and 〈·〉(r) denote volume averages (in the

undeformed configuration) over the domains Ω0 and Ω
(r)
0 , respectively, so that the scalar c

(r)
0 =

〈
χ(r)

〉

indicates the initial volume fraction of the phase r.

In the neighborhood of F̄ = I (where I is the second-order identity tensor), the solution of the

Euler-Lagrange equations associated with the variational problem (1.3) is unique, and gives the

minimum energy. As the deformation progresses into the finite deformation regime, the composite

may reach a point at which this “principal” solution bifurcates into lower energy solutions. This

point corresponds to the onset of an instability, beyond which the applicability of the “principal”

solution becomes questionable. However, it is still possible to extract useful information from the

principal solution by computing the associated macroscopic instabilities from the loss of strong

ellipticity of the homogenized behavior. Based on these remarks, in this work, we will estimate the

overall behavior of composite elastomers by means of the effective stored-energy function

Ŵ (F̄) = stat
F∈K (F̄)

N∑

r=1

c
(r)
0

〈
W (r)(F)

〉(r)
, (1.5)

instead of solving the variational problem (1.3). From its definition, it is clear that W̃ (F̄) = Ŵ (F̄)

from F̄= I up to the onset of the first instability, beyond which W̃ (F̄) ≤ Ŵ (F̄). Moreover, it is often

the case (Geymonat et al., 1993) that the first instability is indeed a long wavelength instability, as

characterized by the loss of strong ellipticity of W̃ (F̄). Furthermore, it is worth stating that Ŵ (F̄)

is an objective function of the macroscopic deformation gradient F̄, by virtue of its definition (1.5)

and of the objectivity assumption for the W (r).

Noting that under the affine boundary condition 〈F〉 = F̄, and defining the average stress S̄ = 〈S〉,
the effective constitutive relation for the composite is given by Hill (1972)

S̄ =
∂W̃

∂F̄
(F̄). (1.6)

In the next section, we present a concise review of the “tangent second-order” homogenization

procedure, including its specialization for the case of two-phase elastomeric composites.

1.3 Tangent Second-Order Method

In this section, we recall the tangent second-order (TSO) method of Ponte Castañeda and Tiberio

(2000) (see also Ponte Castañeda (1996); Ponte Castañeda and Willis (1999)) in order to generate
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new estimates for the effective stored-energy function W̃ (F̄) for the above-described elastomeric

composite. The main concept behind the TSO method is the construction of a fictitious “linear

comparison composite” (LCC), with the same microstructure (i.e., same characteristic functions

χ(r)(X)) as the actual (nonlinear) composite material (in the undeformed configuration). The con-

stituent phases of the LCC are identified with appropriate linearizations of the given nonlinear phases

resulting from suitable variational principles. This allows the use of already available methods to

estimate the effective behavior of linear composites to generate corresponding estimates for nonlinear

composites.

Similar to relation (1.1), the local stored-energy function of the LCC can be formally expressed

as

WT (X,F) =

N∑

r=1

χ(r)(X)W
(r)
T (F), (1.7)

where W
(r)
T (F) is the energy potential of phase r in the LCC, which may in turn be rewritten in the

form

W
(r)
T (F) = f (r) +T(r) ·F+

1

2
F · L(r)F, (1.8)

where the “thermal stress” T(r) and “specific heat” f (r) are defined as

T(r) = S(r)(F(r))− L(r)F(r), f (r) =W (r)(F(r))−T(r) · F(r) − 1

2
F(r) · L(r)F(r). (1.9)

In these expressions, the F(r) are constant, reference, second-order tensors, while the L(r) are uni-

form, (major) symmetric, fourth-order tensors, which are usually identified with the tangent modulus

tensors of the phases, evaluated at the corresponding reference deformations F(r), i.e.,

L(r) = L
(r)
t (F(r)) =

∂2W (r)

∂F ∂F
(F(r)). (1.10)

In addition, use has been made of the notation

S(r) =
∂W (r)

∂F
(F(r)). (1.11)

If all the phases in the LCC are characterized by potentials of the form (1.8), it follows from the

linearity of the problem that the effective potential of the LCC can be written as (Ponte Castañeda

and Tiberio, 2000)

W̃T (F) = f̃ + T̃ · F̄+
1

2
F̄ · L̃F̄, (1.12)

where L̃ is the effective modulus tensor of the linear-elastic comparison composite, and T̃ and f̃ are

the effective thermal stress and specific heat, respectively. For two-phase composites, the expressions

for T̃ and f̃ are given by Levin (1967); Ponte Castañeda and Tiberio (2000)

T̃ = T̄+ (L̃− L̄)(∆L)−1∆T, (1.13)
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f̃ = f̄ +
1

2
∆T(∆L)−1 · (L̃− L̄)(∆L)−1∆T, (1.14)

where ∆T = T(1) −T(2), and ∆L = L(1) −L(2). Furthermore, f̄ , T̄, and L̄ are the volume averages

of f, T and L. Using Eqs. (1.13) and (1.14) in (1.12), the effective potential associated with the

LCC for two-phase composites can be written as

W̃T = f̄ +
1

2
(∆L0)

−1∆T · (L̃− L̄)(∆L)−1∆T+
[
T̄+ (L̃ − L̄)(∆L)−1∆T

]
· F̄+

1

2
F̄ · L̃ F̄. (1.15)

Within the context of the tangent second-order theory, Ponte Castañeda and Tiberio (2000)

made use the prescriptions F(r) = F̄(r) for the LCC and obtained the following estimate for the

stored-energy function of N -phase, hyperelastic composites

Ŵ (F̄) =

N∑

r=1

c(r)
{
W (r)(F̄(r)) +

1

2
(F̄− F̄(r)) · S(r)(F̄(r))

}
, (1.16)

where the variables F̄(r) are the phase averages of the deformation gradient field in the LCC. For

two-phase composites, F̄(1) and F̄(2) are determined by means of the system of equations (Ponte

Castañeda and Tiberio, 2000)

F̄ = c
(1)
0 F̄(1) + c

(2)
0 F̄(2), (1.17)

F̄(2) = F̄− 1

c
(2)
0

(∆L)−1(L̃− L̄)(∆L)−1
[
∆S+ L(1)(F̄− F̄(1))− L(2)(F̄− F̄(2))

]
, (1.18)

where ∆S = S(1)(F̄(1))−S(2)(F̄(2)), and the first equation describes as the overall average deforma-

tion condition. After some algebra, Eq. (1.18) can alternatively be written in the form

F̄− F̄(2) =
[
c
(2)
0 (L̃− L(1))−1 + (∆L)−1

] [
L(1)(F̄(1) − F̄(2))−∆S

]
. (1.19)

In this work, we make use of the generalized estimate of the Willis type (Ponte Castañeda and

Willis, 1995; Willis, 1977) for the effective modulus tensor L̃ of the LCC. This type of estimate is

known to be quite accurate for the type of “particulate” random microstructures, up to moderate

concentrations of inclusions. For two-phase composites, this estimate is given by

L̃= L(1) + c
(2)
0

[
c
(1)
0 P − (∆L)−1

]−1

(1.20)

where the microstructural tensor P contains information about the shape and distribution of the par-

ticles in the undeformed configuration (Ponte Castañeda and Willis, 1995). The general expression

for the components of the tensor P associated with an ellipsoidal inclusion, defined by

D0 =
{
X : XT (ZT

0 Z0)X < 1
}
, (1.21)

in an infinite matrix with the elastic modulus tensor L(1), is given by
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Pijkl =
1

4π |Z0|

∫

|ξ|=1

Hijkl(ξ)
[
ξT (ZT

0 Z0)
−1ξ
]−3

2 dS, (1.22)

where the symmetric, second-order tensor Z0 serves to characterize the shape and orientation of the

inclusion. In addition, H is a fourth-order tensor with components Bik(ξ) ξjξl, and B denotes the

inverse of the acoustic tensor K with components

Kik = L
(1)
ijkl(ξ) ξjξl. (1.23)

Making use of the Willis estimate (1.20), the implicit tensorial equation (1.19) for the variable F̄(2)

may be re-written as

F̄− F̄(2) = (1− c
(2)
0 )P [L(1)(F̄(1) − F̄(2))−∆S]. (1.24)

In summary, the variational estimate (1.16) for two-phase composites depends explicitly only on

the variables F̄(1) and F̄(2) corresponding to the average values of the deformation gradient over the

phases of the chosen LCC with the strain energies defined in (1.8). Hence, the implementation of this

estimate, in general, requires the calculation of the 18 unknown components of F̄(1) and F̄(2) using

the relations (1.24) and (1.17), which constitute a system of 18 scalar, algebraic equations. Having

computed these components for given macroscopic loading, phases characteristics and microstruc-

ture, the second-order estimate for the effective stored-energy function Ŵ (F̄) for particle-reinforced

elastomers can be, in turn, obtained from (1.16).

1.4 Rigidly Reinforced Composites

1.4.1 Tangent Second-Order Estimates

In this section, we confine our attention to the special case of rigid particles, and our objective is to

obtain a simplified form for the effective stored-energy function (1.16) and the associated kinematical

equation (1.19) in this case. In order to characterize the constitutive response of the rigid particles,

we assume without loss of generality that the stored-energy function of the particle phase is given

by

W (2)(F) =
1

2
µ(2)[tr(FTF)− 3− 2 ln(det F)] +

1

2
µ′(2)(det F− 1)2, (1.25)

such that the rigid behavior of the particles is obtained by taking the limit as the Lamé moduli µ(2)

and µ′(2) tend to infinity. It should be remarked that the stored-energy function (1.25) is zero if

and only if F = R, where R stands for a rotation tensor. This indicates that the particles can only

undergo a rigid-body rotation in the limit µ(2), µ′(2) → ∞.

Introducing the small parameter ι, defined by

ι = 1/µ(2) = α/µ′(2), (1.26)

in which α is an arbitrary constant, we consider the following regular expansion for F̄(2) as ι tends
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to zero

F̄(2) = F̄
(2)
0 + ι F̄

(2)
1 +O(ι2). (1.27)

The corresponding asymptotic expansions for (F̄(2))−1 and J̄ (2) = det F̄(2) are given by

(F̄(2))−1 = [F̄
(2)
0 + ι F̄

(2)
1 +O(ι2)]

−1
= (F̄

(2)
0 )−1 − ι(F̄

(2)
0 )−1 F̄

(2)
1 (F̄

(2)
0 )−1 +O(ι2), (1.28)

J̄ (2) = J̄
(2)
0 + ι J̄

(2)
1 +O(ι2), (1.29)

where

J̄
(2)
0 = det F̄

(2)
0 , (1.30)

J̄
(2)
1 = tr

[(
F̄

(2)
0

)∗
F̄

(2)
1

]
, (1.31)

in which the superscript ∗ refers to the adjugate tensor.

Next, using the strain energy (1.25), along with the expansions (1.27)-(1.29), the nominal stress

expansion in phase 2 is written as

S(2)(F̄(2)) = ι−1S
(2)
−1 + S

(2)
0 +O(ι), (1.32)

where

S
(2)
−1 = F̄

(2)
0 − (F̄

(2)
0 )−T + αJ̄

(2)
0 (J̄

(2)
0 − 1)(F̄

(2)
0 )−T , (1.33)

and

S
(2)
0 = F̄

(2)
1 + [1− αJ̄

(2)
0 (J̄

(2)
0 − 1)](F̄

(2)
0 )−T (F̄

(2)
1 )T (F̄

(2)
0 )−T + αJ̄

(2)
1 (2J̄

(2)
0 − 1)(F̄

(2)
0 )−T . (1.34)

Moreover, the average rotational balance equation in phase 2 (which is a consequence of the objec-

tivity of the chosen strain energy)

(F̄(2))TS(2) = (S(2))T F̄(2), (1.35)

reduces to

[ (F̄
(2)
0 )T − (F̄

(2)
0 )−1]F̄

(2)
1 + (F̄

(2)
1 )T [ (F̄

(2)
0 )−T − F̄

(2)
0 ] +O(ι) = 0, (1.36)

by means of Eqs. (1.27) and (1.32)-(1.34).

In addition, making use of the overall average deformation condition (1.17), it follows that the

average deformation gradient in the matrix is given by

F̄(1) = F̄
(1)
0 +O(ι) (1.37)

where F̄
(1)
0 = (1 − c

(2)
0 )−1(F̄ − c

(2)
0 F̄

(2)
0 ). (Note that higher-order contributions will not be needed,

and will therefore not be detailed here.)
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Noting the asymptotic expansion W (2)(F̄(2)) = W (2)(F̄
(2)
0 )+O(ι) for the stored-energy function

of particles, and making use of relations (1.27), (1.32) and (1.37), the second-order estimate (1.16)

for the rigidly reinforced elastomers can be shown to reduce to

Ŵ (F̄) =
1

2
ι−1c

(2)
0 (F̄− F̄

(2)
0 ) · S(2)

−1

+ (1 − c
(2)
0 )W (1)(F̄

(1)
0 ) + c

(2)
0 W (2)(F̄

(2)
0 )

+
1

2
c
(2)
0 (F̄− F̄

(2)
0 ) ·

[
S
(2)
0 − S(1)(F̄

(1)
0 )− F̄

(2)
1 · S(2)

−1

]
+O(ι). (1.38)

Remembering that the computation of F̄
(1)
0 and S

(2)
−1 requires the evaluation of the tensor F̄

(2)
0 ,

and that the variable F̄
(2)
1 can be eliminated in favor of S

(2)
0 by means of Eq. (1.34), the calculation

of the above expression requires the determination of the variables F̄
(2)
0 and S

(2)
0 . To this end, we

consider next the expansion of equation (1.19) to obtain a tensorial equation for the deformation

gradient F̄
(2)
0 .

Thus, setting L(2) equal to the tangent modulus tensor (Ponte Castañeda and Tiberio, 2000) of

the particle phase, L(2) = L
(2)
t (F̄(2)) = ∂2W (2)

/
∂F∂F(F̄(2)), it follows from the definition of the

strain energy (1.25) that L(2) can be expanded as

L(2) = ι−1L
(2)
−1 +O(ι0), (1.39)

where

L
(2)
−1 =

{
(III −XXX ) + α [J(2J − 1)F−T ⊗ F−T + J(J − 1)XXX ]

}∣∣
F=F̄

(2)
0
. (1.40)

In this last expression, III is the fourth-order identity tensor with components Iijkl = δikδjl and the

components of the fourth-order tensor XXX read as

Xijkl = −F−1
li F−1

jk . (1.41)

Next, assuming that L(1) is of order one and making use of the expression (1.39), ∆L = L(1)−L(2)

can be expanded as (∆L)−1 = −ι (L(2)
−1)

−1+O(ι2). Substituting this expansion, along with relations

(1.27), (1.32) and (1.37), into (1.19), it reduces after some algebra to

c
(2)
0 S

(2)
−1 ι

−1 +T (F̄− F̄
(2)
0 ) + c

(2)
0 [S(1)(F̄

(1)
0 )− S

(2)
0 ]−

(
L̃0 − L(1)

)
(L

(2)
−1)

−1S
(2)
−1 +O(ι) = 0, (1.42)

where we have used the notations

T = L̃0 − (1− c
(2)
0 )−1L(1), (1.43)

and L̃0 = L̃
∣∣∣
L(2)→∞

. Thus, expression (1.42) gives rise to the following system of equations

S
(2)
−1 = F̄

(2)
0 − (F̄

(2)
0 )−T + αJ̄

(2)
0 (J̄

(2)
0 − 1)(F̄

(2)
0 )−T = 0, (1.44)

T (F̄− F̄
(2)
0 ) + c

(2)
0 [S(1)(F̄

(1)
0 )− S

(2)
0 ] = 0. (1.45)
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Noting that equation (1.44) should be satisfied for an arbitrary constant α, it is deduced that the

following equations must be satisfied

F̄
(2)
0 − (F̄

(2)
0 )−T = 0, and J̄

(2)
0 (J̄

(2)
0 − 1)(F̄

(2)
0 )−T = 0. (1.46)

The first equation implies that F̄
(2)
0 is an orthogonal matrix denoted by

F̄
(2)
0 = R̄(2), (1.47)

while, recalling the definition J̄
(2)
0 = det F̄

(2)
0 , it can be seen that the second equation is identically

satisfied as well. This result implies that the reinforcement undergoes an average rigid rotation R̄(2),

as expected on physical grounds. This result is also consistent with the expectation that the stress

S(2) given in (1.32) should remain bounded in the extreme case of rigid particles. In this connection,

it is interesting to note that the average balance equation (1.36) is automatically satisfied due to

the orthogonality result (1.47).

In turn, in the limit of rigid particles (ι → 0), the average deformation gradient in the matrix

phase can be written as

F̄(1) = F̄
(1)
0 =

1

1− c
(F̄− cR̄(2)), (1.48)

where c = c
(2)
0 . Accordingly, the equation (1.45) reduces to

T (F̄− R̄(2)) + c [S(1)(F̄(1))− S
(2)
0 ] = 0, (1.49)

which can be solved for S
(2)
0 to obtain the result that

S
(2)
0 = c−1T (F̄− R̄(2)) + S(1)(F̄(1)). (1.50)

Making use of the above relation together with Eqs. (1.44), (1.47) and (1.50), the second-order

estimate (1.38) can now be shown to reduce to

Ŵ (F̄) = (1− c)W (1)(F̄(1)) +
1

2
(F̄− R̄(2)) ·T (F̄− R̄(2)). (1.51)

In order to obtain the associated equation for the average rotation tensor R̄(2) of the rigid

particles, we make use of (1.47) in (1.34) to find the following expression for S
(2)
0

S
(2)
0 = F̄

(2)
1 + R̄(2)(F̄

(2)
1 )T R̄(2) + J̄

(2)
1 R̄(2). (1.52)

Substituting this expression in Eq. (1.49) and then multiplying it by (R̄(2))T from left-hand side,

we arrive at the following equation

(R̄(2))T
[
T (F̄− R̄(2))

]
+ c (R̄(2))T S(1)(F̄(1)) = 2 c

{
(R̄(2))T F̄

(2)
1

}
Sym

+ J̄
(2)
1 I, (1.53)

where the subscript Sym stands for the symmetric part of the relevant tensor. (We also define the
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skew-symmetric part {A}Skew of a second-order tensor A via the relation A = {A}Sym+{A}Skew).

Thus, by taking the skew-symmetric part of both sides of expression ((1.53)), the tensorial equation

for the three (generally) independent components of R̄(2) is easily obtained with the result that

{
(R̄(2))T

[
T (F̄− R̄(2))

]
+ c (R̄(2))T S(1)(F̄(1))

}
Skew

= 0. (1.54)

The resulting estimates (1.51) and (1.54) for the rigid-reinforced elastomers can be specialized

for “particulate” microstructures (Ponte Castañeda and Willis, 1995; Willis, 1977). To this end, we

make use of the following Willis-type estimate for the effective modulus tensor

L̃= L(1) +
c

1− c
P−1, (1.55)

where the subscript 0 has been dropped from L̃0 for convenience. Thus, substituting this estimate

for the LCC, it follows that the second-order estimate (1.51) specializes to

Ŵ (F̄) = (1 − c)W (1)(F̄(1)) +
1

2

c

1− c
(F̄− R̄(2)) · E (F̄− R̄(2)), (1.56)

where

E = P−1 − L(1). (1.57)

Accordingly, the associated kinematical equation (1.54) for R̄(2) can be written as

{
(R̄(2))T [E (F̄− R̄(2))] + (1− c)(R̄(2))T S(1)(F̄(1))

}
Skew

= 0. (1.58)

Having computed the tensor R̄(2) from (1.58), the second-order estimate can be calculated via (1.56).

The second-order estimate (1.56) is completely specified, except for the choice of L(1) in the LCC.

Consistent with (1.10), in the earlier version of the TSO method (Ponte Castañeda and Tiberio,

2000), L(1) was chosen to be equal to the tangent modulus tensor of the matrix phase, evaluated at

the matrix average of the deformation F̄(1), i.e., L(1) = L
(1)
t (F̄(1)). In this work, the prescription

L(1) = L
(1)
t (F̄) =

∂2W (1)

∂F ∂F
(F̄) (1.59)

will be adopted instead. This choice is motivated by the considerable simplification in the compu-

tation of L̃, which is an essential element in the effective energy (1.51) (through T). Indeed, the

computation of L(1) by means of the prescription (1.59) is completely explicitly, and does not require

the calculation of the tensor R̄(2), unlike the case for the earlier prescription. On the other hand,

the resulting estimates can still be shown to be exact to second-order heterogeneity contrast (for

non-rigid particles).

1.4.2 Energy Decomposition Approximation

The second-order method developed in the previous section can be applied to general compressible

hyperelastic composites. For the special case of the composites made up of incompressible phases,
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the overall (exact) incompressibility constraint (J̄ = det(F̄) = 1) must be satisfied. However, it can

be verified that by taking the incompressibility limit of the effective energy function (1.51), the con-

straint J̄ = 1 is, in general, not satisfied. The failure to meet this constraint in the incompressibility

limit, which is unacceptable, was already discussed in some detail by Ponte Castañeda and Tiberio

(2000). In particular, for the special case of 2-D circular inclusions, they investigated the effect of

the inclusion volume fraction on the deviation of the “approximate” macroscopic incompressibility

constraint from the exact constraint J̄ = 1. The aim of this subsection is to propose a modification

of method described in the last section to be able to ensure exact attainment of the exact constraint

J̄ = 1 in the incompressibility limit for the composites. As mentioned before, in the earlier TSO

method, the reference modulus tensor L(1) in the LCC was set to be equal to L
(1)
t . In this work,

as described in the previous section, we will make use instead of the prescription (1.59) for L(1).

Indeed, making use of this prescription, it can be shown that the second term in the RHS of the

estimate (1.51) is consistent with the constraint J̄ = 1 in the incompressibility limit. However, the

first term in the estimate is still inconsistent with the exact incompressibility constraint. To address

this issue, we propose to split up the energy functions of the constituent phases into “dilatational”

and “distortional” parts, and homogenize them, separately. In this way, the dilatational contribu-

tion to the effective energy function can be obtained exactly, while the distortional contribution may

still be computed approximately using the tangent second-order procedure, presented in Section 1.3.

Despite the fact that the splitting of the energy functional in general entails an approximation in

the calculation of the effective stored-energy function, satisfaction of the exact incompressibility con-

straint can be ensured. With this objective in mind and without loss of generality, it proves helpful

to introduce the following form for the strain-energy function of the constituent phases, namely,

W (r)(F) = W (r)
µ (F) +

1

2
µ′(r)(J − 1)2, (1.60)

where the parameter µ′(r) denotes the Lamé modulus of the phases in the infinitesimal strain regime,

which in order to recover incompressible behavior (J → 1), will be taken to tend to infinity. Also,

W
(r)
µ is that part of the stored-energy function W (r) not depending on µ′(r). The effective stored-

energy function of the nonlinear composite, defined by Eq. (1.3), may then be approximated as

Ŵ (F̄) ≈ Ŵµ(F̄) + Ŵµ′(F̄), (1.61)

where

Ŵµ(F̄) = stat
F∈K (F̄)

N∑

r=1

c(r)
〈
W (r)

µ (F)
〉(r)

, (1.62)

and

Ŵµ′(F̄) =
1

2

(
stat

F∈K (F̄)

N∑

r=1

c(r)µ′(r)
〈
(J − 1)2

〉(r)
)
. (1.63)

Making use of results from Ponte Castañeda (1989) for “elastic fluid” composites, the expression
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for Ŵµ′ can be evaluated exactly as

Ŵµ′(F̄) =
1

2
µ̃′
R(J̄ − 1)2, (1.64)

where

µ̃′
R =

[
N∑

r=1

c(r)
(
µ′(r)

)−1
]−1

(1.65)

is the effective dilatational modulus in the ground state of the composite.

Now, by restricting attention to the two-phase rigidly reinforced composite, we apply the second-

order procedure, developed in the prior subsection, to the distortional part of energy in (1.61). Thus,

making use of the estimate (1.51) for Ŵµ(F̄), it follows that

Ŵµ(F̄) = (1− c)W (1)
µ (F̄(1)) +

1

2
(F̄− R̄(2)) ·T (F̄− R̄(2)). (1.66)

where, by means of (1.54), the kinematical equation for R̄(2), associated with (1.62), can be written

as {
(R̄(2))T

[
T (F̄− R̄(2))

]
+ c (R̄(2))T S(1)

µ (F̄(1))
}
Skew

= 0, (1.67)

where S
(1)
µ (F) = ∂W

(1)
µ (F)

/
∂F. Moreover, we need an appropriate prescription for the modulus

tensor L(1) in the expressionT = L̃−(1−c)−1L(1) used in the estimates (1.66) and (1.67). Motivated

by the the choice (1.59), here we will use the prescription

L(1) =
∂2W

(1)
µ

∂F∂F

∣∣∣∣∣
F=F̄

+
1

2
µ′(1) ∂

2[(J − 1 )2]

∂F∂F

∣∣∣∣
F=F̄

. (1.68)

Note that the second term (depending on µ′(1)) is needed to be able to enforce the incompressibility

constraint in the LCC.

Next, specializing to rigid behavior for the inclusions in the “dilational” part of the effective

stored-energy function of the two-phase composite, we have that µ̃′
R = (1−c)−1µ′(1), and accordingly,

the following estimate is obtained for Ŵµ′(F̄)

Ŵµ′(F̄) =
1

2(1− c)
µ′(1)(J̄ − 1)2. (1.69)

Finally, making use of expressions (1.66) and (1.69) for the two-phase, rigidly reinforced elas-

tomers, the second-order estimate (1.61) reduces to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1)) +

1

2
(F̄− R̄(2)) ·T (F̄− R̄(2)) +

1

2(1− c)
µ′(1)(J̄ − 1)2. (1.70)

Note that the approximate equality has been replaced here by a standard equality, and that the

particle rotation R̄(2) is still given by (1.67). Naturally, the expression (1.70) for the effective

stored-energy function of the reinforced elastomer can be used, in particular, together with the
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Willis estimate (1.55) for the LCC, to obtain the result

Ŵ (F̄) = (1 − c)W (1)
µ (F̄(1)) +

1

2

c

1− c
(F̄− R̄(2)) ·E (F̄− R̄(2)) +

1

2(1− c)
µ′(1)(J̄ − 1)2, (1.71)

where {
(R̄(2))T [E (F̄− R̄(2))] + (1− c)(R̄(2))T S(1)

µ (F̄(1))
}
Skew

= 0, (1.72)

and E is given by expression (1.57).

At this point, it is expedient to make the following remarks concerning some features of the

estimates (1.71) and (1.72) for rigidly reinforced elastomers:

1. As was also the case for the earlier tangent second-order estimate in Ponte Castañeda and

Tiberio (2000), the new estimate (1.71) may blow up at some finite values of F̄. Depending

on the inclusion volume fraction and initial configuration of the microstructure, the quantity

J̄ (1) = det(F̄(1)) can become zero at finite values of the deformation (see relation (1.48)),

causing certain terms in the expression W
(1)
µ (F̄(1)) for the estimate (1.71) to blow up. As

discussed by Ponte Castañeda and Tiberio (2000), this phenomenon can be interpreted as lock

up for the composite, which is due to the the fact that sufficiently large deformations would

be expected to bring the rigid inclusions into contact with each other leading to strong stiffing

of the composite.

2. In the limit of infinitesimal strains (F̄ → I), the estimate (1.71) recovers the corresponding

linear-elastic Willis estimate (Willis, 1977; Ponte Castañeda and Willis, 1995). The resulting

energy can be written as Ŵ (F̄) = 1/2 ε̄. L̃L · ε̄, where ε̄ denotes the macroscopic infinitesimal

strain tensor and L̃L is the effective moduli tensor in the context of linear elasticity. Also, in

this limit, the solution of equation (1.72) agrees exactly with the corresponding prediction for

the infinitesimal rotation of the particles (Kailasam and Ponte Castañeda, 1998), as given by

R̄
(2)
L = I+ ω̄ − RL P−1

L ε̄, (1.73)

where ω̄ stands for the macroscopic infinitesimal rotation tensor, and RL and PL are the well-known

Eshelby tensors in the context of small strains and rotations (see Eqs. (15) and (19) in Kailasam

and Ponte Castañeda (1998)).

Incompressible Matrix

The estimate (1.70), together with (1.67), and relation (1.68) for L(1) (used in expression (1.43) for

T) holds for composites with a compressible matrix phase characterized by the stored-energy function

(1.60). However, in the limit of incompressible behavior for the matrix, i.e., when µ′(1) → ∞, the

estimate (1.70) (unlike the earlier estimate (1.51)) is found to be consistent with the exact overall
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incompressibility constraint (J̄ = 1), and reduces to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1)) +

1

2
(F̄− R̄(2)) ·TI (F̄− R̄(2)), (1.74)

where

TI = lim
µ′(1)→∞

[
L̃− (1− c)−1L(1)

]
, (1.75)

while the equation for R̄(2) reduces to

{
(R̄(2))T [TI (F̄− R̄(2))] + c (R̄(2))T S(1)

µ (F̄(1))
}
Skew

= 0. (1.76)

For the special case of the Willis estimate for L̃, the expression (1.74) further simplifies to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1)) +

1

2

c

1− c
(F̄− R̄(2)) · EI (F̄− R̄(2)), (1.77)

where

EI = lim
µ′(1)→∞

(P−1 − L(1)), (1.78)

while the corresponding equation for the rotation R̄(2) reduces to

{
(R̄(2))T [EI (F̄− R̄(2))] + (1− c)(R̄(2))T S(1)

µ (F̄(1))
}
Skew

= 0. (1.79)

For completeness, we note that the macroscopic stress tensor S̄(F̄) = ∂Ŵ (F̄)/∂F̄ associated with

the effective stored-energy function (1.77) may be written as

S̄(F̄) = S(1)
µ (F̄(1))(III − c ḡ(2)) + ...

+
c

1− c

{[
EI(F̄− R̄(2))

]
Ḡ(2) +

1

2
(F̄− R̄(2))

[
(F̄− R̄(2))YI

]}
− pF̄−T , (1.80)

where p stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint,

and YI is the sixth-order tensor with components

Y I
ijklpq =

∂Eijkl

∂F̄pq

∣∣∣∣
µ′(1)→∞

= −
(
P−1
ijmn

∂Pmnrs

∂F̄pq
P−1
rskl +

∂L
(1)
ijkl

∂F̄pq

)∣∣∣∣∣
µ′(1)→∞

. (1.81)

In addition, Ḡ(2) is a fourth-order tensor with the following indicial representation

Ḡ
(2)
ijkl = Iikjl − ḡ

(2)
ijkl . (1.82)

where ḡ
(2)
ijkl = ∂(R̄(2))ij

/
∂F̄kl. Note that a tensorial equation for the components of the fourth-order

tensor ḡ(2) can be deduced from the kinematical equation (1.79), which can be written in indicial
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form as

{
ḡ
(2)
piklE

I
pjrs(F̄rs − R̄(2)

rs ) + R̄
(2)
pi Y

I
pjrskl(F̄rs − R̄(2)

rs ) + R̄
(2)
pi E

I
pjrsḠ

(2)
rskl

+
[
(1 − c)ḡ

(2)
pikl(S

(1)
µ )pj + R̄

(2)
pi (L

(1)
µ )pjrs(Irskl − c ḡ

(2)
rskl)

]}∣∣∣
[ij]kl

= 0, (1.83)

where Aijkl |[ij]kl = (Aijkl − Ajikl)/2, and the tensors S
(1)
µ and L

(1)
µ are evaluated at F̄(1). On the

other hand, the derivatives ∂Pijkl/∂F̄pq in (1.81) are calculated via

∂Pijkl

∂F̄pq
=

1

4π |Z0|

∫

|ξ|=1

∂Hijkl

∂F̄pq

[
ξT (ZT

0 Z0)
−1ξ
]−3

2 dS. (1.84)

In turn, in this expression the derivatives ∂Hijkl/∂F̄pq can be evaluated by recalling the relation

between the tensor H and L(1) to obtain the result

∂Hijkl

∂F̄pq
=
∂Bik

∂F̄pq
ξjξl = −Bim

∂Kmn

∂F̄pq
Bnk ξjξl = −BimBnkL

(1)
mrnspq ξjξl ξrξs, (1.85)

where LLL
(1) is the sixth-order elastic modulus tensor defined by LLL

(1)(F) = ∂3W (1)(F)
/
∂F ∂F∂F

(Ogden, 1997) evaluated at F̄.

1.4.3 Dilute Concentrations

Relations (1.74) and (1.76) provide TSO estimates for (rigid) particle-reinforced elastomers under

general loading in the finite concentration regime. In this subsection, we specialize these results for

dilute concentrations of the particles, which is an important limiting case both for theoretical and

practical reasons. Mathematically speaking, we carry out an asymptotic expansion of the estimates

(1.74) and (1.76) for c ≪ 1. To this end, we assume a regular perturbation expansion for F̄(1) in c,

as given by

F̄(1) = F̄+ c(F̄− R̄
(2)
0 ) + c2(F̄− R̄

(2)
0 − R̄

(2)
1 ) +O(c3), (1.86)

which is obtained by assuming that R̄(2) = R̄
(2)
0 + cR̄

(2)
1 +O(c2) and employing Eq. (1.48) for F̄(1).

In addition, keeping in mind that the tensor L(1) is evaluated at F̄, and is therefore independent of

the volume fraction, the tensor L̃ can be assumed to have the following asymptotic expansion about

c = 0:

L̃ = L(1) + c L̃1 +O(c2). (1.87)

Next, substituting (1.86) and (1.87) into (1.74), and expanding the resulting expression for small

values of c, yields the result

ŴDilute(F̄) = W (1)
µ (F̄) + c

{
(F̄− R̄

(2)
0 ) · S(1)

µ (F̄)−W (1)
µ (F̄)

+
1

2

[
(F̄− R̄

(2)
0 ) · (L̃1 − L(1))(F̄− R̄

(2)
0 )
]}

+O(c2). (1.88)
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Similarly, the kinematical constraint (1.76) leads to

{
(R̄

(2)
0 )T · [(L̃1 − L(1))(F̄− R̄

(2)
0 )] + (R̄

(2)
0 )T S(1)

µ (F̄)
}
Skew

+O(c) = 0. (1.89)

Moreover, using the Willis estimate (1.55) for the LCC, the TSO estimate (1.88) specializes to

ŴDilute(F̄) = W (1)
µ (F̄) + c

{
(F̄− R̄

(2)
0 ) · S(1)

µ (F̄)−W (1)
µ (F̄)

+
1

2

[
(F̄− R̄

(2)
0 ) · EI(F̄− R̄

(2)
0 )
]}

+ O(c2), (1.90)

where the equation (1.89) for R̄
(2)
0 takes the form

{
(R̄

(2)
0 )T [EI(F̄− R̄

(2)
0 )] + (R̄

(2)
0 )T S(1)

µ (F̄)
}
Skew

+O(c) = 0. (1.91)

It is worth mentioning that these results can be regarded as generalization of Eshelby results (Es-

helby, 1957) for a composite material consisting of dilute concentrations of aligned, rigid ellipsoidal

inclusions in a nonlinear hyperelastic matrix. As is well known, these dilute estimates depend only

on the volume fraction (to first order), shape and orientation of the ellipsoidal inclusions, but not

on the relative positions of the inclusions. In other words, the interactions between inclusions is

neglected by the estimates (1.90) and (1.91). As a consequence, the effective stored-energy function

(1.90) does not exhibit lock up at finite strains (unless the matrix does).

The corresponding expressions for the macroscopic stress tensor S̄Dilute(F̄) = ∂ŴDilute(F̄)/∂F̄

are given by

S̄Dilute(F̄) = S(1)
µ (F̄) +

{[
S(1)
µ (F̄) +EI(F̄− R̄

(2)
0 )
]
Ḡ

(2)
0 + L(1)

µ (F̄)(F̄− R̄
(2)
0 )

−S(1)
µ (F̄) +

1

2
(F̄− R̄

(2)
0 )

[
(F̄− R̄

(2)
0 )YI

]}
c− pF̄−T +O(c2), (1.92)

where (Ḡ
(2)
0 )ijkl = Iikjl − (ḡ

(2)
0 )ijkl , and where the quantities (ḡ

(2)
0 )ijkl = ∂(R̄

(2)
0 )ij

/
∂F̄kl are deter-

mined by the equations

{
(ḡ

(2)
0 )piklE

I
pjrs[F̄rs − (R̄

(2)
0 )rs] + (R̄

(2)
0 )piY

I
pjrskl[F̄rs − (R̄

(2)
0 )rs]

+(R̄
(2)
0 )piE

I
pjrs(Ḡ

(2)
0 )rskl + (ḡ

(2)
0 )pikl(S

(1)
µ )pj + (R̄

(2)
0 )pi(L

(1)
µ )pjkl

}∣∣∣
[ij]kl

= 0. (1.93)

where the tensors S
(1)
µ and L

(1)
µ are now evaluated at F̄

1.4.4 Computation of the Tensor EI

The calculation of the effective stored-energy function for incompressible, particulate elastomeric

composites, as well as the associated microstructure evolution (Eqs. (1.77) and (1.79)) under gen-

eral (isochoric) loading conditions, requires the computation of the fourth-order, major-symmetric

tensor EI . This tensor can in principle be estimated (approximately) by setting µ′(1) sufficiently
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large (compared to the initial shear modulus of the matrix µ(1)) in the definition (1.78) for EI . Nev-

ertheless, it is possible to perform a general asymptotic analysis for the computation of the tensor

EI in the incompressibility limit (µ′(1) → ∞), as shown next. This analysis leads to closed-form ex-

pressions for the components of the tensor EI for specific microstructures and/or loading conditions;

more generally, numerical computation of the resulting integrals may be required.

Without loss of generality, and consistent with the definition of the stored-energy function for

the matrix phase as given by (1.60), the modulus tensor L(1) can be decomposed into incompressible

and compressible parts, denoted by L
(1)
µ and L

(1)
−1 respectively, such that

L(1) = ε−1L
(1)
−1 + L(1)

µ , (1.94)

where, by definition, ε = µ(1)/µ′(1) is a small parameter, L
(1)
µ = ∂2W

(1)
µ

/
∂F∂F(F̄) and L

(1)
−1 is given

by

L
(1)
−1 = µ(1)[J(2J − 1)F−T ⊗ F−T + J(J − 1)XXX ]

∣∣∣
F=F̄

. (1.95)

It follows from (1.23) that the acoustic tensor associated with (1.94) takes the form

K = ε−1K−1 +Kµ, (1.96)

where K−1 and Kµ are the parts of the acoustic tensor associated with L
(1)
−1 and L

(1)
µ , respectively.

The inverse of the (symmetric) acoustic tensor, B = K−1, can then be calculated by means of the

identity

Bik = K−1
ik =

1

2 det(K)
eirsekpqKrpKsq, (1.97)

where eijk is the permutating tensor of the third-order, and det(K) is given by

det(K) =
1

6
eijkepqrKipKjqKkr. (1.98)

Substituting (1.96) into (1.97) together with (1.98), after some algebra, we find the following ex-

pression for B,

B =
εD1 +D0

εd1 + d0
, (1.99)

where d0 and d1 are given by

d0 =
1

6
eijkepqr [(Kµ)ip(Kµ)jq(K−1)kr + (Kµ)ip(K−1)jq(Kµ)kr + (K−1)ip(Kµ)jq(Kµ)kr ] ,

d1 = det(Kµ) =
1

6
eijkepqr(Kµ)ip(Kµ)jq(Kµ)kr , (1.100)

and the tensors D0 and D1 have components

(D0)ik = eirsekpq(Kµ)rp(K−1)sq,

(D1)ik = eirsekpq(Kµ)rp(Kµ)sq. (1.101)
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Then, expanding Eq. (1.99) to second order in ε, we obtain

B = B0 + εB1 + ε2B2 +O(ε3), (1.102)

from which it is straightforward to deduce that

B0 =
1

d0
D0,

B1 =
1

d0

(
D1 −

d1

d0
D0

)
,

B2 =
d1

(d0)3
(d1D0 − d0D1) . (1.103)

The corresponding expansion for the tensor P can be obtained by making use of Eq. (1.102) in

the definition (1.22) for P, leading to

P = P0 + εP1 + ε2P2 +O(ε3), (1.104)

where the tensors P0, P1, andP2 are given by

(Pq)ijkl =
1

4π |Z0|

∫

|ξ|=1

(Bq)ik ξjξl
[
ξT (ZT

0 Z0)
−1ξ
]− 3

2 dS, q = 0, 1, 2. (1.105)

In general, a Gaussian quadrature technique can be implemented for the numerical integration over

the surface of the unit sphere, |ξ| = 1. Note that the leading-order term in (1.104) is the limiting

value of P in the incompressible matrix limit. Next, we turn to the computation the tensor EI , as

defined by expression (1.78).

In this connection, it is important to remark that the tensor P0 is not of full-rank, meaning there

is no fourth-order tensor (P0)
−1 such that P0(P0)

−1 = (P0)
−1 P0 = I. Hence, to determine EI it is

necessary to carry out an asymptotic analysis for Q = P−1, about ε = 0. For the sake of continuity,

the pertinent derivations are given in Appendix A.1, and here we only spell out the final result of

the asymptotic analysis, which is given by

EI= Q0 − L(1)
µ , (1.106)

where

Q0 = P†
0 (III −P1Q−1) +

3∑

i=1

Wi ⊗V
(1)
i , (1.107)

with

Q−1 =

3∑

i=1

Wi ⊗V
(0)
i . (1.108)

In the above equations, {W1,W2,W3} is a set of second-order tensor spanning the null space of
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P0, while the second order tensors V
(0)
i and V

(1)
i are defined by (Avrachenkov et al., 2001)

V
(0)
i =

1

Wi ·P1Wi
Wi (1.109)

and

V
(1)
i = − 1

Wi ·P1Wi

{
(P1P

†
0)

TWi +
[
Wi.(P2 −P1P

†
0P1)Wi

]
V

(0)
i

}
, (1.110)

where i = 1, 2, 3 (no sum), and where the superscript T denotes the usual transpose of a fourth-

order tensor (i.e., (·)Tijkl = (·)klij). In addition, P†
0 is the Moore-Penrose generalized inverse of P0

satisfying the properties

P0 P
†
0P0 = P0, P†

0 P0P
†
0 = P†

0,

(P0 P
†
0)

T = P0 P
†
0, (P†

0 P0)
T = P†

0 P0. (1.111)

1.5 2-D Application: Reinforced Elastomers with Elliptical

Fibers

In the previous section, we presented a general homogenization procedure to estimate the effective

stored-energy function and the associated evolution of the microstructure for rigidly reinforced elas-

tomeric composites in both the dilute and non-dilute concentration regimes. In this section and the

next, we make use of this procedure to obtain some explicit estimates of the Willis-type for two

specific classes of composites: (1) elastomers reinforced with aligned, cylindrical fibers subjected to

general (transverse) plane-strain loading, and (2) elastomers reinforced with spherical particles sub-

jected to general tri-axial loading. In this section, we will study the first class of composites, while

the second class will be discussed in Section 1.6. (More general, non-spherical particle shapes will be

considered elsewhere.) The variational estimates (1.77) and (1.79) can be employed for fairly general

matrix behavior. Indeed, the stored-energy function W (1), characterizing the constitutive behav-

ior of the matrix, is assumed to be objective, isotropic, strictly rank-one convex (strongly elliptic)

function of the deformation gradient tensor F. In this work, attention is restricted to stored-energy

functions of the generalized neo-Hookean type

W (1)(F) = g(I) + h(J) +
1

2
µ′(1)(J − 1)2, (1.112)

where I = tr(C) and the material functions g(I) and h(J) are assumed to be twice continuously

differentiable satisfying the conditions: g(3) = h(1) = 0, gI(3) = µ(1)/2, hJ (3) = −µ(1), and

4gII(3)+ hJJ (1) = µ(1), in which the subscripts I and J stand for partial differentiation with respect

to the invariants I and J, respectively. The energy form (1.112) has been shown to provide reasonably

good agreement with experimental data for rubberlike materials (Ogden, 1997). A well-known

example of the general form (1.112), which captures the limiting chain extensibility of elastomers,
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is the (compressible) Gent model (Gent, 1996), expressed by

W (1)(F) = −Jm µ(1)

2
ln

(
1− I − 3

Jm

)
− µ(1) ln(J) +

1

2

(
µ′(1) − 2

µ(1)

Jm

)
(J − 1)2, (1.113)

where the dimensionless parameter Jm is the limiting value for I − 3 at which the elastomer locks

up. It should be remarked that the strong ellipticity of the Gent model (1.113) is satisfied for

all deformations by the conditions: µ(1) > 0, Jm > 0, µ′(1) > 2µ(1)/Jm. Note that the Gent

model (1.113) reduces to the compressible neo-Hookean model, which never locks up, in the limit as

Jm → ∞.

It should be emphasized that, different from the previously discussed lock-up phenomenon for

the composite, the lock up associated with the parameter Jm is due to the elastomeric character of

the matrix stemming from the fact that polymeric chains of the rubbery matrix become inextensible

when they experience a certain strain level. Henceforth, for definiteness, we will refer to the former

lock up as geometric lock up (GL), and to latter as material lock up (ML). By the same token,

the macroscopic deformation gradients at which the geometric and material lock up occur are,

respectively, denoted by F̄GL and F̄ML. It is emphasized that the ML is already present in a

homogeneous (Gent) matrix and enhanced with the reinforcement; however, the GL disappears

in the limit of dilute particle concentration. It can be verified that the blow-up in the estimate

(1.77) because of the GL or ML is caused only by the first term in (1.77), and, consequently, for a

composite with a Gent matrix, the GL and ML respectively take place, when the following conditions

are satisfied

det(F̄− cR̄(2)) = 0, (1.114)

tr

[
C̄− 2cF̄T R̄(2) − 2c

(
R̄(2)

)T
F̄+ cI

]
= Jm + 3, (1.115)

where C̄ = F̄T F̄. It should be remarked that both lock-up phenomena are affected by the mi-

crostructure evolution thorough R̄(2). It is obvious that the lock-up strain for the composite is

determined by F̄lock = min{F̄GL, F̄ML}. In fact, depending on the underlying microstructure in

the undeformed configuration and extensibility of the rubbery matrix (characterized by the param-

eter Jm), the composite may lock up because of either condition (1.114) or condition (1.115). It

is remarked that for composites with a neo-Hookean matrix (where Jm → ∞) F̄lock = F̄GL. It is

also worth mentioning that, for dilute concentration conditions, the effective stored-energy function

(1.90) for reinforced Gent elastomers locks up at the same deformation as the Gent matrix, as given

by the condition tr(C̄) = Jm + 3.

1.5.1 Plane-Strain Loading of Fiber-Reinforced Elastomers

In this section, we obtain estimates for the effective behavior of hyperelastic composites made of a

rubbery matrix and rigid and axially aligned fibers. It is assumed that the cylindrical fibers have

an elliptical cross-section and are distributed with elliptical symmetry in the plane transverse to the

fiber direction. Consistent with earlier discussions, the aspect ratio of both the fiber cross-section

and distribution are taken to be given by ω. Furthermore, attention is restricted to macroscopic
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Figure 1.1: Rigidly-reinforced composite under plane-strain loading. (a) Two-dimensional represen-
tation in the transverse plane. (b) Three-dimensional representation of a typical reinforcing fiber.

plane-strain deformation. Assume that the composite undergoes a uniform deformation gradient F̄

with the following matrix representation

[
F̄ij

]
=

(
cos(ψ̄) − sin(ψ̄)

sin(ψ̄) cos(ψ̄)

)(
cos(θ̄) − sin(θ̄)

sin(θ̄) cos(θ̄)

)(
λ̄1 0

0 λ̄2

)(
cos(θ̄) sin(θ̄)

− sin(θ̄) cos(θ̄)

)
,

(1.116)

with respect to the fixed Cartesian basis {ei}, i = 1, 2. In the above relation, λ̄1 and λ̄2 are the

principal stretches and θ̄ denotes the angle (positive anticlockwise) of the in-plane Lagrangean stretch

axes relative to the basis {ei}. Also, ψ̄ serves to quantify the rigid-body rotation (or “continuum

spin”). A schematic representation of the composite microstructure and loading parameters is

depicted in Figure 1.1(a) for ψ̄ = 0. The corresponding 3-D illustration, Figure 1.1(b) shows a

typical (embedded) long cylindrical fiber under the plane-strain loading.

It should be remarked that constitutive models for this class of fiber-reinforced elastomers have

already been derived by Lopez-Pamies and Ponte Castañeda (2006b) making use of the second-order

(GSO) homogenization theory. Analytical results were given for general matrix behavior of the form

(1.112) in the limit of an incompressible matrix. These results, which will be spelled out later,

have been shown to be in good agreement with corresponding FEM numerical results available in

the literature for special types of loading conditions (Moraleda et al., 2009). Hence, to gain some

insight into the accuracy of the variational TSO estimates, described in the previous section, we will

also show comparisons with the GSO estimates and FEM results for this class of composites in this

section.

The constitutive behavior for the matrix phase is assumed to obey the Gent model given in
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(1.113).The computation of the TSO estimate (1.56), requires the calculation of the components of

the tensor P for the cylindrical microstructure. The components of P, in the rectangular Cartesian

basis {ei}, i = 1, 2, 3, when the fibers are aligned in the direction N = e3, are given by

Pijkl =
ω

2π

∫ 2π

0

Hijkl(ξ1, ξ2, ξ3 = 0)

ξ21 + ω2ξ22
dθ , (1.117)

where Hijkl = (L
(1)
ipkqξpξq)

−1 ξj ξl with ξ1 = cos(θ), and ξ2 = sin(θ). In general, it is not possible

to obtain analytical expressions for the components of the P tensor associated with matrix form

(1.113) and loading condition (1.116). But it is easy to compute numerically the tensor P, as well

as the associated tensor E.

In this section, we will focus our attention to incompressible Gent matrix phases obtained from

expression (1.113) in the limit as µ′(1) → ∞. This requires the computation of the tensor EI via

the procedure given in Subsection 1.4.2. Then, the calculated components of the tensor EI can be

substituted in Eqs. (1.77) and (1.79) to obtain the numerical values of the effective stored-energy

function and the associated fiber rotation. It should be remarked that for the aligned loading case

(θ̄ = 0), the components of the tensor EI can be expressed explicitly, since in this case the integrals in

(1.105) can be calculated analytically. This leads to a closed-form expression for the effective energy,

but the expression is quite lengthy and will not be included here for brevity. It is also important

to mention that when the Gent behavior (1.113) is specialized to neo-Hookean behavior (equivalent

to the limit of Jm → ∞), the associated integrals in (1.105) can be performed analytically. In this

case, derivations of closed-form expressions for the EI -tensor components and subsequently for the

effective potential energy are feasible as discussed next.

1.5.2 Explicit Results for an Incompressible, neo-Hookean Matrix

In this subsection, we assume that the matrix phase behavior is characterized by a compressible

neo-Hookean stored-energy function, given by

W (1)(F) =
1

2
µ(1)(I − 2)− µ(1)ln J +

1

2
µ′(1)(J − 1)2, (1.118)

where the parameters µ(1) and µ′(1) denote the standard Lamé moduli of the matrix at zero strain. As

mentioned earlier, (1.118) is the reduced form of (1.113) for the plane-strain loading when Jm → ∞.

In this case, all the in-plane components of the tensor P can be computed analytically and the

results are provided in Appendix A.2. These results can then be used to perform an asymptotic

expansion for the components of the tensor E =(P−1−L(1))|
F=F̄

in the incompressibility limit (i.e.,

µ′(1) → ∞), leading to the following expressions for the components of EI , as defined by expression

(1.78), namely,

E I
1111 =

1

2

µ(1)

λ̄1λ̄2ω
Ω1, E I

2222 =
1

2

µ(1)ω

λ̄1λ̄2
Ω2, E I

1212 =
1

2

µ(1)ω

λ̄1λ̄2
Ω1,

E I
2121 =

1

2

µ(1)

λ̄1λ̄2ω
Ω2, E I

1121 = −1

2

µ(1)

λ̄1λ̄2ω
Ω3, E

I
2212 = −1

2

µ(1)ω

λ̄1λ̄2
Ω3,
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E I
1122 = E I

1221 = E I
1112 = E I

2221 = 0, (1.119)

where

Ω1,2 = (λ̄1 + λ̄2)
{
λ̄1 + λ̄2 ∓ (λ̄1 − λ̄2)cos[2(ψ̄ + θ̄)]

}
,

Ω3 = [(λ̄1)
2 − (λ̄2)

2] sin[2(ψ̄ + θ̄)]. (1.120)

It then follows from expression (1.77) that the effective stored-energy function Ŵ (F̄) of the

rigidly reinforced composite reduces to

Ŵ (F̄) = (1− c)W (1)(F̄(1)) +
µ(1)c(1 + λ̄21)

4ω (1− c)λ̄21

×
{
2(1 + ω2)(λ̄21 − 2λ̄1 cos(φ) + 1) + (ω2 − 1)(λ̄21 − 1)

[
cos(2θ̄ − 2φ)− cos(2θ̄)

]}
, (1.121)

where

W (1)(F̄(1)) = µ(1) λ̄
4
1 − 2cλ̄1(1 + λ̄21) cos(φ)− 2λ̄21 + 4cλ̄21 + 1

2λ̄21(1− c)2

− µ(1) ln

[
(1 + c2)λ̄1 − c(1 + λ̄21) cos(φ)

λ̄1(1− c)2

]
.

In these relations, the angle φ, denoting the in-plane rigid body rotation of the fibers relative to the

macroscopic rotation (i.e., φ = ψ̄(2) − ψ̄), is obtained from the kinematical relation

2ω (1− c)λ̄21 cos(φ)∆1 + 2λ̄1
[
(λ̄21 + 1)(1 + ω2) + ω (1− c)λ̄1∆2

]
sin(φ)

+ (λ̄41 − 1)(ω2 − 1) sin(2θ̄ − 2φ) = 0, (1.122)

where

∆1 = −2c2
sin(φ)[(1 + λ̄21) cos(φ) − 2λ̄1]

(1− c)[(1 + c2)λ̄1 − c(1 + λ̄21) cos(φ)]
,

∆2 = c
[cos(φ)(1 + λ̄21)− 2λ̄1][2cλ̄1 cos(φ)− λ̄21 − 1]

(1 − c)λ̄1[(1 + c2)λ̄1 − c(1 + λ̄21) cos(φ)]
.

It is emphasized that the estimate (1.121) is consistent with the overall incompressibility constraint,

which in this case reduces to λ̄1λ̄2 = 1. It is also remarked that the energy function (1.121) is

independent of the angle ψ̄, which is consistent with the objectivity of the energy function Ŵ (F̄),

requiring that Ŵ (F̄) = Ŵ (U), where U = (F̄T F̄)1/2 is the macroscopic stretch tensor.

The above results can be easily specialized for dilute concentrations by expanding about c = 0.

Thus, keeping terms of order c in Eq. (1.121), the estimate for the effective stored-energy function
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Ŵ (F̄) is given by

ŴDilute(F̄) =
1

2
µ(1)(λ̄21 + λ̄−2

1 − 2)

+
1

2
µ(1)

{
1

λ̄21ω

[
2ω (1 + λ̄41) + (1 + ω2)(1 + λ̄21)[(1 + λ̄21)− 2λ̄1cos(φ0)]

+(λ̄41 − 1)(ω2 − 1)sin(φ0)sin(2θ̄ − φ0)− 4ωλ̄21
]
−(λ̄21 + λ̄−2

1 − 2)
}
c +O(c2). (1.123)

where φ0 = ψ̄
(2)
0 − ψ̄ (where the angle ψ̄

(2)
0 denotes the total in-plane rigid body rotation of fibers

in the dilute concentration regime) is given by

2λ̄1 (1 + ω2) sin(φ0)− (λ̄21 − 1)(ω2 − 1) sin[2(φ0 − θ̄)] + O(c) = 0. (1.124)

The estimates (1.123) and (1.124) are valid for arbitrary aspect ratios ω ≥ 1 of fibers. For the special

case of the circular cross-section (ω = 1) for the fibers (which also implies an isotropic distribution

of the fibers), the in-plane behavior of the composite is isotropic and the stored-energy function

(1.123) no longer depends on the loading angle θ̄. In this case, it is a simple matter to deduce that,

the TSO estimate (1.123) reduces to

ŴDilute(F̄) =
1

2
µ(1)

[
(λ̄21 + λ̄−2

1 − 2) + (2λ̄−1
1 + 3λ̄−2

1 + 3)(λ̄1 − 1)2c
]
+O(c2). (1.125)

For comparison purposes, we recall in the next subsection the GSO results (Lopez-Pamies and

Ponte Castañeda, 2006b). Although the GSO estimates are expected to be more accurate in general,

they are more difficult to implement, and thus far results are only available for 2-D cases. On the

other hand, as we will see in Section 1.6, the TSO can be used for general 3-D microstructures and

loading conditions.

1.5.3 Generalized Second-Order Estimate

Lopez-Pamies and Ponte Castañeda (2006b) derived an expression for the effective stored-energy

function of the class of fiber-reinforced composites described earlier with matrix behavior (1.112)

and transverse loading conditions (1.116). In the limit of incompressible behavior for the elastomeric

matrix phase (µ′(1) → ∞), the result simplifies to

ŴGSO(F) = (1− c) g(Î ), (1.126)

where

Î =
1

(1 − c)2λ̄21ω

{
c(1 + λ̄21)

2 + [1 + 2 c(c − 2)λ̄21 + λ̄41]ω + cω2 (1 + λ̄21)
2

−c(λ̄41 − 1)(ω2 − 1) sin(φ) sin(φ− 2θ̄)− 2c λ̄(1 + λ̄21)(1 + ω2)cos(φ)
}
.

In this expression, the relative particle rotation angle φ is determined by
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2λ̄1 (1 + ω2) sin(φ)− (λ̄21 − 1)(ω2 − 1) sin[2(φ− θ̄)] = 0. (1.127)

The GSO estimate (1.126) is known (Lopez-Pamies and Ponte Castañeda, 2006b) to be consistent

with the exact incompressibility constraint and expected to be fairly accurate for small to medium

concentrations of fibers.

In the dilute-concentration regime, the GSO estimate (1.126) can be expanded about c = 0 to

obtain the result that

ŴDilute
GSO (F̄) = g(Ī ) +

{
1

λ̄21ω
g ′(Ī )

[
2ω (1 + λ̄41) + (1 + ω2)(1 + λ̄21)[(1 + λ̄21)− 2λ̄1cos(φ0)]

+(λ̄41 − 1)(ω2 − 1)sin(φ0)sin(2θ̄ − φ0)− 4ωλ̄21
]
−g(Ī )

}
c +O(c2 ), (1.128)

where Ī = tr(C̄). The kinematical equation (1.127) is independent of the volume fraction of fibers

and also provides the rotation of fibers in the dilute concentration regime.

Specializing the estimate (1.128) for a neo-Hookean matrix, the same second-order estimate

is obtained as the dilute TSO estimate (1.123). Moreover, the estimates (1.124) and (1.127) for

the particle rotation also agree exactly in this case. Consequently, the agreement of the TSO

estimates (1.123) and (1.124) with the corresponding GSO results in the dilute concentration regime

strongly suggests that the TSO estimates should be also be quite accurate for incompressible, rigidly-

reinforced composites with more general microstructures (at least) in the dilute concentration regime.

As we will see in the next subsection, differences can arise between the new TSO and GSO estimates

for finite volume fractions, but only at sufficiently large stretches.

1.5.4 Discussion of the Results

In the remainder of this section, we present some illustrative results for the new TSO estimates for

plane-strain loading of 2-D fiber-reinforced elastomers. For comparison purposes, the corresponding

GSO results of Lopez-Pamies and Ponte Castañeda (2006b) are also included in the figures and

shown with dashed curves. For simplicity, we restrict our attention to incompressible (µ′(1) → ∞)

Gent and neo-Hookean matrix phases, circular fibers (ω = 1) and pure shear loading (θ̄ = ψ̄ = 0,

λ̄1 = λ̄−1
2 = λ̄). Results are provided for several volume fractions, c, and are normalized by µ(1).

Figure 1.2 shows the new TSO estimates for the effective response of the reinforced neo-Hookean

elastomers, as well as the corresponding GSO estimates. Results are shown for three different fiber

volume fractions c = 0.1, 0.2, 0.3, as a function of the macroscopic stretch λ̄. Part (a) shows the

effective energy Ŵ , and part (b), the corresponding macroscopic stress S̄ = dŴ/dλ̄. The new TSO

results are see to be quite close to the GSO estimates for a range of λ̄, but they start to deviate from

the GSO results, as the average stretch approaches the “geometric’[’ lock-up condition (1.114) for

the TSO estimates (i.e., λ̄ → 1/c). For instance, it is seen for c = 0.1 (where the lock-up stretch is

10), the TSO model predicts very similar results for the effective energy as well as the macroscopic

stress to those for the GSO in the range 1 ≤ λ̄ ≤ 6. On the other hand, for c = 0.3 (where the

lock-up stretch is 3.33), the agreement is very good only up to a stretch of 2.5.

Figure 1.3 shows a more detailed comparison of the new TSO estimates with earlier analytical
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Figure 1.2: New tangent second-order (TSO) and generalized second-order (GSO) estimates for the
effective response of a rigidly fiber-reinforced elastomer with an incompressible neo-Hookean matrix
under pure shear loading. The results are shown as a function of the applied stretch λ̄ for different
values of the fiber volume fraction. (a) The effective energy Ŵ . (b) The corresponding macroscopic

stress S̄ = dŴ/dλ̄.

estimates and numerical simulations for neo-Hookean elastomers reinforced by rigid fibers of circular

cross section. Results are provided for two volume fractions: (a) c = 0.2, and (b) c = 0.3. The GSO

(2006) estimates correspond to the stored-energy function (1.126), while the GSO (2004) and TSO

(2000) estimates correspond to earlier versions of the GSO (Lopez-Pamies and Ponte Castañeda,

2004b) and TSO (Ponte Castañeda and Tiberio, 2000) estimates, respectively. On the other hand,

the LAM estimates refer to the sequentially laminated results of deBotton (2005), while the FEM

results refer to the finite element simulations of Moraleda et al. (2009). The main observation from

these plots is that while the GSO estimate provides the best agreement with the FEM simulations,

the new TSO estimate also provides excellent agreement with the FEM results (up to the point

where the simulations were carried out), especially for the smaller fiber concentrations. For the

higher volume fraction (c = 0.3) the new TSO estimates tend to overestimate the FEM results at

sufficiently large stretches, but are still quite good for stretches of less than 1.5. On the other hand,

the LAM estimates tend to underestimate the response of the reinforced elastomers for sufficiently

large strains, even if the differences relative to the FEM are relatively small. Finally, it can be seen

that the new TSO estimates are much improved relative to the earlier version (Ponte Castañeda

and Tiberio, 2000) of the TSO estimates, and even compared to an earlier version (Lopez-Pamies

and Ponte Castañeda, 2004b) of the GSO estimates. The main conclusion from these comparisons

is that the new way of handling the matrix incompressibility limit presented in Subsection 1.4.2

actually works quite well at least when the fiber concentrations and/or stretches are not too large.

Next, for completeness, we consider fiber-reinforced composites using the Gent model for the
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Figure 1.3: The effective response of a rigidly fiber-reinforced elastomer with an incompressible
neo-Hookean matrix under pure shear loading. The macroscopic stress S̄ = dŴ/dλ̄ is plotted as a
function of the applied stretch λ̄ for (a) c = 0.2, and (b) c = 0.3. Comparisons are shown between
the new TSO estimate (1.121), the estimate (1.126) of Lopez-Pamies and Ponte Castañeda (2006b)
“GSO (2006)”, the earlier GSO results of Lopez-Pamies and Ponte Castañeda (2004b) “GSO (2004)”,
the earlier TSO results of Ponte Castañeda and Tiberio (2000) “TSO (2000)”, the laminate results
of deBotton (2005) “LAM”, and the FE simulations of Moraleda et al. (2009) “FEM”.

matrix and the same loading conditions as the previous case. The results for the macroscopic stress

S̄ = dŴ/dλ̄ are presented in Figs. 1.4(a) and (b) versus the applied stretch λ̄. Figure 1.4(a) shows

the results for composites with fiber concentrations c = 0.1, 0.2, 0.3 for a fixed lock-up parameter

(Jm = 50), while Figure 1.4(b) shows results for Gent matrices with Jm = 50, 100, 500, ∞ for fixed

volume fraction (c = 0.1). The responses of the unreinforced matrix with Jm = 50 and Jm = ∞ are

included respectively in Figs. 4a and 4b for comparison purposes. In addition, the results of the

finite element simulations of Moraleda et al. (2009) for Jm = 50 are also included for comparison

purposes. As can be seen from Figure 1.4(a), the agreement of the new TSO estimates for reinforced

elastomers of the Gent type with the FEM results (and GSO estimates) is quite good for the range of

deformations achieved in the numerical simulations. It should be noted, however, that the TSO (and

GSO) predictions slightly underestimate the response, especially at the higher volume fractions. On

the other hand, as show in Figure 1.4(b), the agreement of the new TSO and earlier GSO estimates

for reinforced Gent elastomers is also quite good, even for fairly large stretches. However, the TSO

estimates are slightly stiffer for intermediate stretches, but eventually become softer than the GSO

estimates as the “constitutive” lock-up condition (1.115) is approached.

Finally, Figure 1.5 presents results for the evolution of the particle orientation under non-aligned

applied loadings for neo-Hookean elastomers reinforced by rigid fibers of elliptical cross section.

Results for the (average) relative rotation φ (see Figure 1) are shown for three different stretching
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Figure 1.4: New tangent second-order (TSO) estimate, generalized second-order (GSO) estimate
(1.126), and the FE simulations of Moraleda et al. (2009) (FEM) for the effective response of a fiber-
reinforced elastomer with an incompressible Gent matrix under pure shear loading. The macroscopic
stress S̄ = dŴ/dλ̄ is depicted as a function of the applied stretch λ̄, for (a) different values of the
fiber volume fraction c with Jm = 50, and (b) different matrix lock-up parameters Jm with c = 0.1.

angles (θ̄ = 5◦, 45◦, and 85◦). Figure 1.5(a) shows comparisons of the new TSO estimates with

the GSO estimates (Lopez-Pamies and Ponte Castañeda, 2006b) for two different fiber aspect ratios

(ω = 2 and 10), and given fiber volume fraction (c = 0.1). The results show that the largest rotations

are generated for the larger aspect ratio (i.e., for ω = 10), when the compressive direction is most

closely aligned with the long fiber axis (i.e., for θ̄ = 5◦), although relatively large stretches are

needed. In addition, the results show excellent agreement between the new TSO and GSO estimates

at this fairly small value of c. This is consistent with the fact that the TSO and GSO equations

((1.127) and (1.124), respectively) for the fiber rotations agree precisely for a neo-Hookean matrix

in the dilute concentration limit. Figure 1.5(b) presents additional comparisons of the new TSO

estimates with the GSO estimates (Lopez-Pamies and Ponte Castañeda, 2006b), as well as with the

FEM numerical simulations of Moraleda et al. (2009) for a volume fraction c = 0.3, and aspect ratio

ω = 2. It can be seen from this plot that the agreement between the TSO homogenization results,

on the one hand, and the FEM numerical results, on the other, is quite good for θ̄ = 45◦ and 85◦,

but less good for θ̄ = 5◦. This may be a consequence of the fact that the FEM results made use of

equisized particles, which at this relatively high value of the fiber concentration may lead to stronger

interactions among the fibers than the TSO results (corresponding to polydisperse distributions of

fibers) can account for. In addition, it is not clear that a sufficiently large number of configurations

has been used in the FEM simulations to generate accurate results by ensemble averaging. Be that

as it may, the TSO homogenization estimates, which were also found to be consistent with the

corresponding GSO results at this higher value of the fiber concentration, are at least qualitatively
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Figure 1.5: The microstructure evolution in a rigidly fiber-reinforced elastomer with an incompress-
ible neo-Hookean matrix under pure shear loading. The relative fiber rotation φ is plotted as a
function of the applied stretch λ̄ for three different stretching angles θ̄ = 5◦, 45◦, and 85◦. (a)
Comparisons between the new TSO estimate (1.122) and the estimate (1.127) of Lopez-Pamies and
Ponte Castañeda (2006b) for the volume fraction c = 0.1, and aspect ratios ω = 2, and 10. (b) Com-
parisons between the new TSO estimate, the GSO estimate and the FEM simulations of Moraleda
et al. (2009) for c = 0.3, and ω = 2.

consistent with the results of the numerical simulations. Clearly, more extensive numerical work will

be necessary to be able to assess the accuracy of the homogenization results in the future.

1.6 3-D Application: Reinforced Elastomers with Spherical

Particles

As we have seen in the previous section, the new TSO procedure can be used to obtain accu-

rate estimates for the macroscopic response and microstructure evolution for transverse loading of

fiber-reinforced elastomers at finite strains, even when the fibers are rigid, corresponding to infinite

contrast, and when the matrix is incompressible, leading to a strongly nonlinear incompressibility

constraint for the composite (which can be recovered exactly by the theory). Although the GSO

procedure (Lopez-Pamies and Ponte Castañeda, 2006a) is expected to lead to even more accurate

predictions, it is more difficult to implement because it makes use of additional information about

the field fluctuations in the linear comparison composite. For this reason, it has not yet been im-

plemented for general (3-D) ellipsoidal particles, especially in the limit of incompressible behavior

for the matrix phase. On the other hand, the new TSO estimates of Section 1.4 for the effective

stored-energy function of particle-reinforced (incompressible) elastomers are applicable for rigid par-

ticles with general ellipsoidal shape and distribution. However, for simplicity, in this section we will
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focus on an application of the TSO theory to particle-reinforced elastomers consisting of a random

and isotropic distribution of spherical rigid inclusions in an isotropic, incompressible matrix phase,

leaving for future work an in-depth investigation of more general ellipsoidal shapes for the particles.

We begin by remarking that, in view of objectivity and the assumed isotropy of the reinforced

elastomer, it suffices to restrict attention to pure stretch deformations F̄ = Ū (i.e., R̄ = I), which,

in the Cartesian basis {ei}, i = 1, 2, 3, can be expressed in the form

F̄ = Ū = λ̄1 e1 ⊗ e1 + λ̄2 e2 ⊗ e2 + λ̄3 e3 ⊗ e3, (1.129)

where λ̄i is the principal stretch in the ei-direction, and the overall incompressibility constraint

λ̄1λ̄2λ̄3 = 1 holds. Under these hypotheses, it can be shown that R̄(2) = I satisfies identically

equation (1.79) for the particle rotation (as expected from the symmetry of the problem), and the

TSO estimate (1.77) for the effective stored-energy function of the reinforced elastomer can be shown

to reduce to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1)) +

c

2(1− c)

[
Λ̄11E

I
1111 + Λ̄22E

I
2222 + Λ̄33E

I
3333

+2
(
Λ̄12E

I
1122 + Λ̄13E

I
1133 + Λ̄23E

I
2233

)]
, (1.130)

where Λ̄ij = (λ̄i − 1)(λ̄j − 1) (i, j = 1, 2, 3).

In this section, we will confine our attention to stored-energy functions of the generalized neo-

Hookean form (1.112) for the matrix phase. As discussed in Subsection 1.4.2, the computation of

the microstructural tensor EI requires the computation of the tensors Pi (i = 0, 1, 2), as defined

by (1.105), which in turn require the determination of the tensors Bi via the tensors D0, D1

and the scalars d0, d1, as provided by relations (1.103). After some algebraic manipulation, it is

straightforward to deduce that the components of the symmetric, second-order tensors D0 and D1

for the matrix behavior (1.112) and the loading condition (1.129) reduce to

(D0)11 = λ̄21
[
(λ̄22ξ

2
3 + λ̄23ξ

2
2)gI +∆2

23 gII ξ
2
2 ξ

2
3

]
,

(D0)22 = λ̄22
[
(λ̄21ξ

2
3 + λ̄23ξ

2
1)gI +∆2

13 gII ξ
2
1 ξ

2
3

]
,

(D0)33 = λ̄23
[
(λ̄21ξ

2
2 + λ̄22ξ

2
1)gI +∆2

12 gII ξ
2
1 ξ

2
2

]
,

(D0)12 = −
[
λ̄3gI +∆13∆23 λ̄1λ̄2gII

]
ξ1 ξ2,

(D0)13 = −
[
λ̄2gI +∆12∆23λ̄1λ̄3gII

]
ξ1 ξ3,

(D0)23 = −
[
λ̄1gI +∆12∆13λ̄2λ̄3gII

]
ξ2 ξ3,
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(D1)11 = g2I + (λ̄22ξ
2
2 + λ̄23ξ

2
3)gIgII + hII(D0)11,

(D1)22 = g2I + (λ̄21ξ
2
1 + λ̄23ξ

2
3)gIgII + hII(D0)22,

(D1)33 = g2I + (λ̄21ξ
2
1 + λ̄22ξ

2
2)gIgII + hII(D0)33,

(D1)12 = −λ̄3ξ1 ξ2gIgII + hII(D0)12,

(D1)13 = −λ̄2ξ1 ξ3gIgII + hII(D0)13,

(D1)23 = −λ̄1ξ2 ξ3gIgII + hII(D0)23, (1.131)

where ∆ij = (λ̄2i − λ̄2j ), i, j = 1, 2, 3. In addition, the expressions for d0 and d1 are given by

d0 = (λ̄22λ̄
2
3 ξ

2
1 + λ̄21λ̄

2
3 ξ

2
2 + λ̄21λ̄

2
2 ξ

2
3)g

2
I +

[
λ̄23∆

2
12 ξ

2
1ξ

2
2 + λ̄22∆

2
13 ξ

2
1ξ

2
3 + λ̄21∆

2
23 ξ

2
3 ξ

2
2

]
gIgII ,

d1 = g3I + hIId0 + (λ̄21 ξ
2
1 + λ̄22 ξ

2
2 + λ̄23 ξ

2
3)g

2
IgII . (1.132)

For general matrix behavior, the integrals involved in the calculation of the tensors Pi in ex-

pressions (1.105) cannot be performed analytically. Therefore, the double integrals are computed

numerically via Gaussian quadrature, with a sufficiently high numbers of Gauss points. Thus, using

expressions (1.131) and (1.132), and setting Z0= I for the spherical inclusions, the integrals may be

easily computed by means of polar cylindrical coordinates

ξ1 =
√
1− z2 cos(θ), ξ2 =

√
1− z2 sin(θ), ξ3 = z, (1.133)

which vary over the intervals 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. After calculation of the tensors Pi, the

tensor EI can be calculated via the relations (1.106) to (1.110) (see also Appendix A.1). Finally,

the computation of the effective stored-energy function (1.130) may be completed by means of the

relevant components of the tensor EI .

Although the integrals (1.105) for the tensors Pi require numerical integration in general, they

can actually be computed analytically at least for Gent behavior (1.113) for the matrix phase and

axisymmetric loading conditions. In this case, a closed-form estimate may be obtained for the macro-

scopic stored-energy function (1.130) of the particle-reinforced elastomer. However, the expressions

are too lengthy to be included here. Instead, closed-form, analytical results are provided for the

special case of neo-Hookean behavior for the matrix phase in the next subsection.

1.6.1 Analytical Results for (Incompressible) neo-Hookean Elastomers

In this section, we provide the specialization of the second-order estimate (1.130) for composite

elastomers with incompressible neo-Hookean matrix phases. In fact, the microstructural tensors

P and E, as defined by expressions (1.22) and (1.57), respectively, can be computed analytically

(Lopez-Pamies and Ponte Castañeda, 2007a,b) for compressible neo-Hookean behavior, and are given

in Appendix A.3. Therefore, the incompressible limit (µ′(1) → ∞) of the tensor E to obtain EI can

be evaluated directly in this case, without the more general procedure outlined in Subsection 1.4.2.

In any event, having obtained the components of EI , the corresponding expression for the TSO

estimate for the effective stored-energy function of the composite with incompressible neo-Hookean
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matrix phase is obtained by substitution into (1.130). The result may be written in the form

Ŵ (F̄) = (1 − c)W (1)
µ (F̄(1))− cµ(1)

2(1− c)

{{
λ̄21λ̄

2
2

[
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, (1.134)

where

W (1)
µ (F̄(1)) =

µ(1)

2

[
3∑

i=1

(
λ̄i − c

1− c

)2

− 3

]
− µ(1) ln

[
(λ̄1 − c)(λ̄2 − c)(λ̄3 − c)

(1− c)3

]
, (1.135)

and the abbreviations

Ia,bc,d = dλ̄72 + cλ̄52 + bλ̄32 + aλ̄2, IIa,bc,d = dλ̄82 + cλ̄62 + bλ̄42 + aλ̄22, (1.136)

(a barred subscript/superscript indicates the corresponding negative coefficient) have been intro-

duced for simplicity. In addition, Ξf and Ξe are given in terms of the incomplete elliptic integrals
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of the first and second kind (Abramowitz and Stegun, 1965), respectively, via

Ξf = F

(√
1− λ̄21λ̄

4
2,

√
λ̄41λ̄

2
2 − 1

λ̄21λ̄
4
2 − 1

)
, Ξe = E

(√
1− λ̄21λ̄

4
2,

√
λ̄41λ̄

2
2 − 1

λ̄21λ̄
4
2 − 1

)
, (1.137)

where the functions F and E are defined by

F (a, b) =

∫ a

0

1√
1− t2

√
1− b2t2

dt, E (a, b) =

∫ a

0

√
1− b2t2√
1− t2

dt. (1.138)

Figure 1.6: Schematic representation of a matrix reinforced by spherical inclusions subjected to
(a) Pure Shear (PS) loading, (b) Uniaxial Tension (UT) loading, and (c) Equibiaxial Tension (ET)
loading.

It is emphasized for completeness that the above estimate is consistent with the macroscopic

incompressibility constraint λ̄1λ̄2λ̄3 = 1, and linearizes properly. Note also that the estimate locks

up whenever any of the stretches λ̄i = c. In addition, it is well worth considering the specializations

of this expression for Pure Shear, Uniaxial Tension and Equibiaxial Tension loading conditions, as

schematically represented in Figure 1.6.
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Pure Shear (PS)

For pure shear loading in the 1–3 plane (cf. Figure 1.6(a)), λ̄3 = 1 and λ̄2 = 1/λ̄1, and the TSO

estimate (1.134) for Ŵ (F̄) simplifies to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1))− 1

2

c

1− c

µ(1)

λ̄21

{{
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f
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}√
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4
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2,3
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]
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}

+
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[
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1̄,1̄
+ 4λ̄1(λ̄

4
1 + λ̄21 + 1)

] [
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4
1 − λ̄21 + 2)− 2λ̄1Φ

1,2
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]}√
1− λ̄−2

1

}}
, (1.139)

where L3 = (λ̄21 − 1)2(λ̄21 + 1), and the compound symbols Φa,b
c,d = aλ̄81 + bλ̄61 + cλ̄41 + dλ̄21 + 1 are

introduced for brevity (a, b, c, d are positive integer numbers, and a bar above the number indicates

a negative sign). Also, Ξf and Ξe reduce to

Ξf = F

(√
1− λ̄−2

1 ,
√
−λ̄21

)
, Ξe = E

(√
1− λ̄−2

1 ,
√
−λ̄21

)
,

where the functions F and E have been defined in (1.138). (Note that although b =
√
−λ̄21 is

complex, the actual integrals in these expressions depend on b through b2 = −λ̄21, which is real.)

Uniaxial Tension (UT)

For uniaxial loading in the e1−direction (cf. Figure 1.6(b)), λ̄2 = λ̄3 = λ̄
−1/2
1 , and the TSO estimate

(1.134) for Ŵ (F̄) reduces to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1))− c

1− c
µ(1)

×
{
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7/2
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5
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]
Υ
}

(1.140)

where Υ =
√
(λ̄31 − 1)/λ̄31.

38



Equibiaxial Tension (ET)

For equibiaxial loading (cf. Figure 1.6(c)), λ̄3 = λ̄−2
2 = λ̄−2

1 , and the TSO estimate (1.134) reduces

to

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1))− c

1− c
µ(1) λ̄−4

1
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{
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]
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}
. (1.141)

It is worth emphasizing that for UT and ET loadings, the expressions for the effective stored-energy

functions do not contain elliptic integrals. Moreover, it should be mentioned that the effective

stored-energy functions (1.139) to (1.141) are all strongly elliptic (strictly rank-one convex). This

observation can be verified by means of the conditions provided by Zee and Sternberg (1983) for

strong ellipticity of isotropic hyperelastic materials.

1.6.2 Results for Gent Elastomers and Discussion

In this subsection, we present some specific results for the stress-stretch relations arising from the

TSO estimates for general triaxial loading of elastomeric composites consisting of Gent (or neo-

Hookean) elastomers reinforced by isotropic distributions of spherical particles. As discussed in the

previous section for the three particular loadings (PS, UT, ET), there is only one loading parameter,

and we will depict all results here as functions of λ̄1 = λ̄. The results correspond to several volume

fractions, c = 0.1, 0.2, 0.3, lock-up parameters, Jm = 50, 100, 500, ∞, and are normalized by the

ground-state shear moduli (µ(1) = 1). It is recalled that the case Jm → ∞ corresponds to an

incompressible neo-Hookean matrix, so that the corresponding results are calculated by making use

of the explicit expressions (1.139) to (1.141).

Figures 1.7 to 1.9 shows plots for the new TSO estimates for the macroscopic stress S̄ = ∂Ŵ /∂λ̄

in the particles-reinforced elastomers, as functions of the applied stretch λ̄, for pure shear, uniaxial

tension and equibiaxial tension, respectively. Parts (a) of the figures show the results for composites

with neo-Hookean matrices at various particle volume fractions, while parts (b) shows the corre-

sponding results for composites with Gent matrices with several values of Jm, for a given volume

fraction of particles c = 0.1. It is seen from these figures that the volume fraction of the reinforcing

particles has a strong effect on the overall response of the reinforced elastomer, for all three loading

types. On the other hand, the strain-locking parameter Jm in the Gent elastomers can also be seen

to have a strong effect on the macroscopic response of the reinforced elastomer. In addition, it
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Figure 1.7: New tangent second-order (TSO) estimates for the macroscopic stress S̄ = dŴ/dλ̄ in
particle-reinforced elastomers under pure shear loading (λ̄3 = 1, λ̄2 = 1/λ̄1), as functions the applied
stretch λ̄1 = λ̄. (a) neo-Hookean matrix for different values of the fiber volume fraction (b) Gent
matrix for different matrix lock-up parameters.

should be emphasized that the differences observed in the response of the three different loadings

are due in part to the different ways in which the results are presented. Of course, the results are

consistent in the limit of small strains with the results of linear elasticity, and therefore independent

of the loading conditions. However, as we will see below, there is an intrinsic effect of the loading

conditions for large strains.

Figure 1.10 shows plots for the “lock-up” stretch in particle-reinforced, Gent elastomers. As

already mentioned in the context of the fiber-reinforced elastomers in Section 1.5, the composite

may undergo either “geometric” or “material” lock up. Thus, Figure 1.10 shows plots of the stretch

λ̄lock1 at which lock up first takes place for a given loading path. The results are given for three

particular loadings: Pure shear (PS), Uniaxial tension (UT) and Equibiaxial tension (ET). The

corresponding geometric lock up condition are given by λ̄1 = c−1, λ̄1 = c−2 and λ̄1 = c−1/2,

respectively, while those for material lock up are given by

λ̄41 − 2λ̄31c− [(1− c)2Jm − 4c+ 2] λ̄21 − 2λ̄1c+ 1 = 0,

λ̄31 − 2λ̄21c− [(1− c)2Jm − 6c+ 3]λ̄1 − 4c
√
λ̄1 + 2 = 0,

2λ̄61 − 4λ̄51c− [(1 − c)2Jm + 3− 6c]λ̄41 − 2cλ̄21 + 1 = 0, (1.142)

respectively. The results are shown as functions of the particle volume fraction, for fixed values of the

Gent lock-up parameter Jm = 50, 100, 500. The main observation in this figure is the transition from

material lock up to geometric lock up as the particle concentration is increased. Thus, for smaller

volume fraction the lock-up stretch is associated with the material lock up (depicted as “straight”

lines). On the other hand, for sufficiently large volume fraction (depending on the specific loading),
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Figure 1.8: New TSO estimates for the macroscopic stress S̄ = dŴ/dλ̄ in particle-reinforced elas-

tomers under uniaxial tension loading (λ̄2 = λ̄3 = λ̄
−1/2
1 ), as functions the applied stretch λ̄1 = λ̄.

(a) neo-Hookean matrix for different values of the fiber volume fraction (b) Gent matrix for different
matrix lock-up parameters.

the lock up switches to the geometric (curved lines). It is also seen that the addition of rigid particles

enhances the material lock-up effect, with respect to the homogenous matrix phase. This is related

to the fact that the rigid phase cannot deform under deformation and all the deformation must be

“concentrated” in the matrix, leading to a smaller effective lock-up stretch for the composite.

As discussed in Subsection 1.5.4, the accuracy of the TSO results is expected to deteriorate as

geometric and material lock-up conditions are approached. For this reason, Figure 1.10 could be

interpreted as providing an estimate for the range of validity of the TSO results in terms of the

maximum applied stretch λ̄ for given particle concentration and loading condition. Clearly, the

range of validity of the estimates decreases with increasing the particle volume fraction. Thus, it is

evident from the plot that UT loading has a relatively larger range of validity, while the range of

validity for ET loading is more restricted with increasing values of c. For instance, for composites

with a Gent matrix and fixed particle volume fraction c=0.2 and lock-up parameter Jm = 500, the

range of validity for PS, UT and ET loadings can be estimated as 1 ≤ λ̄ ≤ 4.5, 1 ≤ λ̄ ≤ 17 and

1 ≤ λ̄ ≤ 2.3, respectively.

Finally, Figures 1.11(a) and (b) present plots of the effective stored-energy function of the com-

posite versus the macroscopic invariants Ī1 = λ̄21 + λ̄22 + λ̄23 and Ī2 = λ̄21λ̄
2
2 + λ̄22λ̄

2
3 + λ̄23λ̄

2
1 of the

deformation, respectively. The matrix is assumed to be neo-Hookean and results for a non-reinforced

matrix are also included for comparison. It is observed in Figure 11a that the effective behavior for

the composite differs noticeably for the three particular loading conditions (i.e., for PS, UT and ET

loadings), while the corresponding behaviors for a homogenous neo-Hookean matrix are all identical.

More specifically, it can be seen that the response for ET loading becomes increasingly stiffer with

the deformation, while the responses for PS and UT loadings remain close to each other and are

more compliant. Given that the material response (as gauged by the matrix response) is the same,
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Figure 1.9: New TSO estimates for the macroscopic stress S̄ = dŴ/dλ̄ in particle-reinforced elas-
tomers under equibiaxial tension loading (λ̄3 = λ̄−2
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(a) neo-Hookean matrix for different values of the fiber volume fraction (b) Gent matrix for different
matrix lock-up parameters.

the differences observed in the response of the composite must be attributed to the differences in the

evolution of the microstructures for the different loading conditions. Figure 1.11(b) shows results

for the effective stored-energy function of the composite as a function of the second invariant Ī2,

for two different, fixed values of the first invariant Ī1. The corresponding results for the matrix

phase are also included for comparison purposes. Thus, it can be seen that Ī2 has a strong effect on

the macroscopic response of the composite, while the matrix material exhibits no such effect. This

phenomenon is a consequence of the nonlinear response of the composite, leading to dependence on

the second invariant of the deformation. (Note that dependence on third invariant would also be

expected in general, but it is excluded here due to overall incompressibility of material).

1.7 Concluding Remarks

In this chapter, we have developed new constitutive models for the macroscopic response of compos-

ites with hyperelastic phases and particulate microstructures, subjected to general, three-dimensional,

finite deformations. For this purpose, we have made use of a suitable extension of the tangent second-

order (TSO) homogenization theory of Ponte Castañeda and Tiberio (2000), which is capable of ac-

counting for the strongly nonlinear overall incompressibility constraint (for incompressible behavior

of the phases), as well as for the reorientation of the particles with the deformation. Thus, for in-

compressible elastomers reinforced with random distributions of aligned, ellipsoidal, rigid inclusions,

the expression (1.77) was derived for the macroscopic stored-energy function Ŵ (F̄) in terms of equa-

tion (1.79) for the evolution of the particle orientation R̄(2), the stored-energy function W
(1)
µ of the

elastomeric phase (with ground-state shear modulus µ(1)), the initial concentration of the particles

c, and a certain microstructural tensor EI , serving to characterize the particle shape, and defined
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by expression (1.106). In particular, closed-form, analytical results were obtained for neo-Hookean

rubbers reinforced by isotropic distributions of spherical particles under general loading conditions

(see expressions (1.134) to (1.141)). For this case, it was found that the macroscopic stored-energy

function exhibits dependence on the second invariant of the right Cauchy–Green deformation tensor

(even when the matrix response is assumed to depend only on the first invariant), in agreement with

theoretical expectations. In addition, it was also found that the macroscopic response of Gent-type

elastomers reinforced with isotropic distributions of spherical particles is strongly elliptic, and there-

fore shear-band localization instabilities of the type found by Lopez-Pamies and Ponte Castañeda

(2006b) and Agoras et al. (2009b) for fiber-reinforced composites loaded in compression along the

long axis of the fibers were not found in this case.

The TSO theory was also tested for a 2-D problem consisting of transverse shear loading of

elastomers reinforced with cylindrical fibers of elliptical cross-section, where it was found to recover

exactly the generalized second-order (GSO) results of Lopez-Pamies and Ponte Castañeda (2006a)

for dilute concentration of elliptical fibers in a neo-Hookean elastomeric matrix. For more general

material behavior (e.g., Gent) and non-dilute conditions, the new TSO theory is still in relatively

good agreement with the GSO predictions, although it can lead to much stiffer predictions for neo-

Hookean matrix behavior, when the TSO theory predicts “geometric” lock up, at sufficiently large

deformations. However, for more realistic situations, when lock up due to the matrix behavior is

present, the differences are relatively minor. In any case, comparisons with FEM simulations for
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invariant Ī1.

realistic values of the matrix locking strain and macroscopic stretches, are in excellent agreement

even for relatively high concentrations (i.e., up to 30 %).

It should be emphasized that while there are presently other homogenization theories for hy-

perelastic composites (e.g., the GSO (Lopez-Pamies and Ponte Castañeda, 2006a) and sequentially

laminated (deBotton, 2005) homogenization methods), the new TSO method developed in this work

offers a good balance of generality and accuracy. Indeed, to the best of our knowledge, the TSO

estimates developed in this work are the first homogenization estimates for reinforced elastomers

with general particle shape. While only the case of spherical inclusions has been developed in detail

here, results are also available for the response of elastomers reinforced with ellipsoidal inclusions

under general (non-aligned) loading conditions. Due to the anisotropy of these material systems and

the important effects of particle reorientation, which can lead to loss of ellipticity of the macroscopic

response, the analysis of these results is quite a bit more involved and will be considered in detail

in a future publication.
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Chapter 2

Application of the TSO theory to

short fiber-reinforced composites:

I–Analytical results
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In this chapter, we present a homogenization-based constitutive model for the mechanical behav-

ior of non-spherical particle-reinforced elastomers with random microstructures subjected to finite

deformations. The model is based on the improved version of the tangent second-order (TSO)

method, developed in Chapter 1, for two-phase, hyperelastic composites, and is able to directly

account for the shape, orientation, and concentration of the particles. After a brief summary of

the TSO homogenization method, we describe its application to composites consisting of an incom-

pressible rubber reinforced by aligned, spheroidal, rigid particles, undergoing generally non-aligned,

three-dimensional loadings. While the results are valid for finite particle concentrations, in the dilute

limit they can be viewed as providing a generalization of Eshelby’s results in linear elasticity. In

particular, we provide analytical estimates for the overall response and microstructure evolution of

the particle-reinforced composites with generalized neo-Hookean matrix phases under non-aligned

loadings. For the special case of aligned pure shear and axisymmetric shear loadings, we give closed-

form expressions for the effective stored-energy function of the composites with neo-Hookean matrix

behavior. Moreover, we investigate the possible development of “macroscopic” (shear band-type)

instabilities in the homogenized behavior of the composite at sufficiently large deformations. These

instabilities whose wavelengths are much larger than the typical size of the microstructure are de-

tected by making use of the loss of strong ellipticity condition for the effective stored-energy function

of the composites. The analytical results presented in this chapter will be complemented in the next

chapter by specific applications for several representative microstructures and loading configurations.

2.1 Introduction

For the purposes of the present chapter, the most relevant work was carried out by Lopez-Pamies and

Ponte Castañeda (2006b) for random distributions of rigid elliptical fibers in an elastomeric phase,

or more precisely for plane strain loading of continuous fiber-reinforced elastomers in the transverse

plane where the fibers exhibit elliptical cross-section. These estimates demonstrated for the first

time the strong effect of particle rotations, which, under certain conditions, could induce strong

geometric softening leading to the possible development of macroscopic instabilities through loss of

ellipticity. These homogenization estimates were also compared with full-field numerical simulations

by Moraleda et al. (2009) and found to be in fairly good quantitative agreement at least for neo-

Hookean matrix phases. The existence of long wave length instabilities (Geymonat et al., 1993), as

well as other types of “microscopic” instabilities, in the context of two-dimensional fiber-reinforced

composites with periodic microstructures has also been documented recently (Michel et al., 2010).

As already mentioned, in this chapter, we will make use of the improved version of the TSO

method, developed in Chapter 1, to investigate the effect of particle shape on the macroscopic

response, microstructure evolution and macroscopic instabilities in short-fiber-reinforced elastomers

subjected to general finite-strain loadings. As mentioned in Chapter 1, the resulting estimates

of this method for the macroscopic response of the reinforced elastomers are consistent with the

overall incompressibility constraint, expected on physical grounds. Also, the TSO method is able

to provide analytical estimates for the evolution of the relevant microstructural variables, including

most notably the rotation of the ellipsoidal particles under general loading conditions. In particular,
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we verified in Chapter 1 that the improved version of the TSO method leads to predictions that are

very similar—and in some cases identical—to the predictions of the more sophisticated GSO method

(Lopez-Pamies and Ponte Castañeda, 2006a), at least for the case of two-dimensional elliptical

particles (Lopez-Pamies and Ponte Castañeda, 2006b). In this context, it should be noted that the

GSO method requires the use of the field fluctuations in the linear comparison composite and is

therefore more difficult to implement, especially for the complex three-dimensional microstructures

of interest in this work.

The structure of this chapter is as follows. For convenience and clarity, Sections 2.2 and 2.3

summarize the basic elements of the nonlinear homogenization methods and, in particular, the tan-

gent second-order theory developed in Chapter 1. Section 2.4 deals with the specific application of

the TSO theory for elastomers reinforced with aligned, rigid, spheroidal particles. This section in-

cludes closed-form, analytical expressions for the homogenized stored-energy function of transversely

isotropic, reinforced elastomers with neo-Hookean matrix phases under aligned, triaxial loading con-

ditions (see expressions (2.35), (2.39), and (2.42)). Section 2.5 spells out the general conditions of

strong ellipticity used to determine the “macroscopic” instabilities for incompressible, transversely

isotropic, hyperelastic composites under aligned and non-aligned loading conditions. These condi-

tions are provided in terms of appropriate traces of the associated effective incremental modulus

tensor, which, in turn, can be written in terms of the derivatives of the associated effective stored-

energy function with respect to the macroscopic kinematical variables. Then, these conditions are

specialized for the class of (rigid) particle-reinforced elastomers undergoing axisymmetric and pure

shear loading conditions. Finally, some conclusions are drawn in Section 2.6. In the next chapter, use

will be made of the analytical results presented in Sections 2.4 and 2.5 of this chapter to investigate

in more detail the influence of the microgeometry, matrix properties, and loading conditions on the

effective constitutive behavior of the reinforced elastomers, including the associated microstructure

evolution and the possible development of macroscopic instabilities.

2.2 Preliminaries on hyperelastic composites and their effec-

tive behavior

Consider a specimen consisting of several families of aligned, ellipsoidal particles, distributed ran-

domly in a matrix phase, and occupying a volume Ω0 with boundary ∂Ω0 in the undeformed configu-

ration. Following the hypothesis of separation of length scales, we will assume that the characteristic

length-scale of the particles is much smaller than the size of the specimen as well as the scale of

variation of the loading conditions. Let the position vector of a material point in the undeformed

configuration Ω0 be denoted by X, with Cartesian components Xi, i ∈ {1, 2, 3}, and the correspond-

ing position vector in the deformed configuration Ω be denoted by x, with components xi. The

deformation gradient tensor represented by F has components Fij = ∂xi/∂Xj and is required to

satisfy the material impenetrability condition: J = detF(X) > 0 for all X ∈ Ω0. In addition, let

F = RU where U and R stand for the stretch and (rigid-body) rotation tensors, respectively, and

let C = FT F = U2 denote the right Cauchy–Green deformation tensor.
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We assume that the constitutive behavior of the phases is purely elastic and characterized by

the stored-energy functions W (r)(F) (r = 1, ..., N), which are taken to be nonconvex functions

of the deformation gradient tensor F. Also, the stored-energy functions W (r)(F) are assumed to

be objective, namely, W (r)(QF) = W (r)(F) for all proper orthogonal tensors Q and arbitrary

deformation gradients F, so that W (r)(F) =W (r)(U). In this work, we restrict our attention to the

special case of composites made up of incompressible isotropic phases, and it proves useful, for later

use, to introduce the following decomposition for the stored-energy function

W (r)(F) = W (r)
µ (F) +

1

2
µ′(r)(J − 1)2, (2.1)

where W
(r)
µ denotes the “distortional” component of W (r) and depends on the ground-state shear

modulus µ(r), while the second term depending on the Lamé parameter µ′(r) characterizes the “vol-

umetric” response of phase r. In other words, W
(r)
µ is that part of the stored-energy function W (r)

which does not depend on µ′(r). It is a simple matter to verify from (2.1) that the incompressibility

constraint J = 1 is recovered by letting the parameter µ′(r) tend to infinity.

The first Piola-Kirchhoff stress in phase r is then given by the expression

S =
∂W (r)

∂F
(F). (2.2)

In this connection, it is useful to also define

S(r)
µ (F) =

∂W
(r)
µ

∂F
(F), (2.3)

such that

S = S(r)
µ (F) + µ′(r)J(J − 1)F−T . (2.4)

In addition, consistent with the definition (2.1), the incremental tangent modulus tensor for the

phase r can be decomposed as

L(r)(F) =
∂2W (r)

∂F∂F
= L(r)

µ + µ′(r)L
(r)
−1, (2.5)

where

L(r)
µ (F) =

∂2W
(r)
µ

∂F∂F
, and L

(r)
−1(F) = J(2J − 1)F−T ⊗ F−T + J(J − 1)XXX , (2.6)

with XXX denoting the fourth-order tensor with components Xijkl = −F−1
li F−1

jk .

Next, the local energy function of the composite is defined as

W (X,F) =

N∑

r=1

χ(r)(X)W (r)(F), (2.7)

where the characteristic functions χ(r), describing the distribution of the phases in the reference

configuration, are such that they equal 1 if the position vectorX is inside the phase r (i.e., X ∈ Ω
(r)
0 )
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and zero otherwise. Following Hill (1972), the effective, or macroscopic stored-energy function W̃ of

the composite elastomer is given by

W̃ (F̄) = min
F∈K (F̄)

〈W (X,F)〉 = min
F∈K (F̄)

N∑

r=1

c
(r)
0

〈
W (r)(F)

〉(r)
, (2.8)

where K (F̄) denotes the set of kinematically admissible deformation gradients defined by

K (F̄) =
{
F|∃x = x(X) with F = Gradx and J > 0 in Ω0, x = F̄X on ∂Ω0

}
. (2.9)

In the above expressions, the triangular brackets 〈·〉 represent volume averages (in the undeformed

configuration) over a representative volume element (RVE) Ω0 of the composite, while 〈·〉(r) denote
volume averages (in the undeformed configuration) over the phases Ω

(r)
0 , so that the scalar c

(r)
0 =〈

χ(r)
〉
indicates the initial volume fraction of the phase r. Noting that under the above-defined affine

boundary condition 〈F〉 = F̄, and defining the average stress S̄ = 〈S〉, the effective constitutive

relation for the composite is then given by (Hill, 1972)

S̄ =
∂W̃

∂F̄
(F̄). (2.10)

At this point, it should be remarked that the solution (assuming that it exists) of the Euler-

Lagrange equations associated with the variational problem (2.8) is expected to be unique in some

neighborhood of F̄ = I (where I is the second-order identity tensor), and gives the minimum energy.

However, as the deformation increases into the finite deformation regime, it may reach a point at

which the solution of the Euler-Lagrange equations (referred to as the “principal” solution and de-

noted by Ŵ (F̄)) is not unique anymore, and other kinematically admissible solutions corresponding

to a lower energy might exist (which, according to (2.8), is labeled W̃ ). This point corresponds to the

possible onset of an instability, beyond which the applicability of the “principal” solution becomes

questionable. In the context of hyperelastic composites with periodic microstructures, it is known

(Geymonat et al., 1993; Triantafyllidis et al., 2006) that the first instability may be “microscopic”

with wavelengths comparable to the size of the inhomogeneities, or they may be “macroscopic”

with wavelengths comparable to the size of the RVE. However, for composites with random mi-

crostructures, it may be expected (Michel et al., 2010) that the first instability should actually be

macroscopic. On the other hand, it is also known (Triantafyllidis and Marker, 1985; Geymonat

et al., 1993) that the “macroscopic” instabilities can be determined from the loss of strong ellipticity

of the effective stored-energy function of the material evaluated at the above-described “principal”

solution. For these reasons, in this work we will only be concerned with the principal solution Ŵ ,

whose range of validity will be estimated by evaluation of the associated loss of ellipticity condition.

Following up on the preceding remarks, we finish this section by spelling out the condition of

strong ellipticity (SE) for the effective stored-energy function Ŵ (F̄). In the context of hyperelastic

materials, the SE condition for the homogenized composite elastomers characterized by the stored-

energy function Ŵ (F̄) is equivalent to the positive-definiteness of the associated acoustic tensor K̂,
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namely, Ŵ (F̄) is said to be strongly elliptic if and only if

K̂ikmimk = L̂ijkl NjNlmimk > 0, (2.11)

for all non-zero pairs of unit vectors N and m. Here, K̂ik = L̂ijkl NjNl is the effective acoustic

tensor, and, the fourth-order tensor L̂, defined by

L̂ =
∂2Ŵ

∂F̄∂F̄
, (2.12)

denotes the incremental effective moduli tensor of the composite material characterizing the overall

incremental response of the composite elastomer. It is also worth mentioning that the tensor L̂ijkl

possesses major symmetry (L̂ijkl = L̂klij), but not generally minor symmetries (L̂ijkl 6= L̂jilk).

2.3 Tangent second-order homogenization estimates

In this section, we briefly recall the tangent second-order variational method developed in Chapter

1 for the effective constitutive behavior of (two-phase) particle-reinforced, hyperelastic composites

consisting of aligned, ellipsoidal, rigid particles distributed randomly with volume fraction c in an

incompressible matrix phase with energy function W
(1)
µ . (Note that since particles are rigid and

the matrix is incompressible, c = c
(2)
0 for all macroscopic deformations.) As already mentioned,

the TSO method makes use of a fictitious “linear comparison composite” (LCC) with the same

microstructure (i.e., same characteristic functions χ(r)(X)) as the actual (nonlinear) composite ma-

terial (in the undeformed configuration). The moduli of the constituent phases in the LCC are

identified with “tangent” linearizations of the given nonlinear phases evaluated at the macroscopic

deformation gradient F̄. This allows the use of already available methods for estimating the effec-

tive behavior of linear composites to generate corresponding estimates for nonlinear composites. In

Chapter 1, we made use of the generalized Hashin-Shtrikman estimates of the Willis type (Willis,

1977; Ponte Castañeda and Willis, 1995) for the effective behavior of the linear-elastic composite

materials consisting of random distributions of aligned ellipsoidal particles with prescribed “ellip-

soidal symmetry” for the particle centers (i.e., the two-point correlation functions). These estimates

are exact to second-order in the heterogeneity contrast and to first order in the particle volume

fraction, and are known to be quite accurate for the type of “particulate” microstructures of interest

here, up to moderate concentrations of particles. In order to ensure compliance with the overall

incompressibility constraint (J̄ = det(F̄) = 1), in Chapter 1, we made use of the expression (2.1) to

split the distortional and deviatoric components of the energy and arrived at the following estimate

for the effective stored-energy function Ŵ (F̄) of the reinforced elastomers:

Ŵ (F̄) = (1− c)W (1)
µ (F̄(1)) +

1

2

c

1− c
(F̄− R̄(2)) · E (F̄− R̄(2)). (2.13)

In this expression, F̄ is the macroscopic deformation which satisfies the incompressibility condition

det(F̄) = 1, R̄(2) is a second-order orthogonal tensor characterizing the average rotation of the
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rigid particles under the macroscopic deformation gradient F̄, and determined by the kinematical

equation

Skew
{
(R̄(2))T [E (F̄− R̄(2))] + (1− c)(R̄(2))T S(1)

µ (F̄(1))
}
= 0, (2.14)

where Skew denotes the skew-symmetric part of the quantities inside the curly brackets. Note that

equation (2.14) provides in general a set of three scalar algebraic equations for the three independent

components of R̄(2). The second-order tensor F̄(1) corresponds to the average deformation gradient

in the matrix phase of the LCC, which can be expressed in terms of the macroscopic deformation

gradient F̄, and the rotation tensor R̄(2) as

F̄(1) =
1

1− c
(F̄− cR̄(2)), (2.15)

Finally, E is a fourth-order, microstructural tensor given by1

E = lim
µ′(1)→∞

(P−1 − L(1)). (2.16)

In this relation, L(1) is a fourth-order moduli tensor determined by the tangent modulus evaluated

at the macroscopic deformation, such that

L(1) =
∂2W (1)

∂F ∂F
(F̄), (2.17)

while P is an Eshelby-type (fourth-order) tensor containing information about the shape and dis-

tribution of the particles in the undeformed configuration (Ponte Castañeda and Willis, 1995). For

ellipsoidal particles, distributed in an infinite matrix with the elastic modulus tensor L(1), the com-

ponents of P read as

Pijkl =
1

4π |Z0|

∫

|ξξξ|=1

Bik(ξξξ) ξjξl

[
ξξξT (ZT

0 Z0)
−1ξξξ
]−3

2

dS, (2.18)

where the symmetric, second-order tensor Z0 serves to characterize the “shape” and “orientation” of

the particles in the undeformed configuration, and the tensor B denotes the inverse of the acoustic

tensor K of the matrix with components Kik = L
(1)
ijkl ξjξl. In this work, we will also assume that

the initial (in the undeformed configuration) “shape” and “orientation” of the two-point correlation

function for the distribution of the ellipsoidal particles are identically the same as for the particles

themselves, as specified by the tensor Z0. It should be remarked that this assumption is not essential,

and the shapes and orientations of the distribution functions could, in general, be different from those

of the particles (Ponte Castañeda and Willis, 1995) leading to the use of two different P tensors.

It is also worth mentioning that all fourth-order tensors E, P, and L(1) have major symmetry, but

not generally minor symmetry. Furthermore, in view of definitions (2.16)-(2.18), together with the

1In Chapter 1, the fourth-order tensor E was labelled E
I , but, for simplicity, the superscript I has been dropped

here.
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objectivity assumption for W (1)(F), it can be verified that

Eijkl(F̄) = R̄ipR̄kqEpjql(Ū), (2.19)

where Ū and R̄ denote the macroscopic stretch and (rigid-body) rotation tensors, respectively (note

that F̄ = R̄Ū). Making use of (2.19) along with (2.14) and (2.15), it can be shown that expression

(2.13) for Ŵ (F̄) satisfies the objectivity condition

Ŵ (F̄) = Ŵ (Ū). (2.20)

In summary, for a given ellipsoidal microstructure, macroscopic loading F̄, and matrix strain

energy W (1), the computation of the effective stored-energy function Ŵ (F̄) in (2.13), as well as of

the associated rotation tensor R̄(2) in (2.14), requires the calculation of E. As defined in (2.16),

the tensor E should be calculated in the incompressibility limit of the matrix phase (µ′(1) → ∞).

To this end, in Chapter 1, we carried out a general asymptotic analysis for the computation of the

tensor E in the incompressibility limit (µ′(1) → ∞). For completeness and to maintain continuity,

the procedure for computing the tensor E is provided in Appendix B.1.

We conclude this section by noting that, in Chapter 1, we already considered the application

of the above-described results for the special case of elastomers reinforced with spherical particles

under triaxial loadings, and for the special case of composites with a neo-Hookean matrix, they

derived closed-form expressions for the corresponding effective stored-energy function. In addition,

they considered elastomers reinforced with two-dimensional fibers of elliptical cross-section under

plane-strain loading. For the special case of composites with a neo-Hookean matrix and dilute

concentration of fibers, they recovered exactly the results obtained by Lopez-Pamies and Ponte

Castañeda (2006b) using the more sophisticated GSO method. In addition, for finite concentrations

of particles and Gent-type matrices, the agreement of the TSO and GSO results was quite good.

In the present work, we will consider for the first time applications for elastomers reinforced with

three-dimensional spheroidal fibers.

2.4 Application to composites with rigid spheroidal particles

In the previous section, we summarized the results for estimating the effective stored-energy function

and the associated evolution of the microstructure for rigidly reinforced elastomeric composites with

general “ellipsoidal microstructure.” The aim of this section is to make use of these results to gener-

ate corresponding estimates of the Willis-type for elastomers reinforced with a random distribution

of aligned, spheroidal particles subjected to finite deformations. Our goal here is to provide explicit

analytical estimates when possible; otherwise, numerical calculation of the aforementioned estimates

is carried out. In the following paragraphs, we provide detailed description on the microstructural

configurations, constitutive behavior of the elastomeric matrix phase, and the applied macroscopic

loading for the class of composites of interest in this work.
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Figure 2.1: Schematic illustration of the microstructure of a rigid particle-reinforced elastomer in
the undeformed configuration (Ω0). Two configurations are considered. (a) Elastomers reinforced
with prolate spheroidal particles (w > 1). (b) Elastomers reinforced with oblate spheroidal particles
(w < 1). Note that, in both cases, the symmetry axis of the particles is initially aligned with the
coordinate basis vector e3.

Microstructures. The microstructures to be studied in this work are shown schematically in Figure

2.1, and are depicted in the undeformed configuration relative to the Cartesian basis {ei} describing

a fixed laboratory frame. These microstructures consists of aligned spheroidal particles of prolate

and oblate shapes, in initial volume fraction c
(2)
0 , which remains the same in the deformed configu-

ration (c = c
(2)
0 ). As illustrated in Figure 2.1(a), the prolate spheroidal particles have aspect ratios

w > 1, and their major (symmetry) axes are aligned with the e3-direction. Similarly, as shown in

Figure 2.1(b), the oblate spheroidal particles have aspect ratios w < 1, and their minor (symmetry)

axes are likewise aligned with the e3-direction. Therefore, for both cases, the circular cross-section

of the particles in the undeformed configuration lies on the e1− e2 plane. Moreover, consistent with

earlier discussions, it is assumed that the particles are initially distributed with spheroidal symmetry

(isotropic symmetry in the transverse plane), and the two-point correlation function of the particle

distribution has the same aspect ratio and orientation of those of the particles.

Matrix Constitutive Behavior. The variational estimates (2.13) and (2.14) are valid for general

behavior for the incompressible matrix phase. In this work, for definiteness, attention is restricted

to stored-energy functions of the generalized neo-Hookean type, given by expression (2.1) with

W (1)
µ (F) = g(I) + h(J). (2.21)

In this expression, I = tr(C) and, for proper linearization, the material functions g(I) and h(J) are

assumed to be twice continuously differentiable satisfying the conditions: g(3) = h(1) = 0, gI(3) =

µ(1)/2, hJ (1) = −µ(1), and 4gII(3)+ hJJ (1) = µ(1), in which the subscripts I and J stand for partial

differentiation with respect to the invariants I and J, respectively. In particular, we will consider
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Figure 2.2: Schematic orientation of the Rectangular coordinate basis e′i with respect to the basis ei
after a two-step rotation. The loading (stretching) directions are aligned with the e′i basis vectors,
which have a misorientation (measured by angles θ̄1 and θ̄2) relative to the ei basis.

the Gent model (Gent, 1996), which has been shown to provide good agreement with experimental

data for rubber-like materials (Ogden et al., 2004) and captures the limiting chain extensibility of

elastomers. It is defined by

W (1)
µ (F) = −Jm µ(1)

2
ln

(
1− I − 3

Jm

)
+

1

2
µ(1)(J − 1)(J − 3)− µ(1)

Jm
(J − 1)2, (2.22)

where µ(1) is the ground-state shear modulus and Jm is a the dimensionless parameter characterizing

the limiting value for I − 3 at which the elastomer locks up (and the argument of the logarithm

vanishes). In connection with expression (2.22) for W
(1)
µ , it should be emphasized that the terms

depending on J , although vanishing for incompressible behavior at J = 1, are necessary for proper

linearization of the deviatoric constitutive response. In addition, we should note that the form (2.22)

used in this Chapter is slightly different from the more common form involving a logarithmic term

in J , and indeed used in Chapter 1. The reason, as we will see below, is that this form leads to

better behaved estimates for large values of the deformation.

Finally, we note that the Gent model includes the well-known neo-Hookean model in the limit

as Jm approaches infinity, where W
(1)
µ specializes to

W (1)
µ (F) =

1

2
µ(1)(I − 3) +

1

2
µ(1)(J − 1)(J − 3). (2.23)

Macroscopic Loading. The isotropic distribution of the spheroidal particles in the transverse plane

(here, e1−e2 plane) in the undeformed configuration leads to overall transversely isotropic behavior

for the composite with symmetry axis n = e3. For compressible materials with transversely isotropic

symmetry, the strain energy-density function can be written in terms of the 5 proper invariants of

the tensor C̄ = F̄T F̄ and the vector n (which reduce to 4 in the incompressibility limit). In this

work, we find useful the following decomposition of the macroscopic deformation gradient

F̄ = U = Q̄ D̄ Q̄T , (2.24)
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where it has been assumed that R̄ = I with recourse to the overall objectivity (2.20). In this

decomposition, D̄ is a symmetric, second-order tensor given by

D̄ = λ̄1 e1 ⊗ e1 + λ̄2 e2 ⊗ e2 + λ̄3 e3 ⊗ e3, (2.25)

with λ̄1, λ̄2 and λ̄3 identifying the principal values of U (also known as the macroscopic principal

stretches). In addition, Q̄ is a proper orthogonal, second-order tensor describing the orientation of

the principal axes of U relative to the (fixed) laboratory frame of reference {ei}. Here, the principal
axes of the symmetric tensor U, also known as the loading (stretching) directions, are identified

with the (rectangular Cartesian) basis {e′i}. In general, this basis is not aligned with the basis {ei},
representing the symmetry directions of the particles in the undeformed configuration. In turn,

the tensor Q̄ can be decomposed into three proper orthogonal tensor Q̄1, Q̄2, and Q̄3 serving to

characterize the rotations of the principal axes of U about the fixed e1, e2 and e3 axis, respectively.

Recalling that the composite has transversely isotropic symmetry with symmetry axis along e3, the

response of the composite is insensitive to rotations about e3, and we can restrict our attention to

tensors Q̄ of the form

Q̄ = Q̄1 Q̄2. (2.26)

It is important to emphasize that, for a general choice of λ̄1, λ̄2 and λ̄3, the order of the rotations

in (2.26) matters, and in this work, the order given in (2.26) will be used. Also, as illustrated in

Figure 2.2, we let the two (Euler) angles θ̄1 and θ̄2 denote respectively rotations of the principal

axes of U about the e1 and e2 axis, with the sign defined according to the usual right-hand rule.

More explicitly,

Q̄1 = cos(θ̄1) (e2 ⊗ e2 + e3 ⊗ e3) + sin(θ̄1) (e3 ⊗ e2 − e2 ⊗ e3) + e1 ⊗ e1,

Q̄2 = cos(θ̄2) (e1 ⊗ e1 + e3 ⊗ e3) + sin(θ̄2) (e1 ⊗ e3 − e3 ⊗ e1) + e2 ⊗ e2. (2.27)

Finally, as mentioned earlier, attention is restricted here to incompressible composite materials

satisfying the overall incompressibility constraint, so that

λ̄3 =
(
λ̄1λ̄2

)−1
. (2.28)

In terms of the above-defined loading parameters, the effective stored-energy function Ŵ may

be written in the form

Ŵ (F̄) = Φ̂(λ̄1, λ̄2, θ̄1, θ̄2). (2.29)

Moreover, for simplicity, in this work we confine our attention to a subclass of loadings, characterized

by the condition θ̄1 = 0◦, as schematically shown in Figure 3.3.2. In this case, the effective stored-

energy function simplifies further and takes the form

φ̂(λ̄1, λ̄2, θ̄) = Φ̂(λ̄1, λ̄2, 0, θ̄), (2.30)

where the parameter θ̄2 has been replaced by θ̄ for convenience. In this context, it is important

55



1e

1
′e

3e 3
′e

Undeformed Configuration 

0ΩΩΩΩ

Rectangular Cartesian bases

{ }
i

e and { }
i
′e

θ 1e

3e

2 2, ′-e -e

1
′e

3
′e

Deformed Configuration 

1e

1
′e

3e
3
′e

1λ

1

1 2( )λ λ −

2λ

(2)ψψψψ

ΩΩΩΩ

(a) (b)

Figure 2.3: Schematic representation of the applied loading on a rigid particle-reinforced elastomer
as well as the associated evolution of microstructure. The loading (stretching) directions are aligned
with e′i basis vectors which correspond to a rotation θ̄ about the e2 direction. (a) In the undeformed
configuration (Ω0), the particles are aligned with the e3 direction. (b) In the deformed configuration
(Ω), the particles rotate (by the angle ψ̄(2)) on the e1 − e3 plane.

to remark that, in general, second and higher derivatives of the effective stored-energy function

Φ̂(λ̄1, λ̄2, θ̄1, θ̄2) with respect to θ̄1, calculated at θ̄1 = 0◦, are required for the calculation of the

effective incremental modulus tensor L̂ (defined in (2.12)) needed in turn for the computation of the

ellipticity condition (2.11) , even for loadings where θ̄1 = 0◦. For this reason, it will be necessary

to compute Φ̂ for general values of θ̄1 and θ̄2, even when the results presented in this work will be

restricted to loading paths with θ̄1 = 0◦.

We conclude the description of the macroscopic loading conditions by identifying two special

loading conditions: (1) Axisymmetric Shear, characterized by the condition λ̄1 = λ̄2 = λ̄, and (2)

Pure Shear, characterized by the condition λ̄2 = 1, λ̄1 = λ̄, where λ̄ is a positive loading parameter.

2.4.1 Estimates for non-aligned loadings

Under the above-mentioned assumptions on the microstructure, matrix properties and the macro-

scopic loading, we can now determine the tangent second-order estimates (2.13) and (2.14) for the

composites consisting of a generalized neo-Hookean matrix (with stored-energy function (2.21)) and

aligned, rigid spheroidal particles, subjected to the applied deformation (2.24). The resulting esti-

mates, for general stretches λ̄1 and λ̄2 and angles θ̄1, and θ̄2, are too lengthy to be included here,

and instead, we present results only for the case of θ̄1 = 0◦ and θ̄2 = θ̄. In this case, it can be shown
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that the estimate for the effective stored-energy function of the composites reduces to

Ŵ (F̄) = Φ̂(λ̄1, λ̄2, 0, θ̄) = φ̂(λ̄1, λ̄2, θ̄) = (1− c)W (1)
µ (F̄(1)) +

c

2(1− c)

{
E11

11X
2
1 + (λ̄2 − 1)2E22

22

+ E33
33X

2
2 + E13

13Y
2
1 + E31

31Y
2
2 + 2

[
X1(E

11
33X2 + E11

13Y1 + E11
31Y2) +X2(E

33
13Y1 + E33

31Y2)

+(λ̄2 − 1) (E11
22X1 + E22

33X2 + E22
13Y1 + E22

31Y2) + E13
31Y1Y2

]}
, (2.31)

where use has been made of the notation Eij
kl = Eijkl for compactness of the Cartesian components

of the microstructural tensor E, as defined by expression (2.16), and where

X1 = λ̄1 cos
2(θ̄) +

(
λ̄1λ̄2

)−1
sin2(θ̄)− cos(ψ̄(2)),

X2 = λ̄1 sin
2(θ̄) +

(
λ̄1λ̄2

)−1
cos2(θ̄)− cos(ψ̄(2)),

Y1,2 = sin(θ̄) cos(θ̄)
[
λ̄1 −

(
λ̄1λ̄2

)−1
]
± sin(ψ̄(2)). (2.32)

In this expressions, ψ̄(2) characterizes the average rotation of the symmetry axis of the particles about

the (fixed) e2 axis (with sign determined by the right-hand rule) in the deformed configuration (see

Figure 3.3.2(b)). According to expression (2.14), ψ̄(2) is determined as the solution of the equation

[
2 e31 sin(ψ̄

(2))− f1X1 − f3X2 + E31
31 Y2 − E13

13 Y1 − (λ̄2 − 1) f2

]
cos(ψ̄(2))

−
{(
E11

13 + E33
13 + e13

)
Y1 + E11

11 X1 + E33
33 X2 + (λ̄2 − 1)

(
E22

33 + E11
22

)

+
[
λ̄1 +

(
λ̄1λ̄2

)−1
] [
E11

33 + (1 − c)
(
2 gI + λ̄2 hJ

)]}
sin(ψ̄(2)) + 2 e13 sin

2(ψ̄(2)) = 0, (2.33)

where eij = E11
3i + Ej3

31 and fi = Eii
13 − Eii

31, with i, j = 1, 2, 3.

For given loading parameters λ̄1, λ̄2, and θ̄, and material functions g and h, the calculation of

the effective stored-energy (2.31) and the associated particle rotation in (2.33) require in turn the

computation of the appropriate components of the tensor E, as described by expression (B.1) in

Appendix B.1. The pivotal point in this procedure is the calculation of the microstructural tensors

Pr, r = 1, 2, 3, as defined by the integrals in (B.7). For the general matrix behavior (2.21), and

general choice of λ̄1 and λ̄2, and θ̄, the analytic calculation of these integrals is a difficult task, and

we must resort to the use of a Gaussian quadrature technique. To maintain continuity here, the

details are provided in Appendix B.2.

At this point, it is important to emphasize that expressions ((2.31)) and ((2.33)) for the macro-

scopic response of the reinforced elastomers are exactly consistent with the earlier, corresponding

expressions given in Chapter 1, except that a slightly different form will be used here for the term

h(J) in equation ((2.21)) defining the matrix behavior W
(1)
µ . However, it can be shown that the

modifications proposed in this work for the function h(J), as made explicit in the context of expres-

sions ((2.22)) and ((2.23)) for Gent and neo-Hookean elastomers, respectively, only affect the term

W
(1)
µ (F̄(1)) in expression ((2.31)), all other terms in expressions ((2.31)) and ((2.33)) remaining the

same. (This is because the other terms in these expressions depend only on up to quadratic terms

in the Taylor series expansion of h about J = 1.)
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Finally, we note that, for the special case of aligned loadings, in which stretching directions

of the tensor Ū are aligned with the principal axes of spheroidal particles (in the undeformed

configuration), leading to orthotropic symmetry, the calculation of the tensors Pr, and subsequently

the corresponding function Φ̂, can be carried out analytically for special forms of the matrix stored-

energy function (2.21). For this reason, we present in the next subsection explicit analytical results

for aligned loadings.

2.4.2 Estimates for aligned loadings

In this subsection, we restrict our attention to the special case of macroscopic loadings aligned with

the particle axes {ei}, and characterized by the conditions θ̄ = 0◦ and θ̄ = 90◦ in expression (2.24)

(recall that θ̄1 = 0◦). However, for general values of λ̄1 and λ̄2, it suffices to identify aligned loadings

by the condition θ̄ = 0◦. Hence, the macroscopic deformation gradient for aligned loadings is written

as

F̄ = λ̄1 e1 ⊗ e1 + λ̄2 e2 ⊗ e2 +
(
λ̄1λ̄2

)−1
e3 ⊗ e3, (2.34)

where it is recalled that the particles are aligned in the e3 direction.

For the special case of aligned loadings, i.e., θ̄ = 0◦, it can be shown that ψ̄(2) = 0 satisfies

identically equation (2.33), implying that the particles do not rotate for any stretch (up to the

possible onset of an instability). Making use of this fact, it is easy to show that the TSO estimate

(2.13) for the effective stored-energy function reduces to

Ŵ (F̄) = φ̂(λ̄1, λ̄2, 0) = (1 − c)W (1)
µ (F̄(1)) +

c

2(1− c)

{
(λ̄1 − 1)2E11

11 + (λ̄2 − 1)2E22
22

+l2E33
33 + 2

{
l (λ̄1 − 1)E11

33 + (λ̄2 − 1)
[
(λ̄1 − 1)E11

22 + l E22
33

]}}
, (2.35)

where l =
(
λ̄1λ̄2

)−1 − 1, and W
(1)
µ (F̄(1)) = g(Ī(1)) + h(J̄ (1)), in which

Ī(1) =
(λ̄1 − c)2 + (λ̄2 − c)2 + [(λ̄1λ̄2)

−1 − c]2

(1− c)2
, J̄ (1) =

(λ̄1 − c)(λ̄2 − c)[(λ̄1λ̄2)
−1 − c]

(1− c)3
. (2.36)

For the general matrix behavior (2.21), the analytic calculation of the relevant components of

tensor E in (2.35) is cumbersome, and, for practical reasons, we make use of the Gaussian quadrature

technique as will be discussed in Appendix B.2. However, for some particular types of the matrix

behavior (2.21), and under loading condition (2.34), derivation of closed-form expressions for the

components of the tensor E and, subsequently, for the effective stored-energy function (2.35) is

feasible. In the next subsection, we specialize the estimate (2.35) to neo-Hookean behavior for the

matrix phase, and derive closed-form expressions for the effective stored-energy function for the two

particular cases of (aligned) axisymmetric shear and pure shear loadings.

Closed-form results for a neo-Hookean matrix

In this section, we consider the hyperelastic composites made of a neo-Hookean matrix phase with

stored-energy function of the form (2.23) and aligned, spheroidal, rigid particles subjected to aligned
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loadings of the form (2.34). Under this type of loading conditions, the TSO estimate (2.13) for

the effective stored-energy function of the composites still takes the form (2.35) with the function

W
(1)
µ (F̄(1)) now given by

W (1)
µ (F̄(1)) =

1

2
µ(1)

(
Ī(1) − 3

)
+

1

2
µ(1)

(
J̄ (1) − 1

)(
J̄ (1) − 3

)
, (2.37)

where Ī(1) and J̄ (1) are given by expressions (2.36). Note that W
(1)
µ (F̄(1)) remains bounded for all

finite values of the stretches. This is different from the corresponding expression originally given in

Chapter 1 which tends to blow up at a finite value of the stretch depending on the particle volume

fraction—a phenomenon that was labeled geometric locking up. In other words, the slightly modified

expressions given here for the response of the matrix phase lead to no geometric locking up. As we

will see in Part II of this work, this feature will lead to more accurate predictions for the overall

response of the reinforced elastomers.

As discussed earlier, in this case, the microstructural tensorsPr, r = 1, 2, 3, as defined by integrals

(B.7), and subsequently the tensor E, as defined by (B.1), can be computed analytically for general

values of λ̄1 and λ̄2. However, the expressions for the pertinent components of E, as well as for the

final expression for the effective stored-energy function, are too cumbersome to be included here.

Instead, we provide only the analytical expressions for the relevant components of the corresponding

tensors Pr, r = 1, 2, 3, although, to maintain continuity here, they are spelled out in Appendix B.3.

Having these components for the tensors Pr, one can conveniently obtain a closed-form expression

for the corresponding effective stored-energy function Ŵ by first determining the analytic expressions

for the relevant components of the tensor E using the algebraic operations outlined in Eqs. (B.1)-

(B.5), and then substituting these components along with Eq. (2.37) into Eq. (2.35). Here, we

remark that the resulting expression for the effective stored-energy function simplifies considerably,

when specialized to particular choices of λ̄1 and λ̄2, corresponding to (aligned) axisymmetric shear

and pure shear loadings. In the remainder of this subsection, we will separately consider these two

specializations, and provide the closed-form expressions for the associated effective stored-energy

functions.

Axisymmetric shear loading. Here, we consider the case of the particle-reinforced neo-Hookean

composite subjected to aligned axisymmetric loading of the form (see Figure 2.4(a))

F̄ = λ̄ e1 ⊗ e1 + λ̄ e2 ⊗ e2 + λ̄−2 e3 ⊗ e3, (2.38)

for which λ̄1 = λ̄2 = λ̄ is a positive loading parameter. In this case, it can be shown that the effective

stored-energy function (2.35) simplifies to

Ŵ (F̄) = φ̂(λ̄, λ̄, 0) = (1− c)W (1)
µ (F̄(1))

+
c

2(1− c)

{
2(λ̄− 1)2E11

11 + (λ̄−2 − 1)2E33
33 + 2[(λ̄− 1)2E11

22 + 2(λ̄−2 − 1) (λ̄− 1)E11
33 ]
}
,

(2.39)
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Figure 2.4: Schematic representation of a matrix reinforced by spheroidal particles subjected to
aligned (a) axisymmetric shear loading, (b) pure shear loading.

where W
(1)
µ is given by expression (2.37) with

Ī(1) =
2 (λ̄− c)2 + (λ̄−2 − c)2

(1 − c)2
, J̄ (1) =

(λ̄ − c)2(λ̄−2 − c)

(1− c)3
.
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and

E11
11 = A3A4 A5(w γ1)

−1

{
wA2

1A
3
3 (A3 − wA2)I

2
1̄ − w λ̄12A2

2 A
4
4 − wA2

3 A
2
4A5 [2w

4 − w2I23 + 4 λ̄6]

+
{
w2 λ̄12A2

2A
2
4 + wA2A3A5

[
w4 + w2 I3̄1 − λ̄6

]
−A2

3 [2w
6 − w4 I33 + w2 I81̄ + I1,4̄0,0]

}
A1 A4

+A2A3 A
2
4 [2w

6 λ̄6 + w4 I5̄,2̄1,0 + (7w2 − 3)λ̄12]

}
,

E33
33 = A3A4 A5 w γ

−1
1

{
[wA3 − λ̄6A2]A

2
1A

3
3 I

2
1̄ + w λ̄6A2A

2
4

(
wA3 I

3̄,2
0,1 − λ̄12A2 A

2
4

)
+ w3 A2

3A
2
4 A5 I

2̄,0
0,1

+
{
λ̄18 A2

2A
2
4 + 2w λ̄6 A2A3A5 I

2̄,0
0,1 − w2 A2

3 [w
2 I32̄ + I3,4̄0,0]

}
A1A4

}
,

E11
22 = A3A4 (w λ̄

2γ1)
−1

{
A1

{
−w λ̄2A2 A3A4

[(
J1̄3 + I1,2

1̄,0

)
w4 − I31̄

(
J11 + I31̄

)
w2 + λ̄6

(
J1̄3 + I3̄,41,0

)]

+A2
3A4A5

[
(λ̄2 − 1)w6 +

(
I51̄ − 2 λ̄2

)
w4 − λ̄2

(
J1̄4 − I11

)
w2 − λ̄8

]
+ w2λ̄14A2

2 A
3
4A5

}

− λ̄2A2A3A
2
4 A5

[
λ̄4(λ̄2 − 1)w6 + (λ̄2 + 1)

(
J0,11,2 − I21

)
w4 − λ̄6

(
3 λ̄4 + I24̄

)
w2 − λ̄12

]

+ w3 A2
3A

2
4A

2
5 [(λ̄

2 − 1)w2 + λ̄2(2 λ̄4 − 1)] + w λ̄14A2
2 A

4
4

[
λ̄4(λ̄2 + 1)w2 + I2̄1 − λ̄4

]

+ wA2
1 A

3
3 (2 λ̄

6 − 1)
{
A3 [(λ̄

2 + 1)w2 − λ̄2q1]− w λ̄2A2 A5

}
}
,

E11
33 = −A3A4 λ̄γ

−1
1

{
A1

{
wA2

3A4A5

[
(λ̄2 + 1)w4 − w2

(
J0,10,2 + I51̄

)
+ I1̄,40,0 + 2 λ̄8

]
− w λ̄14 A2

2A
3
4A5

+λ̄2A2 A3A4

[
w4
(
J1̄3 + I42̄

)
+ λ̄4

(
2 λ̄14 + J0,4

0,10
− I2,3

1̄,0

)
w2 + 2 λ̄18 + λ̄10 I31̄

]}

− λ̄14A2
2A

4
4 (w

2q1 − λ̄6 − λ̄4)− w λ̄2A2A3 A
2
4A5

[
w4q1 −

(
J13 + 3 λ̄6

)
w2 + 2 λ̄12 + 3 λ̄10

]

+ w2 A2
3A

2
4A

2
5 I

2̄,0
0,1 +A2

1 A
3
3 I

2
1̄

{
w λ̄2A2 A5 −A3[(λ̄

2 + 1)w2 − λ̄2q1]
}}

. (2.40)

In addition, in the above relations,

A1 = tanh−1

(√
w2 − 1

w

)
, A2 = tanh−1

(√
w2 − λ̄6

w

)
, A3 =

√
w2 − λ̄6,

A4 =
√
w2 − 1, A5 = (λ̄4 + λ̄2 + 1)(λ̄2 − 1), q1,2 = λ̄4 ± 1,

γ1 = A3A4

[
A1 A3A4

(
λ̄6 A2A

2
3A

2
4 I

3
1̄ + wA3

3A5 I
4̄,0
1,1

)
−A2

1A
6
3 I

2
1̄ − λ̄18 A2

2A
6
4

−w λ̄6A2A3 A
4
4A5 I

3̄,0
0,1 + w2 A2

3A
2
4A

2
5 I

2̄,0
0,1

]
/µ(1),

and the abbreviations

Ia,cb,d = cλ̄12 + aλ̄6 + dw2 + b, Iab = Ia,0b,0 , Ja,cb,d = bλ̄10 + dλ̄8 + aλ̄4 + cλ̄2, Jab = Ja,0b,0 ,
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have been introduced for compactness. In these last expressions, a barred subscript/superscript

indicates the corresponding negative coefficient. It should be pointed out that the effective stored-

energy function (2.39) is valid for both prolate (w > 1) and oblate (w < 1) spheroidal shapes for

the particles. Also, when specialized to the case of w = 1, relation (2.39) recovers the corresponding

effective stored-energy function for neo-Hookean elastomers reinforced by rigid, spherical particles

provided by relation (1.141) in Chapter 1 (except that the expression forW
(1)
µ involves a logarithmic

term in J̄ (1), because, as already noted, a slightly different form for the compressible generalization

of the neo-Hookean model was used in the earlier work.). Another remarkable feature of the stored-

energy function (2.39) is that it is valid for any positive loading parameter λ̄. More specifically, for

λ̄ > 1, the function (2.39) corresponds to the effective stored-energy function of the composite when

subjected to Equibiaxial Tension loading in the e1 − e2 plane, while for λ̄ < 1, it corresponds to

Uniaxial Tension loading in the e3 direction with tensile stretch λ̄3 = 1/λ̄2.

Pure shear loading. Next, we consider the case in which the (spheroidal) particle-reinforced neo-

Hookean composite undergoes aligned pure shear loading (in the e1 − e3 plane) of the form (see

Figure 2.4(b))

F̄ = λ̄ e1 ⊗ e1 + e2 ⊗ e2 + λ̄−1 e3 ⊗ e3, (2.41)

where, similar to the preceding axisymmetric case, λ̄1 = λ̄ is a positive loading parameter. In this

case, the TSO estimate (2.35) for the effective stored-energy function simplifies to

Ŵ (F̄) = φ̂(λ̄, 1, 0) = (1 − c)W (1)
µ (F̄(1)) +

c

2(1− c)

{
(λ̄− 1)2E11

11 + (λ̄−1 − 1)2E33
33

+ 2 (λ̄− 1) (λ̄−1 − 1)E11
33

}
, (2.42)

where W
(1)
µ is given by expression (2.37) with

Ī(1) =
(λ̄− c)2 + (λ̄−1 − c)2

(1− c)2
+ 1, J̄ (1) =

(λ̄− c)(λ̄−1 − c)

(1 − c)2
,

and
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E33
33 = −w γ−1
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(2.43)

In addition, in the above relations,

B1 = tan−1

(√
1− w2

w

)
, B2 =

√
λ̄4 − w2, B3 =

√
1− w2, B4 = (λ̄2 − 1)(λ̄2 + 2),

γ2 =
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)
B3 −

(
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1
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+ λ̄3B4
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2w λ̄B2B3

(
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[
wB1 Q

1
1̄ O
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(
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1 − 2 λ̄6
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/µ(1)

and α = w2
(
λ̄2Q1

1 + 2
)
− 2λ̄2Q1

1. Also, the abbreviations

Qa
b = aλ̄2 + b, Oa,c,e

b,d,f = fλ̄10 + eλ̄8 + dλ̄6 + cλ̄4 + bλ̄2 + a, Oa,c
b,d = Oa,c,0

b,d,0,

are introduced for compactness, and it is recalled that a barred subscript/superscript indicates the

corresponding negative coefficient. Moreover, Ξf , and Ξp1,2 are given in terms of the incomplete

elliptic integrals of the first and third kind (Abramowitz and Stegun, 1965), respectively, via

Ξf = F

(
B2

λ̄2
, q

)
, Ξp1 = P

(
B2

λ̄2
,
λ̄4 − 1

w2 − λ̄4
, q

)
, Ξp2 = P

(
B2

λ̄2
, 1, q

)
,
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where q = λ̄
√
(λ̄2 − 1)/(λ̄4 − w2), and the functions F and P are defined by

F (a, b) =

∫ a

0

1√
1− t2

√
1− b2t2

dt, P (a, b, c) =

∫ a

0

1√
1− t2

√
1− b t2

√
1− c2t2

dt. (2.44)

It is important to note that, similar to relation (2.39), the effective stored-energy function (2.42) is

valid for both prolate (w > 1) and oblate (w < 1) spheroidal shapes of particles. Likewise, when

specialized to the case of w = 1, relation (2.42) reduces to the corresponding effective stored-energy

function for neo-Hookean elastomers reinforced by rigid, spherical particles provided by relation

(1.139) in Chapter 1 (notwithstanding the earlier comment about the logarithmic term). Finally,

it is emphasized, for completeness, that the estimates (2.39) and (2.42) are consistent with the

macroscopic incompressibility constraint λ̄1λ̄2λ̄3 = 1, and linearize properly.

2.5 Onset of macroscopic instabilities

The purpose of this section is to investigate the possible development of macroscopic instabilities in

the finitely strained, particle-reinforced elastomers described in the prior section. As discussed earlier

in Section 2.2, in this work, our attention is restricted to the onset of macroscopic (as opposed to

microscopic) instabilities, which are characterized by wavelengths much larger than the characteristic

size of the underlying microstructure. We recall from our discussion in Section 2.2 that, based on

the work by Geymonat et al. (1993), the onset of macroscopic instabilities in the heterogeneous

materials corresponds to the loss of strong ellipticity of the associated homogenized constitutive

behavior. Recalling from (2.11), the homogenized particle-reinforced elastomer characterized by

Ŵ (F̄) is said to be strongly elliptic if and only if

L̂ijklNjNlmimk =
(
∂2Ŵ/∂F̄ij ∂F̄klNjNl

)
mimk > 0. (2.45)

Thus, equivalently, the first macroscopic instability happens whenever the inequality (2.45) ceases

to hold true.

For incompressible materials, however, it proves convenient to express the strong ellipticity (SE)

condition in terms of the tensor L̂c
ijkl = L̂ipkq F̄jp F̄lq which is the updated incremental moduli tensor

when the undeformed configuration coincides with the deformed configuration. Correspondingly, for

incompressible composites, the SE condition (2.45) can be rewritten as

tr{[L̂c(m⊗ n)](m ⊗ n)} > 0, (2.46)

where n = F̄−TN is the transformation of the unit vector N in the deformed configuration. In

this case, the incompressibility constraint det(F̄) = 1 implies that the unit vectors n and m must

satisfy n ·m = 0 in (2.46). In fact, due to the incompressibility constraint, some components of the

moduli Lc become infinite, however, the constraint n ·m = 0 projects the tensor Lc onto the space

of isochoric deformation det(F̄) = 1, and accordingly, the condition (2.46) is expressed in terms of

some traces of Lc with finite values.
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Since the effective strain energy (2.13) is strongly elliptic in sufficiently small neighborhoods of

F̄ = I, one expects that the inequality (2.46) holds true in the infinitesimal-strain regime. However,

as the macroscopic strain increases, the inequality may be violated at some specific critical tensor

F̄cr. This critical deformation gradient is associated with the critical vectors ncr, mcr. In fact, F̄cr

constitutes the boundary of the domain in deformation space, including the value F̄ = I, inside

which the SE condition holds. It is also remarked that when the condition (2.46) fails to hold, the

homogenized material becomes macroscopically unstable and this corresponds to a developing shear

band taking place on a plane with the (unit) normal vector ncr (in the deformed configuration) and

along the direction mcr.

The main objective of this section is to find the F̄cr (together with the associated vectors ncr and

mcr) when the composite material consisting of rigid spheroidal particles undergoes the macroscopic

deformation given by (2.24). In the following, the specialization of the SE condition (2.46) for the

class of transversely isotropic composites under non-aligned and aligned loadings are provided, and

later, they are further specialized for the (rigidly) particle-reinforced composites of interest under

axisymmetric and pure shear loadings.

The modulus tensor L̂c in (2.46), which in general has 45 independent components, simplifies

when it is specialized to the class of (incompressible) transversely isotropic composites (with sym-

metry axis aligned with e3 direction) undergoing the macroscopic deformation field (2.24) (recall

that θ̄1 = 0◦). Accordingly, it can be shown, by making use of the orthogonality condition n ·m = 0

to solve for m3 in terms of the other components of m and n, that the SE condition (2.46) for the

stored-energy function Ŵ (F̄) can be written as

n−2
3

{{
L̂c
3131 n

4
1 − 2 L̂∗

2 n3n
3
1 +

(
L̂c
3232 n

2
2 + L̂∗

3 n
2
3

)
n2
1 +

(
2 L̂∗

1 n
3
3 − 2 L̂c

3212 n
2
2 n3

)
n1+

L̂c
1212 n

2
2 n

2
3 + L̂c

1313 n
4
3

}
m2

1 +
{
2 L̂c

3131 n2 n
3
1 + 2

(
L̂∗
7 n

2
3 − L̂∗

8 n
2
1 − L̂c

3212 n
2
2

)
n2 n3

+2
(
L̂c
3232 n

2
2 + L̂∗

5 n
2
3

)
n1n2

}
m1m2 +

[(
L̂c
3131 n

2
2 + L̂c

2121 n
2
3

)
n2
1

+2
(
L̂c
2321 n

2
3 − L̂∗

6 n
2
2

)
n1n3 + L̂c

3232 n
4
2 + L̂∗

4 n
2
3 n

2
2 + L̂c

2323 n
4
3

]
m2

2

}
> 0, (2.47)

where

L̂∗
1 = L̂c

1113 − L̂c
3313, L̂∗

2 = L̂c
1131 − L̂c

3331,

L̂∗
3 = L̂c

1111 + L̂c
3333 − 2 L̂c

1133 − 2 L̂c
1331, L̂∗

4 = L̂c
2222 + L̂c

3333 − 2 L̂c
2233 − 2 L̂c

2332

L̂∗
5 = L̂c

1122 + L̂c
1221 + L̂c

3333 − L̂c
1133 − L̂c

2233 − L̂c
1331 − L̂c

2332,

L̂∗
6 = L̂c

2231 + L̂c
3221 − L̂

′c
3331, L̂

∗
7 = L̂c

2213 + L̂c
2312 − L̂c

3313, L̂
∗
8 = L̂c

2231 + L̂c
3221 + L̂c

1131 − 2 L̂c
3331,

(2.48)

The loss of strong ellipticity of the (incompressible) composite elastomer can be determined by

monitoring the sign of the LHS expression in inequality (2.47) for all possible unit vectors n and m

satisfying the constraint n ·m = 0, and detecting the point at which the expression first vanishes.
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As mentioned earlier in this section, for an incompressible composite, some of the components of

the corresponding effective incremental modulus tensor L̂c become unbounded, however, the traces

of this modulus tensor which appear in the strong ellipticity condition (2.47) (the expressions of

L̂c
ijkl terms multiplying ni’s components) have finite values. These traces can be derived in terms of

loading parameters λ̄1, λ̄2, and θ̄2 as well as the first and second derivatives of the effective stored-

energy function Φ̂(λ̄1, λ̄2, θ̄1, θ̄2) with respect to its arguments, evaluated at θ̄1 = 0◦. To maintain

continuity, the corresponding explicit expressions for the moduli traces, calculated in the rectangular

Cartesian basis {e′i}, are provided in Appendix B.4.

Substituting the expressions for the moduli traces (in (B.20)-(B.24)) into (2.47), the SE condition

is expressed in terms of Φ̂ and can be used to detect the onset of macroscopic instabilities for the

class of particle-reinforced composites described in Section 2.4. For a general choice of λ̄1, λ̄2, and

θ̄ = θ̄2 in deformation (2.24) (recall that θ̄1 = 0◦), the resulting condition takes the form

f(Φ̂,λ̄1
, Φ̂,λ̄2

, Φ̂,λ̄1λ̄1
, Φ̂,λ̄2λ̄2

, Φ̂,θ̄1θ̄1 , Φ̂,θ̄2θ̄2 , n1, n2, n3,m1,m2,m3, λ̄1, λ̄2, θ̄) > 0, (2.49)

in which subscript commas followed by an index denote derivatives with respect to the corresponding

variables. For this general choice of loading parameters, the explicit expression for function f in

(2.49) is too lengthy to be included here, but it simplifies considerably for the special case of aligned

loadings (θ̄ = 0◦) as discussed in the following.

For the special case of macroscopic aligned loadings, given by (2.34), it can be shown that the

SE condition (2.47) reduces to

n−2
3

{[
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4
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2323n
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}
> 0. (2.50)

Substituting the moduli traces in (B.25)-(B.27) (for aligned loadings) into the above condition,

the corresponding SE condition for Φ̂ is obtained. For general choice of λ̄1 and λ̄2 in deformation

(2.34), the resulting condition can be shown to reduce to
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(2.51)
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where φ∗1 = λ̄1l1Φ̂,λ̄1
+ Φ̂,θ̄2θ̄2 , φ

∗
2 = λ̄2l2Φ̂,λ̄2

+ Φ̂,θ̄1θ̄1 , φ
∗
3 = λ̄1Φ̂,λ̄1

− λ̄2Φ̂,λ̄2
, and

l1 = λ̄41λ̄
2
2 − 1, l2 = λ̄21λ̄

4
2 − 1, l3 = λ̄21 − λ̄22. (2.52)

Before proceeding with the study of conditions (2.47), (2.49), (2.50), (2.51) for the particle-

reinforced composites of interest, it is important to make the following remarks:

(1) The SE conditions (2.49) and (2.51) are valid for any stored-energy function of the form

Φ(λ̄1, λ̄2, θ̄1, θ̄2) corresponding to a transversely isotropic material whose axis of symmetry is aligned

with the e3 direction and subjected to a deformation field of the form (2.24) (with the condition

θ̄1 = 0◦) and (2.34), respectively.

(2) In the remainder of this section, we will examine the SE conditions (2.49) and (2.51) only

for the transversely isotropic composite with the class of particulate microstructures studied in this

work. For this class of composites, based on a numerical study of (2.49) and (2.51) (as will be

discussed in Part II of this work), we provide the corresponding critical unit vectors ncr and mcr at

which these condition are first violated.

(3) The aforementioned results for the critical vectors ncr, mcr are based on numerical investi-

gations carried out for composites with Gent and neo-Hookean matrices. However, it is plausible

that corresponding calculations for composites with other matrix models of the form (2.21) would

result in the same critical unit vectors.

Keeping in mind these remarks, in the next two subsections we consider the strong ellipticity

conditions (2.49) and (2.51) for two special types of loadings. In the first subsection, we consider

axisymmetric shear (characterized by λ̄1 = λ̄2 = λ̄), and provide first the SE conditions associated

with expressions (2.49) and (2.51) for non-aligned and aligned loadings, respectively. In the second,

we provide the corresponding specialized SE conditions for pure shear loadings (characterized by

λ̄1 = λ̄, λ̄2 = 1). In this context, it is useful to introduce the critical stretch λ̄cr, at which the strong

ellipticity conditions associated with axisymmetric and pure shear loadings are first violated.

In the discussions below, it is helpful to introduce the notations

Φ̂AS(λ̄, θ̄1, θ̄2) = Φ̂(λ̄, λ̄, θ̄1, θ̄2), Φ̂PS(λ̄, θ̄1, θ̄2) = Φ̂(λ̄, 1, θ̄1, θ̄2), (2.53)

corresponding to general non-aligned axisymmetric and pure shear loadings, respectively (cf., (2.29)).

Similarly, we introduce the notations

φ̂AS(λ̄, θ̄) = φ̂(λ̄, λ̄, θ̄), φ̂PS(λ̄, θ̄) = φ̂(λ̄, 1, θ̄), (2.54)

respectively for axisymmetric and pure shear loadings with θ1 = 0 (cf., (2.30)).

2.5.1 Axisymmetric Shear

Here, we begin by considering the SE condition for non-aligned axisymmetric loadings, characterized

by λ̄1 = λ̄2 = λ̄ in the loading form (2.24). For this case, the numerical results show that the

critical unit vectors at which the inequality (2.47) cease to hold, take the form mcr = e2 and
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ncr = cos(αcr)e1 + sin(αcr)e3. In view of these results for the critical vectors mcr and ncr, it is

inferred that the macroscopic instability, under non-aligned loading condition, consistently takes

places through development of localized shear deformations (also known as “shear bands”) on all

planes whose normal lies in the e1− e3 plane, and in the e2 direction. In this connection, αcr serves

to characterize the angle between the normal to the plane of the “shear band” and the e1 direction,

exactly at the moment of shear band initiation. The corresponding normal vector in the undeformed

configuration can be obtained from relation Ncr = F̄T
crncr. Using the resulting vectors ncr, and

mcr in condition (2.47), it can be deduced that macroscopic instabilities may first develop along

non-aligned axisymmetric shear loading paths whenever the quadratic equation

L̂c
2121

(
n1

n3

)2

+ 2 L̂c
2321

(
n1

n3

)
+ L̂c

2323 = 0 (2.55)

admits real roots for n1/n3. Consequently, necessary and sufficient condition for the quadratic

equation to have complex roots can be expressed as

L̂c
2121 L̂

c
2323 −

(
L̂c
2321

)2
> 0. (2.56)

Making use of the expressions for the Lc
2121, L

c
2323, and Lc

2321, provided in Appendix B.4, for ax-

isymmetric shear loading, the associated SE condition for the effective stored-energy function Φ̂ can

be written as

{[
λ̄ sin2(θ̄)Φ̂,λ̄1λ̄1 θ̄1θ̄1 − λ̄ sin(θ̄) cos(θ̄) Φ̂,λ̄1λ̄1θ̄2 + 6 Φ̂,λ̄1λ̄1

λ̄+ 2 λ̄ Φ̂,λ̄2λ̄2
+ 8 Φ̂,λ̄1

−2 λ̄ Φ̂AS
,λ̄λ̄ − 2 Φ̂AS

,λ̄

]
×
[
λ̄5 sin(θ̄) cos(θ̄)Φ̂,θ̄2 + λ̄5 cos2(θ̄) Φ̂,θ̄1θ̄1 + (λ̄6 − 1)Φ̂,λ̄2

]

− 2 λ̄2 (λ̄6 − 1)−2
{
2 λ̄ (2 λ̄6 cos2(θ̄)− 1) Φ̂,θ̄2 + λ̄2 (λ̄6 − 1) cos2(θ̄) Φ̂,λ̄1 θ̄2

−λ̄2 sin(θ̄) cos(θ̄)
[
4 λ̄5 Φ̂,θ̄1θ̄1 + (λ̄6 − 1)Φ̂,λ̄1 θ̄1θ̄1

]}2
}∣∣∣∣∣

λ̄1=λ̄2=λ̄,

θ̄1=0, θ̄2=θ̄

> 0. (2.57)

Recall that the above condition is calculated at θ̄1 = 0◦, and the axisymmetric shear conditions

λ̄1 = λ̄2 = λ̄ should be applied to all terms after taking derivatives. Loss of ellipticity is therefore

expected at the critical stretch λ̄cr for which condition (2.57) is first violated. The corresponding

critical angle αcr can be shown to be given by

αcr = θ̄ + tan−1
{
λ̄
{
2 λ̄ (2 λ̄6cos2(θ̄)− 1)Φ̂,θ̄2 + λ̄2(λ̄6 − 1)cos2(θ̄)Φ̂,λ̄1θ̄2

−λ̄2 sin(θ̄) cos(θ̄)
[
4 λ̄5 Φ̂,θ̄1θ̄1 + (λ̄6 − 1)Φ̂,λ̄1θ̄1θ̄1

]}

×1

2

[
λ̄5 cos(θ̄) sin(θ̄)Φ̂,θ̄2 + λ̄5Φ̂,θ̄1θ̄1 cos

2(θ̄) + (λ̄6 − 1)Φ̂,λ̄2

]−1
}∣∣∣∣

λ̄1=λ̄2=λ̄cr,

θ̄1=0, θ̄2=θ̄

. (2.58)

Note that the above expression is calculated at λ̄cr.

Next, we consider the development of macroscopic instabilities for the composites subjected to
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the aligned axisymmetric loading of the form (2.38). In this case, the result depends on whether

the particles are prolate (w > 1), or oblate (w < 1), and these two cases are considered separately

below.

Prolate particles. Here, we consider composites consisting of an incompressible matrix and aligned

prolate spheroidal particles (see Figure 2.1(a)) subjected to axisymmetric shear loading (2.38). In

this case, within the context of condition (2.50), and based on the numerical examination, the loss

of strong ellipticity for the effective stored-energy function Φ̂ takes place when the vector ncr is

aligned with the e3 axis and the vector mcr lies in the e1 − e2 plane in the deformed configuration.

That is, the homogenized composite material may develop localized shear deformations on the plane

determined by the normal e3, and in all directions in the transverse plane. Using these vectors

in the condition (2.50), it can be deduced that macroscopic instabilities may first develop along

axisymmetric shear loading paths whenever the following inequality is first violated

L̂c
1313 = L̂c

2323 > 0. (2.59)

It should be noted that, for the case of prolate particles, the associated numerical results (to be

discussed in more detail in Part II of this work) show that this type of instability occurs only

when λ̄ > 1. This regime of λ̄ corresponds to the equibiaxial tension loading in the e1 − e2 plane

with the stretch λ̄, which is equivalent to the uniaxial compression loading in the e3 direction with

(compressive) stretch 1/λ̄2. In other words, as the (compressive) stretching along the long axes of

the particle increases, the effective incremental modulus in the transverse plane perpendicular to

the particle symmetry axes (L̂c
1313 = L̂c

2323) softens to the point that it vanishes (L̂c
1313 = 0). This

point is characterized by some finite critical stretch λ̄cr > 1. This localized behavior can be related

to the evolution of the microstructure in the particle-reinforced elastomers. Thus, as will be seen

in Part II, the loss of strong ellipticity would correspond to an abrupt rotation (or flopping) of the

particles under a sufficiently large compressive loading. Making use of the expression for Lc
1313 given

in Appendix B.4, the associated strong ellipticity condition in terms of the effective stored-energy

function can be given as [
λ̄5
∂2φ̂AS

∂θ̄2
+

1

2
(λ̄6 − 1)

∂φ̂AS

∂λ̄

]∣∣∣∣∣
θ̄=0◦

> 0. (2.60)

Note that all derivatives in the above conditions are taken at θ̄ = 0◦.

Oblate particles. Here, we consider composites consisting of an incompressible matrix and aligned

oblate spheroidal particles (see Figure 2.1(b)). In this case, along the loading path (2.38), the

numerical study indicates that the strong ellipticity condition (2.50) is first violated when the vector

ncr lies in the e1 − e2 plane and the vector mcr is aligned with the e3 direction in the deformed

configuration. In other words, the homogenized composite material may develop localized shear

deformations on all planes whose normal lies in the e1 − e2 plane, and in the e3 direction. Using

these vectors in the condition (2.50), it is easy to show that the first macroscopic instabilities may
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develop along axisymmetric shear loading paths whenever the following inequality is first violated

L̂c
3131 = L̂c

3232 > 0. (2.61)

It is remarked that, for the case of oblate particles, the numerical results show that this instability

occurs only for 0 < λ̄ < 1. This regime of λ̄ corresponds to a equibiaxial compression loading in

the e1 − e2 plane with (compressive) stretch λ̄, which is equivalent to the uniaxial tension loading

in the e3 direction with (tensile) stretch 1/λ̄2. That is, as the (compressive) stretching in the

transverse plane increases, the effective incremental modulus in all planes with the normal vector

n ∈ Span{e1 − e2} softens to the point that it vanishes (L̂c
3131 = L̂c

3232 = 0). Making contact with

the microstructure, the loss of strong ellipticity can be identified with flopping of the oblate particles

under compressive loading in the e1 − e2 plane. Making use of the expression for L̂c
3131, given in

Appendix B.4, the associated strong ellipticity condition in terms of the effective stored-energy

function can be written as

[
2
∂2φ̂AS

∂θ̄2
+ λ̄(λ̄6 − 1)

∂φ̂AS

∂λ̄

]∣∣∣∣∣
θ̄=0◦

> 0. (2.62)

2.5.2 Pure shear

In this subsection, we consider the case of particle-reinforced elastomers subjected to pure shear

deformations, characterize by λ̄1 = λ̄, λ̄2 = 1 in expression (2.24). In this case, similar to the

case of non-aligned axisymmetric shear loading, the strong ellipticity condition (2.47) is violated

at the critical vectors mcr = e2 and ncr = cos(αcr)e1 + sin(αcr)e3. In turn, the same strong

ellipticity condition (2.56) is obtained for the case of non-aligned pure shear loading. Making use

of the expressions for the Lc
2121, L

c
2323, and Lc

2321 given in Appendix B.4 for pure shear loading, the

following macroscopic onset-of-failure surface (λ̄, θ̄) is obtained

{[
cos(θ̄) sin(θ̄)Φ̂,θ̄2 − sin2(θ̄)Φ̂,θ̄1θ̄1 −

(
λ̄2 − 1

) (
λ̄ Φ̂,λ̄1

− Φ̂,λ̄2

)]
λ̄2

×
[(
λ̄2 − 1

)
Φ̂,λ̄2

+ λ̄2 sin(θ̄) cos(θ̄)Φ̂,θ̄2 + λ̄2 cos2(θ̄) Φ̂,θ̄1θ̄1

]
− λ̄4

(
λ̄2 + 1

)−2

×
[(
λ̄2cos2(θ̄)− sin2(θ̄)

)
Φ̂,θ̄2 −

(
λ̄2 + 1

)
sin(θ̄) cos(θ̄)Φ̂,θ̄1θ̄1

]2}∣∣∣∣
λ̄1=λ̄, λ̄2=1,

θ̄1=0, θ̄2=θ̄

> 0. (2.63)

Note that the SE condition (2.63) is calculated at θ̄1 = 0◦, and the pure shear conditions λ̄1 = λ̄,

λ̄2 = 1 should be applied to all terms after taking derivatives. Also, for the cases in which the strong

ellipticity condition (2.63) is violated, the corresponding critical angle αcr, characterizing the angle

between the e1 axis and the normal to the shear band plane at the moment of its initiation, can be
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shown to be obtained by

αcr = θ̄ + tan−1

{
λ̄2
[(
λ̄2cos2(θ̄)− sin2(θ̄)

)
Φ̂,θ̄2 − sin(θ̄) cos(θ̄)

(
λ̄2 + 1

)
Φ̂,θ̄1θ̄1

]

×
{(
λ̄2 + 1

) [(
λ̄2 − 1

)
Φ̂,λ̄2

+ λ̄2 sin(θ̄) cos(θ̄)Φ̂,θ̄2 + λ̄2 cos2(θ̄) Φ̂,θ̄1θ̄1

]}−1
}∣∣∣∣∣

λ̄1=λ̄cr, λ̄2=1,

θ̄1=0, θ̄2=θ̄

. (2.64)

Recall that the above expression is calculated at λ̄cr, corresponding to the stretch at which the shear

band is initiated.

Next, we consider the development of macroscopic instabilities for the composites subjected to

the aligned pure shear loading of the form (2.41). Similar to the case of axisymmetric loadings, the

two classes of microstructures with prolate and oblate particles (see Figure 2.1(a), (b)) should be

examined separately.

Prolate particles. For the case of prolate particles (see Figure 2.1(a)), the strong ellipticity condi-

tion (2.50) is violated at the critical vectors ncr = e3 and mcr ∈ Span{e1−e2}. Making use of these

vectors in condition (2.50), it is concluded that the particle-reinforced materials become unstable

under the aligned pure shear loading whenever any of the following inequalities is violated

L̂c
1313 > 0, L̂c

2323 > 0. (2.65)

In fact, the “failure mechanism” for both aligned pure shear and axisymmetric shear loadings is

essentially the same, which is the softening of the effective incremental shear response perpendicular

to the e3 direction. However, at the point of instability in the pure shear case, the overall shear

response of the composite in the transverse plane vanishes in a particular direction within this plane

(e1 or e2), while in the axisymmetric shear case, as mentioned earlier, it vanishes in all directions

within the transverse plane. Making contact with evolution of the microstructure, this implies that,

under aligned pure shear loading, the prolate particles “flop” about either the e1 or e2 directions

depending on the other microstructural variables (w and c), while, under aligned axisymmetric shear

loading, the flopping of the particles about any axis m ∈ Span{e1−e2} is essentially the same. Now,

making use of the pertinent expressions in Appendix B.4 for aligned pure shear loading, the necessary

and sufficient conditions for the associated effective stored-energy function Φ̂ to be strongly elliptic

can be expressed as



λ̄

∂2φ̂PS∗

∂θ̄2
+ (λ̄2 − 1)


∂φ̂

PS

∂λ̄
−
(
∂φ̂

∂λ̄1

)∣∣∣∣∣
λ̄1=λ̄,λ̄2=1







∣∣∣∣∣∣
θ̄=0◦

> 0,

[
λ̄3
∂2φ̂PS

∂θ̄2
+ (λ̄4 − 1)

∂φ̂PS

∂λ̄

]∣∣∣∣∣
θ̄=0◦

> 0, (2.66)

where φ̂PS∗

(λ̄, θ̄) = φ̂(1, λ̄, θ̄). (In the context of this last expression, it should be recalled that

Φ̂(λ̄1, λ̄2, θ̄, 0) = Φ̂(λ̄2, λ̄1, 0, θ̄).) Also, note that all derivatives in the above conditions are taken at
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θ̄ = 0◦, and the pure shear conditions λ̄1 = λ̄, λ̄2 = 1 should be applied to the term ∂φ̂/∂λ̄1.

Oblate particles. For the case of oblate particles (see Figure 2.1(b)), the strong ellipticity condition

(2.50) is violated at the critical vectors ncr = e1 and mcr = e3. Making use of these vectors in

condition (2.50), it is deduced that the particle-reinforced materials first become unstable under

aligned pure shear loading whenever the following inequality is violated

L̂c
3131 > 0. (2.67)

In this case, similar to the prolate particles case, the “failure mechanism” for both aligned pure

shear and axisymmetric shear loadings is essentially the same, which is the softening of the effective

incremental shear response along the e3 direction. The only difference is that, at the point of

instability in the pure shear case, the overall shear response in the plane with normal vector e1

vanishes (L̂c
3131 = 0); however, in the axisymmetric shear case, the overall shear response of the

composite in all planes with the normal vector in the n ∈ Span{e1−e2} vanishes (L̂c
3131 = L̂c

3232 = 0).

Now, making use of the pertinent expressions in Appendix B.4 for aligned pure shear loading, the

necessary and sufficient conditions for the associated effective stored-energy function Φ̂ to be strongly

elliptic can be expressed as

[
∂2φ̂PS

∂θ̄2
+ λ̄(λ̄4 − 1)

∂φ̂PS

∂λ̄

]∣∣∣∣∣
θ̄=0◦

> 0. (2.68)

Finally, note that for particular case of w = 1, corresponding to spherical shape of particles, no

loss of strong ellipticity is detected within the context of the condition (2.50). This observation,

which is consistent with the results in Chapter 1 and the results of Lopez-Pamies et al. (2013a),

implies that the effective stored-energy function (2.35) is strongly elliptic in the limiting case of

spherical particles. The results for general spheroidal particle shapes will be discussed in more

detail in the next chapter.

2.6 Concluding Remarks

In this chapter, we have made use of the tangent second-order, finite-strain homogenization frame-

work proposed in Chapter 1 to estimate the overall response and microstructure evolution in in-

compressible elastomers reinforced by aligned, spheroidal, rigid particles, subject to general loading

conditions. In particular, for non-aligned loadings, the analytical estimates (2.31) and (2.33) were

derived for the effective stored-energy function of the composite and the rotation of the particles,

respectively. For the special case of aligned loadings, explicit closed-form expressions were provided

for the effective stored-energy function of particle-reinforced neo-Hookean elastomers subjected to

axisymmetric and pure shear loadings, as given in (2.39) and (2.42), respectively. It should be

emphasized that the analytical results developed in this work are given in a form that can be eas-

ily implemented numerically into user-defined constitutive subroutines for use with standard finite

element codes.
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In this work, we also have presented a detailed study of the possible development of macroscopic

instabilities in the particle-reinforced composites of interest, under both aligned and non-aligned

loading conditions. The onset of such instabilities in these materials is identified with the loss of

strong ellipticity of the associated homogenized behavior. In this connection, general conditions

for loss of ellipticity were given in (2.49) and (2.51) for non-aligned and aligned loadings, respec-

tively. These conditions were then specialized for the class of particulate composites undergoing

axisymmetric and pure shear loadings in Subsections 2.5.1 and 2.5.2.

It should be remarked that, to the best of our knowledge, the estimates provided in this work

for the effective stored-energy function and the particle rotation are the first homogenization-type

estimates for reinforced elastomers with general spheroidal particle shape. The results are valid

for large strains provided that the interfaces between the particles and the rubber remain intact.

The estimates generalize the results of Chapter 1 for spherical particles, and are consistent with

earlier results for continuous-fiber-reinforced elastomers (Agoras et al., 2009a,b), as well as with

simple laminates (deBotton, 2005; Lopez-Pamies and Ponte Castañeda, 2009), in the limits when

the aspect ratio of the spheroidal particles tends to infinity and zero, respectively.

In the next chapter, the analytical results provided in this part for the effective stored-energy

function, rotation of particles, and development of the macroscopic instabilities will be explored in

more detail for particle reinforced composites with neo-Hookean and Gent matrix phases. Explicit

results will be presented for axisymmetric and pure shear loadings, as well as for a wide range of par-

ticles shapes and concentrations. Where possible, comparisons with full-field numerical simulations

will be carried out.
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Chapter 3

Application of the TSO theory to

short fiber-reinforced composites:

II–Representative examples

74



In Chapter 2, we presented a homogenization-based constitutive model for the overall behavior

of reinforced elastomers consisting of aligned, spheroidal particles distributed randomly in an in-

compressible, hyperelastic matrix. In particular, we provided analytical estimates for the effective

stored-energy functions of the composites, as well as for the associated average particle rotations

under finite deformations. The rotation of the particles is found to be very sensitive to the specific

loading conditions applied, and is such that the particles tend to align themselves with the largest

tensile direction. In addition, we obtained corresponding formulae for the detection of macroscopic

instabilities in these composites. With the objective of illustrating the key features of the analytical

results presented in Chapter 2, we conduct here a more detailed study of these results for several

representative values of the microstructural and loading parameters, as well as matrix properties.

More specifically, this study deals with neo-Hookean and Gent elastomers reinforced with spheroidal

particles of prolate and oblate shapes with various aspect ratios and volume fractions, subjected to

aligned and non-aligned macroscopic loading conditions. In addition, to assess the accuracy of the

model, we compare our results with corresponding finite element results available from the literature

for the special case of spherical particles, and good agreement is found. For non-spherical particles,

the results indicate that the possible rotation of the particles has a major influence on the overall

response of the elastomeric composites. Furthermore, it is found that the composite may develop

macroscopic shear localization instabilities, as a consequence of the geometric softening induced by

the sudden rotation—or flopping—of the particles, when a sufficiently large amount of compression

is applied along the long axes of the particles.

3.1 Introduction

In the previous Chapter, we made use of a recently developed, improved version of the tangent

second-order (TSO) homogenization method (developed in Chapter 1) to determine estimates for

the macroscopic elastic behavior of short-fiber-reinforced elastomers. More specifically, the class of

composites considered in this work consists of (incompressible) generalized neo-Hookean elastomers

reinforced by aligned, rigid, spheroidal particles of identical aspect ratios (see Figure 2.1), exhibiting

overall transversely isotropic behavior in the undeformed configuration. The composite is subjected

to finite-deformation loadings whose principal stretching directions are generally not aligned with

those of the particles in the undeformed configuration. The analytical estimates, presented in Chap-

ter 2, include estimates for the effective stored-energy function of the composite, denoted by Ŵ , as

well as the associated finite rotations of the particles, denoted by ψ̄(2), which are a consequence of

the large deformations involved. Moreover, we investigate the possible development of macroscopic

instabilities in the composite, which, as discussed in Chapter 2, correspond to loss of strong ellipticity

of the effective stored-energy function Ŵ .

Our aim in this chapter is to examine, in the context of some representative examples, the

essential features of the effective constitutive model for the composites provided in Chapter 2. In

particular, we investigate the influence of the relevant microstructural variables (particle aspect

ratio and volume fraction), as well as nonlinear behavior of the matrix phase, on the effective

stored-energy function, appropriate macroscopic stress measures and possible change in orientation
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of the underlying particles. In this connection, it should be noted that the results given here for

dilute concentrations of particles can be viewed as a generalization of the Eshelby results in linear

elasticity to finite elasticity. Moreover, we investigate the influence of the microstructural variables

on the possible development of macroscopic instabilities in the composites, as determined by the

strong ellipticity condition. Along these lines, we will also explore the connections between the

rotation of the particles and the macroscopic instabilities. Specifically, we provide results for the

two special classes of macroscopic loadings discussed in Chapter 2, namely, axisymmetric shear and

pure shear loading conditions. Both of these types of loadings will be considered for aligned and

non-aligned conditions.

The outline of this chapter is as follows. In section 3.2, for convenience and clarity, we briefly

recall the analytical results presented in Chapter 2 and lay out the key features of the results to be

studied in this chapter. Making use of these results, in section 3.3 we provide and discuss examples for

various microgeometries, matrix properties and loading parameters. In particular, in this section,

we put into evidence the interplay between the rotation of the particles under non-aligned large

deformations and the geometric softening observed in the associated macroscopic behavior. We

also show that the macroscopic instabilities that develop in the particle-reinforced composites are

basically caused by the collective rotation—or “flopping”—of the particles, when compressed along

their long axes. Finally, in Section 3.4, we provide some concluding remarks.

3.2 Overall constitutive behavior

In this section, we briefly recall the analytical results presented in Chapter 2 and the associated

sets of examples to be provided in this chapter. In Chapter 2, we considered two-phase composites

consisting of an incompressible, elastomeric matrix phase (phase 1), characterized by the stored-

energy function W
(1)
µ , and a polydisperse family of rigid, aligned, spheroidal particles (phase 2)

with aspect ratio w and volume fraction c. For definiteness, the principal directions of the particles

in the undeformed configuration are defined by the rectangular Cartesian basis {ei} such that the

symmetry axis of the particles is aligned with the e3 direction in that configuration. Also, the

distribution of particles is assumed to be statistically isotropic in the transverse plane, which is the

plane perpendicular to the symmetry axis of particles, namely, the e1 − e2 plane. For convenience,

the basis {ei} is taken to define the fixed laboratory frame of reference as well, and henceforth,

unless stated, the components of any tensorial quantity will be referred to {ei}. Moreover, two

different geometries for the particles are assumed: (i) prolate (w ≥ 1) and (ii) oblate (w < 1)

spheroidal particles (see Figs. 2.1(a), (b) in Chapter 2.) Furthermore, in Chapter 2, the local

constitutive behavior of the matrix phase was assumed to be characterized by a fairly general class

of incompressible, isotropic stored-energy functions, written as

W (1)
µ (F) = g(I) + h(J), (3.1)

where g and h are material functions, and I = tr(FTF) = λ21 +λ22+λ23 and J = det F = λ1λ2λ3 de-

note, respectively, the first and third invariants of the deformation gradient tensor F, with λ1, λ2, λ3
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identifying the corresponding principal stretches. Here, the deformation gradient F is subject to the

incompressibility constraint, implying that

det F = λ1λ2λ3 = 1. (3.2)

In this chapter, for calculation purposes, we make use of two simple examples of (3.1). The first

material is a neo-Hookean solid whose stored-energy function is given by

W (1)
µ (F) =

1

2
µ(1)(I − 3) +

1

2
µ(1)(J − 1) (J − 3). (3.3)

where µ(1) is the shear modulus of the solid at zero strain. The second material is an incompressible

Gent solid with stored-energy function

W (1)
µ (F) = −Jm µ(1)

2
ln

(
1− I − 3

Jm

)
+

1

2
µ(1)(J − 1) (J − 3)− µ(1)

Jm
(J − 1)2, (3.4)

where Jm(> 0) is the lock-up parameter serving to characterize the the limiting chain extensibility of

elastomers. It is noted that the neo-Hookean model (3.3) corresponds to the limit as Jm approaches

infinity of the Gent model (3.4), and does not lock up at finite strain. It is also recalled that the

terms involving the factor (J − 1) do not vanish for the homogenized behavior of the reinforced

elastomers and are in fact crucial to obtain the correct linearized behavior (see Chapter 2).

The above-described particle-reinforced material is a transversely isotropic composite (with sym-

metry axis aligned with e3) in the undeformed configuration, and its macroscopic response is char-

acterized by the effective stored-energy function Ŵ (F̄). The macroscopic deformation gradient F̄

is subject to the exact overall incompressibility constraint det(F̄) = λ̄1λ̄2λ̄3 = 1, with λ̄1, λ̄2, λ̄3

identifying the macroscopic principal stretches. For definiteness in the analytical calculations, and

motivated by possible comparisons with numerical simulations and/or experiments, we consider

deformation gradients F̄ with the matrix representation

[
F̄ij

]
=




cos(θ̄) 0 sin(θ̄)

0 1 0

− sin(θ̄) 0 cos(θ̄)






λ̄1 0 0

0 λ̄2 0

0 0 (λ̄1λ̄2)
−1







cos(θ̄) 0 − sin(θ̄)

0 1 0

sin(θ̄) 0 cos(θ̄)


 , (3.5)

where the conditions λ̄1 = λ̄2 = λ̄ and λ̄1 = λ̄, λ̄2 = 1 correspond respectively to axisymmetric and

pure shear loadings, with λ̄ denoting a positive loading parameter. In the above representation, θ̄

denotes the angle of the Lagrangian principal loading axes relative to the (fixed) basis {ei} in the

e1 − e3 plane. Also, for convenience, we let the directions of the principal stretches λ̄1, λ̄2, λ̄3 =

(λ̄1λ̄2)
−1 be identified with the Cartesian vectors {e′i} (i = 1, 2, 3). A schematic representation of

the particle-reinforced elastomers subjected to the class of loadings (3.5) is given in Figure 3.3.2 of

Chapter 2.

In Chapter 2, we made use of the tangent second-order (TSO) procedure, developed in Chapter 1,

to generate estimates for the effective stored-energy function Ŵ (F̄) of the above-described particle-
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reinforced materials, which, under deformation gradient (3.5), takes the functional form

Ŵ (F̄) = φ̂(λ̄1, λ̄2, θ̄), (3.6)

and is given explicitly by equation (31) in Chapter 2. Also, as discussed in Chapter 2, the principal

directions of loading (identified by the {e′i} axes) are, in general, not aligned with those of the

particles (identified by the {ei} axes in the undeformed configuration), leading to finite changes in

the orientation of particles as characterized by the angle ψ̄(2). An estimate for this angle, which is

an essential part in the estimate for φ̂, is delivered by the TSO procedure and given by equation

(33) in Chapter 2. In addition, Eqs. (59)-(62) and (65)-(68) in Chapter 2 provide the associated

strong ellipticity (SE) conditions for the composites under aligned loadings, for axisymmetric and

pure shear loading conditions, respectively. Likewise, Eqs. (57) and (63) provide the SE conditions

for the composites under non-aligned loadings for axisymmetric and pure shear loading conditions,

respectively. Before proceeding with the detailed examples, it proves helpful to provide a brief de-

scription of the three different types of results covered in this chapter.

Effective constitutive relation.

Recalling that the fiber-reinforced elastomers of interest in this work are incompressible, their

macroscopic constitutive relation is determined by the following expression for the average Cauchy

stress tensor

T̄ =
∂Ŵ (F̄)

∂F̄
(F̄)T − p I, (3.7)

where p stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint.

For the specific purpose of discussing the axisymmetric and pure shear modes of loading, it is

useful to introduce the scalar stress variables

S̄AS =
∂φ̂AS(λ̄, θ̄)

∂λ̄
, and S̄PS =

∂φ̂PS(λ̄, θ̄)

∂λ̄
, (3.8)

where (recalling expression (3.6)) φ̂AS = φ̂(λ̄, λ̄, θ̄) and φ̂PS = φ̂(λ̄, 1, θ̄), respectively. They can be

related to the normal components of the macroscopic Cauchy stress tensor T̄ via the relations

S̄AS = λ̄−1
[(
T̄ ′
11 + T̄ ′

22

)
− 2T̄ ′

33

]
, and S̄PS = λ̄−1

(
T̄ ′
11 − T̄ ′

33

)
, (3.9)

where the T̄ ′
ij denote the components of the tensor T̄ relative to the “loading” basis {e′i} (see Figure

3.3.2 in Chapter 2), and are determined by transformation rule

T̄ ′
ij = Q̄pi T̄pq Q̄qj , (3.10)

with Q̄ = cos(θ̄) (e1⊗e1+e3⊗e3)+sin(θ̄) (e1⊗e3−e3⊗e1)+ e2⊗e2. Note that for the case of aligned

loadings (θ̄ = 0◦), the effective stored-energy functions φ̂AS and φ̂PS are explicitly given by Eqs. (39)

and (42) in Chapter 2, and the associated stress measures read as S̄AS = λ̄−1
[(
T̄11 + T̄22

)
− 2T̄33

]

and S̄PS = λ̄−1
(
T̄11 − T̄33

)
, where it is recalled that the particles are initially aligned in the e3
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direction.

Moreover, for dilute concentrations of particles, it proves useful to consider the following modified

effective stress measures

S̄AS
0 =

∂φ̂AS
0 (λ̄, θ̄)

∂λ̄
, S̄PS

0 =
∂φ̂PS

0 (λ̄, θ̄)

∂λ̄
, (3.11)

where φ̂PS
0 (λ̄, θ̄) and φ̂AS

0 (λ̄, θ̄) are given by

φ̂AS
0 =

1

c

(
φ̂AS − φAS

)
, φ̂PS

0 =
1

c

(
φ̂PS − φPS

)
, (3.12)

with φAS and φPS denoting the stored-energy function of the homogeneous matrix phase evaluated

at the appropriate deformation gradients.

Evolution of microstructure. As discussed in Chapter 2, the TSO procedure for estimating the effec-

tive stored-energy function Ŵ (F̄) also accounts for the evolution of the underlying microstructure,

resulting from the finite changes in geometry that are induced by the deformation. Information on

the variables characterizing the evolution of the microstructure provides deeper physical insight into

the observed macroscopic behavior. For the class of particle-reinforced composites under study, the

volume fraction and shape of the particles do not change (because the particles are rigid and the

matrix is incompressible), and the only microstructural variables that evolve with the deformation

are the orientation of the particles, and the shape and orientation of the distributional ellipsoid

characterizing the angular dependence of the two-point correlation function (for the distribution

of the particle centers). As we have seen, the TSO model provides us with direct access to the

rotation of the particles (ψ̄(2), as given by Eq. (33) in Chapter 2). For aligned loadings (θ̄ = 0◦),

the particle do not rotate (ψ̄(2) = 0◦), up to the possible development of an instability. On there

other hand, for non-aligned loadings, the orientation of particles changes with the deformation, and

this is expected to have a significant effect on the macroscopic behavior of the composite. For this

reason, the evolution of the particle rotations will be included in the presentation of the results and

associated discussions of the next section. On the other hand, the distributional ellipsoid, which is

assumed to have initially the same shape and orientation as those of particles in the undeformed

configuration, evolves with the macroscopic deformation, and can be easily computed, but is not

expected to play a major role and will therefore not be discussed further here.

Onset of macroscopic instabilities. Theoretical results (Geymonat et al., 1993) suggest that compos-

ite materials can develop macroscopic (or long wavelength) instabilities at sufficiently large deforma-

tions, even when the constituent phases are locally strongly elliptic. Interestingly, the TSO model,

developed in Chapter 2, was found to generate macroscopic instabilities under certain conditions

which can be captured through loss of the SE condition for the effective stored-energy function.

As discussed in Chapter 2, the onset of macroscopic instabilities in the incompressible compos-

ites correspond to development of a localized deformation (or shear band) on a plane (identified

by the the normal vector ncr) and in the direction mcr(⊥ ncr). In particular, our aim is to in-

79



vestigate (1) whether or not the homogenized behavior of the composites loses SE for different

loading/microstructure conditions, and (2) what is the associated critical stretch (denoted by λ̄cr)

and the pair of vectors (mcr and ncr) in case of loss of SE. For the composites under study, the local

behavior of the matrix is locally strongly elliptic (models (3.3) and (3.4) are strongly elliptic for all

stretches), and therefore, the loss of SE of the homogenized behavior can be related to the evolution

of microstructure.

For completeness, in addition to presenting the macroscopic instability results in deformation

space (given by λ̄cr), we also present them in stress space. To this end, we need to suitably choose

the arbitrary pressure p in Eq. (3.7) depending on the applied macroscopic loading. For simplicity,

we consider instability results in stress space only for aligned pure shear and axisymmetric shear

loadings. The case of aligned pure shear loading (λ̄1 = λ̄, λ̄2 = 1) can be identified with the biaxial

state of stress

S̄ = S̄22e2 ⊗ e2 + S̄33e3 ⊗ e3, (3.13)

where the S̄ij denote components of the Piola-Kirchhoff stress relative to the basis {ei}. Similarly,

the case of aligned axisymmetric shear loading (λ̄1 = λ̄2 = λ̄) can be associated to a uniaxial state

of stress in the e3 direction, written as

S̄ = S̄33e3 ⊗ e3. (3.14)

Accordingly, we define the critical stress as the stress component S̄33 at which the composite loses

the strong ellipticity under these two types of loading, namely,

S̄PS
cr = S̄33(λ̄cr) = −λ̄2cr

∂φ̂PS(λ̄cr, 0)

∂λ̄
, S̄AS

cr = S̄33(λ̄cr) = −1

2
λ̄3cr

∂φ̂AS(λ̄cr, 0)

∂λ̄
. (3.15)

In this work, we will only be concerned with macroscopic instabilities, as just described. For other

types of instabilities, the reader is referred to the work of Michel et al. (2010) in the context of

two-dimensional particle-reinforced composites.

As explained in Chapter 2 of this work, the calculation of the effective stored-energy function

φ̂, as well as of the particle rotation ψ̄(2), requires the computation of the tensor E, which, in turn,

requires the calculation of the integrals associated with the tensors Pr, r = 1, 2, 3 (see Appendix

A of Chapter 2). For practical reasons, we make use here of the (numerical) Gaussian quadrature

integration procedure presented in Appendix B of Chapter 2 for calculating the tensors Pr. The

calculation of these integrals is the most computationally intensive part of the procedure, and a high

number of Gaussian points may be needed to achieve convergence, especially when the particles have

aspect ratios that are far from w = 1. A FORTRAN program has been written for this purpose and

is available upon request. In the next section, the above-mentioned sets of results will be presented

and discussed in detail.
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3.3 Applications

In this section, we present some representative examples for the tangent second-order estimates for

particle-reinforced elastomers with an incompressible matrix phase and (rigid) spheroidal particles

undergoing macroscopic deformations of the form (3.5). In particular, we study the TSO estimates

for particle-reinforced composites with Gent (Eq. (3.4)) and neo-Hookean (Eq. (3.3)) matrix phases.

For simplicity, results for the effective energy, stress and modulus tensors are normalized by the

ground-state shear modulus (that is, µ(1) = 1), except in Figure 3.9 where the specific value for µ(1)

is given. Also, for the case of composites with Gent matrices, results are shown for several values

of lock-up parameter Jm. We provide results for both prolate and oblate shapes of particles, and

several values of the volume fraction c and particle aspect ratio w. Note that results are shown with

solid and dotted lines up to the point at which the effective incremental modulus tensor loses strong

ellipticity, beyond which the results are depicted by dashed and dashed-dotted lines, respectively.

For the cases when no loss of SE is detected, they are truncated at some sufficiently large strain. In

this connection, the circle marker ‘•’ in the plots is used to denote the point at which loss of SE first

takes place (as the loading parameter λ̄ is increased). Moreover, in most of the figures, the results

for the pure neo-Hookean matrix are included for comparison purposes.

The results provided in this section are organized as follows. First, in subsection 3.3.1, we address

the effective behavior of particle-reinforced, neo-Hookean and Gent elastomers subjected to aligned

loadings (θ̄ = 0◦). Attention is devoted to (aligned) pure shear and axisymmetric shear loadings.

Next, in subsection 3.3.2, we will present representative results for the overall behavior of particle-

reinforced neo-Hookean elastomers subjected to non-aligned loadings (θ̄ 6= 0◦). In this subsection,

similar to the first one, attention is restricted to (non-aligned) pure and axisymmetric shear loadings.

Also, in both subsections, in order to consider exclusively the impact of the particle shape on the

macroscopic behavior, results are first provided for dilute concentration of particles (c≪ 1), followed

by results for several (finite) values of c. The theoretical significance for the dilute concentration

results is that they can be interpreted as a generalization of the results of Eshelby (Eshelby, 1957)

for a composite material consisting of dilute concentrations of aligned, rigid spheroidal inclusions in

a nonlinear hyperelastic matrix. In fact, the nonlinear results of this chapter reduce exactly to the

Eshelby results in the infinitesimal (linearized) deformation regime.

3.3.1 Aligned loadings

In this subsection, we restrict our attention to the special case of macroscopically aligned loadings,

characterized by θ̄ = 0◦. It is recalled from Chapter 2 that in this case the particles do not rotate

(ψ̄(2) = 0◦) for any applied stretch (up to the possible development of an instability). Moreover,

results are given for two specific types of aligned loadings, namely, aligned pure shear loading

and aligned axisymmetric shear loading. It is important to observe that for the case of aligned

axisymmetric loading, the overall behavior of the composite remains transversely isotropic in the

deformed configuration with the axis of symmetry aligned with the e3 direction. On the other

hand, for the case of aligned pure shear loading, the composite is initially transversely isotropic,

but develops general orthotropic overall response (whose principal axes are aligned with the ei basis
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directions) in the deformed configuration. It is also noted that the results in this subsection will be

presented as functions of the macroscopic logarithmic strain ē = ln(λ̄). Accordingly, for the case

of prolate particles, the compressive (tensile) axis of loading is aligned with the longest principal

axis of particles for ē > 0 (ē < 0), while the opposite is true for the case of oblate particles. This

remark will be of the essence in the physical interpretation of loss of SE results provided later in

this subsection.
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Figure 3.1: Tangent second-order (TSO) estimates for the effective stored-energy function φ̂0(λ̄) of
neo-Hookean elastomers reinforced with dilute concentrations of rigid particles, as functions of the
macroscopic logarithmic strain ē = ln(λ̄). Two aligned loadings are considered: pure shear (PS)
(λ̄1 = λ̄, λ̄2 = 1), and axisymmetric shear (AS) (λ̄1 = λ̄2 = λ̄). (a) Prolate particles (w ≥ 1) under
PS loading, (b) oblate particles (w ≤ 1) under PS loading, (c) prolate particles under AS loading,
and (d) oblate particles under AS loading. The finite element (FEM) results of Lopez-Pamies et al.
(2013a) for the case of spherical particles (w = 1) are also included for comparison.

Figure 3.1 presents plots for the TSO estimates for the effective stored-energy function φ̂0 of the

neo-Hookean elastomers reinforced with dilute concentrations of particles, as defined by expressions
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((3.12)). Figures 3.1(a) and (b) show plots for pure shear loading (λ̄1 = λ̄, λ̄2 = 1), as a function of

the strain ē = ln(λ̄), for the cases of prolate and oblate particles, respectively, while Figure 3.1(c) and

(d) show corresponding plots for axisymmetric shear loading (λ̄1 = λ̄2 = λ̄). The results for prolate

particles are given for aspect ratios w = 2, 4, and 8, and those for oblate particles are given for aspect

ratios w = 0.5, 0.25, and 0.125. For comparison purposes, the finite element results (FEM) of Lopez-

Pamies et al. (2013a) (obtained for a single rigid inclusion embedded in a neo-Hookean elastomer

matrix), as well as the corresponding TSO results for the special case of spherical particles (w = 1)

are also included in the plots. An immediate observation from this figure is that the aspect ratio of

particles has a significant reinforcing effect on the overall response of the composite at fixed particle

concentrations. We also observe that TSO estimate provides fairly good agreement with the FEM

results for spherical particles (up to the point where the simulations were carried out) for both pure

shear and axisymmetric shear loadings. Moreover, it is noticed from Figure 3.1 that the predictions

of the TSO model for the macroscopic response of the composites with spherical particles remain

macroscopically stable for all strains, while those of the composites with prolate and oblate particles

become unstable for ē > 0 and for ē < 0, respectively, under both types of loadings. We will discuss

these macroscopic instabilities and the associated failure mechanisms in more detail in the context

of the next two figures.

Figure 3.2 provides plots of the TSO estimates for the overall response of the particle-reinforced

elastomer with a neo-Hookean matrix phase and particle volume fractions c = 0.05, 0.15, and 0.25,

under aligned pure shear loading. Figures 3.2(a) and (b) show plots for the macroscopic stress

measure S̄PS as a function of the logarithmic strain ē = ln(λ̄). In particular, part (a) shows the

results for spherical particles (w = 1) and compares them with the corresponding FEM results of

Lopez-Pamies et al. (2013a), while part (b) shows the results for prolate and oblate shapes of particles

with fixed aspect ratios w = 4 and w = 0.25, respectively. (It should be noted that the FEM results

correspond to unit cell calculations containing 30 randomly positioned spherical particles.) Also,

Figs. 3.2(c) and (d) show plots for certain shear components of the effective incremental modulus

tensor L̂c, as functions of ē = ln(λ̄), for prolate particles with w = 4 and oblate particles with

w = 0.25, respectively. The main observation from Figure 3.2(a) is that the TSO estimate provides

fairly good agreement with the FEM results (up to the point where the simulations were carried

out), especially for the smaller particle concentrations. For the higher volume fraction (c = 0.25),

the TSO estimates tend to underestimate the FEM results at sufficiently large stretches, but are

still in good agreement with the FEM results for stretches of less than λ̄ = 1.4. This is partially due

to the fact that in this work the TSO model makes use of the Willis lower bound (Willis, 1977) for

estimating the behavior of the associated linear comparison composite (Avazmohammadi and Ponte

Castañeda, 2013). In addition, compared to the results for spherical particles (Figure 3.2(a)), the

results in Figure 3.2(b) for spheroidal shapes show an enhanced reinforcing effect, which is due to

the combined role of aspect ratio w and volume fraction c on the overall response of the composite.

It is further observed from Figure 3.2(b) that, for a fixed particle volume fraction, the composite

stiffening is larger for elongated particles (w = 4) than for oblate particles (w = 0.25), as long

as the composite response remains strongly elliptic. Next, we observe from Figure 3.2(b) that the

composites with finite concentrations of prolate and oblate particles become unstable at positive
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Figure 3.2: TSO estimates for particle-reinforced, neo-Hookean elastomers under aligned pure shear

loading (λ̄1 = λ̄, λ̄2 = 1), as functions of the macroscopic logarithmic strain ē = ln(λ̄). The
macroscopic stress S̄PS for: (a) spherical (w = 1), and (b) spheroidal (w = 4, 0.25) particles.

Certain shear components of the effective modulus tensor L̂c
ijkl for: (c) prolate (w = 4) and (d)

oblate (w = 0.25) particles. Results are shown for the volume fractions c = 0.05, 0.15 and 0.25. The
finite element (FEM) results of Lopez-Pamies et al. (2013a) for spherical particles are also provided
for comparison in part (a).
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strains (ē > 0) and negative strains (ē < 0), respectively, when (for both cases) the compressive

loading axis is aligned with the longest axis of the particles. Consistent with what was anticipated

in Subsection 2.5.2 for prolate particles, it is seen from Figure 3.2(c) that both the shear modulus

L̂c
1313 transverse to the long axis of the particles (and in the in-plane direction e1), as well as the

shear modulus L̂c
2323 transverse to the long axis of the particles (but in the out-of-plane direction

e2) decrease with increasing tensile strain in the e1 direction (and, therefore, increasing compressive

strain the e3 direction). However, in this case with a moderate volume fraction and aspect ratio

(c ≤ 0.3 and w ≤ 5), L̂c
2323 actually reaches zero before L̂c

1313, and therefore the loss of ellipticity

first occurs through a shear band whose normal is parallel to e3, and whose slip direction is along

the out-of-plane direction e2 (i.e., out of the loading plane). On the other hand, for the case of

oblate particles, the loss of SE takes place through vanishing of the shear modulus L̂c
3131 (in the

plane perpendicular to the long axis of the oblate particles, and in the direction of the loading axis

e3). It is also observed from these figures that the reinforced elastomers lose macroscopic stability

earlier for larger particle concentrations.

Similar to the previous figure, Figure 3.3 provides results for the TSO estimates for the overall

response of the particle-reinforced elastomers with a neo-Hookean matrix phase and particle volume

fractions c = 0.05, 0.15, and 0.25, under aligned axisymmetric shear loading (λ̄1 = λ̄2 = λ̄). Figures

3.3(a) and (b) depict the macroscopic stress measure S̄AS , as a function of the logarithmic strain

ē = ln(λ̄). In particular, part (a) shows the results for spherical particles (w = 1) in which the

corresponding FEM results of Lopez-Pamies et al. (2013a) are also included for comparison purposes,

while part (b) shows the results for prolate and oblate shapes of particles with fixed aspect ratios 4

and 0.25. In addition, Figs. 3.3(c) and (d) depict the variation of the moduli L̂c
1313 and L̂c

3131 versus

the logarithmic strain ē = ln(λ̄) for prolate particles with aspect ratio w = 4 and oblate particles with

aspect w = 0.25, respectively. Once again, we observe good agreement between the TSO estimates

for spherical particles and the corresponding FEM results (up to the point where the simulations

were carried out), for all three volume fractions of particles. In addition, similar to the case of pure

shear loading, Figure 3.3(b) shows that, at a fixed particle volume fraction, the composites exhibit

stiffer responses for elongated particles (w = 4) than for oblate particles (w = 0.25). Figure 3.3(b)

also shows that, for a fixed aspect ratio of particles (e.g., w = 4), the behavior of composites with

spheroidal particles becomes progressively less stable—as determined by loss of SE—as the volume

fraction of the particles increases. Next, consistent with the results of Chapter 2 (see relations

(59) and (61)), Figs. 3.3(c) and (d) show that the loss of SE in the composites subjected to aligned

axisymmetric shear loading takes place through vanishing of the effective incremental shear modulus

in the plane perpendicular to the major axis of particles, namely, the components L̂c
1313(= L̂c

2323)

and L̂c
3131(= L̂c

3232), for the cases of prolate and oblate particles, respectively.

Figure 3.4 presents TSO estimates for the critical strains and stresses at which macroscopic

instabilities first develop in the particle-reinforced neo-Hookean composites subjected to aligned

loadings. Figures 3.4(a) and (b) show plots for the critical strain ēPS
cr = ln(λ̄cr) (at which the

homogenized elastomer first loses SE) and the corresponding critical stress S̄PS
cr (as defined in (3.15)),

respectively, for pure shear loading. Similarly, Figs. 3.4(c) and (d) show plots for the critical strain

(ēAS
cr ) and the corresponding critical stress (S̄AS

cr ), respectively, for axisymmetric shear loading. The
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Figure 3.3: TSO estimates for particle-reinforced, neo-Hookean elastomers under aligned axisym-

metric shear loading (λ̄1 = λ̄2 = λ̄), as functions of the macroscopic logarithmic strain ē = ln(λ̄).
The macroscopic stress S̄PS for: (a) spherical (w = 1), and (b) spheroidal particles (w = 4, 0.25).

Certain shear components of the effective modulus tensor L̂c
ijkl for: (c) prolate (w = 4), and (d)

oblate (w = 0.25) particles. Results are shown for various volume fractions c = 0.05, 0.15 and 0.25.
The finite element (FEM) results of Lopez-Pamies et al. (2013a) for the case of spherical particles
are also included for comparison in part (a).
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Figure 3.4: TSO estimates for the macroscopic instabilities (loss of SE) in particle-reinforced neo-
Hookean elastomers subjected to aligned loadings. Parts (a) and (b) show pure shear (λ̄1 = λ̄, λ̄2 =
1) results for the critical strain (ēPS

cr ) at which loss of SE of the homogenized elastomer takes place,
and the corresponding critical stress (S̄PS

cr ), respectively. Parts (c) and (d) show axisymmetric shear

(λ̄1 = λ̄2 = λ̄) results for the critical strain (ēAS
cr ) and the corresponding critical stress (S̄AS

cr ),
respectively. The results are shown for various particle concentrations as functions of the particle
aspect ratio ln(w).
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results are shown for several values of the concentration (c = 0.05, 0.15 and 0.25), as functions of

the logarithm of the particle aspect ratio, ln(w). The main observation from these figures is that,

for fixed volume fractions, the particle-reinforced composites become increasingly less stable in both

the deformation and the stress as the value of | ln(w)| increases and the particle shape becomes

progressively more prolate, or oblate. In this regard, we see from Figs. 3.4(a) and (c) that the

critical strain curves have a vertical asymptote at w = 1 and horizontal asymptotes at ēcr = 0 as

w → ∞ or w → 0. The special case of w = 1 correspond to neo-Hookean elastomers reinforced by

spherical (rigid) particles, which, as already mentioned, remain strongly elliptic for all deformations

(ēcr → ∞). On the other hand, for the two extreme values of the particle aspect ratio, namely,

the limiting cases of zero and infinite aspect ratios, the composite becomes unstable at zero strain

(ēcr → 0), which is in consistent with the fact that the composites become rigid in these two limiting

cases corresponding to a laminated material with a rigid phase and a (continuous) fiber-reinforced

elastomers with rigid fibers, respectively. Similar observations can be made from Figure 3.4(b) and

(d) for the critical stresses, except that the critical stresses tend to finite values, depending on the

volume fraction of particles, in the limits as w → ∞ and w → 0.

In connection with this last observation, it is relevant to recall that Agoras et al. (2009b) derived

the following results for the critical stress in composites consisting of a generalized neo-Hookean

matrix and isotropic distributions of aligned, rigid, circular fibers, namely,

S̄PS
cr = S̄AS

cr = −1 + c

1− c
µ(1). (3.16)

Similarly, making use of the results provided in Appendix A of the paper Agoras et al. (2009b) for

the laminate composites consisting of alternating layers of incompressible neo-Hookean materials, it

can be shown that the critical stress in the limit as one phase becomes rigid is given by

S̄PS
cr = S̄AS

cr =
1

1− c
µ(1). (3.17)

Moreover, note that relations (3.16) and (3.17) are valid for both pure shear and axisymmetric shear

loadings. Thus, we can check from Figure 3.4(b) and (d) that the trends in the results predicted by

the TSO model for the critical stress are consistent with the corresponding results calculated form

expressions (3.16) and (3.17), respectively, in the limiting cases of w → ∞ and w → 0.

Next, in Figure 3.5, we investigate the influence of the matrix constitutive behavior on the

macroscopic stress-strain response of the composite elastomers, when subjected to aligned pure

shear (PS) and axisymmetric shear (AS) loadings. Thus, Figs. 3.5(a) and (b) provide plots of

the macroscopic stress S̄PS for prolate particles with w = 4 and oblate particles with w = 0.25,

respectively, while Figs. 3.5(c) and (d) provide corresponding plots for the macroscopic stress S̄AS .

In each figure, the volume fraction of particles is assumed to be fixed at c = 0.25, and results are

shown for several values of the matrix lock-up parameters (Jm = 50, 100, and ∞). It is recalled that

the case Jm → ∞ corresponds to an incompressible neo-Hookean matrix. We observe from these

figures that the composites with prolate particles tend to stiffen more significantly for compressive

strains (ē < 0), resulting in tensile strains in the long fiber direction, while the composites with oblate

88



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

 e

 S
 P

S

 J
m

=50

 J
m

=100

 Matrix,  J
m

=∞

 J
m

=∞

 Matrix,  J
m

=50

Gent,  w=4, 
 θ=0°,  c=0.25

−0.5 0 0.5 1 1.5

−10

0

10

20

30

40

50

 e
 S

 P
S

 J
m

=100

 J
m

=50

 J
m

=∞

 Matrix,  J
m

=∞

 Matrix,  J
m

=50

Gent,  w=0.25, 
 θ=0°,  c=0.25

(a) (b)

c@c

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

 e

 S
 A

S

 Matrix,  J
m

=50

 Matrix,  J
m

=∞

Gent,  w=4, 
 θ=0°,  c=0.25

 J
m

=50

 J
m

=∞

 J
m

=100

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−10

0

10

20

30

40

50

 e

 S
 A

S

 J
m

=50

 J
m

=∞

 Matrix,  J
m

=∞

 J
m

=100

 Matrix,  J
m

=50

Gent,  w=0.25, 
 θ=0°,  c=0.25

(c) (d)

Figure 3.5: TSO estimates for the macroscopic stress S̄ versus the macroscopic logarithmic strain
ē = ln(λ̄) for particle-reinforced Gent elastomers. The results are shown for three values of the
matrix inextensibility parameter Jm = 50, 100, and ∞. Four different cases are considered: (a)
aligned pure shear for a prolate spheroidal shape (w = 4), (b) aligned pure shear for an oblate
shape (w = 0.25), (c) aligned axisymmetric shear for a prolate shape (w = 4), and (d) aligned
axisymmetric shear for an oblate shape (w = 0.25).
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particles tend to stiffen more significantly for tensile strains (ē > 0), corresponding to compressive

strains along the short fiber direction. In addition, the amount of stiffening is more significant for

larger values of Jm, as expected. Moreover, it can be shown that, the effective lock-up strain1 for

the composite materials with spheroidal particles under aligned loadings is independent of the shape

of the particle and is completely determined by the values of Jm, and c. Therefore, the relations

(1.142) for the composites with spherical particles, can be used to determine the lock-up stretch

for the class of composites of interest here when subjected to aligned pure and axisymmetric shear

loadings.

Furthermore, the plots in Figure 3.5 illustrate that, although the strain-locking parameter Jm

in the Gent elastomers can have a strong influence on the macroscopic response of the reinforced

elastomer, it has basically no effect on the loss of SE for the particle-reinforced composites. This

is consistent with earlier findings by Lopez-Pamies and Ponte Castañeda (2006b) and Agoras et al.

(2009b) that the development of macroscopic instabilities in (long) fiber-reinforced composites with

Gent matrix materials subjected to 2-D and 3-D loadings becomes independent of Jm for very stiff

fibers.

Elastomers reinforced with 2-D elliptical fibers

In this subsection, we provide results for the transverse effective response of a (2-D) composite

consisting of an incompressible, neo-Hookean matrix reinforced by rigid, aligned, cylindrical fibers

with elliptical cross section of aspect ratio w, which are subjected to pure shear aligned with the

principal axes of the elliptical fibers. The response of this type of composite to pure shear loading

has also been studied in Section 1.5 and in Lopez-Pamies and Ponte Castañeda (2006b).

Figure 3.6 shows the TSO estimates for the effective response of the 2-D reinforced neo-Hookean

elastomers, as well as the corresponding GSO estimates calculated from the stored-energy function

(1.126). Results are shown for the case of fibers with circular cross section (w = 1) and three dif-

ferent fiber volume fractions c = 0.1, 0.2, 0.3, as a function of the macroscopic stretch λ̄. Parts (a)

and (b) show the effective energy φ̂PS and the corresponding macroscopic stress S̄PS = d φ̂PS/dλ̄,

respectively. An important observation from these figures is that the modification of the TSO esti-

mates proposed in Chapter 2 (in terms of expression (2.22) instead of the corresponding expression

(1.113) in involving a log term in the determinant) is free from the “geometric lock up” condition,

and is much closer to the corresponding GSO estimates than the earlier estimate in Chapter 1 (see

figure (1.2)), which were found to blow up for a sufficiently small value of the stretch λ̄ (at λ̄ = 1/c,

for the results shown in the plots).

Figure 3.7 shows a more detailed comparison of the TSO estimates with earlier analytical estimate

and numerical simulations for neo-Hookean elastomers reinforced by rigid fibers of circular cross

section (w = 1). Results are provided for two volume fractions: (a) c = 0.2, and (b) c = 0.3. The

GSO (2006) and TSO (2000) estimates correspond to the stored-energy function (1.126) and the

earlier version of the TSO (Ponte Castañeda and Tiberio, 2000) estimate, respectively, while the

FEM results refer to the finite element simulations of Moraleda et al. (2009). We observe that the

1The strain at which the composite locks up because of lock up in the elastomeric matrix phase
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Figure 3.6: Tangent second-order (TSO) and generalized second-order (GSO) estimates for the
effective response of an incompressible neo-Hookean matrix reinforced by 2-D circular (rigid) fibers
(w = 1) subjected to transverse pure shear loadings. The GSO estimates correspond to the stored-
energy function (1.126). The results are shown as a function of the applied stretch λ̄ for different

values of the fiber volume fraction. (a) The effective energy φ̂PS . (b) The corresponding macroscopic

stress S̄PS = d φ̂PS/dλ̄.

TSO estimate for the 2-D composite with circular fibers is in excellent agreement with the FEM

simulations of Moraleda et al. (2009) (up to the point where the simulations were carried out),

even for the case of higher fiber concentration c = 0.3. In fact, since the TSO estimates proposed

in Chapter 2 (based on expression (2.22)) are free from the geometric lock-up, they provide closer

agreement with the FEM simulations than the earlier estimates in Chapter 1 (see figure 1.3). In

this connection, it also can be seen from figure 3.7 that the new TSO estimates are much more

improved relative to the earlier version (Ponte Castañeda and Tiberio, 2000) of the TSO estimates

in comparison with the version of the TSO shown in figure 1.3.

Finally, Figure 3.8 provides results for the transverse effective response of a (2-D) composite

consisting of a neo-Hookean matrix reinforced by rigid, aligned, cylindrical fibers with elliptical

cross section of aspect ratio w, which are subjected to pure shear aligned with the principal axes

of the elliptical fibers. These results are compared with the corresponding results of this chapter

for the (3-D) neo-Hookean elastomers reinforced with aligned, spheroidal particles with the same

aspect ratio w that are subjected to the same pure shear loading, but this time in a plane including

the long axis of the fibers. (It should be noted here that the results for the 2-D composite with

aspect ratio w = 1 also correspond to the transverse shear response of the 3-D composite with aspect

ratio w → ∞.) More specifically, Figure 3.8 shows results for the effective stress S̄PS versus the

logarithmic strain ē = ln(λ̄) in 2-D and 3-D composites with fiber/particle aspect ratios w = 1 and

w = 4, at the fixed fiber/particle concentration c = 0.3. From this figure, we first observe that the

response curves for the 2-D and 3-D composites with aspect ratio w = 1 are fairly similar, with the
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Figure 3.7: The effective response of a rigidly fiber-reinforced elastomer with an incompressible neo-
Hookean matrix under pure shear loading. The macroscopic stress S̄PS is plotted as a function of
the applied stretch λ̄ for (a) c = 0.2, and (b) c = 0.3. Comparisons are shown between the new TSO
estimate, the estimate (1.126) of Lopez-Pamies and Ponte Castañeda (2006b) “GSO (2006)”, the
earlier TSO results of Ponte Castañeda and Tiberio (2000) “TSO (2000)”, and the FE simulations
of Moraleda et al. (2009) “FEM”.

spherical particles producing a slightly stiffer response. On the other hand, the responses for the

2-D and 3-D composites with aspect ratio w = 4 are quite different. While the response of the 2-D

composites is the same regardless of whether the extension axis is aligned with the long particle axis

(θ̄ = 90◦) or perpendicular to it (θ̄ = 0◦), the response of the 3-D composites is quite a bit stiffer

when the extension axis is aligned with the long particle axis than when it is perpendicular to it.

(Recall that the unstable branches of the solutions for θ̄ = 0◦ are shown in dashed and dashed-dotted

lines.) However, the results for aspect ratio w = 4 and loading angle θ̄ = 0◦ indicate that the 2-D

fiber-reinforced composites are slightly more stable than the 3-D composites with the same aspect

ratio.

Comparison with experimental results

For completeness, in this subsection, we provide comparisons between the predictions of the TSO

model and available experimental data for the effective mechanical behavior of short-fiber reinforced

composites subjected to large deformations. Figure 3.9 shows comparisons of the TSO predictions

with experimental data of Wang and Mark (1990) for effective behavior of composites consisting

of an elastomeric matrix and a polydisperse distribution of aligned, prolate spheroidal particles

subjected to aligned, uniaxial tensions. More specifically, in the experiment of Wang and Mark

(1990), the matrix is made of PDMS, a silicon-based organic polymer, and the particles are made of

polystyrene, a synthetic polymer which is much stiffer than PDMS. Therefore, the particles can be

approximately regarded as rigid particles. Moreover, Wang and Mark (1990) conducted experiments
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ē 2
,
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ē1
0 0.5 1 1.5

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

 w=1.7 (Uniaxial Tension along e
1
)

 w=2.2 (Uniaxial Tension along e
1
)

 w=1.7, Axisym. loading in e
2
−e

3
 plane

 w=2.2, Axisym. loading in e
2
−e

3
 plane

TSO,  c=0.32

(Gent, µ(1)=0.05 MPa,  J
m

=100)

ē1
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Figure 3.9: Comparisons of the predictions of TSO predictions with experimental data of Wang
and Mark (1990) for composites consisting of an elastomeric matrix (made of PDMS) and prolate
spheroidal particles (made of polystyrene). Parts (a) and (b) show results for uniaxial tension
along e3 direction for the effective stress component S̄33 and the strain components ē2 = ln(λ̄2),
ē3 = ln(λ̄3), respectively, as functions of the logarithmic strain ē3. Parts (c) and (d) show results for
uniaxial tension along e1 direction for the effective stress component S̄11 and the strain components
ē2, ē3, respectively, as functions of the strain ē1 = ln(λ̄1). Parts (e) and (f) compare TSO results for
uniaxial tension along e1 direction and axisymmetric deformation in e2 − e3 plane for the effective
stress component S̄11 and strains ē2, ē3, respectively, as functions of ē1.
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for three particle aspect ratios (w = 1, w = 1.7 and w = 2.2), at the fixed particle concentration

c = 0.32. Although the precise material properties for the elastomeric matrix (PDMS) were not

provided in the work of Wang and Mark (1990), we were able to infer values of the properties in our

model to achieve a reasonable match to the experimental data. More specifically, we made use of the

Gent behavior (3.4) for the matrix in the TSO model with material properties µ(1) = 0.05MPa and

Jm = 100. We also note that, unlike the previous figures in this Chapter, the results for effective

stress in Figure 3.9 are not normalized with the shear modulus µ(1).

Figure 3.9(a) shows comparisons between the TSO estimates for the macroscopic stress compo-

nent S̄33 for the uniaxial tension along e3 direction and the corresponding experimental data for the

effective behavior of the PS-PDMS composite, as functions of the logarithmic strain ē3 = ln(λ̄3) =

− ln(λ̄1 λ̄2) (Note that other macroscopic stress components are zero in this case.) We observe that

TSO estimates provide quite good agreement with the experimental data for the smaller aspect ratios

(w = 1, 1.7) up to the point where the experiments were carried out, however, the TSO model tend

to underestimate the experimental data for the higher aspect ratio (w = 2.2) at relatively larger

stretches. As mentioned in the context of comparisons with FEM results shown in figure 3.2(a),

this underestimation is partially due to the fact that the TSO model uses the Willis lower bound

for estimating the behavior of the associated linear comparison composite. Nonetheless, given the

uncertainties involved in the experimental data, the model does capture very well the qualitative

features of the experiments for this loading condition, and overall can provide reasonably good pre-

dictive capabilities. We further note that the macroscopic response of the composite predicted by

the TSO model is stable for all strains ē3 consistent with the fact that the tensile axis of loading in

aligned with the largest axis of the particles. Figure 3.9(b) shows corresponding results for the lateral

logarithmic strain components ē1 = ln(λ̄1) and ē2 = ln(λ̄2), as functions of ē3. Clearly, the uniaxial

tension along ē3 direction produces an axisymmetric state of deformation (λ̄2 = λ̄1 = 1/
√
λ̄3), and

therefore, we have ē1 = ē2 = −0.5 ē3.

Ω
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1e

3e

2e

22 20, 1S = <λ

Ω

11 0S >

22 2 30,S ≠ =λ λ

33 30, 1S = <λ

(a) (b)

Figure 3.10: Schematic representation of a matrix reinforced by prolate spheroidal particles subjected
to (a) uniaxial tension along e1 direction, (b) tension along e1 direction with the constraint λ̄2 =
λ̄3 < 1.
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Next, Figure 3.9(c) shows comparisons between the TSO model estimates for the macroscopic

stress component S̄11 for the uniaxial tension along e1 direction and the corresponding experimental

data for the effective behavior of the PS-PDMS composite, as functions of the logarithmic strain

ē1 = ln(λ̄1) (A schematic representation of the loading condition is shown in Figure 3.10(a).) We

observe from this Figure 3.9(c) that the TSO model estimates are still in quite good agreement with

the experimental data up to the strain ē1 ≈ 0.4, beyond which the TSO model predicts a strong

stiffening of the response with the increase in the strain, while the experimental data exhibit a

softening in the effective response of the composite which is more pronounced for the case of w = 2.2.

This softening, which is likely linked to the development of macroscopic shear localization instabilities

(or shear bands) in the composite, is consistent with our earlier findings in the context of figures

3.2 and 3.3 for the case of pure shear and axisymmetric loading conditions, where the composite

was found to become unstable under compressive strains along the largest axis of the particles. In

fact, similar to these two loading conditions (with ē > 0), the uniaxial tension along e1 direction

produces compressive strains along the largest axis of the particles (aligned with the e3 direction.)

To explore this in more detail, we show in Figure 3.9(d) the corresponding TSO predictions for the

transverse logarithmic strain components ē2 = ln(λ̄2) and ē3 = ln(λ̄3), as functions of ē1. As can

be seen from this figure, the state of macroscopic deformation is not axisymmetric (because of the

non-circular geometry of the particle in the e2 − e3 plane, see Figure 2.1(a)), except for the case

of w = 1 which correspond to spherical particles. In particular, we observe that the compressive

strain along the largest axis of the particles (aligned with ē3 direction) is smaller than that along

the smallest axis of the particle (aligned with e2 direction), as also intuitively expected. Note that

ē1 + ē2 + ē3 = 0 due to the macroscopic incompressibility constraint.

Going back to the TSO estimates in Figure 3.9(c), it is important to note that, we were not

able to investigate the development of macroscopic instability for these estimates because our FOR-

TRAN program for detecting the loss of SE was limited to pure shear and axisymmetric loading

conditions. For this reason, we considered an “intermediate” loading condition in which the com-

posite is subjected to a tensile stress along ē1 direction, and the transverse strain component ē2

is enforced to be equal to ē3 (therefore, the macroscopic deformation is axisymmetric in e2 − e3

plane). In this case, the transverse stress component S̄22 is also non-zero (Figure 3.10(b) shows a

schematic representation of the intermediate loading condition). Figures 3.9(e) and (f) show TSO

estimates for this intermediate loading conditions for the macroscopic stress component S̄11 and the

corresponding transverse strain components ē2 and ē3, respectively, as functions of ē1. Also, for

comparison purposes, we have included in these figures the corresponding TSO estimates for the

case of uniaxial tension along e1 direction from Figures 3.9(c) and (d). We were able to investigate

the loss of SE for the case of axisymmetric loading condition, and as we observe from Figure 3.9(e),

the macroscopic response of the composite becomes unstable at ē1 ≈ 0.75 for both aspect ratios

w = 1.7 and w = 2.2 (the point of instability is denoted by a circular marker of the same color). It is

worth mentioning that, in this case, the loss of SE in the composites takes place through vanishing

of the effective incremental shear modulus L̂c
2323 (in the plane perpendicular to the long axis of the

particles, and in the direction of axis e2). Hence, suggested by the loss of SE for this (intermediate)

axisymmetric loading condition (which occurs due to the compressive strains along the long axis of
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the particles), we expect that the TSO estimates for the case of uniaxial loading become unstable as

well, most likely about the same range of critical strain as for the case of axisymmetric loading. For

this reason, we conclude that the discrepancy between the TSO predictions and the experimental

data at large strains shown in Figure 3.9(c) is mainly due to the fact that the TSO estimates corre-

spond to an unstable solution at those strains, and are not expected to provide very good agreement

with corresponding experimental results.

3.3.2 Non-aligned loadings

In the previous subsection, we restricted our attention to cases in which the principal axes of loading

are aligned with those of the particles. In this subsection, we present results for the more general

case of macroscopically non-aligned loadings of the form (3.5). The idea behind presenting these

results is to explore the effect of the evolution of the microstructure (here, the particle rotation) on

the macroscopic response and stability of the reinforced elastomers. Keeping in mind the transverse

isotropy of the reinforced elastomers of interest in this work, it will suffice to restrict our attention

to loading orientation angles in the range 0 ≤ θ̄ ≤ π/2. Thus, in this section, results will be provided

for variety of loading angles in this range, including θ̄ = 0◦ and θ̄ = 0+◦. The latter corresponds to

the case in which the principal axes of loading has a very small misorientation with respect to the

principal axes of the particles in the undeformed configuration. The significance of this choice will

be expounded upon in the discussion below. It is also noted that all results in this subsection are

for composites with neo-Hookean matrix phases of the form (3.3). Moreover, results are given for

two specific types of non-aligned loadings: (1) pure shear at an angle, characterized by the choice

λ̄1 = λ̄, λ̄2 = 1 (in expression (3.5)), and (2) axisymmetric shear at an angle, characterized by the

choices λ̄1 = λ̄2 = λ̄. It is relevant to note that the transformations λ̄ → λ̄−1 and θ̄ → θ̄ + π/2

lead to the same pure shear loading loading. In addition, it is recalled from the formulation in

Chapter 2 that the loading angle θ̄ = θ̄2 corresponds to rotation of the principal loading axes about

the (fixed) laboratory axis e2, while the loading angle θ̄1 (which has thus far been assumed to be

zero) corresponds to a rotation of the principal loading axes about the axis e1. As will be seen

below in the context of Figure 3.11 for pure shear loading conditions, we will also consider small

out-of-plane misalignments (θ̄1 = 0+◦) for reasons that will become evident in the discussion of said

figure. Furthermore, we note that the sign convention for the angle ψ̄(2), characterizing the average

rotation of the particles, is given by the usual right-hand rule (with respect to the fixed frame of

reference, see Figure (a) in Chapter 2). Finally, we note that, similar to the previous subsection, we

first consider the case of dilute concentrations of particles (c≪ 1) in order to isolate the influence of

the particle shape on the macroscopic behavior and the microstructure evolution under non-aligned

loadings. After doing this, we will provide results for finite concentrations of particles.

Figure 3.11 provides results for the TSO estimates for the effective response of a neo-Hookean

elastomer reinforced with prolate particles under pure and axisymmetric shear, at the fixed loadings

angles θ̄ = 0◦, 0+◦, 5◦, 45◦, 70◦ (as well as for the angle θ̄1 = 0+◦, for pure shear only). Results are

shown for the fixed aspect ratio w = 2 and a dilute concentration of particles, as functions of the

macroscopic logarithmic strain ē = ln(λ̄). Figures 3.11(a) and (b) show plots for the macroscopic
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Figure 3.11: TSO estimates for a particle-reinforced neo-Hookean composite with a dilute concen-
tration of prolate particles with aspect ratio w = 2 subjected to non-aligned loadings. Parts (a) and
(b) show results for pure shear loading (λ̄1 = λ̄, λ̄2 = 1) for the effective stress S̄PS

0 and the angle
of rotation of the particles ψ̄(2), respectively. Parts (c) and (d) show results for axisymmetric shear

loading (λ̄1 = λ̄2 = λ̄) for the effective stress S̄AS
0 and the rotation ψ̄(2), respectively. The results

are shown for various angles θ̄ (as well as for the out-of-plane misalignment angle θ̄1 = 0+◦ for the
case of pure shear lading), as functions of the macroscopic logarithmic strain ē = ln(λ̄).
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Figure 3.12: TSO estimates for the incremental shear moduli of particle-reinforced neo-Hookean
composites with a dilute concentration of prolate particles with aspect ratio w = 2 subjected to
aligned loadings. (a) Results for pure shear loading (λ̄1 = λ̄, λ̄2 = 1). (b) Results for axisymmetric

shear loading (λ̄1 = λ̄2 = λ̄).

stress S̄PS
0 and the particle rotation ψ̄(2), respectively, for pure shear. Similarly, Figs. 3.11(c) and

(d) show corresponding plots for axisymmetric shear. Recalling that S̄PS
0 and S̄AS

0 , as determined

by expressions (3.9) and (3.11), are measures of the normal stress differences defined by the loading

direction, we observe from Figs. 3.11(a) and (c) that S̄PS
0 and S̄AS

0 are both quite sensitive to the

loading angle θ̄. While this is to be expected for small strains, it is interesting to note that, at finite

strains, the particle rotations can have significant additional effects relative to the perfectly aligned

case (θ̄ = θ̄2 = 0◦). Indeed, it can be seen that the large rotations that are produced for the cases

where the long axes of the particles are nearly (but not exactly) orthogonal to the tensile loading

axis (θ̄ = 0+◦, 5◦; θ̄1 = 0+◦) are associated with significant softening relative to the perfectly aligned

case (θ̄ = 0◦), especially for axisymmetric shear. In fact, the softening is so significant that loss of

ellipticity is observed for these cases (as well as for the perfectly aligned case). In connection with

the particle rotations shown in Figs. 3.11(b) and (d), it should be noted that, when the composite

is subjected to non-aligned loadings, the particles tend to align their longest axis with the tensile

loading direction as the deformation progresses, implying that ψ̄(2) → θ̄ − 90◦ for ē >> 0, and

ψ̄(2) → θ̄ for ē << 0 (except for θ̄ = 0, π/2, for which, the particles do not rotate and ψ̄(2) = 0◦).

For example, for the loading angle θ̄ = 70◦, ψ̄(2) tends to the values −20◦ and 70◦ for ē > 0 and

ē < 0, respectively.

At this point, it is useful to explore in more detail the possible connections between the particle

rotations and the loss of SE condition. For this purpose, we show in Figure 3.12 the appropriate

shear components of the incremental modulus tensor for neo-Hookean elastomers reinforced with

dilute concentrations of prolate particles with w = 2, subjected to aligned loading conditions. Thus,

we observe from Figure 3.12(a) that for pure shear loading conditions both L̂c
1313 and L̂c

2323 decrease

with increasing strain and actually vanish, but at different levels of the applied strain ē. (Note
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that the corresponding moduli L̂c
3131 and L̂c

3232 also vanish at the appropriate strains, but have very

different behaviors tending to increase or remain constant before vanishing.) On the other hand, we

see from Figure 3.12(b) for axisymmetric shear loading conditions that L̂c
1313 and L̂c

2323 are identical

by symmetry and vanish at the same applied strain. ( L̂c
3131 and L̂c

3232 also vanish but exhibit

different trends.) In addition, it is noted that vanishing of L̂c
1313 implies that the particles can rotate

freely about the e2 axis (in the e1−e3 plane), while vanishing of L̂c
2323 allows the particles to rotate

freely about the e1 axis (in the e2−e3 plane). Moreover, the onset of the sudden rotations observed

in Figs. 3.11(b) and (d) for pure shear and axisymmetric shear loading conditions, respectively, are

found to coincide precisely with the vanishing of the corresponding incremental moduli (as shown in

Figs. 3.12(a) and (b)). Thus, for pure shear, L̂c
1313 and L̂c

2323 vanish at different levels of the applied

strain ē, and the particles can be seen to start rotating about the e2 and e1 axes, respectively, at the

corresponding values of the applied strain ē. In this case, the loss of SE is associated with the first

modulus to vanish (in this case, L̂c
2323, corresponding to rotation of the particles out of the loading

plane). On the other hand, for the case of axisymmetric shear, L̂c
1313 = L̂c

2323, and the particles can

start rotating about any axis in the e1-e2 plane (because of the symmetry) at the same value of the

applied strain ē. In conclusion, it can be seen that the sudden rotation—or flopping—of the fibers

can be linked directly to the loss of ellipticity of the incremental elasticity tensor of the composites

(at least for dilute concentrations).

Figure 3.13 provides results for the TSO estimates for the effective response of a neo-Hookean

elastomer reinforced with oblate particles, under pure and axisymmetric shear loadings at the fixed

loadings angles, θ̄ = 0, 0+◦ 5◦, 45◦, 70◦. Results are shown for the fixed aspect ratio w = 0.5, and

a dilute concentration of particles, as functions of the macroscopic logarithmic strain ē = ln(λ̄).

Figures 3.13(a) and (b) show plots for the macroscopic stress S̄PS
0 and the rotation of the particles

ψ̄(2), respectively, for pure shear. Similarly, Figs. 3.13(c) and (d) show corresponding plots for

axisymmetric shear. As discussed in the context of the previous figure for the prolate particles,

the results of Figure 3.13 put into evidence the significant influence of the rotation of the particles

on the effective response and macroscopic stability of the particle-reinforced composites subjected

to pure and axisymmetric shear loadings. However, there are important differences between the

oblate and prolate particle cases. Thus, we observe from Figure 3.13(a) that the most significant

softening in the macroscopic stress-strain relation, as well as the associated loss of strong ellipticity,

occur for compressive applied strains (ē < 0), in contrast with the prolate-particles composites

(where the most pronounced softening and associated instabilities take place for tensile strains). In

particular, Figure 3.13(a) shows that, when a slightly misaligned pure shear (θ̄ = 0+◦) is applied,

a burst of softening occurs starting at a certain negative value of the critical strain ēcr, which, as

mentioned earlier, is concurrent with the large particle rotations observed in Figure 3.13(b). As also

discussed earlier in the context of the composites with prolate particles, this is entirely consistent

with the development of flopping-type instability at the critical strain ēcr. This softening, however,

becomes less pronounced with increasing loading angle θ̄, due to the fact that the oblate particles

will rotate more slowly and thus accommodate a smaller portion of the macroscopic compressive

strain for such larger values of θ̄. On the contrary, when the composite is subjected to tensile strains

(ē > 0), no softening phenomenon is observed (for the chosen loading angles), and the composite
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Figure 3.13: TSO estimates for a particle-reinforced neo-Hookean composite with a dilute concen-
tration of oblate particles with aspect ratio w = 0.5 subjected to non-aligned loadings. Parts (a)
and (b) show results for pure shear loading (λ̄1 = λ̄, λ̄2 = 1) for the effective stress S̄PS

0 and the
angle of rotation of the particles ψ̄(2), respectively. Parts (c) and (d) show results for axisymmetric

shear loading (λ̄1 = λ̄2 = λ̄) for the effective stress S̄AS
0 and the rotation ψ̄(2), respectively. The

results are shown for various angles θ̄, as functions of the macroscopic logarithmic strain ē = ln(λ̄).
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exhibits a consistently stiffer response for smaller loading angles, once again, due to the fact that

the oblate particles rotate slower at a smaller θ̄ for tensile strains. On the other hand, as seen in

Figure 3.13(c), no loss of ellipticity is detected for the composites under axisymmetric loading, in

agreement with the results in Figure 3.1(d) for the case of w = 0.5. The composites, nevertheless,

show a systematically softer behavior in compression (ē < 0) when the particles undergo a faster

and larger rotation. Finally, similar to the case of prolate particles, we observe from Figure 3.13 (b)

and (d) that oblate particles also tend to align (one of) their major axes with the tensile direction of

the non-aligned loading as the deformation increases, and thus we deduce that in this case ψ̄(2) → θ̄

at ē >> 0, and ψ̄(2) → θ̄− 90◦ at ē << 0 (except for θ̄ = 0◦, π/2, when the particles do not rotate).

Figure 3.14 presents results for the TSO estimates for the effective response of incompressible,

neo-Hookean elastomers reinforced with rigid particles in dilute concentrations, subjected to non-

aligned pure and axisymmetric shear loadings at a fixed angle θ̄ = 25◦. Results are shown for prolate

particles with aspect ratios 1, 1.1, 2, 4 and 8, as functions of the macroscopic logarithmic strain

ē = ln(λ̄). Figures 3.14(a) and (b) show plots for the case of pure shear loading for the macroscopic

stress S̄PS
0 and the rotation of the particles ψ̄(2), respectively. Similarly, Figs. 3.14(c) and (d)

show corresponding plots for the case of axisymmetric shear loading. It can be seen from Figure

3.14(a) and (c) that the effective stress-strain plots (for pure and axisymmetric shear loadings)

exhibit a softening effect for tensile strains (ē > 0), which gets progressively more significant with

increasing aspect ratio w. As discussed earlier, this effect is linked to the associated evolution of

the microstructure. In fact, for non-aligned loadings, the finite rotation of rigid particles (see Figs.

3.14(b) and (d)) serves to accommodate some part of the total macroscopic deformation, so that

smaller strains are produced in the elastomeric matrix phase. Interestingly, the largest particle

rotations corresponding to the largest aspect ratios can be correlated with the strongest softening

in the macroscopic stress-strain relations, for both pure and axisymmetric shear loadings. It also

should be remarked that, at the chosen loading angle (θ̄ = 25◦), no loss of SE is detected for either

loading conditions. The reason behind this, as mentioned earlier, is that, at this relatively large

value of θ̄, the compression along the major axis of particles never reaches the level required for loss

of SE to occur.

In addition, consistent with earlier observations, it can be seen from Figs. 3.14(b) and (d) that

the particles tend to align themselves with the tensile loading axis, so that the average rotation of the

particles for this particular loading angle (θ̄ = 25◦) exhibits the asymptotic behaviors: ψ̄(2) → −65◦

as ē→ ∞, and ψ̄(2) → 25◦ as ē→ −∞. In this connection, it should be mentioned that results have

also been included in Figs. 3.14(b) and (d) for the rotation of a “Material Line Element,” labeled

MLE, for comparison purposes. These curves correspond to the rotation of a typical material line

element that is initially aligned with the longest axis of the particles (in this case, the axis e3) in

the undeformed configuration, and are determined by the expressions

ψ̄PS
MLE = − arctan

(
sin(θ̄) cos(θ̄)(e2ē − 1)

sin2(θ̄)e2ē + cos2(θ̄)

)
, ψ̄AS

MLE = − arctan

(
sin(θ̄) cos(θ̄)(e3ē − 1)

sin2(θ̄)e3ē + cos2(θ̄)

)
(3.18)

for pure and axisymmetric shear loadings, respectively. Note that the TSO estimates for the particle

rotations are consistent with these results in the limit as the prolate particles become needles (w →
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Figure 3.14: TSO estimates for particle-reinforced neo-Hookean composites with dilute concentra-
tions of prolate particles subjected to non-aligned loadings at the fixed angle θ̄ = 25◦. Parts (a)
and (b) show results for the effective stress S̄PS

0 and the angle of rotation of the particles ψ̄(2),
respectively, for pure shear loading (λ̄1 = λ̄, λ̄2 = 1). Parts (c) and (d) show results for the effective
stress S̄AS

0 and the rotation ψ̄(2), respectively, for axisymmetric shear (λ̄1 = λ̄2 = λ̄). The results
are shown for particle aspect ratios w = 1, 1.1, 2, 4, 8, as functions of the macroscopic logarithmic
strain ē = ln(λ̄).
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∞).

Figure 3.15 presents results for the TSO estimates for the effective response of incompressible,

neo-Hookean elastomers reinforced with a dilute concentration of oblate rigid particles, under non-

aligned pure and axisymmetric shear loadings at the fixed loading angle θ̄ = 25◦. Results are

shown for aspect ratios w equal to 1, 0.9, 0.5, 0.25 and 0.125, as functions of the macroscopic

logarithmic strain ē = ln(λ̄). Figures 3.15(a) and (b) show plots for the macroscopic stress S̄PS
0

and the rotation of the particles ψ̄(2), respectively, for pure shear loading. Similarly, Figs. 3.15(c)

and (d) show corresponding results for axisymmetric shear. Compared to the previous results for

prolate particles, the results of Figure 3.15 for oblate particles are roughly the opposite. Thus, the

particles in this case undergo the largest rotations (in the opposite direction) for compressive strains

(ē < 0), and the rotations are faster for the smallest aspect ratios. In addition, the particles tend to

the asymptotic values (ψ̄(2) → 25◦ as ē→ ∞, and ψ̄(2) → −65◦ as ē → −∞), as long as the aspect

ratio w is different from unity (when the particles do not rotate). Correspondingly, the plots for the

effective stress-strain relations of the composites exhibit softening for compressive strains (ē < 0),

and the level of softening increases with decreasing values of the aspect ratio w. On the other hand,

the (positive) particle rotations for tensile strains (ē > 0) can be seen to lead to a stiffening of

the macroscopic stress-strain relation, which becomes progressively more significant, the smaller the

aspect ratio.

In Figs. 3.15 (b) and (d), we have also included plots for the rotation of the normal to a “material

surface element” (MSE) whose normal is initially aligned with the e3 axis. This rotation can be

expressed as

ψ̄PS
MSE = arctan

(
sin(θ̄) cos(θ̄)(e2ē − 1)

sin2(θ̄) + e2ē cos2(θ̄)

)
, ψ̄AS

MSE = arctan

(
sin(θ̄) cos(θ̄)(e3ē − 1)

sin2(θ̄) + cos2(θ̄)e3ē

)
(3.19)

for pure and axisymmetric shear loading, respectively. In this connection, it is noted that the TSO

estimates for the rotation of oblate particles become consistent with these results for MSEs in the

limit as the aspect ratio w → 0.

Finally, Figure 3.16 provides results showing the influence of the particle volume fraction on the

TSO estimates for the effective response of the composites subjected to non-aligned pure and ax-

isymmetric shear loadings. The results in this figure are shown for an incompressible, neo-Hookean

elastomer reinforced with rigid, prolate particles with a fixed aspect ratio, w = 2, and three concen-

trations, c = 0.05, 0.15, 0.25. In addition, the results are shown for two loading angles θ̄ = 5◦ and

25◦, as functions of the macroscopic logarithmic strain ē = ln(λ̄). Similar to the previous figures in

this subsection, parts (a) and (b) show pure shear results for the macroscopic stress S̄PS
0 and the

rotation of the particles ψ̄(2), respectively, while parts (c) and (d) show the corresponding results for

axisymmetric shear. The main observation from these figures is that the particle concentration c has

a relatively small effect on the particle rotations (in fact, for small strains the particle rotations are

completely insensitive to c), while it has a significant effect on the effective stress-strain relations for

the composites. Thus, we can see that, as expected, increasing values of c result in stiffer responses

both in tension and compression, as well as for both pure and axisymmetric shear. On the other

hand, we also observe that the initial loading angle has a significant effect on the particle rotations,
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Figure 3.15: TSO estimates for particle-reinforced neo-Hookean composites with dilute concentra-
tions of oblate particles subjected to non-aligned loadings at the fixed angle θ̄ = 25◦. Parts (a) and
(b) show results for the effective stress S̄PS

0 and the angle of rotation of the particles ψ̄(2), respec-
tively, for pure shear (λ̄1 = λ̄, λ̄2 = 1). Parts (c) and (d) show results for the effective stress S̄AS

0

and the rotation ψ̄(2), respectively, for axisymmetric shear (λ̄1 = λ̄2 = λ̄). The results are shown for
particle aspect ratios w = 1, 0.9, 0.5, 0.25, 0.125, as functions of the macroscopic logarithmic strain
ē = ln(λ̄).
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Figure 3.16: TSO estimates for a particle-reinforced neo-Hookean composite with prolate particles
of aspect ratio w = 2 subjected to non-aligned loadings at the angles θ̄ = 5◦, and 25◦. Parts (a) and
(b) show results for the case of pure shear loading (λ̄1 = λ̄, λ̄2 = 1), respectively for the effective
stress S̄PS

0 and the angle of rotation of the particles ψ̄(2). Parts (c) and (d) show results for the
case of axisymmetric shear loading (λ̄1 = λ̄2 = λ̄), respectively for the effective stress S̄AS

0 and
the rotation ψ̄(2). The results are shown for particle volume fractions c = 0.05, 0.15, and 0.25, as
functions of the macroscopic logarithmic strain ē = ln(λ̄).
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but a relatively small influence on the macroscopic stress-strain relation for the composite. In addi-

tion, consistent with the results of Figure 3.4, it can be seen that the reinforced elastomers become

less stable with increasing particle volume fractions, while the response of these composites is more

stable for the larger loading angle (25◦), where loss of ellipticity is not detected for the levels of

strain considered.

3.4 Concluding Remarks

In this chapter, we made use of the tangent second-order (TSO) constitutive model presented in

Chapter 2 to generate estimates for the homogenized stress-strain relation, the evolution of mi-

crostructure, and the onset of macroscopic instabilities in particle-reinforced elastomeric compos-

ites consisting of an incompressible Gent/neo-Hookean matrix and random distributions of aligned

spheroidal particles of aspect ratio w. The estimates presented in this chapter provide a broad

picture of the influence of the macroscopic loading conditions, matrix properties and microgeometry

(including particle volume fractions and shapes) on the effective behavior and the possible onset of

macroscopic instabilities in the composites. Explicit results are given for composites with both pro-

late and oblate spheroidal shapes, subjected to aligned and non-aligned pure shear and axisymmetric

shear loading conditions. These results generalize the results in Chapter 1 for elastomers reinforced

with random distributions of spherical particles (w = 1), as well as earlier results of Lopez-Pamies

and Ponte Castañeda (2006b) for 2-D composites reinforced with elliptical fibers. In addition, the

results of this work are consistent with earlier results for laminated elastomers (deBotton, 2005;

Lopez-Pamies and Ponte Castañeda, 2009) and for continuous-fiber-reinforced elastomers (Agoras

et al., 2009a) in the limits as the aspect ratio w tend to zero and ∞, respectively.

Concerning the results for the overall behavior, we begin by emphasizing that the TSO model

predictions are in very good agreement with available numerical results (Lopez-Pamies et al., 2013a)

for spherical particles (w = 1), up to fairly large strains. Similarly, the TSO results were found to be

in excellent agreement with FEM results (Moraleda et al., 2009) for the transverse shear response

of continuous-fiber-reinforced elastomers (w → ∞). In particular, it should be emphasized that the

new choice for the response of the neo-Hookean matrix phase, as given by expression ((3.3)), leads

to estimates for the macroscopic stress-strain relation that do not lock up at finite strains. This is

different from the corresponding expressions given in Chapter 1, which tend to lock up at a finite

strain that becomes smaller with increasing particle volume fraction, even for neo-Hookean matrix

behavior. Although a very minor change relative to the expressions originally given in Chapter 1

(nothing else changes!), the use of the new expression does give much better agreement with the

available numerical results, especially at the larger volume fractions. It should be noted, however,

that the corresponding results for reinforced Gent elastomers do exhibit significant stiffening due to

the particles, and tend to lock up at strains that are smaller than for the elastomeric matrix material

and that become smaller with increasing particle volume fraction.

Compared to the results for spherical particles, it is found that the corresponding results for

prolate, or oblate particles generally result in stiffer responses when the reinforced elastomers are

loaded in pure shear or axisymmetric shear aligned with the particle axes, and the amount of
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stiffening increases with increasing (decreasing) aspect ratio for prolate (oblate) particles. However,

when the loading axes are not aligned with the particle axes, it is found that the particles may

undergo significant rotations tending to align their long axes with the tensile axes of loading; this

phenomenon in turn may lead to significant softening, which becomes more pronounced as the

particle shape moves away from spherical. In fact, when the tensile loading axis is nearly orthogonal

to the long axes of the particles, the particles can suddenly undergo large rotations at a certain critical

amount of straining, which is found to be coincident (at least for dilute concentrations) with the

vanishing of the shear component of the incremental effective elasticity tensor transverse to the long

particle axis of the reinforced elastomer. Thus, the reinforced elastomers with spheroidal particles

can undergo shear localization instabilities, which are captured by loss of ellipticity of the associated

effective incremental modulus tensors, and correspond physically to the sudden collective rotation—

or flopping—of the particles to try to accommodate the imposed deformation. These flopping-type

macroscopic instabilities in short-fiber-reinforced elastomers were first predicted theoretically in

the context of model 2-D composites by Lopez-Pamies and Ponte Castañeda (2006b) and verified

numerically by Michel et al. (2010) for the same type of 2-D composites. Although the physical

mechanism for these symmetry-breaking instabilities is essentially the same for the more realistic

3-D composites considered in this work, the behavior is a bit richer for the 3-D composites when

subjected to general 3-D loadings since the particles tend to flop in the softest direction (the one

associated with the first transverse shear modulus to vanish). Also, consistent with earlier findings for

the 2-D composites, the reinforced elastomers become more unstable (i.e., they develop instabilities

for smaller strains) as the particle shape moves away from the perfectly symmetric spherical shapes

and as the volume fraction of the particles increases.
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Viscoleastic Suspensions
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Chapter 4

Rheology of non-dilute suspensions

of soft viscoelastic particles in a

Newtonian fluid
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In this chapter, we present a homogenization-based model for the rheological behavior of non-

dilute suspensions of initially spherical, viscoelastic particles in viscous fluids under uniform, Stokes

flow conditions. The particles are assumed to be neutrally buoyant, Kelvin-Voigt solids undergoing

time-dependent, finite deformations, and exhibiting generalized neo-Hookean behavior in their purely

elastic limit. We investigate the effects of the shape dynamics and constitutive properties of the

viscoelastic particles on the macroscopic rheological behavior of the suspensions. The proposed

model makes use of known homogenization estimates for composite material systems consisting of

random distributions of aligned ellipsoidal particles with prescribed two-point correlation functions

to generate corresponding estimates for the instantaneous (incremental) response of the suspensions,

together with appropriate evolution laws for the relevant microstructural variables. To illustrate the

essential features of the model, we consider two special cases: (1) extensional flow, and (2) shear

flow. For each case, we provide the time-dependent response, and when available, the steady-state

solution for the average particle shape and orientation, as well as for the effective viscosity and

normal stress differences in the suspensions. The results exhibit shear thickening for extensional

flows and shear thinning for shear flows, and it is found that the volume fraction and constitutive

properties of the particles significantly influence the rheology of the suspensions under both types of

flows. In particular, for the case of extensional flow, suspensions of particles with finite extensibility

constraints are always found to reach a steady state, while this is only the case at sufficiently low

strain rates for suspensions of neo-Hookean particles, as originally reported by Roscoe (1967) and

Gao et al. (2011). For the case of shear flow, viscoelastic particles with high viscosities can experience

a trembling motion of decreasing amplitude before reaching the steady state.

4.1 Introduction

Suspensions of interacting deformable particles in a fluid are used in numerous applications of current

interest (e.g., tissue engineering, drug delivery, coatings), and they constitute a large class of natu-

rally existing solid-fluid mixtures as well (e.g., blood). Driven by the interest in such applications,

the study of the macroscopic behavior and rheology of these suspensions has received considerable

attention in the past. Among them, solid-fluid mixtures consisting of large numbers of soft, micro-

scaled particles suspended in Newtonian fluids are of particular importance. Well-known examples

of these mixtures include suspensions of red blood cells in blood plasma which is a Newtonian fluid

(Skalak et al., 1989), and suspensions of microgel particles in a solvent (Pal, 2010). When subjected

to shear flows, the suspended soft particles undergo significant changes in shape and orientation,

and this evolution of the microstructure is expected to have a strong influence on the macroscopic

rheological properties of the suspension. It follows that sound models for the constitutive behavior

of such suspensions must properly account for appropriate microstructural variables, such as the av-

erage shape and orientation of the particles, as well as for the constitutive nonlinearities associated

with the mechanical response of the particles.

In the past decades, a vast amount of research has so far focused on estimating the effective viscos-

ity of dilute and non-dilute suspensions of rigid particles (Einstein, 1906; Jeffery, 1922; Krieger and

Dougherty, 1959; Frankel and Acrivos, 1967; Batchelor, 1970; Batchelor and Green, 1972; Krieger,
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1972; Jeffrey and Acrivos, 1976; Brady and Bossis, 1985; Phung et al., 1996; Stickel and Powell, 2005,

to cite only a few). By comparison, fewer studies deal with the rheology of suspensions of dilute

and non-dilute concentrations of deformable particles in a Newtonian fluid. Among the pioneering

studies, Fröhlich and Sack (1946) considered suspensions of elastic spherical particles in a Newtonian

fluid undergoing a pure extensional flow and derived constitutive equations relating the macroscopic

extensional stress and the applied strain rate for small deformations of the microstructure. Cerf

(1952) investigated a suspension of spheres with special viscoelastic properties in a viscous liquid

under oscillatory motion of small amplitude. More than a decade later, Roscoe (1967) studied the

rheological behavior of dilute suspensions of solid viscoelastic spheres in a Newtonian fluid within the

context of finite strains. In this chapter, which was limited to steady-state (SS) behaviors, Roscoe

obtained the effective viscosity and normal stress differences for the suspension as functions of the

solid and liquid material properties and the flow conditions. In addition, Roscoe demonstrated that,

for initially spherical particles and shear-flow conditions, steady-state solutions are possible such

that the particle deforms into an ellipsoid of fixed orientation, and the material within the ellipsoid

undergoes a tank-treading motion deforming and rotating continuously with uniform velocity gradi-

ent and stress. In closely related work, Goddard and Miller (1967) investigated the time-dependent

behavior of a viscoelastic sphere in a Newtonian fluid within the limits of small deformations of the

particle. Based on the coupled solutions for the flow field around the particle and the deformation

of the particle, they derived a constitutive equation for the rheological behavior of suspensions of

slightly deformed spheres in the dilute limit. In the regime of non-dilute concentrations of particles

but, again, within the small deformation limit, Goddard (1977) generalized the analysis of Frankel

and Acrivos (1967) for highly concentrated suspensions of rigid particles to account for the effect of

small deformation of the particles on the rheology of the suspension. In addition, still in the regime

of small particle deformations, Snabre and Mills (1999) developed an effective medium approxima-

tion to estimate the effective shear viscosity of non-dilute suspensions of viscoelastic particles. The

authors made use of the Kelvin-Voigt (KV) model to describe the deformation of particles in the

suspension when subjected to a viscous shear flow. As pointed out by the authors, the KV model

can be used as a first-order approximation to capture the deformation behavior in microcapsules

and biological cells, as they represent an intermediate case between solid particles and fluid drops.

Again, within the small deformation limit, Pal (2003) derived a semi-empirical equation for effective

viscosity of non-dilute suspensions of elastic particles by means of the differential effective medium

approach together with the constitutive model developed by Goddard and Miller (1967) for dilute

suspensions of spherical, elastic particles. The author found good agreement with experimental data

on the effective shear viscosity of un-aggregated red cells in saline solution. There has also been

considerable work on suspensions of viscous droplets or emulsions (see, for example, Taylor, 1932;

Oldroyd, 1953; Bilby et al., 1975; Lowenberg and Hinch, 1996; Wetzel and Tucker, 2001), where it

is important to account for interfacial tension between the two fluids. In addition, numerous works

have been published for suspensions of capsules and vesicles (e.g., Barthès-Biesel, 1980; Barthès-

Biesel and Rallison, 1981; Keller and Skalak, 1982; Ramanujan and Pozrikidis, 1998b; Lac et al.,

2004; Ghigliotti et al., 2010).

As demonstrated by several of the above-mentioned studies, the constitutive properties of the
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particles strongly influence the rheology of suspensions of deformable particles in a viscous fluid.

Although these studies can capture to some extent the influence of particle deformation on the effec-

tive properties of the suspensions, they are confined to small strains and/or dilute concentrations.

Indeed, rheological models that can address general morphologies and particle volume fractions, as

well as general constitutive behavior and finite deformations for the soft particles in the suspension

are still largely lacking. Recently, Gao et al. (2011) studied the rheology of dilute suspensions of

neo-Hookean particles in a Newtonian fluid under Stokes flow conditions. Making use of a polar-

ization technique, the authors developed an exact analytical estimate describing the finite-strain,

time-dependent response of a neo-Hookean particle in a viscous shear flow. They found that the

(time-dependent) “excess” viscosity of the dilute suspensions of such particles exhibit strong coupling

with the large changes in the particle shape and orientation leading to a shear thinning effect. Most

recently, they made use of their model to study the rheology of dilute suspensions of neo-Hookean

particles in an extensional flow (Gao et al., 2013), and found a shear-thickening effect instead. In

addition Gao et al. (2012) showed that it was possible to have three types of motions—steady-state,

trembling, and tumbling—for dilute concentration of elastic particles, depending on the shear rate,

elastic shear modulus, and initial particle shape.

With the perspectives offered by the work of Gao et al. (2011) for dilute suspensions of elastic

particles in mind, the goal of the present work is to investigate the time-dependent rheological

properties of non-dilute suspensions of deformable viscoelastic particles in the regime of arbitrarily

large deformations. More specifically, we study the effective rheological response, as well as the

microstructure evolution, in suspensions of initially spherical, nonlinear KV viscoelastic particles

with generalized neo-Hookean elastic behavior in a Newtonian viscous fluid subjected to simple

flows. We assume that the characteristic size of the particles is larger than 1µm so that we can

neglect Brownian forces acting on the particles. Also, we confine our attention to Stokes flow

regime (i.e., Re → 0), where viscous forces dominate over inertial effects. We develop a rigorous

homogenization-based model to obtain time-dependent estimates, and when available, steady-state

estimates for the rheological behavior of these suspensions. The model is based on the Hashin-

Shtrikman-Willis (HSW) homogenization theory (Hashin and Shtrikman, 1963; Willis, 1977), which

was originally developed for elastic composite materials. More specifically, we make use of the results

of Ponte Castañeda and Willis (1995) for composites consisting of aligned ellipsoidal particles that

are distributed randomly with ellipsoidal two-point correlations in a matrix of a different material.

This theory was extended to two-phase viscous systems by Kailasam et al. (1997) and Kailasam and

Ponte Castañeda (1998), and used to generate estimates for the deformation inside the particles,

which when combined with nonlinear equations for the evolution of the stress field in the particles,

as well as for the shape and orientation of the particles, can be used to characterize the macroscopic

rheological behavior of the suspensions in uniform flows.

The structure of the chapter is as follows. Section 4.2 addresses the constitutive behavior of

the deforming particles and the types of particulate microstructures considered in this chapter. In

section 4.3, we lay out the homogenization strategy. We first provide results for the instantaneous

macroscopic stress in the suspensions in terms of the average elastic stress, vorticity and deformation

inside the particles, which can in turn be related to the macroscopic strain rate and vorticity in the
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suspension. Next, we confine our attention to suspensions of initially spherical particles and, using

the consistent homogenization estimates for the average strain-rate and vorticity tensors inside the

particles, we develop evolution equations for the average particle shape and orientation. Section 4.4

provides explicit expressions for steady-state conditions for non-dilute concentration of Kelvin-Voigt

and purely elastic particles, thus generalizing the results of Roscoe (1967) for dilute concentrations.

In section 4.6, we apply our model for two important special cases. First, we consider the problem

of suspensions of initially spherical particles in an extensional flow, and provide representative nu-

merical examples, as well as closed-form results for steady-state conditions. Second, we consider the

application of the model to suspensions of initially spherical particles in a shear flow. Finally, some

conclusions are drawn in section 4.5.

4.2 Suspensions of viscoelastic particles in a viscous fluid

As already mentioned, in this chapter, we consider random suspensions of (soft) nonlinear viscoelastic

particles in a Newtonian fluid (matrix phase). The particles and fluid phases are incompressible and

have the same density, so that the particles are neutrally buoyant in the fluid. In this section, we

describe in some detail the constitutive behavior of the homogeneous matrix and particle phases

in the suspension, as well as for the microstructures of interest. Following this section, our aim

will be to deliver estimates for the macroscopic rheological response and associated microstructure

evolution in these suspensions under uniform flow conditions.

We begin with a quick review of the basic kinematic relations, in particular, to fix the notation.

Under the application of mechanical loadings, a material pointX in the reference configuration moves

to a new point x at time t in the deformed configuration of the particle. In the Lagrangian description

of the motion, the deformation is described by the map x(X, t), assumed to be continuous and one-

to-one. The deformation gradient tensor F = Gradx (with Cartesian components Fij = ∂xi/∂Xj)

then serves to characterize the deformation of the material, and is such that F = RU = VR, where

R is the rotation, and U and V are the right- and left-stretch tensors, respectively. We will also

make use of the right and left Cauchy-Green tensors, given by C = FTF = U2 and B = FFT = V2,

respectively. (B is also known as the Finger tensor.) Correspondingly, in the Eulerian description,

the motion is described by the velocity field v(x, t), such that the Eulerian strain rate and vorticity

tensors are given by D = 1
2

(
L+ LT

)
and W = 1

2

(
L− LT

)
, respectively, where L = gradv is the

velocity gradient, which is related to the deformation gradient by L = ḞF−1, with Ḟ denoting the

(material) time derivative of F.

4.2.1 Constitutive behavior of the phases

We assume that the suspended particles are homogeneous and made of incompressible, isotropic

solids. We consider particles with viscoelastic behavior and make use of a generalized Kelvin-Voigt

(KV) model to describe their constitutive response. This model consists of a hyperelastic spring and

a dashpot connected in parallel. We will also consider suspensions of purely elastic particles, which

are one limiting case of the KV particles. For the incompressible KV material, the Cauchy stress σ
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can be written as (Joseph, 1990)

σ = −p′I+ τ , τ = τ e + τ v, (4.1)

where p′ is an arbitrary hydrostatic pressure associated with the incompressibility constraint, and

τ e and τ v are the elastic and viscous parts of the total “extra” stress tensor τ in the particle (which

need not be deviatoric in general, tr(τ ) 6= 0.) Note that the actual hydrostatic pressure p is given

by p = p′ − tr τ .

The elastic stress may be described in terms of a stored-energy function ψ, which, on account of

frame invariance, is a function of C, via

τ e = 2F
∂ψ(C)

∂C
FT , det(F) = 1. (4.2)

In addition, elastic isotropy (and incompressibility) implies that ψ depends on C through its first

two invariants. For simplicity, in this chapter, we will consider generalized neo-Hookean behavior

such that ψ(C) = g(I), where I = tr(C) and g is a generally nonlinear function of I satisfying the

requirements that g(3) = 0, g′(3) = µ/2, where µ is the ground state shear modulus of the elastic

particle. Then, the elastic extra stress tensor τ e in (4.2) can be expressed as

τ e = 2 g′(I)B− µ I, (4.3)

where the term promotional to µ arises from the linearization requirements at the ground state (i.e.,

τ e(I) = 0).

Making use of the fact that (Joseph, 1990)

∇

B=
DB

Dt
− LB−BLT = 0, (4.4)

a rate (hypo-elastic) form of equation for the elastic constitutive relation (4.3) may be obtained in

terms of the upper-convected (or Truesdell) time derivative such that

∇
τ e= τ̇ e − Lτ e − τ eL

T = 4 g′′ tr (DB) B+ 2µD, (4.5)

where τ̇ e = (∂τ e/∂t) + v · ∇∇∇τ e denotes the material time derivative of the tensor τ e.

The simplest possible choice for the elastic behavior of the particles is of course the neo-Hookean

model with g(I) = µ
2 (I− 3). However, this model is unrealistic at large stretches for most materials,

including elastomers, as it ignores the significant stiffening that such materials exhibit at large

stretches. For this reason, in the applications to be considered below, we will make use of the Gent

model (Gent, 1996), characterized by the choice

g(I) = −Jm µ

2
ln

(
1− I − 3

Jm

)
, (4.6)

where the dimensionless parameter Jm > 0, known as the strain-locking parameter, corresponds
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to the limiting value of I − 3 at which the elastomer locks up (and the argument of the logarithm

vanishes). Note that the Gent model (4.6) reduces to the neo-Hookean model in the limit as Jm → ∞.

The corresponding specialization of the constitutive relation (4.3) can then be written as

τ e = µ

[(
1− I − 3

Jm

)−1

B− I

]
, (4.7)

which in turn leads to the following evolution equation for the elastic extra stress tensor

∇
τ e = 2µD+

2

µJm
tr [D (τ e + µI)] (τ e + µI) , (4.8)

where use has been made of (4.7) to express B in terms of τ e. Note that these expressions reduce

to the well-known neo-Hookean expressions (Joseph, 1990) in the limit as Jm → ∞, namely,

τ e = µ(B− I), and
∇
τ e= 2µD. (4.9)

Going back to the general expressions for the KV material, the viscous part of the extra stress

can likewise be described in terms of a dissipation potential φ, which, on account of incompressibility

and frame invariance, is a function of the last two invariants of D, via

τ v =
∂φ(D)

∂D
, tr(D) = 0. (4.10)

Although more general nonlinear forms could be considered, in this chapter, again for simplicity, we

will focus our attention on linearly viscous behavior, such that

τ v = 2 η(2)D, (4.11)

where η(2) describes the constant viscosity of the particle material.

It should be noted that the set of constitutive relations for KV particles reduce to those for

purely elastic particles by taking the limit as the viscosity η(2) goes to zero. In this limit, the

KV model simplifies to a hyperelastic model characterized by the stored-energy function ψ(F). In

other words, in this limit, the viscous part of the stress vanishes (τ v = 0) and the elastic part

coincides with the total stress (τ e = τ ). Therefore, for the case of (incompressible) Gent particles,

the constitutive relation for the extra stress tensor (τ ) and its evolution (
∇
τ ) are given by (4.7) and

(4.8), respectively, with τ e being replaced by τ . These relations have been shown to provide good

agreement with experimental data for rubber-like materials (Ogden et al., 2004). Similarly, for the

case of neo-Hookean particles, the corresponding relations are given by (4.9) with τ e being replaced

by τ .

The suspending fluid (or the matrix) will be assumed here to be an incompressible Newtonian

fluid, with constitutive relation given by expression (4.1) with

τ = τ v = 2 η(1) D, tr(D) = 0. (4.12)
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In other words, the constitutive behavior of the matrix will be taken to be purely viscous with linear

response and constant viscosity η(1).

4.2.2 Microstructures

In this chapter, we confine our attention to suspensions consisting of initially spherical, deformable,

viscoelastic particles distributed isotropically in a viscous fluid (matrix). Based on earlier theoretical

work for dilute concentrations of (non-interacting) deformable particles (Goddard and Miller, 1967;

Roscoe, 1967; Gao et al., 2011), as well as numerical simulations for dilutely concentrated and

moderately concentrated suspensions of capsules (Clausen and Aidun, 2010; Clausen et al., 2011),

the particles are expected to change their shape and orientation when subjected to a shear flow. As

already mentioned, for dilute concentrations, the initial spherical particles become aligned ellipsoids

with a shape and orientation that evolves with the deformation until (possibly) reaching a steady

state. For non-dilute concentrations, it may be expected that the shape assumed by the particles

will not be precisely ellipsoidal—deviations would be expected due to the non-uniform deformation

fields that would be generated inside the particles as a consequence of the particle interactions. In

addition, it would be expected that the particle interactions would affect the orientation and relative

position of individual particles in such a way that the particles in the deformed configuration would

not all exhibit the same exact orientation, and the two- and higher-point correlation functions for

the particle centers would cease to be isotropic. Nevertheless, in the spirit of generating simplified

(homogenized) constitutive models for the instantaneous response of the non-dilute suspensions,

as well as for the evolution of their microstructure, it makes sense to define suitable homogenized

microstructural variables serving to characterize the evolution of the “average” shape and orientation

of the particles, as well as of the particle distribution statistics, as functions of the deformation. In the

context of purely viscous systems, and ignoring surface tension effects (i.e., distributions of viscous

drops in a viscous fluid), Kailasam and Ponte Castañeda (1998) proposed such a model making use

of a suitable application/generalization of the homogenization estimates of Ponte Castañeda and

Willis (1995) for the macroscopic viscosity and average strain rate and vorticity fields in the particle

phase to generate estimates for the instantaneous response of the suspension, as well as evolution

laws for suitable microstructural variables characterizing the average shape and orientation of the

particles, and of the two-point correlation functions describing the relative positions of the particles

in the flow. In this context, it should be emphasized that the homogenization estimates of Ponte

Castañeda and Willis (1995) provide a generalization of the dilute estimates of Eshelby (1957)

for dispersions of non-dilute concentrations of elastic particles in an elastic matrix (with different

elastic moduli)—which can be reinterpreted for viscous particles in a viscous matrix—accounting for

general ellipsoidal particle shapes distributed with generally different ellipsoidal shape for the two-

point probability function for the particle-center distribution. The constitutive theory of Kailasam

and Ponte Castañeda (1998) applies not only for linearly viscous behavior for the phases, but can also

be used for nonlinearly viscous (including ideally plastic in the rate-independent limit) phases, and

generalizes earlier work in this context by Kailasam et al. (1997) for the evolution of the particle shape

and distribution (with fixed orientation). In this chapter, we propose a corresponding generalization
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Figure 4.1: Schematic illustration of the microstructure in the suspension, identifying the various
microstructural variables. The particles shapes and orientations evolve with the deformation and
are depicted as grey ellipses, while their two-point probability functions are depicted as larger dotted
ellipses surrounding the particles. (a) At t = 0, the particles are spherical and distributed randomly
with statistical isotropy in the Newtonian fluid. (b) At a later time t, after application of the
macroscopic velocity gradient L̄, the particles have become ellipsoidal and are distributed with
ellipsoidal symmetry (with the same shape and orientation). (c) The particles are described by a
“representative ellipsoid” with aspect ratios w1 = z2/z1 and w2 = z3/z1, and with principal axes
defined by the unit vectors n1, n2 and n3 = n1 × n2 (which rotate relative to the laboratory axes
{Ei}, i = 1, 2, 3.)

of this theory to account for viscoelastic effects in the particles at non-dilute concentrations, building

on the earlier work by Gao et al. (2011) for dilute concentration of elastic particles. This will require

extending the notion of suitable microstructural variables to include the average elastic stress in the

particles, as shall be seen in more detail later.

Consistent with the just-stated objectives, we define next a special class of microstructures

characterizing the instantaneous state of the system. Thus, it is assumed that at the present time all

the initially (at zero time) spherical particles become ellipsoidal with identical shape and orientation

as described by representative (average) ellipsoids

Ω(2) =
{
x : |(Z)−Tx| ≤ 1

}
, (4.13)
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where Z is the so-called shape tensor. In addition, it will be assumed here that the relative position

of the particles is described by two-point correlation functions having “ellipsoidal” symmetry. This

notion was introduced by Willis (1977) to describe the shape for the angular dependence of two-point

correlation functions, thus generalizing the notion of “statistical isotropy,” which corresponds to

spherical angular dependence. This notion was used in the work of Ponte Castañeda andWillis (1995)

to describe the shape of the two-point probabilities for the distribution of the centers of ellipsoidal

particles with possibly different shapes and orientations, thus resulting in estimates depending on

two Eshelby-type microstructural tensors, one describing the shape and orientation of the particles

and the other that of their distribution. While in general it may be expected that the shape and

orientation of the particle distribution will evolve differently from the shape and orientation of

the particles themselves, in this first investigation of the problem, we will assume for simplicity

that the shape and orientation of the distribution functions is identical to that of the individual

particles. We expect this to be a reasonable approximation for small to moderate particle volume

fractions for two reasons. First, the effect of the particle distribution is expected to be of order

volume fraction squared, while that of the particle themselves is expected to be of order volume

fraction. Therefore, the effect of the shape of the distribution functions is expected to be small

compared to that of the particle shapes themselves, at least for small to moderate volume fractions.

Second, the numerical simulations of Clausen et al. (2011) for suspensions of concentrated capsules

in a simple shear flow (see figures 11 and 13 in that paper) seem to suggest that this is not a bad

approximation—certainly better than assuming that the distribution of the (non-Brownian) particles

remains isotropic. Another possibility would be to assume that the shape and orientation of the

particles evolves with the macroscopic deformation (Kailasam et al., 1997), as would be the case

for periodic distributions of particles, but such an approximation would only be accurate for small

enough volume fractions, and will not be pursued in this chapter, again for simplicity, as it is much

easier two work with one shape tensor than with two.

Figure 4.1(a) provides a schematic representation of the isotropic distribution of spherical par-

ticles in the suspension at t = 0. The spheres with solid and dotted lines represent cross sections

of the particles and the distributional spheres, respectively. The triad {Ei}, (i = 1, 2, 3) is used

to characterize the fixed laboratory coordinates. Figure 4.1(b) depicts a snapshot of the suitably

idealized microstructure in the suspension at a future time instant t (recall that the particles and

distributional ellipsoids are assumed to have the same shape and orientation at any moment). Also,

Figure 4.1(c) provides a schematic representation of the relevant microstructural variables at time t.

The three orthonormal vectors n1, n2 and n3 = n1×n2 are used to characterize the principal axes of

the particle. In this principal coordinate system, the shape tensor Z has the matrix representation

Z = diag(z1, z2, z3) with z1, z2, z3 being the three principal semi-axes of the ellipsoid. For future

reference, it is convenient to define two aspect ratios

w1 = z2/z1 and w2 = z3/z1, (4.14)

which fully characterize the shape of the particle.

Consistent with the above-described microstructural model, we choose the following set of vari-
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ables to characterize the state of the ellipsoidal microstructure:

S = {w1, w2,n1,n2,n3 = n1 × n2}. (4.15)

4.3 Macroscopic response

The objective of this section is to determine macroscopic constitutive relations for the rheological

behavior of the suspensions described in the preceding section. As we have seen, we expect the

mixture to go through a sequence of microstructures, approximately consisting of aligned ellipsoids

that are distributed with ellipsoidal two-point statistics (with the same shape and orientation),

which evolve in time, starting from an initial state. In this chapter, we therefore break up the

analysis of the macroscopic behavior of the suspensions into two parts. In the first, we assume that

at a given instant the microstructure is specified, and make use of this information to estimate the

instantaneous response of the mixture by means of a homogenization approach. In the second, we

derive consistent evolution equations for the relevant microstructural variables making use of the

corresponding instantaneous homogenization estimates for the average deformation and stress fields

in the particles.

4.3.1 Homogenization estimates for the instantaneous response

We consider a representative volume element (RVE) of the suspension, which occupies a volume Ω

with boundary ∂Ω. The fluid and particle phases are in turn assumed to occupy volumes Ω(1) and

Ω(2), respectively, such that Ω = Ω(1) + Ω(2). It is assumed that the RVE satisfies the separation

of length scales hypothesis implying that the typical size of the neutrally buoyant particles is much

smaller than the size of the RVE, as well as the Stoke’s condition in the fluid phase, such that

Re =
ρ(1) γ̇ d2p
η(1)

→ 0, (4.16)

where ρ(1) is the density of the fluid, γ̇ is a measure of the macroscopic strain rate and dp is a measure

of the particle diameter. Noting that the microstructure of the RVE is statistically uniform, a uniform

macroscopic stress field will be generated in the RVE when an affine velocity boundary condition

is applied on the boundary of the RVE (∂Ω). Thus, the suspension is subjected to the boundary

condition

v(x) = L̄x, on ∂Ω, (4.17)

where L̄ (tr L̄ = 0) is the macroscopic, or average velocity gradient, defined by1

L̄ =
1

Vol(Ω)

∫

Ω

LdV. (4.18)

1The mean value theorem for the strain rate (e.g., Ponte Castañeda and Suquet, 1998) states that the (volume)
average of the local strain-rate tensor L over the RVE under the affine velocity boundary condition (4.17) is precisely
L̄.
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Similarly, the average or macroscopic Cauchy stress is defined as

σ̄ =
1

Vol(Ω)

∫

Ω

σ dV, (4.19)

and the instantaneous macroscopic constitutive response is determined by the relation between σ̄

and L̄.

For future reference, we also define the phase averages of the strain-rate field over phase r

(r = 1, 2) via

D̄(r) =
1

Vol(Ω(r))

∫

Ω(r)

D dV, (4.20)

such that

D̄ = c(1)D̄(1) + c(2) D̄(2), (4.21)

with the c(1) and c(2) denoting the volume fractions of fluid and particle phases, respectively. Sim-

ilarly, defining τ̄
(1) and τ̄

(2) as the averages of the extra stress in the fluid and particle phases,

respectively, the macroscopic stress, as defined by (4.19), can be rewritten (on account of the in-

compressibility of the phases) as

σ̄ = −p̄′ I+ c(1) τ̄ (1) + c(2) τ̄ (2), (4.22)

where p̄′ is an indeterminate hydrostatic pressure associated with the overall incompressibility of

the suspension.

Now, taking advantage of the special form of the constitutive relations for the fluid matrix and

solid particle phases, as described in Section 4.2.1, modified dissipation potentials are introduced

W (r)(D) = η(r)D ·D+ τ e ·D, tr(D) = 0, (4.23)

such that the local constitutive relation of the phases can be written as

σσσ = −p′ I+ τ , where τ =
∂W (r)

∂D
= 2 η(r)D+ τ e, (4.24)

where p′ is an indeterminate hydrostatic pressure. It should also be emphasized that the elastic

strains τ e are considered to be fixed in taking the derivative with respect to D. Thus, it can be seen

that the addition of the linear term in the strain-rate tensor D to the dissipation function φ, defined

by equation (4.10), allows the inclusion of the elastic stress τ e, assuming that it is known at the given

instant. More specifically, labeling the quantities associated with the matrix and particle phases by

the superscripts (1) and (2), respectively, the local constitutive relation (4.24) can be used to recover

the constitutive relations for the elastic particles and fluid matrix phases, as given by (4.1) to (4.12),

provided that we let η(1) and η(2) be the viscosities of the fluid and elastic particles, respectively,

and that we let τ e = 0 in the fluid phase and τ e = τ
(2)
e , as characterized by the evolution equation

(4.8), in the particle phase. In addition, in this last expression, we use µ and Jm to describe the

ground shear modulus and strain-locking parameter of the elastic particles, the subscript (2) having
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been dropped from µ and Jm for convenience (since only the particle phase has elastic properties,

thus eliminating the risk of confusion).

We define next, for compactness, the local modified dissipation potential

W (x,D) = χ(1)(x)W (1)(D) + χ(2)(x)W (2)(D), (4.25)

where the χ(r)(x) ( r = 1, 2) are the characteristic functions of the two phases, such that they are

equal to one if the position vector x is in phase r (i.e., x ∈ Ω(r)) and zero otherwise. Then, we can

state the principle of minimum dissipation via

min
D∈K

∫

Ω

W (x,D) dV, (4.26)

where K denotes the set of kinematically admissible strain rates:

K = {D| there isv such thatD = (∇v + (∇v)T )/2 , divv = 0 in Ω, andv = L̄x on ∂Ω}. (4.27)

It is noted (see Ekeland and Témam, 1999, for the purely viscous problem) that the Euler-Lagrange

equations of this variational principle are precisely the Stoke’s equations for the fluid phase

2 η(1)∇2v −∇p = 0, ∇ · v = 0, (4.28)

together with the equilibrium equations for the solid particles, which in Eulerian form become

2 η(2)∇2v −∇p′ +∇ · τ (2)
e = 0, ∇ · v = 0, (4.29)

where once again the elastic extra stress τ
(2)
e in the particles is assumed to be known at the present

instant. Note that the variational principle also ensures continuity of the velocity v and traction

components of the total stress σ across the particle-fluid boundaries, as well as satisfaction of the

affine boundary condition (4.17).

Finally, it is noted that the dissipation functional in equation (4.26), evaluated at the minimum,

defines a function of the macroscopic strain-rate D̄, as given by the symmetric part of the average

velocity gradient L̄. When normalized by the volume of the RVE Ω, it can be shown (see, for

example, Ponte Castañeda and Suquet, 1998) that it provides a modified dissipation potential for

the macroscopic constitutive relation, in the sense that

σ̄σσ = −p̄′ I+ τ̄ , where τ̄ =
∂W̃

∂D̄
, (4.30)

and where p̄′ is the Lagrange multiplier associated with the macroscopic incompressibility constraint

and

W̃ (D̄) = min
D∈K

1

Vol(Ω)

∫

Ω

W (x,D) dV. (4.31)

The homogenization problem defined by equations (4.30) and (4.31) for the instantaneous re-
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sponse of the viscoelastic composite characterized by (4.23)–(4.25) is mathematically analogous to

the corresponding problem for an incompressible thermoelastic composite with elastic moduli η(r)

and thermal stresses τ e (provided that the strain rate and velocity fields are identified with the

strain and displacement fields, respectively). For the specific problem of interest here, the viscosi-

ties (moduli) η(r) are uniform-per-phase, and while the elastic stress (thermal stress) in the matrix

phase is zero, the corresponding elastic stress (thermal stress) in the particle phase is not only non-

vanishing, but in fact also non-uniform. More general situations, including the case of nonuniform

thermal stresses in the matrix phase has been considered recently by Lahellec et al. (2011).

To estimate the effective dissipation function W̃ (D̄), we make use of the Hashin-Shtrikman-

Willis (HSW) variational method, which was originally developed for isotropic elastic composites

by Hashin and Shtrikman (1963), and extended later for generally anisotropic elastic composites

by Willis (1977, 1981). For the particulate material systems of interest in this chapter consisting

of random distributions of ellipsoidal inclusions in a given matrix, more specific estimates have

been given by Ponte Castañeda and Willis (1995) still making use of the HSW variational method.

Applied to the above-described viscous systems, the key feature of this method is the use of a

“polarization field” relative to a homogeneous “comparison fluid” (with viscosity η0). In this way, it

is possible to make use of simple, constant-per-phase trial fields for the polarization to obtain bounds

and estimates for the effective response of the composite system. The application of the method of

Ponte Castañeda & Willis (PCW) to the class of suspensions of thermoelastic particles of interest

in this chapter was given by Ponte Castañeda (2005). For completeness, the adaptation of these

results for viscoelastic particles is given in Appendix C.1. In this section, we will only provide the

final results for the macroscopic response in terms of the average local fields in the particle phase.

Thus, the resulting variational estimate for the effective dissipation function W̃ (D̄) can be ex-

pressed as

W̃ (D̄) = η(1)D̄ · D̄+ c
(
η(2) − η(1)

)
D̄(2) · D̄+

c

2
τ̄
(2)
e ·

(
D̄(2) + D̄

)
, (4.32)

where

D̄(2) =
{
I− 2 (1− c)

(
η(1) − η(2)

)
P

}−1 {
D̄− (1− c)P τ̄

(2)
e

}
(4.33)

is the corresponding estimate for the average strain-rate over the particles. In these expressions,

it is recalled from Appendix C.1 that c = c(2) is the volume fraction of the particle phase, τ̄
(2)
e is

the average elastic stress in the particles, and P is a microstructural (Eshelby-type) tensor given by

(C.11)1.

For later reference, we note that the procedure also provides an estimate for the average vorticity

tensor in the particle phase (see Appendix C.1), which is given by

W̄(2) = W̄ + (1− c)R
[
2
(
η(1) − η(2)

)
D̄(2) − τ̄

(2)
e

]
, (4.34)

where R is the microstructural tensor defined by (C.11)2.

Finally, the instantaneous macroscopic constitutive relation for the suspension of viscoelastic

particles can be obtained from the estimate (4.32) for W̃ (D̄) by means of equation (4.30). However,

given D̄(2) and τ̄
(2)
e , it is simpler to make use of expression (4.21) to write the average extra stress
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in the matrix phase as

τ̄
(1) = 2 η(1)D̄(1) = 2 η(1) (1− c)−1

(
D̄− c D̄(2)

)
. (4.35)

Then, substituting this expression into expression (4.22) for the macroscopic stress, we arrive at

σ̄ = −p̄′ I+ 2 η(1)D̄+ c
(
τ̄
(2) − 2 η(1)D̄(2)

)
, (4.36)

which, using (4.24)2 to express the average extra stress over the inclusion phase in terms of the extra

elastic stress over the particles, finally leads to

σ̄ = −p̄′ I+ 2 η(1)D̄+ 2 c
(
η(2) − η(1)

)
D̄(2) + c τ̄ (2)

e . (4.37)

Thus, it can be seen that for given macroscopic strain rate D̄, particle volume fraction c, and

viscosities η(1) and η(2), the macroscopic Cauchy stress tensor σ̄ may determined by means of

expression (4.33) for D̄(2) in terms of the current values of the average of the extra stress tensor over

the particle τ̄
(2)
e , together with the current values of the average aspect ratio and orientation of the

particles, as defined by expression (4.15). It should be emphasized that the above results reduce to

the corresponding exact results of Gao et al. (2011) for dilute concentrations (c << 1) and vanishing

viscosity (η(2) = 0) of the particles. In the next subsection, we address the characterization of these

variables by means of appropriate evolution equations, starting from an appropriate initial state

where the particles are initially spherical and unstressed.

4.3.2 Evolution equations for the microstructural variables and particle

elastic stress

So far, we have made use of Eulerian kinematics to describe the incremental behavior of the host

fluid and particle phases, and accordingly generated estimates for the instantaneous response of the

suspension for a given state of the microstructure. However, when subjected to simple flows, the

microstructure in the suspensions generally evolves in time as the applied deformation progresses.

Therefore, in order to predict the effective time-dependent behavior of suspensions from a given

instantaneous state of the microstructure, it is crucial to first characterize the evolution of relevant

microstructural variables. In addition, given that the instantaneous response depends on the current

values of elastic stresses acting on the particles, which are determined by incremental constitutive

equations of the type (4.8), it is also necessary to develop evolution laws for the average elastic

stresses in the particles.

Recalling from Appendix C.1 that our estimates for the instantaneous response of the suspension

are based on the HSW variational approximation (Ponte Castañeda and Willis, 1995) implying that

the local fields are (approximately) uniform inside the particle phase, as already anticipated in section

4.2.2, it follows that the initially spherical particles will deform through a sequence of ellipsoidal

shapes throughout the deformation process, in such a way that the set of equations used to determine

the instantaneous stress and strain rate fields inside particles will continue to apply at each increment
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of time, except that at each step the current values of the microstructural variables and of the elastic

stresses in the particles will need to be used.

First, recalling that the fluid and particle phases have been assumed to be incompressible, it

follows that the volume fraction of the particles will remain constant throughout any deformation

process, i.e.,

c = const. (4.38)

On the other hand, the evolution for the particle aspect ratios w1 and w2, as defined by (4.14),

are obtained by simple kinematic arguments (see, for example, Bilby and Kolbuszewski, 1977) via

ẇ1 = w1(D̄
(2)
22 − D̄

(2)
11 ), ẇ2 = w2(D̄

(2)
33 − D̄

(2)
11 ), (4.39)

where it is noted that the overdot here denotes simple time derivatives (since w1 and w2 depend

only on time). It is also remarked in this context that the components of the tensorial variables

associated with the particle phase, here and elsewhere, are referred to the principal axes of the

ellipsoidal particle in their current state, as given by the triad {n1,n2,n3}.
Next, the evolution of the orthonormal vectors n1, n2 and n3, serving to characterize the orien-

tation of particles, are determined by means of the kinematical relations

ṅi = Ωni, i = 1, 2, 3, (4.40)

where Ω is the (antisymmetric) spin tensor of the particle, whose components in the principal

coordinate system {n1,n2,n3} are determined by means of the following relations (Ogden, 1997;

Aravas and Ponte Castañeda, 2004)

Ωij = W̄
(2)
ij − (wi−1)

2
+ (wj−1)

2

(wi−1)
2 − (wj−1)

2 D̄
(2)
ij , i 6= j. (4.41)

In this notation, when i or j is equal to 1, we define w1−1 = w0 = 1. It should also be noted that

alternative expressions for the evolution of the microstructure can be derived directly in terms of

the particle shape tensors Z, as shown by Goddard and Miller (1967).

As can be seen from relations (4.37), together with (4.33), the calculation of the instantaneous

macroscopic stress in the suspension requires knowledge of the average elastic extra stress in the

particle phase. As discussed in Appendix C.1, due to the choice of constant-per-phase polarization

fields, together with the choice of η0 = η(1), the PCW homogenization theory results in uniform

stress and strain fields in the particle phase. As a consequence of this result, the constitutive relations

for the average elastic stress fields in the particle phase take the same form as in the corresponding

relations for the local fields. Therefore, for the case of KV particles with a Gent-type elastic stress

(characterized by relations (4.7) and (4.8)), the evolution equations for the average elastic extra
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stress in the particles is given by

∇
τ̄
(2)
e = ˙̄τ

(2)
e − L̄(2)

τ̄
(2)
e − τ̄

(2)
e (L̄(2))T

= 2µ D̄(2) +
2

µJm
tr
[
D̄(2)

(
τ̄
(2)
e + µI

)](
τ̄
(2)
e + µI

)
, (4.42)

where the material time derivative ˙̄τ
(2)
e appearing in the above expression is a simple, time derivative,

due to the fact that the stress field inside the particle is uniform (as already mentioned) and the

convective terms hence vanishes. Note that the corresponding “total” form of the constitutive

equation is given by

τ̄
(2)
e = µ

[(
1− Ī(2) − 3

Jm

)−1

B̄(2) − I

]
, τ̄

(2)
v = 2 η(2) D̄(2). (4.43)

where Ī(2) = tr(B̄(2)), B̄(2) = F̄(2)(F̄(2))T and F̄(2) is the average deformation gradient in the

particles.

It should also be noted that, in the limit as Jm → ∞ (corresponding to KV particles with a

neo-Hookean elastic part), the above evolution equation simplifies to

∇
τ̄
(2)
e = 2µ D̄(2). (4.44)

In this context, it is important to emphasize that although the exact solution for the fields in the

particles is not uniform, the uniform-field approximation is exact for dilute concentrations of particles

(c << 1), as originally argued by Roscoe (1967) in the context of the steady-state solutions, and by

Gao et al. (2011) for more general time-dependent motions of suspensions of purely elastic particles

(η(2) = 0). For non-dilute concentrations, it is expected that the approximation of uniform fields

in the particles will lead to fairly accurate results provided that the concentrations are not large

enough to generate strong interactions between the particles.

In summary, for a given macroscopic velocity gradient L̄ = D̄ + W̄, the macroscopic stress σ̄

in the suspension is given by expression (4.37), where D̄(2) is given by expression (4.33). These

quantities depend on the current values of the microstructural variables S , as defined by expression

(4.15), and determined by the evolution equations (4.39) and (4.40) from some known initial state, as

well as on the current value of the average extra elastic stress τ̄
(2)
e in the particles, as determined by

expression (4.42). Note that the evolution equation for the particle axes (4.40) involves the average

vorticity tensor in the particles, which is given in terms of other known variables by expression

(4.34).

4.4 Steady-state estimates for the suspensions

It is known from earlier works (Roscoe, 1967; Goddard and Miller, 1967) that an initially spherical

particle with Kelvin-Voigt viscoelastic behavior suspended in an infinite Newtonian fluid can admit,

under certain conditions, steady-state (SS) solutions, where the particle becomes an ellipsoid with
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fixed shape and orientation, while undergoing tank-treading motion with constant stress, strain rate

and vorticity. According to the theory developed in Section 4.3, the stress and strain-rate fields are

(approximately) uniform inside the particle phase, and steady-state solutions should still be possible

for non-dilute concentrations of initially spherical, viscoelastic particles. In this case, existence of

a SS solution will depend on flow conditions, as well as on the constitutive properties and volume

fraction of the particles. For definiteness, we note that all variables in this section are evaluated at

the steady state.

The SS solutions, if they exist, can be determined by setting the terms involving time derivatives

equal to zero in the evolution equations for the extra stress tensor inside the particle, as well as in

the evolution equations for the particle shape and orientation. The resulting expressions provide

a set of algebraic equations to be solved for the six components of the extra stress tensor in the

particle, τ̄ττ (2), the two aspect ratios, ω1, ω2, and the three orientational angles defined by the particle

axes, n1, n2, and n3.

First, making use of the incompressibility constraint in the particle phase (tr(D̄(2)) = 0), together

with the evolution equation for the aspect ratios (4.39), we deduce that, at the steady state, the

normal components of the strain-rate tensor in the particle phase, relative to the principal axes ni

of the ellipsoidal particles, are equal to zero:

D̄
(2)
11 = D̄

(2)
22 = D̄

(2)
33 = 0. (4.45)

Also, at the steady state, the evolution equations for the particle orientation, given by (4.40) and

(4.41), imply that the three components of the vorticity tensor in the particle phase are given by

W̄
(2)
12 =

1 + w2
1

1− w2
1

D̄
(2)
12 , W̄

(2)
13 =

1 + w2
2

1− w2
2

D̄
(2)
13 , W̄

(2)
23 =

w2
1 + w2

2

w2
1 − w2

2

D̄
(2)
23 . (4.46)

Next, recalling that the principal axes of the Finger tensor B̄(2) = (V̄(2))2 correspond to the Eulerian

axes of the deformation in the particles, so that the Eulerian axes coincide with the principal axes

of the ellipsoidal particles, it follows that, at the steady state, when the particles have reached a

fixed orientation, their orientation becomes fixed and is characterized by the triad {n1,n2,n3}. This
implies that, at the steady-state solution, the shear components of the Finger tensor (relative to the

particle axes) must all vanish:

B̄
(2)
12 = B̄

(2)
13 = B̄

(2)
23 = 0. (4.47)

Moreover, the normal components of B̄(2) = (V̄(2))2 (again, relative to the particle axes) correspond

to the principal stretches of the deformation in the particles:

B̄
(2)
ii =

(
λ̄
(2)
i

)2
, i = 1, 2, 3 (no sum), (4.48)

where λ̄
(2)
i (i = 1, 2, 3) denote the principal stretches of the deformation in the particles, i.e., the

principal values of the left stretch tensor V̄(2) in the particle. On the other hand, the shape of the
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particle is described by the principal stretches as (see Figure 4.1(c) for definitions of w1 and w2)

w1 = λ̄
(2)
2 /λ̄

(2)
1 , w2 = λ̄

(2)
3 /λ̄

(2)
1 , (4.49)

Making use of the above relations in (4.48), together with the incompressibility constraint in the

particle phase (J̄ (2) = det(F̄(2)) = λ̄
(2)
1 λ̄

(2)
2 λ̄

(2)
3 = 1), we find that

B̄
(2)
11 = (w1 w2)

−2/3 , B̄
(2)
22 = (w1)

4/3 (w2)
−2/3 , B̄

(2)
33 = (w1)

−2/3 (w2)
4/3 . (4.50)

In this context, it is worth mentioning that the components of the tensor B̄(2) in relations (4.47)

and (4.50) identically satisfy the evolution equation for the Finger tensor B̄(2) (i.e.,
∇

B̄(2) = 0)

at the steady-state solution. Finally, we emphasize that the kinematical equations (4.45)-(4.50)

are valid at SS solutions (if they exist) regardless of the constitutive behavior of particles. In the

following subsection, we outline the additional constitutive equations in SS solutions for the case of

KV particles.

4.4.1 Steady-state solution for Kelvin-Voigt particles

In this subsection, we consider steady-state solutions in non-dilute suspensions of Kelvin-Voigt par-

ticles, characterized by constitutive equations (4.43). Making use of (4.47) in (4.43)1, we find that

the shear components of the elastic extra stress tensor (relative to the particle axes) are zero at the

SS solution:

(τ̄ (2)e )12 = (τ̄ (2)e )13 = (τ̄ (2)e )23 = 0. (4.51)

Similarly, we find the three remaining (normal) components of the elastic extra stress tensor by

making use of (4.50) in the constitutive relation (4.43)1. The final results read as

(τ̄ (2)e )11 = µ dw

{
Jm (w2)

1/3
[
1− (w1 w2)

2/3
]
+ cw

}
,

(τ̄ (2)e )22 = µ dw

{
Jm (w2)

1/3
[
(w1)

2 − (w1 w2)
2/3
]
+ cw

}
,

(τ̄ (2)e )33 = µ dw

{
Jm (w2)

1/3
[
(w2)

2 − (w1 w2)
2/3
]
+ cw

}
,

(4.52)

where cw = (w2)
1/3
[
(w1)

2 + (w2)
2 + 1

]
− 3 (w1)

2/3 w2, and dw =
[
Jm (w1)

2/3 w2 − cw
]−1

. In the

limit as Jm → ∞ (corresponding to KV particles with neo-Hookean elastic behavior), relations

(4.52) simplify to

(τ̄ (2)e )11 = µ
[
(w1 w2)

−2/3 − 1
]
, (τ̄ (2)e )22 = µ

[
(w1)

4/3
(w2)

−2/3 − 1
]
,

(τ̄ (2)e )33 = µ
[
(w1)

−2/3 (w2)
4/3 − 1

]
.

(4.53)

Now, making use of (4.51) in (4.33) and (4.34), the non-zero components of the particle strain-
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rate D̄(2) and vorticity W̄(2) at the steady state can be written as

D̄
(2)
ij =

D̄ij

1− αPijij
, W̄

(2)
ij = W̄ij +

αRijij D̄ij

1− αPijij
, i, j = 1, 2, 3 (no sum, i 6= j), (4.54)

where α = 4 (1− c) (η(1) − η(2)) and all components are given relative to the particle axes.

Next, relations (4.45) together with the constitutive equation (4.43)2 imply that, at the steady

state, the normal components of the viscous part of extra stress tensor (relative to the particle axes)

in the KV particles must all vanish:

(τ̄ (2)v )11 = (τ̄ (2)v )22 = (τ̄ (2)v )33 = 0. (4.55)

Moreover, substituting the shear components of D̄(2) from (4.54)1 into (4.43)2, we find the shear

components of τ̄
(2)
v as follows

(τ̄ (2)v )ij =
2 η(2) D̄ij

1− 4 (1− c) (η(1) − η(2))Pijij
, i, j = 1, 2, 3 (i 6= j). (4.56)

Finally, the components of the total extra stress tensor in the KV particles at the steady state can

be obtained in terms of the above estimates for the viscous and elastic extra stresses in the particles

by means of the relation

τ̄
(2)
ij = (τ̄ (2)e )ij + (τ̄ (2)v )ij . (4.57)

At this stage, all non-zero components of the particle stress τ̄ττ (2), strain-rate D̄(2) and vorticity

W̄(2) are written in terms of steady-sate values of the aspect ratios, w1 and w2, and the three

orientational angle defined by the particles axes, n1, n2, and n3. Making use of (4.52) into (4.33),

together with the three equations obtained by substituting relations (4.54) into (4.46), and expression

(4.45), we obtain a system of algebraic equations for the unknowns w1, w2,n1,n2,n3.

In conclusion, it is important to remark that the SS solutions provided in this section generalize

the work of Roscoe (1967) in two ways: (1) they extend the results of Roscoe to the finite con-

centration regime, (2) they apply for Kelvin-Voigt particles with more general elastic parts (Gent

behavior), which allows these results to incorporate the dependence on the extensibility of the par-

ticles (through the parameter Jm). Indeed, in the limiting case of c << 1 and Jm → ∞, the

aforementioned system of equations, when applied for the cases of simple shear flow and extensional

flow, will recover, respectively, the system of equations2 (78)-(80) and equation (98) in Roscoe (1967),

given for a dilute suspension of KV particles with neo-Hookean elastic response.

We remark that the SS solutions for suspensions of KV particles reduce to those for suspensions

of elastic particles by setting (τ̄
(2)
e )ij = τ̄

(2)
ij and (τ̄

(2)
v )ij = 0 (i, j = 1, 2, 3) in relations (4.51)-(4.57).

For the special case of neo-Hookean particles, relations (4.53) agree exactly with the corresponding

steady-state relations provided in Gao et al. (2011) for the normal components of the extra stress

tensor (see relations (4.9) in the reference). In addition, in the limit as c→ 0, the above expressions

2We note, however, that there is a typo in the RHS of equation (79) in Roscoe’s paper: the plus sign should be
replaced by a minus sign. This error can be verified by doing the pertinent algebra mentioned before equation (78)
in that paper.
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reproduce exactly the corresponding exact estimates of Gao et al. (2011) for the particle aspect

ratios and orientation angles for dilute concentration of particles.

4.5 Applications and discussion

With the objective of illustrating the physical implications of the constitutive model developed in

Section 4.3, in this section we apply the model to suspensions of incompressible, viscoelastic particles

in macroscopically uniform flows for representative volume fractions and constitutive properties of

the particles. In particular, we consider suspensions of initially spherical particles in Newtonian

fluids under two special types of flows: extensional and shear flows. For convenience, we make use

of the dimensionless parameters

K =
η(2)

η(1)
, and G =

η(1) γ̇

µ
,

serving to characterize the particle-fluid viscosity ratio and the ratio of viscous forces in the fluid to

the elastic forces in the particles, respectively.

4.5.1 Suspensions of initially spherical particles in an extensional flow

First, we consider suspensions of initially spherical particles in an extensional flow with

L̄ = D̄ = γ̇E1 ⊗E1 −
1

2
γ̇ (E2 ⊗E2 +E3 ⊗E3) , (4.58)

where the {Ei} refer to the fixed laboratory coordinate system and γ̇ > 0 is the macroscopic strain

rate. Because of the symmetry of the flow, as well as the incompressibility of the particles in

the suspension, the particles do not rotate and the only microstructural parameter which evolves

under the flow is the aspect ratio of the (axi-symmetric) particles, w = w1 = w2. In this case the

microstructural tensor P is explicit and we can derive correspondingly explicit expressions for the

evolution of the aspect ratio w and the extra elastic stresses τ̄
(2)
e in the particles, as determined by

(4.39) and (4.42), respectively. To maintain continuity, these equations are provided in Appendix

C.2. Then, given the current values of the elastic stresses τ̄
(2)
e and the aspect ratio w of the particles,

the macroscopic stress σ̄ can be derived by means of expression (4.37), together with (4.33).

For the purpose of efficiently describing the macroscopic response of the suspension in an exten-

sional flow, it is useful to introduce the effective extensional viscosity of the suspensions via

η̃E =
3 (σ̄11 − σ̄22)

2 (D̄11 − D̄22)
=

1

γ̇
(σ̄11 − σ̄22), (4.59)

where the components of the relevant tensors are relative to the fixed laboratory axes and use has

been made of σ̄33 = σ̄22 (which follows from the flow symmetry). Also, the corresponding intrinsic
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viscosity of the suspension is defined by

η̃′E =
1

c

(
η̃E

3 η(1)
− 1

)
. (4.60)

To obtain the initial viscosity of the suspension, we make use of the (initial) condition τ̄
(2)
e

∣∣∣
t=0

=

0, which implies that, at t = 0, the suspension of KV particles behaves like a suspension of spher-

ical viscous drops with viscosity ratio K = η(2)/η(1). Therefore, making use of the corresponding

estimates of Kailasam and Ponte Castañeda (1998) for suspensions of viscous drops (which ignore

surface tension effects), the initial relative viscosity can be written as

η̃E
3 η(1)

∣∣∣∣
t=0

=
3 (1− c) + (2 + 3c)K

3 + 2 c+ 2 (1− c)K
. (4.61)

However, for the special case of purely elastic particles, the initial response of the suspension is like

that of suspensions of incompressible voids (K = 0). Hence, in this case, the relative viscosity at

t = 0 is given by

η̃E
3 η(1)

∣∣∣∣
t=0

=
3 (1− c)

3 + 2 c
. (4.62)

Figure 4.2 presents results for the time-dependent behavior of a suspension of purely elastic

particles with G = 0.3 in extensional flow. Thus, figures 4.2(a) and (b) show respectively results for

the evolution of w for suspensions of NH particles at several values of the particle volume fraction,

and for suspensions of Gent particles at the fixed volume fraction c = 0.2 and different values of

the strain-locking parameter. We observe from figure 4.2(a) that the particle volume fraction has

a critical effect on the transient elongation of the NH particles. In particular, we observe that, for

higher values of c (c = 0.15, 0.2), the time-dependent deformation of NH particles never reaches

a steady state, and instead the NH particles keep elongating. On the contrary, we observe from

figure 4.2(b) that the time-dependent deformation of Gent particles with c = 0.2 reaches a steady

state, except for the case of Jm → ∞ which corresponds to NH particles. This is because the

inextensibility constraint of the Gent particles with a finite value of Jm prevents the particles from

deforming indefinitely under the applied flow. Next, figures 4.2(c) and (d) show corresponding

results for the non-zero components of τ̄ττ (2), for the cases of NH and Gent particles, respectively.

We observe from figure 4.2(c) that the continuous elongation of the NH particles for higher values

of c leads to very high stresses in these particles along the extensional direction (i.e., E1-direction),

while, as observed from figure 4.2(d), all stress components reach finite values for the cases of Gent

particles. Finally, figures 4.2(e) and (f) show corresponding results for the intrinsic viscosities η̃′E of

the suspensions, for the cases of NH and Gent particles, respectively. For the case of NH particles

(figures 4.2(e)), we see that the effective viscosity blows up for the higher values of c, which is a

consequence of the high stresses in the NH particles. On the other hand, we observe from figure

4.2(f) that for the case of Gent particles the effective viscosity reaches finite SS values, such that

the smaller the value of Jm, the smaller the SS value of the effective viscosity.
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Figure 4.2: Results for the time-dependent response of suspensions of initially spherical neo-Hookean
and Gent particles with G = 0.3 in an extensional flow.
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Figure 4.3: Results for the time-dependent response of suspensions of initially spherical Kelvin-Voigt
particles (with NH elastic part) for c = 0.2 in an extensional flow.
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Figure 4.3 provides estimates for the time-dependent response of the suspensions of Kelvin-Voigt

particles (with a NH elastic part) in an extensional flow. Results are shown for a fixed volume

fraction (c = 0.2) and various values of the viscosity ratio K. Figures 4.3(a) and (b) show results for

evolution of w calculated at G = 0.2 and G = 0.3, respectively. In the same way, figures 4.3(c) to

(d) and (e) to (f) show results for the non-zero components of τ̄ττ (2) and the viscosity η̃E , respectively.

It is recalled that the extreme limits K = 0 and K → ∞ in these figures correspond to the cases

of purely elastic and rigid particles, respectively. An important observation from figures 4.3(a), (c)

and (e) is that the suspensions of KV particles reach the same steady state as in suspensions of

NH particles, despite the evident differences in their respective time-dependent responses (this point

will be explained in more detail shortly). In particular, we can see from figure 4.3(a) that the KV

particles, before reaching the steady state, exhibit decreasing deformability as K increases. This

produces smaller stresses in the particles (see figure 4.3 (c)), which results in smaller extensional

viscosities in the suspension (see figure 4.3 (e)). Figures 4.3(b), (d) and (f) present corresponding

results for a higher value of G(= 0.3). For this larger value of G, the KV particles keep deforming

as long as the applied stresses are large enough, and the suspension can not reach a steady state,

similar to the case of purely elastic NH particles (K = 0) discussed in the context of figures 4.2(a),

(c) and (e).

Next, we consider the steady-state response of the suspensions of initially spherical particles in

the extensional flow (4.58). It follows from the symmetry of the problem that the shear components

of the stress and strain rate are zero in the particle phase. Hence, for the case of KV particles, the

steady-state stress in the particle phase is purely elastic, i.e. τ̄
(2)
ij = (τ̄

(2)
e )ij (this can be verified from

relations (4.56) and (4.57) by noting that D̄ij = 0, i 6= j.) This implies that the SS values for the

particle shape, stress and strain rate, in the suspensions of KV particles subjected to an extensional

flow, are independent of the parameter K and, therefore, are equal to those corresponding to the

elastic limit of the particles, characterized by K = 0. However, note that the case of K → ∞
corresponds to rigid particles for which the particles do not deform. In this context, it is worthwhile

to provide an expression for the steady-state value of the particle aspect ratio, denoted by ws, in

extensional flow. Thus, ws is obtained as the acceptable root of the non-linear equation

4Gω5
1s − (1− c)w2

s

[
(w2

s + 2)ω2s − 6ω1s

]
∆s = 0, (4.63)

where the variables ω1s =
√
1− w2

s and ω2s = 2 ln(ω1s+1)−2 ln(ws) are introduced for conciseness,

and

∆s =

{
Jm (1− w2

s)/[(Jm + 3)w(4/3)
s − (2w2

s + 1)], for Gent particle,

w−4/3
s (1− w2

s), for NH particle.
(4.64)

The steady-state value of the effective viscosity (4.59) can also be obtained as

η̃E = 3 η(1)
(
1− cDs +

1

3G
c∆s

)
, (4.65)
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Figure 4.4: Results for the steady-state relative viscosities of suspensions of initially spherical, neo-
Hookean and Gent particles in extensional flow.

where the variable Ds is given by

Ds =
w2

s (1− c)
[
(w2

s + 2)ω2s − 6ω1s

]
∆s − 4Gω5

1s

G {3 (1− c)w2
s (w

2
s + 2)ω2s − 2ω1s [2ω4

1s + 9 (1− c)w2
s ]}

, (4.66)

with ws being the steady-state aspect ratio.

Figure 4.4 shows estimates for the SS value of the (extensional) effective viscosity for suspensions

of (initially spherical) elastic particles. Figures 4.4(a) and (b) show plots as a function of G for

neo-Hookean and Gent particles, respectively, while figures 4.4(c) and (d) show plots as a function

of the volume fraction for neo-Hookean and Gent particles, respectively. We observe from figures

4.4(a), (b) and (c) that η̃E grows monotonically as G increases, indicating a shear-thickening effect

in suspensions of NH and Gent particles. This growth is stronger at higher values of the particle

volume fraction. Also, for the case of NH particles, there is a critical value for G (marked with ×)

beyond which the response of the suspension can not reach a steady state (refer to figure 4.2(e), and

for which the time-dependent effective viscosity of the suspension tends to infinity.) However, as

shown in figures 4.4(b) and (d), this unrealistic feature disappears for suspensions of Gent particles
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with a finite Jm in which case the time-dependent response reaches a steady state with a finite

value for η̃E . As discussed in the context of figure 4.2, this is because the Gent model provides a

more realistic constitutive description of the elastomeric particles by capturing the experimentally

observed, finite extensibility of such materials.

4.5.2 Suspensions of initially spherical particles in a shear flow

Next, we consider suspensions of initially spherical particles in a simple shear flow, characterized by

L̄ = γ̇E1 ⊗E2, D̄ =
1

2
γ̇ (E1 ⊗E2 +E2 ⊗E1), W̄ =

1

2
γ̇ (E1 ⊗E2 −E2 ⊗E1), (4.67)

where the {Ei} refer to the fixed laboratory coordinates, and γ̇ > 0 is the shear strain rate. In this

case, the initially spherical particles deform into ellipsoids of general shape characterized by the two

aspect ratios w1 and w2, which in turn rotate remaining in the E1 − E2 plane in such a way that

their current orientation may be described in terms of a single angle θ (measured positive in the

counterclockwise direction from the E1 direction). Then, the evolution equations (4.39) to (4.44)

can be shown to specialize to equations (C.19) in Appendix C.3. This system of equations, together

with relations (4.33) and (4.34), can be integrated numerically for the time-dependent solution.

For completeness, the components of the shape tensors P and R, required for this integration, are

provided in Appendix C.4. Finally, given the current values of the elastic stresses τ̄
(2)
e , aspect ratios

w1 and w2 and orientation θ of the particles, the macroscopic stress σ̄ can be derived by means of

expression (4.37), together with (4.33).

To conveniently describe the macroscopic response of the suspension in shear flow, we intro-

duce the effective shear viscosity, as well as the first and second normal stress differences of the

suspensions, defined by

η̃S =
1

2 D̄12
σ̄12 =

1

γ̇
σ̄12, (4.68)

and

Π1 = σ̄11 − σ̄22, Π2 = σ̄22 − σ̄33, (4.69)

respectively, where the components are relative to the fixed laboratory axes. Also, the corresponding

intrinsic viscosity of the suspension is defined by

η̃′S =
1

c

(
η̃S/η

(1) − 1
)
, (4.70)

and similarly for the intrinsic normal stress differences Π′
1 and Π′

2.

As was the case for extensional flow, we make use of the initial condition τ̄
(2)
e

∣∣∣
t=0

= 0 to

obtain the initial viscosity of the suspension. As already mentioned, at t = 0, the suspensions of

KV particles behave like suspensions of spherical drops with viscosity ratio K. The initial relative

viscosity (η̃S/η
(1)) for this suspension is then given by

η̃S
η(1)

∣∣∣∣
t=0

=
(3c+ 2)K + 3 (1− c)

2 (1− c)K + 2 c+ 3
. (4.71)
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For the case of elastic particles (K = 0), the above relation reduces to

η̃S
η(1)

∣∣∣∣
t=0

=
1− c

1 + 2 c/3
. (4.72)

Before proceeding with the detailed examples, it is emphasized that the components of the stress

and strain rate tensors in the particle phase are shown below relative to the instantaneous principal

axes of the particle.

Figure 4.5 shows estimates for the time-dependent response of dilute and non-dilute suspensions

of initially spherical NH particles in a shear flow. The results are given for G = 0.2 and various

values of particle volume fraction. Figure 4.5 (a) and (b) depict the evolutions for the aspect ratios

w1 and w2 and the particle orientation angle θ, respectively. It is helpful to recall that w1 and w2

correspond to the aspect ratios of the particle in the plane of the flow and in the plane perpendicular

to the short in-plane axis of the particles, respectively. The evolutions of w1, w2 and θ in figures 4.5

(a) and (b) indicate that the particles in suspensions with a higher volume fraction become more

elongated and their major axis becomes more aligned with the shear direction, before reaching a

steady state. We emphasize that while the particle shape and orientation do not change in the

steady state, material points in the particle undergo a periodic tank-treading motion. This motion

has been frequently reported in suspensions of red blood cells (see, e.g., Keller and Skalak (1982))

and capsules (Clausen and Aidun, 2010; Clausen et al., 2011), in which the enclosing membrane

continues to rotate around the interior fluid in a tank-treading motion. As can be seen from figures

4.5 (c) and (d), the normal components of the strain rate (relative to the instantaneous axes of

the particle) decay to zero with the deformation, while the shear component of the strain rate and

normal components of the extra elastic stress in the particles build up from zero until reaching their

steady-state values. Also, we observe from figure 4.5(d) that the normal components of the average

stress in the particles exhibit a progressive increase (in magnitude) as the volume fraction of the

particles increases, which, correspondingly, leads to a higher intrinsic viscosity and normal stress

differences, as can be seen in figures 4.5(e) and (f).

Figures 4.6(a) to (c) depict estimates for the time-dependent behavior of the particle shape and

orientation in suspensions of NH particles with c = 0.2 in shear flows with varying values of G. The

results suggest that the NH particles exhibit larger stretches, which increase monotonically with

increasing values of G. For the largest value of G (i.e., G = 1.5 for this figure), we have also included

the corresponding results for Gent particles with Jm = 5. For this case, we observe a significant

reduction in the level of deformation resulting from the inextensibility constraint. On the other hand,

figures 4.6(d) and (f) show the corresponding time-dependent results for the effective viscosity and

normal stress differences. We observe from figure 4.6(d) that the initial value of the effective shear

viscosity is independent of the value of G and is approximately equal to 0.7 (this matches the value

calculated from (4.72) for c = 0.2.) We further observe that the time-dependent behavior of the

effective viscosity and the first normal stress shows a more pronounced “overshoot” with increasing

values of G. As explained by Gao et al. (2011), the overshoot and the subsequent decay observed in

these figures are due to the fact that the particles rotation continues even after the particles have

stopped elongating in the plane of shear (see figures 4.6(a) and (c).) Consistently, we notice from
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Figure 4.5: Results for the time-dependent response of suspensions of initially spherical neo-Hookean
particles with G = 0.2 and various values of c in a shear flow. The components of τ̄ττ (2) and D̄(2) are
given relative to the principal axes of the particle.
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Figure 4.6: Results for the time-dependent response of suspensions of initially spherical neo-Hookean
and Gent particles with c = 0.2 and various values of the dimensionless parameter G in a shear flow.
Higher values of G correspond to softer particles, or to larger shear-strain rates.
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figures 4.6(a) and (c) that the time interval between the arrest of the particles elongations in the

plane of shear and the corresponding arrest of the particles rotations becomes progressively larger

as G increases. Finally, we observe from figure 4.6(d) that the SS value of the effective viscosity

drops as the value of G increases which suggests a shear-thinning effect.

Figure 4.7 shows estimates for the time-dependent rheological behavior of suspensions of KV

particles in shear flow. In particular, we investigate the influence of the viscosity of the particles,

characterized by the parameter K = η(2)/η(1), on the time-dependent behavior, calculated at fixed

values G = 0.2 and c = 0.2. We recall that the extreme cases K = 0 and K → ∞ correspond to

suspension of purely elastic and rigid particles, respectively. We observe from figures 4.7(a) and (b)

that, for low values of K, the motion of the particles follows the same general trends as those of the

purely elastic particles. However, for higher values of K, the particles undergo a trembling motion

of decreasing amplitude before reaching the steady state. This motion is similar to that observed

for capsules under similar flow conditions, as reported by Clausen et al. (2011). In the limit of

rigid particles (K → ∞), the rotation of particles is entirely given by the rigid body rotation of the

imposed shear flow, i.e. θ = π/4 − γ̇ t/2. Figure 4.7(c) shows the components of the extra stress

tensor in the particle (τ̄ (2)) relative to the principal axes of particles. It is interesting to note that,

for the case of KV particles (K 6= 0), the shear component τ̄
(2)
12 has a non-zero value, which has no

contribution from the elastic part of the stress, i.e. τ̄
(2)
12 = (τ̄

(2)
v )12 = 2 η(2) D̄

(2)
12 . Next, figures 4.7(d),

(e), and (f) show the corresponding effective viscosity, first and second normal stress differences of

the suspensions, respectively. As expected, it can be seen from figure 4.7(d) that the values of the

effective viscosity at t = 0 match the corresponding values calculated from relation (4.71). Also, we

observe from figure 4.7(f) that, at higher values of K, the second normal stress difference has an

initial overshoot with positive values, similar to the results for the case of suspensions of concentrated

capsules, as reported by Clausen et al. (2011).

Next, we investigate the steady-state response of the suspensions of neo-Hookean particles under

the shear flow conditions (4.67). Figures 4.8(a) and (b) show estimates for SS values of the aspect

ratios and orientation of the particles, respectively, as a function of G, for several values of the

particle volume fraction. These figures indicate that, as G increases, the NH particles reach larger

elongations, as well as closer alignments with the shear direction at the steady state. This behavior

of the particles is seen to be weakly affected by the value of c. Next, figure 4.8(c) and (d) show the

corresponding estimates for the effective viscosity and normal stresses, respectively. We observe from

figure 4.8(c) that the effective viscosity η̃S decreases as G increases, thus showing a shear-thinning

response. Moreover, when G → 0, which corresponds to suspensions of rigid spherical particles, we

recover the corresponding Hashin-Shtrikman lower bound given by

η̃S
η(1)

∣∣∣∣
G→0

=
1 + 3 c/2

1− c
. (4.73)

Another interesting observation from figure 4.8(c) is that, at approximately G = 0.88, the relative

viscosity becomes unity. This implies that, at this value of G, the suspended elastic particles do not

change the effective viscosity of the host liquid. Particles having this property have been found in

other physical phenomena (Milton, 2002b) and are known in the literature as “neutral” particles.
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Figure 4.7: Results for the time-dependent response of suspensions of initially spherical Kelvin-
Voigt particles (with NH elastic part) with G = 0.2 and various values of K in a shear flow. The
components of τ̄ττ (2) are given relative to the principal axes of the particle.
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Figure 4.8: Results for the steady-state response of suspensions of initially spherical neo-Hookean
particles for various values of c in a shear flow.
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Figure 4.9: Results for the steady-state response of suspensions of initially spherical Kelvin-Voigt
particles (with NH elastic part) for various values of K in a shear flow.

We observe from figure 4.8(c) that the value of G at which the NH particles become neutral, GN

say, has a weak dependence on the volume fraction of the particles (GN is slightly smaller than 0.88

for c > 0.3.) For G > GN , the effective viscosity of the suspension is actually less than unity, similar

to the case of suspensions of viscous droplets in a more viscous liquid.

Figure 4.9 presents estimates for the SS behavior of the particles, as well as for the associ-

ated macroscopic rheological properties, of suspensions of KV particles (with NH elastic behavior)

subjected to shear flow conditions. Figure 4.8(a) and (b) show results for the aspect ratios and

orientations of the particles, respectively, at several values of K, for a fixed value of c = 0.2. As

expected, we observe from these figures that, for a fixed value of G, but for increasing values of K,

the particles behave more like stiff particles by deforming less and rotating more, recovering the case

of rigid particles in the limit of K → ∞. Figures 4.9(c) and (d) show results for the corresponding

effective viscosity and normal stress differences, respectively. We observe from these figures that

the viscosity of the particles (controlled by the parameter K) has a more significant effect on the

steady-state behavior of the suspension at higher values of G. In addition, we observe from figure

4.9(a) that the value of GN , at which the particles become neutral (η̃S = η(1)), increases with K up
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to a certain value of K, beyond which the particles may never become neutral.

Next, in figure 4.10, we investigate the influence of the particle volume fractions on the SS values

of the effective viscosity and normal stress differences of suspensions with different types of particles.

Thus, figures 4.10(a) to (b), (c) to (d), and (e) to (f) show plots as functions of c for neo-Hookean,

Gent and Kelvin-Voigt (with NH elastic behavior) particles, respectively. Consistent with earlier

comments in the context of figure 4.8, we observe from figure 4.10(a) that, for suspensions of NH

particles with G < 0.88, the relative viscosity (η̃S/η
(1)) is greater than unity and increases with

increasing particle concentration c, while for for suspensions with G > 0.88, the relative viscosity is

less than one and decreases with increasing values of c. For G ≈ 0.88, the relative viscosity is close

to one and is fairly insensitive to the particle concentration. On the other hand, we see from figure

4.10(c) that, even at a high value of G(= 2), the relative viscosity of suspensions of Gent particles

with a small enough value of Jm, can still be greater than unity and exhibits monotonic growth in c.

Furthermore, we note from figure 4.10(e) that the viscosity of KV particles with G = 0.2 has a weak

effect on the relative viscosity of the suspension up to moderate levels of concentration (c < 0.3). In

addition, it is observed from figures 4.10 (b), (d) and (f) that the magnitude of the normal stresses

always increases with the particle concentration c, but is fairly insensitive to the values of G and

Jm, although a little more sensitive to the viscosity ratio K.

Finally, comparisons are shown in figure 4.11 of the model’s predictions with numerical simulation

results for suspensions of capsules, as well as with experimental data for suspensions of red blood

cells (RBCs) under shear flow conditions. The initially spherical capsules are composed of a fluid-

filled interior (with radius a) enclosed by a NH elastic membrane (with shear modulus µm), where

the viscosity of the internal fluid is equal to that of the external suspending fluid. The dimensionless

parameterGm = η(1)γ̇ a/µm is the counterpart of the parameterG for the capsules. While our model

has been developed to describe the effective response of suspensions of “solid” viscoelastic particles,

by making appropriate choices for the properties of the KV particles, it can be used to estimate the

rheological behavior of suspensions of capsules (with a given value of Gm). In this case, a reasonable

choice for the properties of the KV particles (with a NH elastic part) is G = Gm and K = 1.

Thus, figures 4.11(a) to (d) show comparisons between our model results for dilute suspensions of

KV particles and corresponding simulation results of Ramanujan and Pozrikidis (1998a) for dilute

suspensions of spherical capsules in a shear flow. Figures 4.11(a) and (b) show the comparisons for the

time-dependent behavior of the Taylor deformation parameterD = (1−w1)/(1+w1) and the particle

orientation, respectively, while figures 4.11(c) and (d) show the comparisons for the time-dependent

behavior of the excess viscosity and the normal stress differences, respectively. Although these

comparisons are not entirely fair since the KV particles (corresponding to a linear dashpot connected

in parallel with an NH spring) can only serve as approximate models for the capsules (consisting of a

linear viscous drop enclosed by a NH membrane), we observe relatively good agreement between our

results and those for the capsules, at least for these dilute concentrations. Next, in figure 4.11(e),

comparisons are given between our results for the steady-state response of non-dilute suspensions

of KV particles and the simulation results of Clausen et al. (2011) for suspensions of NH capsules

in a shear flow. Results are shown for the effective viscosity and the normal stress differences for

c = 0.2, as functions of G η̃S/η
(1). We observe from this figure that our results are still in quite good
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Figure 4.10: Results for the steady-state response of suspensions of initially spherical neo-Hookean,
Gent and Kelvin-Voigt particles (with NH elastic part) in a shear flow.
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Figure 4.11: Comparisons of the predictions of our model with numerical simulation results for
suspensions of initially spherical capsules, as well as with experimental data for suspensions of
RBCs under shear flow conditions. (a-d) Comparisons of the time-dependent response of dilute
suspensions of KV particles with the simulation results of Ramanujan and Pozrikidis (1998a) for
the corresponding response of dilute suspensions of capsules. (e) Comparisons of the SS response of
suspensions of KV particles with the simulation results of Clausen et al. (2011) for the SS behavior
of non-dilute suspensions of capsules. (f) Comparisons of the SS behavior of suspensions of KV
particles with the experimental data of Brooks et al. (1970) for the effective viscosity of suspensions
of normal human RBCs, as a function of the shear rate γ̇, for different values of the RBC volume
fraction.
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agreement with the simulation results for capsules. However, it should be remarked that the model

is not expected to provide accurate predictions for rigid particles, corresponding to a zero value for

G in the figure, since it has been assumed (for simplicity) that the shape of (the angular dependence

of) the two-point correlation function is identical to the evolution of the particle shape. Since for

rigid particles, the particle shape cannot change, this would mean that the two-point correlations

function remains isotropic, which is not expected to be the case for the non-Brownian suspensions

considered in this chapter. As already stated, for soft particles (G > 0), the change in shape of

the particles is expected to dominate the higher-order effect (in c) of the changes in the particle

distribution, and the model is expected to be more accurate then. Lastly, figure 4.11(f) shows

comparisons between the predictions of our model and the experimental data of Brooks et al. (1970)

for the effective viscosity of suspensions of normal human RBCs in a shear flow, as a function of the

shear rate γ̇, for different values of the RBC volume fraction. The RBCs consist of a thin elastic

membrane with shear modulus ∼ 4 × 10−6N/m and the average radius 4µm, filled with a nearly

Newtonian fluid with viscosity 6 − 7mPa.s. Also, the suspending fluid is a protein-free saline with

the viscosity 1 − 1.2mPa.s. Similar to the case of capsules, we can use our model to estimate the

rheological properties of suspensions of RBCs by appropriately choosing K and η(1)/µ. Consistent

with the above-mentioned RBCs properties, we choose η(1)/µ = 1 s and K = 6. The predictions of

our model in figure 4.11(f) show quite good agreement with the experimental data for small volume

fractions (c < 20%). For higher volume fractions, our results can still capture the shear-thinning

behavior exhibited by the suspensions of RBCs at the higher shear rates. However, the magnitude

of the effect is under-predicted by the model, which is probably due to the fact that the variational

estimates of the HSW type tend to under-predict the strong interaction effects between the particles

that develop at the higher particle concentrations (c > 20%).

4.6 Conclusions

In this chapter, we have developed a homogenization-based model characterizing the finite-strain,

time-dependent response of non-dilute suspensions of micro-scaled, soft particles in a Newtonian fluid

under Stokes flow conditions. Although more general initial shapes and viscoelastic constitutive

models could be used for the particles, we have considered here suspensions of initially spherical

particles whose constitutive response is characterized by Kelvin-Voigt (KV) behavior incorporating

finite extensibility of the particles in the regime of arbitrarily large deformations. Our model is based

on the homogenization theory of Ponte Castañeda and Willis (1995) for linear-elastic composite

materials with particulate microstructures. Extended to account for viscous behavior and finite

strains, this technique has been used here to generate estimates for the averages of the strain rate

and vorticity tensors in the particle phase, as given by equations (4.33) and (4.34), respectively.

Such estimates, together with evolution equations for the elastic stress in the particles, as given by

(4.42), and for the average particle shape and orientation, as given by (4.39) and (4.40), respectively,

can then be used to obtain estimates for the macroscopic response of the suspension by means of

equation (4.37). The resulting constitutive model provides a complete description for the time-

dependent, macroscopic, rheological response of the non-dilute suspensions of viscoelastic particles
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under macroscopically uniform flows, thus generalizing earlier work by Gao et al. (2011) for dilute

suspensions of neo-Hookean (NH) particles. However, it should be recalled that the model has made

use of a rather simplistic evolution law for the two-point correlation function of the particle centers,

and should not be used for suspensions of (nearly) rigid particles. Improvements along these lines

are certainly possible, but they would probably make most sense in the context of more sophisticated

homogenization methods incorporating higher-order statistics (Milton, 2002b).

We have also used the model developed in this chapter to explore the rather rich and complex

rheological behavior of the soft-particle suspensions by focusing on two types of flows: extensional,

and simple shear flows. These examples provide a broad picture of the influence of the flow con-

ditions, constitutive behaviors of the particles, and the particle volume fractions on the dynamics

of the suspended particles, as well as on the macroscopic rheology of the suspension. For the case

of extensional flows, we found that there is a critical value of G, beyond which suspensions of KV

particles with NH elastic behavior cannot reach a steady state, and that this critical value of G de-

creases with increasing particle volume fraction. For dilute concentrations of the KV particles, this

critical value agrees exactly with the corresponding results of Roscoe (1967). In addition, we showed

that, when the value of G is subcritical and a steady state is reached, the viscosity of KV particles

does not affect the rheological behavior of the suspension, although it does affect significantly the

time-dependent response prior to reaching the steady state. On the other hand, for more realistic

KV particles with Gent-type elastic behavior (exhibiting finite limits of extensibility characterized

by the parameter Jm), the corresponding results indicate that steady-state (SS) solutions are avail-

able for the full range of values of G. In such cases, the corresponding SS values of the effective

extensional viscosities exhibit shear-thickening and are lower for particles with a tighter extensibility

constraint (lower values of Jm).

For simple shear flows, the viscoelastic properties of the initially spherical particles are found to

have a significant effect on both the time-dependent and steady-state response of the suspension.

For particles with a high viscosity ratio K, the particles exhibit a trembling transient motion, before

reaching a steady-state, tank-treading motion with fixed particles shapes and orientations. Similar

motions have also been reported in the context of suspensions of initially spherical capsules by

Clausen et al. (2011). On the other hand, the results of Gao et al. (2012) for dilute concentrations

of purely elastic particles showed trembling motions only for non-spherical initial shapes for the

particles, indicating more complex behaviors for viscoelastic particles. Moreover, contrary to the

SS results for extensional flows in which softer particles tend to increase the effective viscosity of

the suspension, the corresponding SS results show that softer particles tend to reduce the effective

viscosity in simple shear, leading to an overall shear-thinning effect for the suspension. However, it

is interesting to note that, the shear-thickening/thinning effect is more pronounced for suspensions

with higher particle volume fractions for both cases. Furthermore, in agreement with earlier results

by Gao et al. (2011) for dilute concentrations, it has been found that the SS relative viscosity of

the suspension in shear can become unity at some critical value G = GN ≈ 0.88, beyond which

it becomes less than one. This result suggests that it should be possible to design suspensions of

“neutral” particles (Milton, 2002b), as well as suspensions with lower viscosity than that of the

suspending fluid. Our results show that the value of GN depends weakly on the volume fraction of
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particles. However, for the case of Gent-type particles, the value of GN is strongly dependent on

the value of Jm, such that the smaller the Jm, the higher the GN .

Finally, we made comparisons of the predictions of our model with simulation results for suspen-

sions of capsules (composed of an interior fluid enclosed by a NH membrane), as well as with the

experimental data for the suspensions of RBCs, in a shear flow. It was found that the predictions

of the model (for appropriate choices for the properties of the KV particles) are in a good agree-

ment with the simulation results for dilute suspensions of capsules. For non-dilute suspensions, the

corresponding predictions start to deviate from the simulation results and experimental data at suf-

ficiently large particle concentrations, but they are still in relative good qualitative agreement with

both simulation and experimental results. In any event, these comparisons suggest that simpler,

analytical constitutive models for suspensions of viscoelastic particles (with uniform properties),

such as the one developed in the present chapter, may be useful in describing at least some of the

rheological features of more complex suspensions, including suspensions of capsules and vesicles.
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Chapter 5

Rheology of non-dilute suspensions

of soft viscoelastic particles in yield

stress fluids
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In this study, we present a homogenization-based model for the macroscopic, rheological be-

havior of non-colloidal suspensions of initially spherical, viscoelastic particles in yield stress fluids,

subjected to uniform flows. The constitutive behavior of the suspending fluid is characterized by the

Herschel-Bulkley (HB) model, and the particles are assumed to be neutrally buoyant solids char-

acterized by a finite-strain Kelvin-Voigt viscoelastic behavior. The proposed model makes use of

the “linear comparison composite” technique of Ponte Castañeda (1991) to transform the homog-

enization problem for the instantaneous response of the suspensions of viscoelastic particles in a

HB fluid into the corresponding problem for the suspensions of the same particles in a Newtonian

fluid with a suitably-chosen viscosity. The latter problem is then addressed by the homogenization

model, developed in Chapter 4, and when combined with appropriate evolution laws for the relevant

microstructural variable, the model provides a complete description for the time-dependent response

of the suspensions. With the objective of illustrating the key features of our model, we consider the

example of the suspensions of elastic particles in HB fluids under shear flow conditions. The results

provide a broad picture of the influence of the HB fluid and particle constitutive properties as well

as the particle volume fraction on the effective time-dependent as well as steady-state behaviors

of the suspensions. For the special case of non-deformable particles, our model predicts that the

suspensions behave like a HB fluid with modified properties, consistent with the results of Chateau

et al. (2008).

5.1 Introduction

Suspensions of micron-sized, deformable particles in a non-Newtonian fluid constitute a large class

of industrial fluids including filled polymers, food pastes, cosmetics and so on. The study of the

rheological behavior of these suspensions is important in order to understand and tune the flow

properties for a desired application. In particular, we are interested in suspensions of particles in

yield stress fluids. These fluids exhibit a solid-like behavior before the stress reaches a threshold

value (known as the yield stress), beyond which they behave as liquids with a non-linear stress-strain

rate relationship. The mechanical behavior of these fluids can be well described by the Herschel-

Bulkley (HB) model. Based on this model, the yield stress fluids behave as rigid solids when

subjected to shear stresses lower than the yield stress, and once the yield stress is exceeded, they

flow with a nonlinear stress-strain rate relationship, either as shear-thinning or as shear-thickening

fluids. Roughly speaking, the HB model combines the classical Bingham model for simple rate-

independent yield stress behavior with the power-law model for rate-dependent viscoplastic behavior,

and therefore, it provides an enhanced constitutive description to capture both yield stress and

rate-dependency behaviours of a broad class of time-independent, non-Newtonian fluids. A one-

dimensional form of this model can be written as

{
γ̇ = 0, if τ < τ0,

γ̇ = [(τ − τ0)/K]
(1/n)

, if τ ≥ τ0,
(5.1)
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Figure 5.1: Examples of the Herschel-Bulkley model (5.1).

where τ and τ0 denote the shear stress and the yield stress, respectively, K is the consistency

constant, n is the power-law index, and γ̇ denotes the shear strain-rate. Figure 5.1 presents some

numerical examples of constitutive model (5.1) for representative values of material properties τ0,

K and n.

The problem of predicting the rheological behavior of the suspension of rigid particles in a yield

stress fluid has often been addressed in the literature through experimental and/or empirical means

(see Laven and Stein, 1991; Ancey and Jorrot, 2001; Mahaut et al., 2008, to cite only a few).

On the other hand, homogenization methods developed in the context of nonlinear heterogeneous

media have emerged as a promising theoretical approach to address this problem. In particular,

Ponte Castañeda (1991) proposed a variational principle which can be used to obtain bounds and

estimates for the properties of nonlinear composite materials from the corresponding bounds and

estimates for the effective properties of an optimally chosen “linear comparison composite” (LCC).

In the past 20 years, applications of this method have been mainly explored for viscoplastic solid

composites (Ponte Castañeda, 1991; Zaidman and Ponte Castañeda, 1996, among others). However,

through the well-known analogy between the constitutive behavior for a viscoplastic solid and a yield

stress fluid, some authors have applied this method to address the effective behavior of suspensions

of particles in yield stress fluids. Among them, Ponte Castañeda (2003) studied application of the

variational principle for suspensions of two-dimensional (circular), rigid particles in a Bingham fluid

which is a special case of the HB fluid (corresponding to n = 1). Also, more recently, making use of

the variational principle, Chateau et al. (2008) developed a homogenization-based model to provide

an estimate for the effective viscosity of suspensions of rigid spherical particles in a HB fluid. In these

studies, the authors investigated the purely mechanical contribution of an isotropic distribution of

rigid particles to the yield stress fluids behavior, and they found that the variational estimates for

the effective behavior of these suspensions predict the same type of behavior as in the corresponding

plain yield stress fluid with appropriately modified constants for the fluid.
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The above-mentioned studies are limited to the case of non-deformable (rigid) particles. However,

when the particles are deformable, it is known that their deformability and constitutive properties

can strongly influence rheology of suspensions of these particles in a viscous fluid. Therefore, it

is both of theoretical and practical interests to investigate how the deformability and constitutive

properties of the particles suspended in a yield stress fluid affects the homogenized behavior of the

suspension. To the best of our knowledge, the theoretical investigations of this kind are not present

in the literature, although there are several studies dealing with the rheology of suspensions of

deformable particles in a Newtonian fluid. In a pioneering work, Roscoe (1967) studied the steady-

state behavior of dilute suspensions of solid viscoelastic spheres in a Newtonian fluid allowing the

finite strains in the particles. In closely related work, Goddard and Miller (1967) investigated the

time-dependent behavior of a viscoelastic sphere in a Newtonian fluid within the limits of small

deformations of the particle. Later on, Goddard (1977) studied the time-dependent rheological

properties of highly concentrated suspensions of elastic particles in a Newtonian fluid, again, within

the small deformation limit. In a more recent study, making use of a polarization technique, Gao

et al. (2011) developed a finite-strain method to characterize the time-dependent response of dilute

suspensions of neo-Hookean particles in a Newtonian fluid under Stokes flow conditions. They

considered applications of their method to the dilute suspensions of neo-Hookean particles in a

shear flow (Gao et al., 2012) and in an extensional flow (Gao et al., 2013). In Chapter 4, building

on Gao et. al’s work, we developed a homogenization-based model to estimate the time-dependent

rheological behavior of non-dilute suspensions of soft viscoelastic spheres in a Newtonian fluid,

again, under Stokes flow conditions. In Chapter 4, we formulated the homogenization problem for

the suspensions in terms of the corresponding problem for a composite system whose local behavior is

mathematically analogous to “thermoelastic” composites. Based on this analogy, the authors made

use of the Hashin–Shtrikmann–Willis (HSW) homogenization theory (Hashin and Shtrikman, 1963;

Willis, 1977) and provided homogenized estimates for the instantaneous response of the suspensions,

together with appropriate evolution laws for the relevant microstructural variables. The distinct

advantage in the exact solution of Gao et al. (2011) and, similarly, in the estimates of Chapter 4,

is that they account for the simultaneous deformation and rotation of particles in the macroscopic

time-dependent behavior of the suspensions of the particles, when subjected to uniform flows. The

results of these works at the steady state were successfully compared with those provided in the

earlier work of Roscoe (1967).

Our goal in the present study is to investigate the rheological properties of non-dilute suspensions

of deformable viscoelastic particles in a yield stress fluid using a homogenization approach in the

regime of arbitrarily large deformations. Dense suspensions of colloidal particles is typically the

origin of the yielding behavior in these fluids. In this study, however, we focus on the suspensions

of the non–colloidal particles in these fluids, assuming the separation of length scale between the

fluid microstructure and the non–colloidal particles. In other words, we assume that the size of the

viscoelastic particles is much larger than the typical size of the colloidal particles so that we can

neglect Brownian forces acting on the viscoelastic particles. Also, we confine our attention to Stokes

flow regime (i.e., Re→ 0), where viscous forces dominate over the inertial effects. Towards our goal,

we make use of the variational principle of Ponte Castañeda (1991) to replace the homogenization
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problem for finding the effective (instantaneous) behavior of suspensions of viscoelastic particles

in yield stress fluids by a corresponding problem for a (fictitious) LCC, consisting of the same

viscoelastic particles suspended in a Newtonian fluid with a suitably-chosen viscosity, denoted by

η(1). The latter problem is, in fact, the very same problem addressed in Chapter 4. Therefore, we

recall pertinent estimates for the LCC from Chapter 4, which together with optimality equations

for the unknown value of η(1), can be used to obtain corresponding estimates for the instantaneous

response of the actual suspensions of interest. Finally, these estimates, when combined with nonlinear

equations for the evolution of the stress field in the particles, as well as for the shape and orientation

of the particles, can be used to characterize the macroscopic, time-dependent rheological behavior

of the suspensions in uniform flows.

The structure of the paper is as follows. Section 5.2 addresses the constitutive behavior of the

suspending fluid and the deformable particles as well as and the types of particulate microstructures

considered in this work. We consider suspensions of Kelvin-Voigt (KV) viscoelastic particles in

yield stress fluids whose rheological behavior is characterized by the HB model. In section 5.3, we

lay out the homogenization strategy. We first approximate the instantaneous macroscopic stress

in the suspensions by that of a suitably-chosen LCC, which can in turn be given in terms of the

macroscopic strain-rate tensor and the current values of the average stress inside the particle and

the relevant microstructural variables. Next, we make use of the consistent evolution equations for

these variables and the particle stress to obtain the time-dependent macroscopic response of the

suspensions. Lastly, in this section, we provide explicit expressions for the particle stress and the

microstructural variables at a steady state. In section 5.4, we apply our model to suspensions of

initially spherical, Gent hyperelastic particles (which are a special case of KV particles in the purely

elastic limit) in HB fluids subjected to a shear flow, and provide representative numerical examples.

Finally, some conclusions are drawn in section 5.5.

5.2 Suspensions of viscoelastic particles in a nonlinear vis-

cous fluid

In this work, we consider random suspensions of viscoelastic particles in a Herschel-Bulkley (HB)

fluid (matrix phase). We assume that the particles and fluid phases have the same density, so that

the particles are neutrally buoyant in the fluid. In this section, we first describe in some detail the

local constitutive behavior of the fluid and particle phases, and then define pertinent microstruc-

tural variables to characterize the instantaneous microstructure of the suspensions. Following this

section, our aim will be to deliver estimates for the macroscopic rheological response and associated

microstructure evolution in these suspensions under uniform flow conditions.

We begin with a brief review of the basic kinematic relations. Under the application of mechanical

loadings, a material point X in the reference configuration of the particle moves to a new point x at

time t in the deformed configuration of the particle. In the Lagrangian description of the motion,

the deformation is described by a continuous and one-to-one mapping x(X, t). The deformation

gradient tensor F = Gradx (with Cartesian components Fij = ∂xi/∂Xj) then serves to characterize
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the deformation of the material. We will also make use of the right and left Cauchy-Green tensors

(the latter known as the Finger tensor), which are defined as C = FTF and B = FFT , respectively.

Correspondingly, in the Eulerian description, the motion is described by the velocity field v(x, t),

and the velocity gradient tensor L = gradv serves to characterize the deformation rate, which is

related to the deformation gradient by L = ḞF−1, with Ḟ denoting the (material) time derivative of

F. We will also make use of the Eulerian strain-rate and vorticity tensors, given by D = 1
2

(
L+ LT

)

and W = 1
2

(
L− LT

)
, respectively.

5.2.1 Constitutive behavior of the phases

Viscoelastic particles

We assume that the suspended particles are homogeneous and made of incompressible, isotropic

solids. In this work, we consider viscoelastic particles whose constitutive behavior is characterized

by a finite-strain Kelvin-Voigt (KV) model. This model consists of a hyperelastic spring and a

dashpot connected in parallel. For the incompressible KV material, the Cauchy stress tensor σ can

be written as (Joseph, 1990)

σ = −p′I+ τ , τ = τ e + τ v, (5.2)

where p′ is an arbitrary hydrostatic pressure due to the incompressibility constraint, I is the identity

tensor, and τ e and τ v are the elastic and viscous parts of the total “extra” stress tensor τ in the

particle, respectively. In general, τ is not deviatoric (tr(τ ) 6= 0), so that the actual hydrostatic

pressure p is given by p = p′ − tr τ .

The elastic stress τ e may be described in terms of a stored-energy function ψ(C), through

τ e = 2F
∂ψ(C)

∂C
FT , det(F) = 1. (5.3)

In Chapter 4, we presented a fairly general form of the function ψ(C), describing generalized neo-

Hookean behavior, to characterize the elastic part of the isotropic KV particles. In this work, we

make use of a special case of this form known as the Gent constitutive model (Gent, 1996). Making

use of the Gent energy function (given by relation (4.6) ), the corresponding extra stress tensor τ e

can be expressed as

τ e =
µJm

Jm − I + 3
B− µ I, det(F) = 1, (5.4)

where µ is the ground state shear modulus of the elastic particle, and I = trace(B). The above con-

stitutive relation has been shown to provide good agreement with experimental data for rubber-like

materials (Ogden et al., 2004), as it accounts for the significant stiffening in such materials at large

stretches. In particular, the dimensionless parameter Jm > 0 in (5.4), known as the strain-locking

parameter, identifies limiting value for I − 3 at which the elastic material becomes inextensible.

Note that, in the limit as Jm → ∞, the Gent model (5.4) reduces to the neo-Hookean model, which

ignores the stiffening at large stretches.

For our purposes in this work, it is useful to derive a rate (hypo-elastic) form of the constitutive

relation (5.4). To this end, we make use of the upper-convected (or Truesdell) time derivative,
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defined as
∇

A = Ȧ− LA−ALT (5.5)

where A is a symmetric second-order tensor, and Ȧ = (∂A/∂t) + v ·∇∇∇A denotes the material time

derivative of the tensor A. Taking the above time derivative from both side of relation (5.4), and

making use of the fact that
∇

B= 0 (Joseph, 1990),
∇
τ e for the Gent model (5.4) can be expressed as

∇
τ e= 2µD+

2

µJm
tr [D (τ e + µI)] (τ e + µI) . (5.6)

Also, we note that, in deriving the above relation, we have expressed the tensor B in term of τ e by

inverting the constitutive relation (5.4). It is worth mentioning that the constitutive relations (5.4)

and (5.6) reduce to the well-known neo-Hookean expressions (Joseph, 1990) in the limit as Jm → ∞,

namely,

τ e = µ(B− I), and
∇
τ e= 2µD. (5.7)

Going back to the general relations (5.2) for the KV material, the viscous part of the extra stress

can likewise be described in terms of a dissipation potential φ, which is taken to be a function of

the second invariant of D, via

τ v =
∂φ(Deq)

∂D
, tr(D) = 0, (5.8)

where Deq =
√
2D ·D is the equivalent strain-rate. In this work, for simplicity, we will restrict our

attention to a quadratic form of the potential, given by φ(D) = (η(2)/2)D2
eq, where η

(2) denotes the

constant viscosity of the particle material. Making use of this form in (5.8), we find the following

linear constitutive relation for τ v

τ v = 2 η(2)D, (5.9)

Finally, we note that the set of constitutive relations for KV particles reduce to those for purely

elastic particles by taking the limit as the viscosity η(2) goes to zero. In this limit, the viscous part of

the stress vanishes (τ v = 0) and the elastic part coincides with the total stress (τ e = τ ). Therefore,

for the case of (incompressible) Gent particles, the constitutive relation for the extra stress tensor

(τ ) and its evolution (
∇
τ ) are given by (5.4) and (5.6), respectively, with τ e being replaced by τ .

Nonlinear viscous fluid

We assume that the suspending fluid is an incompressible Herschel-Bulkley fluid. These fluids do

not deform or flow until the local shear stress reaches the yield stress τ0. Once the yield stress is

exceeded, the material flows like a fluid with a non-linear stress-strain rate relationship either as

a shear-thinning fluid, or a shear-thickening one. The total (Cauchy) stress tensor σσσ in the fluid

is defined by expressions (5.2) with τττe = 0 and τττ = τττv because the fluid does not have elastic

properties. Also, the extra stress tensor τ is deviatoric in the fluid, so that p′ = p = −tr(σσσ)/3

defines the actual hydrostatic pressure in the fluid. Then, building on the 1-D model (5.1), the

tensorial form of the constitutive relations for a HB fluid can be expressed as (Herschel and Bulkley,
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1926; Alexandrou et al., 2001)





D = 0, if τeq < τ0,

τ =
2

Deq

(
τ0 +KDn

eq

)
D, if τeq ≥ τ0,

(5.10)

where τeq =
√
τττ · τττ/2 is the equivalent shear stress. Since the material is incompressible, the

constraint tr(D) = 0 is enforced. It is also important to clarify that the second constitutive relation

in (5.10) is, in fact, describing the strain-rate tensor D as a function of the stress tensor τττ for the

condition of τeq ≥ τ0, similar to the corresponding one-dimensional form of the relation in (5.1). For

the case of τ0 = 0, the constitutive model (5.10) represents the class of power-law fluids, where the

cases of n < 1 and n > 1 correspond to shear-thinning (also known as pseudoplastic) and shear-

thickening (also known as dilatant) fluids, respectively, while the special case of n = 1 corresponds

to an incompressible Newtonian fluid, with K being the constant viscosity of the fluid. Also, for the

case of τ0 > 0 and n = 1, the model reduces to a Bingham fluid.

5.2.2 Microstructure

In this chapter, we restrict our attention to suspensions consisting of initially spherical, deformable,

viscoelastic particles distributed isotropically in a Herschel-Bulkley fluid matrix. Much similar to the

case of suspensions of deformable particles or capsules in a Newtonian fluid (see, e.g., Roscoe, 1967;

Gao et al., 2011; Clausen et al., 2011; Avazmohammadi and Ponte Castañeda, 2014), we expect that

the deformable particles suspended in a non-Newtonian fluid change their shape and orientation

when subjected to a shear flow. In particular, earlier theoretical studies for dilute concentrations of

neo-Hookean particles in a Newtonian fluid (Roscoe, 1967; Gao et al., 2011) demonstrated that the

initial spherical particles, when subjected to a shear flow, deform exactly into a series of ellipsoidal

shapes- with continuously changing aspect ratios and principal directions- until they reach a final

steady state with a fixed shape and orientation with respect to flow direction (if such a steady state

exists.) This is because, in this case, the deformation field generated inside the particle is uniform.

Interestingly, recent numerical simulations for the dilute suspensions of neo-Hookean particles in

a non-Newtonian (viscoelastic) fluid (Villone et al., 2014b,a) revealed that, similar to the case of

a suspending Newtonian fluid, the initial spherical particles deform into a shape very close to an

ellipsoid until they reach a steady state. In particular, the authors (Villone et al., 2014b) did not

observe more than 2-3% deviation of the particle shape from an exact ellipsoid throughout the

deformation history of the particle. For non-dilute suspensions of particles in a non-Newtonian

fluid, however, we may expect that the particles attain a shape with larger deviations from an

ellipsoid depending on the value of the particle concentration—these deviations would be expected

due to the higher fluctuation of deformation fields inside the particles as a consequence of the particle

interactions. Moreover, we may expect that the particle interactions would affect the orientation and

relative position of individual particles such that the particles in the deformed configuration would

not all exhibit the same exact orientation, and the two- and higher-point correlation functions for the

particle centers would cease to be isotropic. Nevertheless, as discussed in Chapter 4 (see subsection

157



4.2.2), for the purpose of providing homogenized constitutive models for the instantaneous response

of the non-dilute suspensions, as well as for the evolution of their microstructure, it is reasonable

to define suitable homogenized microstructural variables serving to characterize the evolution of the

“average” shape and orientation of the particles, as well as of the particle distribution statistics, as

functions of the deformation. Here, we adopt the microstructural model proposed in Chapter 4 to

characterize microstructure of the suspensions of interest in this work. This model generalizes the

earlier model proposed by Kailasam and Ponte Castañeda (1998) in the context of purely viscous

systems (where the matrix and particles are characterized by general nonlinear viscous behaviors)

at moderate concentrations of the particles to account for elastic effects in the particles, by including

the average elastic stress in the particles as an additional microstructural variable. This model

assumes that at the present time all the initially (at zero time) spherical particles become ellipsoidal

with identical shape and orientation as described by a representative (average) ellipsoid

Ω(2) =
{
x : |(Z)−Tx| ≤ 1

}
, (5.11)

where Z is the so-called shape tensor. In addition, in this microstructural model, we assume that the

relative position of the particles is described by two-point correlation functions having “ellipsoidal”

symmetry. As discussed subsection 4.2.2 in more detail, for simplicity, we further assume that the

shape and orientation of the distribution functions are identical to those of the individual particles,

described by (5.11).
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Figure 5.2: Graphical representation of the microstructure in the suspension at a given time t. The
figure shows a “representative ellipsoid” with aspect ratios w1 = z2/z1 and w2 = z3/z1, and with
principal (orthonormal) coordinate system n1, n2 and n3 = n1 × n2 (which rotates relative to the
laboratory axes {Ei}, i = 1, 2, 3.)

Figure 5.2 depicts an snapshot of the idealized microstructure in the suspension at the present

time t (note that the particle are spherical at t = 0.) The triad Ei, i = 1, 2, 3 denotes the fixed

laboratory coordinates. A schematic representation of the relevant microstructural variables is also
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shown in this figure. The three orthonormal vectors n1, n2 and n3 = n1×n2 are used to characterize

the principal axes of the particle. In this principal coordinate system, the shape tensor Z has the

matrix representation Z = diag(z1, z2, z3) with z1, z2, z3 being the three principal semi-axes of

the ellipsoid. For future references, it is convenient to define two aspect ratios w1 = z2/z1 and

w2 = z3/z1 which fully characterize the shape of the particle.

Consistent with the above-described microstructural model, we choose the following set of vari-

ables to characterize the state of the ellipsoidal microstructure:

S = {w1, w2,n1,n2,n3 = n1 × n2}. (5.12)

5.3 Macroscopic response

In this section, our aim is to determine macroscopic constitutive relations for the rheological be-

haviour of the suspensions described in the previous section. As discussed in subsection 5.2.2, the

suspension, under applied flow, goes through a sequence of microstructures, approximately consist-

ing of aligned ellipsoids that are distributed with ellipsoidal two-point statistics (with the same shape

and orientation), which evolve in time, starting from an initial state. Similar to our approach in

Chapter 4, in this work, we break up the analysis of the macroscopic time-dependent behavior of the

suspensions into two parts. In the first part, we assume that at the present instant the microstructure

is given, and make use of this information to estimate the instantaneous response of the suspension

by using a variational homogenization approach. In the second part, we provide consistent evolution

equations for the relevant microstructural variables making use of the corresponding instantaneous

homogenization estimates for the average deformation and stress fields in the particles. Finally, in

this section, we make use of the results for the instantaneous response of the suspension and the

evolution equations to provide associated estimates for the steady-state behavior of the suspension,

if they exist. For definiteness, we use the superscripts (1) and (2) to denote variables associated

with the fluid (matrix phase) and particle phase, respectively. However, for clarity, we drop these

superscripts from the variables that exist only in one phase, such as µ and Jm in the particle phase

and K and τ0 in the fluid phase.

5.3.1 Homogenization estimates for the instantaneous response

We consider a representative volume element (RVE) of the suspension, occupying a volume Ω with

boundary ∂Ω. The fluid and particle phases are in turn assumed to occupy volumes Ω(1) and Ω(2),

respectively, such that Ω = Ω(1) + Ω(2). We assume that the RVE satisfies the separation of length

scales hypothesis implying that the average size of the neutrally buoyant particles is much smaller

than the size of the RVE. We further assume the Stoke’s condition in the fluid phase, such that

Re =
ρ(1) γ̇2−n d2p

K
→ 0, (5.13)
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where ρ(1) is the density of the fluid, γ̇ is a measure of the macroscopic strain rate and dp is a

measure of the particle diameter.

Noting that the microstructure of the RVE is statistically uniform, an affine velocity boundary

condition on the boundary of the RVE (∂Ω) will produce a uniform macroscopic stress field in the

RVE. Thus, the suspension is subjected to the boundary condition

v(x) = L̄x, on ∂Ω, (5.14)

where L̄ (tr L̄ = 0) is the macroscopic, or average velocity gradient, defined by1

L̄ =
1

Vol(Ω)

∫

Ω

LdV. (5.15)

Similarly, the average or macroscopic Cauchy stress is defined as

σ̄ =
1

Vol(Ω)

∫

Ω

σ dV. (5.16)

At this point, it is also relevant to define the phase averages of the strain-rate field over phase r

(r = 1, 2) as

D̄(r) =
1

Vol(Ω(r))

∫

Ω(r)

D dV, (5.17)

such that

D̄ =
1

2
(L̄+ L̄T ) = c(1)D̄(1) + c(2) D̄(2), (5.18)

with the c(1) and c(2) denoting the volume fractions of fluid and particle phases, respectively. Simi-

larly, defining τ̄
(1) and τ̄

(2) as the averages of the extra stress tensor in the fluid and particle phases,

respectively, the macroscopic stress, as defined by (5.16), can be rewritten as

σ̄ = −p̄′ I+ c(1) τ̄ (1) + c(2) τ̄ (2), (5.19)

where p̄′ is an indeterminate hydrostatic pressure associated with the overall incompressibility con-

straint (tr(D̄) = 0) in the suspension.

Given the local constitutive relations (5.2), (5.4), and (5.9) for the particle phase and relation

(5.10) for the fluid phase, and given the instantaneous microstructure (5.12), the effective (instanta-

neous) behavior of the suspension can be described by the relation between the average strain-rate

tensor D̄ and the average stress tensor σ̄σσ over the RVE Ω. The problem of finding this relation can

be conveniently stated in a variational framework if we can formulate the local constitutive relations

of the phases in terms of appropriate dissipation potentials. To this end, we introduce the following

1This follows from the mean value theorem for the strain rate (e.g., Ponte Castañeda and Suquet, 1998) stating
that the (volume) average of the local strain-rate tensor L over the RVE under the affine velocity boundary condition
(5.14) is precisely L̄.
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modified dissipation potentials

W (r)(D) = φ(r)(Deq) + τ
(r)
e ·D, tr(D) = 0, (5.20)

such that the local constitutive relation of the phases can be written as

σσσ = −p′ I+ τ , where τ =
∂W (r)

∂D
=

1

Deq
φ′(r)(Deq)D+ τ

(r)
e . (5.21)

In the above relations, τ
(r)
e is the “elastic” stress tensor in phase r which is assumed to be known

at the present instant, p′ is an indeterminate hydrostatic pressure, and φ(r) denote (purely viscous)

dissipation potentials which are only function of the equivalent strain-rateDeq. We further emphasize

that the elastic stresses τ
(r)
e are considered to be fixed in taking the derivative with respect to D.

In particular, the local constitutive relation (5.21) recovers the (purely viscous) constitutive relation

(5.10), by choosing the following properties for the fluid matrix (Chateau et al., 2008)

φ(1)(Deq) = τ0Deq +
K

n+ 1
(Deq)

n+1, and τ
(1)
e = 0. (5.22)

On the other hand, relation (5.21) recovers the (viscoelastic) constitutive relations (5.4) and (5.9)

by simply choosing

φ(2)(Deq) =
η(2)

2
D2

eq and τ
(2)
e = τ e, (5.23)

where τ e is characterized by the evolution equation (5.6), in the particle phase.

Next, we define the local modified dissipation potential of the suspension as

W (x,D) = χ(1)(x)W (1)(D) + χ(2)(x)W (2)(D), (5.24)

where the characteristic functions χ(r)(x), r = 1, 2 are equal to one if the position vector x is in phase

r (i.e. x ∈ Ω(r)) and zero otherwise. Then, making use of the principle of minimum dissipation (see,

for example, Ponte Castañeda and Suquet, 1998; Avazmohammadi and Ponte Castañeda, 2014),

we can define the macroscopic constitutive relation of the suspension, subjected to the boundary

condition (5.14), in terms of the effective (modified) dissipation potential W̃ (D̄) as

σ̄σσ = −p̄′ I+ τ̄ , where τ̄ =
∂W̃

∂D̄
, (5.25)

where p̄′ is the Lagrange multiplier associated with the macroscopic incompressibility constraint and

W̃ (D̄) is defined as

W̃ (D̄) = min
D∈K

1

Vol(Ω)

∫

Ω

W (x,D) dV, (5.26)

in which K denotes the set of kinematically admissible strain rates:

K = {D| there isv such thatD = (∇v + (∇v)T )/2 , divv = 0 in Ω, andv = L̄x on ∂Ω}. (5.27)
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In Chapter 4, we considered the homogenization problem defined by equations (5.25) and (5.26)

for the instantaneous response of the viscoelastic composite system characterized by relations (5.20),

(5.21), and (5.24), when both dissipation potentials φ(1) and φ(2) have the quadratic form φ(r)(Deq) =

(η(r)/2)D2
eq, with η

(r) being constant viscosity moduli. For this special case, this homogenization

problem is mathematically analogous to the corresponding problem for an incompressible, linear

thermoelastic composite with elastic moduli η(r) and thermal stresses τ
(r)
e (provided that the strain-

rate and velocity fields are identified with the strain and displacement fields, respectively). Therefore,

in this case, the authors made use of the Hashin-Shtrikman-Willis (HSW) homogenization theory

(Hashin and Shtrikman, 1963; Willis, 1977, 1981) (which has been already used for thermoelastic

composites), and provided an estimate for the corresponding effective (modified) dissipation function

W̃ (D̄). However, for the problem of interest here, i.e. when φ(1)(Deq) is characterized by non-

quadratic form (5.22), we propose to break up the procedure for estimating the effective function

W̃ (D̄) into two parts. First, in subsection 5.3.1, we make use of the variational principal of Ponte

Castañeda (1991) to approximate the instantaneous behavior of the composite system, characterized

by (5.20)–(5.24), by that of a linear comparison composite (LCC), consisting of the same particles

suspended in a linear viscous matrix (characterized by a quadratic dissipation potential) with a

suitably-chosen viscosity. Second, in subsection 5.3.1, we recall pertinent estimates for the LCC

from Chapter 4 to estimate the instantaneous response of the actual nonlinear composite system,

characterized by (5.20)–(5.24).

Variational estimates

So far, we formulated the problem of finding the effective (instantaneous) response of the suspension

in terms of finding the effective potential W̃ (D̄) of the suspension, as described by relations (5.25)

and (5.26). In this work, we provide an estimate for W̃ (D̄) by making use of the variational principle

of Ponte Castañeda (1991). The central idea of this principle is to express the effective behavior of

the nonlinear composite in terms of the effective behavior of a suitably-chosen LCC which has the

same microstructure (i.e. same characteristic functions χ(r)(x)) as the actual (nonlinear) composite

material. For the class of nonlinear composites (characterized by (5.20)–(5.24)), we construct a

(fictitious) LCC made of a linear viscous matrix with constant viscosity η(1) and the same particle

phase (as characterized by properties (5.23)). We emphasize that the volume fraction, shape and

orientation of particles in the LCC are assumed to be the same as those in the nonlinear composite at

the given instant. For definiteness, the subscript L has been used to denote the variables associated

with the LCC.

Here, we define a LCC with local (modified) dissipation potential

WL(x,D; η(1)) = χ(1)(x)W
(1)
L (D; η(1)) + χ(2)(x)W

(2)
L (D), (5.28)

where the (modified) dissipation potentials W
(1)
L (D; η(1)) is defined as

W
(1)
L (D; η(1)) = η(1) D ·D, tr(D) = 0, (5.29)
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with η(1) denoting the (as yet unknown) viscosity of the linear viscous matrix. Also, as already

mentioned, the particle phase (phase 2) in the LCC is the same as in the nonlinear composite, so

that W
(2)
L (D) = W (2)(D), as defined via relations (5.20) and (5.23). Correspondingly, the local

constitutive relation of the phases in the LCC can be written as

σσσL = −p′ I+ τL, where τL =
∂W

(r)
L

∂D
= 2 η(r)D+ τ

(r)
e , (5.30)

where τ
(1)
e = 0 and τ

(2)
e = τ e, as characterized by the evolution equation (5.6).

Following Ponte Castañeda’s variational principle, the nonlinear dissipation potential W (1)(D)

can then be approximated as

W (1)(D) = inf
η(1)>0

{
W

(1)
L (D; η(1)) + V (1)(η(1))

}

= inf
η(1)>0

{
η(1) D ·D+ V (1)(η(1))

}
, (5.31)

where the “error” function V (1) is defined by

V (1)(η(1)) = sup
D

[
W (1)(D)− η(1) D ·D

]

= sup
Deq

[
φ(1)(Deq)−

η(1)

2
D2

eq

]
, (5.32)

where, in the latter equation, use has been made of relation (5.20) and the fact that τ
(1)
e = 0.

Now, making use of approximation (5.31) together with relation (5.24) in definition (5.26) for

the effective dissipation potential, and interchanging the order of infima over D and η(1), we find

the following estimate for the effective potential W̃ (D̄) (Ponte Castañeda, 1991)

W̃ (D̄) ≤ inf
η(1)>0

{
W̃L(D̄; η(1)) + c(1)V (1)(η(1))

}
, (5.33)

where W̃L denotes the effective (modified) dissipation potential of the LCC consisting of the same

particle phase suspended in a fictitious Newtonian fluid with viscosity η(1). Similar to definition

(5.26), the effective potential W̃L is expressed as

W̃L(D̄; η(1)) = min
D∈K

1

Vol(Ω)

∫

Ω

WL(x,D; η(1)) dV, (5.34)

where the set K is given by (5.27).

The optimality conditions in (5.32) and (5.33) generate a system of algebraic nonlinear equations

for the optimal values of the variables η(1) and Deq. First, making use of expressions (5.22) in (5.32),

the function V (1) can be re-written as

V (1)(η(1)) = sup
Deq

(
τ0Deq +

K

n+ 1
(Deq)

n+1 − η(1)

2
D2

eq

)
. (5.35)
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The, the optimality condition in the above equation, known as the secant condition, leads to the

following relation

τ0 +K (D̂eq)
n = η(1) D̂eq, (5.36)

where D̂eq denotes the optimal value of Deq in (5.35). Also, making use of (5.35) and noting the

fact that V (1) is stationary with respect to D̂eq, the optimality condition in (5.33) reduces to

∂ W̃L(D̄; η(1))

∂ η(1)
=

1

2
c(1) D̂2

eq. (5.37)

In summery, the system of equations (5.36) and (5.37) can be solved for two unknowns η(1) and D̂eq.

Once these two unknowns are obtained, the effective dissipation potential W̃ (D̄) can be calculated

from (5.33). In turn, noting that estimate (5.33) is stationary with respect to the variable η(1), it

follows from (5.25) and (5.33) that the variational estimate for the macroscopic Cauchy stress in the

suspension can be obtained as

σ̄σσ = −p̄′ I+ τ̄ττ , where τ̄ττ =
∂W̃

∂D̄
=
∂W̃L

∂D̄
= τ̄ττL, (5.38)

where τ̄ττL denotes the macroscopic extra stress tensor in the LCC, and the second equality (in the

second relation) is used instead of the inequality (in (5.33)), in the sense of an approximation. The

above results imply that the macroscopic response of the actual composite (characterized by (5.20)–

(5.24)) is (approximately) equal to that of the LCC (characterized by (5.28)–(5.30)), calculated at

the optimized value of η(1). Also, it can be shown that (Idiart and Ponte Castañeda, 2007) the phase

averages of the stress and strain-rate fields over each phase in the actual suspension are equal to the

same quantities in the corresponding phase in the LCC. Indeed,

D̄(r) = D̄
(r)
L , τ̄ττ (r) = τ̄ττ

(r)
L , r = 1, 2. (5.39)

Similarly, for later references, we note that the second moments of the stress and strain-rate fields

in each phase in the actual suspension are also equal to the same quantities in the corresponding

phase in the LCC (Idiart and Ponte Castañeda, 2007).

In conclusion, we see from relations (5.38) that the process of determining σ̄σσ requires the knowl-

edge on the effective (modified) dissipation potential W̃L of the LCC defined in (5.34). This knowl-

edge is available from the estimates recently provided in Chapter 4 for the effective behavior of the

composite characterized by relations (5.28)–(5.30). In the next subsection, we recall the estimates

for the potential W̃L(D̄) and the corresponding macroscopic constitutive relation of the LCC from

Chapter 4. At the end, it is worth mentioning that for the case of n ≤ 1, it can be shown that the

variational estimate (5.33) is a rigorous upper bound (Ponte Castañeda, 1991) for the effective dis-

sipation potential W̃ (D̄) (defined in (5.26)), provided that the estimate for the potential W̃L (which

will be given in the next subsection) is also a rigorous upper bound for the effective dissipation

potential of the LCC, defined in (5.34). On the other hand, for the case of n > 1, the estimate (5.33)

is still a good stationary estimate for W̃ (D̄).
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Estimates for the linear comparison composite

In Chapter 4, we developed a homogenization-based model for the effective behavior of suspensions

of initially spherical, viscoelastic particles in a Newtonian fluid (with viscosity η(1)) under simple

flows. In particular, the authors constructed their model by formulating the problem of estimating

the (instantaneous) effective behavior of the suspensions in terms of finding an estimate for the

effective (modified) dissipation potential of a composite system, characterized by local relations

(5.28)–(5.30). Then, to find this estimate, the authors made use of the HSW homogenization

theory, which was originally developed for isotropic elastic composites by Hashin and Shtrikman

(1963), and extended later for generally anisotropic elastic composites by Willis (1977, 1981). More

specifically, the authors made use of the results of Ponte Castañeda and Willis (1995), which is

based on the HSW theory, for particulate composites consisting of aligned ellipsoidal particles that

are distributed randomly with ellipsoidal two-point correlations in a matrix of a different material.

As described in the previous subsection, the composite system Chapter 4 (characterized by local

relations (5.28)–(5.30)) is, in fact, the linear comparison composite for our problem of interest in

this work. Therefore, in this subsection, we recall the relevant results for the LCC from Chapter

4 for estimating the macroscopic response of the actual suspension from (5.38). Before proceeding,

we note that we drop the subscript L from the stress and strain-rate phase averages in the LCC as

they are equal to the corresponding variables in the actual suspension (see relations (5.39).)

Here, we recall the final estimate for the effective potential W̃L(D̄) from expression (3.17) in the

paper by Avazmohammadi and Ponte Castañeda (2014) which is written as

W̃L(D̄) = η(1)D̄ · D̄+ c
(
η(2) − η(1)

)
D̄(2) · D̄+

c

2
τ̄
(2)
e ·

(
D̄(2) + D̄

)
, (5.40)

where

D̄(2) =
{
I− 2 (1− c)

(
η(1) − η(2)

)
P

}−1 {
D̄− (1− c)P τ̄

(2)
e

}
(5.41)

is the corresponding estimate for the average strain-rate tensor D̄(2) over the particle phase, available

from relation (3.18) in Avazmohammadi and Ponte Castañeda (2014). In these expressions, c = c(2)

is the volume fraction of the particle phase, τ̄
(2)
e is the (instantaneous) average elastic stress in the

particles which is assumed to be known at the given instant2, and P is a microstructural (Eshelby-

type) tensor which will be defined shortly. It is also relevant to provide a corresponding estimate for

the average vorticity tensor in the particle phase, denoted by W̄(2), available from relation (3.19) in

Avazmohammadi and Ponte Castañeda (2014). This relation is given by

W̄(2) = W̄ + (1− c)R
[
2
(
η(1) − η(2)

)
D̄(2) − τ̄

(2)
e

]
, (5.42)

where R is the microstructural tensor. The fourth-order tensors P and R in the above relations can

be expressed as

P =
1

4π |Z|

∫

|ξξξ|=1

H(ξξξ)
∣∣ZT ξξξ

∣∣−3
dS, and (5.43)

2As will be shown later in this subsection, τ̄
(2)
e in the LCC is equal to the corresponding variable in the actual

suspension, so that we do not use the superscript L for this variable.
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R =
1

4π |Z|

∫

|ξξξ|=1

T(ξξξ)
∣∣ZT ξξξ

∣∣−3
dS. (5.44)

where the fourth-order tensor H and T are given by

Hijkl = (Mikξjξl)|(ij)(kl) , Tijkl = (Mikξjξl)|[ij](kl) , (5.45)

with M = η(1)(I − ξξξ ⊗ ξξξ). In addition, in the above relations, the parentheses and square brackets

(enclosing indices) denote symmetric and anti-symmetric parts, respectively. The componnets of

the microstructural tensors P and R relative to the principal axes of the ellipsoidal particles are

available from Appendix C.4. These components are written in terms of the viscosity η(1) and the

current values of the aspect ratios w1 and w2.

As discussed in Chapter 4 (see Appendix C.1), consistent with the prediction of the HSW ho-

mogenization theory, the above estimates for the instantaneous response of the LCC are based on

the approximation that the local fields are uniform inside the particle phase. As a consequence of

this approximation, the constitutive relation for the average elastic stress field in the particle phase

takes the same form as in the corresponding relation for the local field (given by (5.4)). Therefore,

similar to local relations (5.2), (5.4) and (5.9), the (instantaneous) average extra stress tensor in the

particles in the LCC can be expressed as

τ̄
(2) = τ̄

(2)
e + τ̄

(2)
v , where (5.46)

τ̄
(2)
e =

µJm

Jm − Ī(2) + 3
B̄(2) − µ I, and τ̄

(2)
v = 2 η(2) D̄(2), (5.47)

with τ̄
(2)
v denoting the viscous part of the average stress in the particles. In the above expressions,

Ī(2) = tr(B̄(2)), B̄(2) = F̄(2)(F̄(2))T and F̄(2) is the average deformation gradient in the particles.

The uniform-field approximation also holds for the local fields inside the particle phase in the actual

suspension, following from the fact that the second moments of the local fields (such as stress

and strain-rate) inside the particle phase in the actual suspension are equal to the corresponding

quantities in the LCC3. Therefore, it follows from relations (5.39) for r = 2 and relations (5.46)

and (5.47) that the particle phase averages τ̄
(2)
e , τ̄

(2)
v and B̄(2) associated with the LCC are equal

to the corresponding phase averages in the actual suspension. As discussed in Chapter 4, we also

note that although the exact solution for the fields in the particles is not uniform, the uniform-field

approximation is expected to lead to fairly accurate results provided that the concentrations are not

large enough to generate strong interactions between the particles.

At this point, the (instantaneous) macroscopic constitutive relation for the (actual) suspension

of viscoelastic particles can be obtained by making use of estimate (5.40) for W̃L(D̄) in equation

(5.38). However, Avazmohammadi and Ponte Castañeda (2014) obtained a simpler (and equivalent)

form of this constitutive relation (i.e., σ̄σσL = −p̄′ I+ ∂W̃L/∂D̄) in terms of D̄(2) and τ̄
(2)
e , which can

3More specifically, the uniformity of the local fields, for example the stress field, inside the particle phase in the
LCC is due to fact that

∫
Ω(2) (τττL ⊗ τττL) dV = τ̄ττL ⊗ τ̄ττL, and the same relation holds for the stress field inside the

particle phase in the actual suspension following from relations τ̄ττ = τ̄ττL and
∫
Ω(2) (τττ ⊗ τττ) dV =

∫
Ω(2) (τττL ⊗ τττL) dV .
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be expressed as (see relation (3.22) in that paper)

σ̄ = −p̄′ I+ 2 η(1)D̄+ 2 c
(
η(2) − η(1)

)
D̄(2) + c τ̄ (2)

e . (5.48)

In summary, we see from the above constitutive relation together with expression (5.41) for

D̄(2) that, for given macroscopic strain-rate D̄, particle volume fraction c, and viscosity η(2), the

(instantaneous) macroscopic Cauchy stress tensor σ̄ may be determined in terms of the optimal value

of η(1), the current value of the average elastic stress tensor over the particle τ̄
(2)
e , and the current

values of the average aspect ratio and orientation of the particles, as defined by expression (5.12). We

obtain the optimal value of η(1) by making use of the expressions (5.40) in equation (5.37) and solving

the (generally coupled) system of equations (5.36) and (5.37). This value is determined in terms of

D̄, c, η(2), the constitutive properties of the HB fluid in the actual suspension, and the current values

of the variables τ̄
(2)
e and S = {w1, w2,n1,n2,n3 = n1 × n2}. Therefore, the constitutive relation

(5.48) for the instantaneous response of the actual suspension is indeed nonlinear in D̄, as expected.

However, when viewed as the constitutive relation for the LCC for a given η(1), this relation (5.48)

is instantaneously linear in D̄, since nonlinearities associated with the particle response subjected

to finite strains are fully accounted for in the particle stress τ̄
(2)
e , which is assumed to be known at

any given instant. In the next subsection, we address the characterization of the variables τ̄
(2)
e and

S by means of appropriate evolution equations, starting from an appropriate initial state where the

particles are initially spherical and unstressed.

5.3.2 Evolution equations for the microstructural variables and particle

elastic stress

So far, we generated estimates for the instantaneous response of the suspension for the current

state of the microstructure and the current value of the particle elastic stress τ̄
(2)
e . However, when

subjected to simple flows, the microstructure in the suspension as well as the value of τ̄
(2)
e generally

evolve in time as the applied deformation progresses. Therefore, in order to predict the effective

time-dependent behavior of suspensions from a given instantaneous state of the microstructure and

the particle stress, it is crucial to establish appropriate evolution laws for relevant microstructural

variables and for the stress tensor τ̄
(2)
e . Recalling that the microstructure as well as the stress and

strain-rate phase averages in the suspension are identical to those in the LCC at any given instant,

henceforth, we do not distinguish between these variables in the suspension and those in the LCC.

As mentioned in the previous subsection, our estimates for the instantaneous response of the

suspension are based on the approximation that the local fields are uniform inside the particle phase

in the suspension. According to this approximation, and as already anticipated in section 5.2.2,

the initially spherical particles will deform through a sequence of ellipsoidal shapes throughout the

deformation process, in such a way that the set of equations used to determine the instantaneous

stress and strain-rate fields inside particles will continue to apply at each increment of time, except

that at each step the current values of the microstructural variables and of the stresses in the particles

will need to be used.
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First, it follows from the incompressibility of the fluid and particle phases that the volume fraction

of the particles will remain un-changed throughout any deformation process, i.e.,

c = const. (5.49)

Next, the evolution for the aspect ratios of the particle, w1 and w2, are obtained by simple

kinematic arguments (see, for example, Bilby and Kolbuszewski, 1977) as

ẇ1 = w1(D̄
(2)
22 − D̄

(2)
11 ), ẇ2 = w2(D̄

(2)
33 − D̄

(2)
11 ), (5.50)

where it is noted that the overdot here denotes simple time derivatives (since w1 and w2 depend

only on time). It is also remarked in this context that the components of the tensorial variables

associated with the particle phase, here and elsewhere, are referred to the principal directions of the

ellipsoidal particle in their current state, as given by the triad {n1,n2,n3}.
Also, the evolution of the orthonormal vectors n1, n2 and n3, serving to characterize the orien-

tation of particles, are determined by means of the kinematical relations

ṅi = Ωni, i = 1, 2, 3, (5.51)

where Ω is the (antisymmetric) spin tensor of the particle, whose components in the principal

coordinate system {n1,n2,n3} are determined by means of the following relations (Ogden, 1997;

Aravas and Ponte Castañeda, 2004)

Ωij = W̄
(2)
ij − (wi−1)

2
+ (wj−1)

2

(wi−1)
2 − (wj−1)

2 D̄
(2)
ij , i 6= j. (5.52)

In this notation, when i or j is equal to 1, we define w1−1 = w0 = 1.

Finally, an evolution equation for the particle stress τ̄
(2)
e can be obtained from relation (5.47)1

by making use of the time derivative (5.5). In this connection, recalling the expression B̄(2) =

F̄(2)(F̄(2))T and the fact that the local fields are uniform inside the particle phase, we first find that

∇

B̄(2) = ˙̄B(2) − L̄(2)B̄(2) − B̄(2)(L̄(2))T

= ˙̄F(2)(F̄(2))T + F̄(2)( ˙̄F(2))T − L̄(2)B̄(2) − B̄(2)(L̄(2))T = 0, (5.53)

where use has been made of L̄(2) = ˙̄F(2)(F̄(2))−1. Making use of the above results, the evolution

equation for τ̄ (2), defined in (5.47)1, is expressed as

∇
τ̄
(2)
e = ˙̄τ

(2)
e − L̄(2)

τ̄
(2)
e − τ̄

(2)
e (L̄(2))T

= 2µ D̄(2) +
2

µJm
tr
[
D̄(2)

(
τ̄
(2)
e + µI

)](
τ̄
(2)
e + µI

)
. (5.54)

In the above expressions, the material time derivative ˙̄B(2) and ˙̄τ
(2)
e are simple, time derivative,

again, due to the fact that the local fields inside the particle are uniform (as already mentioned)
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and the convective terms hence vanish. Note that, following the same fact, evolution equation (5.54)

takes the same form as in the corresponding equation for the local field, given by (5.6).

In summary, for a given macroscopic velocity gradient L̄ = D̄ + W̄, the macroscopic stress

σ̄ is obtained from expression (5.48), where D̄(2) is given by expression (5.41). These quantities

depend on two sets of values: (1) the current values of the microstructural variables S , as defined

by expression (5.12), and determined by the evolution equations (5.50) and (5.51) from some known

initial state, (2) the current value of the average elastic stress τ̄
(2)
e in the particle, as determined

by evolution equation (5.54), again from a known initial state. In this connection, note that the

evolution equation for the particle axes (5.51) involves the average vorticity tensor in the particles,

which is given in terms of other known variables by expression (5.42). In the next subsection, we

will make use of the time-dependent solution, developed in this section, to construct steady-state

solutions, when available, for the strain-rate, vorticity and stress fields inside particles.

5.3.3 Steady-state estimates for the suspensions

Based on earlier work for dilute suspensions of neo-Hookean particles in a Newtonian fluid (Roscoe,

1967; Gao et al., 2011, 2013), the initially spherical particles, subjected to simple flows, can reach,

under certain conditions, a steady state in which case the particles become an ellipsoidal with a

fixed shape and orientation as well as constant stress, strain-rate and vorticity. In Chapter 4, we

demonstrated that, for suspensions of Kelvin-Voigt viscoelastic particles (with a Gent elastic part)

in a Newtonian fluid, such a steady state can still be available for higher concentrations of initially

spherical particles, following from the prediction of the HSW theory that the stress and strain-rate

fields are uniform inside the particle phase. In this study, making use of the linear comparison

composite technique, we generated HSW-type estimates for the instantaneous response of the non-

dilute suspensions of KV particles in a HB fluid which, similarly, predict that the local fields inside

the particle phase are uniform. With the same token, this prediction implies that the initially

spherical KV particles, suspended in such a fluid, can still reach a steady state, when subjected to

simple flows. In this subsection, we provide steady-state (SS) estimates for the kinematical and stress

tensors in the particle phase. More detail on derivation of these estimates are available in Section

4.4. For definiteness, we note that all variables in this section correspond to their associated values

in a steady state. Also, in this subsection, the components of all tensorial variables are refereed to

the principal directions of the ellipsoidal particles in its steady state, given by the triad {n1,n2,n3}.
In essence, the SS estimates can be determined by setting the terms involving time derivatives

equal to zero in the evolution equation for the extra stress tensor inside the particle as well as the

evolution equations for the particle shape and orientation. The resulting expressions, together with

the optimality conditions (5.36) and (5.37), will provide a set of algebraic equations to be solved

for the optimal values of η(1) and D̂eq, the six components of the extra stress tensor in the particle,

τ̄ττ (2), the two aspect ratios, ω1, ω2, and the three orientational angles defined by the particle axes,

n1, n2, and n3.

We begin with providing SS estimates for kinematical variables. Following the formulation in

Section 4.4, the evolution equations (5.50)-(5.52) together with the incompressibility constraint in
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the particle phase (tr(D̄(2)) = 0), imply that, at a steady state, the normal components of the

strain-rate tensor (relative to the particle axes) vanish,

D̄
(2)
11 = D̄

(2)
22 = D̄

(2)
33 = 0, (5.55)

and the three components of the vorticity strain-rate tensor in the particle phase read as

W̄
(2)
12 =

1 + w2
1

1− w2
1

D̄
(2)
12 , W̄

(2)
13 =

1 + w2
2

1− w2
2

D̄
(2)
13 , W̄

(2)
23 =

w2
1 + w2

2

w2
1 − w2

2

D̄
(2)
23 . (5.56)

Also, as discussed in Chapter 4 (see Section 4.4), at a steady state, the shear components of the

Finger tensor B̄(2) (relative to the particle axes) are zero,

B̄
(2)
12 = B̄

(2)
13 = B̄

(2)
23 = 0. (5.57)

and its normal components are given by

B̄
(2)
11 = (w1 w2)

−2/3
, B̄

(2)
22 = (w1)

4/3
(w2)

−2/3
, B̄

(2)
33 = (w1)

−2/3
(w2)

4/3
. (5.58)

Next, making use of (5.57) in (5.47)1, we find that, at a steady state the shear components of

the elastic stress tensor τ̄ττ
(2)
e (relative to the particle axes) are zero. In addition, we find the three

remaining (normal) components of the extra stress tensor by making use of (5.58) in the constitutive

relation (5.47)1. The final results read as

(τ̄ (2))e11 = µ dw

{
Jm (w2)

1/3
[
1− (w1 w2)

2/3
]
+ cw

}
,

(τ̄ (2))e22 = µ dw

{
Jm (w2)

1/3
[
(w1)

2 − (w1 w2)
2/3
]
+ cw

}
,

(τ̄ (2))e33 = µ dw

{
Jm (w2)

1/3
[
(w2)

2 − (w1 w2)
2/3
]
+ cw

}
,

(5.59)

where cw = (w2)
1/3
[
(w1)

2 + (w2)
2 + 1

]
− 3 (w1)

2/3 w2, and dw =
[
Jm (w1)

2/3 w2 − cw
]−1

.

Now, making use of the fact that the shear componnets of the stress tensor τ̄ττ
(2)
e are zero in (5.41)

and (5.42), the non-zero components of the particle strain-rate D̄(2) and vorticity W̄(2) at the steady

state can be written as

D̄
(2)
ij =

D̄ij

1− αPijij
, W̄

(2)
ij = W̄ij +

αRijij D̄ij

1− αPijij
, i, j = 1, 2, 3 (no sum, i 6= j), (5.60)

where α = 4 (1− c) (η(1) − η(2)) and all components are given relative to the particle axes.

Next, relations (5.55) together with the constitutive equation (5.47)2 imply that, at the steady

state, the normal components of the viscous part of extra stress tensor (relative to the particle axes)

in the KV particles must all vanish. Moreover, substituting the shear components of D̄(2) from
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(5.60)1 into (5.47)2, we find the (remaining) shear components of τ̄
(2)
v as follows

(τ̄ (2)v )ij =
2 η(2) D̄ij

1− 4 (1− c) (η(1) − η(2))Pijij
, i, j = 1, 2, 3 (i 6= j). (5.61)

Finally, the components of the total extra stress tensor in the KV particles at the steady state can

be obtained in terms of the above estimates for the viscous and elastic extra stresses in the particles

by means of relation (5.46).

At this stage, the optimal values of η(1) and D̂eq, all non-zero components of the particle stress

τ̄ττ (2), strain-rate D̄(2) and vorticity W̄(2) are written in terms of SS values of the aspect ratios, w1

and w2, and the three orientational angle defined by the particles axes, n1, n2, and n3. We obtain

a system of algebraic equations for the unknowns w1, w2,n1,n2,n3 by making use of (5.59) into

(5.41), together with the three equations obtained by substituting relations (5.60) into (5.56), and

expression (5.55).

Finally, we remark that the SS solutions for suspensions of KV particles reduce to those for

suspensions of elastic particles by setting (τ̄
(2)
e )ij = τ̄

(2)
ij and (τ̄

(2)
v )ij = 0 (i, j = 1, 2, 3) in relations

(5.59) and (5.46).

5.4 Application: Shear flow

To provide some illustrative examples for the constitutive model developed in Section 5.3, in this

section we apply the model to suspensions of initially spherical, elastic particles in a Herschel-Bulkley

(HB) fluid subjected to a uniform viscous flow for representative constitutive properties of the fluid

and particles as well as volume fraction of particles. In particular, we consider the problem of

suspensions in a simple shear flow, characterized by

L̄ = γ̇E1 ⊗E2, D̄ =
1

2
γ̇ (E1 ⊗E2 +E2 ⊗E1), W̄ =

1

2
γ̇ (E1 ⊗E2 −E2 ⊗E1), (5.62)

where the {Ei} refer to the fixed laboratory coordinates, and γ̇ ≥ 0 is the shear strain rate. For

convenience, we make use of the dimensionless parameters

G =
K γ̇n

µ
, and H =

τ0
K γ̇n

,

which serve to characterize the ratio of viscous forces in the fluid to the elastic forces in the particles,

and the ratio of the forces (exclusively) induced by the yield stress to the viscous forces induced by

the application of the strain rate in the fluid, respectively. Also, for future references, it is useful to

introduce a (dependent) nondimensional parameter, defined by

HG = HG =
τ0
µ
,

It is relevant to mention that the special case of G = 0 corresponds to the suspensions of

(spherical) rigid particles in a HB fluid. Also, the special cases of H = 0 and n = 1 correspond to the
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suspensions of elastic particles in a power-law and Bingham fluids, respectively. All representative

examples in this section are provided for the case of (purely) elastic Gent particles (i.e., η(2) = 0)

with a fixed strain-locking parameter (Jm = 50).

The initially spherical particles, when subjected to shear flow (5.62), deform into ellipsoids of

general shape characterized by the two aspect ratios w1 and w2, which, as defined in figure 5.2,

correspond to the aspect ratios of the particle in the plane of the flow (E1−E2 plane) and in the plane

perpendicular to the short in-plane axis of the particles (E1−E3 plane), respectively. The deformed

particles also rotate remaining in the E1 − E2 plane in such a way that their current orientation

may be described in terms of a single angle θ (measured positive in the counterclockwise direction

from the E1 direction). Then, the evolution equations (5.50) to (5.54) can be shown to specialize

to equations (D.1) in Appendix D.1. These equations are complemented with two more equations

(5.36) and (5.37) for unknown variables η(1) and D̂eq associated with the LCC. The resulting system

of equations, together with relations (5.41) and (5.42), can be integrated numerically for the time-

dependent solution. The components of the shape tensors P and R, required for this integration,

are not included here for brevity, but they are available from Appendix D in Avazmohammadi and

Ponte Castañeda (2014). Finally, given the current values of the particle stress τ̄ (2), aspect ratios

w1 and w2 and orientation θ of the particles, the macroscopic stress σ̄ can be derived by means of

expression (5.48), together with (5.41).

For the specific purpose of discussing the macroscopic response of the suspensions in shear flow,

we present the results for the shear component of the macroscopic Cauchy stress tensor, σ̄12, as well

as the first and second normal stress differences of the suspensions, defined by

Π1 = σ̄11 − σ̄22, Π2 = σ̄22 − σ̄33, (5.63)

where the components are relative to the fixed laboratory axes Ei.

To obtain the initial response of the suspension, we make use of the (initial) condition τ̄
(2)
∣∣
t=0+

=

0 (we use the notation t = 0+ to denote the very first instant at which the suspension flows in an

average sense under the applied flow conditions). This condition for the particle stress is due to the

fact that, at t = 0+, the elastic particles have not had the time to respond to the applied flow, and

therefore, at this instant, they behave like spherical, incompressible voids. Hence, making use of

the Hashin-Shtrikman (HS) upper bound for the effective potential W̃L of the LCC (consisting of

a viscous matrix with viscosity η(1) and random distribution of incompressible, spherical voids) in

equations (5.36) and (5.37), the unknown viscosity η(1) in the LCC is obtained as

η(1)
∣∣∣
t=0+

=

√
3 + 2 c

3

τ0

D̄eq
+

(√
3

3 + 2 c

)n−1

K D̄n−1
eq . (5.64)

where D̄eq =
√
2 D̄ · D̄ denotes the macroscopic equivalent strain-rate. We note that the above

relation is valid for a general uniform macroscopic flow D̄. Similarly, making use of the corresponding

W̃L in (5.38) together with using the above relation, we find the initial macroscopic Cauchy stress
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tensor as

σ̄σσ|t=0+ = −p̄′ I+ τ̄ττ |t=0+ , where

τ̄ττ |t=0+ =
6 (1− c)

3 + 2 c
η(1)|t=0+ D̄ =

2

D̄eq

[
(1− c) cI τ0 +

(
cI
)n+1

K D̄n
eq

]
D̄ (5.65)

where cI =
√
3/(3 + 2 c). By comparing the above relation with the corresponding relation for

the extra stress in a plain HB fluid (see relation (5.10)2), it follows that, based on the variational

method prediction, suspensions of elastic particles in a HB fluid with yield stress τ0 and consistency

cosnstant K initially behave like a HB fluid with the same power index n as that of the suspending

fluid, but with effective yield stress τ̃I0 and consistency constant K̃I
0 , given by

τ̃I0 = (1 − c) cI τ0, K̃I =
(
cI
)n+1

K. (5.66)

For the case of shear flow conditions (5.62), it follows from the general result (5.65) that the

initial shear stress component in the suspension is given by

σ̄12|t=0+ = τ̃I0 + K̃I γ̇n. (5.67)

Next, it is worthwhile to provide analytical expressions for the response of the suspension at a

large enough time, specifically when the suspension reaches a steady state. Under the shear flow

conditions (5.62), making use of (5.59) and (5.60)1 in relation (5.48), the steady-state value of the

macroscopic stress component σ̄12 is obtained as

σ̄12|SS = η(1) γ̇

(
1− c cos(2 θ)

1− 4 (1− c) η(1) P1212

)

+ c µ sin(θ) cos(θ) dw

[
Jm (w2)

1/3
(
1− w2

1

)]
. (5.68)

where all the quantities w1, w2, θ, and η
(1) are evaluated at the steady state, and the component

P1212 (relative to the particle axes) is obtained in terms of the corresponding values of w1, w2, and

η(1) (see Appendix C.4).

Before proceeding with the detailed examples, it is also useful to consider the response of the

suspensions in the limiting case of G→ 0 (under a constant strain-rate tensor D̄) which corresponds

to the suspension of rigid spherical particles. In this limit, the microstructure of the suspension does

not evolve because the rigid particles do not change shape and the particles distribution remain

spherical based on our earlier assumption in Section 5.2.2 that the shape and orientation of the

particles distribution are identical to those of the individual particles. Therefore, since there is no

microstructure evolution for the case of G → 0, the steady-state response of the suspension is the

same as the initial response of the suspension. In this case, making use of the HS lower bound for

the effective potential W̃L of the LCC (consisting of a viscous matrix with viscosity η(1) and random

distribution of rigid spherical particles) in equations (5.36) and (5.37), the unknown viscosity η(1)
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in the LCC is obtained as

η(1)
∣∣∣
G→0

= (1− c)

√
2

2 + 3 c

τ0
D̄eq

+

(
1

1− c

√
2 + 3 c

2

)n−1

K D̄n−1
eq . (5.69)

Similarly, making use of the corresponding W̃L in (5.38) together with (5.69), we find the initial

macroscopic Cauchy stress tensor as

σ̄σσ|G→0 = −p̄′ I+ τ̄ττ |G→0 , where

τ̄ττ |G→0 =
2 + 3 c

(1− c)
η(1)|G→0 D̄ =

2

D̄eq
cR
{
τ0 + [cR/(1− c)]nK D̄n

eq

}
D̄ (5.70)

where cR =
√
(2 + 3 c)/2. Again, it follows from the above form for the macroscopic stress that,

based on the variational method prediction, the suspension of the rigid particles in a Herschel-

Bulkley fluid will exhibit a HB behavior with the same power index n as that of the suspending

fluid, but with effective yield stress τ̃R0 and consistency constant K̃R, given by

τ̃R0 = cR τ0, K̃R = (1− c) [cR/(1− c)]n+1. (5.71)

It is worth mentioning that this prediction of the variational method is in agreement with earlier

results by Chateau et al. (2008) for suspensions of rigid spherical particles in a HB fluid, as well as

with the variational results reported by Ponte Castañeda (2003) for suspensions of idealized 2-D,

rigid circular particles in a Bingham fluid. For the case of shear flow conditions (5.62), it follows

from the general results (5.70) that the shear stress component in the suspension when G → 0 is

written as

σ̄12|G→0 = τ̃R0 + K̃R γ̇n. (5.72)

Finally, it is important to note that, when n ≤ 1, it can be shown that the estimates (5.72) serves

as a rigorous lower bound on the effective stress component σ̄12 for the case of suspensions of rigid

spherical particles in a H-B fluid.

The results provided in this section are organized as follows. In Sections 5.4.1 and 5.4.2, we

present the results for the suspensions of Gent particles in Bingham fluids (n = 1) and power-law

fluids (H = 0), respectively. Next, in Section 5.4.3, we will present representative results for the

suspensions of Gent particles in a general HB fluid. Also, in all three subsections, results are first

provided for time-dependent responses of the corresponding suspensions, followed by results for

steady-state (SS) behaviors of these suspension. For both groups of results, figures present results

for the average particle shape (characterized by w1 and w2) and orientation (characterized by θ),

certain components of the average extra stress tensor in the fluid phase (τ̄ (1)) and in the particle

phase (τ̄ (2)), as well as the macroscopic Cauchy stresses σ̄21, Π1 and Π2, as defined in (5.63). We

emphasize that the components of the macroscopic Cauchy stress and the average stress tensor in

the fluid are shown relative to the fixed laboratory axes Ei, while the components of the average

stress tensor in the particle are shown in the instantaneous principal axes of the particle. Finally,

we note that all stress components are appropriately normalized in the results.
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5.4.1 Bingham fluids

In this subsection, we present results for the case of suspensions of elastic (Gent) particles in a

Bingham fluid (i.e., n = 1). Figure 5.3 presents variational estimates for the time-dependent behavior

of suspensions of purely elastic (Gent) particles with G = 0.2 in a Bingham fluid under the shear

flow conditions (5.62). Results are shown for a fixed volume fraction (c = 0.2) and various values of

the non-dimensional parameter HG = τ0/µ. It is useful to note that the results are calculated at a

constant strain rate γ̇ and shear modulus µ, so that higher values of HG correspond to the Bingham

fluids with a higher yield stress τ0. The evolutions of w1, w2 and θ in figures 5.3 (a) and (b) suggest

that the particles suspended in a Bingham fluid with a higher yield stress become more elongated

and their major axis becomes more aligned with the shear direction, before they reach a steady state.

In fact, as we observe from figure 5.3(c), this is because, a higher yield stress of the Bingham fluid

results in a larger initial stress in the fluid matrix which, in turn, induces a higher level of stress in

the particles, as observed from figure 5.3(d). As a consequence, we observe from figures 5.3(f) and

(e) that the macroscopic shear stress and normal stress differences exhibit a progressive increase (in

magnitude) as the yield stress of the suspending fluid increases. In this connection, we note that

the initial values of the (normalized) macroscopic shear stress in figure 5.3(e) define the initial yield

stress of the suspension which is explicitly given in terms of τ0 and c by relation (5.66). On the

other hand, the steady-state values of the macroscopic shear stress are influenced by the evolution

of the microstructure, and they can be determined from relation (5.68) in terms SS values of w1, w2

and θ as well as the SS value of the viscosity η(1).

Next, we investigate the steady-state response of the suspensions of Gent particles in a Bing-

ham fluid under the shear flow conditions (5.62). Figure 5.4 shows variational estimates for the

steady-state behavior of the particle, as well as for the associated stress averages in the phases and

macroscopic stresses, as a function of G. The results are given for a fixed volume fraction (c = 0.2)

and several values of H . We note that higher values of H and G correspond to higher yield stresses

of the Bingham fluid and softer particles, respectively. We realize from figures 5.4(a) and (b) that, as

G increases, the Gent particles reach larger elongations, as well as closer alignments with the shear

direction at the steady state. This behavior of the particles is seen to be strongly affected by the

value of the yield stress of the suspending Bingham fluid. Generally, the rate of change in SS values

of the aspect ratios and orientation of the particles with increasing G is higher for larger values of H .

This is, once again, due to the fact that a higher yield stress τ0 of the Bingham fluid leads to larger

initial stresses in the fluid matrix and particle, as observed from figures 5.4(c) and (d), and these

stresses have a stronger effect on the SS shape and orientation of the particles when G is higher,

corresponding to softer particle. Next, figures 5.4(e) and (f) show the corresponding estimates for

the macroscopic shear and normal stress differences, respectively. The variable σ̄12/(K γ̇) in figure

5.4(e) defines the dimensionless (apparent) effective viscosity of the suspension, and its decrease

with G is more pronounced for higher values of H . Moreover, when G → 0, which corresponds to

suspensions of rigid spherical particles, the values of the (normalized) macroscopic shear stress are

in agreement with the values calculated from (5.72) for c = 0.2 and corresponding values of H .

In figure 5.5, we investigate the influence of the particle volume fractions on the steady-state
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Figure 5.3: Variational estimates for the time-dependent response of suspensions of initially spherical
Gent particles with G = 0.2 in a Bingham fluid (n = 1) for various values of HG under shear flow
conditions. The components of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system Ei

and the principal axes of the particles, respectively.
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Figure 5.4: Variational estimates for the steady-state response of suspensions of initially spherical
Gent particles with G = 0.2 in a Bingham fluid (n = 1) for various values of H under shear flow
conditions. The components of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system Ei

and the principal axes of the particles, respectively.
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Figure 5.5: Variational estimates for the steady-state response of suspensions of initially spherical
Gent particles with G = 0.2 in a Bingham fluid (n = 1) for various values of HG under shear flow
conditions. The components of τ̄ (1) and τ̄
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response of suspensions of Gent particles with G = 0.2 in a Bingham fluid with varying values of

HG under shear flow conditions. We recall that higher values of HG correspond to Bingham fluids

with higher yield stresses. As expected, we observe from figures 5.5 (a) and (b) that, for the case

of Newtonian fluids (HG = 0), the SS level of elongation and alignment of the particles with the

shear direction increases with the volume fraction of particles. However, for the case of Bingham

fluids with large enough values of HG, the SS shape and orientation of the particles are seen to be

weakly affected by the volume fraction. This can be explained by noting that at higher values of

HG = τ0/µ (corresponding to larger τ0 at a fixed µ), the suspending Bingham fluid behaves like a

very stiff material, so that the deformation in the particle is negligibly affected by increasing the

concentration of the particles. Next, figures 5.5(c) and (d) show the corresponding estimates for the

macroscopic shear and normal stress differences, respectively. In particular, we observe from figure

5.5(c) that, at low values of HG, the macroscopic shear stress is increasing with the volume fraction

of particles, but this trend is found to be reversed for higher values of HG. This is, once again, due

to the fact that, at higher values of HG, the fluid matrix behaves much stiffer than the particles, so

that the addition of more particles makes the suspension softer in the shear direction. On the other

hand, we observe from figure 5.5(d) that the (macroscopic) normal stress differences exhibit a more

pronounced increase with the volume fraction as HG increases.

5.4.2 Power-law fluids

In this subsection, we present results for the case of suspensions of elastic (Gent) particles in a power-

law fluid (i.e., H = 0). Figure 5.6 shows variational estimates for the time-dependent response of

suspensions of Gent particles with G = 0.2 in a power-law fluid under shear flow. Results are shown

for a fixed volume fraction (c = 0.2) and various values of the power-law index n. The evolutions of

w1, w2 and θ in figures 5.6 (a) and (b) show that over short times, say less than 3 s for γ̇ = 1, the

particles suspended in a power-law fluid deform and rotate rapidly and then they reach a steady state.

Interestingly, we further observe from these figures that, for the value of G = 0.2, the elastic particles

exhibit smaller deformations, as well as less alignments with the shear direction at the steady state,

as the value of the index n decreases. This is linked to the fact that a suspending power-law fluid

with a smaller value of n exhibits a greater degree of shear-thinning, inducing smaller steady-state

values of stress in the fluid and particles, as observed from figures 5.6 (c) and (d). Consistently,

we observe from figures 5.6(e) and (f) that the corresponding macroscopic shear stress as well as

and normal stress differences reach a smaller value at the steady state with decreasing n. Moreover,

we observe from figure 5.6(e) that the normalized (macroscopic) shear stress increases with the

duration of shearing, which is the characteristic of rheopectic fluids. It is also interesting to mention

that the effect of decreasing the power-index n on the macroscopic shear stress of the suspension

of elastic particle in a power-law fluid at a fixed volume fraction of the particles is (qualitatively)

very similar to the effect of increasing the volume fraction of elastic particles on the shear stress of

effective viscosity of the suspension of elastic particle in a Newtonian fluid (n = 1), which can be

observed from figure 4.5(c) in Chapter 4. This can be explained by noting that both effects cause a

shear-thinning behavior in the respective suspensions.
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Figure 5.6: Variational estimates for the time-dependent response of suspensions of initially spherical
Gent particles with G = 0.2 in a power-law fluid (H = 0) for various values of n under shear flow
conditions. The components of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system Ei

and the principal axes of the particles, respectively.
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Figure 5.7: Variational estimates for the steady-state response of suspensions of initially spherical
Gent particles with G = 0.2 in a power-law fluid (H = 0) for various values of n under shear flow
conditions. The components of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system Ei

and the principal axes of the particles, respectively.

181



Next, similar to the case of Bingham fluids discussed in the previous subsection, we investigate

the steady-state response of the suspensions of Gent particles in a power-law fluid under the shear

flow conditions (5.62). Figure 5.7 shows variational estimates for the steady-state behavior of the

particle, as well as for the macroscopic stresses, as a function of G. The results are given for a fixed

volume fraction (c = 0.2) and several values of n. Similar to the results in figures 5.4(a) and (b) for

the case of Bingham fluids, we observe from figure 5.7 (a) and (b) that, as G increases, the elastic

particles reach larger elongations, as well as closer alignments with the shear direction at the steady

state. However, this behavior of the particles is seen to be weakly affected by the value of n. Next,

figures 5.7(c) and (d) show the corresponding estimates for the macroscopic shear and normal stress

differences, respectively. We realize from figure 5.7 (c) that the suspensions of elastic particles in

power-law fluids exhibit a shear-thinning effect which is stronger for larger values of n(≤ 1). In this

connection, we note that, the shear-thinning effect observed in these suspensions (and, in general,

in suspensions of deformable particles in HB fluids with n < 1) is derived from two sources: the

shear-thinning characteristic of the fluid matrix and the deformation of the particles subjected to

shear flows. Another related observation from figure 5.7(c) is that the (normalized) macroscopic

shear stress for the case of Newtonian fluids (n = 1) becomes unity at approximately G = 0.88.

This value of G, at which the suspended elastic particles do not change the effective shear stress of

the host liquid, was first reported by Gao et al. (2011) for the case of dilute concentration of elastic

particle in Newtonian fluids, and was shown later by Avazmohammadi and Ponte Castañeda (2014)

to be fairly insensitive to the value of the volume fraction of elastic particles. However, it is evident

from figure 5.7(c), this value (denoted by GN in earlier work), is decreasing with decreasing the

value of n. Finally, we note that, when G→ 0, the values of the shear stress in figure 5.7(c) match

the corresponding values predicted by relation (5.72).

Lastly, in this subsection, figure 5.8 presents variational estimates for the SS value of the relevant

variables in suspensions of Gent particles with G = 0.2 in a power-law fluid with varying values of

n under shear flow conditions. Consistent with earlier comments in the context of figure 5.5 for

the case of Bingham fluids, we observe from figures 5.8 (a) and (b) that the elastic particles in a

power-law fluid (with values of n > 0.5) reach larger elongations and closer alignments with the

shear direction with increasing particle concentration c. However, it is interesting to observe that,

for very small values of n, the particle elongation exhibits an opposite behavior and the particle

orientation shows only a slight additional alignment with the shear direction as c increases from 0

to 0.7. As explained in the context of figure 5.6, this is due to the fact that a power-law suspending

fluid with a lower index n exhibits a stronger shear-thinning behavior, leading to smaller SS values

of stress in the fluid and particle phases, as observed from figures 5.8 (c) and (d). Consequently, we

observe from figures 5.6 (e) and (f) that the effect of the particle concentration on the corresponding

estimates for the macroscopic shear and normal stress differences becomes less significant as the

suspending fluids becomes more shear-thinning (i.e., as n decreases).
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Figure 5.8: Variational estimates for the steady-state response of suspensions of initially spherical
Gent particles in a power-law fluid (H = 0) for various values of n under shear flow conditions. The
components of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system Ei and the principal
axes of the particles, respectively.

183



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

 G=0.2
 G=0.4
 G=0.8
 G=1.5

 c=0.2,  H=1,  n=0.5

γ̇ t

w1

w2

w
1
,
w

2

0 5 10 15 20 25 30

5

10

15

20

25

30

35

40

45

 

 

 G=0.2
 G=0.4
 G=0.8
 G=1.5

 c=0.2,  H=1,  n=0.5

γ̇ t

θ
(d
eg
.)

(a) (b)

0 5 10 15 20 25 30

−0.5

0

0.5

1

1.5

2

 

 

 G=0.2
 G=0.4
 G=0.8
 G=1.5

 c=0.2,  H=1,  n=0.5

γ̇ t

τ̄τ τ
(1

)
/
(K

γ̇
n
)

τ̄
(1)
11

τ̄
(1)
22

τ̄
(1)
12

0 5 10 15 20 25 30

−15

−10

−5

0

5

10

15

20

25

30

35

 

 

 G=0.2
 G=0.4
 G=0.8
 G=1.5

 c=0.2,  H=1,  n=0.5

γ̇ t

τ̄τ τ
(2

)
/
(K

γ̇
n
)

τ̄
(2)
11 − τ̄

(2)
22

(τ̄
(2)
22 − τ̄

(2)
33 )× 5

(c) (d)

0 5 10 15 20 25 30
1.2

1.4

1.6

1.8

2

2.2

 

 

 G=0.2
 G=0.4
 G=0.8
 G=1.5

 c=0.2,  H=1,  n=0.5

γ̇ t

σ̄
1
2
/
(K

γ̇
n
)

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6

7

8

 

 

 G=0.2
 G=0.4
 G=0.8
 G=1.5

 c=0.2,  H=1,  n=0.5

γ̇ t

Π1

Π2

Π
1
/
(K

γ̇
n
),
Π

2
/
(K

γ̇
n
)

(e) (f)

Figure 5.9: Variational estimates for the time-dependent response of suspensions of initially spherical
Gent particles with c = 0.2 and various values of G in a Herschel-Bulkley fluid (H = 1 and n = 0.5)
under shear flow conditions. Higher values of G correspond to softer particles. The components
of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system Ei and the principal axes of the
particles, respectively. 184



5.4.3 Herschel-Bulkley fluids

Finally, in this subsection, we present results for the case of suspensions of elastic (Gent) particles

in a general Herschel-Bulkley fluid. Figure 5.9 presents variational estimates for the time-dependent

behavior of suspensions of purely elastic (Gent) particles in a Herschel-Bulkley fluid (H = 1 and

n = 0.5) subjected to the shear flow conditions (5.62). Results are shown for a fixed volume fraction

(c = 0.2) and varying values of G = K γ̇n/µ. The evolutions of w1, w2 and θ in figures 5.9 (a) and

(b) indicate that, as G increases, the elastic particles exhibit larger elongations, as well as closer

alignment with the shear direction. In addition, we realize from these figures that, at a constant

strain rate γ̇, it would generally take longer for the particles with a higher G (corresponding to softer

particles) to reach a steady state. In this connection, we, however, observe from these figures that

particle rotation reach a steady state progressively later than the particle elongation in the plane

of shear (characterized by the aspect ratio w1) with increasing value of G. Next, we observe from

figure 5.9 (c) and (d) that the shear stress component τ̄
(1)
12 in the fluid shows a monotonic reduction

in magnitude as G increases, while the normal component τ̄
(2)
11 − τ̄

(2)
22 in particle exhibits a rather

opposite trend with increasing the value of G. This can be explained by noting that, as G = K γ̇n/µ

increases (and if we think of this as a decrease in µ), the softer particles serve to accommodate

more part of the total macroscopic deformation applied to the suspension (by exhibiting larger

elongations and closer alignment with the shear direction), so that the smaller and larger stresses

are produced in the fluid matrix and the particle, respectively. Moreover, figures 5.9(e) and (f) show

the corresponding estimates for the macroscopic shear and normal stress differences, respectively.

An interesting observation from figure 5.9(e) is presence of an “overshoot”, followed by a decay in

the macroscopic shear component, as similarly reported by Gao et al. (2011) and Avazmohammadi

and Ponte Castañeda (2014) for suspensions of elastic particles in Newtonian fluids. As explained

in these works, this overshoot is linked to the above-mentioned fact that the time interval between

the arrest of the particles elongations in the plane of shear and the corresponding arrest of the

particles rotations becomes progressively larger as G increases. Finally, an important conclusion

from these figures (and similarly from figures 5.3 and 5.6) is that the suspension of elastic particles

in a Herschel-Bulkley fluid exhibits a time-dependent behavior upon application of a constant strain

rate, although there is no time-dependency present at the level of the individual phases. In particular,

the time-dependent behavior of the suspension qualitatively resemble the behavior of a Maxwellian

viscoelastic fluid, where the stress, induced by application of a constant shear strain rate, relaxes

over time.

For completeness, it is of interest to examine the influence of the yield stress of the suspending

fluid on the SS behavior of the suspensions of elastic particles in a HB fluid. Figure 5.10 presents

variational estimates for the steady-state response of suspensions of elastic (Gent) particles with

c = 0.2 in a HB fluid under the shear flow conditions (5.62). Results are shown for various values of

G, as a function of the non-dimensional parameter H = τ0/(K γ̇n). We observe from figures 5.10 (a)

and (b) that the elastic particles in a HB fluid exhibit larger stretches as well as closer alignments with

the shear direction with increasing values of H , which is consistent with the corresponding results

presented in figures 5.3 and 5.4 for suspensions of elastic particles in a Bingham fluid. This trend,
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Figure 5.10: Variational estimates for the steady-state response of suspensions of initially spherical
Gent particles with c = 0.2 and various values of G in a Herschel-Bulkley fluid (n = 0.5) under shear
flow conditions. The components of τ̄ (1) and τ̄

(2) are given relative to the fixed coordinate system
Ei and the principal axes of the particles, respectively.
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Figure 5.11: Comparisons of the effective yield stress for suspensions of rigid particles in yield stress
fluids (τ̃R0 /τ0) with experimental data in Chateau et al. (2008) (originally from Mahaut et al. (2008)),
as a function of the particle volume fraction. The solid diamond and open square symbols correspond
to suspensions of polystyrene and glass beads in emulsion and in bentonite, respectively, while the
open circle symbols correspond to suspensions of glass beads in carbopol.

however, is seen to be less pronounced at higher values of G corresponding to softer particles. Next,

we observe from figures 5.10 (c) and (d) that increasing H leads to an increase in the stress level in

both fluid and particle phases for all values of G (which is consistent with the corresponding results in

figures 5.4 for the case of Bingham fluids), while increasing G leads to a reduction and increase in the

stress level in the fluid and particle phases, respectively (again, in agreement with the corresponding

results in figures 5.10.) Finally, figures 5.10(e) and (f) show the corresponding estimates for the

macroscopic shear and normal stress differences, respectively. An interesting observation from figures

5.10(e) is that the macroscopic shear stress exhibits rather a linear increase with the parameter H at

high enough values of G. This behavior of the suspension is qualitatively similar to the corresponding

behavior in the suspensions of rigid spherical particles, described by relation (5.72). This is because,

at high enough values of G, the SS particle shape and orientation shows only a slight variation with

H , so that the SS behavior of the suspension can be approximated by that of suspensions of rigid

ellipsoidal particles which are closely aligned with the shear direction.

Finally, in figure 5.11, we compare predictions of our model with experimental data available in

the literature for suspensions of particles in yield stress fluids. This comparison is limited to the case

of rigid particles, due to the lack of experimental data and numerical simulations on the rheology

of suspension of deformable particles in yield stress fluids. In particular, figure 5.11 shows the

comparison for the (dimensionless) effective yield stress of the suspensions of spherical rigid particles

in yield stress fluids, τ̃R0 /τ0 (as given by (5.70)1), with the experimental date available from Chateau

et al. (2008) (originally from Mahaut et al. (2008)) for the same quantity of the suspensions of

very stiff particles (polystyrene and glass beads) in yield stress fluids (including emulsion, bentonite

and carbopol), as a function of c. We observe quite good agreement between our results and the

experimental data up to moderate levels of particle concentration (c < 0.25). However, it should be

noted that our model is not expected to provide accurate predictions for the case of rigid particles,

since it has been assumed (for simplicity) that the shape of (the angular dependence of) the two-
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point correlation function is identical to the evolution of the particle shape. Since for rigid particles,

the particle shape cannot change, this would mean that the two-point correlations function remains

isotropic, which is not expected to be the case for the non-colloidal suspensions considered in this

work. On the other hand, for deformable particles, the change in shape of the particles is expected

to dominate the higher-order effect in c of the changes in the particle distribution, and the model

is expected to be more accurate then. Finally, it is relevant to mention that Chateau et al. (2008)

made similar comparisons of their variational estimates for τ̃R0 /τ0 with the experimental data for a

larger range of c, and they were able to achieve a good agreement. This is because they make use of

the empirical model of Krieger and Dougherty (1959) for the effective viscosity of the corresponding

LCC which has been successfully fitted to the experimental data for the case of highly concentration

suspensions. We, on the other hand, made use of the HS estimate for the effective behavior of the

LCC which is known to be a lower bound within the class of isotropic microstructures with two-point

isotropic distributions.

5.5 Conclusions

In this chapter, we have developed a homogenization-basedmodel to estimate the effective rheological

behavior of non-colloidal suspensions of initially spherical, soft particles in yield stress fluids under

Stokes flow conditions. More specifically, we considered suspensions of Kelvin-Voigt solid particles

in a Herschel-Bulkley fluid which undergo time-dependent, finite deformations when subjected to

uniform flows.

Our model can be summarized in four steps: (I) we formulated the problem of finding the effective

(instantaneous) response of the suspension in terms of finding the effective potential W̃ (D̄) of the

suspension, as described by relations (5.25) and (5.26), (II) we then made use of the variational

principle of Ponte Castañeda (1991) to approximate the potential W̃ (D̄) of the actual suspension in

terms of the effective potential W̃L of a “linear comparison composite” (LCC) consisting of the same

particles distributed randomly in a (factitious) Newtonian fluid with a suitably-chosen viscosity η(1),

identified with the optimality conditions (5.36) and (5.37), (III) we recalled the relevant estimates

for the LCC from Chapter 4, including an estimate for W̃L, as given by (5.40), (IV) we combined

the solution for the instantaneous behavior of the suspension with the evolution equation for the

elastic stress in the particles, as given by (5.54), and for the average particle shape and orientation,

as given by (5.50) and (5.51), respectively, to complete the model for the time-dependent response

of the suspensions.

We have also used our model to explore in more detail the rheology and particle dynamics in

suspensions of elastic Gent particle is HB fluids under shear flow conditions, as described by (5.62).

In the context of this example, we investigated the influence of constitutive properties of the HB

fluids and the particles, and the particle volume fraction on the dynamics of the suspended particles,

as well as on the macroscopic rheological behavior of the suspension. A general conclusion from the

results is that the suspensions exhibit a time-dependent behavior upon application of a constant

strain rate, although there is no time-dependency present at the level of the individual phases. Also,

we found that the time-dependent behavior of the suspensions qualitatively resemble the behavior
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of a Maxwellian viscoelastic fluid, where the stress, induced by application of a constant strain rate,

relaxes over time. A similar finding has been reported in the context of suspensions of slightly

deformable particles in a Newtonian fluid by Goddard (1977). In particular, for the case of power-

law fluids (i.e., when τ0 = 0) with n ≤ 1, our results indicate that the macroscopic time-dependent

shear stress exhibits a rheopectic behavior, where the stress increases with the duration of shearing.

The results confirm that steady-state solutions are available for suspensions of Gent particles

under shear flow conditions. In particular, the results show that the particles suspended in a HB

fluid with a higher yield stress (τ0) exhibit larger elongations, as well as closer alignments with the

shear direction at a steady state, and this behavior is more pronounced for the case of stiffer particles.

On the other hand, for the case of power-law fluids, we found that, when the elastic particle are

not too soft, they exhibit smaller deformations, as well as less alignments with the shear direction

at the steady state, as the value of the index n decreases. Also, for the case of Bingham fluids,

we found that, at low values of τ0, SS values of the macroscopic shear stress is increasing with the

volume fraction of particles, while the opposite is true for higher values of τ0. Furthermore, it has

been found that the macroscopic shear stress exhibits quite a linear increase with the yield stress

τ0 for the case of very soft particle. This behavior of the suspension is qualitatively similar to the

corresponding behavior in the suspensions of rigid spherical particles, described by relation (5.72).

Finally, we compared the prediction of our model with the experimental data on the effective

yield stress of the suspensions of particles in yield stress fluids which were only available for the case

of rigid particles. Despite the fact that our model is not expected to provide accurate estimates

for the case of rigid particles, we found relatively good agreement between the model’s prediction

and the experimental data up to moderate concentrations of particles (c < 0.25). Nevertheless, we

emphasize that the comparisons for the case of rigid particles can not reflect the full potential of

our model in describing the rheological features of complex suspensions, and we look forward to

compare the predictions of our model for the case of deformable particles when the corresponding

experimental data or numerical simulations become available.
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Elasto-Viscoplastic Composites
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Chapter 6

Effective behavior of

elasto-viscoplastic

particle-reinforced composites
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In this chapter, we propose an original model to study the effective behavior of particle rein-

forced composites consisting of an elasto-viscoplastic matrix and a random distribution of linear

viscoelastic particles, subjected to small deformations. The proposed model makes use of the vari-

ational principal of Ponte Castañeda (1991) to approximate the effective behavior of the nonlinear

composite by that of a linear comparison composite (LCC) consisting of a linear viscoelastic matrix

with a suitably-chosen viscosity constant and the same particle phase as in the actual nonlinear com-

posite. Then, making the approximation that the elastic strains in the LCC are uniform-per-phase,

the homogenization problem for finding the effective behavior of the LCC becomes mathematically

equivalent to the corresponding problem for “thermoelastic” composites with constant-per-phase

thermal strains. This problem then can be solved by using the Ponte Castañeda and Willis homog-

enization theory (Ponte Castañeda and Willis, 1995) together with an explicit time-discretization

scheme to integrate the evolution equations describing the constitutive behavior of the phases. To

implement our model, we restrict our attention to the special case of incompressible composites

consisting of an elastic-ideally plastic matrix and random distribution of aligned, elastic ellipsoidal

particles. In this case, we propose an empirical modification of the model to improve its estimate

for the purely elastic regime of the composite behavior. This modification remains consistent with

the estimate of the model for the elasto-plastic regime of the composite behavior. In particular, we

make use of our model to study the effective behavior of the composite with spheroidal particles

subjected to isochoric loading. We investigate the effect of particle shape and volume fraction as

well as the phases elastic properties on the effective behavior and field statistics in the composites

6.1 Introduction

Many engineering materials exhibit an elasto-viscoplastic behavior when subjected to mechanical

loadings. Among them, the class of particle-reinforced composite materials is particularly important

to study because of their numerous technological applications as well as for an understanding of the

mechanics of the coupling between elastic and dissipative effects in the composite under loadings.

Examples of these materials include metal-matrix and polymer-matrix composites. Our goal in this

part of the thesis is to study the overall response of the particle-reinforced composite materials when

the constituent phases exhibit an elasto-viscoplastic (EVP) behavior.

The problem of predicting the effective behavior of the EVP composites has often been addressed

in the literature through numerical simulations (see Finlaysh and Shek, 1998; Gonzalez et al., 2004;

Lee et al., 2011; Reina-Romo and Sanz-Herrera, 2011, to cite only a few). However, in the present

study, our objective is to provide theoretical predictions for these composites. With this goal in mind,

homogenization methods developed in the context of nonlinear heterogeneous media appear to be an

promising approach to solve this problem. More specifically, these methods follow from variational

principles expressing the overall response of a given nonlinear composite in terms of the behavior of

an optimally chosen “linear comparison composite” (LCC). In these methods, the LCC is assumed

to have the same microstructure as the nonlinear composite, and the properties of the constituent

phases in the LCC are determined by appropriate linearization of the corresponding phases in the

nonlinear composite. In particular, Ponte Castañeda (1991) introduced a variational method in
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which the material properties in the LCC are identified by “secant” moduli of the nonlinear phases,

evaluated at the second moments of the local fields over the phases. In the past 20 years, applications

of this method have been mainly explored for viscoplastic or rigid-plastic composites where no

elastic deformation is present in the constituent phases (Ponte Castañeda, 1991; Zaidman and Ponte

Castañeda, 1996, among others). On the other hand, for EVP composites, similar methods which

rely on the notion of LCCs have not been developed until more recently. More specifically, these

methods follow from an “incremental variation principal” (IVP) which aims at recasting the elastic

and dissipative potentials of the constituents phases into equivalent condensed incremental potentials

(Lahellec and Suquet, 2007). This technique allows to extend the variational homogenization schemes

originally developed for the case of viscoplastic composites to address the effective response in

the EVP composites. In particular, Lahellec and Suquet (2007a) derived an incremental variation

principle which is based on implicit time-discretization of the constitutive differential equations of

the phases and the variational procedure of Ponte Castañeda (1992). In a similar development,

Brassart et al. (2012) made use of the same incremental potential of Lahellec and Suquet (2007a)

and proposed a different way of optimizing the properties of the associated LCC. More recently,

Lahellec and Suquet (2013) made use of the IVP method to estimate the effective response, as well

as the statistics of the stress fields in EVP composites with isotropic and kinematic hardening laws

under radial and non-radial loadings.

The IVP method of Lahellec and Suquet (2007a) offers a general and accurate approach to deter-

mine the effective behavior of the EVP composites within the limit of relatively small deformations.

However, the implementation of this method requires the solution of coupled nonlinear equations

which often need certain regularizations to avoid the numerical problems, even for the case of an

isotropic microstructure. In this work, we propose a new approach to find the effective behavior

of the EVP composites which also makes use of the LCC technique. The central idea behind this

approach, which is very similar to the technique used in Chapter 4, is to recast the constitutive

equations of the constituent phases of the EVP composites in the form which can be described by

a single modified dissipation potential depending on two variables: stress tensor and elastic strain

which is assumed to be known at the present instant. In this way, we can simply use the principle of

the minimum potential energy to formulate the homogenization problem for the effective behavior

of the EVP composites. Then, we make use of the variational principle of Ponte Castañeda (1991)

to approximate the effective behavior of the composite (with single dissipation potentials) in terms

of that of a LCC. At this point, making the assumption of uniform-per-phase elastic strains, the

local behavior of this LCC will be mathematically analogous to that of linear “thermoelastic” com-

posites with uniform-per-phase thermal strains, and we make use of the Ponte Castañeda and Willis

homogenization theory (Ponte Castañeda and Willis, 1995) to estimate the effective behavior of the

LCC. This approach might not be as accurate as the IVP method, but, it is very easy to implement

even for a general ellipsoidal (particulate) microstructure.

The structure of this chapter is as follows. Section 6.2 addresses the constitutive behavior of

the matrix and particles considered in this work. We consider composites consisting of an elasto-

viscoplastic (EVP) matrix and a random distribution of Maxwellian viscoelastic particles. In this

section, we also describe the homogenization problem for this composite. Much like our homoge-
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nization technique in Chapters 4 and 5, the central idea behind the homogenization approach in this

chapter is to recast the constitutive equations of the constituent phases of the elasto-viscoplastic

composites in the form which can be described by a single modified dissipation potential depending

on two variables: stress tensor and elastic strain which is assumed to be known at the present in-

stant. In this way, we can simply use the principle of the minimum potential energy to formulate

the homogenization problem for the effective behavior of the EVP composites. In section 6.3, we lay

out our strategy to solve the homogenization problem. We first replace the homogenization problem

for finding the effective incremental response of the composites by the corresponding problem for a

suitably-chosen LCC, consisting of a Maxwellian matrix reinforced by the same particles. Next, we

make the approximation that elastic strains in the composite are uniform-per-phase , which simplifies

the homogenization problem for the LCC to that for linear thermoelastic composites with uniform

thermal strains. Lastly, in this section, we propose an empirical modification of the model for the

purely elastic response of the composites for the case of elastic particles. In section 6.4, we apply

our model to incompressible composites consisting of an elastic-ideally plastic matrix reinforced by

a random distribution of aligned, elastic spheroidal particles subjected to axisymmetric, transverse

and longitudinal modes of shear loading-unloading-loading cycles. Finally, some conclusions are

drawn in section 6.5.

6.2 Problem formulation

In this work, we consider particle-reinforced composites consisting of an elasto-viscoplastic matrix

and a random distribution of aligned, ellipsoidal linear viscoelastic particles. Both matrix and fibers

phases are assumed to be isotropic. For definiteness, let Ω be a representative volume element

(RVE) of this composite, and let Ω(1) and Ω(2) denote the complementary regions in Ω occupied by

the matrix and the particles, respectively. Following the hypothesis of separation of length scales,

we assume that the characteristic length-scale of the particles is much smaller than the size of the

RVE as well as the scale of variation of the applied loading conditions. Also, it is assumed that

the microstructure in the RVE is statistically uniform, and the characteristic functions χ(r)(x),

r = 1, 2 are used to describe the microstructure such that they are equal to one if the position

vector x is in phase r (i.e. x ∈ Ω(r) and zero otherwise. Moreover, the symbols 〈·〉 and 〈·〉(r)

denote volume averages over the RVE (Ω) and over phase r (Ω(r)), respectively, so that the scalars

c(r) =
〈
χ(r)

〉
serve to denote the volume fractions of the given phases. Finally, throughout this work,

we denote the quantities associated with the matrix and particle phases by the superscripts (1) and

(2), respectively.

In the limit of infinitesimal strains, the total strain tensor ǫǫǫ in the matrix phase is decomposed

as

ǫǫǫ(1) = ǫǫǫ(1)e + ǫǫǫ(1)vp , (6.1)

where ǫǫǫ
(1)
e and ǫǫǫ

(1)
vp are the elastic and viscoplastic parts of the strain, respectively. The elasto-

viscoplastic behavior of the matrix is then described by the following rate-type relations (Lemaitre
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and Chaboche, 1994)

ǫ̇ǫǫ(1) = ǫ̇ǫǫ(1)e + ǫ̇ǫǫ(1)vp , ǫ̇ǫǫ(1)e = S(1) σ̇σσ, ǫ̇ǫǫ(1)vp =
∂ψ(σ)

∂σ
, ψ(σ) =

ǫ̇ η0
n+ 1

(
[σeq − η0]

+

σ0

)n+1

(6.2)

where an overdot denotes derivation with respect to time, σ is the Cauchy stress tensor, ψ(σ) is a

stress potential, and σeq =
√
(3/2)σσσd · σσσd is the von Mises equivalent stress with σσσd denoting the

deviatoric part of the stress tensor σσσ. Also, S(1) is the elastic compliance tensor of the matrix, ǫ̇0 is

a reference strain-rate, n is a strain-rate sensitivity constant, η0 is the flow stress of the matrix, and

σ0 is the coefficient of the plastic resistance. Moreover, [x]+ denotes the positive part of x such that

[x]+ = x if x > 0 and zero otherwise.

The particles are linear Maxwellian viscoelastic solids whose constitutive behavior is characterized

by the relation

ǫ̇ǫǫ(2) = ǫ̇ǫǫ(2)e +M(2) σσσ, ǫ̇ǫǫ(2)e = S(2) σ̇σσ, (6.3)

where ǫ̇ǫǫ(2)e is the elastic strain-rate in the particle phase, and S(2) and M(2) are the elastic and viscous

compliance tensors of the particle phase, respectively.

Given the microstructure of the composite and the local constitutive properties (6.2) and (6.3),

the effective behavior of the composite can be described by the relation between the average strain-

rate tensor ˙̄ǫǫǫ = 〈ǫ̇ǫǫ〉 and the average stress tensor σ̄σσ = 〈σσσ〉 over the RVE Ω. The problem of finding this

relation can be conveniently stated in a variational framework if we can formulated the constitutive

relations (6.2) and (6.3) in terms of appropriate free-energy density functions. To this end, we

regard the elastic strain as an internal variable in each phase, and since we will solve the present

homogenization problem in an incremental fashion, we assume that the elastic strain is known at

the beginning of the current instant. Therefore, we introduce the modified free-energy functions

u(r)(σ) which are written as

u(1)(σ) = ψ(σσσ) + γγγ(1) · σ, and u(2)(σ) =
1

2
σσσ ·M(2)σσσ + γγγ(2) · σσσ, (6.4)

such that the local constitutive relation of the phases can be written as

ǫ̇ǫǫ(1) =
∂u(1)

∂σ
=
∂ψ(σ)

∂σ
+ γγγ(1), and ǫ̇ǫǫ(2) =

∂u(2)

∂σ
= M(2)σσσ + γγγ(2), (6.5)

for the matrix and particle phases, respectively. In the above relations, γγγ(r) is the elastic strain(-rate)

tensor in phase r which is assumed to be known at the present instant, and is given by

γγγ(r) = ǫ̇ǫǫ(r)e = S(r) σ̇σσ, r = 1, 2. (6.6)

Next, the local relation between the strain-rate tensor ǫ̇ǫǫ and the stress tensor σ in the composite

is given by

ǫ̇ǫǫ =
∂u

∂σ
(x,σ), u(x,σσσ) = χ(1)(x)u(1)(σσσ) + χ(2)(x)u(2)(σσσ), (6.7)

where u(x,σσσ) is the local stress potential.
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Now, making use of the principle of minimum complementary energy, the relation between the

average strain-rate and stress tensor is given by

˙̄ǫǫǫ =
∂Ũ(σ̄)

∂σ̄
, (6.8)

where Ũ(σ̄) denotes the effective stress-energy potential for the composite, defined as

Ũ(σ̄) = min
σ∈S(σ̄)

〈u(x,σ)〉 = min
σ∈S(σ̄)

2∑

r=1

c(r) 〈u(σ)〉(r) , (6.9)

In the above definition, S(σ̄) denotes the set of admissible stress field, given by

S(σ̄) = {σ, div(σ) = 0 in V, σ · n = σ̄ · n on ∂V } , (6.10)

Thus, the problem of estimating the effective behavior of the nonlinear composite is equivalent

to that of estimating the function Ũ(σ̄) in relation (6.9). It should be remarked that relations

(6.8) and (6.9) provide a constitutive description for the “incremental” macroscopic behavior of the

composite, and the time-dependent response of the composite can be obtained by making use of a

time-discretization procedure, starting from an appropriate initial state of the composite. In general,

computing the function Ũ(σ̄) exactly is an extremely difficult task. In the next section, we recall

the variational principle of Ponte Castañeda (1991) to estimate the function Ũ(σ̄).

6.3 Variational estimates

In this section, we provide an estimate for the effective potential Ũ(σ̄) by making use of the vari-

ational principle of Ponte Castañeda (1991). The central idea of this principle is to express the

effective potential of the nonlinear composite in terms of the effective behavior of a suitably chosen

“linear comparison composite” (LCC) which has the same microstructure (i.e. same characteristic

functions χ(r)(x)) as the actual (nonlinear) composite material. For the class of nonlinear compos-

ites of interest, we construct a LCC consisting of a Maxwellian matrix and the same particle phases

as those in the actual nonlinear composite. In particular, we define a comparison composite with

the local modified stress potential

uL(x,σσσ; η
(1)) = χ(1)(x)u

(1)
L (σσσ; η(1)) + χ(2)(x)u

(2)
L (σσσ), (6.11)

where u
(1)
L (σσσ; η(1)) is the stress potential of the matrix phase in the LCC with the form similar to

(6.4)2, which can be written as

u
(1)
L (σ; η(1)) =

1

2
σσσ ·M(1)σσσ + γγγ(1) · σ, (6.12)
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In the above expressions, M(1) denotes the (isotropic) viscous compliance tensor of the matrix phase

in the LCC which takes the form

M(1) =
1

3 κ
J+

1

2 η(1)
K (6.13)

where J and K denote the standard fourth-order, isotropic, hydrostatic and shear projection tensors,

η(1) is the (as yet unknown) viscosity of the matrix, and κ is the bulk viscosity of the matrix which

is introduced to enable us to take the incompressibility in the matrix phase (i.e., κ → ∞.) Also,

γγγ(1) is the elastic strain-rate tensor given by relation (6.5)1. Moreover, as already mentioned, we

choose the particle phases in the LCC to be equal to those in the nonlinear composite, so that

u(2)(σ) = u
(2)
L (σ), as defined via relations (6.4)2 and (6.6) (for r = 2). We also emphasize that the

volume fraction, shape and orientation of particles in the LCC are assumed to be the same as those

in the nonlinear composite. Correspondingly, the local constitutive relations for the linear phases in

the LCC are written as

ǫ̇ǫǫ(r) =
∂u

(r)
L

∂σ
= M(r)σσσ + γγγ(r), r = 1, 2. (6.14)

Following Ponte Castañeda’s variational principle Ponte Castañeda (1991), the nonlinear stress

potential u(1) in the actual composite can then be approximated as

u(1)(σ) = sup
η(1)>0

{
u
(1)
L (σ; η(1))− V (1)(η(1))

}
, (6.15)

where the “error” function V (1) is defined by

V (1)(η(1)) = sup
σeq

{
1

6 η(1)
(σeq)

2 − ψ(σσσ)

}
(6.16)

Now, making use of approximation (6.15) in the definition (6.9) for the effective stress potential,

and interchanging the order of suprema over σσσ and η(1), we find the following estimate for the

effective potential Ũ(σ̄σσ) (Ponte Castañeda, 1991)

Ũ(σ̄σσ) ≥ sup
η(1)>0

{
ŨL(σ̄σσ; η

(1))− c(1) V (1)(η(1))
}

(6.17)

where ŨL denotes the effective (modified) stress potential of the LCC. Similar to definition (6.8),

making use of principle of minimum complementary energy, this potential is defined as

ŨL(σ̄σσ; η
(1)) = inf

σ̄σσ∈S(σ̄σσ)

〈
uL(x,σσσ; η

(1))
〉
. (6.18)

The optimality conditions in (6.16) and (6.17) generate a system of algebraic nonlinear equations

for the optimal values of the variables η(1) and σeq . Making use of the power-law form for the

potential ψ(σσσ) from (6.2), the optimality condition in (6.16), known as the secant condition, leads

to the following relation

ǫ̇

(
[σ̂eq − η0]

+

σ0

)n

=
1

3 η(1)
σ̂eq , (6.19)
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where σ̂eq denotes the optimal value of σeq in (6.16). Also, the optimality condition in (6.17) reduces

to

(η(1))2 ∂(η(1))ŨL(σ̄σσ) +
c(1)

6
(σ̂(1)

eq )2 = 0. (6.20)

In general, we need to solve the coupled algebraic equations (6.19) and (6.20) to find the unknowns

η(1) and σ̂eq. Once these two unknowns are obtained, the effective stress potential Ũ(σ̄σσ) can be

calculated from (6.17). In this study, we are particularly interested in the special case of elastic-

perfectly plastic behavior for the matrix phase. In the constitutive relations (6.2) for the matrix

phase, the elastic-perfectly plastic behavior is obtained by setting η0 = 0 and taking the limit

n → ∞. In this case, the matrix would exhibit an elastic-perfectly plastic behavior with the yield

stress σ0. For this special case equation (6.19) reduces to σ̂eq = σ0 which, in turn, can be used in

(6.20) to give the following equation for finding η(1)

(η(1))2 ∂(η(1))ŨL(σ̄σσ) +
c(1)

6
σ2
0 = 0. (6.21)

In conclusion, noting that the estimate (6.17) is stationary with respect to the variable η(1), it

follows from (6.8) and (6.17) that the variational estimate for the effective behavior of the nonlinear

composite can be obtained as

˙̄ǫǫǫ =
∂Ũ

∂σ̄
=
∂ŨL

∂σ̄
, (6.22)

where ŨL(σ̄) is calculated at the optimized value of η(1), and the second equality (in the second

relation) is used instead of the inequality (in (6.17)), in the sense of an approximation. Also, it can

be shown that (Idiart and Ponte Castañeda, 2007) the first and second moments of the stress and

strain fields in each phase in the LCC are equal with the same quantities in the actual nonlinear

composite. The variational estimate (6.22) requires the knowledge on the effective (modified) stress

potential ŨL of the comparison composite, defined in (6.18). In the next subsection, we provide the

algorithm based on an incremental formulation to obtain the potential ŨL(σ̄σσ) and the corresponding

macroscopic constitutive relation of the LCC.

6.3.1 Estimates for the linear comparison composite

In this section, our objective is to provide an estimate for the effective stress potential of the LCC,

ŨL(σ̄σσ). As mentioned earlier, the LCC consists of linear Maxwellian viscolelastic phases characterized

by the local constitutive relations (6.14) and (6.6). Then, assuming that the elastic strain-rate tensors

γγγ(r) are known at the given instant, we formulated these relations in terms of the (modified) stress

potentials (6.4)2 and (6.12) in the local form (6.11). In general, the elastic strain rates tensors γγγ(r)

are non-uniform both in the matrix and particle phases, and we would need to use an incremental

variational approach, such as the one developed by Lahellec and Suquet (2007), to find an estimate for

ŨL(σ̄σσ). However, here, for simplicity and in order to develop a numerically feasible model, we make

the approximation that the tensors γγγ(r) are uniform-per-phase. In this case, the homogenization

problem defined by equation (6.18) for the response of the viscoelastic LCC composite characterized

by (6.11), (6.4)2 and (6.12) is mathematically equivalent to the corresponding problem for a linear
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thermoelastic composite with elastic moduli M(r) and (uniform) thermal strains γγγ(r) (provided that

the viscosity moduli and strain rate field are identified with the elastic moduli and strain field,

respectively). In this way, the effective stress potential of a the LCC can be written as

ŨL(σ̄σσ) =
1

2
σ̄ · M̃ σ̄ + γ̃γγ · σ̄ + g̃ (6.23)

where M̃ and γ̃γγ are the effective compliance and thermal strain tensors, respectively, and g̃ is the

effective specific heat. The effective stress-strain-rate relation of the LCC is then given by

˙̄ǫǫǫ =
∂ŨL

∂σ̄
= M̃ σ̄ + γ̃γγ. (6.24)

Note that, following relation (6.22), the above relation also holds as the macroscopic constitutive

relation for the actual nonlinear composite when calculated at the optimal value of η(1).

Next, it follows from linearity of the problem that the average of the strain rate over phase r,

˙̄ǫǫǫ(r) = 〈ǫ̇ǫǫ〉(r) can be written in terms of strain-rate concentration tensors, so that

˙̄ǫ(r) = A(r) ˙̄ǫ+ a(r), r = 1, 2 (6.25)

where A(r) is a fourth-order tensor that exhibits minor symmetry, but not necessarily major sym-

metry, and a(r) is a symmetric second-order tensor. These tensors are subject to the constrains

2∑

r=1

c(r)A(r) = I,

2∑

r=1

c(r) a(r) = 0. (6.26)

The effective properties γ̃γγ and g̃ as well as concentration tensors A(r) and a(r) can be explicitly

expressed in terms of the phase properties M(r), and γγγ(r), and the effective compliance tensor M̃.

To maintain continuity, these expressions are provided in Appendix E.1.

In addition, the phase averages strain-rate ˙̄ǫǫǫ(1) can also be obtained by averaging the local (linear)

constitutive relations (6.14) as follows

˙̄ǫǫǫ(r) = M(r) σ̄σσ(r) + γγγ(r), r = 1, 2. (6.27)

where σ̄σσ(1) and σ̄σσ(2) are the average of the stress in the matrix and particle phases, respectively.

In this work, we make use of the generalized estimate of the Willis type (Willis, 1977, 1981)

for the effective compliance tensor M̃ of the LCC. In particular, for the composite materials with

“particulate” randommicrostructures (which is precisely the case in this work), Ponte Castañeda and

Willis (1995) provided Willis-type estimates for the composites consisting of random distributions

of aligned ellipsoidal particles in a given matrix with prescribed two-point correlation functions.

Although these estimates are provided for a more general case, here, for simplicity, we adopt a

specialized version of them by assuming that the shape and orientation of the distribution functions

are identical to those of the individual particles. Based on this assumption, for two-phase composites,
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the Willis-type estimate for M̃ is given by

M̃ = M(1) + c(2)
[
c(1) Q− (∆M)−1

]−1

, (6.28)

where ∆M = M(1) −M(2) and the microstructural tensor Q contains information about the shape

and distribution of the particles. This tensor is related to the tensor P via the relation

Q = L(1) − L(1)PL(1), (6.29)

where L(r) =
(
M(r)

)−1
, r = 1, 2, is the viscosity moduli tensor of phase r, and the fourth-order

tensor P is a microstructural tensor with the following expression

P =
1

4π |Z|

∫

|ξξξ|=1

H(ξξξ)
∣∣ZT ξξξ

∣∣−3
dS, (6.30)

where Z characterizes the shape of particles. Also, the fourth-order tensor H is written as

Hijkl =
(
K−1

ik ξjξl
)∣∣

(ij)(kl)
, (6.31)

in which the acoustic tensor K is defined as Kik = L
(1)
ijklξjξl, and the indices in parentheses, such as

(ij), are to be symmetrized.

Making use of the Willis estimate M̃ in relations (E.3), the associated concentration tensors A(2)

and a(2) are expressed by

A(2) =
[
I− c(1) P∆L

]−1

, a(2) = c(1)
[
I− c(1) P∆L

]−1

∆γγγ (6.32)

where ∆γγγ = γγγ(1) − γγγ(2). The similar expressions for A(1) and a(1) can be, in turn, obtained from

relations (6.26). Substituting expressions (6.32) (plus those for A(1) and a(1)) into relations (6.25)

and eliminating γγγ(1) and γγγ(2) from relations (6.27), we obtain the following expressions for the rate

of average strain in the matrix and particles phases

˙̄ǫǫǫ(1) = ˙̄ǫǫǫ − c(2) E
(
σ̄

(1) − σ̄
(2)
)
, ˙̄ǫǫǫ(2) = ˙̄ǫǫǫ+ c(1) E

(
σ̄

(1) − σ̄
(2)
)
, (6.33)

where E =
(
I− PL(1)

)−1
P.

On the other hand, we recall from relation (6.6) that the thermal strain tensor in each phase

in the LCC is equal to the elastic strain tensor in the corresponding phase in the actual nonlinear

composite. Therefore, the evolution equation for the average stress tensor σ̄
(1) and σ̄

(2) can be

obtained by substituting the thermal strain from (6.6) (the second equality) and the strain-rate

phase averages from (6.33) into the constitutive relations (6.27) as follows

˙̄σ(1) = C(1)
[
˙̄ǫǫǫ− c(2) E

(
σ̄

(1) − σ̄
(2)
)
−M(1)

σ̄
(1)
]
,

˙̄σ(2) = C(2)
[
˙̄ǫǫǫ+ c(1) E

(
σ̄

(1) − σ̄
(2)
)
−M(2)

σ̄
(2)
]
, (6.34)
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where C(r) =
(
S(r)

)−1
is the elastic stiffness tensor of the phase r in the actual composite.

In summary, for a given macroscopic strain rate ˙̄ǫ, the set of equations (6.34) serves to fully

determine the “incremental” stress tensors in the matrix and particle phases. In turn, the incremental

macroscopic stress σ̄ can be obtained by means of equation (6.24). However, given σ̄
(1) and σ̄

(2), it

is simpler to make use of the following identity to find σ̄

˙̄σ = c(1) ˙̄σ(1) + c(2) ˙̄σ(2). (6.35)

In addition, the phase average strain-rate, ˙̄ǫǫǫ(r), and the thermal strain (elastic strain) in each phase,

γγγ(r), can be obtained form relations (6.33) and (6.27), respectively. Finally, after finding these

variables, the effective stress potential of the LCC can be obtained from relation (6.23). In this

connection, it is convenient to provide the expressions for the effective properties γ̃γγ and g̃ associated

with the Willis estimate (6.28) as follows (see Appendix E.1)

γ̃γγ = γ̄γγ + c(1) c(2) F∆γγγ, g̃ =
1

2
c(1) c(2) ∆γγγ · (∆M)−1 F∆γγγ. (6.36)

where γ̄γγ = c(1) γγγ(1) + c(2) γγγ(2), and F =
(
c(1) ∆MQ− I

)−1
Q.

The above formulation for the LCC can be used to generate estimate for the two-phase elasto-

viscoplastic composites described in Section 6.2. In the following, we specialize this formulation to

two particular cases of interest: (1) Purely elastic composites, (2) Composites with a viscoplastic

matrix.

Purely elastic composites

It is of particular interest to investigate the simplification of the above formulation for the LCC

to the special case of composites with purely elastic phases. In this case, the LCC simply reduces

to a two-phase linear elastic composites consisting of an isotropic matrix with the stiffness tensor

C(1) and a random distribution of aligned, ellipsoidal particles made of an isotropic solid with the

stiffness tensor C(2). This special case is recovered from the above formulation by taking the limits

of M(1), M(2) → O. Taking this limit, relations (6.34) reduce to

˙̄σ(1) = C(1) ˙̄ǫǫǫ, ˙̄σ(2) = C(2) ˙̄ǫǫǫ. (6.37)

Making use of the identity (6.35), the above relations lead to the following constitutive relation for

the macroscopic response

˙̄ǫǫǫ = S̃V t ˙̄σ, (6.38)

where

S̃V t =
[
c(1) C(1) + c(2) C(2)

]−1

. (6.39)

As expected, the above relations correspond to the Voigt bound for a linear elastic composite which

is consistent with our earlier approximation that the elastic strain filed (in this case, the total strain

filed) is constant per phase. In other words, the Voigt bound predicts no fluctuation of the strain
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and stress fields in the particle and matrix phases.

Viscoplastic matrix

When the elastic deformation in the matrix phase is negligible (i.e., ǫǫǫ
(1)
e = 0), the constitutive

behavior of the matrix is purely viscous. In this case, the approximation of the constant elastic

strain in the particle phase is consistent with the Willis-type estimate used for the behavior of the

LCC as the Willis estimate predicts no fluctuation of the local fields in the particle phase either. In

other words, for the special case of a viscoplastic matrix, the only approximation involved in our

homogenization method is the linearization of the matrix phase.

6.3.2 Implementation of the variational procedure

In this subsection, we discuss the implementation of the variational procedure described in this sec-

tion to estimate the effective behavior of the actual nonlinear composite. In this work, we restrict

our attention to the special case of two-phase incompressible composites consisting of an isotropic

elastic-ideally plastic matrix with yield stress σ0 and a random distribution of isotropic elastic par-

ticles, although our method can be implemented for the case of general two-phase elasto-viscoplastic

composites described in Section 6.2. The limit of elastic particles requires to take the limit of

M(2) → O in the LCC formulation in Section 6.3.1. Also, we enforce the limit of incompressibility of

the nonlinear matrix phase and elastic particles by taking the incompressibility limit in each phase in

our formulation. Also, the case of elastic-ideally plastic matrices correspond to using the optimality

condition (6.21). In this connection, in order to elucidate the implication of this condition, it is

useful to write it in terms of the second moment of the equivalent stress in the matrix phase in the

(thermoealastic) LCC, defined as

〈
σ2
eq

〉(1)
= − 6

c(1)
(η(1))2 ∂(η(1))ŨL(σ̄σσ), (6.40)

Making use of the above definition in (6.21), it is written as

〈
σ2
eq

〉(1)
= σ2

0 (6.41)

In fact, the above equation is an average form of the von Mises yield criteria in the matrix phase,

implying that the matrix exhibits an initial purely elastic behavior to the point that the stress in the

matrix phase satisfies the yield criterion in the matrix (given by (6.41)), beyond which the matrix

exhibits a fully coupled elasto-plastic behavior. Therefore, since the particles are assumed to be

purely elastic throughout the deformation history, the behavior of the composite is purely elastic to

the point that the condition (6.41) is satisfied, beyond which the composite exhibits a coupled elasto-

plastic behavior. Therefore, as will be explained in more detail in subsection 6.3.2, equation (6.41)

is used to characterize the end of the purely elastic regime in the behavior of the composites. In this

regard, in the next two subsections, we separately provide the set of equations need to be solved

for obtaining estimates for the purely elastic and elasto-plastic parts of the composite behavior.
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Followed by these subsections, we outline the general procedure to implement our model to obtain

estimates for the behavior of the composite under a full cycle of loading.

Purely elastic regime: An empirical modification

As mentioned earlier, the elastic trial state can be computed from the LCC calculations by taking

the limit M(1), M(2) → O. The resulting relations (given by (6.37)-(6.39)) correspond to the Voigt

bound for the elastic composite. However, this bound is too stiff to predict the purely elastic behavior

of the composite. For this reason, instead of using relations (6.37)-(6.39), we propose to make use of

the Willis-type estimate for the behavior of the two-phase composites in the purely elastic regime.

The Willis estimates for the average stress in the matrix and particle phases are given by (Willis,

1977; Ponte Castañeda and Willis, 1995)

˙̄σ(1) = C(1) (I− Pe∆C)
[
I− c(1) Pe∆C

]−1
˙̄ǫǫǫ,

˙̄σ(2) = C(2)
[
I− c(1) Pe ∆C

]−1
˙̄ǫǫǫ, (6.42)

where ∆C = C(1)−C(2), and the microstructural tensor Pe is defined by the same relations in (6.30)

and (6.31) with L(1) being replaced by C(1). Making use of the identity (6.35), the above relations

lead to the following constitutive relation for the macroscopic response

˙̄ǫǫǫ = S̃Ws ˙̄σ, (6.43)

where

S̃Ws =

{
C(1) + c(2)

[
c(1) Pe − (∆C)−1

]−1
}(−1)

, (6.44)

in which ∆C = C(1) − C(2). According to the Willis estimate, there are field fluctuations in the

matrix phase, but not in the particle phase. As mentioned earlier and also will be explained in more

detail in subsection 6.3.2, we require to calculate
〈
σ2
eq

〉(1)
in the purely elastic regime in order to

check whether or not the yield criterion (6.41) is satisfied. Therefore, it is crucial to provide an

associated incremental relation to characterize the second moment of stress in the matrix phase. An

incremental relation for this quantity can be written in the form of (see Appendix E.2)

˙〈
σ2
eq

〉(1)
= f( ˙̄σσσ(1), ˙̄σσσ(2), σ̄σσ(1), σ̄σσ(2),S ) (6.45)

where S is the set of variables characterizing the microstructure of the composite (such as volume

fraction and shape of the particles). In fact, making use of a time-discretization scheme, the stress

phase averages and the second moment of stress in the matrix are obtained by using relations (6.42)

and (6.45), respectively.
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Elasto-plastic regime

First, making use of relations (6.28) and (6.36) into (6.23), the effective stress potential of the LCC

is expressed as

ŨL(σ̄σσ) =
1

2
σ̄ · [M(1) (I+ c(2) H)] σ̄ + (γ̄γγ + c(1) c(2) HQ∆γγγ) · σ̄

+
1

2
c(1) c(2) ∆γγγ · L(1) HQ∆γγγ (6.46)

where H =
(
c(1) M(1) Q− I

)−1
Q. The optimal value of η(1) in the above potential is obtained by

solving the algebraic equation (6.41). Making use of the definition (6.40) for the second moment

and the above expression for the effective potential, equation (6.41) can be written as

σ2
0 =− 3 (η(1))2

c(1)

{
σ̄ · [M(1) (I+ c(2) H)],η(1) σ̄

+c(1) c(2)
[
2 ((HQ),η(1) ∆γγγ) · σ̄ +∆γγγ · (L(1) HQ),η(1) ∆γγγ

]}
(6.47)

where the subscript comma denotes the partial derivative with respect to the following variable.

Note that the differentiation in definition (6.40) is taken while the macroscopic stress σ̄ and the

thermal strains γγγ(1) and γγγ(2) are held fixed. Next, combining relations (6.27) and (6.33), we find the

following expressions for the thermal strains

γγγ(1) = ˙̄ǫǫǫ− c(2) E
(
σ̄

(1) − σ̄
(2)
)
−M(1)

σ̄
(1),

γγγ(2) = ˙̄ǫǫǫ+ c(1) E
(
σ̄

(1) − σ̄
(2)
)
, (6.48)

Therefore, substituting relations (6.48) into equation (6.47), this equation can be entirely written in

terms of unknowns η(1), σ̄(1) and σ̄
(2). Then, this equation, together with equations (6.34) for the

evolution of σ̄(1) and σ̄
(2), can be solved for unknowns η(1), σ̄(1) and σ̄

(2). To this end, we make

use of an implicit time-discretization scheme to solve the three equations.

Implementation procedure

Here, we assume a purely elastic state in the composite to the point that the stress in the matrix

phase satisfies the yield criterion (6.41). The algorithm for determining the effective response of the

composite can be summarized as below

1. At a given time instant t = t0, the first and second moments of the stress are known in the

matrix and particle phases. At this instant, we apply a macroscopic strain increment (˙̄ǫǫǫ).

2. We calculate the phase averages σ̄
(r) and the second moment

〈
σ2
eq

〉(1)
at the next time

increment by using incremental equations (6.42) and (6.45), respectively, corresponding to the Willis

estimates for two-phase, linear elastic composites. The effective macroscopic stress is obtained by

using (6.35).

3.1. If the second of the matrix phase calculated from step 2 satisfies the inequality
〈
σ2
eq

〉(1)
< σ2

0 ,

the composite behavior is purely elastic and we continue step 2. In this case, the effective behavior
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of the composite is estimated by the constitutive relation (6.43).

3.2. If
〈
σ2
eq

〉(1)
= σ2

0 , the matrix phase in the composite has reached the yield stress σ0. At this

instant, we need to use the LCC to estimate the effective behavior of the composite. In this case,

we make use of an implicit time-discretization scheme to solve nonlinear equations (6.34) and (6.47)

for unknowns η(1), σ̄(1) and σ̄
(2) (note that M(2) = O in (6.34)2 as we assumed that the particle are

purely elastic). The effective macroscopic stress is obtained by using (6.35).

6.4 Applications and discussions

In this section, we investigate predictions of the homogenization procedure developed in the pre-

vious section for the effective response of an elastic-ideally plastic solids reinforced with a random

distribution of aligned, prolate spheroidal elastic particles, with aspect ratio w and volume fraction

c. Figure 6.1 shows a schematic view of the microstructure in the composite. For definiteness, we

define the principal directions of the particles by the rectangular Cartesian basis {ei} such that the

symmetry axis of the particles is aligned with the e3 direction. Also, the distribution of particles is

assumed to be statistically isotropic in the transverse plane, namely, the e1 − e3 plane. We further

assume that the shape and orientation of the distributional spheroid characterizing the angular de-

pendence of the two-point correlation function (for the distribution of the particle centers) are the

same as those of the particles.

Matrix (Phase 1) Particles (Phase 2) 

ΩΩΩΩ

a
a

wa

2e

3e

1e

Figure 6.1: Schematic illustration of the microstructure in a particle-reinforced composite. The
elastic particles are prolate spheroidal in shape (w > 1), and their symmetry axis is aligned with
the coordinate basis vector e3.

The matrix is an elastic-ideally plastic solid with the yield stress σ0. Both matrix and particles

are assumed to be isotropic and incompressible. The elastic properties of the matrix and particles
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Material µ (GPa) σ0 (MPa)
Matrix:

Aluminium 28.8 75
Titanium 44.2 818.5
Polyamide 0.8 29

Ceramic Particles:
Tungsten Carbide(WC) 270.1
Silicon Carbide (SiC) 166.7
Nextel 83.3

Table 6.1: Candidate materials for the elastic-ideally plastic matrix and for the elastic fibers.

are characterized by the following stiffness tensor

C(r) = 2µ(r)K+∞ J, r = 1, 2 (6.49)

where µ(r) denote the shear modulus of the corresponding phase. Table 6.1 shows the shear modulus

and yields stress properties of some common materials used in particle-reinforced metal-matrix or

polymer matrix composites. We will make use of the properties in Table 6.1 in presenting the

results in this section. In this connection, it is important to clarify that the materials in Table 6.1

are generally compressible, and the chosen properties for our incompressible model does not exactly

represents these materials. However, the compressibility properties of the materials are not expected

to have a significant effect on the overall behavior and the field statistics in the composite when

subjected to isochoric loading as will be described shortly.

The effective potential for incompressible composites with transversely isotropic symmetry may

be written as

Ũ(σ̄) = φ̃(τ̄a, τ̄n, τ̄p), (6.50)

where

τ̄a =
1

2
√
3
[2 σ̄33 − (σ̄11 + σ̄22)], τ̄n =

√
σ̄2
13 + σ̄2

23,

and τ̄p =

√
σ̄2
12 +

1

4
(σ̄11 − σ̄22)2, (6.51)

are an appropriate set of isochoric, transversely isotropic invariants of σ̄ corresponding to axisym-

metric shear, longitudinal shear and transverse shear stresses, respectively deBotton and Ponte

Castañeda (1992). The macroscopic equivalent stress of the composites is then obtained as

σ̄eq =
√
τ̄2a + τ̄2n + τ̄2p . (6.52)

In a similar manner, the Correspondingly, the transversely isotropic invariants of the average
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stress tensors σ̄(r) in the matrix and particle phase can be written as

τ̄ (r)a =
1

2
√
3
[2 σ̄

(r)
33 − (σ̄

(r)
11 + σ̄

(r)
22 )], τ̄ (r)n =

√
(σ̄

(r)
13 )

2 + (σ̄
(r)
23 )

2,

and τ̄ (r)p =

√
(σ̄

(r)
12 )

2 +
1

4
(σ̄

(r)
11 − σ̄

(r)
22 )

2, r = 1, 2. (6.53)

In addition, it is useful to provide results for the standard deviation of the stress filed in the

matrix phase, defined by

SD(1)(σeq) =

√〈
σ2
eq − σ̄2

eq

〉(1)
. (6.54)

This quantity provides a convenient measure for the intraphase stress field fluctuations in the matrix

phase. Also, note that SD(2)(σeq) = 0 within the Willis estimates.

The results provided in this section are organized as follows. First, in Sections 6.4.1, we address

the effective behavior of the composites consisting of an elastic-ideally plastic matrix and spheroidal

elastic particles, subjected to axisymmetric shear loading-unloading-loading cycles. In this subsec-

tion, we investigate the effect of particle volume fraction and shape as well as the effect of matrix and

particle mechanical properties on the effective behavior of the composite. Here, we also compare our

results with the corresponding analytical and numerical simulations available in the literature. Next,

in Section 6.4.2, we will present representative results for the effective behavior of the composites

subjected to transverse and longitudinal shear modes. Finally, in Section 6.4.3, we will provide rep-

resentative results for the effective behavior of the composites subjected to combined axisymmetric

and longitudinal shear modes. In the last two subsection, we only explore the impact of particle

shape on the overall behavior of the composite for fixed value of the particle volume fraction and

matrix and particle mechanical properties. In all subsections, we present results for the relevant

invariant of the overall stress tensor and the average stress tensor in the matrix and particle phases,

as a function of corresponding macroscopic strain component, as well as for the standard deviation of

the stress field in the matrix phase (defined by (6.54)), as a function of duration of loading. Finally,

we note that all the stress quantities are appropriately normalized by the yield stress of the matrix,

σ0.

6.4.1 Axisymmetric shear

In this subsection, we study the behavior of the composite when subjected to a strain-controlled,

axisymmetric shear loading of the type

˙̄ǫa = ǫ̇0(t)

[
e3 ⊗ e3 −

1

2
(e1 ⊗ e1 + e2 ⊗ e2)

]
, (6.55)

where ǫ̇0(t) is a step function, defined as

ǫ̇0(t) =





6× 10−3 if 0 ≤ t ≥ T,

− 6× 10−3 if T ≤ t ≥ 3T,

− 6× 10−3 if 3T ≤ t ≥ 4T,

(6.56)
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in which T = 10 s. The plots in this subsection are given as a function of ǭ33 =
∫ t

0
( ˙̄ǫa)33 dt =∫ t

0 ǫ̇0(t) dt.

Figure 6.2 shows a comparison of predictions of our model with earlier analytical estimates and

numerical simulations for elastic-ideally plastic matrices reinforced by elastic spherical particles with

c = 0.17. Results are provided for properties µ(1)/σ0 = 30, and µ(2)/µ(1) = 2. The IVP estimates

correspond to the predictions of an analytical homogenization model, recently developed by Lahellec

and Suquet (2013). This model follows from an “incremental variation principal” (IVP) which aims

at recasting the elastic and dissipative potentials of the constituents phases into equivalent condensed

incremental potentials (Lahellec and Suquet, 2007). Similar to our model, this model is also based

on the variational principal of Ponte Castañeda (1991), however, it accounts for the filed fluctuations

of the elastic strains in the matrix phase, and therefore, provides more accurate estimates compared

to our model. Also, the FFT results refer to the full-field simulations carried out by Lahellec and

Suquet (2013). It is important to mention that the IVP and FFT results in figure 6.2 are calculated

for composites with compressible phases, however, the effect of compressibility is not expected to be

significant since the composite is subjected to an isochoric loading. The main observation from these

plots is that while the IVP estimate provides a very good agreement with the FFT simulations, the

predictions of our model also provides quite good agreement with the FFT results, especially for

the macroscopic response of the composite in figure 6.2(a). However, we observe from figures 6.2(c)

and (d) that our model tends to overestimate the average stress in the particle phase and the stress

field fluctuations in the matrix phase, which is due to the approximation of the uniform-per-phase

elastic strains used in our model.

Figure 6.3 presents variational estimates for particle-reinforced composites consisting of an elastic-

ideally plastic matrix and elastic spheroidal particles with aspect ratio w = 3 subjected to axisym-

metric shear cycles (6.55), for various particles volume fractions (c = 0.1, 0.2, 0.3 and 0.4). Results

are given for the mechanical properties µ(1)/σ0 = 54 and µ(2)/µ(1) = 3.8, which correspond to the

incompressible properties of Sic-Titanium composites. We observe from figure 6.3(a) that the com-

posite exhibits three types of behavior in each segment of loading-unloading-loading cycles. First,

the composite exhibits a linear elastic behavior (characterized by relation (6.43)) up to yielding of the

matrix phase, followed by a coupled elasto-plastic behavior, which subsequently reaches a plateau.

At the plateau, the overall stress in figure 6.3(a), as well as the phase averages in figures 6.3(b) and

(c), coincide with the corresponding predictions of Ponte Castañeda variational procedure for the

effective behavior of a rigid-ideally plastic matrix (with yield stress σ0) reinforced by rigid particles

(with volume fraction c and aspect ratio w), which is known to be a rigorous upper bound. We

also observe from these figures that increasing volume fractions of the particles stiffens the effective

behavior of the composite.

Figure 6.4 presents variational estimates for particle-reinforced composites consisting of an elastic-

ideally plastic matrix and elastic spheroidal particles with volume fraction c = 0.3 subjected to ax-

isymmetric shear cycles, for various particle aspect ratios (w = 1, 3, 10 and ∞). Results are, again,

given for the mechanical properties µ(1)/σ0 = 54 and µ(2)/µ(1) = 3.8. We note that the special case

of w = 1 corresponds to elastic-ideally plastic matrices reinforced by spherical particles, while the

special case of w → ∞ corresponds to elastic-ideally plastic matrices reinforced by long cylindrical
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Figure 6.2: Estimates for the effective response and field statistics in the composites consisting of
a elastic-ideally plastic matrix and elastic spherical particles (w = 1) with c = 0.17, µ(1)/σ0 = 30,
and µ(2)/µ(1) = 2, under axisymmetric shear loading. Comparisons are shown between our model,
the analytical model of Lahellec and Suquet (2013) “IVP”, and the full-field simulations of Lahellec
and Suquet (2013) “FFT”.
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Figure 6.3: Variational estimates for the effective response and field statistics in the composites
consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(1)/σ0 = 54,
µ(2)/µ(1) = 3.8, and w = 3 under axisymmetric shear loading.
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Figure 6.4: Variational estimates for the effective response and field statistics in the composites
consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(1)/σ0 = 54,
µ(2)/µ(1) = 3.8, and c = 0.3 under axisymmetric shear loading. The material properties correspond
Sic particles and Titanium matrix.
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fibers whose axis of symmetry is aligned with e3 direction. It is important to note that the results

for the case of long fibers are exact and coincide with the Voigt bound for these composites. This

is because, in this case, the exact solution for the local fields in the matrix and particles phase are

uniform (i.e., fluctuation of local fields is zero within each phase) which is consistent with the Voigt

bound. We observe from figure 6.4(a) that the composite exhibits a more pronounced elasto-plastic

coupling as the aspect ratio of the particle increases. The growth of the macroscopic stress measure

τ̄a becomes unbounded for the case of long fibers (w → ∞) and can be shown to be proportional

to (1 − c) ǭ33. We observe from figure 6.4(d) that the standard deviation of the stress is identically

zero for the case of long fibers which is consistent with the exact solution of uniform field-per-phase

in this case.

Figure 6.5 presents variational estimates for particle-reinforced composites consisting of an elastic-

ideally plastic matrix and elastic spheroidal particles with c = 0.3 and w = 3, subjected to axisym-

metric shear cycles (6.55), for the fixed ratio µ(2)/µ(1) = 2 and various values of the ratio µ(1)/σ0.

We observe from figure 6.5(a) that all curves reach the same plateau, although the composites with

higher values of µ(1)/σ0 exhibit stiffer response and a shorter elasto-plastic coupling before they

reach the plateau. As an example, as we notice from this figures, the composites with a polymeric

matrix (like polyamide) show a much longer range of elasto-plastic coupling than the composites

with Aluminium as the matrix with the same ratio µ(2)/µ(1) = 2.

Finally, in this subsection, figure 6.6 presents variational estimates for particle-reinforced com-

posites consisting of an elastic-ideally plastic matrix and elastic spheroidal particles with c = 0.3 and

w = 3, subjected to axisymmetric shear cycles (6.55), for the fixed ratio µ(1)/σ0 = 54 and various

values of the ratio µ(2)/µ(1). Similar to the previous figure, we observe from figure 6.6(a) that all

curves reach the same plateau, although the composites with softer fibers exhibit longer range of

elasto-plastic coupling before they reach the plateau. On the other extreme, the composite with

rigid particles exhibit no elasto-plastic coupling regime.

6.4.2 Transverse and longitudinal shear loading

In this subsection, we study the behavior of the composite when subjected to a strain-controlled

transverse and longitudinal shear loadings of the forms

˙̄ǫp = ǫ̇0(t)

[
1

2
(e1 ⊗ e1 − e2 ⊗ e2) + e1 ⊗ e2 + e2 ⊗ e1

]
, (6.57)

and

˙̄ǫn = ǫ̇0(t) (e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2) , (6.58)

respectively.

Figure 6.7 presents variational estimates for particle-reinforced composites consisting of an elastic-

ideally plastic matrix and elastic spheroidal particles with c = 0.3, subjected to transverse shear

cycles (6.57), for particle aspect ratios w = 1, 3 and ∞. Results are shown for the mechanical

properties µ(1)/σ0 = 54 and µ(2)/µ(1) = 3.8. We observe from figures 6.7 (a-c) that the particle

aspect ratio, when changing from the spherical case (w = 1) to the case of long fibers (w = 1),
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Figure 6.5: Variational estimates for the effective response and field statistics in the composites
consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(2)/µ(1) = 2,
c = 0.3, and w = 3 under axisymmetric shear loading.
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ǭ33

(2
/
√
3
)
τ̄
(2

)
a
/
σ
0

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

 µ(2)/ µ(1)=1.9

 µ(2)/ µ(1)=3.8

 µ(2)/ µ(1)=6.1

 µ(2)/ µ(1)→∞

√
2
/
3
S
D

(1
)
/
σ
0

t(c) (d)

Figure 6.6: Variational estimates for the effective response and field statistics in the composites
consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(1)/σ0 = 54,
c = 0.3, and w = 3 under axisymmetric shear loading.
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ǭ12

τ̄
(1

)
p
/
σ
0

(a) (b)

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−1

−0.5

0

0.5

1

 

 

 w=1
 w=3
 w→∞
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Figure 6.7: Variational estimates for the effective response and field statistics in the composites
consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(1)/σ0 = 54,
µ(2)/µ(1) = 3.8, and c = 0.3 under transverse shear loading.
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Figure 6.8: Variational estimates for the effective response and field statistics in the composites
consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(1)/σ0 = 54,
µ(2)/µ(1) = 3.8, and c = 0.3 under longitudinal shear loading.

does not produce a significant effect on the effective behavior of the composite and the associated

stress phase averages under transverse shear loading, unlike the case of axisymmetric shear loading

in figure 6.4. However, we see from figures 6.7 (d) that the aspect ratio has a more noticeable effect

on the standard deviation as it measures the stress field fluctuations in the matrix filed.

Similar to the previous figure, figure 6.8 presents variational estimates for particle-reinforced

composites consisting of an elastic-ideally plastic matrix and elastic spheroidal particles with c = 0.3,

subjected to longitudinal shear cycles (6.58), for particle aspect ratios w = 1, 3 and ∞. Results

are shown for the mechanical properties µ(1)/σ0 = 54 and µ(2)/µ(1) = 3.8. Similar to the case

of transverse shear loading, we observe from figures 6.8 (a-c) that the effective behavior of the

composite and the associated stress phase averages are weakly affected by the particle aspect ratio

under longitudinal shear loading, again, unlike the case of axisymmetric shear loading. This is
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because, for the case of axisymmetric shear loading, deformation is concentrated at the tips of

spheroidal particles, and higher aspect ratios of the particles produces considerably larger stress

concentrations at the tips and, consequently, higher field fluctuations in the matrix phase. On the

other hand, for the case of transverse and longitudinal shear loadings, deformation in the matrix

phase is much more homogeneous, and changing the particle aspect ratio does not significantly alter

the filed fluctuation in the matrix phase. Another interesting observation from figure 6.8 is that the

estimates for the case of w = 1 and w → ∞ coincide with the corresponding estimates for the case

of transverse shear, presented in figure 6.7. The reason, for the case of w = 1, is that the composite

is isotropic so that the transverse and longitudinal shear loadings are equivalent. However, for the

case of long fibers (w → ∞), the reason is that the Hashin-Shtrikman estimates for the effective

behavior of the LCC predict the same behavior for the composite under transverse and longitudinal

shear loadings.

6.4.3 Combined shear loading

In this subsection, we study the behavior of the composite when subjected to a combined, strain-

controlled, axisymmetric and longitudinal mode of shear of the form

˙̄ǫ = ǫ̇0(t)

{[
e3 ⊗ e3 −

1

2
(e1 ⊗ e1 + e2 ⊗ e2)

]
+ α (e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2)

}
, (6.59)

where α is a constant.

Finally, figure 6.9 shows variational estimates for particle-reinforced composites consisting of an

elastic-ideally plastic matrix and elastic spheroidal particles with c = 0.3, subjected to combined

axisymmetric and longitudinal shear cycles (6.59) with α = 1, for particle aspect ratios w = 1, 3, 10

and ∞. Results are shown for the mechanical properties µ(1)/σ0 = 54 and µ(2)/µ(1) = 3.8. First, by

comparing the results in figure 6.9(a) and (b) with the corresponding results in figures 6.4(a) and

6.8(a), we realize that, when the axisymmetric and longitudinal shear modes are applied combined,

the purely elastic regime in the overall behavior of the composite is shorter, compared to case that

theses modes of shear are applied individually. This is simply due to the fact that the application of

a combined loading builds up a larger stress and, therefore, equation (6.41) is satisfied at a smaller

applied strain. Also, we observe from figure 6.9(b) that the particle shape has a rather significant

effect on the behavior of the longitudinal stress invariant τ̄n, unlike the results in figure 6.8(a),

although the behavior of the axisymmetric stress invariant τ̄a in figure 6.9(a) remains qualitatively

very similar to that observed from figure 6.4(a). This is because the incremental stiffness of the

composite in the longitudinal direction for the case of spheroidal particles can be strongly affected

when the composite is simultaneously subjected to an axisymmetric mode of shear as well.
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ǭ33 = ǭ13
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(2
/
√
3
)
τ̄
(2

)
a
/
σ
0

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 

 w=1
 w=3
 w=10
 w→∞
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Figure 6.9: Variational estimates for the effective response and stress phase averages in the compos-
ites consisting of a elastic-ideally plastic matrix and elastic spheroidal particles with µ(1)/σ0 = 54,
µ(2)/µ(1) = 3.8, and c = 0.3 under combined axisymmetric and longitudinal shear loading with
α = 1.
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6.5 Conclusions

In this chapter, we have developed a homogenization-based model to estimate the effective response

of composites consisting of an elasto-viscoplastic matrix and a random distribution of aligned, el-

lipsoidal Maxwellian viscoelastic particles subjected to three-dimensional loading conditions in the

regime of small deformations.

Our model can be summarized as follows. First, introducing the (modified) dissipation potentials

in (6.4) to describe the “incremental” constitutive behavior of the local phases, we formulated the

homogenization problem for the composite in a variational framework, defined in (6.8) and (6.9).

Next, we made use of the variational principle of Ponte Castañeda (1991) to approximate the effective

incremental response of the composites by that of a suitably-chosen LCC, consisting of a (fictitious)

Maxwellian matrix reinforced by the same particles. Then, making the approximation that elastic

strains in the composite are uniform-per-phase, the homogenization problem for the LCC simplifies

to that for linear thermoelastic composites with uniform thermal strains, which was addressed by

the homogenization theory of Ponte Castañeda and Willis (1995). Lastly, for the case of elastic

particles, we proposed an empirical modification of the model for the purely elastic response of the

composites.

We have also used our model to explore in more detail the effective behavior and field statistics

in incompressible composites consisting of an elastic-ideally plastic matrix reinforced by a random

distribution of aligned, elastic spheroidal particles subjected to axisymmetric, transverse and lon-

gitudinal modes of shear loading-unloading-loading cycles. In the context of this application, we

investigated the influence of the volume fraction and shape of the particles, constitutive properties

of the matrix and particle phases, and the applied loading conditions on the effective behavior and

field statistics in these composites. We begin by emphasizing, although our model is based on the

uniform-per-phase elastic strain approximation, its predictions were still in relatively good agreement

with full-filed numerical simulations of Lahellec and Suquet (2013) as well as with the corresponding

predictions of IVP model (Lahellec and Suquet, 2013), for spherical particles (w = 1). A general

observation from the results was that the composite exhibits a linear elastic behavior (characterized

by relation (6.43)) up to yielding of the matrix phase, followed by a coupled elasto-plastic behavior,

which subsequently approaches a plateau. Also, for the case of axisymmetric shear cycles, it is

found that the particle aspect ratio has a significant effect on the effective behavior and the field

statistics in the composite, while for the case of transverse and longitudinal shear loadings, the

particle aspect ratio is found to weakly affect the homogenized behavior of the composite. Finally,

we found that, for the case of spheroidal particles, the incremental response of the composite in the

longitudinal direction can be significantly affected when the composite is simultaneously subjected

to an axisymmetric mode of shear as well.
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Chapter 7

Closure
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In this thesis, analytical, homogenization-based models have been developed for nonlinear two-

phase composites subjected to finite deformations. The models have the ability to account for the

local nonlinear constitutive properties, volume fraction, shape, orientation, and distribution of the

particles, as well as for the evolution of these parameters along a given macroscopic loading path.

Motivated by most applications of interest, attention has been given to two-phase composites with

“particulate” microstructures and isotropic phases. In particular, we have developed our homoge-

nizations models for the effective behavior and the microstructure evolution of two-phase composites

consisting of ellipsoidal isotropic particles distributed randomly in an isotropic matrix. The use of

ellipsoidal particles includes - as limiting cases - spherical particles, cylindrical fibers, as well as

laminates.

Our proposed models (except the one developed in Chapter 4) make use of the technique of

“linear comparison composites” (LCC), first introduced by Ponte Castañeda (1991) in the context

of viscoplastic composites. This technique allows to convert available homogenization estimates for

the effective behavior of linear composites into corresponding estimates for nonlinear composites. In

this thesis we have developed homogenization-based models for three classes of nonlinear composite

materials: (I) soft particle-reinforced elastomers, addressed in Part I of this thesis (including Chap-

ters 1–3), (II) viscoelastic suspensions, addressed in Part II (including Chapters 4 and 5), and (III)

elasto-viscoplastic composites, addressed in Part III (including Chapter 6). Next, a brief description

of the main results in this thesis is provided.

In Part I of this thesis, we considered soft elastomeric composites. In Chapter 1, we have

developed new constitutive models for the macroscopic response of composites with hyperelastic

phases and particulate microstructures, subjected to general, three-dimensional, finite deformations.

For this purpose, we have made use of a suitable extension of the tangent second-order (TSO)

homogenization theory of Ponte Castañeda and Tiberio (2000), which is capable of accounting for the

strongly nonlinear overall incompressibility constraint (for incompressible behavior of the phases),

as well as for the reorientation of the particles with the deformation. The TSO theory was tested for

2-D problem consisting of transverse shear loading of elastomers reinforced with cylindrical fibers

of elliptical cross-section, where it was found to recover exactly the generalized second-order (GSO)

results of Lopez-Pamies and Ponte Castañeda (2006a) for dilute concentration of elliptical fibers in

a neo-Hookean elastomeric matrix. Also, a closed-form estimate was derived for the effective stored-

energy function of an incompressible neo-Hookean elastomers reinforced by spherical rigid particle

subjected to general isochoric loadings.

In Chapter 2 (also published in Avazmohammadi and Ponte Castañeda (2014a)), we have made

use of the tangent second-order, finite-strain homogenization framework developed in Chapter 1 to

estimate the overall response and microstructure evolution in incompressible elastomers reinforced

by aligned, spheroidal, rigid particles, subject to general loading conditions. In this chapter, we

also have presented a detailed study of the possible development of macroscopic instabilities in the

particle-reinforced composites of interest, under both aligned and non-aligned loading conditions.

The onset of such instabilities in these materials is identified with the loss of strong ellipticity of

the associated homogenized behavior. It should be remarked that, to the best of our knowledge, the

estimates provided in this chapter for the effective stored-energy function and the particle rotation
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are the first homogenization-type estimates for reinforced elastomers with general spheroidal particle

shape. The results are valid for large strains provided that the interfaces between the particles and

the rubber remain intact.

In Chapter 3 (also published in Avazmohammadi and Ponte Castañeda (2014b)), we made use

of the TSO constitutive model presented in Chapter 2 to generate estimates for the homogenized

stress-strain relation, the evolution of microstructure, and the onset of macroscopic instabilities in

particle-reinforced elastomeric composites consisting of an incompressible Gent/neo-Hookean matrix

and random distributions of aligned spheroidal particles of aspect ratio w. The estimates presented

in this chapter provide a broad picture of the influence of the macroscopic loading conditions, matrix

properties and microgeometry (including particle volume fractions and shapes) on the effective be-

havior and the possible onset of macroscopic instabilities in the composites. These results generalize

earlier results of Lopez-Pamies and Ponte Castañeda (2006b) for 2-D composites reinforced with

elliptical fibers. In addition, the results of this work are consistent with earlier results for laminated

elastomers (deBotton, 2005; Lopez-Pamies and Ponte Castañeda, 2009) and for continuous-fiber-

reinforced elastomers (Agoras et al., 2009a) in the limits as the aspect ratio w tend to zero and ∞,

respectively. In this chapter, we carried out comparisons between predictions of the TSO model

and FEM simulations of Lopez-Pamies et al. (2013a) for spherical particles (w = 1), and found very

good agreement up to fairly large strains. Similarly, the TSO results were found to be in excellent

agreement with FEM results (Moraleda et al., 2009) for the transverse shear response of continuous-

fiber-reinforced elastomers (w → ∞). In contrast to the results for spherical particles in Chapter 1,

it was found that the reinforced elastomers with spheroidal particles can undergo shear localization

instabilities, which are captured by loss of ellipticity of the associated effective incremental modulus

tensors, and correspond physically to the sudden collective rotation—or flopping—of the particles

to try to accommodate the imposed deformation. These flopping-type macroscopic instabilities in

short-fiber-reinforced elastomers are very similar to those predicted in the context of model 2-D

composites by Lopez-Pamies and Ponte Castañeda (2006b).

Next, in Part II of this thesis, we considered viscoelastic suspensions. In Chapter 4, we have

developed a homogenization-based model characterizing the finite-strain, time-dependent response

of non-dilute suspensions of micro-scaled, soft particles in a Newtonian fluid under Stokes flow con-

ditions. Although more general initial shapes and viscoelastic constitutive models could be used for

the particles, we have considered here suspensions of initially spherical particles whose constitutive

response is characterized by Kelvin-Voigt (KV) behavior incorporating finite extensibility of the

particles in the regime of arbitrarily large deformations. The resulting constitutive model provides

a complete description for the time-dependent, macroscopic, rheological response of the non-dilute

suspensions of viscoelastic particles under macroscopically uniform flows, thus generalizing earlier

work by Gao et al. (2011) for dilute suspensions of neo-Hookean (NH) particles. We have also used

the model developed in this chapter to explore the rather rich and complex rheological behavior of

the soft-particle suspensions by focusing on two types of flows: extensional, and simple shear flows.

These examples provide a broad picture of the influence of the flow conditions, constitutive behaviors

of the particles, and the particle volume fractions on the dynamics of the suspended particles, as

well as on the macroscopic rheology of the suspension. We found that, contrary to the steady-state
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(SS) results for extensional flows in which softer particles tend to increase the effective viscosity of

the suspension, the corresponding SS results show that softer particles tend to reduce the effective

viscosity in simple shear, leading to an overall shear-thinning effect for the suspension. This result

suggests that it should be possible to design suspensions of “neutral” particles (Milton, 2002b), as

well as suspensions with lower viscosity than that of the suspending fluid. Also, in this chapter, we

compared the predictions of our model with simulation results for suspensions of capsules, as well

as with the experimental data for the suspensions of RBCs, in a shear flow. It was found that the

predictions of the model are in a good agreement with the simulation results for dilute suspensions

of capsules. For non-dilute suspensions, the corresponding predictions start to deviate from the

simulation results and experimental data at sufficiently large particle concentrations, but they are

still in relative good qualitative agreement with both simulation and experimental results.

In Chapter 5, we have developed a homogenization-based model to estimate the effective rheo-

logical behavior of non-colloidal suspensions of initially spherical, soft particles in yield stress fluids

under Stokes flow conditions. More specifically, we considered suspensions of Kelvin-Voigt solid par-

ticles in a Herschel-Bulkley fluid which undergo time-dependent, finite deformations when subjected

to uniform flows. In this chapter, similar to Chapter 4, we have used our model to explore in more

detail the rheology and particle dynamics in suspensions of elastic Gent particle is HB fluids under

shear flow conditions. In the context of this example, we investigated the influence of constitutive

properties of the HB fluids and the particles, and the particle volume fraction on the dynamics of

the suspended particles, as well as on the macroscopic rheological behavior of the suspension. It

should be remarked that, analytical constitutive models for suspensions of viscoelastic particles in

Newtonian and non-Newtonian fluids, such as those developed in Chapters 4 and 5, are useful in

describing some of the rheological features of complex suspensions, including suspensions of capsules

and vesicles.

At this point, it worth emphasizing that although the analytical constitutive models developed

in Part I and II of this thesis are approximate, they have significant advantages relative to full field

numerical simulations. First, the numerical simulations of these problems are difficult due to the

large stretches involved (requiring remeshing and other sophisticated numerical techniques) and are

computationally very intensive (in practice, relatively small numbers of particles can be considered

and ensemble averages would be required). Second, in practical applications, it is necessary to solve

boundary value problems with non-uniform boundary conditions and complicated geometries. This

requires the use of the finite element method, and for this purpose, it is crucial to be able to determine

the homogenized response of the composite material accurately and efficiently under general loading

conditions. Clearly, this is something that would be difficult to accomplish numerically with current

codes and computational power for these highly nonlinear, anisotropic materials, but is something

that would be feasible using the analytical constitutive models developed in this work. On the other

hand, the analytical models are given in a form that can be easily implemented numerically into

user-defined constitutive subroutines for use with standard finite element codes.

Finally, in Chapter 6 (corresponding to Part III of this thesis), we have developed a homogenization-

based model to estimate the effective response of composites consisting of an elasto-viscoplastic

(EVP) matrix and a random distribution of aligned, ellipsoidal Maxwellian viscoelastic particles

223



subjected to three-dimensional loading conditions in the regime of small deformations. We have also

used our model to explore in more detail the effective behavior and field statistics in incompress-

ible composites consisting of an elastic-ideally plastic matrix reinforced by a random distribution of

aligned, elastic spheroidal particles subjected to axisymmetric, transverse and longitudinal modes

of shear loading-unloading-loading cycles. It should be remarked that, for the case of axisymmetric

shear cycles, it was found that predictions of our model were in relatively good agreement with

full-filed numerical simulations of Lahellec and Suquet (2013) as well as with the corresponding

predictions of IVP model (Lahellec and Suquet, 2013), for spherical particles (w = 1). Also, for the

case of axisymmetric shear cycles, it was found that the particle aspect ratio has a significant effect

on the effective behavior and the field statistics in the composite, while for the case of transverse

and longitudinal shear loadings, the particle aspect ratio is found to weakly affect the homogenized

behavior of the composite.

At this stage, it is important to make a few remarks regarding future directions in connection

with the results presented in this work. First, it should be mentioned that the soft elastomeric

composites considered in this work offer great potential to be used as “active materials” due to their

considerable flexibility in the elastic regime. These materials, which change shape and size when sub-

jected to magnetic fields, are usually made in the form of composites consisting of an ideal dielectric

and a distribution of magnetically susceptible particles, such as iron and nickel alloys. Therefore,

the results of Part I of this thesis for the mechanical response of short-fiber-reinforced composites

could be used to derive corresponding results for the magneto-elastic response of such composite

materials when the particles are allowed to be magnetically susceptible by means of the “partial

decoupling approximation” introduced recently by Ponte Castañeda and Galipeau (2011) (see also

Ponte Castañeda and Siboni (2012); Siboni and Ponte Castañeda (2014); Siboni et al. (2014) for

electro-active polymer composites). In addition, the models developed in this part could be gener-

alized to account for deformability in the particle phase as well as for more general microstructures,

including random particle orientations. (See, for instance, Avazmohammadi and Naghdabadi (2009);

Avazmohammadi et al. (2009); Avazmohammadi and Naghdabadi (2013) for simple homogenization

models for these composites with special material properties of the constituent phases, microstruc-

tures and loading conditions.) The applications of these problems can be found in constitutive

modeling of biological tissues such as intervertebral disc and annulus fibrous, which, in a simple

picture, consist of an elastomer-like extracellular matrix and a random-distribution of particle-like,

deformable cells.

In the context of viscoelastic suspensions, considered in Part II of this thesis, a problem of

increasing interest is suspensions of microgels in Newtonian fluids which have applications in drug-

delivery systems. The microgel particles are soft and deform considerably when subjected to shear

flows. However, because of their highly porous nature, their mechanical deformation is strongly

influenced by diffusion of the fluid through them. Therefore, the results of Chapter 4 for the

rheological response of suspensions of soft particles in a Newtonian fluid can be generalized to

include the effect of diffusion and permeability in the particles by making use of constitutive models

for the polymer gels, recently developed by Chester and Anand (2011).

Finally, concerning our work in Part III of this thesis, it is recalled that the predictions of
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our models, although very feasible to calculate, are not as accurate as the estimates of the IVP

(incremental variational principle) model of Lahellec and Suquet (2013). Therefore, it is of our

interest to generalize the IVP model, which so far has been developed only for spherical particles,

to account for the particle shape effect on the overall behavior of the EVP composites.
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A.1 On the calculation of the tensor EI

In this appendix, we present a brief outline of the asymptotic analysis associated with obtaining

the limiting value of the tensor E
(
= P−1 − L(1)

)
in the incompressibility limit (i.e., in the limit

as ε → 0). We first spell out the main steps necessary to carry out the asymptotic expansion for

Q = P−1 about ε = 0. For this purpose, we assume that the incompressibility constraint holds, and

that the tensor Q can be expanded in the form

Q = ε−1Q−1 +Q0 + εQ1 +O(ε2), (A.1)

where Q−1 6= 0. In order to compute the unknown, tensorial coefficients Q−1 and Q0, we need to

first find the null-space of P0(the first term in the expansion (1.104)), defined by

nullP0 = {N|P0N = 0}, (A.2)

By solving P0N = 0 for the second-order tensor N, we will have

nullP0 = span{W1,W2,W3}, (A.3)

where {W1,W2,W3} stands for an orthogonal basis for the set of skew-symmetric, second-order

tensors such that Wi +WT
i = 0 and Wi ·Wj = 0 (i 6= j), i, j = 1, 2, 3. Using the major symmetry

of the tensor P0 ((P0)ijkl = (P0)klij), equations (A.3) indicate that

(P0)ijkl (Wp)kl = (P0)klij (Wp)kl = 0, p = 1, 2, 3. (A.4)

By substituting the asymptotic expansions (1.104) and (A.1) into the identity PQ = QP = III, and
collecting coefficients of the same power as ε, the following system of equations is obtained

Q−1P0 = P0Q−1 = 0, (A.5)

P0Q0 +P1Q−1 = Q0P0 +Q−1P1 = III, (A.6)

P0Q1 +P1Q0 +P2Q−1 = Q1P0 +Q0P1 +Q−1P2 = 0. (A.7)

Thus, this system of linear equations for Q−1, Q0, and Q1 uniquely determines the coefficients in

the expansion (A.1). Noting that det(Q−1) = 0, the general solution to the tensorial equation (A.5)

can be written as (Avrachenkov et al., 2001)

Q−1 =

3∑

i=1

Wi ⊗V
(0)
i , (A.8)
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where the arbitrary matrices V
(0)
i are determined using (A.6). To this end, by transposing (A.6)

(meaning (·)Tijkl = (·)klij) and then right-multiplying it with Wi, it follows that

(P1)ijkl (Q−1)klrs(Wp)ij = (Wp)rs, p = 1, 2, 3, (A.9)

where use has been made of the relations (A.4). Substituting (A.8) into (A.9), it leads to

[(P1)ijkl (Wp)ij(Wp)kl] (V
0
p )rs = (Wp)rs, p = 1, 2, 3, (A.10)

from which it is concluded that

V
(0)
i =

1

Wi ·P1Wi
Wi i = 1, 2, 3 (A.11)

Next, the general solution of (A.6) can be represented as (Avrachenkov et al., 2001)

Q0 = P†
0 (III −P1Q−1) +

3∑

i=1

Wi ⊗V
(1)
i , (A.12)

By the same token, in order to find V
(1)
i , we take the transpose of (A.7) and then right-multiply it

with Wi, which leads to

(P1)ijkl (Q0)klrs(Wp)ij + (P2)ijkl (Q−1)klrs(Wp)ij = 0, p = 1, 2, 3. (A.13)

where, again, use has been made of relations (A.4). Substituting (A.12) and (A.8) into the above

equation, and doing some algebra, the equations (1.110) for V
(1)
i are obtained. Finally, in the limit

as ε → 0, we recover Q−1 = L
(1)
−1 (when the isochoric deformation condition is satisfied), and along

with the expansion (1.94), the tensor EI = (P−1 − L(1))|µ′(1)→∞ reduces to EI= Q0 − L
(1)
µ .

A.2 In-plane components of the tensor P for cylindrical in-

clusions with elliptical cross-section embedded in a com-

pressible neo-Hookean matrix

In this appendix, we present explicit expressions for the (in-plane) components of the tensor P,

associated with a cylindrical fiber of elliptical cross-section embedded in a generalized linear-elastic

material with modulus tensor L(1). It is recalled that the tensor P, defined by (1.117), makes

use of the tangent modulus tensor L(1) = (∂2W (1)/∂F ∂F)|F=F̄. Since L(1) is characterized by the

objective and isotropic stored energy functionW (1), the following condition is known (Lopez-Pamies

and Ponte Castañeda, 2006b) to be satisfied by L(1)

L
(1)
ijkl(F̄) = Q̄rmQ̄jnQ̄spQ̄lqR̄irR̄ksL

∗
mnpq(D̄), (A.14)
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where R̄ and Q̄ are the macroscopic orthogonal tensors in the decompositions F̄ = R̄Ū = R̄Q̄D̄ Q̄T ,

given by Q̄ = cos(θ̄) (e1 ⊗ e1 + e2 ⊗ e2) + sin(θ̄)(e2 ⊗ e1 − e1 ⊗ e2) and R̄ = cos(ψ̄) (e1 ⊗ e1 + e2 ⊗
e2) + sin(ψ̄)(e2 ⊗ e1 − e1 ⊗ e2), with respect to the 2-D laboratory frame of reference, and D̄ is a

diagonal, second-order tensor with matrix representation D̄ = λ̄1 e1⊗e1+ λ̄2 e2⊗e2. The tensor L
∗

is orthotropic relative to {ei} and, recalling that it exhibits major symmetry L∗
ijkl = L∗

klij , it follows

that it generally has five in-plane, independent components. However, in order to obtain simple

analytical expressions for the P tensor components, following Lopez-Pamies and Ponte Castañeda

(2006b), we take advantage of the following constraint for the components of L(1)

L
(1)
1221 =

√
(L

(1)
1111 − L

(1)
1212)(L

(1)
2222 − L

(1)
1212)− L

(1)
1122, (A.15)

which is satisfied by the tangent modulus of a neo-Hookean material (but not for more general

hyperelastic materials including Gent).

Following Lopez-Pamies and Ponte Castañeda (2004b, 2006b), the four independent components

of L(1) are chosen to be L
(1)
1111 = l∗1 , L

(1)
2222 = l∗2 , L

(1)
1122 = l∗3 , L

(1)
1212 = l∗4 . It can then be deduced from

relation (A.14) that

Pijkl(F̄) = R̄ipR̄kqP
∗
pjql(Ū) (A.16)

Now, making use of this choice of L(1) along with the constraint (A.15), it follows that the in-

plane components of P∗, after some algebra, can be expressed in terms of the the variables Cj

(j = 1, ..., 13), and the functions Pi (i = 1, 2, 3), via

P ∗
1111 = P1(C1, C2, C3), P

∗
2222 = P2(C4, C5, C6), P

∗
1122 = P3(C7, C8, C9)

P ∗
1212 = P2(C1, C2, C10), P

∗
1112 = P3(C1, C2, C11), P ∗

1121 = P1(C7,−C8, C12)

P ∗
2212 = P2(C7,−C8, C12), P

∗
2221 = P3(C4, C5, C6), P ∗

1221 = P3(C7, C8,−C2/2), P
∗
2121 = P1(C4, C5, C13)

where

C1 = 2L∗ cos4(θ̄) + (3l∗1 − 4l∗4 + l∗2 − 4l∗) cos2(θ̄) + l∗4 − l∗1,

C2 = [L∗ cos2(θ̄) + l∗1 − l∗ − l∗4] sin(2θ̄), C3 = −L∗ cos4(θ̄) + 2(l∗1 − l∗ − l∗4) cos
2(θ̄) + l∗1 ,

C4 = 2L∗ cos4(θ̄) + (3l∗2 − 4l∗4 + l∗1 − 4l∗) cos2(θ̄) + l∗4 − l∗2,

C5 = [L∗ cos2(θ̄) + l∗2 − l∗ − l∗4] sin(2θ̄), C6 = L∗ sin2(θ̄) cos2(θ̄)− l∗4,

C7 = L∗ sin(4θ̄)/4, C8 = L∗ sin2(2θ̄)/2− l∗, C9 = [l∗1 − l∗ − l∗4 − L∗ cos2(θ̄)] sin(θ̄) cos(θ̄),

C10 = L∗ cos4(θ̄) + 2(l∗4 + l∗ − l∗1) cos
2(θ̄) + l∗1 , C11 = 2(l∗4 + l∗ − l∗1) cos

2(θ̄)− L∗ cos4(θ̄) + l∗1 ,

C12 = [L∗ cos2(θ̄) + l∗1 − l∗ − l∗4] sin(θ̄) cos(θ̄), C13 = L∗ sin2(2θ̄)/4− l∗4 ,

and

P1(A1, A2, A3) = ϑ {{̟(A1a1 +A2a2)s2 − k(a2
1 + a2

2 )[(ka1 − 1)A3 + k(k a1 − 1)A1 + k(k a2 − a2)A2]}s1
+ {(a21 + a2

2 )[k(2a1 + a2
2 )− 2]A3 − a2[3ka

2
1 − a2

2k + [(a22 − 4)k − 1]a1 + 2]A2

+[2ka2
1 + 2(2a22k − 1)a1 + ka42 − (2k + 1)a22]A1}s2

}
,
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P2(A1, A2, A3) = −ϑ
{
{̟(A1a1 +A2a2)s2 − (k − 1)(a2

1 + a2
2 )[(ka1 − 1)A3 + k(k a1 − 1)A1

+ k(k a2 − a2)A2]}s1 + {(a21 + a2
2 )[k(2a1 − 2a21 − a2

2 ) + 2a1 + a2
2 − 2]A3

+ a2[ka
3
1 + (1− 5k)a2

1 + (1 + 4k)a1 + (1 − k)a2
2 − 2]A2

+[(2 + 2k − ka22)a
2
1 + 2(ka22 − 1)a1 + (1 − 2k)a22 − 2a31k]A1}s2

}
,

P3(A1, A2, A3) = ϑ {{̟(A1a2 −A2a1)s2 − k(k − 1)(a2
1 + a2

2 )[a2kA1 + (1− ka1)A2 + a2A3]}s1
+ {a2[2a3

1k + (a22k − 2− 2k)a21 + 2(1− a22k)a1 + (2k − 1)a22]A2

− a2[3a
2
1k + (a22k − 4k − 1)a1 + 2− a22k]A1 − a2(a

2
1 + a2

2 )(ka1 − 2k + 1)A3 }s2.}

In the above expressions,

a1 = (l∗1 − l∗2) cos(2θ̄)/a, a2 = (l∗1 − l∗2) sin(2θ̄)/a, a = −[l∗1 sin
2(θ̄) + l∗2 cos

2(θ̄)]

̟ = (ka1 − 1)2 + k (k − 1)a2
2 , ϑ = 2πα{̟(a2

1 + a2
2 )s1s2}−1, L∗ = 2l∗4 + 2l∗ − l∗2 − l∗1

l∗ =
√
(l∗1 − l∗4)(l

∗
2 − l∗4), k = ω2/(ω2 − 1).

For the special case of compressible neo-Hookean materials, the expression for the components

of the tensor P are obtained by substituting the following expressions for l∗1, ... l
∗
4 into the above

relations

l∗i = λ̄−2
i

[
µ(1)(λ̄2i + 1) + µ′(1)J̄2

]
(i = 1, 2), l∗3 = µ′(1)(2J̄ − 1), and l∗4 = µ(1), (A.17)

where J̄ = det(F̄) = λ̄1 λ̄2.

A.3 The tensors P and E for spherical inclusions embedded

in a compressible neo-Hookean matrix

In this appendix, explicit analytical expressions are given for the components of the tensors P and

E for spherical inclusions embedded in generalized linear-elastic material with moduli tensor L(1),

whose components are assumed to satisfy (Agoras et al., 2009a) the constraints

L
(1)
1212 = L

(1)
1313 = L

(1)
2323

L
(1)
1221 =

√
(l∗1 − l∗7)(l

∗
2 − l∗7)− l∗4 , L

(1)
1331 =

√
(l∗1 − l∗7)(l

∗
3 − l∗7)− l∗5, L

(1)
2332 =

√
(l∗2 − l∗7)(l

∗
3 − l∗7)− l∗6 ,

(A.18)

where the variables l∗i (i = 1, .., 7 have been identified with the seven remaining “independent”

components of L(1) (relative to the basis {ei}) via

l∗1 = L
(1)
1111, l

∗
2 = L

(1)
2222, l

∗
3 = L

(1)
3333, l

∗
4 = L

(1)
1122, l

∗
5 = L

(1)
1133, l

∗
6 = L

(1)
2233 , l

∗
7 = L

(1)
1212. (A.19)
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In this connection, it should be noted that the conditions (A.18) are satisfied by the tangent modulus

of a neo-Hookean material, but not more generally.

Recalling that the composite is statistically isotropic in the undeformed configuration, the ex-

pression for P in the basis {ei} can be expressed as

Pijkl =
1

4π

∫ π

0

∫ 2π

0

(L
(1)
imknξmξn)

−1 ξjξl dθ dφ , (A.20)

where ξ1 = sin(φ) cos(θ), ξ2 = sin(φ) sin(θ), and ξ3 = cos(φ). Now, making use of the above choice

for L(1), it can be shown that the components of the microstructural tensor P are given by the

analytical expressions

P1111 =− 1

3l∗7(l
∗
1 − l∗3)

3/2(l∗1 − l∗2)
2

{√
l∗2(l

∗
1 − l∗7){2χ1Ξe + l∗3(l

∗
2 − l∗1)Ξf}

−
√
l∗1 − l∗3{(l∗3 + l∗7 + l∗2)(l

∗
1)

2 − [(3 l∗2 + 2l∗3)l
∗
7 − (l∗2)

2 + 2l∗3l
∗
2 ] l

∗
1 + l∗2l

∗
3(4l

∗
7 − l∗2)}

}
,

P2222 =− 1

3l∗2l
∗
7(l

∗
2 − l∗1)

2(l∗2 − l∗3)
2
√
l∗1 − l∗3

{
(l∗2 − l∗7)

√
l∗2 {2l∗2(l∗1 − l∗3)χ2Ξe + l∗3(l

∗
2 − l∗1)[2l

∗
3l

∗
2 + l∗1(l

∗
2 − 3l∗3)]Ξf}

−l∗2(l∗2 − l∗3)
√
l∗1 − l∗3{(l∗1 + l∗7 + l∗3)(l

∗
2)

2 − [(3l∗1 + 2l∗3)l
∗
7 + 2l∗3l

∗
1 − (l∗1)

2]l∗2 − l∗1l
∗
3(l

∗
1 − 4l∗7)}

}
,

P3333 =
1

3l∗7(l
∗
2 − l∗3)

2(l∗1 − l∗3)
(3/2)

{√
l∗2(l

∗
7 − l∗3) {2χ3Ξe − [l∗1l

∗
3 + l∗2(2l

∗
3 − 3l∗1)]Ξf}

+
√
l∗1 − l∗3(l

∗
2 − l∗3)[(l

∗
7 − l∗1 − l∗2)l

∗
3 + l∗1l

∗
2 ]
}
,

P1122 =
1

3l∗7(l
∗
2 − l∗1)

2(l∗2 − l∗3)
√
l∗1 − l∗3

(l∗4+l
∗
7)
{√

l∗2 {l∗3(l∗2 − l∗1)Ξf − χ3Ξe}+ (l∗1 + l∗2)(l
∗
3 − l∗2)

√
l∗1 − l∗3 ,

}
,

P1133 =
l∗1 − l∗7

3l∗7(l
∗
1 − l∗2)(l

∗
2 − l∗3)(l

∗
1 − l∗3)

3/2(l∗4 + l∗7)

{√
l∗2χ2Ξe −

√
l∗2l

∗
3(l

∗
2 − l∗1)Ξf − l∗1(l

∗
2 − l∗3)

√
l∗1 − l∗3

}
,

P2233 = − l∗6 + l∗7
3l∗7(l

∗
1 − l∗2)(l

∗
2 − l∗3)

2
√
l∗1 − l∗3

{√
l∗2 [χ1Ξe + 2l∗3(l

∗
2 − l∗1)Ξf ]− l∗2(l

∗
2 − l∗3)

√
l∗1 − l∗3

}
,

(A.21)

where

Ξf = F

(√
l∗1 − l∗3
l∗1

,

√
l∗1(l

∗
2 − l∗3)

l∗2(l
∗
1 − l∗3)

)
, Ξe = E

(√
l∗1 − l∗3
l∗1

,

√
l∗1(l

∗
2 − l∗3)

l∗2(l
∗
1 − l∗3)

)
,

and χ1,2,3 = l∗1,2,3(l
∗
2,1,1 + l∗3,3,2)− 2l∗2,1,1l

∗
3,3,2. The functions F and E denote the incomplete elliptic

integrals of the first and second kinds, respectively (Abramowitz and Stegun, 1965) which are defined

in (1.138). It is also remarked that the other non-zero components of the tensor P do not enter the

TSO expression (1.130).
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Then, the components of the tensor E may be computed from the corresponding components of

the tensor P by means of the following relations

E1111 = (P2222P3333 − P 2
2233)Π− l∗1 , E2222 = (P1111P3333 − P 2

1133)Π− l∗2

E3333 = (P1111P2222 − P 2
1122)Π− l∗3 , E1122 = (P2233P1133 − P1122P3333)Π− l∗4

E1133 = (P1122P2233 − P1133P2222)Π− l∗5 , E2233 = (P1122P1133 − P2233P1111)Π− l∗6 , (A.22)

where

Π = (P1111P2222P3333 + 2P1122P1133P2233 − P1111P
2
2233 − P2222P

2
1133 − P3333P

2
1122)

−1.

Next, it is noted that the seven independent components l∗1, l
∗
2 , ... l

∗
7 (defined by (A.19)) for a

compressible neo-Hookean material are given by

l∗i = λ̄−2
i

[
µ(1)(λ̄2i + 1) + µ′(1)J̄2

]
; i = 1, 2, 3, l∗i = µ′(1)λ̄i(2J̄ − 1); i = 4, 5, 6, (A.23)

and l∗7 = µ(1), where J̄ = det(F̄) = λ̄1 λ̄2 λ̄3 = 1.

Finally, the expression for the relevant components of the tensor EI may be obtained by substi-

tuting the expressions (A.23) for the l∗i (i = 1..7) into the components of the tensor E (A.22) and

taking the limit as µ′(1) → ∞. The final expressions are not included here for brevity.
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B.1 Calculation of the tensor E

In this appendix, we recap from Chapter 1 the procedure for calculating the tensor E for a given

stored-energy function W
(1)
µ , macroscopic deformation gradient F̄, and shape tensor Z0. Thus,

E = Q0 − L(1)
µ , (B.1)

where

Q0 = P†
0 (III −P1Q−1) +

3∑

i=1

Wi ⊗V
(1)
i , (B.2)

with

Q−1 =

3∑

i=1

Wi ⊗V
(0)
i . (B.3)

In the above equations, {W1,W2,W3} is a set of second-order tensor spanning the null space of

P0, while the second order tensors V
(0)
i and V

(1)
i are defined by (Avrachenkov et al., 2001)

V
(0)
i =

1

Wi ·P1Wi
Wi, (B.4)

and

V
(1)
i = − 1

Wi ·P1Wi

{
(P1P

†
0)

TWi +
[
Wi.(P2 −P1P

†
0P1)Wi

]
V

(0)
i

}
, (B.5)

where i = 1, 2, 3 (no sum), and where the superscript T denotes the usual transpose of a fourth-

order tensor (i.e., (·)Tijkl = (·)klij). In addition, P†
0 is the Moore-Penrose generalized inverse of P0

satisfying the properties

P0 P
†
0P0 = P0, P†

0 P0P
†
0 = P†

0,

(P0 P
†
0)

T = P0 P
†
0, (P†

0 P0)
T = P†

0 P0, (B.6)

where the tensors P0, P1, andP2 are given by

(Pr)ijkl =
1

4π |Z0|

∫

|ξξξ|=1

(Br)ik ξjξl

[
ξξξT (ZT

0 Z0)
−1ξξξ
]− 3

2

dS, r = 0, 1, 2. (B.7)

Note that the tensor P0 is the limiting value of the tensor P (defined in (2.18)) in the incompressible

matrix limit. The second-order tensors Br, r = 1, 2, 3 in (B.7) can be obtained by

B0 =
1

d0
D0,

B1 =
1

d0

(
D1 −

d1
d0

D0

)
,

B2 =
d1

(d0)3
(d1D0 − d0D1) , (B.8)
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where d0 and d1 are given by

d0 =
1

6
eijkepqr [(Kµ)ip(Kµ)jq(K−1)kr + (Kµ)ip(K−1)jq(Kµ)kr + (K−1)ip(Kµ)jq(Kµ)kr ] ,

d1 = det(Kµ) =
1

6
eijkepqr(Kµ)ip(Kµ)jq(Kµ)kr , (B.9)

and the tensors D0 and D1 have components

(D0)ik = eirsekpq(Kµ)rp(K−1)sq ,

(D1)ik =
1

2
eirsekpq(Kµ)rp(Kµ)sq. (B.10)

Finally, the second-order tensorsKµ and K−1 in (B.9) and (B.10) are the parts of the acoustic tensor

K (defined in the context of (2.18)) associated with the ”incompressible” and ”compressible” parts

of the moduli tensor L(1). These two parts of the tensor L(1), denoted by L
(1)
µ and L

(1)
−1, respectively,

defined in (2.6). Hence, the tensors K−1 and Kµ are determined by the following relations

(Kµ)ik = (Lµ)
(1)
ijkl ξjξl, (K−1)ik = (L−1)

(1)
ijkl ξjξl. (B.11)

In general, a Gaussian quadrature technique can be implemented for the numerical computations

of the integrals (B.7) over the surface of the unit sphere, |ξξξ| = 1. However, it is noted that, for a given

microstructure, and for certain types of matrix behaviors and loading conditions, these integrals can

be calculated analytically, leading to closed-form expressions for the components of the tensor E.

This is the case for spheroidal particles in a neo-Hookean matrix subjected to aligned loadings. The

relevant components of the tensors Pr for this case are given in Appendix C.

B.2 Calculation of the tensors Pr for spheroidal particles em-

bedded in a generalized neo-Hookean matrix under non-

aligned loadings

In this appendix, we briefly address the numerical calculation of the integrals (B.7) for the case

of spheroidal particles embedded in an incompressible matrix of the form (2.21) subjected to non-

aligned loadings (2.24) (note that θ̄1 = 0◦). For this purpose, we make use of polar cylindrical

coordinates, and parametrize the unit vector ξξξ in (B.7) as

ξ1 =
√
1− z2 cos(θ), ξ2 =

√
1− z2 sin(θ), ξ3 = z, (B.12)

in which θ and z vary over the intervals 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. Now, making use of (B.12), and

setting Z0 = diag(1, 1, w) for the spherical particles, the integrals (B.7) yield to the following double

integrals

(Pr)ijkl =
w

4π

∫ π

0

∫ 1

0

(Br)ik

[1 + (w2 − 1)z2]
3/2

dθ dz, r = 0, 1, 2. (B.13)
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In order to compute the above integrals, it proves helpful to provide the corresponding analytical

expression for the tensors Br, r = 1, 2, 3, which can be determined from those of the second-order

tensors D0 and D1 as well as the scalars d0 and d1 by using relations (B.8). For general non-aligned

loadings (2.24) and general matrix behavior (2.21), the analytical expressions for D0, D1, d0 and d1

are too cumbersome to be included here, and instead, we present the expressions for the tensors Kµ

andK−1 from which the corresponding expressions forD0, D1, d0 and d1 can be easily obtained with

the help of relations (B.9) and (B.10). In this case, the components of the symmetric, second-order

tensors Kµ and K−1 read as

(Kµ)11 = 2 gI + 4(V1 ξ1 − V3 ξ3)
2gII + (V2 ξ1 + V3 ξ3)

2 λ̄22hJJ , (Kµ)22 = 2 gI + (4 λ̄22gII + hJJ/λ̄
2
2)ξ

2
2 ,

(Kµ)33 = 2 gI + 2 (V3 ξ1 − V2 ξ3)
2gII + (V3 ξ1 + V1 ξ3)

2λ̄22hJJ ,

(Kµ)12 =
[
4 λ̄2(V1 ξ1 − V3 ξ3)gII + (V2 ξ1 + V3 ξ3)hJJ

]
ξ2,

(Kµ)23 =
[
4 λ̄2(V2 ξ3 − V3 ξ1)gII + (V3 ξ1 + V1 ξ3)hJJ

]
ξ2,

(Kµ)13 = 4
[
(2V 2

3 + λ̄−1
2 )ξ1ξ3 − V3(V1ξ

2
1 + V2ξ

2
3)
]
gII + λ̄22

[
(2V 2

3 + λ̄−1
2 )ξ1ξ3 + V3(V1ξ

2
3 + V2ξ

2
1)
]
hJJ ,

and

(K−1)11 = (V2 ξ1 + V3 ξ3)
2 λ̄22, (K−1)22 = ξ22/λ̄

2
2, (K−1)33 = (V3 ξ1 + V1 ξ3)

2 λ̄22,

(K−1)12 = (V2 ξ1 + V3 ξ3)ξ2, (K−1)23 = (V3 ξ1 + V1 ξ3)ξ2,

(K−1)13 =
[
(2V 2

3 + λ̄−1
2 )ξ1ξ3 + (V2ξ

2
1 + V1ξ

2
3)V3

]
λ̄22, (B.14)

where

V1 = λ̄1 cos(θ̄)2 +
(
λ̄1λ̄2

)−1
sin(θ̄)2, V2 = λ̄1 sin(θ̄)2 +

(
λ̄1λ̄2

)−1
cos(θ̄)2

V3 =
[
λ̄1 −

(
λ̄1λ̄2

)−1
]
sin(θ̄) cos(θ̄).

For the special case of neo-Hookean matrix given by (2.23), the final expressions for d0, d1 and D0,

D1 can be simplified considerably. In this case, the expressions for d0 and d1 are given by

d0 = (µ(1))2(u2ξ
2
1 + u3ξ1ξ3 + u1ξ

2
3 + t2 λ̄41 ξ

2
2)λ̄

2
2, d1 = µ(1)d0 + (µ(1))3. (B.15)

Also, the corresponding components of the symmetric matrices D0 and D1 read as

(D0)11 = µ(1) λ̄22
(
V 2
3 ξ

2
1 + t2 λ̄41 ξ

2
2 + V 2

1 ξ
2
3 + 2V1V3 ξ1ξ3

)
, (D0)22 = µ(1) λ̄22(u2ξ

2
1 + u3ξ1ξ3 + u1ξ

2
3),

(D0)33 = µ(1) λ̄22
(
V 2
2 ξ

2
1 + t2 λ̄41 ξ

2
2 + V 2

3 ξ
2
3 + 2V2V3 ξ1ξ3

)
,

(D0)12 = −µ(1) ξ2(V2ξ1 + V3 ξ3), (D0)23 = −µ(1) ξ2(V3ξ1 + V1 ξ3),

(D0)13 = −µ(1) λ̄22
[
V2V3 ξ

2
1 + (2V 2

3 + λ̄−1
2 )ξ1ξ3 + V1V3ξ

2
3

]
,
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and

(D1)11 = µ(1)(D0)11 + (µ(1))2, (D1)22 = µ(1)(D0)22 + (µ(1))2, (D1)33 = µ(1)(D0)33 + (µ(1))2,

(D1)12 = µ(1)(D0)12, (D1)13 = µ(1)(D0)13, (D1)23 = µ(1)(D0)23, (B.16)

where t =
(
λ̄1λ̄2

)−2
, and

u1 = λ̄21 cos
2(θ̄) + t sin2(θ̄), u2 = t cos2(θ̄) + λ̄21 sin2(θ̄), u3 = (λ̄21 − t) sin(2θ̄). (B.17)

Finally, it is noted that for the special case of aligned loadings (2.34) with matrix behavior given by

(2.21), we can make use of the analytical expressions for the tensors D0 and D1 and the scalars d0

and d1 provided in Chapter 1 for the case of spherical particles embedded in a matrix of the form

(2.21) under isochoric, triaxial loadings of the form (2.34). This is because the tensors D0 and D1

and the scalars d0 and d1 do not contain any information about the shape of particles and depend

only on the matrix behavior and loading conditions. These expressions are available in relations

(1.131) and (1.132).

In general, a Gaussian quadrature technique with a rather high numbers of Gauss points is

needed for the numerical integrations of (B.13). However, for the special case of a neo-Hookean

matrix subjected to aligned loadings, the integrals (B.13) can be evaluated analytically, and will be

given in Appendix C.

B.3 Normal components of the tensor Pr, r = 1, 2, 3 for spheroidal

particles embedded in a neo-Hookean matrix under gen-

eral aligned loading

In this appendix, we present explicit expressions for the normal components of the tensor Pr, r =

1, 2, 3, associated with a spheroidal particle embedded in a neo-Hookean material subjected to the

isochoric, aligned deformation of the form (2.34). It is recalled that these analytical expressions for

the components of the tensors Pr, defined by (B.7), are needed to find the corresponding analytical

expressions for the E-tensor, using Eqs. (B.1)-(B.6). In turn, a corresponding analytical expression

for the effective stored-energy function (2.35) is obtained by substituting the E-tensor components.

Making use of the neo-Hookean model (2.23) into equations (B.8)-(B.11), it follows that the normal
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components of Pr, r = 1, 2, 3, after some algebra, can be expressed as

(P0)1111 = λ̄21 (2µ
(1) l23 ω

2
1 ω2 ω

4
3)

−1
{
ω2
1 ω2 ω3

[
w (2 λ̄21λ̄

6
2 − l4)A1 + ω3 (w

2l4 − 2 λ̄21λ̄
6
2)
]

−2w λ̄1λ̄2

{
ω4
2 ω

2
3Ξe1 − ω2

2

[
w2(12̄L + 1) + λ̄21λ̄

2
2 T

2̄,1
1,0

]
Ξf1 + l22ω

2
1Ξp3

}}
,

(P0)2222 = λ̄22 (2µ
(1) l23 ω2 ω

4
3)

−1
{
ω2

[
wω3 (2 λ̄

6
1λ̄

2
2 − l4)A1 + ω2

3 (w
2l4 − 2 λ̄61λ̄

2
2)
]

− 2wλ̄1λ̄2 (ω
2
1ω

2
3Ξe1 + l1 ω

2
1Ξf1 + l21Ξp3)

}
,

(P0)3333 = (µ(1) ω2
1 ω2 ω

5
3)

−1
[
ω2
1ω2ω

2
3(wA1 − ω3)− w λ̄31λ̄

3
2 ω

3
3Ξe1 − w λ̄31λ̄

3
2 ω3 ω

2
1Ξp3

−w λ̄31λ̄32 ω3

(
λ̄41λ̄

2
2 − 2w2 + 1

)
Ξf1

]
,

(P0)1122 = −λ̄1λ̄2 (2µ(1) l23 ω2 ω
4
3)

−1
{
ω2ω3

[
w(2 λ̄42λ̄

4
1 − l4)A1 + ω3 (w

2l4 − 2 λ̄42λ̄
4
1)
]

−2w λ̄1λ̄2
(
ω2
2ω

2
3Ξe1 + l2 ω

2
1Ξf1 + l1l2 Ξp3

)}
,

(P0)1133 = λ̄21λ̄
2
2 (µ

(1) l3 ω
2
1 ω2 ω

5
3)

−1
{
w λ̄1 ω3

[
(λ̄42λ̄

2
1 − ω2

2 − 1)w2 + ω2
2 − λ̄61λ̄

6
2 + λ̄41λ̄

2
2

]
Ξf1

+wω2
2λ̄1 ω

3
3Ξe1 − w λ̄1 ω3 l2 ω

2
1Ξp3 + λ̄2 ω

2
1 ω2 ω

2
3 (wA1 − ω3)

}
,

(P0)2233 = −λ̄21λ̄22 (µ(1) l3ω2 ω
5
3)

−1
[
λ̄1ω2ω

2
3(wA1 − ω3) + w λ̄2ω3

(
ω2
3Ξe1 − ω2

1Ξf1 − l1 Ξp3

)]
,

(P1)1111 = λ̄21λ̄2 (2µ
(1)l23 ω

4
1ω2)

−1
[
wλ̄1ω

2
2

(
w2 T1

3̄ + λ̄41 λ̄
2
2 l4
)
Ξe1 − wλ̄31λ̄

2
2l3
(
w2T2

3̄ + λ̄41 λ̄
4
2

)
Ξf1

+λ̄32 ω
2
1 ω2

(
2w2 − λ̄41 l4

)]
,

(P1)2222 = λ̄1λ̄
2
2(2µ

(1)l23ω
3
2)

−1
[
wλ̄21λ̄

5
2l3 Ξf1 − wλ̄2

(
w2 T3

1̄ − λ̄21λ̄
4
2l4
)
Ξe1 + λ̄31ω2(2w

2 − λ̄42 l4)
]
,

(P1)3333 = λ̄1λ̄2(2µ
(1) ω3

1ω
4
2)

−1
[
w(w4 + w2 λ̄21λ̄

2
2 l4 − 3λ̄61λ̄

6
2)Ξe2 − wλ̄21λ̄

2
2

(
w2T1

2 − 3 λ̄42λ̄
4
1

)
Ξf2

−λ̄31λ̄32 ω1 ω
2
2

]
,

(P1)1122 = λ̄21λ̄
2
2(2µ

(1)l23ω
2
1ω2)

−1
[
w
(
w2l4 − 2 λ̄41λ̄

4
2

)
Ξe1 − wλ̄41λ̄

2
2l3 Ξf1 − 2 λ̄1λ̄2 ω2 ω

2
1

]
,

(P1)1133 = λ̄31λ̄
2
2(2µ

(1)l3ω
4
1ω2)

−1
[
λ̄1λ̄2 ω2 ω

2
1 − w

(
w2T2

1̄ − λ̄41λ̄
4
2

)
Ξe1 + w l3

(
λ̄41λ̄

2
2 + w2

)
Ξf1

]
,

(P1)2233 = −λ̄21λ̄32(2µ(1)l3ω1ω
4
2)

−1
[
λ̄1λ̄2ω1ω

2
2 + w

(
w2T1

2̄ + λ̄41λ̄
4
2

)
Ξe2 − w l3

(
λ̄42λ̄

2
1 + w2

)
Ξf2

]
,
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(P2)1111 = −λ̄21λ̄2(8µ(1)l23ω
6
1ω2)

−1
{
wλ̄1

[(
Y3,6̄

3,0 +T4
12

)
w6 +

(
Y7̄,12

3̄,12
+ P7,9̄

0,0 + 12 λ̄21λ̄
6
2

)
w4

−w2 λ̄41λ̄
2
2

(
Y1,3̄

6,4 + P2,3
0,9̄

+ L4
16

)
+ λ̄81λ̄

6
2

(
4
4L

2
0 +T1,0

1,4̄

)]
Ξe1 − wλ̄1l3

[(
8
12
L9
0 +T3̄,0

3,9̄

)
w4

−λ̄41λ̄22
(
8
16
L1
0 +T5

6̄

)
w2 + λ̄81λ̄

6
2R

4̄,1
1̄,0

]
Ξf1 + λ̄2ω

2
1ω2

[
8w4λ̄22 − λ̄21

(
4
12L

6
0 +T3̄,0

5,8̄

)
w2

+λ̄61λ̄
2
2

(
4
4L

2
0 +T1,0

1,4̄

)]}
,

(P2)2222 = −λ̄1λ̄22(8µ(1)l23 ω
2
1ω

5
2)

−1
{
λ̄1ω

2
1ω2

[
8w4λ̄21 + λ̄22

(
T5̄,0

3,8 +
12
4̄ L0

6̄

)
w2 + λ̄21λ̄

6
2

(
T1,0

1,4̄
+4

4 L
0
2

)]

+ wλ̄2

[(
T12

4 +Y3,6̄
3,0

)
w6 +

(
P0,0
7,9̄

+Y3̄,12
7̄,12

+ 12 λ̄61λ̄
2
2

)
w4 + λ̄42λ̄

2
1

(
P0,9
2̄,3̄

+Y6̄,3
1̄,4̄

+ L16
4̄

)
w2

+λ̄82λ̄
6
1

(
4
4L

0
2 +T1,0

1,4̄

)]
Ξe1 − wλ̄2l3

[(
0
4̄L

3
6̄ + T3̄,0

3,3

)
w4 + λ̄21λ̄

6
2

(
3
2L−Y4̄,4̄

0,0 − 6 λ̄61 + 1
)
w2

−λ̄61 λ̄82 R4,3̄
1,2

]
Ξf1

}
,

(P2)3333 = (8µ(1) λ̄1λ̄2ω
5
1ω

6
2)

−1
{
λ̄31λ̄

3
2ω1ω

2
2

[
w4 R4,4

1̄,4
− λ̄21λ̄

2
2

(
4
4L + T3,0

3,8

)
w2 + λ̄61λ̄

6
2R

4
7

]

− w
[
w8 R4,1

2,1 + λ̄21λ̄
2
2
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T7̄,0

7̄,3
+ L7

7

)
w6 − λ̄41λ̄

4
2

(
Y3,13

3,16 + P0,20
0,20 + L4

4

)
w4 + λ̄81λ̄

8
2
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T10,0

10,21 +
16
16 L

)
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− 3 λ̄121 λ̄
12
2 R4

5

]
Ξe2 + wλ̄21λ̄

2
2
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T1̄,0

1,3 +
4
8 L

4
5

)
w6 − λ̄21λ̄

2
2

(
Y3,3

9,24 + P0,11
3̄,13

+ L4
8
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+2 λ̄61λ̄
6
2
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T5,0
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8
10 L

0
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)
w2 + 3 λ̄101 λ̄
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2 R4̄,0
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Ξf2

}
,

(P2)1122 = λ̄21λ̄
2
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(1)l23ω
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1ω

4
2)
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λ̄1λ̄2ω

2
2

[
8w4 +

(
8̄
8̄L

1
1 − T1

1

)
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4
2 R

8̄,1
2̄,1
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4
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1,0
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}
,
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8µ(1)l3ω

6
1 ω

3
2
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λ̄31λ̄

3
2ω

2
1 ω2
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)
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0
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4̄L

7
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)
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2
2
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P1,11
0,7 +Y7̄,3
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4

)
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2
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,
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4
1ω

5
2
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2ω
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(
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0
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,

where

l1 = λ̄41λ̄
2
2 − 1, l2 = λ̄21λ̄

4
2 − 1, l3,4 = λ̄21 ∓ λ̄22,

ω1 =
√
w2 − λ̄41λ̄

2
2, ω2 =

√
w2 − λ̄21λ̄

4
2, ω3 =

√
w2 − 1,
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and the symbols

a
bL

c
d = aλ̄41λ̄

2
2 + bλ̄21λ̄

4
2 + cλ̄61λ̄

2
2 + dλ̄21λ̄

6
2, Pa,c

b,d = aλ̄81λ̄
2
2 + bλ̄21λ̄

8
2 + cλ̄61λ̄

4
2 + dλ̄41λ̄

6
2,

Ra,c
b,d = cλ̄41λ̄

2
2 + dλ̄21λ̄

4
2 + aλ̄21λ̄

2
2 + b, Ta,c

b,d = aλ̄21 + bλ̄22 + cλ̄21λ̄
2
2 + dλ̄41λ̄

4
2,

Ya,c
b,d = aλ̄41 + bλ̄42 + cλ̄21λ̄

2
2 + dλ̄41λ̄

4
2, Lc

d =0
0 L

c
d,

a
bL =a

b L0
0, Ta

b = Ta,0
b,0 ,

are introduced for brevity, with barred subscript/superscript indicating negative coefficients. More-

over, Ξf1,2, Ξe1,2, Ξp3 are given in terms of the incomplete elliptic integrals of the first, second and

third kind (Abramowitz and Stegun, 1965), respectively, via

Ξf1 = F
(ω2

w
, ω4

)
, Ξf2 = F

(ω1

w
, ω5

)
,

Ξe1 = E
(ω2

w
, ω4

)
, Ξe2 = E

(ω1

w
, ω5

)
, Ξp3 = P

(
ω2

w
,
ω2
3

ω2
2

, ω4

)
,

where ω4,5 =
√
ω2
1,2/ω

2
2,1, the functions F and P are defined in (2.44), and the function E is defined

by

E (a, b) =

∫ a

0

√
1− b2t2√
1− t2

dt. (B.18)

It is important to note that the components of the Pr tensors, given in this appendix, are valid

for both prolate (w > 1) and oblate (w < 1) shapes of particles, and for all positive stretches λ̄1,

and λ̄2. However, for the axisymmetric case with the condition λ̄1 = λ̄2 suitable limits must be

taken. The final results for this case (in terms of the components of the E tensor) are given in

Subsection 2.4.2. Finally, it should be pointed out that the remaining non-zero components of the

tensors Pr, such as (Pr)1313 and (Pr)1113, have not been provided here since they do not enter the

process for calculating the appropriate components of the tensor E, required for determining the

effective stored-energy function (2.35).

B.4 On the modulus tensor Lc for the incompressible com-

posites with the effective stored-energy function Φ̂(λ̄1, λ̄2, θ̄2, θ̄1)

subjected to non-aligned loadings

In this appendix, we spell out the explicit expressions for the all traces of the effective incremental

moduli tensor Lc which appear in the condition (2.47). Note that in the incompressibility limit of

the composite, these (3-D) moduli traces remain finite while some components of the tensor L̂c tend

to infinity. Also, these traces, associated with the loading condition (2.24) (recall that θ̄1 = 0◦), can

be given in terms of kinematical variables λ̄1, λ̄2, θ̄(= θ̄2), as well as the derivatives of the effective

potential Φ̂(λ̄1, λ̄2, θ̄1, θ̄2), with respect to its arguments, calculated at θ̄1 = 0◦. Moreover, the

explicit expressions for the corresponding moduli can be provided in a simpler and shorter form if

they are given in a coordinate basis {e′i} which is aligned with the loading axes (see Fig 3.3.2(a)).

In this case, the components of the moduli tensor L̂c in the basis {e′i} and {ei} can be related to
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each other thorough the following transformation rule

L̂
′c
ijkl(F̄) = Q̄miQ̄njQ̄pkQ̄qlL̂

c
mnpq(F̄), (B.19)

where Q̄ = cos(θ̄) (e1⊗e1+e3⊗e3)+sin(θ̄) (e1⊗e3−e3⊗e1)+ e2⊗e2, and the primed components

denote those relative to the basis {e′i}. Making use of this transformation, the aforementioned traces

of L̂c in the basis {e′i} read as

L̂
′∗
1 =

λ̄21 λ̄2

[(
λ̄41λ̄

2
2 + 3

)
Φ̂,θ̄2 − λ̄1 l1 Φ̂,λ̄1 θ̄2

]

l21

L̂
′∗
2 =

λ̄21 λ̄2

[(
3 λ̄41λ̄

2
2 + 1

)
Φ̂,θ̄2 − λ̄1 l1 Φ̂,λ̄1θ̄2

]

l21

L̂
′∗
3 =

λ̄1

(
λ̄1 l

2
1 Φ̂,λ̄1λ̄1

− 2 l1 Φ̂,λ̄1
− 2 λ̄31 λ̄

2
2 Φ̂,θ̄2θ̄2

)

l21

L̂
′c
1313 =

λ̄1

(
λ̄31 λ̄

2
2 Φ̂,θ̄2θ̄2 + l1 Φ̂,λ̄1

)

l21
L̂

′c
3131 =

λ̄41λ̄
2
2

(
Φ̂,θ̄2θ̄2 + λ̄1 l1 Φ̂,λ̄1

)

l21
(B.20)

L̂
′c
3232 =

λ̄21λ̄
4
2

(
cos2(θ̄) Φ̂,θ̄1θ̄1 + λ̄2 l2 Φ̂,λ̄2

+ sin(θ̄) cos(θ̄) Φ̂,θ̄2

)

l22

L̂
′c
2323 =

λ̄2

(
λ̄21 λ̄

3
2 cos2(θ̄) Φ̂,θ̄1θ̄1 + l2 Φ̂,λ̄2

+ λ̄21 λ̄
3
2 sin(θ̄) cos(θ̄) Φ̂,θ̄2

)

l22

L̂
′c
2121 = −

λ̄21

[
l3

(
λ̄2 Φ̂,λ̄2

− λ̄1 Φ̂,λ̄1

)
+ λ̄22 sin(θ̄) cos(θ̄) Φ̂,θ̄2 − λ̄22 sin

2(θ̄) Φ̂,θ̄1θ̄1

]

l23

L̂
′c
1212 = −

λ̄22

[
l3

(
λ̄2 Φ̂,λ̄2

− λ̄1 Φ̂,λ̄1

)
+ λ̄21 sin(θ̄) cos(θ̄) Φ̂,θ̄2 − λ̄21 sin

2(θ̄) Φ̂,θ̄1θ̄1

]

l23
(B.21)

L̂
′∗
4 =

(
λ̄2 l

2
2 Φ̂,λ2 λ2 − 2 l2 Φ̂,λ̄2

− 2 λ̄21 λ̄
3
2 sin

(
θ̄
)
cos(θ̄) Φ̂,θ̄2 − 2 λ̄21λ̄

3
2 cos2(θ̄) Φ̂,θ̄1θ̄1

)
λ̄2

l22

L̂
′∗
5 = −(l21l

2
2l

2
3)

−1
{
λ̄21λ̄

2
2

(
λ̄41λ̄

8
2 + λ̄41λ̄

2
2 − 4 λ̄21λ̄

4
2 + λ̄62 + 1

)
l21 sin(θ̄) cos(θ̄) Φ̂,θ̄2

+ λ̄21λ̄
2
2l

2
1

[(
λ̄41λ̄

8
2 + λ̄41λ̄

2
2 − 4 λ̄21λ̄

4
2 + λ̄62 + 1

)
cos2(θ̄)− l22

]
Φ̂,θ̄1θ̄1

− λ̄1 λ̄2 l
2
1l

2
2l

2
3Φ̂,λ̄1 λ̄2

+ λ̄41λ̄
2
2l

2
2l

2
3Φ̂,θ̄ θ̄ − λ̄31 l1 l

3
2 l3Φ̂,λ̄1

+ λ̄32 l
3
1 l

2
2 l3Φ̂,λ̄2

}
(B.22)
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L̂
′c
2312 = L̂

′c
3212 = L̂

′c
3221 = −

[(
l1 cos2(θ̄)− λ̄21λ̄

2
2l3
)
Φ̂,θ̄2 − sin(θ̄) cos(θ̄)l1 Φ̂,θ̄1θ̄1

]
λ̄21λ̄

3
2

l21 l
2
2 l3

L̂
′c
2321 = −

[(
λ̄22l1 cos2(θ̄)− λ̄21 + λ̄22

)
Φ̂,θ̄2 − sin(θ̄) cos(θ̄)λ̄22l1 Φ̂,θ̄1θ̄1

]
λ̄21λ̄2

l3 l22l
2
1

(B.23)

L̂
′∗
6 = −(l21 l2 l3)

−1 λ̄21λ̄2

×
{[
λ̄22l

2
1 cos

2(θ̄)− l3
(
2 λ̄61λ̄

6
2 − l1

)]
Φ̂,θ̄2 + λ̄2 l1 l2 l3 Φ̂,λ2 θ − λ̄22l

2
1 sin(θ̄) cos(θ̄) Φ̂,θ̄1θ̄1

}

L̂
′∗
7 = −(l3 l2 l

2
1)

−1 λ̄21λ̄2

×
{[
λ̄22l

2
1 cos

2(θ̄)− l3
(
λ̄61λ̄

6
2 + λ̄21λ̄

4
2 − 2

)]
Φ̂,θ̄2 + λ̄2 l1 l2 l3 Φ̂,λ̄2 θ̄ − λ̄22l

2
1 sin(θ̄) cos(θ̄) Φ̂,θ̄1θ̄1

}

L̂
′∗
8 = −(l3 l2 l

2
1)

−1 λ̄21λ̄2

×
{[
λ̄22l1

2 cos2(θ̄)− l3
(
5 λ̄61λ̄

6
2 − 4 λ̄41λ̄

2
2 + λ̄21λ̄

4
2 − 2

)]
Φ̂,θ̄2 + l1 l2 l3

(
λ̄1 Φ̂,λ1 θ̄ + λ̄2 Φ̂,λ̄2 θ̄

)

−λ̄22l21 sin(θ̄) cos(θ̄) Φ̂,θ̄1θ̄1

}
(B.24)

Note that for axisymmetric shear loadings with the condition λ̄1 = λ̄2 = λ̄, suitable limits must be

taken for the traces involving the terms (λ̄1 − λ̄2) in the denominator. Taking these limits for the

pertinent traces appearing in the strong ellipticity condition (2.56) yields

L̂
′c
2121 =

1

8
λ̄
[
λ̄ sin2(θ̄)Φ̂,λ̄1λ̄1 θ̄1θ̄1 + 6 λ̄ Φ̂,λ̄1λ̄1

+ 2 λ̄ Φ̂,λ̄2λ̄2
− 2 λ̄ Φ̂AS

,λ̄λ̄ + 8 Φ̂,λ̄1

−2 Φ̂AS
,λ̄ − λ̄ sin(θ̄) cos(θ̄)Φ̂,λ̄1λ̄1 θ̄

]∣∣∣
λ̄1=λ̄2=λ̄

L̂
′c
2321 = −1

2
λ̄2
(
λ̄6 − 1

)−2
{
2 λ̄

(
2 λ̄6 cos2(θ̄)− 1

)
Φ̂,θ̄ + λ̄2

(
λ̄6 − 1

)
cos2(θ̄)Φ̂,λ̄1θ̄

−λ̄2 sin(θ̄) cos(θ̄)
[(
λ̄6 − 1

)
Φ̂,λ̄1θ̄1θ̄1 + 4 λ̄5 Φ̂,θ̄1θ̄1

]}∣∣∣
λ̄1=λ̄2=λ̄

For the special case of aligned loadings (θ̄ = 0◦), the above expressions for the moduli traces

simplify considerably. For convenience in using these traces in the SE condition (2.50) (associated

with aligned loadings), we provide the simplified expressions. The relevant, non-zero traces in the

basis {ei} (note that L̂
′c
ijkl = L̂c

ijkl for aligned loadings) read as

L̂∗
3 =

λ̄1

(
λ̄1 l

2
1Φ̂,λ̄1λ̄1

− 2 l1 Φ̂,λ̄1
− 2 λ̄31λ̄

2
2Φ̂,θ̄2θ̄2

)

l21
,

L̂c
1313 =

λ̄1

(
λ̄31λ̄

2
2Φ̂,θ̄2θ̄2 + l1 Φ̂,λ̄1

)

l21
, L̂c

3131 =
λ̄41λ̄

2
2

(
Φ̂,θ̄2θ̄2 + λ̄1 l1 Φ̂,λ̄1

)

l21
, (B.25)
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L̂c
3232 =

λ̄21λ̄
4
2

(
Φ̂,θ̄1θ̄1 + λ̄2 l2 Φ̂,λ̄2

)

l22
, L̂c

2323 =
λ̄2

(
λ̄21λ̄

3
2Φ̂,θ̄1θ̄1 + l2 Φ̂,λ̄2

)

l22
,

L̂c
2121 =

λ̄21

(
λ̄1 Φ̂,λ̄1

− λ̄2 Φ̂,λ̄2

)

l23
, L̂c

1212 =
λ̄22

(
λ̄1 Φ̂,λ̄1

− λ̄2 Φ̂,λ̄2

)

l3
, (B.26)

L̂∗
4 =

λ̄2

(
λ̄2 l

2
2Φ̂,λ̄2λ̄2

− 2 l2 Φ̂,λ̄2
− 2 λ̄21λ̄

3
2 Φ̂,θ̄1θ̄1

)

l22
,

L̂∗
5 = (l21l

2
2l3)

−1
[
λ̄1 λ̄2 l

2
1l

2
2l3 Φ̂,λ̄1λ̄2

− λ̄21λ̄
2
4l

2
1l3 Φ̂,θ̄1θ̄1 − λ̄41λ̄

2
2l

2
2l3 Φ̂,θ̄2θ̄2 + λ̄31 l1 l

3
2 Φ̂,λ̄1

− λ̄32l2 l
3
1 Φ̂,λ̄2

]
.

(B.27)

Again, note that for axisymmetric shear loadings with the condition λ̄1 = λ̄2 = λ̄, suitable limits

must be taken for the traces involving the terms (λ̄1 − λ̄2) in the denominator. Taking these limits

for the pertinent traces appearing in the SE condition (2.50) yields

L̂c
1212 = L̂c

2121 =
1

2
λ̄

[
1

2
Φ̂AS

,λ̄ + λ̄

(
2Φ̂,λ̄1λ̄1

− 1

2
Φ̂AS

,λ̄λ̄

)∣∣∣∣
λ̄1=λ̄2=λ̄

]
,

L̂∗
5 =

1

4

λ̄
[(
λ̄13 − 2 λ̄7 + λ̄

)
Φ̂AS

,λ̄λ̄
− 4 λ̄5

(
Φ̂,θ̄1 θ̄1 + Φ̂,θ̄ θ̄

)
−
(
λ̄12 + 2 λ̄6 − 3

)
Φ̂AS

,λ̄

]

(
λ̄6 − 1

)2 .
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C.1 The Hashin-Shtrikman-Willis variational estimates

Hashin and Shtrikman (1963) introduced a variational technique to estimate the effective behavior

of linear-elastic composites with statistically isotropic microstructures. This work was extended

later by Willis (1977, 1981) for composites with more general anisotropic microstructures. For the

particulate material systems of interest in this work, consisting of random distributions of ellipsoidal

inclusions in a given matrix, more explicit estimates have been given by Ponte Castañeda and Willis

(1995). Given the well-known analogy between the governing equations for a linear-elastic solid and

a linearly viscous fluid, Kailasam et al. (1997) and Kailasam and Ponte Castañeda (1998) applied

and generalized the PCW theory to estimate the instantaneous response of two-phase linearly and

nonlinearly viscous composites subjected to simple flows, assuming that surface tension, buoyancy

and dynamical effects could be neglected. In this appendix, we demonstrate how this earlier work

for viscous composites can still be further generalized to provide corresponding estimates for the

class of suspensions of finitely deforming, viscoelastic particles considered in this work.

We begin by recalling expressions (4.23) and (4.25) defining the local dissipation potential W of

the suspension. We then introduce a homogeneous “comparison” Newtonian fluid with viscosity η0,

whose dissipation potential is given by

W 0(D) = η0D ·D, tr(D) = 0. (C.1)

Suppose for now that η0 ≥ η(1), η(2), so that W −W 0 is a concave function of D. Then, following

Talbot and Willis (1985), the Legendre-Fenchel transform of this difference potential can be defined

as (
W −W 0

)
∗
(x,Ξ) = inf

D

{
Ξ ·D− [W (x,D)−W 0(D)]

}
. (C.2)

Note that the stationary condition associated with this relation is

Ξ = τ − 2 η0D, (C.3)

where we have used the fact that τ = ∂W/∂D. As a consequence, the quantity Ξ is known as the

“polarization” stress tensor relative to the comparison fluid. Noting that
(
W −W 0

)
∗
is concave, we

deduce from (C.2), by Legendre duality, that

W (x,D) = inf
Ξ

{
W 0(D) +Ξ ·D−

(
W −W 0

)
∗
(x,Ξ)

}
. (C.4)

Substituting (C.4) into expression (4.31), and interchanging the order of infima over D and Ξ, we

obtain

W̃ (D̄) = inf
Ξ



min

D∈K



∫

Ω

(
W 0(D) +Ξ ·D

)
dV


−

∫

Ω

(
W −W 0

)
∗
(x,Ξ) dV



 , (C.5)

as first shown by Talbot and Willis (1985) in the context of linear elasticity. Now, taking the

polarization stress field as given, it follows that the Euler-Lagrange equation for the “inner” minimum
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problem over the field D is given by

η0 ∇2v −∇∇∇p = −∇∇∇ ·Ξ, and ∇ · v = 0 in Ω, and v = L̄x on ∂Ω. (C.6)

The above differential equation corresponds to the Stokes equation for a homogeneous Newtonian

fluid with viscosity η0 subjected to the body force distribution ∇∇∇ · Ξ in the domain Ω, along with

the affine condition v = L̄x on the boundary ∂Ω. After choosing η0 to be equal to η(1), the above

equations turns out to be the same as those considered by Gao et al. (2011) in the context of dilute

suspensions. As discussed in section 3 of Gao et al. (2011), the solutions for the strain rate and

vorticity fields in the domain Ω can be expressed in terms of the Green’s function G(x,x′) as

Dij(x) = D̄ij +

∫

Ω(2)

Γijpq(x,x
′) Ξpq(x

′) dx′, and (C.7)

Wij(x) = W̄ij +

∫

Ω(2)

Λijpq(x,x
′) Ξpq(x

′) dx′, (C.8)

respectively, where Γijpq = (∂2Gip/∂xj ∂x
′
q)|(ij),(pq) and Λijpq = (∂2Gip/∂xj ∂x

′
q)|[ij],(pq) with the

parentheses and square brackets (enclosing indices) denoting symmetric and anti-symmetric parts,

respectively. The above solution requires information on the polarization stress field in the particle

phase (note that Ξ is zero in the matrix because of the choice η0 = η(1).) For the case of dilute

suspensions of ellipsoidal neo-Hookean particles, it was shown by Gao et al. (2011), building on earlier

work by Willis (1977) in linear elasticity, that the polarization field in the particles is uniform. On

the other hand, for non-dilute suspensions, the polarization field is not expected to be uniform in

the particles. However, again building on earlier work (Willis, 1977; Ponte Castañeda and Willis,

1995), it is reasonable to make use of piecewise constant polarization trial fields in the sense of a

variational approximation. Thus, the use of the trial stress polarization Ξ(x) = χ(2)(x)Ξ(2), where

χ(2)(x) is the characteristic function of the particle phase, and Ξ(2) the corresponding (uniform)

stress polarizations in the inclusion phase (recall that Ξ(1) = 0, due to the choice η0 = η(1)), leads

to the result that

W̃ (D̄) ≤ inf
Ξ

(2)



min

D∈K



∫

Ω

(
W 0(D) +Ξ ·D

)
dV


−

∫

Ω

(
W −W 0

)
∗
(x,Ξ) dV



 . (C.9)

Making use of this approximation of uniform polarizations in the particles, and under the separa-

tion of length scales and no long-range order hypothesis for the random distribution of the particle

phase (Willis, 1981; Ponte Castañeda and Willis, 1995; Ponte Castañeda, 2005), the tensors Γijpq

and Λijpq in relations (C.7) and (C.8) may be replaced by the corresponding tensors constructed

from the infinite-body Green’s function. Then, for the case of ellipsoidal particles distributed with

ellipsoidal symmetry (i.e., such that the two-point correlation functions for the distribution of the

particle centers exhibit ellipsoidal angular dependence), it can be shown (Ponte Castañeda and

Willis, 1995; Ponte Castañeda, 2005) that the averages over the particle phase of the strain rate and
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vorticity tensors in (C.7) and (C.8) are given by

D̄(2) = D̄− (1− c)PΞ(2), W̄(2) = W̄ − (1− c)RΞ(2), (C.10)

respectively, where c = c(2) is the volume fraction of the particle phase, and P and R are fourth-order

microstructural tensors defined by

P =
1

4π |Z|

∫

|ξξξ|=1

H(ξξξ)
∣∣ZT ξξξ

∣∣−3
dS, and R =

1

4π |Z|

∫

|ξξξ|=1

T(ξξξ)
∣∣ZT ξξξ

∣∣−3
dS. (C.11)

In these expressions, the fourth-order tensor H and T are in turn defined by

Hijkl = (Mikξjξl)|(ij)(kl) , Tijkl = (Mikξjξl)|[ij](kl) , (C.12)

where M = η(1)(I− ξξξ ⊗ ξξξ).

Having solved for the strain-rate in the “inner” minimum problem, we next need to find the

optimal (uniform) stress polarization Ξ(2) in the inclusions. By evaluating the derivative of the

integrals in (C.9) with respect to Ξ(2), and solving for Ξ(2), we obtain the result

Ξ(2) = τ̄
(2) − 2 η(1) D̄(2), (C.13)

where τ̄
(2) is the average of the extra stress in the particles at the current instant.

Substituting Ξ(2), as determined by relation (C.13), in relations (C.10), we obtain the following

expressions for the average strain rate and vorticity tensors in particles

D̄(2) =
[
I− 2(1− c) η(1) P

]−1 {
D̄− (1− c)P τ̄

(2)
}
, (C.14)

and

W̄(2) = W̄ + (1− c)R
(
2 η(1) D̄(2) − τ̄

(2)
)
. (C.15)

As mentioned earlier, in this work, we consider suspensions of KV particles with a linear viscous

part (τ
(2)
v = 2η(2)D). It follows that the total average extra stress tensor in the KV particles reads

as (see relation (4.1))

τ̄
(2) = τ̄

(2)
e + τ̄

(2)
v = τ̄

(2)
e + 2 η(2)D̄(2). (C.16)

Then, making use of this decomposition in relations (C.14) and (C.15), we arrive at the results (4.33)

and (4.34) for the averages of the strain rate and vorticity tensors, respectively, in the particles. With

this result, it can be shown that the effective (modified) dissipation potential (C.9) can be written in

the form (4.32). Finally, it should be noted that under the assumption that η0 ≥ η(1), η(2), it follows

from (C.9) that the right-hand side of (4.32) is a rigorous upper bound (see also Lahellec et al., 2011)

for the effective (modified) dissipation potential W̃ (D̄). On the other hand, if it is assumed instead

that η0 ≤ η(1), η(2), the expression in the right-hand side of (4.32) can alternatively be shown to

provide a lower bound for W̃ (D̄), even if the corresponding expressions for D̄(2) and τ̄
(2)
e do not

change. However, in this work, we will not insist on the bounding properties of the estimate (4.32),
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and we make use of an equality in expression (4.32), in the sense of an approximation.

C.2 Governing equations for extensional flows

In this appendix, we present simplified evolution equations for the initially spherical particles sub-

jected to the extensional flow defined by (4.58). Because of the flow symmetry, the initially spherical

particles remain fixed in orientation, evolving into prolate spheroidal particles with aspect ratios

w = w1 = w2. Also, the symmetry implies that τ̄
(2)
33 = τ̄

(2)
22 and D̄

(2)
22 = D̄

(2)
33 = −D̄(2)

11 /2, where the

second equality follows from the incompressibility in the particles.

With the above-mentioned simplifications, and for the case of KV particles with Gent elastic

behavior, the system of equations (4.33), (4.39), (4.42), and (C.16) can be shown to reduce to

dτ̄
(2)
e11

d t
=

2

µJm
D̄

(2)
11

(
τ̄
(2)
e11 + µ

) (
τ̄
(2)
e11 − τ̄

(2)
e22 + µJm

)
,

dτ̄
(2)
e22

d t
= − 1

µJm
D̄

(2)
11

(
τ̄
(2)
e22 + µ

) [
2
(
τ̄
(2)
e22 − τ̄

(2)
e11

)
+ µJm

]
,

τ̄
(2)
ij = τ̄

(2)
eij + 2 η(1) D̄

(2)
ij , i, j = 1, 2, 3,

dw

dt
= −3

2
w D̄

(2)
11

D̄
(2)
11 =

w2 (1− c)
[
(w2 + 2)ω2 − 6ω1

] (
τ̄
(2)
11 − τ̄

(2)
22

)
− 4ω5

1 η
(1) γ̇

{
2ω1 [9 (1− c)w2 (η(2) − η(1))− 2ω4

1 η
(1)]− 3 (1− c)w2 (w2 + 2)ω2 (η(2) − η(1))

} ,




(C.17)

where ω1 =
√
1− w2 and ω2 = 2 ln(ω1+1)−2 ln(w). Moreover, for the special case of neo-Hookean

elastic response for the KV particles, the above system of ODEs for τ̄
(2)
e simplify further reducing

to
dτ̄

(2)
e11

d t
= 2 D̄

(2)
11

(
τ̄
(2)
e11 + µ

)
,

dτ̄
(2)
e22

d t
= −D̄(2)

11

(
τ̄
(2)
e22 + µ

)
, (C.18)

while Eqs. (C.17)3−5 remain the same.

C.3 Governing equations for shear flows

In this appendix, we provide simplified evolution equations for the initially spherical particles, when

subjected to the shear flow conditions defined by (4.67). For simplicity, we provide equations only

for the case of KV particles with neo-Hookean elastic response. Recall that the particles take on

general ellipsoidal shapes characterized by the aspect ratios w1 and w2, but rotate only in the shear

plane, the rotation being described by the angle θ. Then, the system of equations (4.39), (4.40),
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(4.42), and (C.16) can be shown to simplify to

˙̄τ
(2)
e11 = 2(D̄

(2)
12 + W̄

(2)
12 )τ̄

(2)
e12 + 2 (τ̄

(2)
e11 + µ)D̄

(2)
11 ,

˙̄τ
(2)
e22 = 2(D̄

(2)
12 − W̄

(2)
12 )τ̄

(2)
e12 + 2 (τ̄

(2)
e22 + µ)D

(2)
22 , ˙̄τ

(2)
e33 = −2 (τ̄

(2)
e33 + µ)(D̄

(2)
11 + D̄

(2)
22 ),

˙̄τ
(2)
e12 = (D̄

(2)
12 − W̄

(2)
12 )τ̄

(2)
e11 + (D̄

(2)
12 + W̄

(2)
12 )τ̄

(2)
e22 + τ̄

(2)
e12(D̄

(2)
11 + D̄

(2)
22 ) + 2µ D̄

(2)
12 ,

τ̄
(2)
ij = τ̄

(2)
eij + 2 η(2) D̄

(2)
ij , i, j = 1, 2, 3

dw1

dt
= −2w1 D̄

(2)
11 ,

dw2

dt
= −w2 D̄

(2)
11 ,

dθ

dt
=

(
1 + w2

1

1− w2
1

)
D̄

(2)
12 − W̄

(2)
12 .





(C.19)

The above equations are complemented by relations (4.33) and (4.34) for the average strain rate

D̄(2) and vorticity W̄(2) in the particles, respectively.

In the context of equations (C.19), it is noted that these equations are written relative to a fixed

coordinate system which is instantaneously aligned with the principal axes of particles. As pointed

out by Gao et al. (2011) (see Appendix A in that paper), because of the rotation of particles in shear

flow, one must account for the rotation of this coordinate system in order to integrate the above

system of equations. One simple way to account for this rotation is to express the stress tensor in

the rotating principal axes of the particles (i.e., {n1,n2,n3}) as

τ̄ττ (2)e = τ̄
(2)
e11 n1 n1 + τ̄

(2)
e22 n2 n2 + τ̄

(2)
e33 n3 n3 + τ̄

(2)
e12 (n1 n2 + n2 n1) (C.20)

Taking the time derivative from both sides of the above relation, we can express the time derivative

of the stress components in the fixed coordinates in terms of the time derivative of those in the

rotating principal coordinates as (see relations (A 10) and (A 11) in Gao et al. (2011))

˙̄τ
(2)
e11 =

dτ̄
(2)
e11

dt
− 2 τ̄

(2)
e12

dθ

dt
, ˙̄τ

(2)
e22 =

dτ̄
(2)
e22

dt
+ 2 τ̄

(2)
e12

dθ

dt
,

˙̄τ
(2)
e33 =

dτ̄
(2)
e33

dt
, ˙̄τ

(2)
e12 =

dτ̄
(2)
e12

dt
+ (τ̄

(2)
e11 − τ̄

(2)
e22)

dθ

dt
. (C.21)

After substituting the above relations into the system of equations (C.19), we can directly apply an

implicit (or explicit) time-discretization procedure to integrate the equations.

C.4 The tensors P and R for an ellipsoidal inclusion

In this appendix, explicit analytical expressions are given for the components of the tensors P and

R for a general ellipsoidal particle suspended in an incompressible, isotropic, linear viscous matrix

with the viscosity constant η(1). The final expressions for the components of the tensor P in the

principal coordinate system of the particle read as (Eshelby, 1957; Kailasam, 1998)

P1111 = h1 (6 I11 − y1), P2222 = h1 (6 I22 w
2
1 − y2), P3333 = h1 (6 I33 w

2
2 − y3),

P1122 = h1 (2w
2
1 I12 − 3 I11 − w2

2 I13), P1133 = h1 (2w
2
2 I13 − 3 I11 − w2

1 I12),

P2233 = h1 (2w
2
2 I23 − 3w2

1 I22 − I12), P1212 = h2 (1 + w2
1) I12, P1313 = h2 (1 + w2

2) I13,

(C.22)
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and P2323 = h2 (w
2
1 + w2

2) I23 where h1 = (24 π η(1))−1 a2 and h2 = (16 π η(1))−1 a2. In the above

expressions the following variables have been introduced for brevity

y1 = w2
1 I12 + w2

2 I13, y2 = I12 + I23 w
2
2 , y3 = I13 + I23 w

2
1 , (C.23)

and the rest of the variables are defined as

I1 = 4 π w1 w2

[
(1− w2

1)
√
1− w2

2

]−1

(F − E), I2 = 4 π − I1 − I3,

I3 = 4 π w1 w2

[
(w2

1 − w2
2)
√
1− w2

2

]−1 [
w1 w

−1
2

√
1− w2

2 − E

]
,

I12 =
1

a2(1− w2
1)
(I2 − I1), I13 =

1

a2(1− w2
2)
(I3 − I1), I23 =

1

a2(w2
1 − w2

2)
(I3 − I2),

I11 =
1

3
(
4 π

a2
− I12 − I13), I22 =

1

3
(

4 π

a2 w2
1

− I12 − I23), I33 =
1

3
(

4 π

a2 w2
2

− I13 − I23),

(C.24)

in which the functions F and E denote the incomplete elliptic integrals of the first and second kinds,

respectively, and are defined as

F =

∫ sin(Θ)

0

1√
1− t2

√
1− κ2t2

dt, E =

∫ sin(Θ)

0

√
1− κ2t2√
1− t2

dt, (C.25)

where Θ = sin−1(
√

1− w2
2), and κ =

√
1− w2

1/
√
1− w2

2 . Moreover, the three independent compo-

nents of the tensor R in the principal coordinate systems of the particle read as

Rijij =
1

16 π η(1)
(Ij − Ii), for i, j = 1, 2, 3, and j > i. (C.26)

The remaining non-zero components of the tensor Rijkl are obtained by recalling that this tensor is

symmetric with respect to the first two indices (Rjikl = Rijkl) and anti-symmetric with respect to

the last two indices (Rijlk = −Rijkl).
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D.1 Governing equations for the deformation of spherical

particles in a shear flow

In this appendix, we provide simplified evolution equations for the initially spherical, Gent particles,

when subjected to the shear flow conditions defined by (5.62). Recall that the particles take on

general ellipsoidal shapes characterized by the aspect ratios w1 and w2, but rotate only in the shear

plane, the rotation being described by the angle θ. Then, the system of equations (5.50), (5.51),

and (5.54) can be shown to simplify to

˙̄τ
(2)
11 = 2(D̄

(2)
12 + W̄

(2)
12 )τ̄

(2)
12 + 2 (τ̄

(2)
11 + µ)D̄

(2)
11 + (τ̄

(2)
11 + µ)Σ,

˙̄τ
(2)
22 = 2(D̄

(2)
12 − W̄

(2)
12 )τ̄

(2)
12 + 2 (τ̄

(2)
22 + µ)D

(2)
22 + (τ̄

(2)
22 + µ)Σ,

˙̄τ
(2)
33 = −2 (τ̄

(2)
33 + µ)(D̄

(2)
11 + D̄

(2)
22 ) + (τ̄

(2)
33 + µ)Σ,

˙̄τ
(2)
12 = (D̄

(2)
12 − W̄

(2)
12 )τ̄

(2)
11 + (D̄

(2)
12 + W̄

(2)
12 )τ̄

(2)
22

+ τ̄
(2)
12 (D̄

(2)
11 + D̄

(2)
22 ) + 2µ D̄

(2)
12 + τ̄

(2)
12 Σ,

dw1

dt
= −2w1 D̄

(2)
11 ,

dw2

dt
= −w2 D̄

(2)
11 ,

dθ

dt
=

(
1 + w2

1

1− w2
1

)
D̄

(2)
12 − W̄

(2)
12 .





(D.1)

where

Σ = [(τ̄11 − τ̄33) D̄
(2)
11 + (τ̄22 − τ̄33) D̄

(2)
22 + 2 D̄

(2)
12 τ̄12]/(Jm µ).

The above equations are complemented with two equations (5.36) and (5.37) for unknown variables

η(1) and D̂eq. The resulting system of equations, together with relations (5.41) and (5.42) for

the average strain-rate D̄(2) and vorticity W̄(2) in the particles, respectively, can be integrated

numerically for the time-dependent solution. The components of the shape tensors P and R, required

for this integration, are available from Appendix D in Avazmohammadi and Ponte Castañeda (2014).
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E.1 Two-Phase thermoelastic composites

In this appendix, we provide expressions for the effective properties as well as the associated concen-

tration tensors for a two-phase thermoelastic composite defined by the local stress potential (6.11).

For this composite, the effective stress potential is defined by (6.23), and the Levin relations (Levin,

1967) for the effective properties γ̃γγ and g̃ are given by

γ̃γγ = γ̄γγ +
(
M̃−M

)
(∆M)−1(∆γγγ), (E.1)

and

g̃ =
1

2
(∆γγγ) · (∆M)−1

(
M̃−M

)
(∆M)−1(∆γγγ), (E.2)

respectively, where M = (1 − c)M(1) + cM(2), ∆M = M(1) − M(2) and ∆γγγ = γγγ(1) − γγγ(2). Also,

according to Levin’s relation, the strain-rate concentration tensors A(1) and a(1) are expressed as

A(2) = I− 1

c(2)
(∆L)−T

(
L̃− L

)T
, and

a(2) = − 1

c(2)
(∆L)−1

(
L̃− L

)
(∆L)−1 ∆γγγ, (E.3)

where (∆L)−1 = L(1) − L(2) and L̃ = (M̃)−1 denotes the effective viscosity of the composite. The

concentration tensors A(1) and a(1) can be, in turn, obtained from relations (6.26).

E.2 An incremental form for the second moment of stress

In the context of Willis estimates for two-phase composites consisting of a matrix and a distribution

of ellipsoidal particles, the stress phase averages are given by

σ̄
(r) = B(r)

σ̄, r = 1, 2, (E.4)

where the stress-concentration tensors B(r) are defined by (Ponte Castañeda and Willis, 1995)

B(2) =
[
I− c(1) Qe∆S

]−1

, and B(1) = (c(2))−1 (c(2) B(2) − I). (E.5)

In the above expressions, the microstructural tensor Qe is defined by the same relation (6.29) with

P(1) and L(1) being replaced by P
(1)
e and C(1), respectively.

Also, the second moment of the stress in the matrix phase is obtained as Ponte Castañeda (2005)

〈
σ2
eq

〉(1)
=

3

2 c(1)
σ̄σσ · ∂S̃

Ws

∂S(1)
σ̄σσ. (E.6)

Making use of expression (6.44) in the above definition, the second moment will take the functional

form 〈
σ2
eq

〉(1)
= g(σ̄σσ, S(1), S(2),S ), (E.7)
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where S is the set of variables characterizing the microstructure of the composite (such as volume

fraction dn shape of the particles).

For the special case of two-phase composites with incompressible isotropic phases, making use

of relations (E.4) and the identity σ̄ = c(1) σ̄(1) + c(2) σ̄(2) in the form (E.7), it is possible (at least

for the case of spheroidal particles) to re-write the second moment in the form of

〈
σ2
eq

〉(1)
= h(σ̄(1), σ̄(2),S ), (E.8)

Therefore, a rate-type relation for this quantity is obtained as given in relation (6.45).
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O. Lopez-Pamies and P. Ponte Castañeda. On the overall behavior, microstructure evolution, and

macroscopic stability in reinforced rubbers at large deformations: I - Theory. J. Mech. Phys.

Solids, 54:807–830, 2006a.
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