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Abstract 
An autonomous machine can operate successfully in a 
diversity of situations without resort to  interventien by 
“higher level” processes, for example, humans. Physi- 
cal machines are ultimately force or torque controlled 
dynamical systems: the specification of input torques, 
whether via syntactic prescriptions or feedback con- 
trollers, results in certain classes of vector fields. Con- 
trol procedures whose resulting vector fields have glob- 
ally attracting god states may properly be said to 
evince autonomous behavior. 
This paper reviews various procedures developed within 
the Yale Robotics Lab that result in provably au- 
tonomous behavior according to  the criterion developed 
above. Simulation results and physical experimental 
studies suggest the practicability of these methods. 

1 Introduction 
This paper reviews a program of research in robotics 
that seeks to  encode abstract tasks in a form that  si- 
multaneously affords a control scheme for these torque 
actuated dynamical systems as well as a proof that  
the resulting closed loop behavior will correctly achieve 
the desired goals. Two different behaviors that require 
dexterity and might plausibly connote “intelligence” - 
navigating in a cluttered environment, and juggling a 
number of otherwise freely falling objects - are exam- 
ined with regard to  similarities in problem representa- 
tion, method of solution, and causes of success. The 
central theme of the paper concerns the virtue of global 
stability mechanisms. They lend autonomy - that  is, 
freedom from dependence upon some “higher” intelli- 
gence - at  the planning level. They encourage the 
design of “canonical” procedures for “model” problems 
which may then be instantiated in particular settings 
by a change of coordinates. 

1.1 Representation 
The Robot Key to  this point of view is the fact 
that any machine operating in the physical world is sub- 
ject to  both dynamical as well as geometric constraints. 
Kinematic chains impose a conceptually straightfor- 
ward [I81 but mathematically complicated [34] geom- 
etry. Their Newtonian dynamics result in strongly non- 
linear and surprisingly complex equations [4]. Yet since 
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these constraints have been understood and satisfacto- 
rily modeled for a long time, well posed control prob- 
lems for robot “plants” may be stated relatively easily. 
For purposes of the present paper, take the standard 
Lagrangian model of the “plant” that  arises from rigid 
body assumptions. 

The Environment I n  all but  .the. most triyial in- 
stances, the robot’s desired behavior involves interac- 
tion with an environment, E ,  that  must itself pos- 
sess geometric and dynamical properties. Moreover, 
in the context of particular tasks, various aspects of 
the robot’s operation in the environment will give rise 
to  a new set, ‘P, that  might be called the ‘planning 
set”, within which particular goals may be formally 
represented. For example, in the case of robot motion 
planning, the environment’s geometry together with the 
robot’s kinematics and geometry give rise t o  a freespace 
[23] within which the robot’s motions are constrained 
to  lie. For peg-in-hole [39] and related problems of 
pushing [25, 241 additional structure must be added to  
the geometry of this space [6, 151 t o  account for fric- 
tional and jamming (contact degrees of freedom) reac- 
tion forces that  the environment may impose upon the 
robot. Tasks such as playing ping-pong [2] or walking 
and running [29, 261 require explicit attention to  the 
dynamics as well as the geometry of the environment, 
and thus the planning set will consist of a space and a 
dynamical system operating on i t  as will be illustrated 
below. 

The Task Finally, a robot operating in a specified 
environment might be assigned a variety of tasks. The 
specific task desired - an abstraction meaningful ini- 
tially only t o  its human originator - must be encoded 
in terms that  relate to  the robot in its environment. 
Thus, within the context of the planning set there must 
be devised a formal representation of the desired be- 
havior - the  “encoding”. In the two example task do- 
mains examined here the encoding takes the form of a 
goal state, E P to  which i t  is desired to  bring the 
i A ~ ~ - ~ ~ ~ S ~ ’ B F 8 e l P i d r a c h ; e v e  the task, some controller 
must be specified for the plant: i t  must ensure simulta- 
neously that the robot both achieve the task as well as 
respect the environmental constraints. As the robot’s 
(and, possibly, the environment’s) s ta te  changes un- 
der the action of this controller, the  planning space 
reflects these changes. Apparently, then, the solution 
to a robotic task imposes a dynamical system upon P.  
When, as here, the task a t  hand admits the representa- 
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tion in the form of a goal state(s), B, then a successful 
control scheme is one whose associated dynamics on P 
brings as many initial states to  g as possible. 

1.2 Intelligent Robots and Intelligent 
Designers 
Intelligent Behavior Connotes Autonomy 
This paper holds autonomy to be a primary design ob- 
jective in the construction of intelligent machines. A 
machine equipped with an intelligent strategy ought be 
able to  contend with the full spectrum of logically pos- 
sible circumstances that  arise in completion of its task. 
Translated into the context of dynamical systems the- 
ory, autonomy implies global convergence. That  is, an 
intelligent control strategy ought to  be capable of bring- 
ing the robot-environment pair to  the goal states, 9,  
from any initial state represented in the planning space. 
More succinctly, G ought t o  be an attracting set whose 
domain of attraction is P. Unfortunately, this is not 
always possible: Section 2 describes a situation where 
such global properties are topologically impossible. In- 
stead, one might imagine a situation where “almost all” 
initial states are brought to  the desired goal, and what 
is left over is very small. If the domain of attraction of a 
locally attracting set, B ,  includes all but a set of measure 
zero then say that B is essentially globally asymptoti- 
cally stable . Even where no topological obstructions 
are present, and even if one settles for essential global 
properties it is an unfortunate fact that  estimating the 
domain of attraction of locally attracting sets is very 
difficult in practice. 
For linear dynamical systems on a vector space, a local 
computation involving the eigenvalues of a matrix af- 
fords global conclusions. This is the archetypally “prac- 
ticable” means of assuring global properties, and is al- 
most by definition not t o  be found in general in the 
nonlinear case. The  two examples presented in this pa- 
per, however represent instances where a global stabil- 
ity mechanism does enjoy such a practicable property: 
namely, a series of locally defined computations involv- 
ing jacobians and their eigenvalues. 

Intelligent Design Connotes Generalization 
If global stability properties are a primary objective in 
the design of intelligent robot controllers, yet practi- 
cable instances of such mechanisms are rare, then an 
intelligent designer will seek t o  use and re-use exist- 
ing instances again and again. A second theme of this 
paper is the utility of generalizing a specific controller 
design through a change of coordinates. The  two be- 
haviors reported below are achieved by recourse to  two 
different stability mechanisms which share the unusual 
property of practicability in the sense developed above. 
In each case, the paper attempts to show how a canoni- 
cal solution to a simple problem can be “deformed” into 
the solution to a seemingly complicated but essentially 
equivalent problem via the appropriate transformation 
of the problem space. 

1.3 

It is not a t  all clear how to tell a rqpot to “fold the 
laundry” or “scramble the eggs” or make the bed”. 
For such tasks neither the environment, &, nor the ap- 
propriate planning space, P ,  nor the task encoding, B ,  
seem very obvious. The  program of research reviewed 
in this paper seeks to  make progress toward the analy- 
sis and achievement of such confusing robotic tasks by 
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a methodical investigation of more straightforward ex- 
amples. It should be immediately emphasized that the 
only thing straightforward about these examples is the 
conceptual distinction between task, environment, and 
robot. Navigation has been shown to be fundamentally 
difficult [35], and juggling has not even been attempted 
until recently [9, 11. Yet in these cases i t  has seemed suf- 
ficiently clear how to disentangle the constituent pieces 
of the problem definition tha t  a careful look at how they 
interact in a successful implementation might provide 
more general insight into the problem of task encoding. 

2 An Essentially Global Navigation 
Scheme 

Let a robot move in a cluttered but perfectly known 
workplace. There is a particular location of interest 
and i t  is desired that  the robot move to  this locatjon 
from anywhere else in the  workplace without colhding 
with the obstacles present. 

2.1 Representation 
The constituent pieces of the problem seem readily ap- 
parent in this case. The robot model has already been 
introduced. The environment, &, is simply the work- 
place - a subset of Euclidean 3-space remaining after 
the obstacles are removed. Contained within the robot‘s 
configuration space is the free space, T - the set of 
all robot placements which do not involve intersection 
with any of the “obstacles” cluttering the workplace. 
The appropriate planning set, P ,  for this problem is 
now clear: it is the phase space formed over T ,  that is, 
the union of all the robot’s configuration space velocity 
vectors taken over each configuration in T.  For present 
purposes this may be modelled as a smooth manifold 
with boundary (but see [32] for the case of sharp cor- 
ners). The task also seems straightforward to  represent: 
a particular navigation problem results from the choice 
of one particular destination point in the interior of the 
freespace. The  goal set, 8, is a singleton: the destina- 
tion point at zero velocity. The  problem is now to find 
a feedback controller under whose influence $he .robot’s 
state will approach 0 from as large as set of initial con- 
figurations as possible while remaining in P.  

2.2 Navigation Functions 
Initiated by Khatib a decade ago [19], the idea of using 
artificial potential functions for robot task description 
and control was adopted or re-introduced independently 
by a number of researchers [27, 3, 281. Since the inter- 
est in artificial potential functions originally emerged 
within the robotic control community, it is perhaps not 
surprising that little attention was paid to  the algorith- 
mic issues of global path planning in this literature. The 
question of whether the method could be used to guar- 
antee the construction of a path between any two points 
in a path-connected space remained unexplored. Yet it 
is exactly this kind of global property that  would lend 
autonomy from “higher level” intelligence to the con- 
troller. 

A Practicable Global Stability Mechanism 
In the present context, the utility of artificial potential 
functions for path planning rests upon the possibility 
of deducing global stability properties from local com- 
putations. Because the potential function serves as a 
global Lyapunov function for its gradient vector field, 
it is easy to see that the minima of a gradient system 
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(that satisfies certain regularity conditions) will attract 
almost all trajectories [17, 211. Of course, the condition 
for a minimum is a local one that may be construc- 
tively checked via calculus and algebraic computation. 
Thus, if it can be assured that there is only one mini- 
mum and that it coincides with the desired destination 
then a potential function serves as a global path planner 
on the freespace, T.  Of course, the appropriate plan- 
ning space is P ,  the space of legal configurations and all 
their possible velocities. But a slight extension to  Lord 
Kelvin’s century old results on energy dissipation suf- 
fices to make the same machinery work with a suitably 
designed controller for the plant on P [21]. 

Existence Gradually, there seems to  have emerged 
a common awareness of several fundamental problems 
with the potential function methodology. Spurious lo- 
cal minima seemed unavoidable, and unrealizable infi- 
nite torques were thought to  be required a t  the obsta- 
cle boundaries. In fact, an artificial potential functon 
need satisfy a longer list of technical conditions in or- 
der to give rise to a bounded torque feedback controller 
that guarantees convergence to the goal state, 8, from 
almost every initial configuration. This list comprises 
comprises the notion of a navigation function intro- 
duced to the literature two years ago [30]. 
The question immediately arises whether such desir- 
able features may be achieved in general. In fact, the 
answer is affirmative: smooth navigation functions ex- 
ist on any compact connected smooth manifold with 
boundary [22]. Thus, in any problem involving motion 
of a mechanical system through a cluttered space (with 
perfect information and no requirement of physical con- 
tact) if the problem may be solved at  all, we are guar- 
anteed that it may be solved by a navigation function. 
There remains the engineering problem of how to con- 
struct such functions 

Invariance The importance of coordinate changes 
and their invariants is by now a well known theme in 
control theory. Roughly speaking, these notions formal- 
ize the manner in which two apparently different prob- 
lems are actually the same. Their most familiar instance 
is undoubtedly encountered in the category of linear 
maps on linear vector spaces whose invariants (under 
changes of basis) determine closed loop stability. Of 
course, many other instances may be found in the con- 
trol literature and, more recently, the utility of coordi- 
nate changes in robotics applications has been proposed 
independently by Brockett [5] as well. 
The relevant invariant in navigation problems is the 
topology of the underlying configuration space [20]. In 
this regard, the significant virtue of the navigation func- 
tion is that its desirable properties are invariant under 
diffeomorphism [22]. Thus, instead of building a naviga- 
tion function for each particular problem, we are encour- 
aged to devise “model problems”, construct the appro- 
priate model navigation functions, and then “deform” 
them into the particular details of a specified problem. 

2.3 The Construction of Navigation 
Functions 
A “Model” Problem A “Euclidean sphere world” 
is a compact connected subset of E” whose boundary 
is the disjoint union of a finite number, say M + 1, of 
(n - 1)-spheres. We suppose that  perfect information 
about this space has been furnished in the form of M + 
1 center points { q , } z o  and radii {pl}Eo for each of 

the bounding spheres. Let the “bad” set of obstacle 
boundaries to  be avoided be encoded by the product 
function, P : M -+ [0, ca) is, 

where pi  vanishes on the i th  sphere. 

Theorem 1 ( [22]) Let the freespace, F be a Eu- 
clidean sphere world. Then there exists a positive in- 
teger N such that for every k > N ,  9, 

is a navigation function for destination qd E T ,  where 

The function, N ,  on which the theorem depends is given 
explicitly in [22]. 

A Class of Coordinates Transformations A 
s ta r  shaped set is a diffeomorph of a Euclidean n-disk, 
’D” possessed of a distinguished interior center point 
from which all rays intersect its boundary in a unique 
point. A s ta r  world is a compact connected sub- 
set of E” whose boundary is the disjoint union of a 
finite number of s tar  shaped set boundaries. Now s u p  
pose the availability of an implicit representation for 
each boundary component: that  is, let PI be a smooth 
scalar valued function that  vanishes on the boundary of 
the z t h  obstacle, as before. Assume, moreover, that  a 
known center point location, q, has been specified for 
each obstacle as well. Further geometric information 
required in the construction to  follow is detailed in the 
chief reference for this work [31]. A suitable Euclidean 
sphere world model, M ,  is explicitly constructed from 
this data. That  is, one determines (p3,pl), the center 
and radius of a model j t h  sphere, according to  the cen- 
ter and minimum “radius” (the minimal distance from 
q, to  the j t h  obstacle) of the j t h  star  shaped obstacle. 
The s ta r  world transformation is now given as 

where U, is the j t h  analytic switch, and ul is the j t h  
s ta r  set deforming factor (see [31] for the explicit for- 
mulae). The  “switches’’, make h look like the j t h  de- 
forming factor in the vicinity of the j t h  obstacle, and 
like the identity map away from all the obstacle bound- 
aries. With some further geometric computation we are 
able to prove the following. 

Theorem 2 ( [31] ) For any valid s ta r  world, F, 
there exists a suitable model sphere world M ,  and a pos- 
itive constant A, such that if X 2 A, then 

hx : F +  M ,  

is an  analytic diffeomorphism. 

Thus, if (o is a navigation function on M ,  the construc- 
tion of hx automatically induces a navigation function 
on F via composition, (j = 9 o hx. A 
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In isolation, the robot’s dynamics occur in its phase 
space, V = R x IR, of angular positions and velocities, 
and may be modeled by the standard double integrator 
forced by commanded torque. In isolation, the puck’s 
dynamics occur in its phase space, W = B x IR2, and 
may be modeled simply by the equations of free flight 
in the earth’s constant gravitational field. Thus note in 
contrast to  the previous situation that  E ,  the environ- 
ment, is represented by the pair of phase space, W ,  and 
the ballistic dynamical model operating upon it.  

The Planning Space The coupling of robot and 
puck dynamics may be represented by a collision map 
that  takes the B priori puck-robot states a t  contact, into 
the new puck velocity vector after contact [9, 11,8].  The 
future trajectory of the body in W subsequent to an im- 
pact event is readily derived by integrating the free flight 
model starting with the initial conditions just after im- 
pact. The robot can determine where (or, equivalently, 
after how much elapsed time since the previous impact, 
1, now denoted u1) to  hit the puck and with what lin- 
ear velocity ( I lb l l i ,  now denoted u2) the impact should 
occur. In the mean time, the puck’s behavior cannot be 
altered. On the most fundamental level, the robot’s two 
actions,u = [ul, u2IT E U ,  represent the only means of 
imposing control upon its environment. Thus, we treat 
the robot as an independent external “agent of control” 
and consider the various puck behaviors resulting from 
the robot’s actions, 

A 

A 

_. . _. . 
ujjt 1 = f ( ~ 1 ,  uj ). Figure 1: Planar forest of stars with three internal  tree- 

like obstacles (bottom right), its ‘(purged” versions, a n d  The planning set, p ,  then is the dynamical system 
its model sphere world ( top  left). ‘134 f :  W x U -  w. 

Navigation Functions for Geometrically 
Complicated Spaces In a recent paper [ 3 2 ] ,  we 
show how to extend significantly this class of coordi- 
nate transformations. Consider the scene depicted in 
the lower right hand corner of Figure 1 resembling a 
building floor plan (the results, of course, work in arbi- 
trary dimensions) that  we call a “forest of stars.” There 
are three internal tree-like obstacles, and the depth of 
the deepest tree is d = 4. According to  the method 
described in [32] a “purging transformation,” fA,, is 
applied d times, until a space whose obstacles are the 
roots of the original trees is obtained. This space is a 
star world: the the previously constructed star-world 
to  sphere-world transformation [31] is now be used to  
obtain the corresponding model sphere world, M ,  on 
which the simple navigation function may be used. 

3 An Essentially Global Juggler 
This section presents work in a task domain requiring 
dynamical dexterity. While our analytical understand- 
ing here is much less mature than in the previous sec- 
tion, the unity of methodological pursuit will hopefully 
become apparent. 

3.1 The Yale Juggler 
Robot and Environment Models The physical 
apparatus consists of a puck, which slides on an inclined 
plane and is batted successively by a simple “robot:” a 
bar with billiard cushion rotating in a juggling plane. 

The Task Probably the simplest systematic behav- 
ior of this environment imaginable (after the rest PO- 
sition), is a periodic vertical motion of the puck in its 
plane. Specifically, we want to be able to specify an 
arbitrary “apex” point together with a vertical posi- 
tion, and from arbitrary initial puck conditions, force 
the puck to attain a periodic trajectory which impacts 
a t  zero vertical position and passes through that  apex 
point. We call this task the vertical one-juggle. Such 
tasks are exactly represented by the choice of a desired 
fixed point, w’, now serves to  define the goal state, E.  
Being interested in sensor based manipulation we focus 
upon solving such problems with feedback based con- 
trollers. Thus, a robot feedback strategy is a map ’, 
g : W + U ,  from the body’s s ta te  to  the robot’s action 
set, U ,  resulting in the impact strategy u j  = g(w,) 

3.2 The Stability Properties of 
Unimodal Maps 
The juggling robot described above successfully juggles 
pucks falling (otherwise) freely on the (“frictionless”) 
juggling plane inclined into the earth’s gravitational 
field [12]. The robot’s “plan of action”, g, is accom- 
plished by recourse to  a family of “mirror laws” that  
map puck states into desired robot states a t  every in- 
s tant  of time. Extensions of the mirror idea have been 

‘Although we prefer to  avoid time varying controllers, 
there is no i priori objection to  dynamical controllers. In 
practice, the memoryless control structure presented here 
suffices for all the tasks we have encountered to  date. 
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shown experimentally to accomplish tasks such as jug- 
gling one and two pucks, and catching in a stable and 
robust manner [7]. Analytical results obtained to date 
suggest that these mirror algorithms owe their success 
to a new global stability mechanism quite different from 
the one explored in the previous section except in that  
it satsifies the critical criterion of "practicability" estab- 
lished in the introduction. 

A Practicable Global Stability Mechanism 
In contrast to the notion of energy dissipation that has 
been known for more than a century [38], the juggling 
behavior seems to  arise through a stability mechanism 
t.hat has been only recently recognized. The principal 
results required here were stated a little more than a 
decade ago by Singer [37] and Guckenheimer [16]. They 
studied the dynamical systems arising from iterations 
of a special class of maps on the unit interval into itself 
the S-unimodal maps. 
Singer showed that S-unimodal maps can have at 
most one attracting periodic orbit [37]. Guckenheimer 
showed that the domain of attraction of such attracting 
orbits includes the entire unit interval with the possible 
exception of a zero measure set [16]. Thus, an asymp- 
totically stable orbit of an S-unimodal map is essen- 
tially globally asymptotically stable. In other words, a 
local computation at  a candidate fixed point suffices to  
demonstrate its global stability properties. 

Invariance Although the Singer-Guckenheimer the- 
ory is stated in terms of the apparently restrictive class 
of unit interval preserving maps, i t  extends to  (at least) 
all their differentiable conjugates. Namely, say that  g 
is a smooth S-unimodal map if there is an S-unimodal 
map, f, to which g is differentiably conjugate - i.e. 
there exists a smooth and smoothly invertible function, 
h such that g = h o f o h - l .  It is straightforward to show 
that an attracting orbit of a smooth S-unimodal map is 
essentially globally asymptotically stable [14, 131. 
Smooth S-unimodal maps form a sufficiently large fam- 
ily that this theory appears to  have broad engineer- 
ing applicability. For example, as described below, the 
line-juggler map falls within this class. Moreover, we 
have shown that  simplified models of Raibert's hopping 
robots give rise to smooth S-unimodal maps as well [lo]. 
An important caveat is that  the Singer-Guckenheimer 
theory at  present has only limited extensions to  higher 
dimensional systems. Thus, in all cases where we would 
like to invoke these results, we have had to restrict at- 
tention to simplified one degree of freedom models of 
the systems in question. 

3.3 The Mirror Algorithm 

For the purposes of this paper, it seems most convenient 
to limit discussion of the mirror algorithm to a sim- 
plified one-degree-of-freedom environment: "juggling" 
bead on a vertical wire. In any event, this is the model 
to which the Singer-Guckenheimer results are most di- 
rectly applicable. 

Construction Let the robot track exactly a contin- 
uous "distorted mirror" trajectory of the puck where, 
borrowing an idea from Raibert [29], the distortion fac- 
tor is a function of the error in vertical total energy, 
71: 

P r = --IEI(w)b; - I E I ( ~ )  = - I E I O + ~ I I [ V ( W ' ) - V ( W ) ] .  (3) 

Implementing a mirror algorithm is an exercise in robot 
trajectory tracking wherein the reference trajectory is a 
function of the puck's state. 

Analysis I t  is shown in [lo] that  the feedback law, 
g, resulting from the strategy described above may be 
determined in closed form (for the simplified one degree 
of freedom model). Substituting into the impact func- 
tion yields the scalar map of puck impact velocities just 
before impact at the invariant impact position b' = 0, 

f(i) = i, (1 - P(i2 - i,',)) , (4) 

where /3 = 6 1 1  . (1 + a) /2 .  
It is not hard to  show [lo] that  (4) satisfies the condi- 
tions of '5-unimodality" described above. A check of 
(4) reveals that  the fixed point is locally stable when 

(5) 

There immediately follows, 

Theorem 3 ([13]) The mirror algorithm for the line- 
juggler results in a successful vertical one juggle which 
is essentially globally asymptotically stable as long as /3 
satisfies the inequality (5). 

Experiments We have shown a gratifying corre- 
spondence between theoretical predictions based upon 
the Singer-Guckenheimer results, simulation studies, 
and physical da ta  [lo]. Perhaps the most dramatic de- 
piction of this correspondence is suggested by our bi- 
furcation studies, for which there is no space in the 
present paper. This section nevertheless provides some 
feeling for the predictive power of the theory described 
above. The experimental data  in Figure 2 confirm that  
the transients can be predicted by recourse to  local lin- 
ear analysis of the scalar impact map. This behavior is 
confirmed even from large initial conditions ("globally") 
on the juggling apparatus. 

0 - 
2 -118 1 ; 9 

Figure 2: Line-Juggler Transients: Experimental Data 
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