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ABSTRACT: 

 

The present research sought to assemble the plastomes of 42 species in the Apocynaceae, tribe 

Marsdenieae.  Fast-Plast, a chloroplast assembly pipeline, was used to assemble the plastomes, 

with alignment to reference plastomes (Asclepias syriaca and Nerium oleander) and manual 

editing of the alignments carried out in Geneious.  Marsdenieae plastomes proved difficult to 

assemble, due to presequencing, sequencing, or assembly errors or biological realities.  Only 

35.7% of the species of Marsdenieae included assembled at all, and no finalized contigs were 

produced for any species.  In most taxa, not all of the contigs aligned with either reference, and 

nearly all alignments had gaps between contigs.  Fast-Plast-assembled contigs and raw reads 

exhibited many mismatches and gaps when alignments were visually-inspected, the result of 

errors or biological realities.  However, when four metrics—number of contigs assembled, 

percent of assembled contigs that aligned to each reference plastome, percent coverage of contigs 

aligned to each reference sequence, and NG50—were considered, most species were deemed to 

have assembled well, suggesting that these metrics are insufficient to assess assembly quality.  

Although alignments to the N. oleander plastome were slightly better, there was no significant 

difference between these alignments and those to the Asclepias syriaca plastome.  When raw 

reads were aligned to reference plastomes, a pattern of high coverage, accompanied by many 

gaps and mismatches, suggested that greater genetic distance from a reference sequence may be 

responsible for at least some of the poor alignment outcomes.  Suggestions for improving the 

alignments and assemblies are given, with an emphasis on possible reasons for the high numbers 

of variable regions, including assembly or alignment errors, sequencing problems, and taxon-

specific chloroplast structure. 
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INTRODUCTION 

 

Whole genome sequencing data from high throughput sequencing was obtained for 27 species of 

Hoya and closely related genera in the tribe Marsdenieae, Apocynaceae, including Dischidia (8 

species), Marsdenia (3 species), Oreosparte (3 species), and Dischidiopsis (1 species) with a 

goal of determining the plastid genome structure of each species.  Marsdenieae is pantropical, 

with most taxa occurring in SE Asia, but is also found in Africa, South America, and Australia 

(Omlor, 1996; Goyder, 2006).   Some authors consider Marsdenieae to be polyphyletic (Potgeiter 

& Albert, 2001; Senbladd & Bremer, 2002), while others suggest that Marsdenieae is a 

monophyletic group (Verhoeven, Liede, & Endress, 2003; Meve & Liede, 2004).    

 

This project was undertaken to investigate the following questions:   

 

• What is the gene order and gene content of these Marsdenieae plastomes?  How do these 

plastomes compare to other Apocynaceae plastomes? 
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• Were there indels, SNPs, and other mutations in Marsdenieae plastomes?  If so, where 

are they located? What do they suggest about the evolutionary history of the group? 

 

Knowledge of the plastome structure in a given taxon can be useful in a wide variety of 

disciplines from population genetics to evolutionary biology to conservation (Moore et al., 2006; 

Green, 2007).  Gene order, gene content, and gene function can all be understood by analyzing 

plastomes (Green, 2007; Hall, 2011; Griffiths et al., 2015).  Although typically uniparental in 

inheritance, plastome data can contribute to phylogenetic hypotheses, helping systematists to 

delimit taxa and understand their evolutionary history. 

 

This research is part of a project that Dr. Tanya Livshultz, my internship co-supervisor, and Dr. 

Michele Rodda, are collaborating on.  Livshultz is an expert in Apocynaceae evolution and 

classification, with Dischidia, Asclepias, and Apocynum as focus genera, at the Academy of 

Natural Sciences of Drexel University.  Currently based at the Singapore Botanical Garden, 

Rodda is an expert on Hoya. 

 

Structure of the Plastid Genome 

Plastid DNA is usually circular (Palmer, 1991).  Generally, there is a Large Single Copy (LSC) 

region followed by an Inverted Repeat (IRb), a Short Single Copy (SSC), and another Inverted 

Repeat (IRa) (Steele et al., 2012).  Single copy refers to the fact that there is only one copy of the 

DNA in that region, and inverted repeat refers to the fact that these regions are repeated but with 

the nucleotides in the reverse order of one another.  Plastomes range in size from 70-220 kb 

(Whittall et al., 2010), but most fall between 120 and 160 kb (Palmer, 1991).  Size, gene order, 

and specific genes are largely the same among land plants (Palmer, 1991; Steele et al., 

2012).  The plastome of Asclepias syriaca is 158,719 bp (GenBank KF 386166.1), whilst that of 

Nerium oleander is 154,903 bp (GenBank KJ953907.1).  Some genes and regions of the 

chloroplast genome evolve much faster, and are thus more variable, than other genes and regions 

(Palmer, 1991; Moore et al., 2007; Nock et al., 2011).  Genes with essential functions, such as 

photosynthesis, tend to be more conserved than other genes (Palmer, 1991; Kim & Lee, 2004).  

Genes in the IR regions also tend to evolve more slowly than those in the LSC and SSC (Kim & 

Lee, 2004).  IR regions commonly expand and contract as indels become part of the genome 

(Palmer, 1991).    
 

DNA Sequencing and Plastome Assembly 

Sequencing is a process in which the order of the nucleotides in a DNA molecule is determined 

by performing a series of chemical reactions.  In Next Generation sequencing (NGS, massive 

parallel sequencing, or high throughput sequencing) millions of copies of small fragments of 

DNA called reads, which range from 30-400 bp in length, are produced (Simon et al., 2009).  

The process is relatively affordable but can be prone to errors and makes plastome assembly 

difficult.  

 

Reads are assembled into one or more contigs (contiguous DNA segments) by a suite of software 

programs contained within an assembly pipeline.  Another software program is used to align the 

contigs to a reference sequence, i.e. an already completely sequenced plastome of a closely 

related species, in order to see if the bases are correct or not and to search for possible mutations 

within the DNA sequence.     
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Assessing Assembly Quality 

There are many different ways of evaluating the quality of an assembly.  The most robust of 

these analyze many aspects of the assembly at once and require knowledge of at least one 

programming language.  For example, BUSCO compares the assembly to a set of typically well-

conserved genes within a group of organisms and searches the assembly for those genes (Simão 

et al., 2015).  However, simpler metrics are often used, such as NG50, the number of contigs 

assembled, the length of assembled contigs, coverage of contigs over the reference sequence(s), 

and the number of ambiguous bases (Salzberg et al., 2012; Wysocki et al., 2014).  NG50 is the 

median length of the contigs at which half of the estimated plastome size has been assembled 

(Earl et al., 2011). 

 

METHODS 

 

The following Marsdenieae taxa assemblies were analyzed for this project: Dischidia acutifolia, 

Dischidia hirsuta, Dischidia major, Dischidia milnei, Dischidia nummularia, Dischidiopsis 

parasitica, Hoya bakoensis, Hoya diversifolia, Hoya exilis, and Oreosparte celebica.  Alyxia 

siamensis and Aspidosperma cruentum (Alyxieae and Aspidospermae) were added as control 

taxa as they had been previously assembled successfully (Straub, n.d.). 

 

Reads were assembled by the assembly pipeline Fast-Plast, run on the University of Drexel 

cluster, Proteus, using command line entry.  Fast-Plast contains the following 

programs:  Trimmomatic, Bowtie, SPAdes, Afin, and Plastome Finisher.  Fastq files, which 

contain the raw reads, were added to the Proteus cluster.  Trimmomatic removes adapters from 

the raw reads, but this process was skipped since my data had already been trimmed when I 

received them.  Bowtie 2 aligns the reads using 320 angiosperm plastome reference sequences 

from GenBank and Verdant (Langmead & Salzberg, 2012; McKain & Wilson, 

2016).  Additional reference sequences can be added.  In the process, it removes mitochondrial 

and nuclear DNA.  Next, the aligned reads pass through SPAdes, a program that joins 

overlapping reads together to form contigs.  In order to be assembled into contigs, reads must be 

k base pairs long, with k set by the user.  SPAdes stores contigs in fasta format, which contains 

the sequences, lengths, and average coverage for each contig.  SPAdes is unable to make 

complete contigs when contigs do not overlap enough or are too dissimilar.  Afin removes the 

ends of the contigs, and starts extending them by adding trimmed reads and checking to see if 

they overlap at a minimum threshold until all of the SPAdes contigs are assembled into fewer 

(ideally one) contig(s).  This process is repeated until the best possible contigs are created, and is 

necessary because the ends sometimes have errors that SPAdes cannot detect.  Finally, Plastome 

Finisher compares the contigs to reference sequences, annotating the plastome with the gene 

order and producing contigs for the different regions of the plastome (J. Teisher, personal 

communication, August 26, 2016). 

 

Geneious version 5.6 (http://www.geneious.com, Kearse et al., 2012) was used to align the 

contigs to a reference plastome for adjusting the assembly parameters by hand as necessary.  The 

following default parameters were used:  Medium Sensitivity/Fast, Maximum (slowest) Fine 

Tuning.  Under these parameters, the following advanced criteria are automatically set by 

Geneious:  Allow gaps with a maximum of 15% per read and size of 50 bp, a word length with 

minimum overlap of 25 (with words repeated more than 10 times ignored), a maximum of 15% 

http://www.geneious.com/
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mismatches per read, paired read distances used to improve assembly, a maximum gap size of 50 

bp, a minimum overlap identity of 80%, and index word length of 12, and a maximum ambiguity 

of 4.  A. syriaca and N. oleander (Apocynaceae) plastomes were downloaded from GenBank, 

https://www.ncbi.nlm.nih.gov/genbank/, (KF 386166.1 and KJ953907.1, respectively) as these 

species have been used as references in several other studies of Apocynaceae taxa (Straub et al., 

2012, Straub et al., 2013; Straub et al., 2014).      

 

Masked areas in a consensus sequence were filled by the letter N, which indicates that the correct 

sequence order is unknown at the given location, and helps improve the alignment. Gaps 

resulting from lack of coverage or a possible insertion were masked, while gaps due to a possible 

deletion were removed.  However, when many of the raw reads did not have a base in the 

position of a gap in the consensus sequence, the gap was kept because an insertion might have 

occurred.  Reads with problematic end sequences and a lack of coverage were either deleted or 

the gap was removed from the consensus sequence.   

 

Areas of the consensus that had many mismatched base pairs were closely inspected.  For 

example, if the majority of reads indicated that the base was an A, then the consensus sequence 

would be edited to an A at that position.  However, if it was difficult to determine the most 

common base, then an N would be used instead. When half of the raw reads indicated that a 

certain base should be at a given position and the other half indicated another base should be 

there, Geneious used an R to indicate that the base could be A or G or a K to indicate that a base 

could be C or T.  The base at that position in the reference was used in the consensus in such 

cases.  

 

When mismatches occur at the ends of reads or contigs, it is more likely that they are due to a 

sequencing or assembly error rather than a biological difference between the reference and query 

sequences.  In this study if there were more reads that aligned with the reference than ones that 

did not, then the ends were likely a sequencing error, but if the opposite were true, then the 

mismatched end could be an insertion, requiring closer inspection (J. Teisher, personal 

communication, November 30, 2016).  

 

Three metrics that were used to evaluate the quality of assemblies (NG50, percentage of contigs 

that aligned to each reference sequence, and percent coverage of contigs over each reference 

sequence) were analyzed in R (R Core Team 2017) using R commander (Fox & Bouchet-Valat, 

2005). Data were checked for normality and homogeneity of variances prior to further analyses.  

If these conditions were met, data was subjected to independent samples t-tests.  Otherwise, 

Mann-Whitney U tests were performed.   

 

To determine if the problems observed in the contig alignments were due to errors or an unusual 

chloroplast structure in these species, the raw reads from previously-assembled Apocynaceae 

species (Straub et al., 2014) were used to assemble contigs using Fast-Plast.  These contigs were 

then aligned to the N. oleander reference plastome and evaluated in Geneious.   

 

 

 

https://www.ncbi.nlm.nih.gov/genbank/
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RESULTS 

Alyxia siamensis, H. bakoensis, D. milnei, O. celebica, and Aspidosperma cruentum contigs did 

not align with the Asclepias syriaca ndhF gene. No contigs from D. hirsuta aligned with the N. 

oleander ndhF gene.  No Alyxia siamensis and Aspidosperma cruentum contigs aligned with the 

Asclepias syriaca plastome. 

 

Only a few of the Afin-assembled contigs for nearly all taxa aligned with either reference 

plastome, and all but one species (Aspidosperma cruentum) assembled into more than one contig 

in Afin (Fig. 2).  Generally, alignments with reference sequences resulted in consensus 

sequences with many gaps and mismatches, regardless of whether contigs or raw reads were 

used.  Most of these gaps and mismatches were in intergenic regions.  D. hirsuta contigs did not 

align with a partial sequence for the D. hirsuta matK gene downloaded from GenBank (HQ 

327590.1).  Among the N. oleander plastome alignments, D. hirsuta had many mismatches and 

the largest gaps between contigs seen in any species, with approximately 65,280 bp between two 

of the contigs and a lack of coverage for the first 32,410 bp.  Among all alignments with all 

reference sequences, D. milnei did not align with the N. oleander plastome and had the largest 

gaps between contigs among the Asclepias syriaca alignments, with the alignment not beginning 

until 130,719 bp in.     

 

When raw reads were aligned to the Asclepias syriaca plastome, Marsdenieae species had mean 

depth values ranging from 135.7X to 1051.1X, whilst Alyxia siamensis and Aspidosperma 

cruentum had mean depths of 35X and 31.6X, respectively.  Raw reads aligned to the N. 

oleander plastome for Marsdenieae species had mean depths from 141.5X to 1089.6X, whilst 

Alyxia siamensis and Aspidosperma cruentum had mean depths of 42.1X and 37.7X, 

respectively.  Despite these great depths, gaps were still common in all alignments.   

 

There was at least some coverage of each region of the Asclepias syriaca plastome by 

Marsdenieae contigs (Fig. 1).  (Note that this coverage observes only gaps between contigs and 

not gaps within contigs.) The IRa was the best covered region among all species except H. 

diversifolia, which exhibited no coverage for the region.  The IRb was either not covered or 

barely covered by most species’ contigs, and ndhF and ycf1 were not covered by five species 

(62.5% of species that aligned with the Asclepias syriaca plastome).  Only one species, D. 

acutifolia, aligned over the entire IRb.  Contigs from all species covered at least part of the IRa, 

except for D. acutifolia.  There was no observable pattern of coverage for contigs assembling 

over the LSC or the SSC other than most species had at least some coverage in the two regions.  

Contigs from nine species, including two from Straub (n.d.), aligned with the N. oleander 

plastome. Only three of these species (H. bakoensis, Aspidosperma cruentum, and D. hirsuta) 

had coverage in the IR regions and in ycf1, and only one (Aspidosperma cruentum) had coverage 

at ndhF.  Coverage in the LSC was spotty, though the contigs of most Marsdenieae species 

covered some portion of the region.  There were no significant differences between Asclepias 

syriaca and N. oleander alignments on any measure (NG50, coverage of plastome, percent of 

contigs aligned), with and without Alyxia siamensis and Aspidosperma cruentum included (See 

Appendix A).   
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Table 1.  Overall assembly quality for each species based on four metrics.  Species that assembled well 

met three of the following criteria:  (1) an NG50 ≥ 50% of both reference plastome lengths, (2) percent 

coverage ≥ 60% for both references, (3) number of contigs <21 (i.e. ½ the largest number of contigs), and 

(4) ≥ 60% of contigs aligned to both references.    

     

Assembled Well Assembled Poorly 

Aspidosperma cruentum Alyxia siamensis 

Dischidia nummularia Dischidia acutifolia 

Hoya bakoensis Dischidia hirsuta 

Hoya diversifolia Dischidia major 

Oreosparte celebica Dischidia milnei 

 Dischidiopsis parasitica 

 Hoya exilis 
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◼ Dischidia nummularia 

◼ Hoya diversifolia 

◼ Dischidia acutifolia 
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Figure 1. Circos graphs of Asclepias 

syriaca with Marsdenieae taxa contigs 

mapped to aligning regions.   

◼  Dischidia major 

◼ Hoya bakoensis 

 

◼  Dischidiopsis parasitica 

◼ Dischidia milnei 
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Figure 2.  Relationship of Marsdenieae taxa, Alyxia siamensis, and Aspidosperma cruentum with contigs aligned to the 

Asclepias syriaca and Nerium oleander plastomes for four metrics that evaluate assembly quality:  (a) Total number of contigs 

assembled by Fast-Plast (Afin) for each species;  (b) Percent coverage of contigs aligned to reference plastomes for each 

species (c) Percent of Fast-Plast (Afin)-assembled contigs that aligned with each reference plastome; and (d) NG50 for each 

Marsdenieae taxon based on size of each reference plastome. 
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DISCUSSION 

Sequencing Errors 

Sequencing errors occur during the process of sequencing DNA, and can result from issues with 

methodology, chemical processes, DNA damage from the sequencing process itself, and 

biological realities (Dohm et al., 2008; Costello et al., 2013; Schirmer et al., 2015).  The short 

reads generated from NextGen sequencing may make it impossible to correctly assemble certain 

regions, e.g., Steele et al. (2012) were unable to assemble indels greater than 50 bp from 80-120 

bp reads.  The short reads in this study (100 bp long) may have contributed to assembly 

difficulty, particularly as indels longer than 100 bp are impossible for Geneious to correctly align 

to a reference (Kearse, 2015). 

 

Incorrect base calls are more common than bases being inserted or deleted from sequences 

generated by Illumina sequencing technology (Kelley, Schatz, & Salzberg, 2010; Minoche, 

Dohm, & Himmelbauer, 2011; Schirmer et al., 2015), which is likely the method used to 

sequence the Marsdenieae taxa, according to Geneious predictions.  (The sequencing platform 

that was used has not been provided by the company that performed the sequencing.) The 

likelihood that a base is called correctly is determined by the sequencing software and reported 

as confidence means.  Marsdenieae data confidence means ranged from 35.4 to 36.4, indicating 

that the probability of the base being correctly called was 99.9% (Dohm et al, 2008; Minoche, 

Dohm, & Himmelbauer, 2011).  This suggests that sequencing errors were minor, not affecting 

the sequence in a significant way, as is generally the case (Médigue et al., 1999).  However, 

Dohm et al. (2008) found that Solexa software is highly inaccurate in determining these values. 

 

Assembly and Alignment Difficulties and Errors 

Strong evidence of a biological reality or assembly error is based on the fact that the last piece of 

software in the Fast-Plast assembly pipeline, Plastome Finisher, would not run.  This program 

could not determine the location of the chloroplast genome regions or the gene order of the Afin-

assembled contigs, which could be the result of a recent update to Afin or an unusual chloroplast 

structure in Marsdenieae (J. Teisher, personal communication, August 26, 2016).  Wysocki et al. 

(2014) found that among different assemblers, SPAdes had the greatest amount of ambiguous 

and missing bases, despite producing the longest contigs, a further indication that many metrics 

must be taken into account when assessing assembly quality and suggesting that SPAdes may be 

at least partially responsible for problems in the assembly of Marsdenieae taxa. 

 

Problems with the Ends of Reads and Contigs  

The ends of reads are often riddled with errors as a result of sequencing methods (Dohm et al., 

2008; Kelley, Schatz, & Salzburg 2010; Schirmer et al., 2015), which could carry over to 

contigs.  However, biological realities and assembly problems can also lead to contig ends with 

many errors, mismatches, or indels (J. Teisher, personal communication, December 21, 2016).  

For instance, ends of contigs or reads can contain codons for adjacent genes, resulting in 

inaccurate alignments when the reference sequence has a different gene order (Hall, 2011; 

Straub, 2012).  Marsdenieae contig ends frequently had many mismatches, which, considering 

the high confidence means are most likely not due to sequencing errors.  Many of these 

mismatches were located at roughly the same position in multiple species, suggesting that these 

regions contain actual indels or SNPs. However, it is possible that a systematic error in the 
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sequencing, assembly, or alignment process led to the same error being repeated multiple times 

in the same location of the plastome.   

 

Evaluating Assembly Quality 

When evaluated using NG50, percent coverage of reference plastome, number of contigs that 

assembled, and percent of contigs that aligned with each reference plastome, only 42% of species 

assembled well.  Quality of assemblies varied among species when different metrics were 

considered individually (Fig. 2). Visual observations of the alignments suggested that the many 

gaps and mismatches observed were indicative of poor alignments for all species.  Thus, the 

metrics chosen to evaluate assembly quality may be overly simplistic and inadequate to evaluate 

overall assembly quality.   

 

Although Aspidosperma cruentum and Dischidiopsis parasitica had few contigs and high NG50 

values (Fig. 2), these values are not necessarily indicative of good assemblies, as regions distant 

from one another might have been assembled (Salzberg et al., 2012).  Evidence of this occurring 

in Aspidosperma cruentum stems from the fact that this species did not align with the Asclepias 

syriaca plastome.  In Dischidiopsis parasitica, only a small portion of one of the long contigs 

assembled actually aligned with the reference plastomes.  D. hirsuta and D. milnei had the 

largest gaps between contigs when aligned to the N. oleander plastome and Asclepias syriaca 

plastome, respectively (Fig. 2).  Additionally, D. hirsuta contigs would not align with any genes, 

including a partial matK gene from another D. hirsuta individual in GenBank (HQ 327590.1).  

These issues suggest DNA preparation errors (e.g. contamination), sequencing errors, assembly 

errors, or an especially highly rearranged plastome (Steele et al., 2012).   

 

Coverage of the Asclepias syriaca plastome was spotty for D. major (Fig. 1).  Larger numbers of 

contigs are associated with increased assembly difficulty and errors (Steele et al., 2012).  By this 

criterion, D. major is likely to have among the most inaccurate assemblies since Afin produced 

42 contigs for the species’ plastome.  That neither of the control taxa (Alyxia siamensis and 

Aspidosperma cruentum) aligned with the Asclepias syriaca plastome suggests that the errors 

seen in all taxa are largely based on difficulties within the assembly pipeline.  This still does not 

dismiss the possibility of a highly rearranged plastome in the Marsdenieae, as gaps and 

mismatches in these alignments could still result from biological realities.  However, visual 

inspection of alignments with the N. oleander plastome appearing to have fewer gaps and 

mismatches are more in line with presequencing or sequencing errors and an unusual plastome 

structure in the Marsdenieae.   

 

Effects of Biological Realities on Plastome Assembly 

Pseudogenes, highly variable regions of the plastome, inversions, inverted repeats, indels, and 

SNPs make assembly difficult, resulting in errors or making it difficult to distinguish errors from 

authentic biological occurrences.  Areas that cannot be assembled are often those that are 

evolving the fastest and thus are highly variable among taxa (Straub et al., 2012).  In this study, 

most gaps and mismatches were in intergenic regions, a finding that is in line with several 

studies (Nock et al., 2011; Parks, Liston, & Cronn, 2010).  This is not surprising considering that 

intergenic regions tend to be highly variable (Palmer, 1991), and highly variable regions have 

many mismatches and ambiguities (J. Teisher, personal communication, November 30, 2016).  

However, Parks, Liston, & Cronn (2010) did not have trouble assembling intergenic spacers.   
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Repeats and inversions are particularly difficult to assemble, the former leading to gaps in reads 

(Earl et al., 2011; Nakamura et al., 2011; Salzberg et al., 2012).  Furthermore, repeats are 

common in boundary genes (Kim & Lee, 2004; Yue et al., 2008; Straub et al., 2014) and at 

inversions, leading to assembly errors and difficulties (Palmer, 1991; Rabinowicz & Bennetzen, 

2006).  This can explain the lack of coverage in IR regions across the reference sequences, 

particularly as Fast-Plast does not work well when there are inversions at the IR boundaries (J. 

Teisher, personal communication, October 5, 2016).  Gaps in reads due to repeats could account 

for assembly errors as well, and explain the high number of gaps and mismatches in the 

alignments.   

 

The genes ycf1 and ndhF are notoriously difficult to assemble, as they move between the IRb 

and SSC, sometimes straddling both regions (Davis & Soreng, 2010, J. Teisher, personal 

communication, August 26, 2016) or missing altogether (Steele et al., 2012).  Kim & Lee (2004) 

observed that ndhF and ycf1 overlap on the border of the IRb and the SSC in Arabidopsis, a 

finding that supports the lack of any alignment of Marsdenieae contigs to the ndhF region of the 

N. oleander complete plastome.  Furthermore, the length of IR regions varies among taxa, 

resulting in pseudogenes at IR and SSC boundaries (Kim & Lee, 2004).  In this study, ndhF and 

ycf1in the target taxa did not align with the Asclepias syriaca plastome in 62.5% of the species 

that aligned, suggesting that these genes have shifted to different locations in at least some of the 

Marsdenieae plastomes, there are inversions at the boundary of the IRb and SSC, and/or they 

might be pseudogenes.  

 

The Asclepias syriaca plastome is notoriously difficult to assemble.  Even after Sanger 

sequencing Asclepias syriaca, Straub et al. (2011) were unable to assemble certain portions of its 

plastome, including the purported pseudogene ycf1.  They concluded that repeats and 

interactions between pseudogenes found in the plastid and mitochondrial DNA make assembly 

from short reads impossible (Straub et al., 2011).  It is possible that Marsdenieae has a similarly 

complex plastome that is difficult to assemble.  N. oleander may prove a better reference 

sequence (T. Livshultz, personal communication, September 21, 2016), as supported in the 

present work by the slightly improved, though non-significant, alignments seen with N. oleander, 

although Asclepias syriaca is in the same subfamily as Marsdenieae (Asclepioideae), whilst N. 

oleander is in the Apocynoideae, an older, more distantly related subfamily.  Inversions might be 

common in the Marsdenieae as they are in other Apocynaceae plastomes (T. Livshultz, personal 

communication, October 5, 2016).  Marsdenieae taxa may have pseudogenes as well, which 

cannot be misassembled when coverage is too high, especially when paired end reads are used 

(Li & Homer, 2010; Straub et al., 2012), possibly explaining the poor assemblies in this study 

despite the high coverage. 

 

Divergence from the reference can make assembly more difficult, error-prone, and result in an 

incomplete plastome (Steele et al., 2012; Straub et al., 2012).  Nock et al. (2011) found more 

gaps in the consensus sequence when target references were aligned to a more distantly related 

species, even though coverage exceeded 100X.  The high coverage accompanied by many gaps 

in this study could indicate that this tribe has highly variable plastomes that are so dissimilar 

from Asclepias syriaca and N. oleander that they do not align well (or at all) across the entire 

sequence. Furthermore, indels and repeats are hard to assemble and distinguish using a reference 
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(Nock et al., 2011; Straub et al., 2011).  Yet, several studies suggest that, in many cases, the 

relatedness of the reference to the target species does not significantly affect assembly success 

(Parks, Liston, & Cronn, 2010; Steele et al., 2012; Straub et al., 2012).   

 

Future Work 

Resequencing using Roche 454 or Pacific BioSciences RS II or another NGS platform that 

produces longer or more accurate reads followed by Sanger sequencing of difficult to assemble 

regions could help improve the assembly.  De novo assembly of the reads for each Marsdenieae 

taxon in the study could also improve outcomes and clarify if the large number of indels were 

real, and potentially provide evidence for the possibility of the Marsdenieae plastome being 

largely reorganized in comparison to the reference plastomes used in this study (Straub et al., 

2012).  Another solution would be to fill in missing target sequence in the consensus sequence 

with the bases from the reference sequence, and then align de novo contigs to this newly 

generated “chimeric reference” (J. Teisher, personal communication, February 17, 2017; Whittall 

et al., 2010; Parks, Liston, & Cronn, 2010; Straub et al., 2013).  Straub et al. (2012) suggest 

sequencing one species to a greater depth than others in a taxon, followed by assembly of the 

plastome using increasingly dissimilar references and de novo assembly.  The plastome sequence 

for that species would then be used as the reference for the others in the group.  

 

Better alignments can be achieved by adjusting the parameters used during assembly and 

alignment (J. Teisher, personal communication, September 7, 2016).  Smaller deletions can be 

aligned if the maximum gap length is increased, and indels, duplications, and inversions can be 

detected when other alignment tools within Geneious are used (Kearse, 2015).  Using less 

stringent criteria, such as those used by Straub et al. (2013), might help target sequences align 

with reference sequences when they originally did not, while stricter criteria could produce fewer 

gaps and mismatches.  Since it seems likely that the sequence divergence from the target 

negatively affected assemblies in this study, looser parameters may result in an improved final 

assembly.   

 

CONCLUSION 

 

The original research questions regarding gene content, gene order, and evolutionary history in 

Marsdenieae were unable to be answered due to difficulties with plastome assembly.  This 

research indicates that more work is required to determine the plastid structure of these 

Marsdenieae species.  By visual inspection of alignments abundant mismatches, gaps, and 

missing sequence suggested poor assemblies.  Different measures of assembly quality indicated 

that different species had better assemblies than others for one metric, but not the same species 

when all metrics were considered.  The lack of more robust metrics with more consistent results 

makes it difficult to determine which assemblies were better than others overall.  Only a few 

species aligned well with reference sequences based on the NG50, number of contigs assembled, 

percent of contigs that aligned with reference sequences, and percent coverage of the reference 

sequences by aligned contigs.  All species aligned poorly based on qualitative visual assessments 

of alignments with many mismatches and gaps.  The assembly pipeline failed to assemble 

contigs for most of the species, with no finalized contigs produced in the last stage of the 

assembly for any species.  Multiple gaps and mismatches were observed in the alignments to 

reference sequences, with alignments to N. oleander proving to have slightly fewer poorly 
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aligned regions, though not significantly so, than those to Ascelpias syriaca, likely due to a less 

rearranged plastome since N. oleander is more distantly related to Marsdenieae than Asclepias 

syriaca.  Analyzing gaps between contigs revealed that all regions of the plastome posed 

assembly difficulties.   

 

Sanger sequencing, adjustment of the assembly software, use of more closely-related and less 

rearranged plastome references, and de novo assembly can help solve these problems.  For 

particularly difficult to assemble and align species, such as D. hirsuta, D. major, and D. milnei, 

high throughput sequencing might need to be repeated to assure that there was no contamination 

or other sequencing issues.   

 

Assembly, DNA extraction and processing, sequencing, or biological realities could explain 

assembly difficulties.  Assembly errors due to a highly rearranged plastome in the Marsdenieae 

may be responsible for most errors, considering that Apocynaceae plastomes are known to be 

difficult to assemble due to an unusual plastid genome structure.  Highly divergent reference 

sequences may also account for many of the errors, as N. oleander is not closely related to the 

Marsdenieae and Asclepias syriaca has a highly rearranged plastome.  Sequencing seems least 

likely to explain errors as confidence means were high.  It was not possible to ascertain if there 

were errors in DNA preparation methods as such errors would be masked by others and only 

obtainable through experimental analysis.     

 

GLOSSARY 

 

DNA:  building block of life, composed for four nucleotides bases, adenine (A), guanine (G), 

cytosine (C), and thyamine (T), with A & T bonded together and C & G bonded together, and a 

phosphate backbone. 

Indel:  collective term for insertion or deletion of nucleotide bases relative to another sequence. 

Inversion:  occurs when a double-stranded DNA sequence is flipped 180o and reinserted into the 

genome. 

Pseudogene:  regions of DNA with a similar sequence to a gene but with mutations that prevent 

them from being functional.   

Repeat:  repetition of one or more nucleotide bases in succession. 

Single Nucleotide Polymorphism (SNP):  a nucleotide at a given position differs from that in 

another sequence. 

(Graur & Li, 2000; Griffiths et al., 2015) 
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APPENDIX A 

Results of Mann-Whitney U test comparing NG50 between Asclepias syriaca and Nerium oleander for 

Marsdenieae taxa alone and Marsdenieae plus Alyxia siamensis and Aspidosperma cruentum.   

NG50 Marsdenieae taxa NG50 All Taxa 

W p-value W p-value 

57.5  0.5955 69.5 0.9077 

 
Results of Independent Samples t-tests comparing percent of contigs that aligned to each reference 

plastome and percent coverage of each reference plastome.  Results are presented for Marsdenieae taxa 

alone and Marsdenieae plus Alyxia siamensis and Aspidosperma cruentum. 

    

  

t df p-value 

Percent Contigs that 

Aligned, Marsdenieae 

Taxa 

1.4589 16.53 0.1633 

Percent Contigs that 

Aligned, All Taxa 

 

0.23934 21.729 0.8131 

Percent Coverage of 

Plastome by Aligned 

Contigs, Marsdenieae 

Taxa 

1.5967 17.938 0.1278 

 

Percent Coverage of 

Plastome by Aligned 

Contigs, All Taxa 

0.23195 21.954 0.8187 

 
 

 
 

 


