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ABSTRACT 

 

UNMASKING THE LANGUAGE OF SCIENCE THROUGH TEXTUAL ANALYSIS ON 

BIOMEDICAL PREPRINTS AND PUBLISHED PAPERS. 

David N. Nicholson 

Casey S. Greene 

Scientific communication is essential for science as it enables the field to grow. This task is often 

accomplished through a written form such as preprints and published papers. We can obtain a 

high-level understanding of science and how scientific trends adapt over time by analyzing these 

resources. This thesis focuses on conducting multiple analyses using biomedical preprints and 

published papers. In Chapter 2, we explore the language contained within preprints and examine 

how this language changes due to the peer-review process. We find that token differences 

between published papers and preprints are stylistically based, suggesting that peer-review 

results in modest textual changes. We also discovered that preprints are eventually published 

and adopted quickly within the life science community. Chapter 3 investigates how biomedical 

terms and tokens change their meaning and usage through time. We show that multiple machine 

learning models can correct for the latent variation contained within the biomedical text. Also, we 

provide the scientific community with a listing of over 43,000 potential change points. Tokens with 

notable changepoints such as “sars” and “cas9” appear within our listing, providing some 

validation for our approach. In Chapter 4, we use the weak supervision paradigm to examine the 

possibility of speeding up the labeling function generation process for multiple biomedical 

relationship types. We found that the language used to describe a biomedical relationship is often 

distinct, leading to a modest performance in terms of transferability. An exception to this trend is 

Compound-binds-Gene and Gene-interacts-Gene relationship types. 

  



vii 

 

Table of Contents 

ACKNOWLEDGMENT ........................................................................................... iv 

ABSTRACT ............................................................................................................. vi 

LIST OF TABLES ................................................................................................... ix 

LIST OF ILLUSTRATIONS ..................................................................................... x 

CHAPTER 1 ............................................................................................................. 1 

Analyzing scientific articles before the publication process ....................................1 

Analyzing language adaptations through time ...........................................................2 

Text Mining for Relationship Extraction ......................................................................3 
Rule-Based Relationship Extraction ......................................................................................................... 3 
Extracting Relationships Without Labels ................................................................................................. 7 
Supervised Relationship Extraction ......................................................................................................... 9 

CHAPTER 2 ........................................................................................................... 13 

Introduction ..................................................................................................................... 13 

Materials and Methods ..................................................................................................... 15 
Corpora Examined ................................................................................................................................. 15 
Comparing Corpora ............................................................................................................................... 17 
Visualizing and Characterizing Preprint Representations ..................................................................... 19 
Discovering Unannotated Preprint-Publication Relationships .............................................................. 20 
Measuring Time Duration for Preprint Publication Process .................................................................. 21 
Web Application for Discovering Similar Preprints and Journals .......................................................... 23 
Analysis of the Preprints in Motion Collection ...................................................................................... 24 

Results ............................................................................................................................. 25 
Comparing bioRxiv to other corpora ..................................................................................................... 25 
Document embedding similarities reveal unannotated preprint-publication pairs .............................. 30 
Preprints with more versions or more text changes relative to their published counterpart took 

longer to publish ................................................................................................................................... 32 
Preprints with similar document embeddings share publication venues ............................................. 33 
Contextualizing the Preprints in Motion Collection .............................................................................. 35 

Discussion and Conclusions ............................................................................................... 37 

Supplemental Section ....................................................................................................... 39 

CHAPTER 3 ........................................................................................................... 47 

Introduction ..................................................................................................................... 47 

Methods........................................................................................................................... 47 
Biomedical Corpora Examined .............................................................................................................. 48 
Constructing Word Embeddings for Semantic Change Detection ......................................................... 49 
Detecting semantic changes across time .............................................................................................. 50 



viii 

 

Results ............................................................................................................................. 50 
Models can be aligned and compared within and between years ........................................................ 51 
Terms exhibit detectable changes in usage .......................................................................................... 53 
The word-lapse application is an online resource for manual examination of biomedical tokens ....... 59 

Discussion and Conclusion ................................................................................................ 60 

CHAPTER 4 ........................................................................................................... 62 

Introduction ..................................................................................................................... 62 

Methods and Materials ..................................................................................................... 62 
Hetionet................................................................................................................................................. 65 
Dataset .................................................................................................................................................. 66 
Label Functions for Annotating Sentences ............................................................................................ 67 
Label Function Categories ..................................................................................................................... 67 
Training Models ..................................................................................................................................... 69 
Experimental Design .............................................................................................................................. 70 

Results ............................................................................................................................. 71 
Generative Model Using Randomly Sampled Label Functions .............................................................. 71 
Discriminative Model Performance ....................................................................................................... 74 
Text Mined Edges Can Expand a Database-derived Knowledge Graph................................................. 76 

Discussion and Conclusions ............................................................................................... 77 

CHAPTER 5 ........................................................................................................... 79 

APPENDIX A .......................................................................................................... 81 

APPENDIX B .......................................................................................................... 88 

Supplemental Tables ........................................................................................................ 88 

APPENDIX C .......................................................................................................... 89 

Supplementary Figures ..................................................................................................... 89 
Generative Model Using Randomly Sampled Label Functions .............................................................. 89 
Discriminative Model Performance ....................................................................................................... 91 

Supplemental Tables ........................................................................................................ 91 

BIBLIOGRAPHY .................................................................................................. 121 

 

 

  



ix 

 

LIST OF TABLES 

 

Table 1 Approaches that mainly use a form of co-occurrence. ....................................................... 8 

Table 2 A set of publicly available datasets for supervised text mining. ........................................ 11 

Table 3 : Summary statistics for the bioRxiv, PMC, and NYTAC corpora. .................................... 26 

Table 4 PC1 divided the author-selected category of systems biology preprints along an axis from 

computational to molecular approaches. ....................................................................................... 42 

Table 5 Top and bottom five cosine similarity scores between tokens and the PC1 axis. ............ 44 

Table 6 Top and bottom five cosine similarity scores between tokens and the PC2 axis. ............ 45 

Table 7 The fifteen most similar neighbors to the token ‘cas9’ for the years 2012 and 2013. ...... 56 

Table 8 The fifteen most similar neighbors to the token ‘sars’ for the years 2002 and 2003. ....... 57 

Table 9 The fifteen most similar neighbors to the token ‘sars’ for the years 2002 and 2003. ....... 58 

Table 10 Statistics of Candidate Sentences. ................................................................................. 66 

Table 11 The distribution of each label function per relationship. ................................................. 69 

Table 12 The top 100 frequently occurring tokens across our three corpora ................................ 81 

Table 13 The intersection of changepoints found between published papers and preprints. ....... 88 

Table 14 Top Ten Sentences for Each Edge Type ........................................................................ 91 

 

 

 

 

 

  



x 

 

LIST OF ILLUSTRATIONS 

 

Figure 1 Constituency Parse Tree for "BRCA1 is associated with breast cancer" .......................... 6 

Figure 2 Dependency Parse tree for the sentence "BRCA1 is associated with breast cancer" ...... 6 

Figure 3 Corpora Comparison between bioRxiv and PMCOA....................................................... 27 

Figure 4 Filling in preprint and corresponding publication links ..................................................... 30 

Figure 5 Time taken for preprints to become published ................................................................ 32 

Figure 6 Preprint Similarity Search Walkthrough ........................................................................... 34 

Figure 7 Contextualing Preprints in Motion .................................................................................... 36 

Figure 8 PCA analysis on preprint document embeddings............................................................ 40 

Figure 9 Confirming Alignment for Word2Vec Models ................................................................... 52 

Figure 10 Examing our novel ratio metric over the years .............................................................. 54 

Figure 11 Reporting Detected Change points for PMCOA and bioRxiv ........................................ 55 

Figure 12 Walkthrough of the word-lapse manuscript ................................................................... 59 

Figure 13 Metagraph of Hetionet ................................................................................................... 65 

Figure 14 Generative Model Performance for Predicted Relations AUROC ................................. 72 

Figure 15 Generative Model Performance using All Label Functions ........................................... 73 

Figure 16 Discriminative Model Performance AUROC .................................................................. 75 

Figure 17 Edge Recall for Hetionet ................................................................................................ 76 

Figure 18 Document category count for bioRxiv ............................................................................ 81 

Figure 19 Individual Token Analysis for bioRxiv vs PMCOA Special Characters Removed ......... 85 

Figure 20 Individual Token Analysis for Preprints vs Their Published Counterparts (Special 

Characters Removed) .................................................................................................................... 86 

Figure 21 Machine Learning for Predicting Similar Journals ......................................................... 87 

Figure 22 Time analysis for Contextualizing Preprints in Motion ................................................... 87 

Figure 23 Generative Model Performance for Predicted Relations AUPR .................................... 89 



xi 

 

Figure 24 Generative Model Performance using All Label Functions (AUPR) .............................. 90 

Figure 25 Discriminator Model Performance in AUPR .................................................................. 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

Textual analysis has been an indispensable field of research within the scientific community. It 

enables fast comprehension of research from a high-level perspective. Standard tasks in this field 

involve mining text to find relationships between entities, examining topics or themes within the 

text, and observing how the text changes given external factors such as the peer-review process. 

Regarding the life science community, these tasks are typically performed using published 

literature or social media platforms such as Twitter; however, other forms of text such as preprints 

can be used. This chapter discusses previous research that used textual analysis to analyze 

biomedical literature. 

Analyzing scientific articles before the publication process 

Preprints have become an essential medium in the life science field. They are defined as 

scholarly articles that have yet to undergo the peer-review process [1,2]. They are commonly 

hosted within repositories such as arXiv [3], bioRxiv [4], and medRxiv [5]. One of the primary 

motivations for preprints is communicating science without the long wait times or bias presented 

by scientific journals [6,7]. For example, these tools have been used to rapidly communicate 

disease outbreaks [8,9]. In addition to rapid communication, preprints are beginning to emerge as 

a data resource for textual analysis in the life science community. This section describes past 

efforts that used preprints for textual analysis. 

Most of the analyses involving preprints are heavily concentrated on gauging scientific publicity. 

Preprints are being posted onto repositories at an exponential rate [10,11]. During their initial 

posting, preprints receive considerable attention regarding discussion on social media [11]. Also, 

preprints are being integrated into published literature as they are frequently downloaded and 

cited [11,12,13]. Overall, these studies highlight that preprints are being adapted into the life 

science community at a high rate. 

Despite the rapid adaptation of preprints, they still face scrutiny from the life science community 

[14]. The main arguments against preprints are that they take a long time to publish, allow for the 
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possibility of being scooped, and aren’t peer-reviewed [14,15,15,16,17,18,19]. This lack of peer-

review can lead to submissions containing inconsistent results or conclusions [8,9] This trend was 

one of the driving factors for efforts to examine textual differences between preprints and their 

corresponding published versions [20,21]. Interestingly, these studies found that most differences 

between preprints and their corresponding published versions were small stylistic changes 

[20,21]. However, these studies only had limited data to analyze the differences. Despite these 

discoveries, there has yet to be a study that examined the language contained within preprints 

from a global perspective. This thesis fills this gap by analyzing preprints hosted on the bioRxiv 

repository and observing the differences between these preprints and their published 

counterparts. 

Analyzing language adaptations through time 

The meaning of words evolves and changes over time. For example, the word “nice” used to 

mean “foolish or innocent” back in the 15th-17th century; then, it underwent a positive shift toward 

meaning “pleasant or delightful” [22]. These changes are termed semantic shifts and can occur 

for various reasons [22]. Analyzing these shifts uncovers the historical context behind words and 

their meaning. Regarding science, examining these shifts enables swift comprehension of past 

endeavors and illuminates where research fields are progressing towards. Despite the usefulness 

of these shifts, there is a modest amount of effort in identifying these shifts in the life science 

community. This section discusses previous efforts that analyzed semantic shifts both outside of 

the life science field and within. 

The task of examining semantic shifts has been quite successful outside the realm of life science. 

These studies utilize text resources such as the Google N-Gram corpus [23], New York Times 

(NYT) dataset [24], or the COHA corpus [25] to perform various tasks. One task used the N-Gram 

corpus to discover statistical trends behind semantic shifts [26,27], while others both N-Gram and 

COHA to validate techniques for detecting semantic shifts [28,29,30,31,32]. Other efforts used 
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NYT to observe how political viewpoints changed over time [33] along with validating techniques 

to detect semantic changes [34,35]. 

Regarding the life science community, the majority of studies have been heavily focused on a 

particular concept or topic. One study analyzed Reddit posts the gauge the audience’s viewpoint 

and usage of the drug fentanyl [36]. Similarly, researchers analyzed Twitter posts to measure the 

viewpoint of the platform’s users on the COVID-19 pandemic [37]. Outside of social media, one 

study examined how titles and abstracts that mentioned a disease changed through time [38]. 

Despite these efforts, there has yet to be work done that universally examines semantic shifts for 

all biomedical terms and concepts. This thesis fills this gap by detecting semantic shifts within the 

biomedical literature. 

Text Mining for Relationship Extraction 

This section was adapted from: Nicholson, David N., and Greene, Casey, S. “Constructing 

knowledge graphs and their biomedical applications” Published in Computational and Structural 

Biotechnology Journal https://doi.org/10.1016/j.csbj.2020.05.017 

Mining text to extract relationships has been prevalent within the textual analysis field. This task 

provides a medium to identify known discoveries and populate database resources rapidly. There 

are many ways to perform text mining, and this section discusses the pros and cons of each 

approach. 

Rule-Based Relationship Extraction 

Rule-based extraction consists of identifying essential keywords and grammatical patterns to 

detect relationships of interest. Keywords are established via expert knowledge or through the 

use of pre-existing ontologies, while grammatical patterns are constructed via experts curating 

parse trees. Parse trees are tree data structures that depict a sentence’s grammatical structure 

and come in two forms: a constituency parse tree (Figure 1) and a dependency parse tree (Figure 

2). Both trees use part of speech tags, labels that dictate the grammatical role of a word such as 
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noun, verb, adjective, etc., for construction, but represent the information in two different forms. 

Constituency parse trees break a sentence into subphrases (Figure 1) while dependency path 

trees analyze the grammatical structure of a sentence (Figure 2). Many text mining approaches 

[39,40,41] use such trees to generate features for machine learning algorithms and these 

approaches are discussed in later sections. In this section, we focus on approaches that use rule-

based extraction as a primary strategy to detect sentences that allude to a relationship. 

Grammatical patterns can simplify sentences for easy extraction [42,43]. Jonnalagadda et 

al. used a set of grammar rules inspired by constituency trees to reshape complex sentences with 

simpler versions [42] and these simplified versions were manually curated to determine the 

presence of a relationship. By simplifying sentences, this approach achieved high recall but had 

low precision [42]. Other approaches used simplification techniques to make extraction easier 

[44,45,46,47]. Tudor et al. simplified sentences to detect protein phosphorylation events [46]. 

Their sentence simplifier broke complex sentences that contain multiple protein events into 

smaller sentences that contain only one distinct event. By breaking these sentences down the 

authors were able to increase their recall; however, sentences that contained ambiguous 

directionality or multiple phosphorylation events were too complex for the simplifier. As a 

consequence, the simplifier missed some relevant sentences [46]. These errors highlight a crucial 

need for future algorithms to be generalizable enough to handle various forms of complex 

sentences. 

Pattern matching is a fundamental approach used to detect relationship asserting sentences. 

These patterns can consist of phrases from constituency trees, a set of keywords or some 

combination of both [48,49,50,51,52,53]. Xu et al. designed a pattern matcher system to detect 

sentences in PubMed abstracts that indicate drug-disease treatments [52]. This system matched 

drug-disease pairs from ClinicalTrials.gov to drug-disease pairs mentioned in abstracts. This 

matching process aided the authors in identifying sentences that can be used to create simple 

patterns, such as “Drug in the treatment of Disease” [52], to match other sentences in a wide 
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variety of abstracts. The authors hand curated two datasets for evaluation and achieved a high 

precision score of 0.904 and a low recall score of 0.131 [52]. This low recall score was based on 

constructed patterns being too specific to detect infrequent drug pairs. Besides constituency 

trees, some approaches used dependency trees to construct patterns [39,54]. Depending upon 

the nature of the algorithm and text, dependency trees could be more appropriate than 

constituency trees and vice versa. The performance difference between the two trees remains as 

an open question for future exploration. 

Rule-based methods provide a basis for many relationship extraction systems. Approaches in this 

category range from simplifying sentences for easy extraction to identifying sentences based on 

matched key phrases or grammatical patterns. Both require a significant amount of manual effort 

and expert knowledge to perform well. A future direction is to develop ways to automate the 

construction of these hand-crafted patterns, which would accelerate the process of creating these 

rule-based systems. 
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Figure 1 Constituency Parse Tree for "BRCA1 is associated with breast cancer" 

A visualization of a constituency parse tree using the following sentence: “BRCA1 is associated 
with breast cancer” [55]. This type of tree has the root start at the beginning of the sentence. 
Each word is grouped into subphrases depending on its correlating part of speech tag. For 
example, the word “associated” is a past participle verb (VBN) that belongs to the verb phrase 
(VP) subgroup. 
 

 

Figure 2 Dependency Parse tree for the sentence "BRCA1 is associated with breast cancer" 

A visualization of a dependency parse tree using the following sentence: “BRCA1 is associated 
with breast cancer” [56]. For these types of trees, the root begins with the main verb of the 
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sentence. Each arrow represents the dependency shared between two words. For example, the 
dependency between BRCA1 and associated is nsubjpass, which stands for passive nominal 
subject. This means that “BRCA1” is the subject of the sentence and it is being referred to by the 
word “associated”. 
 

Extracting Relationships Without Labels 

Unsupervised extractors draw inferences from textual data without the use of annotated labels. 

These methods involve some form of clustering or statistical calculations. In this section we focus 

on methods that use unsupervised learning to extract relationships from text. 

An unsupervised extractor can exploit the fact that two entities may appear together in text. This 

event is referred to as co-occurrence and studies that use this phenomenon can be found in 

Table 1. Two databases DISEASES [57] and STRING [58] were populated using a co-occurrence 

scoring method on PubMed abstracts, which measured the frequency of co-mention pairs within 

individual sentences as well as the abstracts themselves. This technique assumes that each 

individual co-occurring pair is independent from one another. Under this assumption mention 

pairs that occur more than expected were presumed to implicate the presence of an association 

or interaction. This approach identified 543,405 disease gene associations [57] and 792,730 high 

confidence protein-protein interactions [58] but is limited to only PubMed abstracts. 

Full text articles are able to dramatically enhance relationship detection [59,60]. Westergaard et 

al. used a co-occurrence approach, similar to DISEASES [57] and STRING [58], to mine full 

articles for protein-protein interactions and other protein related information [59]. The authors 

discovered that full text provided better prediction power than using abstracts alone, which 

suggests that future text mining approaches should consider using full text to increase detection 

power. 

Unsupervised extractors often treat different biomedical relationships as multiple isolated 

problems. An alternative to this perspective is to capture all different types at once. Clustering is 

an approach that performs simultaneous extraction. Percha et al. used a biclustering algorithm on 

generated dependency parse trees to group sentences within PubMed abstracts [61]. Each 
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cluster was manually curated to determine which relationship each group represented. This 

approach captured 4,451,661 dependency paths for 36 different groups [61]. Despite the 

success, this approach suffered from technical issues such as dependency tree parsing errors. 

These errors resulted in some sentences not being captured by the clustering algorithm [61]. 

Future clustering approaches should consider simplifying sentences to prevent this type of issue. 

Overall unsupervised methods provide a means to rapidly extract relationship asserting 

sentences without the need of annotated text. Approaches in this category range from calculating 

co-occurrence scores to clustering sentences and provide a generalizable framework that can be 

used on large repositories of text. Full text has already been shown to meaningfully improve the 

performance of methods that aim to infer relationships using cooccurrences [59], and we should 

expect similar benefits for machine learning approaches. Furthermore, we expect that simplifying 

sentences would improve unsupervised methods and should be considered as an initial 

preprocessing step. 

 

Table 1 Approaches that mainly use a form of co-occurrence. 

Study Relationship of Interest 

CoCoScore [62] Protein-Protein Interactions, Disease-Gene and Tissue-Gene 

Associations 

Rastegar-Mojarad et 

al. [63] 

Drug Disease Treatments 

CoPub Discovery [64] Drug, Gene and Disease interactions 

Westergaard et al. [59] Protein-Protein Interactions 

DISEASES [57] Disease-Gene associations 

STRING [65] Protein-Protein Interactions 

Singhal et al. [66] Genotype-Phenotype Relationships 
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Supervised Relationship Extraction 

Supervised extractors use labeled sentences to construct generalized patterns that bisect positive 

examples (sentences that allude to a relationship) from negative ones (sentences that do not 

allude to a relationship). Most of these approaches have flourished due to pre-labelled publicly 

available datasets (Table 2). These datasets were constructed by curators for shared open tasks 

[67,68] or as a means to provide the scientific community with a gold standard [68,69,70]. 

Approaches that use these available datasets range from using linear classifiers such as support 

vector machines (SVMs) to non-linear classifiers such as deep learning techniques. The rest of 

this section discusses approaches that use supervised extractors to detect relationship asserting 

sentences. 

Some supervised extractors involve the mapping of textual input into a high dimensional space. 

SVMs are a type of classifier that can accomplish this task with a mapping function called a 

kernel [41,71]. These kernels take information such as a sentence’s dependency tree [39,40], 

part of speech tags [41] or even word counts [71] and map them onto a dense feature space. 

Within this space, these methods construct a hyperplane that separates sentences in the positive 

class (illustrates a relationship) from the negative class (does not illustrate a relationship). Kernels 

can be manually constructed or selected to cater to the relationship of interest [40,41,71,71]. 

Determining the correct kernel is a nontrivial task that requires expert knowledge to be 

successful. In addition to single kernel methods, a recent study used an ensemble of SVMs to 

extract disease-gene associations [72]. This ensemble outperformed notable disease-gene 

association extractors [54,73] in terms of precision, recall and F1 score. Overall, SVMs have been 

shown to be beneficial in terms of relationship mining; however, major focus has shifted to 

utilizing deep learning techniques which can perform non-linear mappings of high dimensional 

data. 
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Deep learning is an increasingly popular class of techniques that can construct their own features 

within a high dimensional space [74,75]. These methods use different forms of neural networks, 

such as recurrent or convolutional neural networks, to perform classification. 

Recurrent neural networks (RNN) are designed for sequential analysis and use a repeatedly 

updating hidden state to make predictions. An example of a recurrent neural network is a long 

short-term memory (LSTM) network [76]. Cocos et al. [77] used a LSTM to extract drug side 

effects from de-identified twitter posts, while Yadav et al. [78] used an LSTM to extract protein-

protein interactions. Others have also embraced LSTMs to perform relationship extraction 

[77,79,80,81,82]. Despite the success of these networks, training can be difficult as these 

networks are highly susceptible to vanishing and exploding gradients [83,84]. One proposed 

solution to this problem is to clip the gradients while the neural network trains [85]. Besides the 

gradient problem, these approaches only peak in performance when the datasets reach at least 

tens of thousands of data points [86]. 

Convolutional neural networks (CNNs), which are widely applied for image analysis, use multiple 

kernel filters to capture small subsets of an overall image [75]. In the context of text mining an 

image is replaced with words within a sentence mapped to dense vectors (i.e., word embeddings) 

[87,88]. Peng et al. used a CNN to extract sentences that mentioned protein-protein interactions 

[89] and Zhou et al. used a CNN to extract chemical-disease relations [90]. Others have used 

CNNs and variants of CNNs to extract relationships from text [91,92,93]. Just like RNNs, these 

networks perform well when millions of labeled examples are present [86]; however, obtaining 

these large datasets is a non-trivial task. Future approaches that use CNNs or RNNs should 

consider solutions to obtaining these large quantities of data through means such as weak 

supervision [94], semi-supervised learning [95] or using pre-trained networks via transfer learning 

[96,97]. 

Semi-supervised learning [95] and weak supervision [94] are techniques that can rapidly 

construct large datasets for machine learning classifiers. Semi-supervised learning trains 
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classifiers by combining labeled data with unlabeled data. For example, one study used a 

variational auto encoder with a LSTM network to extract protein-protein interactions from PubMed 

abstracts and full text [98]. This is an elegant solution for the small dataset problem but requires 

labeled data to start. This dependency makes finding under-studied relationships difficult as one 

would need to find or construct examples of the missing relationships at the start. 

Weak or distant supervision takes a different approach by using noisy or even erroneous labels to 

train classifiers [94,99,100,101]. Under this paradigm, sentences are labeled based on their 

mention pair being present (positive) or absent (negative) in a database and, once labeled, a 

machine learning classifier can be trained to extract relationships from text [94]. For example, 

Thomas et al. [102] used distant supervision to train a SVM to extract sentences mentioning 

protein-protein interactions (PPI). Their SVM model achieved comparable performance against a 

baseline model; however, the noise generated via distant supervision was difficult to eradicate 

[102]. A number of efforts have focused on combining distant supervision with other types of 

labeling strategies to mitigate the negative impacts of noisy knowledge bases [103,104,105]. 

Combining distant supervision with other types of labeling strategies remains an active area of 

investigation with numerous associated challenges and opportunities. This thesis investigates 

one strategy that involved reusing multiple labeling sources to speed up the efforts of labeling 

sentences under the weak supervision paradigm. 

 

Table 2 A set of publicly available datasets for supervised text mining. 

Dataset Type of Sentences 

AIMed [106] Protein-Protein Interactions 

BioInfer [107] Protein-Protein Interactions 

LLL [108] Protein-Protein Interactions 

IEPA [109] Protein-Protein Interactions 

HPRD5 [69] Protein-Protein Interactions 



12 

 

EU-ADR [110] Disease-Gene Associations 

BeFree [73] Disease-Gene Associations 

CoMAGC [70] Disease-Gene Associations 

CRAFT [111] Disease-Gene Associations 

Biocreative V CDR [68] Compound induces Disease 

Biocreative IV ChemProt [67] Compound-Gene Bindings 
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CHAPTER 2 

Examining linguistic shifts between preprints and publications 

This chapter was originally published as: Nicholson DN, Rubinetti V, Hu D, Thielk M, Hunter LE, 

Greene CS (2022) Examining linguistic shifts between preprints and publications. PLoS Biol 

20(2): e3001470. https://doi.org/10.1371/journal.pbio.3001470 

 

This is a co-authored paper where the majority of scientific work was performed by Nicholson DN 

who was advised by Greene CS and Hunter LE. Thielk M. contributed to the half-life analysis for 

preprint categories. Rubinetti V. and Hu D. assisted with the creation of the preprint similarity 

search website. 

Introduction 

The dissemination of research findings is key to science. Initially, much of this communication 

happened orally [6]. During the 17th century, the predominant form of communication shifted to 

personal letters shared from one scientist to another [6]. Scientific journals didn’t become a 

predominant mode of communication until the 19th and 20th centuries when the first journal was 

created [6,112,113]. Although scientific journals became the primary method of communication, 

they added high maintenance costs and long publication times to scientific discourse [112,113]. 

Some scientists’ solutions to these issues have been to communicate through preprints, which 

are scholarly works that have yet to undergo peer review process [1,2]. 

Preprints are commonly hosted on online repositories, where users have open and easy access 

to these works. Notable repositories include arXiv [3], bioRxiv [4] and medRxiv [114]; however, 

there are over 60 different repositories available [115]. The burgeoning uptake of preprints in life 

sciences has been examined through research focused on metadata from the bioRxiv repository. 

For example, life science preprints are being posted at an increasing rate [10]. Furthermore, 
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these preprints are being rapidly shared on social media, routinely downloaded, and cited [116]. 

Some preprint categories are shared on social media by both scientists and non-scientists [117]. 

About two-thirds to three-quarters of preprints are eventually published [13,118] and life science 

articles that have a corresponding preprint version are cited and discussed more often than 

articles without them [12,119,120]. Preprints take an average of 160 days to be published in the 

peer-reviewed literature [18], and those with multiple versions take longer to publish[18]. 

The rapid uptake of preprints in the life sciences also poses challenges. Preprint repositories 

receive a growing number of submissions [14]. Linking preprints with their published counterparts 

is vital to maintaining scholarly discourse consistency, but this task is challenging to perform 

manually [15,119,121]. Errors and omissions in linkage result in missing links and consequently 

erroneous metadata. Furthermore, repositories based on standard publishing tools are not 

designed to show how the textual content of preprints is altered due to the peer review process 

[14]. Certain scientists have expressed concern that competitors could scoop them by making 

results available before publication [14,19]. Preprint repositories by definition do not perform in-

depth peer review, which can result in posted preprints containing inconsistent results or 

conclusions [15,16,17,120]; however, an analysis of preprints posted at the beginning of 2020 

revealed that over 50% underwent minor changes in the abstract text as they were published, but 

over 70% did not change or only had simple rearrangements to panels and tables [122]. Despite 

a growing emphasis on using preprints to examine the publishing process within life sciences, 

how these findings relate to the text of all documents in bioRxiv has yet to be examined. 

Textual analysis uses linguistic, statistical, and machine learning techniques to analyze and 

extract information from text [123,124]. For instance, scientists analyzed linguistic similarities and 

differences of biomedical corpora [125,126]. Scientists have provided the community with a 

number of tools that aide future text mining systems [127,128,129] as well as advice on how to 

train and test future text processing systems [130,131,132]. Here, we use textual analysis to 
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examine the bioRxiv repository, placing a particular emphasis on understanding the extent to 

which full-text research can address hypotheses derived from the study of metadata alone. 

To understand how preprints relate to the traditional publishing ecosystem, we examine the 

linguistic similarities and differences between preprints and peer-reviewed text and observe how 

linguistic features change during the peer review and publishing process. We hypothesize that 

preprints and biomedical text will appear to have similar characteristics, especially when 

controlling for the differential uptake of preprints across fields. Furthermore, we hypothesize that 

document embeddings [87,133] provide a versatile way to disentangle linguistic features along 

with serving as a suitable medium for improving preprint repository functionality. We test this 

hypothesis by producing a linguistic landscape of bioRxiv preprints, detecting preprints that 

change substantially during publication, and identify journals that publish manuscripts that are 

linguistically similar to a target preprint. We encapsulate our findings through a web app that 

projects a user-selected preprint onto this landscape and suggests journals and articles that are 

linguistically similar. Our work reveals how linguistically similar and dissimilar preprints are to 

peer-reviewed text, quantifies linguistic changes that occur during the peer review process, and 

highlights the feasibility of document embeddings concerning preprint repository functionality and 

peer review’s effect on publication time. 

Materials and Methods 

Corpora Examined 

Text analytics is generally comparative in nature, so we selected three relevant text corpora for 

analysis: the BioRxiv corpus, which is the target of the investigation; the PubMedCentral Open 

Access corpus, which represents the peer-reviewed biomedical literature; and the New York 

Times Annotated Corpus, which is used a representative of general English text. 
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BioRxiv Corpus 

BioRxiv [4] is a repository for life sciences preprints. We downloaded an XML snapshot of this 

repository on February 3rd, 2020, from bioRxiv’s Amazon S3 bucket [134]. This snapshot 

contained the full text and image content of 98,023 preprints. Preprints on bioRxiv are versioned, 

and in our snapshot, 26,905 out of 98,023 contained more than one version. When preprints had 

multiple versions, we used the latest one unless otherwise noted. Authors submitting preprints to 

bioRxiv can select one of twenty-nine different categories and tag the type of article: a new result, 

confirmatory finding, or contradictory finding. A few preprints in this snapshot were later 

withdrawn from bioRxiv; when withdrawn, their content is replaced with the reason for withdrawal. 

We encountered a total of 72 withdrawn preprints within our snapshot. After removal, we were left 

with 97,951 preprints for our downstream analyses. 

PubMed Central Open Access Corpus 

PubMed Central (PMC) is a digital archive for the United States National Institute of Health’s 

Library of Medicine (NIH/NLM) that contains full text biomedical and life science articles [135]. 

Paper availability within PMC is mainly dependent on the journal’s participation level [136]. 

Articles appear in PMC as either accepted author manuscripts (Green Open Access) or via open 

access publishing at the journal (Gold Open Access [137]). Individual journals have the option to 

fully participate in submitting articles to PMC, selectively participate sending only a few papers to 

PMC, only submit papers according to NIH’s public access policy [138], or not participate at all; 

however, individual articles published with the CC BY license may be incorporated. As of 

September 2019, PMC had 5,725,819 articles available [139]. Out of these 5 million articles, 

about 3 million were open access (PMCOA) and available for text processing systems [128,140]. 

PMC also contains a resource that holds author manuscripts that have already passed the peer 

review process [141]. Since these manuscripts have already been peer-reviewed, we excluded 

them from our analysis as the scope of our work is focused on examining the beginning and end 

of a preprint’s life cycle. We downloaded a snapshot of the PMCOA corpus on January 31st, 
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2020. This snapshot contained many types of articles: literature reviews, book reviews, editorials, 

case reports, research articles, and more. We used only research articles, which align with the 

intended role of bioRxiv, and we refer to these articles as the PMCOA corpus. 

The New York Times Annotated Corpus 

The New York Times Annotated Corpus (NYTAC) is [24] is a collection of newspaper articles 

from the New York Times dating from January 1st, 1987, to June 19th, 2007. This collection 

contains over 1.8 million articles where 1.5 million of those articles have undergone manual entity 

tagging by library scientists [24]. We downloaded this collection on August 3rd, 2020, from the 

Linguistic Data Consortium (see Software and Data Availability section) and used the entire 

collection as a negative control for our corpora comparison analysis. 

Mapping bioRxiv preprints to their published counterparts 

We used CrossRef [142] to identify bioRxiv preprints linked to a corresponding published article. 

We accessed CrossRef on July 7th, 2020, and successfully linked 23,271 preprints to their 

published counterparts. Out of those 23,271 preprint-published pairs, only 17,952 pairs had a 

published version present within the PMCOA corpus. For our analyses that involved published 

links, we only focused on this subset of preprints-published pairs. 

Comparing Corpora 

We compared the bioRxiv, PMCOA, and NYTAC corpora to assess the similarities and 

differences between them. We used the NYTAC corpus as a negative control to assess the 

similarity between two life sciences repositories compared with non-life sciences text. All corpora 

contain multiple words that do not have any meaning (e.g. conjunctions, prepositions, etc.) or 

occur with a high frequency. These words are termed stopwords and are often removed to 

improve text processing pipelines. Along with stopwords, all corpora contain both words and non-

word entities (e.g., numbers or symbols like ±), which we refer to together as tokens to avoid 

confusion. We calculated the following characteristic metrics for each corpus: the number of 

documents, the number of sentences, the total number of tokens, the number of stopwords, the 
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average length of a document, the average length of a sentence, the number of negations, the 

number of coordinating conjunctions, the number of pronouns and the number of past tense 

verbs. SpaCy is a lightweight and easy-to-use python package designed to preprocess and filter 

text [56]. We used spaCy’s “en_core_web_sm” model [56] (version 2.2.3) to preprocess all 

corpora and filter out 326 stopwords using spaCy’s default settings. 

Following that cleaning process, we calculated the frequency of every token across all corpora. 

Because many tokens were unique to one set or the other and observed at low frequency, we 

focused on the union of the top 0.05% (~100) most frequently occurring tokens within each 

corpus. We generated a contingency table for each token in this union and calculated the odds 

ratio along with the 95% confidence interval [143]. We measured corpora similarity by calculating 

the Kullback–Leibler (KL) divergence across all corpora along with token enrichment analysis. KL 

divergence is a metric that measures the extent to which two distributions differ from each other. 

A low value of KL divergence implicates that two distributions are similar and vice versa for high 

values. The optimal number of tokens used to calculate the KL divergence is unknown, so we 

calculated this metric using a range of the 100 most frequently occurring tokens between two 

corpora to the 5000 most frequently occurring tokens. 

Constructing a Document Representation for Life Sciences Text 

We sought to build a language model to quantify linguistic similarities of biomedical preprints and 

articles. Word2vec is a suite of neural networks designed to model linguistic features of tokens 

based on their appearance in the text. These models are trained to either predict a token based 

on its sentence context, called a continuous bag of words (CBOW) model, or predict the context 

based on a given token, called a skipgram model [87]. Through these prediction tasks, both 

networks learn latent linguistic features which are helpful for downstream tasks, such as 

identifying similar tokens. We used gensim [144] (version 3.8.1) to train a CBOW [87] model over 

all the main text within each preprint in the bioRxiv corpus. Determining the best number of 

dimensions for token embeddings can be a non-trivial task; however, it has been shown that 
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optimal performance is between 100-1000 dimensions [145]. We chose to train the CBOW model 

using 300 hidden nodes, a batch size of 10000 tokens, and for 20 epochs. We set a fixed random 

seed and used gensim’s default settings for all other hyperparameters. Once trained, every token 

present within the CBOW model is associated with a dense vector representing latent features 

captured by the network. We used these token vectors to generate a document representation for 

every article within the bioRxiv and PMCOA corpora. We used spaCy to lemmatize each token for 

each document and then took the average of every lemmatized token present within the CBOW 

model and the individual document [133]. Any token present within the document but not in the 

CBOW model is ignored during this calculation process. 

Visualizing and Characterizing Preprint Representations 

We sought to visualize the landscape of preprints and determine the extent to which their 

representation as document vectors corresponded to author-supplied document labels. We used 

principal component analysis (PCA) [146] to project bioRxiv document vectors into a low-

dimensional space. We trained this model using scikit-learn’s [147] implementation of a 

randomized solver [148] with a random seed of 100, an output of 50 principal components (PCs), 

and default settings for all other hyperparameters. After training the model, every preprint within 

the bioRxiv corpus receives a score for each generated PC. We sought to uncover concepts 

captured within generated PCs and used the cosine similarity metric to examine these concepts. 

This metric takes two vectors as input and outputs a score between -1 (most dissimilar) and 1 

(most similar). We used this metric to score the similarity between all generated PCs and every 

token within our CBOW model for our use case. We report the top 100 positive and negative 

scoring tokens as word clouds. The size of each word corresponds to the magnitude of similarity, 

and color represents a positive (orange) or negative (blue) association. 
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Discovering Unannotated Preprint-Publication Relationships 

The bioRxiv maintainers have automated procedures to link preprints to peer-reviewed versions, 

and many journals require authors to update preprints with a link to the published version. 

However, this automation is primarily based on the exact matching of specific preprint attributes. 

If authors change the title between a preprint and published version (e.g., [149] and [150]), then 

this change will prevent bioRxiv from automatically establishing a link. Furthermore, if the authors 

do not report the publication to bioRxiv, the preprint and its corresponding published version are 

treated as distinct entities despite representing the same underlying research. We hypothesize 

that close proximity in the document embedding space could match preprints with their 

corresponding published version. If this finding holds, we could use this embedding space to fill in 

links missed by existing automated processes. We used the subset of paper-preprint pairs 

annotated in CrossRef as described above to calculate the distribution of available preprint to 

published distances. We calculated this distribution by taking the Euclidean distance between the 

preprint’s embedding coordinates and the coordinates of its corresponding published version. We 

also calculated a background distribution, which consisted of the distance between each preprint 

with an annotated publication and a randomly selected article from the same journal. We 

compared both distributions to determine if there was a difference between both groups as a 

significant difference would indicate that this embedding method can parse preprint-published 

pairs apart. After comparing the two distributions, we calculated distances between preprints 

without a published version link with PMCOA articles that weren’t matched with a corresponding 

preprint. We filtered any potential links with distances greater than the minimum value of the 

background distribution as we considered these pairs to be true negatives. Lastly, we binned the 

remaining pairs based on percentiles from the annotated pairs distribution at the [0,25th 

percentile), [25th percentile, 50th percentile), [50th percentile, 75th percentile), and [75th 

percentile, minimum background distance). We randomly sampled 50 articles from each bin and 

shuffled these four sets to produce a list of 200 potential preprint-published pairs with a 
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randomized order. We supplied these pairs to two co-authors to manually determine if each link 

between a preprint and a putative matched version was correct or incorrect. After the curation 

process, we encountered eight disagreements between the reviewers. We supplied these pairs to 

a third scientist, who carefully reviewed each case and made a final decision. Using this curated 

set, we evaluated the extent to which distance in the embedding space revealed valid but 

unannotated links between preprints and their published versions. 

Measuring Time Duration for Preprint Publication Process 

Preprints can take varying amounts of time to be published. We sought to measure the time 

required for preprints to be published in the peer-reviewed literature and compared this time 

measurement across author-selected preprint categories as well as individual preprints. First, we 

queried bioRxiv’s application programming interface (API) to obtain the date a preprint was 

posted onto bioRxiv as well as the date a preprint was accepted for publication. We did not 

include preprint matches found by our paper matching approach (see ‘Discovering Unannotated 

Preprint-Publication Relationships’). We measured time elapsed as the difference between the 

date a preprint was first posted on bioRxiv and its publication date. Along with calculating the time 

elapsed, we also recorded the number of different preprint versions posted onto bioRxiv. 

We used this captured data to apply the Kaplan-Meier estimator [151] via the KaplanMeierFitter 

function from the lifelines [152] (version 0.25.6) python package to calculate the half-life of 

preprints across all preprint categories within bioRxiv. We considered survival events as preprints 

that have yet to be published. We encountered 123 cases where the preprint posting date was 

subsequent to the publication date, resulting in a negative time difference, as previously reported 

[153]. We removed these preprints for this analysis as they were incompatible with the rules of 

the bioRxiv repository. 

We measured the textual difference between preprints and their corresponding published version 

after our half-life calculation by calculating the Euclidean distance for their respective embedding 

representation. This metric can be difficult to understand within the context of textual differences, 
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so we sought to contextualize the meaning of a distance unit. We first randomly sampled with 

replacement a pair of preprints from the Bioinformatics topic area as this was well represented 

within bioRxiv and contains a diverse set of research articles. Next, we calculated the distance 

between two preprints 1000 times and reported the mean. We repeated the above procedure 

using every preprint within bioRxiv as a whole. These two means serve as normalized 

benchmarks to compare against as distance units are only meaningful when compared to other 

distances within the same space. Following our contextualization approach, we performed linear 

regression to model the relationship between preprint version count with a preprint’s time to 

publication. We also performed linear regression to measure the relationship between document 

embedding distance and a preprint’s time to publication. For this analysis, we retained preprints 

with negative time within our linear regression model, and we observed that these preprints had 

minimal impact on results. We visualize our version count regression model as a violin plot and 

our document embeddings regression model as a square bin plot. 

Building Classifiers to Detect Linguistically Similar Journal Venues and Published Articles 

Preprints are more likely to be published in journals that publish articles with similar content. We 

assessed this claim by building classifiers based on document and journal representations. First, 

we removed all journals that had fewer than 100 papers in the PMC corpus. We held our preprint-

published subset (see above section ‘Mapping bioRxiv preprints to their published counterparts’) 

and treated it as a gold standard test set. We used the remainder of the PMCOA corpus for 

training and initial evaluation for our models. 

Training models to identify which journal publishes similar articles is challenging as not all 

journals are the same. Some journals have a publication rate of at most hundreds of papers per 

year, while others publish at a rate of at least ten thousand papers per year. Furthermore, some 

journals focus on publishing articles within a concentrated topic area, while others cover many 

dispersive topics. Therefore, we designed two approaches to account for these characteristics. 

Our first approach focuses on articles that account for a journal’s variation of publication topics. 
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This approach allows for topically similar papers to be retrieved independently of their respective 

journal. Our second approach is centered on journals to account for varying publication rates. 

This approach allows more selective or less popular journals to have equal representation to their 

high publishing counterparts. 

Our article-based approach identifies most similar manuscripts to the preprint query, and we 

evaluated the journals that published these identified manuscripts. We embedded each query 

article into the space defined by the word2vec model (see above section ‘Constructing a 

Document Representation for Life Sciences Text’). Once embedded, we selected manuscripts 

close to the query via Euclidean distance in the embedding space. Once identified, we return 

articles along with journals that published these identified articles. 

We constructed a journal-based approach to accompany the article-based classifier while 

accounting for the overrepresentation of these high publishing frequency journals. We identified 

the most similar journals for this approach by constructing a journal representation in the same 

embedding space. We computed this representation by taking the average embedding of all 

published papers within a given journal. We then projected a query article into the same space 

and returned journals closest to the query using the same distance calculation described above. 

Both models were constructed using the scikit-learn k-Nearest Neighbors implementation [147] 

with the number of neighbors set to 10 as this is an appropriate number for our use case. We 

consider a prediction to be a true positive if the correct journal appears within our reported list of 

neighbors and evaluate our performance using 10-fold cross-validation on the training set along 

with test set evaluation. 

Web Application for Discovering Similar Preprints and Journals 

We developed a web application that places any bioRxiv or medRxiv preprint into the overall 

document landscape and identifies topically similar papers and journals (similar to [154]). Our 

application attempts to download the full text xml version of any preprint hosted on the bioRxiv or 

medRxiv server and uses the lxml package (version num) to extract text. If the xml version isn’t 
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available our application defaults to downloading the pdf version and uses PyMuPDF [155] to 

extract text from the pdf. The extracted text is fed into our CBOW model to construct a document 

embedding representation. We pass this representation onto our journal and article classifiers to 

identify journals based on the ten closest neighbors of individual papers and journal centroids. 

We implemented this search using the scikit-learn implementation of k-d trees. To run it more 

cost-effectively in a cloud computing environment with limited available memory, we sharded the 

k-d trees into four trees. 

The app provides a visualization of the article’s position within our training data to illustrate the 

local publication landscape, We used SAUCIE [156], an autoencoder designed to cluster single-

cell RNA-seq data, to build a two-dimensional embedding space that could be applied to newly 

generated preprints without retraining, a limitation of other approaches that we explored for 

visualizing entities expected to lie on a nonlinear manifold. We trained this model on document 

embeddings of PMC articles that did not contain a matching preprint version. We used the 

following parameters to train the model: a hidden size of 2, a learning rate of 0.001, lambda_b of 

0, lambda_c of 0.001, and lambda_d of 0.001 for 5000 iterations. When a user requests a new 

document, we can then project that document onto our generated two-dimensional space; 

thereby, allowing the user to see where their preprint falls along the landscape. We illustrate our 

recommendations as a shortlist and provide access to our network visualization at our website 

(https://greenelab.github.io/preprint-similarity-search/). 

Analysis of the Preprints in Motion Collection 

Our manuscript describes the large-scale analysis of bioRxiv. Concurrent with our work, another 

set of authors performed a detailed curation and analysis of a subset of bioRxiv [122] that was 

focused on preprints posted during the initial stages of the COVID-19 pandemic. The curated 

analysis was designed to examine preprints at a time of increased readership [157] and includes 

certain preprints posted from January 1st, 2020 to April 30th, 2020 [122]. We sought to 

contextualize this subset, which we term “Preprints in Motion” after the title of the preprint [122], 
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within our global picture of the bioRxiv preprint landscape. We extracted all preprints from the set 

reported in Preprints in Motion [122] and retained any entries in the bioRxiv repository. We 

manually downloaded the XML version of these preprints and mapped them to their published 

counterparts as described above. We used Pubmed Central’s DOI converter [158] to map the 

published article DOIs with their respective PubMed Central IDs. We retained articles that were 

included in the PMCOA corpus and performed a token analysis as described to compare these 

preprints with their published versions. As above, we generated document embeddings for every 

obtained preprint and published article. We projected these preprint embeddings onto our 

publication landscape to visually observe the dispersion of this subset. We performed a time 

analysis that paralleled our approach for the full set of preprint-publication pairs to examine 

relationships between linguistic changes and the time to publication. The “Preprints in Motion” 

subset includes recent papers, and the longest time to publish in that set was 195 days; however, 

our bioRxiv snapshot contains both older preprint-published pairs and many with publication 

times longer than this timepoint. The optimum comparison would be to consider only preprints 

posted on the same days as preprints with the “Preprints in Motion” collection. However, based 

on our results examining publication rate over time, these preprints may not have made it entirely 

through the publication process. We performed a secondary analysis to control for the time since 

posting, where we filtered the bioRxiv snapshot to only contain publication pairs with publication 

time of less than or equal to 195 days. 

Results 

Comparing bioRxiv to other corpora 

bioRxiv Metadata Statistics 

The preprint landscape is rapidly changing, and the number of bioRxiv preprints in our data 

download (71,118) was nearly double that of a recent study that reported on a snapshot with 

37,648 preprints [118]. Because the rate of change is rapid, we first analyzed category data and 
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compared our results with previous findings. As in previous reports [118], neuroscience remains 

the most common category of preprints, followed by bioinformatics (Supplemental Figure 18). 

Microbiology, which was fifth in the most recent report [118], has now surpassed evolutionary 

biology and genomics to move into third. When authors upload their preprints, they select from 

three result category types: new results, confirmatory results, or contradictory results. We found 

that nearly all preprints (97.5%) were categorized as new results, consistent with reports on a 

smaller set [159]. The results taken together suggest that while bioRxiv has experienced dramatic 

growth, how it is being used appears to have remained consistent in recent years. 

Global analysis reveals similarities and differences between bioRxiv and PMC 

 

Table 3 : Summary statistics for the bioRxiv, PMC, and NYTAC corpora. 

Metric bioRxiv PMC NYTAC 

document count 71,118 1,977,647 1,855,658 

sentence count 22,195,739 480,489,811 72,171,037 

token count 420,969,930 8,597,101,167 1,218,673,384 

stopword count 158,429,441 3,153,077,263 559,391,073 

avg. document length 312.10 242.96 38.89 

avg. sentence length 22.71 21.46 19.89 

negatives 1,148,382 24,928,801 7,272,401 

coordinating conjunctions 14,295,736 307,082,313 38,730,053 

coordinating conjunctions% 3.40% 3.57% 3.18% 

pronouns 4,604,432 74,994,125 46,712,553 

pronouns% 1.09% 0.87% 3.83% 

passives 15,012,441 342,407,363 19,472,053 

passive% 3.57% 3.98% 1.60% 
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Figure 3 Corpora Comparison between bioRxiv and PMCOA 

A. The Kullback–Leibler divergence measures the extent to which the distributions, not specific 
tokens, differ from each other. The token distribution of bioRxiv and PMC corpora is more similar 
than these biomedical corpora are to the NYTAC one. B. The significant differences in token 
frequencies for the corpora appear to be driven by the fields with the highest uptake of bioRxiv, 
as terms from neuroscience and genomics are relatively more abundant in bioRxiv. We plotted 
the 95% confidence interval for each reported token. C. Of the tokens that differ between bioRxiv 
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and PMC, the most abundant in bioRxiv are “et” and “al” while the most abundant in PMC is 
“study.” D. The significant differences in token frequencies for preprints and their corresponding 
published version often appear to be associated with typesetting and supplementary or additional 
materials. We plotted the 95% confidence interval for each reported token. E. The tokens with the 
largest absolute differences in abundance appear to be stylistic. Data for the information depicted 
in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-one. 
 
Documents within bioRxiv were slightly longer than those within PMCOA, but both were much 

longer than those from the control (NYTAC) (Table 3). The average sentence length, the fraction 

of pronouns, and the use of the passive voice were all more similar between bioRxiv and PMC 

than they were to NYTAC(Table 3). The Kullback–Leibler (KL) divergence of term frequency 

distributions between bioRxiv and PMCOA were low, especially among the top few hundred 

tokens (Figure 3A). As more tokens were incorporated, the KL divergence started to increase but 

remained much lower than the biomedical corpora compared against NYTAC. We provide a 

listing of the top 100 most frequently occurring tokens from all three corpora in our supplement 

(Supplemental Table 12). These findings support our notion that bioRxiv is linguistically similar to 

the PMCOA repository. 

The terms “neurons”, “genome”, and “genetic”, which are common in genomics and 

neuroscience, were more common in bioRxiv than PMCOA while others associated with clinical 

research, such as “clinical” “patients” and “treatment” were more common in PMCOA (Figure 3B, 

3C and Supplementary Figure 19). When controlling for the differences in the body of documents 

to identify textual changes associated with the publication process, we found that tokens such as 

“et” “al” were enriched for bioRxiv while “±”, “–” were enriched for PMCOA (Figure 3D, 3E). When 

removing special and single-character tokens, data availability and presentation related terms 

“fle”, “supplementary”, “fig” appeared enriched for published articles, and research related terms 

“mice”, “activity”, “neurons” appeared enriched for bioRxiv (Supplementary Figure 20). 

Furthermore, we found that specific changes appeared to be related to journal styles: “figure” was 

more common in bioRxiv while “fig” was relatively more common in PMCOA. Other changes 

appeared to be associated with an increasing reference to content external to the manuscript 
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itself: the tokens “supplementary”, “additional” and “file” were all more common in PMCOA than 

bioRxiv, suggesting that journals are not simply replacing one token with another but that there 

are more mentions of such content after peer review. 

These results suggest that the text structure within preprints on bioRxiv is similar to published 

articles within PMCOA. The differences in uptake across fields are supported by the authors’ 

categorization of their articles and the text within the articles themselves. At the level of individual 

manuscripts, the most change terms appear to be associated with typesetting, journal style, and 

an increasing reliance on additional materials after peer review. 

Following our analysis of tokens, we examined the principal components of document 

embeddings derived from bioRxiv. We found that the top principal components separated 

methodological approaches and research fields. Preprints from certain topic areas that spanned 

approaches from informatics-related to cell biology could be distinguished using these principal 

components (see Supplementary Results). 
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Document embedding similarities reveal unannotated preprint-publication pairs 

 

Figure 4 Filling in preprint and corresponding publication links 

A. Preprints are closer in document embedding space to their corresponding peer-reviewed 
publication than they are to random papers published in the same journal. B. Potential preprint-
publication pairs that are unannotated but within the 50th percentile of all preprint-publication 
pairs in the document embedding space are likely to represent true preprint-publication pairs. We 
depict the fraction of true positives over the total number of pairs in each bin. Accuracy is derived 
from the curation of a randomized list of 200 potential pairs (50 per quantile) performed in 
duplicate with a third rater used in the case of disagreement. C. Most preprints are eventually 
published. We show the publication rate of preprints since bioRxiv first started. The x-axis 
represents months since bioRxiv started, and the y-axis represents the proportion of preprints 
published given the month they were posted. The light blue line represents the publication rate 
previously estimated by Abdill et al. [118]. The dark blue line represents the updated publication 
rate using only CrossRef-derived annotations, while the dark green line includes annotations 
derived from our embedding space approach. The horizontal lines represent the overall 
proportion of preprints published as of the time of the annotated snapshot. The dashed horizontal 
line represents the overall proportion published preprints for preprints posted before 2019. Data 
for the information depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-two. 
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Distances between preprints and their corresponding published versions were nearly always 

lower than preprints paired with a random article published in the same journal (Figure 4A). This 

suggested that embedding distances may predict the published form of preprints. We directly 

tested this by selecting low-distance but unannotated preprint-publication pairs and curating the 

extent to which they represented matching documents. Approximately 98% of our 200 pairs with 

an embedding distance in the 0-25th and 25th-50th percentile bins were successfully matched 

with their published counterpart (Figure 4B). These two bins contained 1,542 preprint-article 

pairs, suggesting that many preprints may have been published but not previously connected with 

their published versions. There is a particular enrichment for preprints published but unlinked 

within the 2017-2018 interval (Figure 4C). We expected a higher proportion of such preprints 

before 2019 (many of which may not have been published yet); however, observing relatively few 

missed annotations before 2017 was against our expectations. There are several possible 

explanations for this increasing fraction of missed annotations. As the number of preprints posted 

on bioRxiv grows, it may be harder for bioRxiv to establish a link between preprints and their 

published counterparts simply due to the scale of the challenge. It is possible that the set of 

authors participating in the preprint ecosystem is changing and that new participants may be less 

likely to report missed publications to bioRxiv. Finally, as familiarity with preprinting grows, it is 

possible that authors are posting preprints earlier in the process and that metadata fields that 

bioRxiv uses to establish a link may be less stable. 
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Preprints with more versions or more text changes relative to their published counterpart 

took longer to publish 

 

Figure 5 Time taken for preprints to become published 

A. Author-selected categories were associated with modest differences in the median time to 
publish. Author-selected preprint categories are shown on the y-axis, while the x-axis shows the 
median time-to-publish for each category. Error bars represent 95% confidence intervals for each 
median measurement. B. Preprints with more versions were associated with a longer time to 
publish. The x-axis shows the number of versions of a preprint posted on bioRxiv. The y-axis 
indicates the number of days that elapsed between the first version of a preprint posted on 
bioRxiv and the date at which the peer-reviewed publication appeared. The density of 
observations is depicted in the violin plot with an embedded boxplot. C. Preprints with more 
substantial text changes took longer to be published. The x-axis shows the Euclidean distance 
between document representations of the first version of a preprint and its peer-reviewed form. 
The y-axis shows the number of days elapsed between the first version of a preprint posted on 
bioRxiv and when a preprint is published. The color bar on the right represents the density of 
each hexbin in this plot, where more dense regions are shown in a brighter color. Data for the 
information depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-three. 
 

The process of peer review includes several steps, which take variable amounts of time [160], 

and we sought to measure if there is a difference in publication time between author-selected 

categories of preprints (Figure 5A). Of the most abundant preprint categories microbiology was 
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the fastest to publish (140 days, (137, 145 days) [95% CI]) and genomics was the slowest (190 

days, (185, 195 days) [95% CI]) (Figure 5A). We did observe category-specific differences; 

however, these differences were generally modest, suggesting that the peer review process did 

not differ dramatically between preprint categories. One exception was the Scientific 

Communication and Education category, which took substantially longer to be peer-reviewed and 

published (373 days, (373, 398 days) [95% CI]). This hints that there may be differences in the 

publication or peer review process or culture that apply to preprints in this category. 

Examining peer review’s effect on individual preprints, we found a positive correlation between 

preprints with multiple versions and the time elapsed until publication (Figure 5B). Every 

additional preprint version was associated with an increase of 51 days before a preprint was 

published. This time duration seems broadly compatible with the amount of time it would take to 

receive reviews and revise a manuscript, suggesting that many authors may be updating their 

preprints in response to peer reviews or other external feedback. The embedding space allows us 

to compare preprint and published documents to determine if the level of change that documents 

undergo relates to the time it takes them to be published. Distances in this space are arbitrary 

and must be compared to reference distances. We found that the average distance of two 

randomly selected papers from the bioinformatics category was 4.470, while the average distance 

of two randomly selected papers from bioRxiv was 5.343. Preprints with large embedding space 

distances from their corresponding peer-reviewed publication took longer to publish (Figure 5C): 

each additional unit of distance corresponded to roughly forty-three additional days. 

Overall, our findings support a model where preprints are reviewed multiple times or require more 

extensive revisions take longer to publish. 

Preprints with similar document embeddings share publication venues 

We developed an online application that returns a listing of published papers and journals closest 

to a query preprint in document embedding space. This application uses two k-nearest neighbor 

classifiers that achieved better performance than our baseline model (Supplemental Figure 21) to 
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identify these entities. Users supply our app with digital object identifiers (DOIs) from bioRxiv or 

medRxiv, and the corresponding preprint is downloaded from the repository. Next, the preprint’s 

PDF is converted to text, and this text is used to construct a document embedding representation. 

This representation is supplied to our classifiers to generate a listing of the ten papers and 

journals with the most similar representations in the embedding space (Figures 6A, 6B and 6C). 

Furthermore, the user-requested preprint’s location in this embedding space is then displayed on 

our interactive map, and users can select regions to identify the terms most associated with those 

regions (Figures 6D and 6E). Users can also explore the terms associated with the top 50 PCs 

derived from the document embeddings, and those PCs vary across the document landscape. 

You can access this application using the following url: https://greenelab.github.io/preprint-

similarity-search/ 

 

 

Figure 6 Preprint Similarity Search Walkthrough 

The preprint-similarity-search app workflow allows users to examine where an individual preprint 
falls in the overall document landscape. A. Starting with the home screen, users can paste in a 
bioRxiv or medRxiv DOI, which sends a request to bioRxiv or medRxiv. Next, the app 
preprocesses the requested preprint and returns a listing of (B) the top ten most similar papers 
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and (C) the ten closest journals. D. The app also displays the location of the query preprint in 
PMC. E. Users can select a square within the landscape to examine statistics associated with the 
square, including the top journals by article count in that square and the odds ratio of tokens. 
 

Contextualizing the Preprints in Motion Collection 
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Figure 7 Contextualing Preprints in Motion 

The Preprints in Motion Collection results are similar to all preprint results, except that their time 
to publication was independent of the number of preprint versions and amount of linguistic 
change. A. Tokens that differed included those associated with typesetting and those related to 
the nomenclature of the virus that causes COVID-19. Error bars show 95% confidence intervals 
for each token. B. Of the tokens that differ between Preprints in Motion and their published 
counterparts, the most abundant were associated with the nomenclature of the virus. C. The 
Preprints in Motion collection fall across the landscape of PMCOA with respect to linguistic 
properties. This square bin plot depicts the binning of all published papers within the PMCOA 
corpus. High-density regions are depicted in yellow, while low-density regions are in dark blue. 
Red dots represent the Preprints in Motion Collection. D. The Preprints in Motion collection were 
published faster than other bioRxiv preprints, and the number of versions was not associated with 
an increase in time to publication. The x-axis shows the number of versions of a preprint posted 
on bioRxiv. The y-axis indicates the number of days that elapsed between the first version of a 
preprint posted on bioRxiv and the date at which the peer-reviewed publication appeared. The 
density of observations is depicted in the violin plot with an embedded boxplot. The red dots and 
red regression line represent Preprints in Motion. E. The Preprints in Motion collection were 
published faster than other bioRxiv preprints, and no dependence between the amount of 
linguistic change and time to publish was observed. The x-axis shows the Euclidean distance 
between document representations of the first version of a preprint and its peer-reviewed form. 
The y-axis shows the number of days elapsed between the first version of a preprint posted on 
bioRxiv and when a preprint is published. The color bar on the right represents the density of 
each hexbin in this plot, where more dense regions are shown in a brighter color. The red dots 
and red regression line represent Preprints in Motion. Data for the information depicted in this 
figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-five. 
 

The Preprints in Motion collection included a set of preprints posted during the first four months of 

2020. We examined the extent to which preprints in this set were representative of the patterns 

that we identified from our analysis on all of bioRxiv. As with all of bioRxiv, typesetting tokens 

changed between preprints and their paired publications. Our token-level analysis identified 

certain patterns consistent with our findings across bioRxiv (Figure 7A and 7B). However, in this 

set, we also observe changes likely associated with the fast-moving nature of COVID-19 

research: the token “2019-ncov” became less frequently represented while “sars” and “cov-2” 

became more represented, likely due to a shift in nomenclature from “2019-nCoV” to “SARS-

CoV-2”. The Preprints in Motion were not strongly colocalized in the linguistic landscape, 

suggesting that the collection covers a diverse set of research approaches (Figure 7C). Preprints 

in this collection were published faster than the broader set of bioRxiv preprints (Figure 7D and 

7E). We see the same trend when filtering the broader bioRxiv set to only contain preprints 
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published within the same timeframe as this collection (Supplemental Figures 22A and 22B). The 

relationship between time to publication and the number of versions (Figure 7D and 

Supplemental Figure 22A) and the relationship between time to publication and the amount of 

linguistic change (Figure 7E and Supplemental Figure 22B) were both lost in the Preprints in 

Motion set. Our findings suggest that Preprints in Motion changed during publication in ways 

aligned with changes in the full preprint set but that peer review was accelerated in ways that 

broke the time dependencies observed with the full bioRxiv set. 

Discussion and Conclusions 

BioRxiv is a constantly growing repository that contains life science preprints. Over 77% of 

bioRxiv preprints with a corresponding publication in our snapshot were successfully detected 

within Pubmed Central’s Open Access Corpus (PMCOA). This suggests that most work from 

groups participating in the preprint ecosystem is now available in final form for literature mining 

and other applications. Most research on bioRxiv preprints has examined their metadata; we 

examine the text content as well. Throughout this work, we sought to analyze the language within 

these preprints and understand how it changes in response to peer review. 

Our global corpora analysis found that writing within bioRxiv is consistent with the biomedical 

literature in the PMCOA repository, suggesting that bioRxiv is linguistically similar to PMCOA. 

Token-level analyses between bioRxiv and PMCOA suggested that research fields drive 

significant differences; e.g., more patient-related research is prevalent in PMCOA than bioRxiv. 

This observation is expected as preprints focused on medicine are supported by the 

complementary medRxiv repository [114]. Token-level analyses for preprints and their 

corresponding published version suggest that peer review may focus on data availability and 

incorporating extra sections for published papers; however, future studies are needed to 

ascertain individual token level changes as preprints venture through the publication process. 

One future avenue of research could examine the differences between only preprints and 
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accepted author manuscripts within Pubmed Central to identify changes prior to journal 

publication. 

Document embeddings are a versatile way to examine language contained within preprints, 

understanding peer review’s effect on preprints, and provide extra functionality for preprint 

repositories. Our approach to generate document embeddings was focused on interpretability 

instead of predictive performance; however, using more advanced strategies to generate 

document vectors such as Doc2Vec [133] or BERT [161] should increase predictive performance. 

Examining linguistic variance within document embeddings of life science preprints revealed that 

the largest source of variability was informatics. This observation bisects the majority of life 

science research categories that have integrated preprints within their publication workflow. This 

embedding space could also be used to quantify sentiment trends or other linguistic features. 

Furthermore, methodologies for uncovering latent scientific knowledge [162] may be applicable in 

this embedding space. 

Preprints are typically linked with their published articles via bioRxiv manually establishing links or 

authors self-reporting that their preprint has been published; however, gaps can occur as 

preprints change their appearance through multiple versions or authors do not notify bioRxiv. Our 

work suggests that document embeddings can help fill in missing links within bioRxiv. 

Furthermore, our analysis reveals that the publication rate for preprints is higher than previously 

estimated, even though our analysis can only account for published open access papers. Our 

results raise the lower bound of the total preprint publication fraction; however, the true fraction is 

necessarily higher. Future work, especially that which aims to assess the fraction of preprints that 

are eventually published, should account for the possibility of missed annotations. 

Preprints take a variable amount of time to become published, and we examined factors that 

influence a preprint’s time to publication. Our half-life analysis on preprint categories revealed that 

preprints in most bioRxiv categories take similar amounts of time to be published. An apparent 

exception is the scientific communication and education category, which contained preprints that 
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took much longer to publish. Regarding individual preprints, each new version adds several 

weeks to a preprints time to publication, which is roughly aligned with authors making changes 

after a round of peer review; furthermore, preprints that undergo substantial changes take longer 

to publish. Overall, these results illustrate that bioRxiv is a practical resource for obtaining insight 

into the peer-review process. 

Lastly, we found that document embeddings were associated with the eventual journal at which 

the work was published. We trained two machine learning models to identify which journals 

publish linguistically similar papers towards a query preprint. Our models achieved a considerably 

higher fold change over the baseline model, so we constructed a web application that makes our 

models available to the public and returns a list of the papers and journals that are linguistically 

similar to a bioRxiv or medRxiv preprint. 

Supplemental Section 

Document embeddings derived from bioRxiv reveal fields and subfields 
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Figure 8 PCA analysis on preprint document embeddings 

A. Principal components (PC) analysis of bioRxiv word2vec embeddings groups documents 
based on author-selected categories. We visualized documents from key categories on a 
scatterplot for the first two PCs. The first PC separated cell biology from informatics-related fields, 
and the second PC separated bioinformatics from neuroscience fields. B. A word cloud 
visualization of PC1. Each word cloud depicts the cosine similarity score between tokens and the 
first PC. Tokens in orange were most similar to the PC’s positive direction, while tokens in blue 
were most similar to the PC’s negative direction. The size of each token indicates the magnitude 
of the similarity. C. A word cloud visualization of PC2, which separated bioinformatics from 
neuroscience. Similar to the first PC, tokens in orange were most similar to the PC’s positive 
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direction, while tokens in blue were most similar to the PC’s negative direction. The size of each 
token indicates the magnitude of the similarity. D. Examining PC1 values for each article by 
category created a continuum from informatics-related fields on the top through cell biology on 
the bottom. Specific article categories (neuroscience, genetics) were spread throughout PC1 
values. E. Examining PC2 values for each article by category revealed fields like genomics, 
bioinformatics, and genetics on the top and neuroscience and behavior on the bottom. Data for 
the information depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s1. 
 

Document embeddings provide a means to categorize the language of documents in a way that 

takes into account the similarities between terms [163,164,165]. We found that the first two PCs 

separated articles from different author-selected categories (Supplementary Figure 8A). Certain 

neuroscience papers appeared to be more associated with the cellular biology direction of PC1, 

while others seemed to be more associated with the informatics-related direction (Supplementary 

Figure 8A). This suggests that the concepts captured by PCs were not exclusively related to their 

field. 

Visualizing token-PC similarity revealed tokens associated with certain research approaches 

(Supplementary Figures 8B and 8C). Token association of PC1 shows the separation of cell 

biology and informatics-related fields through tokens: “empirical”, “estimates” and “statistics” 

depicted in orange and “cultured” and “overexpressing” shown in blue (Supplementary Figure 8B 

and Supplementary Table 5). Association for PC2 shows the separation of bioinformatics and 

neuroscience via tokens: “genomic”, “genome” and “genomes” depicted in orange and “evoked”, 

“stimulus” and “stimulation” shown in blue (Supplementary Figure 8C and Supplementary Table 

6). 

Examining the value for PC1 across all author-selected categories revealed an ordering of fields 

from cell biology to informatics-related disciplines (Supplementary Figure 8D). These results 

suggest that a primary driver of the variability within the language used in bioRxiv could be the 

divide between informatics and cell biology approaches. A similar analysis for PC2 suggested 

that neuroscience and bioinformatics present a similar language continuum (Supplementary 

Figure 8E). This result supports the notion that bioRxiv contains an influx of neuroscience and 
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bioinformatics-related research results. For both of the top two PCs, the submitter-selected 

category of systems biology preprints was near the middle of the distribution and had a relatively 

large interquartile range when compared with other categories (Supplementary Figures 8D and 

8E), suggesting that systems biology is a broader subfield containing both informatics and cellular 

biology approaches. 

Examining the top five highest-scoring and bottom five lowest-scoring systems biology preprints 

along PC1 reinforces its dichotomous theme (Supplementary Table 4). Preprints with the highest 

values [166,167,168,169,170] included software packages, machine learning analyses, and other 

computational biology manuscripts, while preprints with the lowest values [171,172,173,174,175] 

were focused on cellular signaling and protein activity. We provide the rest of our 50 generated 

PCs in our online repository (see Software and Data Availability). 

 

Table 4 PC1 divided the author-selected category of systems biology preprints along an axis from 

computational to molecular approaches. 

Title [citation] PC1 License Figure Thumbnail 

Conditional Robust 

Calibration (CRC): a new 

computational Bayesian 

methodology for model 

parameters estimation and 

identifiability analysis [166] 

4.522818390064091 None  

FPtool a software tool to 

obtain in silico genotype-

phenotype signatures and 

fingerprints based on 

4.348956760251298 CC-BY 
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massive model simulations 

[167] 

GpABC: a Julia package for 

approximate Bayesian 

computation with Gaussian 

process emulation [168] 

4.259104249060651 CC-BY-

NC-ND 
 

Notions of similarity for 

computational biology 

models [169] 

4.079855550647664 CC-BY-

NC-ND 

 

SBpipe: a collection of 

pipelines for automating 

repetitive simulation and 

analysis tasks [170] 

4.022240241143516 CC-BY-

NC-ND 
 

    

Bromodomain inhibition 

reveals FGF15/19 as a 

target of epigenetic 

regulation and metabolic 

control [171] 

-

3.4783803547922414 

None 

 

Inhibition of Bruton’s 

tyrosine kinase reduces NF-

kB and NLRP3 

inflammasome activity 

preventing insulin resistance 

and microvascular disease 

[172] 

-

3.6926161167521476 

None 
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Spatiotemporal proteomics 

uncovers cathepsin-

dependent host cell death 

during bacterial infection 

[173] 

-3.728443135960558 CC-BY-

ND 

 

NADPH consumption by L-

cystine reduction creates a 

metabolic vulnerability upon 

glucose deprivation [174] 

-

3.7363965062637288 

None 

 

AKT but not MYC promotes 

reactive oxygen species-

mediated cell death in 

oxidative culture [175] 

-

3.8769231933681176 

None 

 

 

Table 5 Top and bottom five cosine similarity scores between tokens and the PC1 axis. 

Cosine Similarity (PC1, word) word 

0.6399154807185836 empirical 

0.5995356000266072 estimates 

0.5918321530159384 choice 

0.5905550757923625 statistics 

0.5832932491448216 performance 

0.5803836474390357 accuracy 

0.5757250459195589 weighting 
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0.5753027342288192 estimation 

0.5730092178610916 uncertainty 

0.5720493442813257 task 

  

-0.4484093198386865 abrogated 

-0.4490583645152233 transfected 

-0.4500847285921068 incubating 

-0.4531550791501111 inhibited 

-0.4585422153514687 co-incubated 

-0.4774721756292901 pre-incubated 

-0.4793057689825842 overexpressing 

-0.4839313193713342 purified 

-0.4869885872803974 incubated 

-0.5040798110023075 cultured 

 

Table 6 Top and bottom five cosine similarity scores between tokens and the PC2 axis. 

Cosine Similarity (PC2, word) word 

0.65930201597598 genomic 

0.6333515216782134 genome 

0.5974018685580009 gene 

0.5796531207938461 genomes 

0.5353687686155728 annotation 

0.5310140161149529 sequencing 

0.5197350376908197 sequencesM. 

0.5181781615670665 genome, 

0.5168781637087506 bioinformatic 
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0.513853407439108 WGS 

  

-0.4589201401582101 duration 

-0.4690482252758019 stimuli 

-0.4712875761979691 amplitudes 

-0.4772723570301678 contralateral 

-0.4813219679071856 stimulation: 

-0.4946709932017581 delay 

-0.5111990014804086 stimulus 

-0.5251288188682695 amplitude 

-0.543586881182879 stimulation 

-0.5467022203294039 evoked 
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CHAPTER 3 

Detecting semantic shifts in biomedical literature through an intra-year and inter-year 

approach 

This chapter is set to appear as a preprint with the following citation: Nicholson DN, Alquaddoomi 

F, Rubinetti V, Greene CS Detecting semantic shifts in biomedical literature through an intra-year 

and inter-year approach. 

 

This is a co-authored paper where the main scientific contributions were by Nicholson DN who 

was advised by Greene CS. Alquaddoomi F and Rubinetti V assisted with the creation of the 

word-lapse website backend and front end respectively. 

Introduction 

Language is constantly evolving, and the meaning that we ascribe to words changes over time. 

For example, the word “nice” was used to mean foolish or innocent back in the 15th-17th century; 

then, it underwent a positive shift to its current meaning of “pleasant or delightful”[22]. These 

shifts occur for many reasons. For example, writers may use new metaphors or substitute words 

for others with similar meanings in a process known as metonymy [22]. Studying these shifts can 

provide a nuanced understanding of how language adapts to describe our world. 

Scientific fields of inquiry also change, sometimes rapidly, as researchers devise and test new 

hypotheses and applications. For example, the repurposing of the CRISPR-Cas9 system to a 

pervasive tool for genome editing has altered how we discuss molecular entities. Microbes use 

this as an immune system to defend against viruses. Scientists repurposed this system for 

genome editing [176], leading to changes in the use of the term. Science is a field with substantial 

written communication [6], both via published papers [135] and preprints [4,177]. Examining 

scientific manuscripts with computational linguistics can reveal longitudinal trends in scientific 

research. 
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Studying changes in the use of word meanings is called semantic shift detection. Approaches for 

semantic shift detection examine time series datasets that capture word usage patterns, both with 

respect to frequency and structure. Typically, these time series are generated for individual words 

by training a unique model on text binned by a selected time period [32,178,179]. Methods are 

then applied to identify “change points” where a word’s meaning has changed [180]. 

Semantic shifts have been examined in many sources. Analysis has included newspapers 

[35,182,183], books [178], reddit [36], and Twitter [184]. Researchers have examined topics in 

information retrieval [185], and in biomedicine COVID-19 has been examined multiple times 

[38,186,187]. The amount of open access biomedical literature has dramatically increased in the 

last two decades, laying the groundwork for the large-scale analysis of semantic shifts in 

biomedicine. 

We examine these semantic shifts in this rapidly growing body of open access text. We include 

both published papers and preprints in our analysis. We found that novel strategies integrating 

multiple models for each year sidestepped the challenge of instability in the machine learning 

models and allowed us to estimate intra- and inter-year variability. We identify semantic change 

points for each token. We examine key cases and provide the full set of research products, 

including change points and machine learning models, as openly licensed tools for the 

community. We also created a webserver that allows users to analyze tokens of interest on the 

fly, examining both the most similar terms within a year and temporal trends. 

Methods 

Biomedical Corpora Examined 

Pubtator Central 

Pubtator Central is an open-access resource containing annotated abstracts and full-text 

annotated with entity recognition systems for biomedical concepts [128]. The methods used are 

TaggerOne [188] to tag diseases, chemicals, and cell line entities, GNormPlus [189] to tag genes, 
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SR4GN [190] to tag species, and tmVar [191] to tag genetic mutations. We initially downloaded 

this resource on December 07th, 2021, and processed over 30 million documents. This resource 

contains documents that date back to the pre-1800s to the year 2021; however, due to the low 

sample size in early years, we only used documents published from 2000 to 2021. The resource 

was subsequently updated with documents from 2021. We also downloaded a later version on 

March 09th, 2022, and merged both versions using each document’s doc_id field to produce the 

corpus used in this analysis. We divided documents by publication year and then preprocessed 

each using spacy’s en_core_web_sm model [56]. We replaced each tagged word or phrase with 

its corresponding entity type and entity id for every sentence that contained an annotation. Then, 

we used spacy to break sentences into individual tokens and normalized each token to its root 

form via lemmatization. After preprocessing, we used every sentence to train multiple natural 

language models designed to represent words based on their context. 

Biomedical Preprints 

BioRxiv [4] and MedRxiv [177] are repositories that contain preprints for the life science 

community. MedRxiv mainly focuses on preprints that mention patient research, while bioRxiv 

focuses on general biology. We downloaded a snapshot of both resources on March 4th, 2022, 

using their respective Amazon S3 bucket [192,193]. This snapshot contained 172,868 BioRxiv 

preprints and 37,517 MedRxiv preprints. These resources allow authors to post multiple versions 

of a single preprint. To prevent duplication bias, we filtered every preprint to its most recent 

version and sorted each preprint into its respective posted year. Unlike Pubtator Central, these 

filtered preprints do not contain any annotations. Therefore, we used TaggerOne [188] to tag 

every chemical and disease entity and GNormplus [189] to tag every gene and species entity for 

our preprint set. Once tagged, we used spacy to preprocess every preprint as described in our 

Pubtator Central section. 
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Constructing Word Embeddings for Semantic Change Detection 

Word2vec [87] is a natural language processing model designed to model words based on their 

respective neighbors in the form of dense vectors. This suite of models comes in two forms, a 

skipgram model and a continuous bags of words (CBOW) model. The skipgram model generates 

these vectors by having a shallow neural network predict a word’s neighbors given the word, 

while the CBOW model predicts the word given its neighbors. We used the CBOW model to 

construct word vectors for each year. Despite the power of these word2vec models, these models 

are known to differ both due to randomization within year and year-to-year variability across years 

[194,195,196,197]. To control for run-to-run variability, we examined both intra-year and inter-

year relationships. Each year, we trained ten different CBOW models using the following 

parameters: vector size of 300, 10 epochs, minimum frequency cutoff of 5, and a window size of 

16 for abstracts. Every model has its own unique vector space following training, making it difficult 

to compare two models without a correction step. We used orthogonal Procrustes [198] to align 

models. We aligned all trained CBOW models for the Pubtator Central dataset to the first model 

trained in 2021. Likewise, we aligned all CBOW models for the BioRxiv/MedRxiv dataset to the 

first model trained in 2021. We used UMAP [199] to visually examine the aligned models. We 

trained this model using the following parameters: cosine distance metric, random_state of 100, 

25 for n_neighbors, a minimum distance of 0.99, and 50 n_epochs. 

Detecting semantic changes across time 

Once word2vec models are aligned, the next step is to detect semantic change. 

Semantic change events are often detected through time series analysis [200]. We constructed a 

time series sequence for every token by calculating its distance within a given year (intra-year) 

and across each year (inter-year). We used the model pairs constructed from the same year to 

calculate an intra-year distance. Then, we calculated the cosine distance between each token 

and its corresponding counterpart for every generated pair. Cosine distance is a metric bounded 

between zero and two, where a score of zero means two vectors are the same, and a score of 
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two means both vectors are different. For the inter-year distance, we used the Cartesian product 

of every model between two years and calculated the distance between tokens in the same way 

as the intra-year distance. Following both calculations, we combined both metrics by taking the 

ratio of the average inter-year distance over the average intra-year distance. Through this 

approach, tokens with high intra-year instability will be penalized and vice-verse for more stable 

tokens. Along with token distance calculations, it has been shown that including token frequency 

improves results compared to using distance alone [201]. We calculated token frequency as the 

ratio of token frequency in the more recent year over the frequency of the previous year. Then, 

we combined both the frequency and distance ratios to make the final metric. 

Following time series construction, we performed change point detection, which is a process that 

uses statistical techniques to detect abnormalities within a given time series. We used the 

CUSUM algorithm [181] to detect these abnormalities. This algorithm uses a rolling sum of the 

differences between two timepoints and checks whether the sum is greater than a threshold. A 

changepoint is considered to have occurred if the sum is greater than a threshold. We used the 

99th percentile on every generated timepoint as the threshold. Then, we ran the CUSUM 

algorithm using a drift of 0 and default settings for all other parameters. 

Results 

Models can be aligned and compared within and between years 

We examined how the usage of tokens in biomedical text changes over time. Our evaluation was 

derived from machine learning models designed to predict the actual token given a portion of its 

surrounding tokens. Each token was represented as a vector in a coordinate space constructed 

by these models. However, training these models is stochastic, which results in arbitrary 

coordinate spaces. Model alignment is an essential step in allowing word2vec models to be 

compared [26,202]. Before alignment, each model has its own unique coordinate space (Figures 

9A), and each word is represented within that space (Figure 9B). Alignment projects every model 
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onto a shared coordinate space (Figure 9C), enabling direct token comparison. We randomly 

selected 100 tokens to confirm that alignment worked as expected. In aligned models, tokens in 

the global spcae were more similar to themselves within year than between years, while identical 

tokens in unaligned models were completely distinct (Figure 9D). Local distances were unaffected 

by alignment (Figure 9D), as token-neighbor distances were unaffected by the alignment 

procedure. 

 

 

Figure 9 Confirming Alignment for Word2Vec Models 

A. Without alignment, each word2vec model has its own coordinate space. This is a UMAP 
visualization of 5000 randomly sampled tokens from 5 distinct Word2Vec models trained on the 
text published in 2010. Each data point represents a token, and the color represents the 
respective Word2Vec model. B. The highlighted token ‘probiotics’ shows up in its respective 
clusters. Each data point represents a token, and the color represents the Word2Vec model. C. 
After the alignment step, the token ‘probiotic’ is closer in vector space. Each data point represents 
a token, and the color represents the different Word2Vec models. D. In the global coordinate 
space, token distances appear to be vastly different without alignment, but become closer upon 
alignment, while local distances, evaluated using neighbors, are unaffected. This boxplot shows 
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the average distance of 100 randomly sampled tokens shared in every year from 2000 to 2021. 
The x-axis shows the various groups being compared (tokens against themselves via intra-year 
and inter-year distances and tokens against their corresponding neighbors. The y axis shows the 
averaged distance for every year. 
 
 

The landscape of biomedical publishing has changed rapidly during the period of our dataset. The 

texts for our analysis were open access manuscripts available through PubMed Central. The 

growth in the amount of available text and the uneven adoption of open access publishing during 

the interval studied was expected to induce changes in the underlying machine learning models, 

making comparisons more difficult. We found that the number of tokens available for model 

building, i.e., those in PMC OA, increased dramatically during this time (Figure 10A). This was 

expected to create a pattern where models trained in earlier years were more variable than those 

from later years simply due to the limited sample size in early years. We aimed to correct for this 

change in the underlying models by developing a statistic that, instead of using pairwise 

comparisons of token distances between individual models, integrated multiple models for each 

year by comparing tokens’ intra- and inter-year variabilities. We defined the statistic as the ratio of 

the average distance between two years over the sum of the average distance within each year 

respectively. 

The landscape of biomedical publishing has changed rapidly during the period of our dataset. The 

texts for our analysis were open access manuscripts available through PubMed Central. The 

growth in the amount of available text and the uneven adoption of open access publishing during 

the interval studied was expected to induce changes in the underlying machine learning models, 

making comparisons more difficult. We found that the number of tokens available for model 

building, i.e., those in PMC OA, increased dramatically during this time (Figure 10A). This was 

expected to create a pattern where models trained in earlier years were more variable than those 

from later years simply due to the limited sample size in early years. We aimed to correct for this 

change in the underlying models by developing a statistic that, instead of using pairwise 

comparisons of token distances between individual models, integrated multiple models for each 
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year by comparing tokens’ intra- and inter-year variabilities. We defined the statistic as the ratio of 

the average distance between two years over the sum of the average distance within each year 

respectively. 

 

Figure 10 Examing our novel ratio metric over the years 

A. The number of tokens our models have trained on increases over time. This line plot shows 
the number of unique tokens seen by our various machine learning models. The x-axis depicts 
the year and the y-axis shows the token count. B. Earlier years compared to 2010 have greater 
distances than later years. This confidence interval plot shows the collective distances obtained 
by sampling 100 tokens that are present from every year using a single model approach. The x-
axis shows a given year and the y-axis shows the distance metric. C. Later years have a lower 
intra-distance variability compared to the earlier years. This confidence interval plot shows the 
collective distances obtained by sampling 100 tokens that are present from every year using our 
multi-model approach. The x-axis shows a given year and the y-axis shows the distance metric. 
 

We expected most tokens to undergo minor changes from year to year, while substantial changes 

likely suggested model drift as opposed to true linguistic change. We measured the extent to 

which tokens differed from themselves using the standard single-model approach and our 
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integrated statistic. We filtered the token list to only contain tokens present in every year and 

compared their distance to the midpoint year, 2010, using the single-model and integrated-

models strategies. We found that distances tended were markedly larger in the earliest years, 

where we expected models to be least stable, using the traditional approach (Figure 10B). The 

integrated model approach did not display the same pattern in the earliest years (Figure 10C). 

Both trends reinforce that training on smaller corpora will lead to high variation and that an 

integrated model strategy is needed [196]. Based on these results, we used the integrated-model 

strategy to calculate inter-year token distances for the remainder of this work. 

Terms exhibit detectable changes in usage 

 

Figure 11 Reporting Detected Change points for PMCOA and bioRxiv 

A. The number of changepoints increases over time in PMCOA. The x-axis shows the various 
time periods, while the y-axis depicts the number of detected changepoints. B. Regarding 
preprints, the greatest number of changepoints was during 2018-2019. The x-axis shows the 
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various time periods, while the y-axis depicts the number of detected changepoints. C. The token 
‘cas9’ was detected to have a changepoint at 2012-2013. The x-axis shows the time period since 
the first appearance of the token, and the y-axis shows the change metric. D. ‘sars’ has two 
detected changepoints within the PMCOA corpus. The x-axis shows the time period since the first 
appearance of the token, and the y-axis shows the change metric. 
 
We next sought to identify tokens that changed during the 2000-2021 interval for the text from 

PubMed Central’s Open Access Corpus (PMCOA) and the 2015-2022 interval for our preprint 

corpus. We performed change point detection using the CUSUM algorithm with distances 

calculated with the integrated-model approach to correct for systematic differences in the 

underlying corpora. We found 41281 terms with a detected change point from PMCOA and 2266 

terms from preprints (Figures 11A and 11B), and the vast majority (38019 for PMCOA and 2260 

for preprints) had just a single change-point. 

We explored individual change points. We detected one in PMCOA for ‘cas9’ from 2012 to 2013 

(Figure 11C). Before the change point, its closest neighbors were related genetic elements (e.g., 

‘cas’1-3). After the change point, its closest neighbors became terms related to targeting, sgRNA, 

and gRNA, as well as other genome editing strategies, ’talen’ and ‘zfns’ (Table 7). For some 

terms, we detected multiple change points within the studied interval. We detected change points 

for ‘SARS’ from 2002 to 2003 and 2019 to 2020 (Figure 11D), consistent with the emergences of 

SARS-CoV [203] and SARS-CoV-2 [204,205] as observed human pathogens. We found 

miscellaneous neighbors before each change point, with use consistent with the acronym for 

Severe Acute Respiratory Syndrome after each (Tables 8 and 9). 

Out of all change points, we observed 200 tokens with at least one change point in each corpus. 

Only 25 of the 200 terms were detected to have simultaneous changes between the preprint and 

PMCOA corpora. We examined the overlap of detected change points between preprints and 

published articles. Many of these 25 were related to the COVID-19 pandemic (Supplementary 

Table 13). The complete set of detected change points is available for further analysis (see Data 

Availability and Software). 

Table 7 The fifteen most similar neighbors to the token ‘cas9’ for the years 2012 and 2013. 
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2012 2013 

cas2 sgrna 

crispr1 talen 

cas3 spcas9 

cas1 zfns 

cas10 grna 

crispr3 zfn 

tracrrna dcas9 

crispr nickase 

csn1 pcocas9 

crispr4 crispr 

cas7 sgrnas 

cas6e meganuclease 

cas4 tracrrna 

cse1 crispri 

cas6 crrna 

Table 8 The fifteen most similar neighbors to the token ‘sars’ for the years 2002 and 2003. 

2002 2003 

qsar species_227859 

herbicidal mesh_c000657245 

antiplasmodial severe acute respiratory syndrome-related coronavirus 

(species_694009) 

arylpiperazine unidentified human coronavirus (species_694448) 

a]pyridine SARS1 (gene_6301) 

leishmanicidal ebola virus sp. (species_205488) 

naphthyridine pandemic 
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indolo[2,1 coronavirus infections (mesh_d018352) 

b]quinazoline-6,12 coronavirus 

nematocidal ebola virus (species_1570291) 

f]isoxazolo[2,3 severe acute respiratory syndrome (mesh_d045169) 

5-(4 paramyxovirus 

cholinephosphotransferase viruse 

oxovanadium(iv drosten 

catecholase virologist 

Table 9 The fifteen most similar neighbors to the token ‘sars’ for the years 2002 and 2003. 

2019 2020 

g.o. sar 

nsp13 mers 

40/367 cov 

lissodendoryx sars-1 

lutken severe acute respiratory syndrome-related coronavirus 

(species_694009) 

sarr coronaviruse 

sar middle east respiratory syndrome-related coronavirus 

(species_1335626) 

ophiura ophiura (species_72673) cov. 

verrill coronavirus infections (mesh_d018352) 

hirondelle mers- 

kobelt covs 

azorean severe acute respiratory syndrome coronavirus 2 

(species_2697049) 

rusby severe acute respiratory syndrome (mesh_d045169) 
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d’orbigny sarscov 

psychropotes longicauda 

(species_55639) 

sarscov-2 

 

The word-lapse application is an online resource for manual examination of biomedical 

tokens 

 

Figure 12 Walkthrough of the word-lapse manuscript 

A. The trajectory visualization of the token ‘pandemic’ through time. It starts at the first mention of 
the token and progresses through each subsequent year. Every data point shows the top five 
neighbors for the respective token. B. The usage frequency of the token ‘pandemic’ through time. 
The x-axis shows the year, and the y-axis shows the frequency for each token. C. A word cloud 
visualization for the top 25 neighbors for the token ‘pandemic’ each year. This visualization 
highlights each neighbor from a particular year and allows for the comparison between two years. 
Tokens in purple are shared within both years, while tokens in red or blue are unique to their 
respective year. 
 

We constructed an online application that allows users to examine how tokens change through 

time. The application supports token input as text strings or as MeSH IDs, Entrez Gene IDs, and 

Taxonomy IDs. Users might elect to explore the term ‘pandemic’, for which we detected a change 

point between 2019 and 2020. Users can examine the token’s nearest neighbors through time 

(Figure 12A). For example, for ‘pandemic’ users can observe that the token ‘epidemic’ remains 

similar through time, but taxid:114727 (the H1N1 subtype of influenza) only enters the nearest 

neighbors with the swine flu pandemic in 2009 and that MeSH:C000657245 (COVID-19) appears 
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in 2020. The application also shows a frequency chart depicting how often the particular token is 

used each year (Figure 12B), which can be displayed as a raw count or adjusted by the total size 

of the corpus. When change points are detected, they are indicated on this panel (Figure 12B). 

The final visualization shows the union of the nearest 25 neighbors from each year ordered by the 

number of years that neighbor was present (Figure 12C). This visualization has a comparison 

function that allows users to examine differences between years. All functionalities are fully 

supported across the PMCOA and preprint corpora, and users can toggle between the two. 

Discussion and Conclusion 

Language is rapidly evolving, and the usage of words changes over time. These sorts of changes 

result in words assimilating new meanings or associations. A modest amount of effort has studied 

this trend in biomedical text, We implemented an analysis to observe how the usage of tokens 

changes over time using open-access biomedical corpora. 

We validated that direct comparison needs a correction step such as Orthogonal Procrustes. 

However, even with alignment, systematic differences hidden within these corpora result in 

variation that needs to be corrected. We constructed a novel statistic that took the ratio of the 

average inter-year distance over the sum of the intra-year distances. This ratio corrected the 

latent variation without obstructing our ability to detect tokens that were expected to have a 

change point. 

We perform a changepoint detection using the CUSUM algorithm to identify tokens of interest. 

We found tokens such as ‘cas9’, ‘pandemic’, and ‘sars’ to appear in our candidate list. These 

tokens were expected to appear as their changes were prominently known within the field 

[203,204,205,206,207]. Furthermore, we noticed many changepoints that overlapped between 

PMCOA and preprints were related to COVID-19. Despite our efforts, many of our detected 

changepoints are subject to further investigation due to the reliance on manual curation for 

validation. An open extension to this work would be the development of semi-automatic ways to 
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determine the validity of a changepoint. In addition to validation, future work could apply a similar 

approach to other preprint repositories such as arXiv [3] or psyArXiv [208]. Lastly, we created a 

website that enables a closer examination of individual tokens as they change through time. 
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CHAPTER 4 

Expanding a Database-derived Biomedical Knowledge Graph via Multi-relation Extraction 

from Biomedical Abstracts 

This chapter appeared as a preprint in bioRxiv with the following citation: Nicholson DN, 

Himmelstein DS and Greene CS Expanding a Database-derived Biomedical Knowledge Graph 

via Multi-relation Extraction from Biomedical Abstracts (2020) DOI:10.1101/730085. 

 

This paper is a co-authored paper where the majority of work was performed by Nicholson DN 

who was advised by Greene CS and Himmelstein DS. 

Introduction 

Knowledge bases are essential resources that hold complex structured and unstructured 

information. These resources have been used to construct networks for drug repurposing 

discovery [209,210,211] or as a source of training labels for text mining systems [90,94,212]. 

Populating knowledge bases often requires highly trained scientists to read biomedical literature 

and summarize the results through manual curation [213]. In 2007, researchers estimated that 

filling a knowledge base via manual curation would require approximately 8.4 years to complete 

[214]. As the rate of publications increases exponentially [215], using only manual curation to 

populate a knowledge base has become nearly impractical. 

Relationship extraction is one of several solutions to the challenge posed by an exponentially 

growing body of literature [213]. This process creates an expert system to automatically scan, 

detect, and extract relationships from textual sources. These expert systems fall into three types: 

unsupervised, rule-based, and supervised systems. 

Unsupervised systems extract relationships without the need for annotated text. These 

approaches utilize linguistic patterns such as the frequency of two entities appearing in a 

sentence together more often than chance, commonly referred to as co-occurrence 
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[57,59,63,64,216,217,218,219,220]. For example, a possible system would say gene X is 

associated with disease Y because gene X and disease Y appear together more often than 

chance [57]. Besides frequency, other systems can utilize grammatical structure to identify 

relationships [61]. This information is modeled in the form of a tree data structure, termed a 

dependency tree. Dependency trees depict words as nodes, and edges represent a word’s 

grammatical relationship with one another. Through clustering on these generated trees, one can 

identify patterns that indicate a biomedical relationship [61]. Unsupervised systems are desirable 

since they do not require well-annotated training data; however, precision may be limited 

compared to supervised machine learning systems. 

Rule-based systems rely heavily on expert knowledge to perform relationship extraction. These 

systems use linguistic rules and heuristics to identify critical sentences or phrases that suggest 

the presence of a biomedical relationship [48,52,53,221,222,223]. For example, a hypothetical 

extractor focused on protein phosphorylation events would identify sentences containing the 

phrase “gene X phosphorylates gene Y” [53]. These approaches provide exact results, but the 

quantity of positive results remains modest as sentences consistently change in form and 

structure. For this project, we constructed our label functions without the aid of these works; 

however, the approaches mentioned in this section provide substantial inspiration for novel label 

functions in future endeavors. 

Supervised systems depend on machine learning classifiers to predict the existence of a 

relationship using biomedical text as input. These classifiers can range from linear methods such 

as support vector machines [40,72] to deep learning [224,225,226,227,228,229], which all require 

access to well-annotated datasets. Typically, these datasets are usually constructed via manual 

curation by individual scientists [69,73,106,107,110] or through community-based efforts 

[68,230,231]. Often, these datasets are well annotated but are modest in size, making model 

training hard as these algorithms become increasingly complex. 
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Distant supervision is a paradigm that quickly sidesteps manual curation to generate large 

training datasets. This technique assumes that positive examples have been previously 

established in selected databases, implying that the corresponding sentences or data points are 

also positive [94]. The central problem with this technique is that generated labels are often of low 

quality, resulting in many false positives [232]. Despite this caveat there have been notable effort 

using this technique [62,99,233]. 

Data programming is one proposed solution to amend the false positive problem in distant 

supervision. This strategy combines labels obtained from distant supervision with simple rules 

and heuristics written as small programs called label functions [234]. These outputs are 

consolidated via a noise-aware model to produce training labels for large datasets. Using this 

paradigm can dramatically reduce the time required to obtain sufficient training data; however, 

writing a helpful label function requires substantial time and error analysis. This dependency 

makes constructing a knowledge base with a myriad of heterogenous relationships nearly 

impossible as tens or hundreds of label functions are necessary per relationship type. 

This paper seeks to accelerate the label function creation process by measuring how label 

functions can be reused across different relationship types. We hypothesized that sentences 

describing one relationship type might share linguistic features such as keywords or sentence 

structure with sentences describing other relationship types. If this hypothesis were to, one could 

drastically reduce the time needed to build a relation extractor system and swiftly populate large 

databases like Hetionet v1. We conducted a series of experiments to estimate how label function 

reuse enhances performance over distant supervision alone. We focused on relationships that 

indicated similar types of physical interactions (i.e., Gene-binds-Gene and Compound-binds-

Gene) and two more distinct types (i.e., Disease-associates-Gene and Compound-treats-

Disease). 
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Methods and Materials 

Hetionet 

Hetionet v1 [211] is a heterogeneous network that contains pharmacological and biological 

information. This network depicts information in the form of nodes and edges of different types. 

Nodes in this network represent biological and pharmacological entities, while edges represent 

relationships between entities. Hetionet v1 contains 47,031 nodes with 11 different data types 

and 2,250,197 edges that represent 24 different relationship types (Figure 13). Edges in Hetionet 

v1 were obtained from open databases, such as the GWAS Catalog [235], Human Interaction 

database [236] and DrugBank [237]. For this project, we analyzed performance over a subset of 

the Hetionet v1 edge types: disease associates with a gene (DaG), compound binds to a gene 

(CbG), compound treating a disease (CtD), and gene interacts with gene (GiG) (bolded in Figure 

13). 

 

Figure 13 Metagraph of Hetionet 

A metagraph (schema) of Hetionet v1 where biomedical entities are represented as nodes and 
the relationships between them are represented as edges. We examined performance on the 
highlighted subgraph; however, the long-term vision is to capture edges for the entire graph. 
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Dataset 

We used PubTator Central [128] as input to our analysis. PubTator Central provides MEDLINE 

abstracts that have been annotated with well-established entity recognition tools including Tagger 

One [188] for disease, chemical and cell line entities, tmVar [191] for genetic variation tagging, 

GNormPlus [189] for gene entities and SR4GN [190] for species entities. We downloaded 

PubTator Central on March 1, 2020, at which point it contained approximately 30,000,000 

documents. After downloading, we filtered out annotated entities that were not contained in 

Hetionet v1. We extracted sentences with two or more annotations and termed these sentences 

as candidate sentences. We used the Spacy’s English natural language processing (NLP) 

pipeline (en_core_web_sm) [56] to generate dependency trees and parts of speech tags for every 

extracted candidate sentence. Each candidate sentence was stratified by their corresponding 

abstract ID to produce a training set, tuning set, and a testing set. We used random assortment to 

assign dataset labels to each abstract. Every abstract had a 70% chance of being labeled 

training, 20% chance of being labeled tuning, and 10% chance of being labeled testing. Despite 

the power of data programming, all text mining systems need to have ground truth labels to be 

well-calibrated. We hand-labeled five hundred to a thousand candidate sentences of each edge 

type to obtain a ground truth set (Table 10). 

 

Table 10 Statistics of Candidate Sentences. 

We sorted each abstract into a training, tuning and testing set. Numbers in parentheses show the 
number of positives and negatives that resulted from the hand-labeling process.  
 
Relationship Train Tune Test 

Disease-associates-Gene (DaG) 2.49 M 696K (397+, 603-) 348K (351+, 649-) 

Compound-binds-Gene (CbG) 2.4M 684K (37+, 463-) 341k (31+, 469-) 

Compound-treats-Disease (CtD) 1.5M 441K (96+, 404-) 223K (112+, 388-) 

Gene-interacts-Gene (GiG) 11.2M 2.19M (60+, 440-) 1.62M (76+, 424-) 
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Label Functions for Annotating Sentences 

The challenge of having too few ground truth annotations is familiar to many natural language 

processing applications, even when unannotated text is abundant. Data programming 

circumvents this issue by quickly annotating large datasets using multiple noisy signals emitted 

by label functions [234]. Label functions are simple pythonic functions that emit: a positive label 

(1), a negative label (0), or abstain from emitting a label (-1). These functions can use different 

approaches or techniques to emit a label; however, these functions can be grouped into simple 

categories discussed below. Once constructed, these functions are combined using a generative 

model to output a single annotation. This single annotation is a consensus probability score 

bounded between 0 (low chance of mentioning a relationship) and 1 (high chance of mentioning a 

relationship). We used these annotations to train a discriminative model for the final classification 

step. 

Label Function Categories 

Label functions can be constructed in various ways; however, they also share similar 

characteristics. We grouped functions into databases and text patterns. The majority of our label 

functions fall into the text pattern category (Supplemental Table 11). Further, we described each 

label function category and provided an example that refers to the following candidate sentence: 

“PTK6 may be a novel therapeutic target for pancreatic cancer”. 

Databases: These label functions incorporate existing databases to generate a signal, as seen in 

distant supervision [94]. These functions detect if a candidate sentence’s co-mention pair is 

present in a given database. Our label function emits a positive label if the pair is present and 

abstains otherwise. If the pair is not present in any existing database, a separate label function 

emits a negative label. We used a separate label function to prevent a label imbalance problem, 

which can occur when a single function labels every possible sentence despite being correct or 

not. If this problem isn’t handled correctly, the generative model could become biased and only 

emit one prediction (solely positive or solely negative) for every sentence. 
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Text Patterns: These label functions are designed to use keywords or sentence context to 

generate a signal. For example, a label function could focus on the number of words between two 

mentions and emit a label if two mentions are too close. Alternatively, a label function could focus 

on the parts of speech contained within a sentence and ensures a verb is present. Besides parts 

of speech, a label function could exploit dependency parse trees to emit a label. These trees are 

akin to the tree data structure where words are nodes and edges are how each word modifies 

each other. Label functions that use these parse trees will test if the generated tree matches a 

pattern and emits a positive label if true. For our analysis, we used previously identified patterns 

designed for biomedical text to generate our label functions [61]. 

Λ������, 
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Each text pattern label function was constructed via manual examination of sentences within the 

training set. For example, using the candidate sentence above, one would identify the phrase 

“novel therapeutic target” and incorporate this phrase into a global list that a label function would 

use to check if present in a sentence. After initial construction, we tested and augmented the 

label function using sentences in the tune set. We repeated this process for every label function 

in our repertoire. 
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Table 11 The distribution of each label function per relationship.  

Relationship Databases (DB) Text Patterns (TP) 

DaG 7 30 

CtD 3 22 

CbG 9 20 

GiG 9 28 

 

Training Models 

Generative Model 

The generative model is a core part of this automatic annotation framework. It integrates multiple 

signals emitted by label functions to assign each candidate sentence the most appropriate 

training class. This model takes as input a label function output in the form of a matrix where rows 

represent candidate sentences, and columns represent each label function (3456). Once 

constructed, this model treats the true training class (7) as a latent variable and assumes that 

each label function is independent of one another. Under these two assumptions, the model finds 

the optimal parameters by minimizing a loglikelihood function marginalized over the latent training 

class. 

89 = '�:2�(; < −
=

/�:�>;�3, 7�� 

Following optimization, the model emits a probability estimate that each sentence belongs to the 

positive training class. At this step, each probability estimate can be discretized via a chosen 

threshold into a positive or negative class. We used a threshold of 0.5 for discretizing our training 

classes within our analysis. For more information on how the likelihood function is constructed 

and minimized, refer to [238]. 
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Discriminative Model 

The discriminative model is the final step in this framework. This model uses training labels 

generated from the generative model combined with sentence features to classify the presence of 

a biomedical relationship. Typically, the discriminative model is a neural network. We used 

BioBERT [227], a BERT [239] model trained on all papers and abstracts within Pubmed Central 

[135], as our discriminative model. BioBERT provides its own set of word embeddings, dense 

vectors representing words that models such as neural networks can use to construct sentence 

features. We downloaded a pre-trained version of this model using huggingface’s transformer 

python package [240] and fine-tuned it using our generated training labels. Our fine-tuning 

approach involved freezing all downstream layers except for the classification head of this model. 

Next, we trained this model for 10 epochs using the Adam optimizer [241] with huggingface’s 

default parameter settings and a learning rate of 0.001. 

Experimental Design 

Reusing label functions across edge types would substantially reduce the number of label 

functions required to extract multiple relationships from biomedical literature. We first established 

a baseline by training a generative model using only distant supervision label functions designed 

for the target edge type (see Supplemental Methods). Then we compared the baseline model 

with models that incorporated a set number of text pattern label functions. Using a sampling with 

replacement approach, we sampled these text pattern label functions from three different groups: 

within edge types, across edge types, and from a pool of all label functions. We compared within-

edge-type performance to across-edge-type and all-edge-type performance. We sampled a fixed 

number of label functions for each edge type consisting of five evenly spaced numbers between 

one and the total number of possible label functions. We repeated this sampling process 50 times 

for each point. Furthermore, we also trained the discriminative model using annotations from the 

generative model trained on edge-specific label functions at each point. We report the 

performance of both models in terms of the area under the receiver operating characteristic curve 
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(AUROC) and the area under the precision-recall curve (AUPR). Ensuing model evaluations, we 

quantified the number of edges we could incorporate into Hetionet v1. We used our best 

performing discriminative model to score every candidate sentence within our dataset and 

grouped candidates based on their mention pair. We took the max score within each candidate 

group, and this score represents the probability of the existence of an edge. We established 

edges using a cutoff score that produced an equal error rate between the false positives and false 

negatives. Lastly, we report the number of preexisting edges we could recall and the number of 

novel edges we can incorporate. 

 

Results 

Generative Model Using Randomly Sampled Label Functions 

Creating label functions is a labor-intensive process that can take days to accomplish. We sought 

to accelerate this process by measuring how well label functions can be reused. We evaluated 

this by performing an experiment where label functions are sampled on an individual (edge 

vs. edge) level and a global (collective pool of sources) level. We observed that performance 

increased when edge-specific label functions were added to an edge-specific baseline model, 

while label function reuse usually provided less benefit (AUROC Figure 14, AUPR Supplemental 

Figure 23). The quintessential example of this overarching trend is the Compound-treats-Disease 

(CtD) edge type, where edge-specific label functions consistently outperformed transferred label 

functions. However, there is evidence that label function transferability may be feasible for 

selected edge types and label function sources. Performance increases as more Gene-interacts-

Gene (GiG) label functions are incorporated into the Compound-binds-Gene (CbG) baseline 

model and vice versa. This trend suggests that sentences for GiG and CbG may share similar 

linguistic features or terminology that allows for label functions to be reused, which could relate to 

both describing physical interaction relationships. Perplexingly, edge-specific Disease-associates-
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Gene (DaG) label functions did not improve performance over label functions drawn from other 

edge types. Overall, only CbG and GiG showed significant signs of reusability. This pattern 

suggests that label function transferability may be possible for these two edge types. 

 

Figure 14 Generative Model Performance for Predicted Relations AUROC 

Edge-specific label functions perform better than edge-mismatch label functions, but certain 
mismatch situations show signs of successful transfer. Each line plot header depicts the edge 
type the generative model is trying to predict, while the colors represent the source of label 
functions. For example, orange represents sampling label functions designed to predict the 
Compound-treats-Disease (CtD) edge type. The x-axis shows the number of randomly sampled 
label functions incorporated as an addition to the database-only baseline model (the point at 0). 
The y-axis shows the area under the receiver operating curve (AUROC). Each point on the plot 
shows the average of 50 sample runs, while the error bars show the 95% confidence intervals of 
all runs. The baseline and “All” data points consist of sampling from the entire fixed set of label 
functions. 
 

We found that sampling from all label function sources at once usually underperformed relative to 

edge-specific label functions (Figure 15 and Supplemental Figure 24). The gap between edge-

specific sources and all sources widened as we sampled more label functions. CbG is a prime 

example of this trend (Figure 15 and Supplemental Figure 24), while CtD and GiG show a similar 
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but milder trend. DaG was the exception to the general rule. The pooled set of label functions 

improved performance over the edge-specific ones, which aligns with the previously observed 

results for individual edge types (Figure 14). When pooling all label functions, the decreasing 

trend supports the notion that label functions cannot simply transfer between edge types 

(exception being CbG on GiG and vice versa). 

 

Figure 15 Generative Model Performance using All Label Functions 

Using all label functions generally hinders generative model performance. Each line plot header 
depicts the edge type the generative model is trying to predict, while the colors represent the 
source of label functions. For example, orange represents sampling label functions designed to 
predict the Compound-treats-Disease (CtD) edge type. The x-axis shows the number of randomly 
sampled label functions incorporated as an addition to the database-only baseline model (the 
point at 0). The y-axis shows the area under the receiver operating curve (AUROC). Each point 
on the plot shows the average of 50 sample runs, while the error bars show the 95% confidence 
intervals of all runs. The baseline and “All” data points consist of sampling from the entire fixed 
set of label functions. 
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Discriminative Model Performance 

The discriminative model is intended to augment performance over the generative model by 

incorporating textual features together with estimated training labels. We found that the 

discriminative model generally outperformed the generative model with respect to AUROC as 

more edge-specific label functions were incorporated (Figure 16). Regarding AUPR, this model 

outperformed the generative model for the DaG edge type. At the same time, it had close to par 

performance for the rest of the edge types (Supplemental Figure 25). The discriminative model’s 

performance was often poorest when very few edge-specific label functions were incorporated 

into the baseline model (seen in DaG, CbG, and GiG). This example suggests that training 

generative models with more label functions produces better outputs for training for discriminative 

models. CtD was an exception to this trend, where the discriminative model outperformed the 

generative model at all sampling levels in regards to AUROC. We observed the opposite trend 

with the CbG edges as the discriminative model was always worse or indistinguishable from the 

generative model. Interestingly, the AUPR for CbG plateaus below the generative model and 

decreases when all edge-specific label functions are used (Supplemental Figure 25). This trend 

suggests that the discriminative model might have predicted more false positives in this setting. 

Overall, incorporating more edge-specific label functions usually improved performance for the 

discriminative model over the generative model. 
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Figure 16 Discriminative Model Performance AUROC 

The discriminative model usually improves faster than the generative model as more edge-
specific label functions are included. The line plot headers represent the specific edge type the 
discriminative model is trying to predict. The x-axis shows the number of randomly sampled label 
functions incorporated as an addition to the baseline model (the point at 0). The y axis shows the 
area under the receiver operating curve (AUROC). Each data point represents the average of 3 
sample runs for the discriminator model and 50 sample runs for the generative model. The error 
bars represent each run’s 95% confidence interval. The baseline and “All” data points consist of 
sampling from the entire fixed set of label functions. 
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Text Mined Edges Can Expand a Database-derived Knowledge Graph 

 

Figure 17 Edge Recall for Hetionet 

Text-mined edges recreate a substantial fraction of an existing knowledge graph and include new 
predictions. This bar chart shows the number of edges we can successfully recall in green and 
indicates the number of new edges in blue. 
 

The recall for the Hetionet v1 knowledge graph is shown as a percentage in parentheses. For 

example, for the Compound-treats-Disease (CtD) edge, our method recalls 30% of existing edges 

and can add 6,282 new ones. 

One of the goals of our work is to measure the extent to which learning multiple edge types could 

construct a biomedical knowledge graph. Using Hetionet v1 as an evaluation set, we measured 

this framework’s recall and quantified the number of edges that may be incorporated with high 

confidence. Overall, we were able to recall about thirty percent of the preexisting edges for all 

edge types (Figure 17) and report our top ten scoring sentences for each edge type in 
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Supplemental Table 14. Our best recall was with the CbG edge type, where we retained 33% of 

preexisting edges. In contrast, we only recalled close to 30% for CtD, while the other two 

categories achieved a recall score close to 22%. Despite the modest recall level, the amount of 

novel edge types remains elevated. This notion highlights that Hetionet v1 is missing a 

compelling amount of biomedical information, and relationship extraction is a viable way to close 

the information gap. 

Discussion and Conclusions 

Filling out knowledge bases via manual curation can be an arduous and erroneous task [213]. 

Using manual curation alone becomes impractical as the rate of publications continuously 

increases. Data programming is a paradigm that uses label functions to speed up the annotation 

process and can be used to solve this problem. However, creating useful label functions is an 

obstacle to this paradigm, which takes considerable time. We tested the feasibility of re-using 

label functions to reduce the number of label functions required for strong prediction performance. 

Our sampling experiment revealed that adding edge-specific label functions is better than adding 

off-edge label functions. An exception to this trend is using label functions designed from 

conceptually related edge types (using GiG label functions to predict CbG sentences and vice 

versa). Furthermore, broad edge types such as DaG did not follow this trend as we found this 

edge to be agnostic to any tested label function source. One possibility for this observation is that 

the “associates” relationship is a general concept that may include other concepts such as 

Disease (up/down) regulating a Gene (examples highlighted in our annotated sentences). The 

discriminator model did not have an apparent positive or negative effect on performance; 

however, we noticed that performance heavily depended on the annotations provided by the 

generative model. This pattern suggests a focus on label function construction and generative 

model training may be key steps to focus on in future work. Although we found that label 
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functions cannot be re-used across all edge types with the standard task framing, strategies like 

multitask [101] or transfer learning [97] may make multi-label-function efforts more successful. 
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CHAPTER 5 

 

Written communication is a fundamental part of the life science community as it enables the 

widespread sharing of research findings. Through textual analysis, we can attain a higher 

understanding of life science research. This thesis was centered on performing multiple textual 

analyses using published and pre-published papers to better grasp how language changes within 

the field. 

Chapter 2 concentrated on analyzing preprints and exploring how their textual content changed 

when subjected to the peer-review process. We found that most changes between preprints and 

their published counterparts were mainly stylistic. This trend suggests that output from the peer-

review process is modest text changes at best, which has also been reinforced by other studies 

[21,241]. We found that most preprints are eventually published, which had been confirmed by 

previous endeavors [118], Furthermore, we established a new lower bound on the number of 

preprints published. However, the true proportion of published preprints remains to be seen as 

there were missing links within bioRxiv and many published papers were behind paywalls. As 

published papers become more available through open access efforts, it will be interesting to see 

an updated version of published preprints. Overall, preprints are being increasingly integrated into 

the life science community and might become valuable resources for other avenues for textual 

analysis, such as text mining. 

Chapter 3 examined how the meaning and associations of words change over time within 

biomedical preprints and published. These types of changes are called semantic shifts, and we 

took a novel approach to model these changes. We confirmed that Word2Vec models need a 

correction step to enable model comparison. Despite the correction, we took a multi-model 

approach to account for residual variation after alignment. We performed changepoint detection 

and found over 43,000 different candidates that may have changed their meaning. In our 

candidate list, we found tokens such as “pandemic”, “sars” and “cas9” which are known positive 
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results [242,243]. Despite this confirmation, most of our change point list remains for future 

investigation as this process heavily relies on manual curation and expert knowledge. An 

extension to this chapter would be to explore intuitive ways to validate these findings. For 

example, one approach would be connecting published papers to these potential token 

candidates. Also, as time progresses, it will be interesting to see which tokens gain a change 

point. 

Chapter 4 explored the paradigm of weak supervision and measured the extent to which label 

sources could be re-used across Hetionet edge types. We used four different relationship types, 

Compound-binds-Gene (CbG), Gene-interacts-Gene (GiG), Disease-associates-Gene (DaG), 

and Compound-treats-Disease (CtD). We found that label sources didn’t transfer well across our 

selected relationship types, suggesting that the language used to describe each edge type is 

distinct. An exception to this trend was Compound-binds-Gene (CbG) and Gene-interacts-Gene 

(GiG). There was noticeable transferability, suggesting that scientists use similar language to 

describe both edge types. We also found that the discriminator model didn’t significantly impact 

prediction performance, suggesting that most endeavors would prosper from focusing on refining 

the generative model’s annotations. Furthermore, future endeavors could prosper more by 

focusing on mining one relationship at a time. Conversely, other endeavors could use techniques 

such as multi-task, transfer, or semi-supervised learning. 

Overall, the effort performed in this thesis is just the beginning of textual analysis as a whole. The 

main contributions were using preprints and published papers to assist the life science community 

in ascertaining the language and research trends contained in these resources. Moving forward, it 

will be exciting to see what extensions will arise from this work. 
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APPENDIX A  

 

Figure 18 Document category count for bioRxiv  

Neuroscience and bioinformatics are the two most common author-selected topics for bioRxiv 
preprints. Data for the information depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s2. 
 
Table 12 The top 100 frequently occurring tokens across our three corpora  

bioRxiv Tokens PMCOA Tokens NYTAC Tokens 

‘et’ ‘\\u2009’ ‘said’ 

‘al’ ‘\xa0’ ‘mr.’ 

‘cell’ ‘\t\t\t\t’ ’ ’ 

‘cells’ ‘et’ ‘–’ 

‘1’ ‘1’ ‘new’ 

‘different’ ‘cells’ ‘new’ 

‘2’ ‘al’ ‘like’ 

‘high’ ‘cell’ ‘year’ 

‘genes’ ‘patients’ ‘years’ 

‘gene’ ‘study’ ‘united’ 
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‘3’ ‘2’ ‘ms.’ 

‘specific’ ‘different’ ‘today’ 

‘figure’ ‘high’ ‘york’ 

‘single’ ‘3’ ‘old’ 

‘non’ ‘\\u2013’ ‘american’ 

‘5’ ‘significant’ ‘yesterday’ 

‘\\u201d’ ‘10’ ‘time’ 

‘\\u201c’ ‘5’ ‘lead’ 

‘data’ ‘significantly’ ‘people’ 

‘10’ ‘group’ ‘dr.’ 

‘4’ ‘4’ ‘years’ 

‘significant’ ‘non’ ‘york’ 

‘\\u2019’ ‘compared’ ‘week’ 

‘found’ ‘\\u201c’ ‘officials’ 

‘protein’ ‘\\u201d’ ‘ago’ 

‘model’ ‘found’ ‘including’ 

‘performed’ ‘performed’ ‘10’ 

‘figure’ ‘specific’ ‘people’ 

‘analysis’ ‘respectively’ ‘high’ 

‘study’ ‘\\u200a’ ‘john’ 

‘genetic’ ‘showed’ ‘public’ 

‘significantly’ ‘analysis’ ‘good’ 

‘species’ ‘including’ ‘political’ 

‘low’ ‘low’ ‘1’ 

‘human’ ‘higher’ ‘said’ 

‘time’ ‘clinical’ ‘president’ 
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‘including’ ‘results’ ‘year’ 

‘respectively’ ‘groups’ ‘national’ 

‘time’ ‘shown’ ‘second’ 

‘compared’ ‘time’ ‘million’ 

‘previously’ ‘\xb0’ ‘university’ 

‘results’ ‘total’ ‘recent’ 

‘shown’ ‘treatment’ ‘small’ 

‘fig’ ‘protein’ ‘percent’ 

‘multiple’ ‘additional’ ‘2’ 

‘large’ ‘studies’ ‘long’ 

‘similar’ ‘genes’ ‘far’ 

‘\\u2013’ ‘positive’ ‘big’ 

‘higher’ ‘figure’ ‘major’ 

‘expression’ ‘cells’ ‘later’ 

‘expression’ ‘gene’ ‘west’ 

‘samples’ ‘data’ ‘great’ 

‘i.e.’ ‘anti’ ‘30’ 

‘fig’ ‘previous’ ‘little’ 

‘individual’ ‘data’ ‘million’ 

‘\xb0’ ‘addition’ ‘3’ 

‘dna’ ‘human’ ‘mrs.’ 

‘average’ ‘health’ ‘states’ 

‘supplementary’ ‘observed’ ‘says’ 

‘previous’ ‘according’ ‘according’ 

‘total’ ‘single’ ‘late’ 

‘showed’ ‘reported’ ‘young’ 
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‘data’ ‘previously’ ‘away’ 

‘observed’ ‘mice’ ‘life’ 

‘functional’ ‘20’ ‘american’ 

‘number’ ‘\\u2003’ ‘month’ 

‘based’ ‘6’ ‘large’ 

‘\\u2018’ ‘c’ ‘company’ 

‘small’ ‘study’ ‘way’ 

‘cells’ ‘control’ ‘black’ 

‘positive’ ‘similar’ ‘early’ 

‘conditions’ ‘studies’ ‘east’ 

‘20’ ‘expression’ ‘real’ 

‘data’ ‘data’ ‘3’ 

‘regions’ ‘time’ ‘11’ 

‘data’ ‘30’ ‘state’ 

‘proteins’ ‘fig’ ‘20’ 

‘new’ ‘95’ ‘world’ 

‘mice’ ‘\\u2019’ ‘net’ 

‘relative’ ‘model’ ‘j.’ 

‘addition’ ‘levels’ ‘street’ 

‘6’ ‘primary’ ‘end’ 

‘neurons’ ‘samples’ ‘think’ 

‘studies’ ‘large’ ‘day’ 

‘c’ ‘small’ ‘long’ 

‘cells’ ‘lower’ ‘state’ 

‘100’ ’ ’ ‘david’ 

‘function’ ‘increased’ ‘best’ 
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‘activity’ ‘100’ ‘robert’ 

‘highly’ ‘patients’ ‘local’ 

‘experimental’ ‘based’ ‘city’ 

‘standard’ ‘figure’ ‘million’ 

‘30’ ‘blood’ ‘5’ 

‘levels’ ‘50’ ‘earns’ 

‘brain’ ‘effect’ ‘st.’ 

‘rna’ ‘normal’ ‘president’ 

‘models’ ‘standard’ ‘world’ 

‘identified’ ‘conditions’ ‘nearly’ 

‘binding’ ‘level’ ‘4’ 

‘50’ ‘important’ ‘home’ 

 

Figure 19 Individual Token Analysis for bioRxiv vs PMCOA Special Characters Removed 

A. The significant differences in token frequencies for the corpora appear to be driven by the 
fields with the highest uptake of bioRxiv, as terms from neuroscience and genomics are relatively 
more abundant in bioRxiv. We plotted the 95% confidence interval for each reported token. B. Of 
the tokens that differ between bioRxiv and PMC, the most abundant in bioRxiv are “gene”, 
“genes” and “model” while the most abundant in PMC is “study.” Data for the information depicted 
in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s3. 
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Figure 20 Individual Token Analysis for Preprints vs Their Published Counterparts (Special Characters 

Removed) 

A. The significant differences in token frequencies for preprints and their corresponding published 
version often appear to be associated with data availability and supplementary or additional 
materials. We plotted the 95% confidence interval for each reported token. B. The tokens with the 
largest absolute differences in abundance appear related to scientific figures and data availability. 
Data for the information depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s4. 
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Figure 21 Machine Learning for Predicting Similar Journals  

Both classifiers outperform the randomized baseline when predicting a paper’s journal endpoint. 
This bargraph shows each model’s accuracy in respect to predicting the training and test set. 
Data for the information depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s5. 
 

 

Figure 22 Time analysis for Contextualizing Preprints in Motion  

A. The Preprints in Motion were published faster than other bioRxiv preprints, and the number of 
versions was not associated with an increase in time to publication. The x-axis shows the number 
of versions of a preprint posted on bioRxiv. The y-axis indicates the number of days that elapsed 
between the first version of a preprint posted on bioRxiv and the date at which the peer-reviewed 
publication appeared. The density of observations is depicted in the violin plot with an embedded 
boxplot. The red dots and red regression line represent Preprints in Motion. B. The Preprints in 
Motion collection were published faster than other bioRxiv preprints, and no dependence between 
the amount of linguistic change and time to publish was observed. The x-axis shows the 
Euclidean distance between document representations of the first version of a preprint and its 
peer-reviewed form. The y-axis shows the number of days elapsed between the first version of a 
preprint posted on bioRxiv and when a preprint is published. The color bar on the right represents 
the density of each hexbin in this plot, where more dense regions are shown in a brighter color. 
The red dots and red regression line represent Preprints in Motion. Data for the information 
depicted in this figure are available at 
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s6. 
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APPENDIX B 

Supplemental Tables 

Table 13 The intersection of changepoints found between published papers and preprints.  

Token Changepoint 

lockdown 2019-2020 

2021 2020-2021 

distancing 2019-2020 

2019 2018-2019 

ace2 2019-2020 

pandemic 2019-2020 

2020 2019-2020 

coronavirus 2019-2020 

bcl2a1 2018-2019 

peak3 2020-2021 

3.6.2 2019-2020 

quarantine 2019-2020 

cobl 2020-2021 

injectrode 2020-2021 

nrc3 2020-2021 

4.0.5 2020-2021 

TMPRSS2 (gene_7113) 2019-2020 

n262 2019-2020 

bin1 2017-2018 

n3c 2020-2021 

tip1 2020-2021 
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omicron 2020-2021 

pangolin 2019-2020 

adrn 2020-2021 

seir 2019-2020 

 

APPENDIX C 

Supplementary Figures 

Generative Model Using Randomly Sampled Label Functions 

Individual Sources 

 

Figure 23 Generative Model Performance for Predicted Relations AUPR  
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Edge-specific label functions improve performance over edge-mismatch label functions. Each line 
plot header depicts the edge type the generative model is trying to predict, while the colors 
represent the source of label functions. For example, orange represents sampling label functions 
designed to predict the Compound treats Disease (CtD) edge type. The x-axis shows the number 
of randomly sampled label functions incorporated as an addition to the database-only baseline 
model (the point at 0). The y-axis shows the area under the precision-recall curve (AUPR). Each 
point on the plot shows the average of 50 sample runs, while the error bars show the 95% 
confidence intervals of all runs. The baseline and “All” data points consist of sampling from the 
entire fixed set of label functions. 

Collective Pool of Sources 

 

Figure 24 Generative Model Performance using All Label Functions (AUPR)  

Using all label functions generally hinders generative model performance. Each line plot header 
depicts the edge type the generative model is trying to predict, while the colors represent the 
source of label functions. For example, orange represents sampling label functions designed to 
predict the Compound treats Disease (CtD) edge type. The x-axis shows the number of randomly 
sampled label functions incorporated as an addition to the database-only baseline model (the 
point at 0). The y-axis shows the area under the precision-recall curve (AUPR). Each point on the 
plot shows the average of 50 sample runs, while the error bars show the 95% confidence 
intervals of all runs. The baseline and “All” data points consist of sampling from the entire fixed 
set of label functions. 
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Discriminative Model Performance 

 

Figure 25 Discriminator Model Performance in AUPR 

The discriminator model improves performance as the number of edge-specific label functions is 
added to the baseline model. The line plot headers represent the specific edge type the 
discriminator model is trying to predict. The x-axis shows the number of randomly sampled label 
functions incorporated as an addition to the baseline model (the point at 0). The y axis shows the 
area under the precision-recall curve (AUPR). Each data point represents the average of 3 
sample runs for the discriminator model and 50 sample runs for the generative model. The error 
bars represent each run’s 95% confidence interval. The baseline and “All” data points consist of 
sampling from the entire fixed set of label functions. 

Supplemental Tables 

Table 14 Top Ten Sentences for Each Edge Type 

Contains the top ten predictions for each edge type. Highlighted words represent entities 
mentioned within the given sentence.  
 

Edg

e Source Node 

Target 

Node 

Generati

ve 

Model 

Discrimina

tive Model 

Prediction 

Number 

of 

In 

Hetion

et Text 
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Typ

e 

Predicti

on 

Sentenc

es 

Da

G 

hematologic 

cancer 

STMN1 1.000 0.979 83 Novel the stathmin1 

mrna 

expression 

level in de 

novo al patient 

be high than 

that in healthy 

person ( p < 

0.05 ) , the 

stathmin1 

mrna 

expression 

level in 

relapse 

patient with al 

be high than 

that in de 

novo patient ( 

p < 0.05 ) , 

and there be 

no significant 

difference of 

stathmin1 

mrna 
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expression 

between 

patient with 

aml and 

patient with all 

. 

Da

G 

breast cancer INSIG2 1.000 0.979 4 Novel in analysis of 

idc cell , the 

level of insig2 

mrna 

expression be 

significantly 

high in late - 

stage patient 

than in early - 

stage patient . 

Da

G 

lung cancer GNAO1 1.000 0.979 104 Novel high numb 

expression be 

associate with 

favorable 

prognosis in 

patient with 

lung 

adenocarcino

ma , but not in 

those with 
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squamous cell 

carcinoma . 

Da

G 

breast cancer TTF1 1.000 0.977 88 Novel significant ttf-1 

overexpressio

n be observe 

in 

adenocarcino

mas harbor 

egfr mutation ( 

p = 0.008 ) , 

and no or 

significantly 

low level 

expression of 

ttf-1 be 

observe in 

adenocarcino

mas harbor 

kras mutation 

( p = 0.000 ) . 

Da

G 

breast cancer BUB1B 1.000 0.977 13 Novel elevated 

bubr1 

expression be 

associate with 

poor survival 

in early stage 
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breast cancer 

patient . 

Da

G 

Alzheimer’s 

disease 

SERPIN

A3 

1.000 0.977 182 Existi

ng 

a common 

polymorphism 

within act and 

il-1beta gene 

affect plasma 

level of act or 

il-1beta , and 

ad patient with 

the act t , t or 

il-1beta t , t 

genotype 

show the high 

level of 

plasma act or 

il-1beta , 

respectively . 

Da

G 

esophageal 

cancer 

TRAF6 1.000 0.976 15 Novel expression of 

traf6 be highly 

elevated in 

esophageal 

cancer tissue , 

and patient 

with high traf6 

expression 
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have a 

significantly 

short survival 

time than 

those with low 

traf6 

expression . 

Da

G 

hypertension TBX4 1.000 0.975 146 Novel the proportion 

of circulate th1 

cell and the 

level of t - bet 

, ifng mrna be 

increase in ht 

patient , the 

expression of 

ifng - as1 be 

upregulated 

and positively 

correlate with 

the proportion 

of circulate th1 

cell or t - bet , 

and ifng 

expression , 

or serum level 

of anti - 
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thyroglobulin 

antibody / 

thyroperoxida

se antibody in 

ht patient . 

Da

G 

breast cancer TP53 1.000 0.975 3481 Existi

ng 

hormone 

receptor 

status rather 

than her2 

status be 

significantly 

associate with 

increase ki-67 

and p53 

expression in 

triple - 

negative 

breast 

carcinoma , 

and high 

expression of 

ki-67 but not 

p53 be 

significantly 

associate with 

axillary nodal 
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metastasis in 

triple - 

negative and 

high - grade 

non - triple - 

negative 

breast 

carcinoma . 

Da

G 

esophageal 

cancer 

COL17A

1 

1.000 0.975 32 Novel high cd147 

expression in 

patient with 

esophageal 

cancer be 

associate with 

bad survival 

outcome and 

common 

clinicopatholo

gical indicator 

of poor 

prognosis . 

CtD Docetaxel prostate 

cancer 

0.996 0.964 5614 Existi

ng 

docetaxel and 

atrasentan 

versus 

docetaxel and 

placebo for 
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man with 

advanced 

castration - 

resistant 

prostate 

cancer ( swog 

s0421 ) : a 

randomised 

phase 3 trial 

CtD E7389 breast 

cancer 

0.999 0.957 862 Novel clinical effect 

of prior 

trastuzumab 

on 

combination 

eribulin 

mesylate plus 

trastuzumab 

as first - line 

treatment for 

human 

epidermal 

growth factor 

receptor 2 

positive locally 

recurrent or 

metastatic 
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breast cancer 

: result from a 

phase ii , 

single - arm , 

multicenter 

study 

CtD Zoledronate bone 

cancer 

0.996 0.955 226 Novel zoledronate in 

combination 

with 

chemotherapy 

and surgery to 

treat 

osteosarcoma 

( os2006 ) : a 

randomised , 

multicentre , 

open - label , 

phase 3 trial . 

CtD   0.878 0.954 484 Existi

ng 

the role of 

ixazomib as 

an augment 

conditioning 

therapy in 

salvage 

autologous 

stem cell 
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transplant ( 

asct ) and as 

a post - asct 

consolidation 

and 

maintenance 

strategy in 

patient with 

relapse 

multiple 

myeloma ( 

accord [ uk - 

mra myeloma 

xii ] trial ) : 

study protocol 

for a phase iii 

randomise 

controlled trial 

CtD Topotecan lung 

cancer 

1.000 0.954 315 Existi

ng 

combine 

chemotherapy 

with cisplatin , 

etoposide , 

and irinotecan 

versus 

topotecan 

alone as 



102 

 

second - line 

treatment for 

patient with 

sensitive 

relapse small - 

cell lung 

cancer ( 

jcog0605 ) : a 

multicentre , 

open - label , 

randomised 

phase 3 trial . 

CtD Epirubicin breast 

cancer 

0.999 0.953 2147 Existi

ng 

accelerate 

versus 

standard 

epirubicin 

follow by 

cyclophospha

mide , 

methotrexate , 

and 

fluorouracil or 

capecitabine 

as adjuvant 

therapy for 

breast cancer 
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in the 

randomised 

uk tact2 trial ( 

cruk/05/19 ) : 

a multicentre , 

phase 3 , 

open - label , 

randomise , 

control trial 

CtD Paclitaxel breast 

cancer 

1.000 0.952 10255 Existi

ng 

sunitinib plus 

paclitaxel 

versus 

bevacizumab 

plus paclitaxel 

for first - line 

treatment of 

patients with 

advanced 

breast cancer 

: a phase iii , 

randomized , 

open - label 

trial 

CtD Anastrozole breast 

cancer 

0.996 0.952 2364 Existi

ng 

a european 

organisation 

for research 
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and treatment 

of cancer 

randomize , 

double - blind 

, placebo - 

control , 

multicentre 

phase ii trial of 

anastrozole in 

combination 

with gefitinib 

or placebo in 

hormone 

receptor - 

positive 

advanced 

breast cancer 

( nct00066378 

) . 

CtD Gefitinib lung 

cancer 

1.000 0.950 11860 Existi

ng 

gefitinib 

versus 

placebo as 

maintenance 

therapy in 

patient with 

locally 
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advanced or 

metastatic non 

- small - cell 

lung cancer ( 

inform ; c - 

tong 0804 ) : a 

multicentre , 

double - blind 

randomise 

phase 3 trial . 

CtD Docetaxel prostate 

cancer 

1.000 0.949 5614 Existi

ng 

ipilimumab 

versus 

placebo after 

radiotherapy 

in patient with 

metastatic 

castration - 

resistant 

prostate 

cancer that 

have progress 

after 

docetaxel 

chemotherapy 

( ca184 - 043 ) 

: a multicentre 
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, randomised , 

double - blind 

, phase 3 trial 

CtD Sulfamethazin

e 

lung 

cancer 

0.611 0.949 4 Novel tmp / smz ( 

320/1600 mg / 

day ) 

treatment be 

compare to 

placebo in a 

double - blind 

, randomized 

trial in patient 

with newly 

diagnose 

small cell 

carcinoma of 

the lung 

during the 

initial course 

of 

chemotherapy 

with 

cyclophospha

mide , 

doxorubicin , 
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and etoposide 

. 

Cb

G 

D-Tyrosine EGFR 0.601 0.876 3423 Novel amphiregulin ( 

ar ) and 

heparin - 

binding egf - 

like growth 

factor ( hb - 

egf ) bind and 

activate the 

egfr while 

heregulin ( hrg 

) act through 

the p185erbb-

2 and 

p180erbb-4 

tyrosine 

kinase . 

Cb

G 

Phosphonotyro

sine 

ANK3 0.004 0.865 1 Novel at least two 

domain of p85 

can bind to 

ank3 , and the 

interaction 

involve the 

p85 c - sh2 

domain be 
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find to be 

phosphotyrosi

ne - 

independent . 

Cb

G 

Adenosine ABCC8 0.891 0.860 353 Novel sulfonylurea 

act by 

inhibition of 

beta - cell 

adenosine 

triphosphate - 

dependent 

potassium ( 

k(atp ) ) 

channel after 

bind to the 

sulfonylurea 

subunit 1 

receptor ( sur1 

) . 

Cb

G 

D-Tyrosine AREG 0.891 0.857 22 Novel amphiregulin ( 

ar ) and 

heparin - 

binding egf - 

like growth 

factor ( hb - 

egf ) bind and 
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activate the 

egfr while 

heregulin ( hrg 

) act through 

the p185erbb-

2 and 

p180erbb-4 

tyrosine 

kinase . 

Cb

G 

D-Tyrosine EGF 0.602 0.856 389 Novel upon 

activation of 

the receptor 

for the 

epidermal 

growth factor ( 

egfr ) , 

sprouty2 

undergoe 

phosphorylatio

n at a 

conserve 

tyrosine that 

recruit the src 

homology 2 

domain of c - 

cbl . 
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Cb

G 

D-Tyrosine CSF1 0.101 0.854 106 Novel as a member 

of the 

subclass iii 

family of 

receptor 

tyrosine 

kinase , kit be 

closely relate 

to the receptor 

for platelet 

derive growth 

factor alpha 

and beta ( 

pdgf - a and b 

) , 

macrophage 

colony 

stimulate 

factor ( m - csf 

) , and flt3 

ligand . 

Cb

G 

D-Tyrosine ERBB4 0.101 0.848 115 Novel the efgr family 

be a group of 

four 

structurally 

similar 
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tyrosine 

kinase ( egfr , 

her2 / neu , 

erbb-3 , and 

erbb-4 ) that 

dimerize on 

bind with a 

number of 

ligand , 

include egf 

and transform 

growth factor 

alpha . 

Cb

G 

D-Tyrosine EGFR 0.969 0.848 3423 Novel the epidermal 

growth factor 

receptor be a 

member of 

type - -pron- 

growth factor 

receptor 

family with 

tyrosine 

kinase activity 

that be 

activate follow 

the binding of 
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multiple 

cognate ligand 

. 

Cb

G 

D-Tyrosine VAV1 0.601 0.842 187 Novel stimulation of 

quiescent 

rodent 

fibroblast with 

either 

epidermal or 

platelet - 

derive growth 

factor induce 

an increase 

affinity of vav 

for cbl - b and 

result in the 

subsequent 

formation of a 

vav - 

dependent 

trimeric 

complex with 

the ligand - 

stimulate 

tyrosine 
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kinase 

receptor . 

Cb

G 

Tretinoin RORB 0.601 0.840 7 Novel the retinoid z 

receptor beta ( 

rzr beta ) , an 

orphan 

receptor , be a 

member of the 

retinoic acid 

receptor ( 

rar)/thyroid 

hormone 

receptor ( tr ) 

subfamily of 

nuclear 

receptor . 

Cb

G 

L-Tryptophan TACR1 0.891 0.839 4 Novel these result 

suggest that 

the tryptophan 

and 

quinuclidine 

series of nk-1 

antagonist 

bind to similar 

bind site on 
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the human nk-

1 receptor . 

GiG CYSLTR2 CYSLT

R2 

0.967 0.564 37 Novel the bind 

pocket of 

cyslt2 receptor 

and the 

proposition of 

the interaction 

mode 

between 

cyslt2 and 

hami3379 be 

identify . 

GiG RXRA PPARA 1.000 0.563 143 Novel after bind 

ligand , the 

ppar - y 

receptor 

heterodimeriz

e with the rxr 

receptor . 

GiG RXRA RXRA 0.824 0.551 1101 Existi

ng 

nuclear 

hormone 

receptor , for 

example , bind 

either as 

homodimer or 
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as 

heterodimer 

with retinoid x 

receptor ( rxr ) 

to half - site 

repeat that be 

stabilize by 

protein - 

protein 

interaction 

mediate by 

residue within 

both the dna- 

and ligand - 

bind domain . 

GiG ADRBK1 ADRA2

A 

0.822 0.543 3 Novel mutation of 

these residue 

within the holo 

- alpha(2a)ar 

diminish grk2-

promoted 

phosphorylatio

n of the 

receptor as 

well as the 

ability of the 



116 

 

kinase to be 

activate by 

receptor 

binding . 

GiG ESRRA ESRRA 0.001 0.531 308 Existi

ng 

the crystal 

structure of 

the ligand bind 

domain ( lbd ) 

of the 

estrogen - 

relate receptor 

alpha ( 

erralpha , 

nr3b1 ) 

complexe with 

a coactivator 

peptide from 

peroxisome 

proliferator - 

activate 

receptor 

coactivator-

1alpha ( pgc-

1alpha ) 

reveal a 

transcriptionall
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y active 

conformation 

in the absence 

of a ligand . 

GiG GP1BA VWF 0.518 0.527 144 Existi

ng 

these finding 

indicate the 

novel bind site 

require for vwf 

binding of 

human 

gpibalpha . 

GiG NR2C1 NR2C1 0.027 0.522 26 Novel the human 

testicular 

receptor 2 ( 

tr2 ) , a 

member of the 

nuclear 

hormone 

receptor 

superfamily , 

have no 

identify ligand 

yet . 

GiG NCOA1 ESRRG 0.992 0.518 1 Novel the crystal 

structure of 

the ligand bind 



118 

 

domain ( lbd ) 

of the 

estrogen - 

relate receptor 

3 ( err3 ) 

complexe with 

a steroid 

receptor 

coactivator-1 ( 

src-1 ) peptide 

reveal a 

transcriptionall

y active 

conformation 

in absence of 

any ligand . 

GiG PPARG PPARG 0.824 0.504 2497 Existi

ng 

although 

these agent 

can bind and 

activate an 

orphan 

nuclear 

receptor , 

peroxisome 

proliferator - 

activate 
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receptor 

gamma ( 

ppargamma ) , 

there be no 

direct 

evidence to 

conclusively 

implicate this 

receptor in the 

regulation of 

mammalian 

glucose 

homeostasis . 

GiG ESR2 ESR1 0.995 0.503 1715 Novel ligand bind 

experiment 

with purify er 

alpha and er 

beta confirm 

that the two 

phytoestrogen 

be er ligand . 

GiG FGFR2 FGFR2 1.000 0.501 584 Existi

ng 

receptor 

modeling of 

kgfr be use to 

identify 

selective kgfr 
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tyrosine 

kinase ( tk ) 

inhibitor 

molecule that 

have the 

potential to 

bind 

selectively to 

the kgfr . 
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