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ABSTRACT

ESSAYS IN INFORMATION ECONOMICS

Jonathan T Pogach

Harold Cole

This dissertation is composed of three essays considering the role of private in-

formation in economic environments. The first essay considers efficient investments

into technologies such as auditing and enforcement systems that are designed to

mitigate information and enforcement frictions that impede the provision of first

best insurance against income risk. In the model, the principal can choose a level of

enforceability that inhibits an agent’s ability to renege on the contract and a level

of auditing that inhibits his ability to conceal income. The dynamics of the opti-

mal contract imply an endogenous lower bound on the lifetime utility of an agent,

strictly positive auditing at all points in the contract and positive enforcement only

when the agent’s utility is sufficiently low. Furthermore, the two technologies op-

erate as complements and substitutes at alternative points in the state space. The

second essay considers a planning problem with hidden actions and hidden states

where the component of utility affected by the unobservable state is separable from

component governed by the hidden action. I show how this problem can be written

recursively with a one dimensional state variable representing a modified version of

the continuation utility promise. I apply the framework to a model in which an agent

takes an unobservable decision to invest in human capital using resources allocated

to him by the planner. Unlike similar environments without physical investment, it

is shown numerically the immiserising does not necessarily hold. In the third essay,

with Kyungmin Kim, I examine the effects of commitment on information trans-

mission. We study and compare the behavioral consequences of honesty and white

lie in communication. An honest agent is committed to telling the truth, while a

white liar may manipulate information but only for the sake of the principal. We

identify the effects of honesty and white lie on communication and show that the
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principal is often better off with a possibly honest agent than with a potential white

liar. This result provides a fundamental rationale on why honesty is thought to be

an important virtue in many contexts.
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Chapter 1

Efficient Auditing and

Enforcement in Dynamic

Contracts

1.1 Introduction

Limited commitment and private information are two sources commonly identified as

impediments to an agent’s ability to insure himself against idiosyncratic income risk.

However, models of efficient insurance with limited commitment generally ignore all

considerations of private information and implicitly assume both that enforcement

is prohibitively costly and that information is completely costless. Similarly, models

of efficient insurance under private information often abstract away from the issue of

enforcement, assuming that it is costless to compel agents to remain in the contract.

In this chapter, I consider the provision of efficient insurance under both limited

commitment and private information when the insurer has access to enforcement

and auditing technologies that, respectively, reduce the agent’s returns from walking

away from the contract and concealing income. I depart from the literature in

that I consider both information and enforcement frictions and also allow for an
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insurer’s access to technologies designed to mitigate these frictions in a dynamic

environment.1 I show that the implications on an agent’s consumption, along with

use of these technologies, critically depend on the presence of both frictions and the

relative costs of auditing and enforcement. The analysis of this chapter therefore

provides an understanding of efficient insurance that is absent in models that ignore

one dimension of the problem.

In environments with limited commitment, an agent is assumed to have access

to an “outside option,” typically taken to be his value of consuming his contempo-

raneous income and autarky consumption thereafter. Should the contract ever be

sufficiently undesirable, the agent may then choose to break the contract and receive

the value of this option. A first best contract that requires the transfer of income

from an agent with high income to one with low income may then be impossible

to implement as an agent receiving a large income may prefer a high consumption

today and the outside option to paying the transfer.

Meanwhile, in environments with private information, low income agents are

typically indistinguishable from high income agents. Thus, first best insurance is

impossible to implement as all agents would choose to mimic the agent who is due

the largest net transfer; any insurance plan that transfers resources from high income

to low income agents must also provide high income agents the appropriate incentives

to reveal their information.

Most applications of insurance problems not only are likely to entail some level of

both these frictions, but also endogenous choices on the part of insurers that affect

the extent to which one would expect these frictions to impede first best insurance.

The analysis in this chapter is applicable to a wide range of standard contracting

and insurance questions including optimal social insurance policy, managerial com-

pensation, and informal risk sharing. Consider the social insurance program of un-

employment insurance. Implementation of efficient unemployment insurance entails

1One paper that considers both frictions and an endogenous enforcement choice is Krasa and
Villamil (2000) who study a three period model with private information and enforcement.
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a government’s decisions on the monitoring of agents’ income claims and job offers

to mitigate these sources of information frictions. Moreover, efficient unemployment

insurance also relies on a choice of investment in a court system, law enforcement,

and even prisons to compel employed agents with high income to pay taxes.

In the managerial compensation literature, Jensen (1986) hypothesizes that firm

structure is the result of the optimal balancing of agency and information frictions

between institutional investors and management. However, these frictions can typi-

cally be reduced by institutional investors via internal audits and the ability to hire

lawyers to sue opportunistic managers. Such choices will then have implications on

managerial compensation and corporate financial structure. Finally, this chapter

may also extend into the informal risk sharing literature2 to the extent that small

villages suffer from these frictions and have the capacity to mitigate them.

I study three dynamic principal agent problems in which the principal is risk

neutral and the agent is risk averse. The first is one of limited commitment, full

information, and an enforcement technology and is referred to as the Enforcement

Model, the second is one of private information, full commitment, and an auditing

technology and is referred to as the Auditing Model, and the third features both

sets of frictions and technologies and is referred to as the General Model. From the

first two models, I show how the principal optimally uses enforcement and auditing,

respectively, to insure the agent. In the General Model, I show how the implications

of a joint model differ dramatically from the joint implications of the separate models.

Models of limited commitment, such as Thomas and Worrall (1988), often feature

an increasing level of consumption and long run consumption constant and equal to

an amount at which the highest income agent would not choose to renege. Efficient

insurance that requires the transfer of income from high to low income states must

also provide an agent who realizes high income with an incentive to not renege. Such

a transfer can be implemented by increasing future consumption across future shocks

2See Townsend (1994) and Ligon, et al (2002).
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for an agent with high income. Higher consumption across future income states then

diminishes the agent’s future incentives to renege and, eventually, first best insurance

is possible.

The Enforcement Model is a version of the limited commitment and endogenous

enforcement model studied in Koeppl (2007) and the results from this model are

used to contrast and provide insight into the role of enforcement in the General

Model. With the addition of endogenous enforcement to a limited commitment

environment, enforcement is decreasing in the agent’s promised utility. Enforcement

alters the dynamics of the contract by slowing the growth of consumption to allow

for smoother inter-temporal consumption. However, in the long run insurance is first

best and the principal uses no enforcement. Notice that this long run result relies

heavily on the costless information assumption, as long run consumption patterns

are identical for high and low income agents. Such a model should then be viewed

skeptically if it is believe that there is any level of information friction.

Models of efficient insurance with private information3 deliver a conflicting pre-

diction on consumption. In these models, providing an agent with high income

realization the incentives to reveal his information is “cheap” at lower levels of con-

sumption and utility. The reason for this is that when marginal utility of consump-

tion is high, agents with high income and agents with low income evaluate quite

differently small differences in transfers. This eases the ability of the principal to

separate income realizations and yields the well known immiseration result in the

long run in which agents are driven down to their lower bound of utility (or toward

−∞ if utility is unbounded below) almost surely. This extreme prediction of models

with private information is a direct consequence of the implicit costless enforcement

assumption; given any capacity to renege an agent would surely undertake such an

option to avoid the consequences of the implied contract.

3See, for example, Green (1987), Atkeson and Lucas (1992), and Thomas and Worrall (1990)
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In the Auditing Model I show that while the auditing technology slows this pro-

cess, it does not prevent immiseration and thus, also relies heavily on costless en-

forcement. Furthermore, I show that as the agent is immiserised, the principal’s use

of auditing also vanishes. A novel feature of the Auditing Model is its specification of

the auditing technology, which allows for more complete analytic results than have

been obtained in other dynamic contracting environments with private information

and some form of auditing. For example, Wang (2005) studies a dynamic version

of costly state verification á la Townsend (1979). However, the complex nature of

his problem hampers his ability to make statements on, for example, the qualitative

response of the agent’s future utility to income shocks. The auditing technology I

consider is such that the level of investment into the technology reduces the agent’s

return to misreporting directly, but does not itself reveal information. This greatly

simplifies the information structure of the problem and allows for more analytic

results.

The dependence of the Enforcement and Auditing models on costless informa-

tion and enforcement, respectively, reveals the tension that exists in a model where

both technologies are assumed to be costly. In the General Model, I study such

a model. Past models that consider environments with both sources of frictions

include Atkeson and Lucas (1995), who study unemployment insurance when job

offers are unobservable and there is an exogenous lower bound on promised utility.

Phelan (1995) similarly studies an environment of limited commitment and private

information in which competitive insurance contracts determine the lower bound on

an agent’s utility. However, neither chapter allows a principal any recourse against

these frictions, thus assuming that both information and enforcement are infinitely

costly.

The key difference between the General Model studied in this chapter and other

models in the literature is that in other models it is the high income agent who must

be kept from reneging while in this model, at low levels of promised utility, it is an
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individual with a low income realization for whom the enforcement constraint binds.

The intuition behind this result is that agent’s utility from misreporting income

depends on the level of consumption promised in the contract while the agent’s utility

from reneging does not. Therefore, as the consumption from the contract diminishes

and the marginal utility increases, a high income agent finds misreporting income

relatively more attractive than reneging. Consequently, to deliver on the promised

utility, it is the low income agent who must be compelled to remain in the contract

via enforcement.

One implication of this is that the opposing forces on promised utility of limited

commitment and private information give rise to an endogenous lower bound. To

contrast this result to those aforementioned papers with both frictions, their lower

bounds are achieved via the (sometimes implicit) assumption of infinitely costly

enforcement.4 That is, the principal can take no action to reduce the agent’s utility

below some specified level. I do not rely on infinitely costly enforcement to establish

this lower bound and show that such a bound exists and immiseration is prevented

whenever enforcement costs are convex, independent of its costs relative to auditing

and consumption.

Furthermore, I show that auditing and enforcement technologies act alternatively

as both complements and substitutes at alternative points in the state space. Con-

sider the case when promised utility is at a level such that the high income agent

is indifferent between remaining in the contract and reneging. Additional auditing

allows the principal to better smooth the agent’s consumption between high and low

states, reducing the principal’s consumption cost. However, this smoothing can be

done only when accompanied by additional enforcement cost, as the high income

agent must be kept from reneging. Thus, the two technologies are complements.

On the other hand, when promised utility is sufficiently low, it is the agent with

a low income realization who is indifferent between reneging and remaining in the

4The lower bound in Phelan paper is still endogenous via competitive insurance markets.
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contract. In this case, an increase in auditing that increases the low income agent’s

utility and smooths utility across states is accompanied by a decrease in the necessary

enforcement. Thus, the two technologies are substitutes in this region.

The remainder of the chapter is organized as follows. Section 1.2 lays out the

general problem and shows how the problem can be written recursively, which is used

as the basis for the rest of the chapter. Sections 1.3 and 1.4 examine the Enforcement

(costless information) and Auditing (costless enforcement) models, respectively, while

Section 1.5 analyzes the General Model. Section 1.6 provides s numerical example

of the Enforcement, Auditing, and General models. Section 1.7 concludes.

1.2 Model

A risk neutral principal looks to provide insurance to a risk averse agent who is

subject to a risky income stream. Each period, an agent’s income shock θt ∈ Θ =

{θ1, .., θS} is realized with θt i.i.d. over time with θs < θs+1. Generic elements in

Θ are denoted by θs and occur with probability ps where
∑

s ps = 1. I assume

that the principal and the agent share a common discount factor β ∈ (0, 1). In

the General Model, there is an information friction and an enforcement friction. The

enforcement friction implies that the agent can renege on the contract at any point in

time with the consequence of being restricted from future insurance. In the absence

of enforcement, I take the future value of the walk away option, U0, to be the autarky

value: U0 =
∑

s psu(θs).

Before each period’s realization of income the principal can invest in two tech-

nologies to ameliorate these frictions: an auditing technology α ∈ A = [0, 1] and an

enforcement technology γ ∈ Γ = R+ at costs of f(α) and g(γ), respectively. The

choice of investment is observed by the agent and the investment is effective only

for one period.5 After observing his private income, θt, and the principal’s choice of

5The fact that the auditing choice is made and observed before the agent’s income is realized
implies that the principal would never have an ex-post incentive to reverse his auditing choice.
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auditing and enforcement, the agent reports income to the principal. Based on the

public history, defined below, the principal provides transfers τt to the agent each

period, so that his consumption is τt + θt and his contemporaneous utility given this

consumption is (1− β)u(τt + θt). It is assumed that the agent is an expected utility

maximizer and that utility is separable across periods.

The role of the enforcement technology is as follows. In any period after observing

his income, the agent could walk away from the contract, consume that period’s

income and his autarky consumption at any point thereafter.6 However, with an

investment of γ ∈ Γ = R+ into enforcement, his utility from leaving the contract

is shifted down by γ units of utility.7 That is, given an enforcement level γ and an

income θs, an agent’s valuation of his outside option is (1 − β)u(θs) + βU0 − γ. We

could think of this cost as being a disutility of court proceedings to break a contract

or even more extreme measures such as debtor prisons.

The nature of the auditing technology makes hiding income (or consumption)

costly to the agent. Namely, for each unit of output that he tries to hide, α will be

lost in an effort to avoid detection, where α ∈ A = [0, 1]. For simplicity, I assume

that should the agent choose to lie about his output (which he will, of course, not do

in the optimal allocation) he will also choose to hide his income. The cost to hiding

income can be interpreted as an agent having to consume less desirable goods. For

example, when a high level of auditing is chosen by the principal the agent may have

In the costly state verification literature, the auditing technology allows the principal to decide,
conditional on the agent’s announced income, to observe the true state at some cost. However, as
the optimal contract is written as one in which the agent never misreports, the principal has no
ex-post incentive to monitor the agent given the income announcement. See Khalil (1997).

6I could consider the agent as having an option to recontract with another principal should he
choose to renege on the contract. Under the enforcement environment in this chapter, this set up
would be identical to one in which the agent’s outside option is the value of this alternative contract
rather than autarky. See Krueger and Uhlig (2006).

7The fact that γ is a utility cost to the agent is not critical for many of the results in the chapter.
What drives many of the results is that the effect of γ on the outside option is independent of the
contract, while the auditing choice affects the agent’s incentives in a way that depends on the rest of
the contract. The idea that enforcement has a level effect in the contract and the effect of auditing
is not level reflects the nature of the commitment and information frictions they are, respectively,
designed to mitigate.
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to buy a smaller house or less fancy car to remain inconspicuous. Thus, the purpose

of auditing solely serves the function of reducing the incentives of the agent to lie.

This model is one of costless enforcement and private information and will be referred

to as the Auditing Model. It is worthwhile to note that the auditing technology in this

chapter differs from the common “costly state verification” auditing model. In the

model here, auditing does not change the principal’s information on the agent’s true

income, but rather, decreases the agent’s return to misreporting. The third model

combines the first two models, so that there are both enforcement and information

frictions and the principal has access to auditing and enforcement to mitigate each

friction.

Thus, the agent’s t-period consumption when his true income is θs under a falsely

reported income, θs̃, is τs̃ + θs −α(θs − θs̃). For ease of notation, define xs ≡ τs + θs,

so that the agent’s consumption under truth telling is xs and his consumption under

a false report, θs̃, is xs̃ + (1 − α)(θs − θs̃). Let the period t public information of

reports, truthful consumption level (which has a one-to-one mapping with transfers),

auditing levels and enforcement levels be denoted by ht = (θ̃t, xt, αt, γt) with private

information h̃t = (θt, ht). Denote the t-period public history ht = (h0, .., ht) ∈ H t,

where H t is the set of t-period public histories. Denote the set of private histories

by H̃ t with generic element h̃t.

Define a plan, ν = (ν0, ν1, .., ), where νt = (ν1
t , ν

2
t ) such that ν1

t : H t → A × Γ

and ν2
t = H t × A× Γ × Θ → R, as a sequence of duple mappings of the principal’s

enforcement and auditing choices given public histories and the principal’s choice

of transfers given the public history, this period income report, and this period’s

auditing and enforcement choices. The set of plans is denoted by N . An agent’s

strategy is the mapping of private histories and this period’s auditing, enforcement,

and income realizations into income reports.8 Let σt : H̃ t−1 × A × Γ × Θ → Θ

be agent’s the t-period announcement. Denote Σ = {(σ0, σ1, ..)}∞t=0. I make one

8Note that I ignore the agent’s decision to walk away. See the discussion in the following
paragraph.
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additional and non-standard restriction on allowable strategies; namely, given an

income θt, the agent cannot report any income θ > θt. The thought behind this

assumption is that it costless to validate that the agent does not have a high income

by virtue of his inability to show resources when asked. This assumption is also useful

in simplifying the constraints in the recursive formulation of the General Model as

well as proving concavity of the value function.

Note that if at any point in the contract it is optimal to let the agent walk away

then there also must exist an optimal contract in which the agent chooses to not

walk away and the principal replicates the autarky consumption profile by setting

transfers equal to 0 every period. Furthermore, a version of the Revelation Principle

applies. Thus, the principal’s problem is to choose the plan that maximizes resources

such that the agent never reneges and that the agent has no incentive to lie. Denote

the probability of a history given a plan ν and a strategy σ by π(h̃t|σ, ν), where the

conditioning variables are dropped when there is no confusion.

Given a plan ν and a strategy σ, an agent’s utility at time t′ given history h̃t′ is

Ut′(σ|ν, h̃t′−1) =
∞
∑

t=t′

(1 − β)βt−t′
∑

h̃t∈H̃t|h̃t′

u
(

x(ht−1, αt, γt, θ̃t)

+ (1 − αt(h
t−1))(θt(h̃

t) − σ(h̃t−1, αt, γt, θt))
)

π(h̃t|h̃t′−1)

where x, α denote the consumption component and auditing components of plan ν, θ̃t

is the agent’s t period announcement given the private history, and the notation h̃t ∈
H̃ t|h̃t′ denotes the set of histories that are consistent with the t′-period private history

ht′ and ht denotes the public history consistent with private history h̃t. Denote

the truth-telling strategy σ∗ as the strategy such that for all histories and periods

σ∗
t (h̃

t) = θt.

Given an initial reservation value of autarky, the principal’s problem, (P1), can

be written as the maximum net present value of resources such that truth-telling is

incentive compatible and the agent never chooses to renege:
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(P1) Ṽ = max
ν∈N

∑

t

βt
∑

h̃t

[

(1 − β)
(

θt(h̃
t) − x(ht−1, αt, γt, θ̃t)

)

−

f
(

α(ht)
)

− g
(

γ(ht)
)]

π(h̃t|σ, ν)

s.t.(PK) U(σ∗|ν) = U0

∀ σ̃ ∈ Σ; t′, ht′(IC) Ut′+1(σ
∗|ν, h̃t′) ≥ Ut′+1(σ̃|ν, h̃t′)

∀ s, t′, ht′−1(E) (1 − β)u(x(ht−1, νt′,1(h
t′−1), θs)) + βUt′+1(σ

∗|ν, h̃t′) ≥

(1 − β)u(θs) + βU0 − γ(ht′−1)

A dynamic model of costless information and limited commitment is one where

f(α) = 0 for all α. Similarly, a dynamic model of asymmetric information and

costless enforcement is one in which g(γ) = 0 for all γ. These models are considered

separately, respectively, in Sections 1.3 and 1.4. The General Model is analyzed in

Section 1.5.

Before analyzing the separate models, I first state a proposition following Spear

and Srivastava (1987) that allows us to write the problem recursively using the

agent’s expected utility of the continuation contract, ω as a state variable. The

interpretation of the state variable is that this represents the agent’s wealth (or

indebtedness). I use the recursive model as the starting point for the Enforcement,

Auditing, and General models in subsequent sections.

Proposition 1 The problem (P1) can be written recursively as:

V (ω) = max
α,γ,{xs,ω′

s}s∈S

∑

s

[(1 − β)(θs − xs) − βV (ω′
s)]ps − f(α) − g(γ)

s.t. (IC) (1 − β)u(xs) + βω′
s ≥ (1 − β)u(xs̃ + α(θs − θs̃)) + βω′

s̃, ∀ s > s̃ ∈ S

(E) (1 − β)u(xs) + βω′
s ≥ (1 − β)u(θs) + βU0 − γ, ∀ s ∈ S

(PK)
∑

s

[(1 − β)u(xs) + βω′
s]ps = ω

All omitted proofs appear in Section 1.8.
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Notice that the expected transfer to the agent each period is E[θs −xs]. As E[θs]

is constant, I drop it hereafter when writing the principal’s maximization problem.

The following assumptions that will be used throughout the remainder of the

chapter:

Assumption 1 i) u : [c,∞) → (−∞, ū] is unbounded below with u′,−u′′ > 0

ii) u′′/u′ is non-decreasing.

iii) limx→0 u(x) = −∞ and limx→+∞ = ū

iv) f ′, f ′′, g′, g′′ > 0.

v) limα→0 f
′(α) = 0, limα→1 f

′(α) = +∞, limγ→0 g
′(γ) = 0, limγ→+∞ g′(γ) = +∞

Assumptions i, iii, iv, and v are fairly common assumptions on the regularity

properties of the cost functions and the utility function. Note that utility is un-

bounded below and bounded above and consumption is unbounded above and may

or may not be bounded from below. Assumption ii is common in dynamic contracts

with private information and states that the agent’s absolute risk aversion is non-

increasing and is a sufficient condition for the concavity of the value function in the

dynamic programming problem.

1.3 Enforcement Model

In this section I consider a special case of the General Model in which information

is free (f(α) = 0 for all α ∈ [0, 1]). Namely, the principal’s problem is:

V (U0) = max
γ,{xs,ω′

s}s∈S

∑

s

[−(1 − β)xs + βV (ω′
s)] − g(γ)

subject to (E) for all s ∈ S and (PK). Concavity and differentiability of the value

function are established for the General Model in Section 1.5. The proof here follows

accordingly and is omitted.
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Letting λ be the multiplier on the promise keeping constraints and ξsps be the

multipliers on enforcement constraints, the first order conditions and envelope con-

dition for this problem are:

u′(xs)(λ+ ξs) − 1 = 0

V ′(ω′
s) + λ+ ξs = 0

g′(γ) −
∑

s

ξsps = 0

V ′(ω′
s) = −λ′s

As in other environments of limited commitment, one implication from this model

is that the highest income agent determines the level of enforcement. Namely, if (E)

binds for some state s, then it also binds for all s̃ > s. It is worthwhile to note

that while this is a standard result with limited commitment, it does not hold in the

General Model considered in Section 1.5.

Lemma 1 If ξs = 0 then ξs̃ = 0 for all s̃ < s. That is, if the enforcement con-

straint binds for some income realization s̃ then it also binds for all higher income

realizations.

Proof. Suppose not. Then (1 − β)u(xs) + βω′
s > (1 − β)u(θs) + βU0 − γ and

(1 − β)u(xs̃) + βω′
s̃ = (1 − β)u(θs̃) + βU0 − γ where θs̃ < θs so that the RHS of

the former is greater than that of the latter. This implies that either (i) xs > xs̃ or

(ii) ω′
s > ω′

s̃. For whichever of (i) or (ii) holds, we can increase the variable (say x)

for s̃ and decrease it for s in such a way that γ is unchanged and PK holds. The

concavity of u and the value function imply that this yields strictly more resources

to the principal.

The previous lemma is what would be expected from results in the limited en-

forcement literature. Namely, for any level of promised utility, an agent with the

highest income realization has the largest incentive to walk away from the contract.

13



For low income realizations, an agent does not have an incentive to renege and

the principal can perfectly smooth consumption across such realizations. Thus, for

each level of incoming promise there is some threshold level of income below which

consumption and future promises are smoothed across states and above which the

principal receives a net payment from the agent, θs − xs > 0. An agent with a

high income realization is then deterred from reneging via increased consumption in

future periods.

The dynamics of the agent’s promised utility are simple in this environment

and can easily be seen from the first order conditions. If the agent receives an

income θs for which the enforcement constraint does not bind, then ξs = 0 and

λ′s = λ, implying that the agent’s promised utility remains constant. Likewise,

consumption is equalized over states in which the enforcement constraint does not

bind and is increased when income shocks are sufficiently high. At the moment

when the constraint binds, promised utility increases and the process repeats itself.

Thus, the continuation promise is weakly increasing over time, eventually reaching

a maximum value of (1 − β)u(θS) + βU0 when the highest income state is realized.

In models of efficient insurance and limited commitment, the set of continuation

promises that can be reached with positive probability from any state ω (with the

exception of that amount) are a subset of U ≡ {(1− β)u(θs) + βU0}s∈S. The reason

for this is that the outside option of an agent who receives an income realization of θs

is equal to (1− β)u(θs) + βU0 independent of his promised utility upon entering the

period. As the optimal mix of consumption and future promises to delivering this

level of utility does not depend on history, the set of possible values for ω is always

a subset of U . However, in a model with endogenous enforcement, the enforcement

variable and, consequently, the value of the agent’s outside option, depend on the

contractual state variable ω. Thus, in a model with endogenous enforcement, the

continuation promise of an agent receiving income θs is history dependent.

In particular, as the continuation promise increases and the autarky option is less
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attractive to the agent, then enforcement also decreases. This is established in the

following proposition and is similar to the result achieved in Koeppl (2007). He stud-

ies a case in which two risk averse agents split a fixed amount of resources and finds

that enforcement increasing in inequality. Alternatively phrased, his result shows

that enforcement decreases as the promised utility of the poorest agent increases. A

parallel result is achieved here.

Proposition 2 γ is strictly decreasing in ω when γ > 0.

Given the dynamics of the continuation promise, the dynamics of enforcement

are easily determined. Namely, the use of the enforcement technology is constant

over time so long as the enforcement constraint does not bind and decreases when

sufficiently high income shocks cause the enforcement constraint to bind and increase

future ω. One consequence of this is that in the long run, enforcement goes to zero

almost surely. Therefore, the enforcement technology is eventually obsolete.

Proposition 3 γt → 0 almost surely.

Note also that the enforcement technology implies that the principal could imple-

ment any level of ω, in particular those below U0. In the Enforcement Model where

there are no information frictions, the agent’s continuation promise is increasing and

implementing ω < U0 is off the equilibrium path. However, this will not be the case

in later sections. Furthermore, costly enforcement implies that V is increasing for

ω sufficiently small. This can easily be seen as γ ≥ U0 − ω from the enforcement

constraints.

1.4 Auditing Model

In this section I consider a model in which the agent has private information on his

income shocks and a planner has access to an auditing technology; enforcement is

costless (g(γ) = 0 for all γ).
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The efficient contracting problem with only auditing is as follows:

V (ω) = max
α,x,ω′

∑

s

[−(1 − β)xs − βV (ω′
s)]ps − f(α)

s.t. (IC) u(xs) + βω′
s ≥ u(xs̃ + α(θs − θs̃)) + ω′

s̃ ∀s̃ < s

(PK)
∑

s

[u(xs) + βω′
s]ps = ω

Concavity and differentiability of the value function follow a similar argument to

the one presented in Proposition 9. The proof is therefore skipped.9

The problem can be simplified further by showing that it is enough to consider

only local incentive compatibility constraints and that these constraints bind. That

is, if for each state s the agent does not have the incentive to lie downward to

s − 1, then all of the incentive compatibility constraints are satisfied. To do this, I

first establish that higher income realizations receive higher consumption and lower

transfers than lower income realizations in the optimal allocation. This is a straight-

forward result, as one would expect insurance schemes to generally give a larger

transfer payment (or demand a smaller fee) to an agent who realizes low income

than to one who realizes high income. The second lemma establishes that it is

enough to only consider “local” lies. Define ∆s ≡ θs − θs−1.

Lemma 2 For all s, xs−1 ≤ xs ≤ xs−1 + ∆s(1 − α).

Throughout the remainder of the chapter let ũ(x, α, θs − θs̃) = u(x+(1−α)(θs −
θs̃)) denote an agent’s contemporaneous utility from reporting an income θs̃ when

his true income is θs.

9The one major difference is the domain of V , which is unbounded below here. To adapt
the argument for this environment it is sufficient to note that the value function defined here
lies between the functions F1 and F2 defined in the proof. Furthermore, absent enforcement, the
difference between these functions is bounded for all ω, established in the proof of the proposition
and the fact that the slope of the value function tends toward 0 as ω → −∞. See Thomas and
Worrall (1990).
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Lemma 3 Local constraints are enough. Let Cs̃,s = (1 − β)[u(xs̃) − ũ(xs, α, θs̃ −
θs)] + β[ω′

s̃ − ω′
s]. Then, Cs+1,s ≥ 0 and Cs,s−1 ≥ 0 for all s imply that Ck,s ≥ 0.

Furthermore, it is also the case that all of the local constraints bind. Fixing any

level of auditing, if the local constraint were to ever not bind, then the principal

could increase consumption to the agent when a low state is realized and decrease

consumption when a high state is realized without affecting any of the other IC con-

straints. From Lemma 2, the marginal consumption under low realizations is greater

than under high realizations so that such a scheme would increase the principal’s

utility.

Lemma 4 Local constraints bind so that auditing is strictly positive (α > 0) for all

ω.

Auditing is useful to the principal in that it allows for better smoothing of agent’s

consumption across states. In a world with costless information, if marginal utility is

higher in low states than in high states, then a risk neutral planner can increase his

utility while holding the agent’s utility constant by decreasing consumption in the

high state and increasing consumption in the low state. With costly auditing, this

requires an increase in auditing costs to keep an agent with high income from lying.

The following proposition derives an expression for the optimal auditing when S = 2,

with ∆ = θH −θL > 0 so that the marginal cost of auditing is equal to the principal’s

benefit from consumption smoothing. A similar, but more cumbersome, expression

is easily derived for the case where S > 2. The left hand side of the expression

can be interpreted as the marginal auditing cost of smoothing consumption, while

the right hand side is the marginal benefit to the principal of smoothing the agent’s

consumption.

Proposition 4 The optimal allocation satisfies

f ′(α)

∆

[

1 +
u′(xL)pL

ũ′(xL, α,∆)pH

]

= pL

[

u′(xL)

u′(xH)
− 1

]
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Proof. Consider the following scheme. Increase α by ǫ/∆, increase xL by ηL and

decrease xH by ηH . The cost of this scheme is −f ′(α)
∆

− ηLpL + ηHpH . Now, we must

show that we can choose values such that IC and PK are satisfied, while decreasing

resource costs. Choose ηH = ηL
u′(xL)pL

u′(xH)pH
so that the PK constraint holds. Under this

scheme, the LHS of the IC constraint is decreased by ηL
u′(xL)pL

pH
while the RHS is

decreased by (ǫ− ηL)u′(xL, α,∆). Choosing ǫ = ηL

[

1 + u′(xL)pL

u′(xL,α,∆)pH

]

, the total cost

of the scheme is then

ηL

[

−f
′(α)

∆

(

1 +
u′(xL)pL

u′(xL, α,∆)pH

)

− pL +
u′(xL)pL

u′(xH)

]

which must be less than or equal to zero in an optimal allocation. The opposite

perturbation implies that the expression must be greater than or equal to zero.

Although auditing is positive for all ω, it vanishes as ω tends toward −∞ and,

under an additional assumption on the utility function (which is satisfied by CRRA

utility functions), auditing also vanishes as ω approaches its upper bound ū. Au-

diting tends toward zero in the extremes for different reasons. As ω becomes small,

providing incentives for truth-telling to the agent is cheap. The reason for this is

that as the marginal utility from consumption increases, small consumption differ-

ences across states are enough to induce truth telling. Meanwhile, the agent’s high

marginal utility implies that the value function is flat as ω diverges to −∞. As

the incentive compatibility constraint is inexpensive to satisfy via variations in cur-

rent and future consumption, the auditing technology becomes unnecessary. In the

case of ω large, the agent is already being promised high consumption. The fixed

differences between income levels combined with the concavity of the utility func-

tion guarantees that the marginal value to the agent from lying is small. Thus, less

auditing is necessary to deter him from doing so.

Proposition 5 Auditing vanishes in the lower utility limit. α → 0 as ω → −∞
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Proposition 6 Auditing vanishes in the upper utility limit. If limx→+∞ u′(x)/u′(x+

∆) = 1 for ∆ = θS − θ1 (which is true under CRRA with a coefficient greater than

1), then α → 0 as ω → ū.

Consequently, α reaches a maximum in the interior of (−∞, ū] and vanishes in

the limits. This is in contrast to the Enforcement Model in which enforcement costs

are high when the promises are low and are decreasing in ω. One could extend

these insights by thinking of this model as the “component planner” problem10 in

a model of efficient insurance with a continuum of agents and a period by period

resource constraint equal to the expected value of income. The implications in a

more general model with a resource constraint would be that inequality requires

large enforcement costs to overcome the friction arising from the agent’s limited

commitment. However, the Auditing Model implies that costs of auditing are lower

when there are large inequalities and agents are toward the utility extremes and

higher when there is more equality.

Perhaps surprisingly, the long run dynamics of the Auditing Model resemble that

of a model in which information is prohibitively costly. That is, despite the presence

of an auditing technology designed to mitigate the information friction, the princi-

pal’s incentive to front-load consumption and push ω toward where incentives are

“cheap” dominates and in the long run the auditing technology becomes obsolete.

Proposition 7 ω → −∞ almost surely.

Proof. First, it is straightforward to show that λt is a martingale by summing

over states the first order conditions on ω′
s. Furthermore, as V is decreasing it must

be the case that λ is bounded below by 0. Then, by the Martingale Convergence

Theorem, λt converges almost surely. Suppose λt converges to any interior value.

This is a contradiction as for every ω ∈ Ω it is the case that ω′
L < ω < ω′

H . This

implies that ω → −∞.

10See Atkeson and Lucas (1992)
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The robustness of the immiseration result to auditing can be understood in re-

lation to the relative costs of auditing when consumption is front-loaded and back-

loaded. An agent with low income or high income realizations values continuation

contracts identically, but values current transfers differently. Therefore, the more

front-loaded the contract facing an agent, the easier the principal can induce truth-

telling by manipulating this difference. Consider an optimal insurance plan and imag-

ine reallocating consumption for the low income realization from the future period

into the current period. That is, increase xL and decrease ω′
L such that the agent’s

overall utility (and his utility from the low state in particular) is unchanged. What

effect does this have on auditing? Denote by ǫx and ǫω the increase and decrease, re-

spectively of current consumption and future utility. Then (1−β)ǫxu
′(xL)−βǫω = 0

by assumption. It is clear that such a reallocation of future consumption to cur-

rent consumption relaxes the IC constraint as the change in the right hand side of

the constraint is (1 − β)ǫxũ
′(xL, α,∆) − βǫω < 0 while the left hand side of the IC

constraint is unchanged. It follows that front-loading consumption to agent reduces

auditing costs. Thus, as in standard models of insurance with private information,

the principal continues to have an incentive to front-load payments to the agent.

1.5 General Model

From the Enforcement and Auditing models one is led to ask, to what extent do the

conclusions of these models rely on the assumptions of costless information and cost-

less enforcement, respectively? Looking at the Auditing Model, the principal relies

heavily on cheap truth-telling incentives for the agent at low levels of ω. However, we

know from the Enforcement Model that this is precisely when the principal chooses

the largest levels of enforcement. Conversely, in the Enforcement Model the princi-

pal back-loads the agent’s consumption, with long run utility equal to the walk-away

option when income is high and there is no enforcement. From the Auditing Model
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we know that it is in this interior region where the information friction binds the

most tightly.

To answer this question we turn to the General Model of costly auditing and

enforcement. The conclusions from this section demonstrate that these technologies

interact in a non-uniform manner. Thus, in environments with both limited com-

mitment and private information where technologies ameliorating each friction are

costly, examining the problems separately may provide misleading conclusions.

In this section I take Θ = {θL, θH} with ∆ = θH − θL > 0. The principal solves:

V (ω) = max
α,x,ω′

∑

s=L,H

[−(1 − β)xs − βV (ω′
s)]ps − f(α)

s.t. (IC) (1 − β)u(xH) + βω′
H ≥ (1 − β)u(xL + (1 − α)∆) + βω′

L

(E) (1 − β)u(xs) + βω′
s ≥ (1 − β)u(θs) + βU0 − γ

(PK)
∑

s=L,H

[(1 − β)u(xs) + βω′
s]ps = ω

First I establish the regularity properties of the value function. The assump-

tion of non-increasing absolute risk aversion plays an important role in establishing

concavity.

Proposition 8 V is concave.

The following proposition establishes the differentiability of the value function

over a bounded interval of ω. Setting the lower bound sufficiently low, I use dif-

ferentiability to establish the properties of the value function. It is later shown in

Proposition 10 that bounding utility from below is without loss of generality, as low

enough values of ω are never reached.

Proposition 9 For any ω < ū, V is differentiably continuous on [ω, ū).
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Denote the Lagrange multipliers for the IC, E, and PK constraints as ηs, ξs, and

λ, respectively. Then, the necessary first order conditions and the envelope condition

are11:

xH : pH = (pHλ+ η + pHξH)u′(xH)

xL : pL = (pLλ− η + pLξH)u′(xH)

ω′
H : pHV

′(ω′
H) = pHλ+ η + pHξH

ω′
L : pLV

′(ω′
L) = pLλ− η + pLξL

α : f ′ = ∆ũ′(xL, α,∆)η

γ : g′ =
∑

s psξs

EC : V ′(ω) = λ

Summing up the first order conditions on ω′
s yields λ + g′ = E[λ′]. Therefore λ

is a sub-martingale with E[λ′] > λ when at least one of the enforcement constraints

binds and E[λ′] = λ otherwise. There are two opposing forces at work. The first

force is from the enforcement constraint. Because keeping agents at a suppressed

level of utility is costly, the optimal allocation features an upward push on utility

when ω is sufficiently low and is seen in the g′ term. When continuation promises

are higher and enforcement for both income realizations is unnecessary, the contract

resembles that in the Auditing Model. In this region, the marginal cost of delivering

utility to the planner today is equal to the expected marginal cost of delivering utility

to the agent tomorrow. The concavity of the value function then suggests that the

agent’s expected promise is less than his current promise.

As in the case of the Auditing Model, the high income agent never receives a

larger transfer (xs−θs) than the low income agent. This is naturally the case absent

the enforcement constraints given that smoothing consumption across states and

holding the agent’s utility constant reduces the principal’s consumption cost. The

following lemma establishes that this continues to hold in the General Model.

11As in the case of Thomas and Worrall (1990) it is not the case that these equations are sufficient.
However, optimality requires that they are necessary
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Lemma 5 xH ≤ xL + (1 − α)∆.

In the Auditing Model, the value function is downward sloping because the prin-

cipal could always decrease the agent’s utility by decreasing the agent’s consumption

for the lowest income realization without affecting any of the incentive compatibility

constraints. In the Enforcement Model, the value function is downward sloping over

the set of utilities reached with positive probability. The reason for this is the same as

in the Auditing Model, noting that starting at U0, the lowest enforcement constraint

never binds. In the model with both auditing and enforcement, this is not necessarily

the case. The information friction forces utility below U0 when the low state is real-

ized (proven in Corollary 2), thereby forcing an increase in future enforcement costs.

Therefore, one cannot exclude the possibility that the agent reaches some level of ω

for which the value function is upward sloping. Such a level of utility would not be

Pareto efficient ex-post, but it may be optimal ex-ante in providing the appropriate

truth-telling incentives. The following establishes that the value function is upward

sloping for some ω, following from the costly enforcement necessary to induce such

a level of utility.12

Lemma 6 There is some ω∗ such that V ′(ω) > 0 for all ω < ω∗.

Notice also that the first order conditions on xH and ω′
H immediately imply that

V ′(ω′
H) < 0. This implies that the principal will choose to increase the continuation

promise to the decreasing portion of the value function whenever the high state is

realized.

Binding Patterns

I now turn to the binding patterns of the enforcement constraints and the incentive

compatibility constraints. Studying these binding patterns is useful in determining

12I am not currently able to conclude whether such an ω is necessarily reached with positive
probability.
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the nature of the frictions at alternative points in the state space and, consequently,

the principal’s choices of enforcement and auditing.

Lemma 7 For ω sufficient small, EL binds.

It is shown further, in Lemma 11 in the omitted proofs, that if EL binds for some ω

then it also binds for all ω̂ < ω. This is useful in establishing the relationship between

enforcement and auditing later in the chapter. The fact that the low enforcement

constraint binds when ω is sufficiently low represents an important distinction from

similar environments studied in the literature in which incentives to renege are always

highest when income is high. I later show that such a value of ω is reached with

positive probability.

The following lemma establishes that the auditing technology is used at all nodes

in the optimal dynamic contract. This is in contrast to the enforcement technology

which is used only when the agent’s promised utility is sufficiently low. Unlike

the case with only auditing, the fact that the marginal cost of auditing at zero is

zero does not guarantee that positive auditing is optimal. The reason for this is

that interstate smoothing of consumption may still be costly via an increased need

for enforcement. That is, decreasing high income consumption and increasing low

income consumption may require an increase in enforcement costs when EH is already

binding. The following lemma shows that some positive auditing is always optimal.

The idea behind the proof of Lemma 8 is as follows. An agent with high income

has both the option to renege and the option to misreport income that period. If

IC were ever to not bind, the agent could hide his entire misreported income and

the gap between a high and low income agent’s utility under the contract must be

large enough to deter him from misreporting. As this gap would be zero under

first best insurance, it must be implied from the enforcement constraints. When IC

does not bind, the General Model resembles the Enforcement Model and so, the high

income agent’s enforcement constraint binds first. The difference in outside option
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under a high and low income agent is then bounded above by (1−β)[u(θH)−u(θL)].

As the agent’s gain from hiding ∆ income must be smaller than this, xL must be

sufficiently large. The agent’s promised utility must then be sufficiently high so that

no enforcement is necessary, yielding the contraction.

Lemma 8 The incentive compatibility constraint binds for all ω.

Binding Low Enforcement Constraint

Having established that auditing is positive for all ω, I now turn to the interaction

of the low enforcement constraint with the incentive compatibility constraint. This

interaction provides the following lemma, which is unique to this environment and

as the primary basis for the difference of this model with others in the literature. In

other environments of limited commitment, the common result (as in Lemma 1) is

that it is always an agent with the highest income who has the greatest incentive to

renege. However, in the General Model it is the case that as continuation promises

decrease, eventually only the low state enforcement constraint and the incentive

compatibility constraint bind. The reason for this is that satisfying the IC constraint

when promises are low enough guarantees that the high state enforcement constraint

is also satisfied. To understand this, imagine that xL is small. The IC constraint

ensures that the utility in the high state is at least u(xL + ∆(1 − α)) − u(xL) ≈
u′(xL)(1 − α)∆ greater than it is if the low state is realized. Meanwhile, if both EL

and EH bind, then the utility differential is exactly u(θH) − u(θL). In other words,

the gap between the agent’s valuation of the outside option is constant across xL,

whereas the implied gap between the high and low income agents’ utilities from IC

is increases as xL decreases. As xL decreases, the IC constraint will then imply that

EH holds.

Lemma 9 Only EL and IC bind as ω sufficiently small.
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As the cost of enforcement increases with lower promised utility, the principal has

higher incentives to back-load consumption to the agent and forego future enforce-

ment costs. Consequently, for sufficiently low levels of promised utility the principal

increases the agent’s promised utility independent of the income shock. This fact

implies that ω′
L crosses ω from above and establishes an endogenous lower bound on

entitlements.

The lower bound on the agent’s utility is determine by the relative costs of con-

sumption, auditing, and enforcement to the principal. However, such a bound nec-

essarily exists under the assumptions of the General Model. That is, so long as costs

of enforcement are convex, the immiseration result is not obtained. Other papers in

the literature establish a similar result by assuming that a principal cannot affect

the agent’s valuation of his outside option, implicitly assuming that enforcement is

infinitely costly. I show that a lower bound on an agent’s utility and consumption is

necessary even when enforcement is not prohibitively costly.

Proposition 10 ω′
L ≥ ω for some ω. There exists some ω < U0 such that for all

periods and histories, ω ≥ ω.

Having established the binding patterns when ω is small, I show that at the

initial utility level, U0, only the enforcement constraint for the high income agent

binds with the incentive compatibility constraint. This is useful in showing that

U0 falls in the interior of set [ω, ū) and also allows for the demonstration of other

properties of the value function and optimal contract at this point.

Proposition 11 At ω = U0, only the high enforcement constraint and IC bind.

Corollary 1 V is downward sloping at U0.

The following corollary follows directly from the previous proposition and first

order conditions on continuation promises. The corollary implies that at the autarky
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ICEH, ICEL,EH,ICEL,IC

Figure 1.1: Binding Constraints for Values of ω

level of utility, the principal finds it optimal to decrease the agent’s promised utility

under low income realizations.

Corollary 2 At U0 continuation utilities are such that ω′
L < U0 < ω′

H .

Figure 1.1 summarizes the binding patterns of the enforcement and incentive

compatibility constraints over the state space. When ω is high, the agent does not

have incentives to renege on the contract and the principal uses the auditing tech-

nology as a means of mitigating the information friction. For levels of ω around

the autarky level, smoothing the agent’s consumption across the high and low in-

come states increases the agent’s incentives to renege in the high income state and,

consequently, high income enforcement constraint binds. For lower levels of ω the

benefit to smoothing the agent’s consumption across states diminishes and the ten-

sion between the incentive compatibility constraint and the enforcement constraints

increase. Thus, as ω decreases the low enforcement constraint begins to bind as well.

Finally, for ω sufficient low, the tension between the constraints is such that the high

enforcement constraint ceases to bind.

The theory of the maximum guarantees that the multipliers and decision variables

are continuous in ω. For the region below U0 it is not possible that only IC binds,

as the non-binding of both enforcement constraints (combined with the implied zero

enforcement) would contradict the PK constraint. However, we know that as ω
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decreases only the EL and IC constraints bind. Therefore, there must be a region in

which EL, EH, and IC each bind. Within this region, α and γ are both decreasing in

ω. Additionally, it must be the case that ω is contained in a region where EL binds.

This follows from the fact that pLξL − η = 0 at ω so that EL must bind at the point

where the low continuation promise is equal to the current continuation promise.

An interesting implication of the model is that there is a positive probability

that the agent will reach a node at which he consumes less than θL, the low level of

income. That is, after some histories an agent receiving low income is a payor rather

than recipient of transfers as part of the efficient insurance plan. While this appears

as contrary to the notion of insurance, it is necessary to guarantee the appropriate

incentives arising from the information friction.13 More specifically, low continuation

promises are used to induce truth-telling, but are also costly to the principal in terms

of enforcement. The latter effect pushes the principal to compensate the agent with

more consumption in future periods, reducing future enforcement costs. When ω is

sufficiently small and enforcement costs sufficiently high, this effect dominates.

Lemma 10 For some ω > ω, reached with positive probability, xL < θL.

Proof. It is enough to show that xL < θL at ω given continuity of consumption

in the state variable. ω, by definition, is such that ω′
L = ω so that ξL = η > 0 and

EL binds. The enforcement constraints and promise keeping imply that U0 − γ ≤ ω.

Meanwhile, EL implies that (1− β)u(xL) + βω = (1− β)u(θL) + βU0 − γ. Together,

these imply (1 − β)(u(xL) − u(θL)) = β(U0 − ω) − γ < 0.

Unfortunately, there is no immediate proof for the existence of an ergodic distri-

bution. While it must be the case that ωt ∈ [ω, ū), there is no uniform bound on

the probability that ω reaches any particular value. In fact, as the set of histories

is countable, there are only a countable number of values of ω that can be reached

with positive probability. As such, for there to exist an ergodic distribution it would

13A similar result is obtained in Atkeson (1991)
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have to be the case that from some node ω∗ there is a non-zero probability that the

contract returns to exactly this value. However, the forces of the model suggest that

the process ωt is mean reverting. This follows from the downward pressure on ω′

when promises are high and the upward pressure on ω′ when promises are low.

1.5.1 Optimal use of Enforcement and Auditing Technolo-

gies

This section examines the use of the enforcement and auditing technologies in the

optimal contract. While the qualitative use of enforcement in the optimal contract

is similar to that when there was no information friction, the presence of the en-

forcement friction qualitatively changes the use of auditing. The next proposition is

akin to that in the Enforcement Model and states that enforcement is decreasing in

promised utility.

Proposition 12 Enforcement (γ) is decreasing in ω.

However, efficient auditing differs dramatically in the presence of the enforcement

constraint. The reason for this is that the principal uses auditing not only to smooth

the agent’s consumption across states, but also to diminish the costs of enforcement

that arise at lower levels of promised utility. Unlike standard models of enforcement,

enforcement is determined in for some states of ω by the low income realization.

Therefore, by increasing auditing and smoothing the agent’s consumption across

states, the principal can relax the level of enforcement. Because this incentive for

auditing increases with lower levels of promised utility, auditing is decreasing for

levels of promised utility in which EL binds.

Proposition 13 Auditing (α) is decreasing in ω whenever EL binds.

When EL does not bind, auditing is qualitatively similar to the Auditing Model.

As in Proposition 6, auditing vanishes in the upper limit when the assumption of the

29



proposition is satisfied. When EL does not bind, but enforcement is still positive,

the comparative statics of α are unclear for the same reason they are unclear in

the Auditing Model. Namely, as consumption increases marginal utility from lying

is decreased. However, manipulating future promises to the agent to induce truth-

telling is also more costly to the principal. The balance of these two forces determines

the direction of auditing as ω increases.

Propositions 12 and 13 together imply that an agent near the lower utility bound

ω is costly to the principal in terms of auditing and enforcement. While the con-

sumption cost to the principal of an agent with a low promised utility is low, the

investment required to suppress the agent at these levels of utility are high. Thus, as

the agent’s promised utility decreases in this region, an increasingly large percentage

of the principal’s costs stem from the need to satisfy the enforcement and incentive

compatibility constraints rather than the direct costs of providing the agent with

consumption. This is examined further in the numerical example.

Auditing and Enforcement as Complements and Substitutes

In this section I address the nature of the relationship between auditing and en-

forcement. When promised utility is high and EH binds, auditing and enforcement

serve as complements as a means of smoothing consumption across the agent’s in-

come states. However, when promised utility is low and only EL binds, auditing

substitutes for enforcement in that it enables the principal to reduce enforcement

investment needed to keep the low income agent suppressed at a low level of utility.

To address this relationship, I suppose that there is an exogenous increase in

the level of enforcement and evaluate how this exogenous increase of enforcement

affects the principal’s choice of auditing. If an exogenous increase in enforcement

causes the principal to increase auditing as well I will call auditing and enforcement

complements and if it causes the principal to decrease auditing then I will call them

substitutes.
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The intuition for this is as follows. Suppose that EL binds and there is an

increase in enforcement. The effect of the increase is that the enforcement constraint

is loosened. This enables the principal to reduce auditing investment at the cost of

de-smoothing consumption across high and low states. When consumption is low, as

it is when EL binds, the principal may use small changes in x to de-smooth income

and will find it optimal to do so. This is evidenced by the expression at the optimal

allocation14

f ′
[

1 +
pLu

′(xL)

pHu′(xL + (1 − α)∆)

]

= pL

[

u′(xL)

u′(xH)
− 1 + g′

]

> pL

[

u′(xL)

u′(xH)
− 1

]

The LHS of the equation is the cost of auditing, while the RHS of the inequality

is the benefit to the principal of smoothing the agent’s consumption across states.

Supposing that enforcement were increased so that the EL constraint was slack, the

inequality implies that the principal would find it optimal to decrease auditing and

un-smooth consumption across states.

On the other hand, as EH binds and EL is slack, increased enforcement allows the

principal to better smooth consumption, but only at the cost of additional auditing.

In this region, the auditing and enforcement technologies are complements. Suppose

enforcement was increased in the region in which EH binds and EL is slack. This

increase allows the principal to better smooth income across high and low states so

long as auditing is also increased. At levels of consumption where EH binds, the

increased benefit to the principal from smoothing the agents consumption is greater

than the cost of additional auditing. If we look at the region in which EH and IC

14To derive this expression, one can use first order conditions. Alternatively, imagine an allocation
in which xL is raised and xH is decreased. So that PK still holds. When only EL and IC bound
initially, this scheme requires an increase of α and decrease of γ to maintain that IC and EL continue
to bind. This scheme cannot yield any more resources to the principal than the optimal scheme.
We can perform the opposite perturbation as well which then implies the expression.
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bind (but not EL), the optimal allocation satisfies:

f ′
[

1 +
pLu

′(xL)

pHu′(xL + (1 − α)∆)

]

= pL

[

u′(xL)

u′(xH)
− 1 − g′u′(xL)

pHu′(xH)

]

< pL

[

u′(xL)

u′(xH)
− 1

]

Supposing now that enforcement were increased so that the EH constraint were

slack, the inequality implies that the cost of auditing in this case is less than the bene-

fit to the principal from smoothing the agent’s consumption across states. Therefore,

an increase in enforcement in this case is accompanied with an increase in auditing

as well.

The argument above, together with a threshold value of ω for which EL binds

(see Lemma 11 in the omitted proofs) imply that auditing and enforcement are

substitutes below this threshold and complements above it.

1.6 Numerical Example

In this section I explore the properties of auditing and enforcement through a nu-

merical example.

Let Θ = {θL = 1, θH = 5} with pL = pH = 0.5 and β = 0.9. I take u = c1−σ

1−σ

with σ = 2. These imply that U0 = −0.6. For the cost functions let g(γ) = γ2

and f(α) = α2

250(1−α)4
, α ∈ [0, 1]. Note that f ′(0) = g′(0) = 0, g′, g′′, f ′, f ′′ > 0 and

limα→1 f
′(α) = limγ→+∞ g(γ) = +∞.

First, consider the Enforcement Model. Figure 1.2 shows the decreasing relation-

ship of enforcement, γ, in continuation promises, ω, as is consistent with Proposition

2. As ωt is weakly increasing over time, ω is shown only for those values greater than

the initial promise U0. Note that some of those ω plotted will not be reached with

positive probability, see the left panel of Figure 1.3.

The left panel of Figure 1.3 shows the continuation promises ω′
H and ω′

L as a
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function of state ω as well as the 450 line. As there are only two shocks, the en-

forcement constraint binds only if θt = θH , so that ω′
L = ω and ω′

H ≥ ω with strict

equality if and only if ω < (1−β)u(θH)+βU0 = −0.56. The right panel of Figure 1.3

shows a sample path of ωt for a draw of income shocks {θt}500
t=1. For the remainder

of the section, all sample paths will use this same draw. From the left panel, we

see that promised utility will increase whenever a high income draw is realized and

remains unchanged when a low draw is realized. As more high draws are realized, the

agent’s utility approaches −0.56. Contrast this to the standard case in which there

is no endogenous enforcement case. In that case, the first draw of θH would push ω

immediately to −0.56. When enforcement is endogenous, the growth of ω is slowed

by the fact that enforcement keeps the high income agent’s outside option below

−0.56. Thus, promised utility approaches −0.56 more slowly than in the model with

no enforcement.

Next, consider the Auditing Model. Figure 1.4 shows the relationship of auditing,

α, to continuation promises, ω. Note that auditing is vanishing in the limits consis-

tent with Propositions 5 and 6. In this and other numerical examples, auditing is

single peaked in promised utility, but I am unable to generally prove that this is the

case.

The left panel of Figure 1.5 shows the continuation promises ω′
H and ω′

L as a

function of state ω as well as the 450 line. Auditing is positive for all interior ω

and the incentive compatibility constraint, combined with Lemma 5 implies that

ω′
L < ω < ω′

H . The right panel of Figure 1.5 shows a sample path of ωt for the

same sample draw of {θt}500
t=1 when auditing costs are specified as above. Note the

downward drift of ωt corresponding to the immiseration result.

Finally, I turn to the General Model. As determined in Proposition 12, enforce-

ment is decreasing in ω and is show in Figure 1.8. Note that it behaves qualitatively

similarly to that in the Enforcement Model depicted in Figure 1.2. Auditing in the

General Model, on the other hand, differs qualitatively from that in the Auditing
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Model. At lower values of ω, auditing is sharply decreasing in ω. In this region,

the IC constraint combined with the PK constraint interact so that the low income

agent’s enforcement constraint binds. The principal then uses auditing as a sub-

stitute for enforcement, as it allows for greater inter-state income smoothing. At

the point where EL ceases to bind, auditing behaves more similarly to that in the

Auditing Model. Namely, it is single peaked in this region and vanishes in the upper

limit.

As discussed in Section 1.5, there exists an endogenous lower bound ω on the
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continuation promises of the agent. This is consistent with the left panel of Figure

1.7, which shows the continuation promises from high and low income shocks. When

ω = ω, continuation promises are qualitatively like that in the Enforcement Model,

namely: promises respond positively to high income shocks, but are unchanged by

low income shocks. The implication of this is that consumption is heavily back-loaded

in this region. As promised utility increases and enforcement decreases, the dynamics

more closely resemble that of the Auditing Model; high (low) income shocks propel

increases (decreases) in the utility promise and, as enforcement vanishes, the utility

promise begins to experience a downward drift. In this region, the consumption is

predominantly front-loaded.

Given the draw of income shocks as above, the right panel of Figure 1.7 depicts the

sample path ωt. Unlike the other models, ω exhibits mean reversion as a consequence

of the forces described in the previous paragraph. The relative costs of auditing and

enforcement then play a role in establishing both the mean and volatility of this

process.

Finally, consider the components of the principal’s costs in the General Model.

First, there is the principal’s cost of delivering consumption to the agent E[xs]; sec-

ond, there are the institutional costs of auditing and enforcement f(α)+g(γ) that are

used in providing the appropriate incentives for the agent, but do not directly provide

the agent with utility. At the point where EL binds, Propositions 12 and 13 establish

that the institutional costs increase as ω decreases. Meanwhile, as ω decreases the

principal also delivers fewer consumption resources to the agent. Thus, the fraction

of that period’s costs devoted to consumption, E[xs]/ (E[xs] + f(α) + g(γ)) shrinks

as ω declines.
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1.7 Remarks

In this chapter, I evaluated a problem of efficient insurance under limited commit-

ment and private information frictions when the principal has access to auditing and

enforcement technologies. I showed that long run use of auditing depends on the

presence of the limited commitment friction and, likewise, long run usage of enforce-

ment depends on the information friction. Furthermore, the combination of frictions

implies a lower bound on the promised utility of the agent with the lower bound

determined endogenously by the interaction of frictions and technologies. At the

lower bound the contract resembles that of the Enforcement Model and the incen-

tives to back-load the agent’s consumption dominate. At higher levels of promised

utility, the contract resembles the Auditing Model and the contract is front-loaded.

Finally, I show alternatively how the auditing technology acts as a complement to

enforcement to smooth consumption at higher levels of promised utility, but is used

instead to substitute enforcement at low levels of promised utility.

By examining the extent to which agents are able to insure themselves against

idiosyncratic risk, future work could use the analysis of this chapter to determine

the relative costs of mitigating information and enforcement frictions. In particular,

the cheaper is enforcement relative to auditing, the more front-loaded one should

expect consumption. On the other hand, as enforcement is more expensive relative
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to auditing, the more one should expect consumption to resemble that of the En-

forcement Model and contracts should be increasingly back-loaded. The framework

provided in this chapter may then allow future work to tease out these costs.

Additionally, future work may address the ramifications on institutional choices

of inequality. In the single principal and single agent model, I show that an agent

with low promised utility requires large investments in both auditing and enforce-

ment in providing incentives. Therefore, one might expect that societies in which a

large number of agents near their lower consumption bound would devote a smaller

percentage of resources toward consumption.

1.8 Omitted Proofs

Proposition 15: Proof. Consider an optimal allocation under (P1). Now,

suppose that the principal could reoptimize after some history ht′ . Clearly, the

principal can be no worse off at that node given the option to change plans. Then,

it is sufficient to show that the original plan does as well as when given the chance

to reoptimize after the history ht′ . Consider some alternative plan, ν ′ that is equal

to ν along every path, but switches to the reoptimized plan after ht′ .

By the assumption of reoptimization, the profile ν ′ satisfies enforcement con-

straints for all period after t′ and incentive compatibility constraints after t′. Further-

more, after history ht′ it must guarantee the agent a promised utility of Ut′(σ|ν, ht′).

Because all future nodes of ν ′ other than ht′ are identical to ν and ν ′ satisfies the

constraints for all periods after ht′ , it is only possible that ν ′ violates some constraint

for k < t′ along the nodes consistent with history ht′ . Rewrite the agent’s utility at

some time k < t′ and some realized income θs as:

(1 − β)u(xs) +
t′
∑

t=k+1

∑

h̃t|h̃k

[βt−k(1 − β)u(xt(·)) + βt′−kUt′(σ|ν ′, ht)]π(h̃t)
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It immediately follows that ν ′ necessarily satisfies promise keeping and enforce-

ment as the LHS of each of those conditions is unchanged moving to plan ν ′ from

ν.

Suppose that ν ′ violated the IC constraint. Then there is some σ, some k < t′

such that Uk(σ|ν ′, hk) > Uk(σ
∗|ν ′, hk). In turn, this implies that:

k
∑

t=0

∑

ht

(1 − β)βtu(x(·)) + βkUk(σ|ν ′, ht′) >

k
∑

t=0

∑

ht

(1 − β)βtu(x(·)) + βkUk(σ
∗|ν ′, ht′)

Because the plans are identical up until time t′, this can be rewritten as:

t′
∑

t=0

∑

ht

(1 − β)βtu(x(ht)) + βt′Ut′(σ|ν ′, ht′) >

t′
∑

t=0

∑

ht

(1 − β)βtu(x(ht)) + βt′Ut′(σ
∗|ν ′, ht′) (1.1)

However, by assumption we know that the continuation utilities at t′ are identi-

cal between ν and ν ′ so the conditioning on ν ′ in Inequality (1.1) can be replaced

with ν. This implies that the original plan was not incentive compatible yielding a

contradiction.

Proposition 2: Proof. First note that the concavity of u and convexity of g

imply that V is strictly concave (only weak concavity is proven for the general model

in Proposition 8). Suppose that the statement did not hold so that for some ˆ̂ω < ω̃ it

was the case that ˆ̂γ ≤ γ̃. As γ is decreasing for ω sufficiently large (it must be 0 in the

region for which first best insurance is possible), there is some ω̂ > ω̃ for which γ̂ = ˆ̂γ.

Then, note that for any state s at which the enforcement constraint binds it is the

case that (1−β)u(x̂s)+(1−β)ω̂′
s = (1−β)u(ˆ̂xs)+(1−β)ˆ̂ω′

s and by the concavity of V

and u it must be that for any such state x̂s = ˆ̂xs and ω̂′
s = ˆ̂ω′

s. Let s be the lowest state
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for which both ξ̂s > 0 and
ˆ̂
ξs > 0. Consequently,

∑S

s=s ps[λ̂ + ξ̂s] =
∑S

s=s ps[
ˆ̂
λ +

ˆ̂
ξs].

As λ̂ >
ˆ̂
λ it must be the case that

∑S

s=s psξ̂s <
∑S

s=s ps
ˆ̂
ξs = g′(γ̂) so that there is

some state s′ < s for which

(1 − β)u(θs′) + βU0 − γ̂ = (1 − β)u(x̂s′) + βω̂′
s′

< (1 − β)u(ˆ̂xs′) + β ˆ̂ω′
s′

Additionally, by the fact that ω̂ > ˆ̂ω there must also exist some state s′′ < s′ where:

(1 − β)u(x̂s′′) + βω̂′
s′′ > (1 − β)u(ˆ̂xs′′) + β ˆ̂ω′

s′′ . As utility is constant across states of

the double-hat profile for which enforcement constraint does not bind this implies

that (1 − β)u(x̂s′′) + βω̂′
s′′ > (1 − β)u(x̂s′) + βω̂′

s′ yielding a contradiction.

Proposition 3: Proof. Note that first order conditions imply that E[λ′] = λ+g′

so that λt is a sub-martingale. Furthermore, when ω ≥ u(θS) + βU0 = ω̄, first

best insurance is possible without any enforcement costs so that no enforcement

constraints bind and ω′
s = ω for all s. For ω > ω̄ it is the case that the cost of

providing the agent additional utility is simply λ = u−1(ω) and as λ′s is continuous

in ω from the Theory of the Maximum, maxω,s λ
′
s(ω) is bounded on ω ∈ [U0, ω̄].

Therefore, λt is a submartingale that is bounded from above and converges almost

surely by the Martingale Convergence Theorem. If ever an enforcement constraint

binds, it must be that λ′s > λ, so it must be that g′ = 0 almost surely.

Lemma 2: Proof. Suppose that there are also upward constraints (specified

by the C function next defined). It will then be shown that the upward constraints

do not bind. Let Cs,s−1 = u(xs) + βω′
s − u(xs̃ + (1 − α)(θs − θs̃)). Then, consider

Cs,s−1 + Cs−1,s = u(xs) − u(xs − ∆s(1 − α)) + u(xs−1) − u(xs−1 + ∆s(1 − α)) ≥ 0.

The concavity of u guarantees that this expression is true only if xs ≥ xs−1.

Let ∆s = θs − θs−1. For the second part of the statement, suppose that xs >

xs−1 + ∆s(1 − α). Rearrange terms in the expression above to get,

{u(xs) − u(xs−1 + ∆s(1 − α))} − {u(xs − ∆s(1 − α)) − u(xs−1)} ≥ 0
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The LHS of the expression is decreasing in xs and is equal to zero when xs is equal

to the upper bound specified.

Lemma 3: Proof. Consider the case of k > s. Note that

Ck,s =
k
∑

j=s

Cj+1,j +

[

k−1
∑

i=s+1

u(xi + (1 − α)∆i+1) − u(xi)

]

−

[u(xs + (θk − θs)(1 − α))u(xs + ∆s+1(1 − α))]

Lemma 2 implies that for i > s,

u(xi + (1 − α)∆i−1) − u(xi) ≥ u(xs + (θi−1 − θs)) − u(xs + (θi−2 − θs))

and the first term in brackets is thus larger than the second term in brackets.

Lemma 4: Proof.

To show this, assume V is concave and that the problem features upward con-

straints in addition to downward constraints. It is then shown that (i) Local down-

ward constraints always bind and (ii) the upward constraints are not binding.

(i) To show that Cs,s−1 = 0. Suppose to the contrary that Cs,s−1 > 0, for some

s. Then ω′
s > ω′

s−1 by Lemma 2. Consider changing (xi, ω
′
i)i∈S as follows: keep

ω′
1 fixed and if the downward constraint is slack, reduce ω′

s so that the downward

constraint binds. Do the same for s = 2, 3.. until all downward constraints bind.

Add a constant to each ω′
s so as to satisfy promise keeping. Each ω′

s −ω′
s−1 has been

reduced increasing the principal’s objective. The new contract offers the borrower

the same utility and satisfies upward constraints because xs ≤ xs−1 + ∆s(1−α) still

holds and this combined with the downward constraints binding implies that upward

constraints also hold.

(ii) Suppose we ignore the constraint Cs−1,s. If xs ≤ xs−1 + ∆s(1 − α) then

by (i) the upward incentive constraint is automatically satisfied. So suppose that

the solution has xs ≥ xs−1 + ∆s(1 − α). Then ω′
s < ω′

s−1 and Cs−1,s < 0. But

then replacing xs−1 − (1 − α)θs−1 by xs − (1 − α)θs and ω′
s−1 by ω′

s cannot decrease
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the principal’s objective and cannot violate incentive compatibility. However, by

the concavity of the agent’s utility function, this increases his utility, yielding a

contradiction.

Proposition 5: Proof. At the lower limit: First order conditions establish

that λ = E[λ′s]. We know that λ tends toward 0 and given that λ′L ≥ 0, it must

be that λ′H vanishes as well. Then, from the first order condition u′(xH)λ′H = 1

it must be that 1/u′(xH) vanishes. Then, dividing numerator and denominator by

u′(xH) in Equation 1.2 it must be that the numerator tends toward zero. Given

INADA conditions on f , α must be bounded strictly below 1 and the denominator

of Equation 1.2 is bounded away from 0.

Proposition 6: Proof. At the upper bound: From earlier propositions we have

that

f ′ = pL

u′(xL)
u′(xH)

− 1

1 + pLu′(xL)
pHu′(xL+(1−α)∆)

< pL

u′(xL)
u′(xL+(1−α)∆)

− 1

1 + pLu′(xL)
pHu′(xL+(1−α)∆))

(1.2)

Notice that the denominator is bounded away from zero. As for the numerator,

limx→∞
u′(x)

u′(x+(1−α)∆)
≤ limx→∞

u′(x)
u′(x+∆)

= 1, proving that auditing vanishes at the

upper limit.

Proposition 8: Proof.

Consider the operator:

T V̂ (ω) = max
α,γ,x,ω′

∑

s

ps

[

−(1 − β)xs + βV̂ (ω′
s)
]

− f(α) − g(γ) (1.3)

subject to the IC, E, and PK constraints. We will show that V is its fixed point.

Consider the space of functions

F = {F̂ ∈ C : [ω, ū) → R|F1(ω) ≤ F (ω) ≤ F2(ω), ω ∈ [ω, ū)}
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where C is the set of continuous functions defined on the appropriate domain. First,

we show that F is a complete metric space in the supremum metric and T is a

contraction mapping on F .

Using the sup norm, we will construct F2 and F1 so that the distance between

these two functions bounded, which implies that F is a complete metric space. The

upper bound function F2 is the first best allocation, in which F2(ω) = u−1(ω). The

lower bound function F1 grants each agent his income plus/minus a constant y and

pays the necessary enforcement cost associated with this. To guarantee that this

satisfies PK it must be that
∑

s[u(y + θs)]ps = ω and that the enforcement cost is

γ̄(ω) = max
s

{(1 − β)u(θs) + βU0 − [(1 − β)u(y + θs) + βω]} .

As ω is bounded from below, the difference between these two functions is bounded.

To show this, note that
∑

s∈S u(y + θs) = u−1 for all ω so that y + θ1 ≤ u−1 and

for all s, y + θs + θ1 ≤ y + θN + θ1 ≤ u−1 + θN . Then, the difference in cost to the

principal (ignoring enforcement) between the two plans is
∑

s[y+θs−u−1] ≤ θN −θ1.

Given that γ is bounded above from the plan associated with F1, difference between

F1 and F2 must be bounded. By construction, T (V ) lies in F and, in addition,

Bellman’s sufficient conditions are satisfied. Therefore, T is a contraction mapping

on a complete metric space, so that there exists a unique fixed point V .

Next, we show that T maps concave functions into concave functions. As V is

the fixed point of the contraction mapping T , and the set of concave functions is

closed, V is then also concave. Consider any ω̂ < ˆ̂ω with corresponding contracts

{{x̂s, ω̂′
s}s∈S, α̂, γ̂} and {{ ˆ̂xs,

ˆ̂
ω′

s}s∈S, ˆ̂α, ˆ̂γ}. Consider some ω = (1 − δ)ω̂ + δ ˆ̂ω, δ ∈
[0, 1]. Assume that V is concave and consider the contraction mapping in Equation

1.3. We want to show that TV (ω) ≥ (1 − δ)TV (ω̂) + δTV (ˆ̂ω).
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Construct the following contract {{x∗s, ω′
s}s∈S, α

∗, γ∗} such that:

f(α∗) = (1 − δ)f(α̂) + δf( ˆ̂α)

u(x∗s) = (1 − δ)u(x̂s) + δu(ˆ̂xs)

ω∗′
s = (1 − δ)ω̂′ + δ ˆ̂ω′

s

γ∗ = (1 − δ)γ̂ + δˆ̂γ

and note that by convexity of f , concavity of u, V , it is the case that α∗ ≥ (1−δ)α̂+ˆ̂α,

x∗s ≤ (1 − δ)x̂s + ˆ̂xs and that V (ω∗′
s ) ≥ (1 − δ)V (ω̂′

s) + δV (ˆ̂ω′
s) so that this yields

at least as must resources to the principal as the convex combination. Clearly, this

scheme satisfies promise keeping and enforcement given that the plans at ω̂ and

ˆ̂ω satisfied those constraints. Then, we must show that the starred plan satisfies

incentive compatibility. There are two cases, one in which the α and x move in the

same direction, in which case concavity follows from standard arguments. In the case

where the α and x move in opposite directions u(x∗ + (1 − α∗)∆) need not be less

than the convex combination of u(x̂+ (1− α̂)∆) and u(ˆ̂x+ (1− ˆ̂α)∆), complicating

the proof.

Case 1: Suppose that α and x move in the same direction: (α̂− ˆ̂α)(x̂− ˆ̂x) ≥ 0.

We must show that C∗ = (1−β)u(x∗H)+βω∗′
H−[(1−β)u(x∗L+(1−α∗)∆)+βω∗′

L ] ≥
0. Consider (1 − δ)ĈH,L + δ

ˆ̂
CH,L ≥ 0, where the C terms represent the incentive

constraints for the appropriate contracts. Note that

C∗ = (1 − δ)ĈH,L + δ
ˆ̂
CH,L + (1 − β)[(1 − δ)u(x̂+ (1 − α̂)∆)

+ δu(ˆ̂x+ (1 − ˆ̂α)∆) − u(x∗L + (1 − α∗)∆)]

so given that the IC constraints hold for the hat contracts by assumption, it is enough

to show that (1 − δ)u(x̂+ (1 − α̂)∆) + δu(ˆ̂x+ (1 − ˆ̂α)∆) − u(x∗L + (1 − α∗)∆) ≥ 0.

Replace all of the α terms with (1 − δ)α̂ + (1 − δ) ˆ̂α. This will decrease the sum of

the first two terms as more weight is put on the term with the lower marginal utility

(by the assumption of Case 1) and the second term is more negative as α∗ is greater

than this term. Then, the case is proven by the assumption u′′/u′ increasing.
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Case 2: Suppose that α and x move in opposite directions: (α̂− ˆ̂α)(x̂− ˆ̂x) < 0.

By way of contradiction, suppose that TV is not concave and assume that TV (ω)

lies below secant connecting TV (ω̂) and TV (ˆ̂ω) for δ sufficiently close to 0.15 Then,

it must be the case that the starred profile violates incentive compatibility for such a

δ (otherwise the starred profile would be better than the convex combination). The

following is true (using the inverse function theorem) of the starred profile at δ = 0:

∂α∗

∂δ
=
f( ˆ̂α) − f(α̂)

f ′(α̂)

∂x∗

∂δ
=
u(ˆ̂x) − u(x̂)

u′(x̂)

So that at δ = 0,

∂C∗

∂δ
= −u′(x̂+ (1 − α̂)∆))

[

u(ˆ̂x) − u(x̂)

u′(x̂)
− f( ˆ̂α) − f(α̂)

f ′(α̂)

]

+u(ˆ̂x+ (1 − ˆ̂α)∆) − u(x̂+ (1 − α̂)∆)

Suppose that x̂ < ˆ̂x so that α̂ > ˆ̂α, an identical argument will hold for the opposite

case. Then,

∂C∗

∂δ
≥ −u′(x̂+ (1 − α̂)∆))

[

u(ˆ̂x) − u(x̂)

u′(x̂)

]

+ u(ˆ̂x+ (1 − α̂)∆) − u(x̂+ (1 − α̂)∆)

≥ 0

⇔ −u(
ˆ̂x) − u(x̂)

u′(x̂)
+
u(ˆ̂x+ (1 − ˆ̂α)∆) − u(x̂+ (1 − ˆ̂α)∆)

u′(x̂+ (1 − α̂)∆))
≥ 0

The following claim then concludes the proof.

Claim: For any ∆ > 0, z(x,∆) = u(x+∆)−u(x)
u′(x)

is increasing in x by Assumption ii.

Proof: Denoting zx as the partial with respect to x,

zx(x,∆) =
[u′(x+ ∆) − u′(x)]u′(x) − u′′(x)[u(x+ ∆) − u(x)]

(u′(x))2
≥ 0

15If this is not true, then define ω̂ as the ω at which this is true.
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if and only if [u′(x+∆)−u′(x)]u′(x)−u′′(x)[u(x+∆)−u(x)] > 0, which is increasing

in ∆ by Assumption ii. The claim is proven by noting lim∆→0 zx(x,∆) = 0.

Proposition 9: Proof.

To show that V is differentiably continuous we adapt the argument of Thomas

and Worrall (1990). Consider a neighborhood of ω around any ω̃, and consider a

contract that satisfies IC, E, and PK in which α and ω′ are held constant at their

values implied by ω̃ so that only x and γ are varied to yield ω in which IC continues

to bind. There is a unique way to do this construction and the cost of doing this is

differentiably continuous and yields a utility to the principal less than or equal to to

V (ω) with equality holding at ω̃. That V is continuously differentiable then follows

from Lemma 1 of Benveniste and Scheinkman (1979).

Lemma 5: Proof. Suppose not. First, show that negation of the statement

implies that IC binds. Suppose not so that ω′
L, ω

′
H > ω. Consider the cases (i)

xL ≥ θL and (ii) xL < θL. For case (i) note that PK and ω′
L, ω

′
H > ω imply that

ω > pHu(xH) + pLu(xL) > U0 so that no constraints bind. This implies first best

insurance yielding a contradiction. Case (ii) note that xL < θL implies that if the

IC and EL constraints holds, then the EH constraint holds and is slack as the high

income agent’s utility is more than u(xL + ∆) − u(xL) greater than the low income

agent’s utility. Then, the principal could be better off by raising xL and decreasing

xH , fixing the agent’s utility, with no additional enforcement or auditing costs. Thus,

IC must bind.

Given that IC binds, if xL+(1−α)∆ < xH then it must be that ω′
L ≥ ω′

H . First or-

der conditions imply that u′(xH)λ′H = 1 and u′(xL)λ′L+η(u′(xL)−u′(xL, α,∆))/pL =

1. Since u′(xH) < u′(xL) and λ′H ≤ λ′L, this is a contradiction.

Lemma 6: Proof. By the concavity of V we need only establish that there

exists some ω such that V ′(ω) > 0. Note that the enforcement constraints combined

with the promise keeping constraint imply that U0 − γ < ω so that γ increases
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indefinitely as ω decreases. Now, V (U0) ≥ E[θ] as setting γ = α = 0 and xs = θs

satisfies all conditions. Therefore, V ′(ω) > 0 for some ω < U0.

Lemma 7: Proof. First order conditions imply that (1−β)u′(xL)(pLλ+pLξL)−
ηũ(xL, α,∆) > 0. As λ < 0 for ω sufficient small, it must be that ξL > 0 for all such

ω.

Lemma 8: Proof. We show for each possibility of enforcement constraints

binding that IC must bind as well:

i) Neither EL nor EH bind. It is immediate that IC must bind, otherwise this

would imply implementation of the efficient allocation.

ii) EH and EL bind. This implies that the difference between the high income

agent’s utility and low income agent’s utility is (1 − β)(u(θH) − u(θL)). If IC does

not bind, this implies that the difference between the high income agent’s utility

and low income agent’s utility is greater than u(xL + ∆) − u(xL) which implies

that xL > θL. Both EL and EH binding, but IC not binding implies that η =

0 so that ω′
L ≥ ω by the concavity of V . The PK constraint then implies that

(1 − β)[pHu(xL + ∆) + pLu(xL)] + βω′
L < ω so that pHu(xL + ∆) + pLu(xL) < ω.

However, by xL > θL this implies that ω > U0 which implies that γ = 0, contradicting

the binding of EL and EH.

iii) EL only binding. This implies that ω′
L > ω = ω′

H . The IC constraint then

implies that u(xH) > u(xL + ∆) contradicting Lemma 2.

iv) EH only binding. This implies that (1−β)u(θH)+βU0−γ > (1−β)u(xL+∆)+

βω′
L > (1−β)u(θL)+βU0−γ. This in turn implies that u(θH)−u(θL) > u(xL+∆)−

u(xL) so that xL > θL. Furthermore, xL+∆ is an upper bound on xH and FOC (along

with IC, EL not binding) imply that ω′
L = ω. Together, these imply that ω < U0.

The PK constraint and IC imply further that (1−β)[pHu(xL+∆)+pLu(xL)]+βω < ω

implying that U0 < pHu(xL + ∆) + pLu(xL) < ω yielding a contradiction, where the

first inequality follows from xL > θL.
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Lemma 9: Proof. Suppose not, so that EH also binds. Both enforcement

constraints binding imply ũ(xL, α,∆)−u(xL)) = u(θH)−u(θL) so that α = φ(xL) ≡
1
∆

[xL + 1 − u−1(u(xL) + u(θH) − u(θL))]. From first order conditions η = f ′

∆ũ′(xL,α,∆)
.

Using the inverse function theorem and L’Hopital’s rule:

lim
xL→0

η = lim
xL→0

f ′′(φ)
[

1 − u′(xL) 1
u′(xL)

]

ũ′′(xL, α,∆)(1 − φ′)
= 0

From first order conditions λ′L + 1
u′(xL)

η(u′(xL) − ũ′(xL, α,∆)) = pL

u′(xL)
and λ′H =

pH

u′(xL)
. As ω decreases it is then then the case that λ′s tends toward zero for s = L,H

and continuation promises are equal, as η vanishes. By the IC constraint binding

this implies that it cannot be the case that ũ(xL, α,∆) − u(xL) = u(θH) − u(θL) as

must be true when IC, EH, and EL bind, yielding a contradiction.

Lemma 11 If EL binds for ω, then it also binds for all ω̂ < ω.

Proof. First, note that at the greatest ω for which EL binds it is the case that

ω < U0 and so it must also be the case that EH binds as well (this follows the

proof from Proposition 11). Furthermore, if EL does not bind at ˆ̂ω then it must be

that V ′(ˆ̂ω) < 0. Finally, there must also be some ω̂ ∈ [ ˆ̂ω, ω) where both EL and

EH hold with equality and ξL = 0. Then, ω − ω̂ = u(θH) − u(θL). Furthermore

α = φ(xL) where ũ(xL, φ,∆) − u(xL) = u(θH) − u(θL). Then, as xL decreases it is

straightforward to show that η = f ′

∆ũ(xL,φ(xL),∆)
increases. Furthermore it must be

that γ̂ − γ = ω − ω̂. As η̂ > η and pH ξ̂ = g′(γ̂) > g′(γ) = pHξH + pLξL it must be

that λ̂′H − λ̂′L > λ′H − λ′L, yielding a contradiction.

Proposition 10: Proof.

For some ω only EL and IC bind. First order conditions on continuation promises

yield

pLλ
′
L + pHλ

′
H = λ+ g′. (1.4)
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EH not binding implies ξL = g′ so that u′(xL)pL(λ+ g′) − ηu′(xL + (1 − α)∆) = pL

implying that λ + g′ > 0. From the first order conditions on ω′
H and xH we have

that u′(xH)λ′H = pH so that λ′H > 0 for all ω. Moreover, as ω decreases it is the case

that λ′H tends toward 0. Thus, from the Equation 1.4 it cannot be the case that λ′L

decreases indefinitely with λ as ω decreases.

The lower bound is then established by the fact Theory of the Maximum, which

guarantees that the multipliers are continuous in ω. Finally, the fact that ω < U0

follows from Proposition 11.

Proposition 11: Proof. To show this I show that other possible binding

combinations are not possible. i) Suppose neither EL nor EH were to bind. This

immediately implies that γ = 0 and
∑

s [(1 − β)u(xs) + βω′
s] > U0 yielding a contra-

diction.

ii) Suppose only EL were to bind. Imagine that the planner did not have to pay

g(γ) for the first period only, so that the objective function was
∑

s[−(1 − β)xs +

βV (ω′
s)]ps − f(α) subject to PK, E, IC. Call this problem (P ′). The solution to this

revised problem looks like a problem with private information in which income is

shared across states (θL < xL < xH < θH), utility is shared across states u(θL) +

βU0 < u(xL) + βω′
L < u(xH) + βω′

H < u(θH) + βU0 and the following relation holds:

u′(xH)λ′H = pH . Call the original problem (P ) and the solution to this problem

C1 and the maximum V ∗. Clearly, the planner could implement this allocation in

the original problem (in which the principal pays g(γ) by choosing C1 and setting

γ1 = u(θH) + βω′
H − u(xH)− βω′

H . Call the principal’s utility from this plan V1 and

note that V ∗ = V1 + g(γ1). Now, suppose that EL bound in the optimal allocation,

C2 and the maximum principal utility was V2. Note that the fact that C2 was not

chosen in the revised problem implies that V ∗ > V2 + g(γ2), where γ2 is the first

period enforcement technology under the optimal allocation. Abusing notation, note

that u′(xH)λ′H = pH holds in this case as well. Since V2 > V1 by assumption,

it must be that γ2 < γ1, which will lead to the contradiction. Note that γ1 =
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(1−β)[u(θH)−u(xH,1)]+β(U0−ω′
H,1) and γ2 > (1−β)[u(θH)−u(xH,2)]+β(U0−ω′

H,2),

where subscript H, i infers the first period variable implied by Ci. γ2 < γ1 together

with u′(xH)λ′H = pH and the concavity of the value function imply that xH,1 < xH,2.

Consider a perturbation of the optimal allocation of the (P ′) problem in which xL,1

is increased, xH,1 is decreased and α1 is increased and vice versa. Optimality requires

that:

pL

pHu′(xH,1)
=

pL

u′(xL,1)
+
f ′

∆

[

pLu
′(xL,1) + u′(xL,1 + (1 − α)∆)

pHu′(xL,1)u′(xL,1 + (1 − α1)∆)

]

(1.5)

Note that a similar perturbation implies the following for problem (P ):

g′ +
pL

pHu′(xH,2)
=

pL

u′(xL,2)
+
f ′

∆

[

pLu
′(xL,2) + u′(xL,2 + (1 − α)∆)

pHu′(xL,2)u′(xL,1 + (1 − α2)∆)

]

(1.6)

If EL binds, then IC, PK imply that U0 = u(xL,2) + βU0 + pH [u(xL,2 + (1 − α)∆) −
u(xL,2)] where the second term must be greater than u(θH)−u(θL), which is possible

only if xL,2 ≤ θL. Finally, note that α1 > α2 follows from the IC constraint and the

fact that xH,1 < xH,2, xL,1 > xL,2 and that u(xH,1)+βω
′
H,1 < u(xH,2)+βω

′
H,2. Looking

toward equations 1.5 and 1.6 this yields a contradiction, as the LHS of equation 1.6 is

greater than that of 1.5 and the RHS of 1.6 is less than that of equation 1.5, yielding

a contradiction. The latter point requires that the term with f ′ is decreasing in α,

which is easily shown.

iii) Both EL and EH bind. IC must bind, otherwise we can perturb the allocation

to smooth utility across states at no cost f ′(0) = g′(0) = 0. All constraints binding

imply that u(xL + (1 − α)∆) − u(xL) = u(θH) − u(θL) implying that xL ≤ θL from

the curvature of u. Because γ = 0, first order conditions imply that ω′
L < U0. Thus,

(1 − β)u(xL) + βω′
L < (1 − β)u(θL) + βU0 yielding a contradiction.

iv) If EH only binds, the IC must bind. If EH binds then (1 − β)u(xL) + βω′
L >

(1−β)u(θL)+βU0−γ. The IC constraint and the concavity of u imply that if α = 0

so IC does not bind, the high income agent’s utility is at least u(θH) − u(θL) higher

than the low income agent’s, yielding a contradiction.
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Corollary 1: Proof. If only EH binds then consider reducing the agent’s

utility by some small amount ǫ. The principal can guarantee U0 − ǫ level of utility

by replicating the allocation at U0 and reducing xL by ǫ/u′(xL). Because EL is

not binding, for ǫ sufficiently small, the EL constrain will still hold. Furthermore,

reducing xL loosens the IC constraint, while having no impact on the EH constraint.

Thus, the principal is strictly better off at U0 − ǫ.

Lemma 12: Proof. Claim: if EH and EL both bind for any ω then for any

ω̂ < ω it is the case that the corresponding levels of enforcement satisfy γ̂ > ω.

Suppose not so γ̂ ≤ γ. Then, at ω it is the case that

(1 − β)u(xs) + βω′
s = (1 − β)u(θs + βU0 − γ

≤ (1 − β)u(θs) + βU0 − γ ≤ (1 − β)u(x̂s) + βω̂′
s

Summing over states this implies that ω ≤ ω̂ yielding a contradiction.

Given the claim, we need only prove that γ is strictly decreasing when only EH

and IC bind. When EL does not bind, then pHξH = g′. Suppose that γ is not strictly

decreasing over the region in which only EH and IC bind. Then, continuity implies

that there must be some ω̂ < ˆ̂ω at which γ̂ = ˆ̂γ. As only EH binds it must be the

case that (1 − β)u′(x̂H) + βω̂′
H = (1 − β)u′(x̂H) + βω̂′

H and by the concavity of the

value function and u, this implies that x̂H = ˆ̂xH and ω̂′
H = ˆ̂ω′

H . By IC binding it is

also the case that (1−β)ũ(ˆ̂xL, ˆ̂α,∆)+β ˆ̂ω′
L = (1−β)ũ(x̂L, α̂,∆)+βω̂′

L and by PK it

must be that pL[(1−β)(u(x̂L)−u(ˆ̂xL)+β(ω̂′
L −ˆ̂ω′

L)] = ˆ̂ω− ω̂. Together these imply

that x̂L − ˆ̂xL < ˆ̂α− α̂ > 0. Given optimality at ω̂, this implies the principal could be

strictly better off by reducing ˆ̂α slightly and adjusting consumption and promised

utility accordingly.

Proposition 13: Proof. Suppose that EL and EH bind. Then u(xL + (1 −
α)∆)− u(xL) = u(θH)− u(θL). By the concavity of u, it is clear that α decreases as

xL increases.
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Now, consider some ω̂ at which only EL binds and consider ˆ̂ω < ω̂ sufficiently

close to ω̂ such that only EL binds at ˆ̂ω. Suppose, by way of contradiction, that

ˆ̂α ≤ α̂. Using EL and IC, it is the case that (1−β)u(θL)+βU0− γ̂+(1−β)pH [u(x̂L−
(1 − α̂)∆) − u(x̂L)] = ω̂ and similarly for the double hat contract. Then:

ˆ̂γ − γ̂ + pH(1 − β) [(u(x̂L − (1 − α̂)∆) − u(x̂L))

−
(

u(̂̂xL − (1 −ˆ̂α)∆) − u(ˆ̂xL)
)]

= ω̂ − ˆ̂ω

Notice that it must be the case that ˆ̂γ − γ̂ − γ̂ ≤ ω̂ − ˆ̂ω as the principal can do

at least as well at ˆ̂ω by taking the allocation at ω̂, reducing x̂L so that utility in

the low state is reduced by ω̂ − ˆ̂ω and increasing enforcement by ω̂ − ˆ̂ω. Therefore,
[

(ũ(x̂L, α̂,∆) − u(x̂L)) −
(

ũ(̂̂xL ,̂̂ α,∆) − u(ˆ̂xL)
)]

> 0 which implies that α̂ ≥ ˆ̂α so

long as x̂L ≥ ˆ̂xL, which is proven in Lemma 12.

Lemma 12 xL is increasing in ω.

Lemma 12: Proof. Consider ˆ̂ω < ω̂ with corresponding double hat and single

hat allocations. Consider an allocation with the single hat contract and varying only

xL, γ, and α. Let ˆ̂x∗L,
ˆ̂γ∗ and ˆ̂α∗ be so that the agent’s utility is ˆ̂ω. Let x̂∗L, γ̂

∗ and α̂∗

likewise denote the components of the allocation solving the principal’s problem for

ω̂ when the other variables are as specified in the double hat contract. Note that to

satisfy PK, ˆ̂xL ≤ x̂∗L and ˆ̂x∗L ≤ x̂L. Optimality of the hat and double hat contracts

imply:

−pL
ˆ̂xL − pH

ˆ̂xH + pHV (ˆ̂ω′
H) + pLV (ˆ̂ω′

L) − f( ˆ̂α) − g(ˆ̂γ) ≥

− pL
ˆ̂x∗L − pH x̂H + pHV (ω̂′

H) + pLV (ω̂′
L) − f( ˆ̂α∗) − g(ˆ̂γ∗)

−pLx̂L − pH x̂H + pHV (ω̂′
H) + pLV (ω̂′

L) − f(α̂) − g(γ̂) ≥

− pLx̂
∗
L − pH

ˆ̂xH + pHV (ˆ̂ω′
H) + pLV (ˆ̂ω′

L) − f(α̂∗) − g(γ̂∗)

⇒ pL(ˆ̂x∗L − ˆ̂xL) + f( ˆ̂α∗) − f( ˆ̂α) + g(ˆ̂γ∗) − g(ˆ̂γ) ≥

pL(x̂L − x̂∗L) + f(α̂) − f(α̂∗) + g(γ̂) ≥ −g(γ̂∗)
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As the starred and unstarred profiles differ only on xL, α, and γ, then from the PK

constraints

u(ˆ̂x∗L) − u(ˆ̂x) = u(x̂) − u(x̂∗L) (1.7)

Suppose it were the case that ˆ̂x > x̂, then it must be that

ˆ̂x∗L − ˆ̂x > x̂∗L − x̂ (1.8)

by the concavity of u. Similar calculations from the binding of EL constraints imply

that u(x̂L) − u(ˆ̂x∗L) = ˆ̂γ∗ − γ̂ and u(ˆ̂xL) − u(x̂∗L) = γ̂∗ − ˆ̂γ. Summing together an

combining with (1.7) implies that

γ̂ − γ̂∗ = ˆ̂γ − ˆ̂γ∗ (1.9)

Given that utility in the high state is equalized across the ·̂ and ˆ̂·∗ profiles, ˆ̂x >

x̂ implies that ω̂′
L > ω̂′

L. Furthermore, from the IC constraints it must be that

(1 − β)ũ(x̂L, α̂,∆) + βω̂′
L = (1 − β)ũ(ˆ̂x∗L,

ˆ̂α∗,∆) + β ˆ̂ω′
L implying that α̂ >≥ ˆ̂α∗ from

x̂L ≥ ˆ̂x∗L. A similar calculation shows ˆ̂xL ≥ x̂∗L. These two facts, combined with

(1.9) and (1.8) contradict (1.7).
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Chapter 2

On Efficient Allocations with

Hidden Actions and States: An

Application to Physical

Investment in Human Capital

This chapter builds on a growing literature that analyzes efficient allocations in

environments with unobservable states and actions. In environments with private

information, the efficient allocations often depend in complicated ways on an agent’s

past history. The ability to summarize these histories with a small number of state

variables is necessary for computation. Early work in the field shows that in sim-

ple environments of private information, the agent’s valuation of the continuation

contract is a sufficient state variable to write the problem recursively, allowing the

use of dynamic programming techniques to (partially) characterize efficient alloca-

tions. For more complicated environments involving both hidden actions and hidden

states, recent work shows how the problem can be written recursively, but requires

either a state space with as many state variable as there are hidden states or an

assumption on the validity of the first order approach. In this chapter I show that
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in environments in which hidden actions and hidden states affect utility separably,

I can recover a one dimensional state variable. In this case, the state variable is a

simple modification of the standard expected utility promise. I apply this result to

a model with hidden physical investment and effort into human capital.

Recent work has shown how efficient allocations can be computed when there are

both hidden states and hidden actions by expanding the state space, as the stan-

dard expected continuation utility promise1 is not a sufficient state variable. The

reason for this is that there is no point in time at which the planner and agent

agree on the value of the continuation contract; an agent who deviates in his hidden

action or report of the hidden state will evaluate the continuation contract differ-

ently than one who reports truthfully and follows the recommended action. One

approach to these problems, the “first order approach,” uses the standard continua-

tion utility promise along with a marginal utility promise as state variables to allow

for a recursive formulation. This approach assumes that the hidden action can be

characterized with a first order condition. However, the first order condition is not

generally sufficient and the optimality of the computed contract must be verified

numerically ex-post. Alternatively, one can compute optimal allocations with hid-

den actions and hidden states by using a vector of conditional continuation utility

promises as the state space. Because the agent and principal would agree upon the

value of the continuation contract conditional on the unobserved state, they evaluate

conditional promises similarly. The programming problem requires the addition of

“threat keeping” constraints to deter an agent from jointly misreporting his hidden

state and taking an incorrect action. This method can be used to compute the op-

timal contract without the need for ex-post verification. However, as the number

of unobserved states increases, so too does the dimensionality of the state space,

thereby hampering computation.

This chapter studies environments of hidden actions and hidden states and shows

1as in Abreu Pearce Stacchetti (1990) or Spear and Srivastava (1987)
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that under the condition of separability between the hidden action and hidden state,

the problem can be written recursively in one dimension using a modification of the

standard unconditional expected utility promise. The environment I study resembles

that of Doepke and Townsend (2006) who consider a more general class of models.

They show how the problem can be written recursively with a vector of conditional

continuation utility promises and the addition of threat keeping constraints. While

computation is feasible in their environment using a clever methodology to reduce

in the number of threat keeping constraints, their method requires that the size of

the unobserved state space is small. Furthermore, for problems with an infinite time

horizon, their method enables one to compute only an inner approximation of the

set of implementable utilities and it is not possible to characterize the entire set of

such utilities. 2

I consider a restricted environment and show how the problem can be written

recursively in one dimension. The key to writing the problem recursively in one

dimension is as follows. Suppose that the agent’s per period utility can be written as

u(x1, e)− v(x2, θ) where e denotes the hidden action, θ denotes the hidden state, x1

and x2 are quantities observable to the planner, and the future value of the hidden

state θ depends on e. The separability of e and θ imply that, conditional on receiving

x1 and some continuation contract, the action that the agent takes is independent

of the current value of θ and x2. In particular, once the planner has given x1 to

the agent and set the continuation contract, the action that the agent will take is

independent of whether the agent has lied this period or told the truth. The planner

can then deduce the hidden action by virtue of setting the continuation contract

and x1. Therefore, the planner can assess the agent’s valuation of a contract, less

the component of utility that is state dependent. I use this valuation, which I call

2Their model is contrasted to that of Aragones and Palfrey (2002) who use a first order approach
to solve such problems. The model presented here shares similar advantages and disadvantages to
Doepke & Townsend relative to the first order approach. Namely, the first order approach works
well with continuous choice variables, but the approach here can be used for any utility functions
satisfying the separability assumption and allows for discrete actions.
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a modified continuation utility promise, to write the contract recursively. I then

show how standard techniques can be used to compute efficient allocations using the

modified expected utility promise as a state variable. This technique allows allows

for the analytic characterization of the set of implementable utilities.

I apply this framework to study the efficient allocation in an environment in

which single period lived agents maximize dynastic utility and make unobservable

physical and effort investments into the unobservable skills of their children. The

planner can allocate physical resources to an agent and can require the agent to

produce observable output, whose utility cost to the agent depends on his skill level.

However, the planner cannot observe whether the agent uses the physical resources

for consumption or investment into the skills of future generations. In this environ-

ment, I compute the efficient allocation under two alternative assumptions on the

specification of investment. I show that these two assumptions provide different long

run implications on dynastic insurance. When the hidden investment requires phys-

ical resources as described above the immiserizing result does not hold, while it does

hold when investment is an effort cost separable from the utility consumption. The

immiserizing result, common in these settings, implies that agents tend toward their

utility bounds with probability one. The reason for this is that in order to provide in-

centives today for truthful revelation, the planner must raise (lower) future expected

utility for high (low) types. Because the utility bounds are absorbing states, agents

will be stuck at a utility bound with probability one. However, under the physical

investment assumption, there is an efficiency cost of pushing agents toward lower

utility, namely: low utility requires that the planner gives the agent few resources,

which implies that the agent cannot take physical investments toward the skills of

future generations. Because it is more costly for the planner to deliver utility when

the agent is low skilled, the efficient allocation may involve a lower bound that is

strictly greater than the minimum implementable level of utility.

This chapter builds upon two strands of literature. The first is characterizing and
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computing efficient allocations in dynamic environments with private information

and hidden actions. Early contributors to this field include Rogerson (1985) and

Spear and Srivastava (1987) who study a dynamic moral hazard problem. The

former shows that an efficient contract does not satisfy the usual Euler equation,

but rather an “inverse” Euler equation. The latter shows that the dynamic moral

hazard problem can be written recursively by using the expected continuation utility

as a state variable. Green (1987), Thomas and Worrall (1990), and Atkeson and

Lucas (1992), among others, have studied efficient contracts in both partial and

general equilibrium environments with (exogenous) private information. Phelan and

Townsend (1991) show how the optimal contract can be computationally constructed

using lotteries in a dynamical environment with hidden information. Analytic results

on the optimal contract in the dynamic moral hazard problem have recently been

achieved in continuous time by Sannikov (2007). Modeling output as a Brownian

motion whose drift depends on the effort by the agent, Sannikov shows that in the

optimal contract the principal cannot provide the agent with incentives to exert

effort at the extremes of utility and almost surely “retires” all agents at the lower

utility bound or some endogenous upper bound of utility. Williams investigates a

more general problem with hidden state variables in continuous time.

A more recent literature has examined efficient contracts with hidden state vari-

ables that inhibit the usage of the continuation promise as a sufficient means to write

the contract recursively. Fernandes and Phelan (2000) and Doepke and Townsend

(2006) show that dynamic contracting problems with hidden state variables can

be written recursively by using a vector of conditional continuation promises and

modifying the constraints to include a “threat keeping” constraint. Aragones and

Palfrey (2002) write the problem recursively using the usual continuation value and

the agent’s marginal rate of substitution as state variables. While their approach is

computationally more efficient, their method does not necessarily yield the solution

to the contracting problem and must be verified ex-post.
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Another, overlapping, strand of literature that this chapter relates to is that con-

cerning the immiserizing result common in environments of dynamic insurance with

private information and/or hidden actions. The immiserizing result states that in

the long run, models of dynamic insurance provide agents just the opposite, namely:

agents are pushed to a lower or upper utility bound with probability one. Green rec-

ognized this result and it has been shown to be robust to many settings, including

in a general equilibrium setting with private information as in Atkeson and Lucas

(1992), a partial equilibrium environment of moral hazard shown numerically in Phe-

lan and Townsend (1991) and analytically in a continuous time moral hazard setting

as in Sannikov (2007). The immiserizing result has shown to fail in the case that the

agent has a constant walk away option (Atkeson and Lucas (1995)), if the planner

and agent have conflicting intertemporal preferences (Farhi and Werning (2007)), or

if the planner cannot commit to driving the agent to a lower utility bound (Sleet

and Yeltekin (2006)). Yazici (2010) also considers an environment in which parents

undertake costly physical investment into the skills of their children, but parents

possess private information on their own altruism. In his model, information asym-

metries are resolved upon the public realization of the skills of children, but the

planner cannot punish parents who under-invest in their children, as it assumed

that skills are realized after parents gain utility from consumption. In his model,

as here, the immiserizing result does not hold. However, there is no discrepancy

over parental types in the model in this chapter: given the same resources, parents

would make identical investments into the skills of their children. Furthermore, the

nature of the informational environment in this chapter is more consistent with that

of dynamic insurance literature; there is no temporal resolution of the informational

friction between the planner and agent.
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2.1 Setup

A risk neutral planner looks to provide efficient insurance to infinitely lived dynas-

ties,3 where one-period lived agents with skill level (θt) can produce output (yt),

consume (ct), and undertake physical investment into the skills of their children

through two channels: a physical investment component (it) and an effort cost (et)

component. Because the agents are one period lived, human capital depreciates

completely and I ignore persistence of human capital via genetics.4

Each agent is one period-lived and has a single child who is the beneficiary

of the altruistic parental investments. While alive the agents’ investments deter-

mine the probability distribution over the skills of the next generation according to

π(·|g(it, et)). Assume that π(·|g(i, e)) > 0 for all (i, e) ∈ I ×E so that all skill levels

are possible regardless of parental investment.5

Given some skill level θt, each generation has a per period utility function given

by:

u(ct) − v(yt)/θt − ψ(et)

Although I will consider only the functional form above, the analysis and methods can

apply to any problem in which the per period utility function is given by u(x1t, et)−
v(x2t, θt) where xt = (x1t, x2t) is observable, et is an unobservable action and θt is an

unobservable state distributed according to F (·|et−1).

The planner can observe only the output that the agent produces and the total

amount of physical resources (at) that the agent may secretly divide between present

3This could be modeled equivalently as an infinitely lived agent whose human capital depreciates
entirely after one period.

4I could also include, with some additional computational complexity, an ability component
that is exogenous and persistent across generations. In this sense, ability should be interpreted
as a genetic endowment that along with investment, maps into a future generation’s probability
distribution over skill levels. If ability is observable, then the model would be identical to the one
presented here with an additional conditioning on observed ability. Unobservable ability would
require an additional level of separation across individuals and could be included in the numerical
method with only additional computational cost.

5This model could also be interpreted as an infinitely lived agent with full depreciation of the
human capital investment.
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consumption (ct) and physical investment (it) toward human capital. The skill level

of the agent is also private information as is the effort investment et toward human

capital. Let θt denote the realization of a particular skill at time t and use θt =

{θ0, .., θt} to denote a history of realizations. Abusing notation slightly, θj(θ
t) will

denote the j-th period skill realization according to history θt.

To summarize, the timing of the model is as follows. At the beginning of period t,

an agent is born with some skill level θt observed only by him. The agent sends some

message to the planner, which by the revelation principal will be an announcement

of his skill. Based on the message sent, the planner demands some level of output

yt from the agent, gives him at level of physical resources, and sends some message,

which corresponds to a recommended action. The agent then makes an investment

decision, which includes a physical investment, that maps stochastically into the skills

of his child θt+1. The period t agent is altruistic, dies after period t and discounts

the utility of future generations at β ∈ (0, 1).

Let M1 and M2 denote generic message spaces between the planner and agent

and at, yt denote the observable t-period physical resources and output. A version of

the revelation principle shows that any allocation feasible in the general mechanism

is also feasible in the truth-telling-and-obedience mechanism. Let t-period public ob-

servations be denoted by st = {m1t,m2t, at, yt} with a history of public observations

st = {s0, .., st}. Let St denote the set of public histories until time t. The agent’s

t-period private observations are ht = {st, θt, it, et} with private histories written

accordingly as ht and the set of private histories denoted by H t. Let the null set of

histories by h−1 = ∅. The planner chooses a plan, µ(yt, at,m2t|m1t, s
t−1), which is a

probability distribution over output requirements from the agent, physical resources

to the agent and action recommendation, conditional on the public history until that

time and the message sent that period by the agent. Meanwhile, the agent chooses

a strategy σ = (σ1, σ2), which consists of a reporting strategy σ1(m1t|ht−1, θt) where

σ1 : H t−1 ×Θ → ∆M1 and an action strategy σ2(it, et|at, yt,m1t,m2t, h
t−1, θt) where
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σ2 : H t−1×M1×M2×Θ×A×Y → ∆I×∆E. Let φ(ht|σ, µ) denote the conditional

probability of observing a history given a plan and strategy.

Define the utility of the agent at time t′ from plan Ĉ given strategy σ by:

Ut′(Ĉ, σ, ht′) =
∞
∑

t=t′

βt−t′
∑

ht

[

u(a(σ1(h
t)) − σ2,i(at, yt,m1t,m2t, h

t−1) − v(y(σ1(h
t)))

θt(θt)

−ψ(σ2,e(at, yt,m1t,m2t, h
t−1))

]

φ(ht|Ĉ, σ, ht′)

The planner’s profits given a plan and agent’s strategy is given by

V (Ĉ, σ) =
∞
∑

t=0

βt
∑

ht

[

y(σ1(h
t)) − a(σ1(h

t))
]

φ(ht|Ĉ, σ, ht′) (2.1)

The planner’s objective is then to maximize V over the set of contracts C such

that the agent receives utility Ũ0 and that σ is incentive compatible for the agent.

Given a reservation utility Ũ0, an allocation is said to be feasible if it is incentive

compatible and guarantees the reservation utility, namely, that it satisfies:

(IR) U0(Ĉ, σ, h−1) ≥ Ũ0

(IC) Ut(Ĉ, σ, ht) ≥ Ut(Ĉ, σ̂, ht) ∀ t, ht−1, σ̂

Definition 1 An allocation is said to be an optimal allocation if it maximizes 2.1

subject to (IR) and (IC).

A version of the revelation principal applies. The proof follows the usual form

by considering a feasible allocation under arbitrary message spaces. By integrating

over the message spaces, one can then show that there exists an equivalent contract

in which, contingent on the announced state θ, the planner recommends an action,

demands an output, and delivers an amount of physical resources with the cumulative

probability that an agent of that type received that allocation and took those actions
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using an arbitrary message space. Feasibility demands that the original messages sent

and actions taken by the agent were optimal. Because announcing θ and following the

recommended action yields the same payoff to the agent as under the more general

message space, there is no loss of generality is considering the reduced message space.

Proposition 14 Any incentive compatible allocation with message space M1 and M2

can be attained as the outcome of a reporting game in which the message spaces are

M1 = Θ, M2 = A × E, the agent reports his type truthfully and follows the agent’s

recommendations.

Proof. See Doepke & Townsend (2002).

Denote by θ̂ the reported state and î, ê denote the recommended action by the

planner. Then, as per the earlier definitions of public and private histories, st =

(θ̂t, ît, êt, at, yt) denotes the public history observed by the planner and agent and

ht = (st, θt, it, et) denotes the private history of the agent where i, e denote the

actions taken by the agent. As before, the set of all public (private) histories up

until time t are denoted by St (H t). Write σ = (σθ, σi, σe) as the agent’s strategy

where σx
t : H t → X for x = θ, i, e, X = Θ, I, E, respectively, and σx = {σx

t }∞t=0. Let

σ∗ denote the truthtelling and obedient strategy where σ∗
t (x

t) = xt for all xt. Let

the set of all strategies be denoted by Σ.

Let Ĉ = (a, y, î, ê) be a plan where a = {at}∞t=0 and at : St → ∆A (likewise for

y) into this period’s distribution of resource allocations and output requirements.

Meanwhile, î : St ×A× Y → ∆I (similarly for ê), is a mapping of reported histories

and the outcome of lotteries on A × Y into a recommended action. Let C denote

the set of all plans Ĉ.

Let φ(ht|Ĉ, σ, ht′) be the conditional probability of an agent observing some his-

tory ht at time t′ < t given some plan Ĉ, some strategy σ and some history ht′ .

Assume that the initial distribution π0 is known by the planner and that there is

some initial level of utility Ũ0 that the planner must guarantee.
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The planner’s problem can then be written as follows.

max
Ĉ∈C

∞
∑

t=0

βt
∑

θt

[yt(s
t) − at(s

t)]φ(ht|Ĉ, σ∗)

s.t. ∀σ ∈ Σ, t, θt Ut(Ĉ, σ∗, ht) ≥ Ut(Ĉ, σ, ht)

U0(Ĉ, σ∗, h0) ≥ Ũ0

Notice first that yt, at are St-measurable. Also the planner chooses probability

distributions over output and resources.

2.2 Recursive Formulation

In general, contracts can depend in a complicated fashion on the history. Therefore, it

is useful to rewrite the contract recursively allowing for the use of tools from dynamic

programming. In many environments previously studied, like those in which private

information has no persistence or those in which hidden actions map into observable

states one can summarize the history of the contract by using the agent’s expected

utility upon entering a given period. The reason for this is that in cases such as these,

there is a moment at which the planner and agent value the continuation contract

identically. Because the manner in which a particular node is reached is irrelevant

for delivering utility in the forward looking contract, the planner’s problem each

period is simply to deliver a particular level of utility at the minimum cost. In the

case of private information independently distributed across periods, the planner and

agent value the continuation contract of period t + 1 onward identically at period

t, as the probability distribution does not depend on the realizations in period t

and beforehand. That is, the planner can determine how the agent evaluates any

forward looking contract independently of past realizations of private information

and the agent’s strategy in previous period. In environments with hidden actions

and observable states, contracts are evaluated identically by the planner and agent
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after the realization of the publicly observable states independently of past actions

under the assumption that past actions do not impact future states.

However, in the environment described in Section 2.1, there is no point in time at

which agents and the planner identically value the continuation contracts. Entering

a period (before the realization of skill level) the planner and the agent do not nec-

essarily attach the same value to the future contract. This is because the probability

distribution over skill level is known only by the agent, owing to the unobservable

action in the previous period. Meanwhile, after skill is observed, the planner and

agent again value the contract differently because the agent now knows his type with

certainty.

To deal with cases of hidden states and hidden actions, past literature resorts to

expanding the state space beyond the usual expected utility promise. One approach

to solving such problems is the first order approach, which augments the state space

with a marginal utility promise. Another approach is to use conditional continuation

promises to the agent as the relevant state space, based on the observation that

conditional on knowing a particular realization, the planner and agent would value

the future contract identically. In this approach, the constraints are augmented to

include threat keeping.

In this environment the hidden action by the agent implies that the planner and

agent do not value a continuation contract the same. However, conditional on some

report in period t, the planner and agent do agree on the value of the continuation

contract (t + 1 onward) augmented by the period-t consumption utility and any

effort cost. That is, the planner and agent value the contract identically other than

the cost to the agent of producing output. This is because the separability of the

hidden state and hidden action implies that this modified continuation value and

the agent’s optimal action are independent of whether the agent was truthful or not

in his report.

Let C be an optimal contract. Define on-equilibrium-path modified continuation
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utilities ω at time τ given a particular distribution over allocation of resources to

the agent by

ωτ (θ
τ , C, σ∗) = u (a− i(hτ , a)) − ψ (e(hτ , a)) +

T
∑

t=τ+1

βt−τ
∑

ht

[

u
(

a(ht) − i(ht, a)
)

− v (y(ht))

θt(ht)
− ψ(e(ht, a))

]

×π(ht|hτ , C, σ∗)

Proposition 15 The optimal contract C can be rewritten by reoptimizing at each

node (sτ , a) the modified continuation utilities.

From Proposition 15 one can rewrite an auxiliary optimal contracting problem

as follows:

Vt(ω) = max
µ

∑

a ∈ A, i ∈ I, e ∈ E

y ∈ Y S , ω′ ∈ ΩS

{

−a+ β
∑

s∈S

[ys + Vt+1(ω
′
s)]

×π(θs|e, i)
}

µ(a, i, e, y, ω′)

s.t. (PK) ω =
∑

a ∈ A, i ∈ I, e ∈ E

{y
s′

, ω′

s′
}s∈S ∈ Y S × ΩS

F

{

u(a− i) − ψ(e) +

β
∑

s∈S

[

−v(ys)

θs

+ ω′
s

]

π(θs|e, i)
}

µ(a, i, e, y, ω′)

(IC1) −v(ys)

θs

+ ω′
s ≥ −v(ys̃)

θs

+ ω′
s̃ ∀s, s̃ ∈ S

(IC2) (e, i) ∈ argmaxê,̂iu(a− î) − ψ(ê) + β
∑

s∈S

[

−v(ys)

θs

+ ω′
s

]

π(θs|ê, î)

The first constraint, PK, is the modified promise keeping condition that guaran-

tees that the planner delivers the modified promised utility. The second constraint,

IC1, guarantees that the agent finds it optimal to truthfully report his hidden state.

The third constraint, IC2, guarantees that the agent takes the optimal action given
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physical resources and the continuation contracts. The separability of the compo-

nents of utility affected by the hidden action and states is what allows for incentive

compatibility to be solved simply through the final two constraints. In general, the

problem of jointly deviating in report and action gives rise to the more cumbersome

state space and constraints found, for example, in DT.

Given the initial utility promise Ũ0, the original planner’s problem can be recov-

ered by solving:

V0(Ũ0) = max
{ω0

s ,ys}

∑

s∈S

[ys + V1(ω
0
s)]π0(θs)

s.t. ∀s, s̃ −v(ys)

θs

+ ω0
s ≥ −v(ys̃)

θs

+ ω0
s̃

∑

s∈S

[−v(ys)

θs

+ ω0
s ]π0(θs) ≥ Ũ0

Notice that this is a linear programming problem, allowing us to use linear pro-

gramming techniques. Furthermore, if the problem has an infinite time horizon, one

can set up a contraction mapping and use value function iteration. Let Eµ denote

the expectation operator under the probability distribution µ.

Consider the following functional map.

T (V (ω)) = max
µ(a,i,e,{ys,ω′

s}s∈S)
Eµ

[

−a+ β
∑

s∈S

[ys + V (ω′
s)]π(θs|e, i)

]

s.t. (PK) ω = Eµ

[

u(a− i) − ψ(e) + β
∑

s∈S

[

−v(ys)

θs

+ ω′
s

]

π(θs|e, i)
]

(IC1) ∀s, s̃ Eµ

[

−v(ys)

θs

+ ω′
s

]

≥ Eµ

[

−v(ys̃)

θs

+ ω′
s̃

]

(IC2) ∀a, y, ω s.t. ω(a, y, ω, e, i) > 0

(e, i) ∈ argmaxê,̂iu(a− î) − ψ(ê) + Eµ

[

β
∑

s∈S

[

−v(ys)

θs

+ ω′
s

]

π(θs|ê, î)
]

It is straightforward to show that this map satisfies Bellman’s sufficient conditions

of monotonicity and discounting, so that T is a contraction mapping. Consequently,

there is a unique fixed point.
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By allowing the planner to choose lotteries over the observables, it is guaranteed

that the value function is (weakly) concave. Consequently, given a particular choice

of a, the problem can be simplified slightly by showing that the planner need not to

randomize over future promises and output to achieve an efficient allocation if the

respective sets of Ω and Y are convex.

Lemma 13 Suppose that under the optimal contract C at some promised modified

utility ω and future state s it is the case that for some a there exists two distinct

promises (ω′
s,1, ys,1) and (ω′

s,2, ys,2) such that µ(a, ω′
s,1, ys,1) > 0 and µ(a, ω′

s,2, ys,2) >

0. If Y is convex, then there exists another optimal contract such that for some y∗s,a,

ω∗′
s,a, µ(a, y∗s,a, ω

∗′
s,a) = 1.

Therefore, under the assumption of convex Y and Ω, one can focus on a recur-

sive contract that maps current modified utility into a probability distribution over

current physical resources and an associated unique vector of continuation promises

and output demands for the following period.

Implementable Utility

One additional advantage to using a single dimensional state variable is that it allows

for the precise determination of the set of implementable utilities when the time

horizon is infinite. This is in contrast to the approach with a vector of conditional

utility promises. In that approach, the vector of implementable utilities can be

computed as part of an inner approximation, so that one can only be guaranteed

if a vector of continuation utilities is implementable numerically, then it necessarily

lies in the set of theoretically implementable utilities. In contrast, this environment

allows for the following possibility.

Lemma 14 All modified expected utility promises ω ∈ W = [ω, ω̄] are imple-

mentable, where ω = u(a − i∗1) − ψ(e∗1) + β

1−β
E[ω − v(ȳ)

θ
|i = i∗, e = e∗] and ω̄ =

1
1−β

E[u(ā− i∗2)−
v(y)

θ
−ψ(e∗2)|i = i, e = e∗] where (e∗1, i

∗
1) = argmaxe,iu(a− i)−ψ(e)+
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β

1−β
E[ω − v(ȳ)

θ
|i, e] and (e∗2, i

∗
2) = argmaxe,iu(ā − i) − ψ(e) + β

1−β
E[ω̄ − v(ȳ)

θ
|i, e] and

the expectation operators E is that generated by π and µ such that mass is placed

only on the extremum values of a, y and the respective optimal choices of e, i.

Providing Incentives

To provide incentives in a particular period, contracting problems with private infor-

mation typically require the principal to spread continuation promises to the agent,

providing more future utility to high types relative to the entering level of utility

and lower future utility to low types relative to the entering level. This is the driving

force behind the immiserizing property; at any interior utility promise the optimal

allocation promises higher future utility to one type than another type. In addition,

the lower (upper) bound is an absorbing state that can be implemented only with

continuation promises that are the lower (upper) bound as well as the minimum

(maximum) resources and maximum (minimum) required output. Therefore, in the

long run, all agents will end up absorbed at one or the other utility bounds.

The recursive structure provides insight here as to why that need not be the

case. Future continuation payoffs in the recursive formulation include state by state

both a continuation utility component and the output requirement from the agent

conditional on his announced type. Then, providing incentives to the agent today

via manipulation of future promises can be done on both the ys as well as the ωs.

Consequently, the planner can provide incentives at interior modified continuation

utilities in a way that cannot be done with the standard expected utility promises.

In particular, when reducing ω has efficiency implications on the skill level in future

periods, it may be optimal to not reduce ω below some threshold that is strictly

greater than the lower utility bound.6

6Note that lower and upper utility bounds remain absorbing states.

70



2.2.1 Discretized Numerical Problem

In the theoretical formulation of the problem, the sets A,E, I, and Y were not

specified. Furthermore, the modified continuation promises were allowed to take on a

continuum of values. However, to solve the problem numerically, I rely on techniques

in DT that convert the problem into a simple linear programming problem. To do

so, first assume that |A|, |Y |, |E| <∞ and |I| ⊆ |A|.

The linear programming problem will require us to solve for µ(a, y, ω, i, e|θ),
where y and ω are vectors i, e will be restricted to lie in the set B described below.

To compute this, one must discretize the modified continuation values to lie in some

finite set ΩA. While the finiteness of the other choice variables may be thought

to be part of the physical environment, this restriction on the space of modified

continuation values is for computational purposes only.

For the outcome ({a, y, ω) of any lottery specified by µ, one can compute the

optimal investment choices, i, e for the agent by solving:

B(a, y, ω) = {(i, e)|(i, e) ∈

argmaxî∈I,ê∈Eu(a− î) − ψ(ê) + βEµ(a,·)
[

−v
(

ys′

θs′

)

+ ω′
s′ |g(̂i, ê)

]
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The discretized version of the planners problem can then be written as follows:

V (ω) = max
µ≥0

∑

a ∈ A, i ∈ I, e ∈ E

{y
s′

, ω′

s′
}s∈S ∈ Y S × ΩS

F

{

−a+ β
∑

s

[−ys + V (ω′
s)]π(θs|i, e)

}

×µ(a, y, ω′, i, e)

s.t. (i(a, y, ω′), e(a, yω′)) ∈ B(a, y, ω′) if µ(a, y, ω′, i, e) > 0

∀s, s̃ −v
(

ys

θs

)

+ ω′
s ≥ −v

(

ys̃

θs

)

+ ω′
s̃

∑

a ∈ A, i ∈ I, e ∈ E

{y
s′

, ω′

s′
}s∈S ∈ Y S × ΩS

F

[

u(a− i) − ψ(e) + β
∑

s

[

−v
(

ys

θs

)

+ ω′
s

]

×π(θs|i, e)
]

µ(a, y, ω′) = ω

∑

a ∈ A, i ∈ I, e ∈ E

{y
s′

, ω′

s′
}s∈S ∈ Y S × ΩS

F

µ(a, y, ω′, i, e) = 1

The advantage to working with a one dimensional state variable is that it does

not suffer from the curse of dimensionality as do models with a vector of conditional

utility promises. Doepke and Townsend introduce a method to overcome a curse

of dimensionality on the number of “threat keeping” constraints required for such

a recursive formulation, thereby allowing for a large number of actions, they are

restricted to the number of hidden states that comprise the vector of conditional

promises. As they state, “The main remaining limitation of our approach is that

we are restricted to relatively small spaces for the [number of hidden states].” The

approach here allows for a large number of hidden states unlike DT and is theoreti-

cally concise, without the need for numerical verification as in Aragones and Palfrey

(2002). However, it comes at a loss of generality from those models, as it requires a

separability condition that those models do not require.
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2.3 Application to Model with Unobservable In-

vestment

In this section, I consider two numerical environments addressed by the previous

sections of the chapter. The first model includes no physical investment into human

capital. The second model considers only physical investment into human capital

and ignores the separable effort cost. While the first model yields the common

immiserating result, the latter does not.

2.3.1 Economy with Hidden Effort

In this section I examine a moral hazard problem in which future skill level is de-

termined only by an agent’s effort whose cost in utility is separable from his utility

from consumption and disutility of work. Letting π(θs|e) denote the probability of

observing θs given levels of investment. This model is similar to that of Phelan and

Townsend (1991) but with the additional unobserved state. The discretized auxiliary

model therefore has per period utility given by u(a)− ψ(e)− v(y)/θ and there is no

physical investment into human capital.

Assume the following functional forms and discretized state spaces. u(c) =
√

(c),

ψ(e) = e2, v(y) = 10y2, π(θL|e) = 1 − exp(−2e − 0.001). A = C = {0, 1
6
, 2

6
, .., 1},

Y = {0, 1
3
, 2

3
, 1}, E = {0, 0.05, 0.1, .., 1}, Θ = {θL = 1, θH = 4}. Finally, let |ΩF | = 20

with the lower and upper bounds as described in Lemma 14.

Given the parameterization above, the value function, output function (Eµ[y]),

consumption function (Eµ[c]), and investment function (Eµ[e]) are given as a func-

tion as the modified continuation promise in corresponding Figures 2.1, 2.2, 2.3,

respectively. Note the concavity of the value function and the increasing (decreas-

ing) nature of consumption (output). Furthermore, note the shape of the investment

function. At high levels of ω, the agent will not be forced to produce output and,
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Figure 2.1: Future Output as a Function of ω

consequently, can not be provided the incentives to invest in future skills. Mean-

while, at low levels of ω, future output requirements from the agent will necessarily

be large. As a result, the agent will exert the largest amount of effort into future

skills at this level of ω.

The result that effort is largest at the lowest levels of ω is consistent with Sannikov

(2007) who shows that equity and efficiency move in opposite directions at the low

end of promised utility in a continuous time environment. The reason for the result

here follows a similar logic to his chapter, namely: an agent cannot be provided

incentives to work if his promised utility is high, as the planner is restricted in his

ability to inflict punishment in the event of a bad outcome or report.

Furthermore, if the initial distribution of modified continuation promises is uni-

form across ΩF , then Figure 2.4 tracks the evolution of continuation promises over

various intervals. Notice that the probability density for all interior values of ω van-

ishes and all probability mass moves toward the minimum and maximum modified

continuation promises.
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Figure 2.2: Consumption as a Function of ω
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Figure 2.3: Effort Investment as a Function of ω
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Figure 2.4: Density of ω Over Time

2.3.2 Economy with Hidden Physical Investment

In this subsection, consider an economy in which the investment into human capital

is out of physical resources and that the planner cannot observe whether an agent

uses those resources for consumption or investment. This differs from the previous

example in important ways. In the previous example, the planner could simultane-

ously provide the agent incentive to exert effort and report truthfully by demanding

high output independently of the reported level of θ. That is, immiserising the agent

does not diminish the agent’s ability to invest in future skills.

However, that logic fails in the case of hidden physical investment. In this case,

the incentive to make a physical investment into human capital requires that the

planner also deliver the agent resources with which to make the investment. There-

fore, immiserising the agent in this scenario is necessarily accompanied by minimal

investment into skill.

In this case, the discretized recursive version of the planner’s problem is therefore

is as above, with per period utility described by u(a − i) − v(y)/θ and all invest-

ment into human capital comes from diverting resources that are otherwise used for

consumption.
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Figure 2.5: Future Output as a Function of ω

Assume the same functional forms as before with the following exceptions. Let

I = E. π(θL|i) = 1 − exp(−15i − 0.001) and v(y) = 5y2. Also, let u(c) =
√

(c) for

c ≤ 1 and u(c) = 1 for c > 1. Assume further that A = {0, 1
6
, 2

6
, .., 1, 1.5, 2} so that

any resources greater than 1 that are given to the agent will necessarily be invested

into human capital.

Given the parameterization above, the value function, output function (Eµ[y]),

consumption function (Eµ[c]), and investment function (Eµ[i]) are given as a func-

tion as the modified continuation promise in corresponding Figures 2.5, 2.6, 2.7,

respectively. Note the concavity of the value function and the increasing (decreas-

ing) nature of consumption (output). Furthermore, note the shape of the investment

function. As in the previous subsection, at high levels of ω, the agent will not be

forced to produce output and, consequently, can not be provided the incentives to

invest in future skills. However, there is a drastic change on the agent’s investment

into future skills at at low levels of ω. In particular, a low level of ω implies both a

high level of future output and a low level of physical resources. This latter effect of

low ω implies that the agent cannot make investments into skill to reduce the utility

cost of producing high output in future periods. This gives rise to the curve seen in
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Figure 2.8: Density of ω Over Time

Figure 2.7, in which investment into skill is highest in the interior of Ω.

If the initial possible distribution of modified continuation promises is uniform

across ΩF , then Figure 2.8 tracks the evolution of continuation promises over various

intervals. Notice that there is an absorbing state in the interior of Ω so that the agent

does not necessarily tend toward the utility bounds as in other models of efficient

insurance in environments of private information. That is, environments with hidden

physical investment to human capital alongside hidden skill do not produce the

immiseration result.

2.4 Omitted Proofs

Proposition 15 Proof. I show that the contract where the planner reoptimizes is

also optimal. Consider some history hτ and let Cτ denote the optimal (auxiliary)

contract for initial modified promise ω′
0 = ωτ (h

τ , C, σ∗
τ ). Consider now a contract

C′ which is equal to the original contract for all nodes other than hτ and is equal

to the reoptimized contract on that node. I must show that C′ is also an optimal

contract. On path utilities are the same at all nodes other than hτ since the contract

is identical on those nodes and on path utilities are the same along hτ by construction.
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Therefore, C′ must satisfy the IR constraint.

Now we must show that C′ satisfies the IC constraint. Suppose it does not, so

that for some history hk it is the case that:

U(σk, C′|hk) > U(σ∗
k, C′|hk)

Clearly, k cannot be greater than τ or else this would violate the fact that C (Cτ ,

respectively) is an optimal contract for histories not equal to (equal to) hτ as it

would violate IC constraints. Then it must be that k < τ + 1.

Notice that it must be that for a history h̃τ realized with positive probability it

must be the case that

ω(h̃τ , C, σ∗
τ , a) > ω(h̃τ , C, στ , a) (2.2)

otherwise this would imply that the incentive compatibility constraint was vio-

lated for either contract C if h̃τ 6= hτ or Cτ if h̃τ = hτ

Combining this fact with 2.2 one can write

τ−1
∑

t=0

βt
∑

ht

[

u(a(σθ(ht)) − σi(ht, a)) − v(y(σθ(ht, a)))

θt(θt)
− ψ(σe(ht, a))

]

π(ht|σ, C′)

+βτ
∑

h̃τ

[

ω(h̃τ , C′, σ∗) − v(y(σθ(h̃τ )))

θt(θ̃t)

]

π(h̃τ |σ, C′) >

τ−1
∑

t=0

βt
∑

ht

[

u(a(ht) − i(ht, a)) − v(y(θt))

θt(θt)
− ψ(e(ht, a))

]

π(ht|σ∗, C′)

+βτ
∑

h̃τ

[

ω(h̃τ , C′, σ∗) − v(y(θ̃τ ))

θt(θ̃t)

]

π(h̃τ |σ∗, C′)

Since C and C′ are identical up until time τ , the probabilities of a history path

are identical for the two until that time. As noted before, it is also the case that the

continuation values for the two contracts at time τ are identical. So, one can rewrite
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the above as:

τ−1
∑

t=0

βt
∑

θt

[

u(a(σθ(θt)) − σi(θt)) − v(y(σθ(θt)))

θt(θt)
− ψ(σe(θt))

]

π(θt|σ, C)

+βτ
∑

θ̃τ

[

ω(θ̃τ , C, σ∗) − v(y(σθ(θ̃τ )))

θt(θ̃t)

]

π(θ̃τ |σ, C) >

τ−1
∑

t=0

βt
∑

θt

[

u(a(θt) − i(θt)) − v(y(θt))

θt(θt)
− ψ(e(θt))

]

π(θt|σ∗, C)

+βτ
∑

θ̃τ

[

ω(θ̃τ , C, σ∗) − v(y(θ̃τ ))

θt(θ̃t)

]

π(θ̃τ |σ∗, C)

This is equivalent to saying that the agent could benefit in the original contract C by

following some deviation strategy for the first τ − 1 periods, deviating by (possibly)

misreporting in period τ and following the planners recommendations in period τ

and following a truthtelling and obedience strategy thereafter. Thus, a contradiction.

Proposition 13 Proof. Suppose not. Consider an alternative contract in

which, for state s and allocation a, the planner offers instead y∗s,a where
v(y∗

s,a)

θs
=

Eµ(a,·)
[

v(ys,a)

θs
|θs

]

. The planner is equally well off with such a contract as by the

convexity of v, y∗s,a ≥ Eµ(a,·)[ys,a]

Similarly, let ω∗′
s,a =

∑

ω′
s
µ(a, y, ω′).

Note that the agent’s optimal action under the alternative contract is unchanged,

as conditional on his allocation a, his optimal action maximizes

u(a− i) + βEµ(a,·)
[

−v(ys,a)

θs

+ ω′
s

]

which, by assumption, is equal to

u(a− i) + Eµ(a,·)
[

−v(y
∗
s)

θs

+ ω∗′
s,a

]

. Now, the incentive compatibility requires that for all s̃,

Eµ

[

−v(ys)

θs

|θs + βω′
s

]

≥ Eµ

[

−v(ys̃)

θs

|θs + βω′
s̃

]
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. Considering the alternative starred contract does not alter the evaluation of either

side of the incentive compatibility constraint and is therefore also satisfied.

Proposition 14 Proof. First, it is straightforward to implement the lower

(upper) utility bounds by promising the maximum (minimum) physical resources

each period from today onwards and the minimum (maximum) output requirements

from next period onward. Because the promises are independent of state, this plan

satisfies IC trivially. However, the agent cannot be forced to take any particular

action. Rather the agent will always choose (i, e) optimally. In the case of the upper

bound, the agent will clearly choose these values to be their lower bounds. At the

lower utility bound, these values are chosen to minimize the disutility of maximum

forced output in the following period. As randomization is allowed, all interior

utilities can be implemented by randomizing between the maximum and minimum

utility levels.
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Chapter 3

Honesty vs. White Lies

3.1 Introduction

Is honesty necessarily the best policy, or might a white lie be desirable when telling

the truth hurts? This question is often raised as an ethical problem but relevant in

several economic and political contexts. In politics, politicians often emphasize their

honesty rather than their rationality or policy preferences.1 In recruiting, candidates

are assessed not only by their abilities and skills, but also by their characters, and

presumably honesty is one of the most important virtues. The same concerns also

apply to accountants, journalists, managers, and stock analysts.

Informal discussions abound on why we must be honest and why we must look

for honest people. However, it is not at all obvious why honesty should be preferred

over other characteristics. Whenever communication occurs between agents and

one agent is uncertain over the motivations of the other, the former will necessarily

discount the value of communication. It then seems reasonable to think that a white

liar who takes into consideration his counterpart’s discounting of communication

and lies only to benefit his counterpart would be preferable to an honest agent who

1According to an Associated Press-Ipsos poll, “55% of those surveyed consider honesty, integrity
and other values of character the most important qualities they look for in a presidential candidate
(USA Today, 3/12/2007).”
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does not make such considerations.2 In this paper, we formally examine this simple

argument and demonstrate that honesty is often preferable to white lies.

We study two variants of the standard cheap-talk game á la Crawford and Sobel

(1982) (CS, hereafter), which is the standard model to address communication issues.

Both of our models introduce another layer of incomplete information in the cheap

talk game, which can be naturally interpreted as the receiver’s uncertainty over the

sender’s motive or the sender’s having an imperfect reputation.

In the honesty model, the sender is behavioral with a positive probability. The

behavioral sender is committed to honestly reporting the state. That is, if the

receiver were to face this sender (whom we call the honest sender) with certainty, then

the receiver would always learn the true state of nature. With the complementary

probability, the sender is of the type in CS, that is, he is strategic and has preferences

that are not perfectly aligned with those of the receiver (we call this type the biased

sender).

In the white lie model, the sender is always strategic, but there is uncertainty over

the sender’s bias. More precisely, the sender has perfectly aligned preferences with

those of the receiver with a positive probability, and does not with the complementary

probability. We call the strategic sender with no bias a white liar. This sender knows

that the receiver is uncertain about his own motive and will discount the credibility

of his recommendation. Due to this consideration, he may lie but this is only for the

sake of the receiver.3

Intuitively, there are two opposing arguments as to which sender type the receiver

would prefer between the honest sender and the white liar. On the one hand, the

receiver may value the flexibility of the white liar. If the white liar is not honest in

2In the American Heritage Dictionary of the English Language, Fourth Edition, a “white lie” is
defined as an often trivial, diplomatic or well-intentioned untruth. As in Erat and Gneezy (2009),
we focus on the last aspect of white lies.

3We note that the more common understanding of white lies, that a white lie costs the liar
nothing but makes the receiver feel better, can be accommodated within our model by interpreting
the white liar as the one who is fully altruistic, that is, who cares only about the receiver’s utility.
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equilibrium, it is because the receiver is better off by doing so. On the other hand,

the honest sender is committed to telling the truth, and the receiver may value this

commitment.

We first characterize equilibria in each model. The key to characterization is

to identify new equilibrium conditions, relative to those of CS, due to incomplete

information over the sender’s type. The conditions highlight the effects of the honest

type and the strategic type with no bias on communication.

In the honesty model, the new condition (mass balance condition) concerns the

lower bound of information transmission due to the behavior of the honest type and

is, to our knowledge, unique to this paper. It is generated by the fact that a distinct

message is sent at each state by the honest sender and, therefore, messages are

endowed with an intrinsic meaning. To see this more clearly, suppose there are two

states (high and low) and two messages (also high and low), with each state realized

with equal probability. If the probability of the honest type is equal to 1/2, then it

is possible for the strategic type to wash out the information from the honest sender

by simply reporting high when the state is low and vice versa. A similar strategy

can be used to wash out the honest sender’s message whenever the probability of the

honest type is less than or equal to 1/2. However, if the probability of the honest

type is greater than 1/2, independently of the biased type’s strategy, the receiver

obtains at least some useful information from communication. In this case, whenever

the receiver gets the high message, it must be the case that the state is also high

with probability greater than 1/2. The mass balance condition is the generalization

of this insight into the case with continuous state and message spaces. When the

relevant spaces are continuous, the probability of the honest type and the mapping

between the biased type’s state space and the message space (the honest type’s state

space) together determine the lower bound of information transmission. The mass

balance condition captures both effects in a simple fashion in the uniform-quadratic
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environment.4

In the white lie model, the analogous condition (no arbitrage condition for the

white liar) is essentially identical to the no arbitrage condition in other cheap talk

papers. It states that at the boundary state of two partition elements, the white

liar must be indifferent between the two induced actions. This condition holds in

equilibrium precisely because the white liar is a strategic player and thus will always

be able to adjust his message. Combined with the corresponding condition for the

biased sender, this condition imposes rather severe restrictions on the equilibrium

outcome.

We compare the welfare consequences of the two models and demonstrate that

the receiver is often better off in the honesty model than in the white lie model. To

be more precise, let µ be the probability that the sender is honest or a white liar

in each model. We show that when µ is sufficiently large, the receiver is strictly

better off in the honesty model than in the white lie model. We also show that when

µ is sufficiently small, for the majority of bias values, the receiver is better off in

the honesty model.5 Lastly, we explain by some numerical examples that the same

conclusion would hold for intermediate cases.

Our welfare result is rather surprising, as the white liar chooses not to be honest

in order to increase the receiver’s utility. There are two main driving forces for the

result. Both highlight the value of commitment in communication but emphasize

different aspects of commitment.

The first reason relates to the fact that commitment simplifies communication

protocol and thus reduces the loss due to strategic considerations. To see this point,

suppose the receiver is certain that the sender is honest. In this case, there is a unique

communication outcome. The receiver perfectly trusts the sender’s recommendation

and perfect communication results. This implies that, in the honesty model, when

4In the last section, we discuss how to generalize the condition into more general environment.
5We also show that for some parameter values, the receiver is instead better off in the white lie

model.
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there is a small probability that the sender is biased, any communication outcome

will be close to that of perfect communication. Now suppose the sender is the white

liar for sure. Perfect communication is still possible, but there are lots of other

possibilities. For example, there may be no information transmission at all.6 This

multiplicity of equilibrium yields the following consequence in the white lie model:

when there is a small probability that the sender is biased, the best communication

outcome is far away from the perfect communication outcome. That is, the loss

from imperfect communication does not vanish even when the sender is the white

liar almost for sure.

The second reason that honesty is often preferable is that commitment has the

effect of enriching language used in communication. In the honesty model each

message might be sent by the honest sender, and thus the receiver interprets each

message differently.7 Therefore, different from CS and the white lie model, all mes-

sages are fully used in the honesty model, which allows freer communication between

the receiver and the biased sender. To see how this can improve the receiver’s wel-

fare, recall the result by Dessein (2002). He shows that whenever communication

is possible in equilibrium, both the receiver and the biased sender would benefit if

the former is committed to following the latter’s recommendation. This implies that

they have a coordination incentive that is hindered by their selfishness in commu-

nication. The possibility of honesty, by enriching language used in communication,

allows them to utilize the coordination incentive in a way that is not possible in the

original cheap talk game and in the white lie model.8

Honesty is thought to be an important virtue in many contexts and our welfare

6If the sender does not provide any meaningful information, the receiver has no reason to pay
attention to the sender’s report, which in turn justifies the sender’s behavior.

7In the honesty model, even though the receiver takes a constant action on a set of messages,
her posterior over the set of states is not constant over those messages. Only her conditional
expectation is constant.

8This effect is similar to the one generated by ”noise” in communication. Blume, Board, and
Kawamura (2007) showed that adding noise to communication can improve welfare. As in this
paper, the interpretation of messages becomes crucial with noise, which is the key reason why
welfare can improve.
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result can be interpreted as a micro-foundation for the preference for honesty. In

particular, the political economy literature has recognized the importance of char-

acter in politics and attempted to incorporate the preference for character in the

analysis.9 However, such preference has been assumed to be exogenously given. Our

result provides a fundamental rationale for the preference for honesty in particular

and character in general, focusing on the effect of honesty on communication.

In terms of analysis, this paper contributes to two branches of literature, each of

which corresponds to the honesty model and the white lie model. The first strand

examines the roles of behavioral (non-strategic) types in communication. Ottaviani

and Squintani (2006) and Kartik, Ottaviani, and Squintani (2007) examine the cases

where the receiver may be naive, that is, the receiver may simply follow the messages.

They show that if the state and message spaces are unbounded, then there exists

a fully revealing equilibrium (Kartik, Ottaviani, and Squintani (2007)), while if the

state and message spaces are bounded, states are fully revealed in a low range and

partitioned in the top range (Ottaviani and Squintani (2006)). Chen (2009) considers

a cheap-talk game with both honest sender and naive receiver. The honest sender in

her paper is in the same spirit as that of this paper, but only uses a finite number

of messages: there is a finite partition in the state space and the honest type sends

the same messages on each partition element. The finite message assumption was

made because she restricted attention to message-monotone equilibria (in which the

strategic sender sends weakly higher messages on higher states), which may not

exist if the message space is continuous (see Example 2 in her paper). We focus

on the case where the message space is continuous and do not restrict attention to

message-monotone equilibria. The equilibria we characterize in this paper are not

message-monotone, but are still intuitive and relatively tractable.

The second branch explores the implications of uncertain bias in the cheap-talk

game. Morgan and Stocken (2003) (MS, hereafter) examine the white lie model in

9See, for example, Groseclose (2001), Aragones and Palfrey (2002), Diermeier, Keane, and Merlo
(2005), and Kartik and McAfee (2007).
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the context of stock analyst’s problem where the stock analyst may or may not have

an incentive to produce a favorable report to the firm’s investment banking clients.

They characterize two classes of equilibria, while we fully characterize the set of

equilibria. The complete characterization is important in our paper because the

new equilibria have an important welfare implication. If we had considered only the

equilibria in MS, when µ is sufficiently close to 0, the receiver would be always better

off in the honesty model than in the white lie model. In other words, the receiver

is better off in the white lie model for some parameter values precisely because

of the additional equilibria we identify. Li and Madarasz (2008) consider the case

whether the sender has either high or low bias (the low bias can be negative), and

examine whether requiring the sender to disclose his own bias is necessarily welfare-

improving. Their characterization includes “categorical ranking system equilibria”

in MS. In addition, they provide one example (Example 4 in their paper) which is

one of “semiresponsive” equilibria in MS. Dimitrakas and Sarafidis (2005) consider

the case where the sender’s bias is drawn from a distribution over an interval. Their

recursive characterization is similar to the one in this paper, but does not directly

apply to the binary case. In addition, they briefly discuss the connection between

their characterization and that of MS (Proposition 5 in their paper), but it is not

clear how much the result can generalize beyond the case they examined.10

There are also a few papers that study dynamic cheap-talk games with uncer-

tainty over the sender’s motives. Sobel (1985) and Morris (2001) examine the white

lie cases, while Benabou and Laroque (1992) and Olszewski (2004) consider the hon-

esty cases. The focus of these works is the dynamic incentive of the sender to main-

tain reputation as well as to manipulate information. To highlight the intertemporal

incentives, they consider simple stage games in which there are only a finite number

of states. In order to focus on the effects of uncertain motives on communication

itself, we consider static settings with continuous state and message spaces.

10They only consider the case where the sender has zero bias with probability 0.5 and the sender’s
bias is weakly greater than 2 −

√
2.
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The remainder of the paper is organized as follows. The next section briefly

reviews the standard cheap talk game. Then, we study the honesty model and the

white lie model in Sections 3.3 and 3.4, respectively. We compare the two models in

Section 3.5 and conclude in Section 3.6 by discussing two relevant issues.

3.2 Review of the Standard Cheap Talk Game

Our models and results can be best understood through comparison to the standard

cheap talk model and results. We briefly review the standard cheap talk game in the

uniform-quadratic environment.

3.2.1 Cheap talk game

There are two players, a receiver (she) and a sender (he). The sender observes a

random variable θ and strategically transmits information on θ to the receiver. A

random variable θ is drawn from a uniform distribution with support on Θ = [0, 1].

The receiver takes an action, denoted by y, from the real line that affects utilities

of both players. The receiver’s utility function is UR(y, θ) ≡ −(y − θ)2, while the

sender’s is US(y, θ, b) ≡ −(y− (θ+ b))2 where b ∈ (0, 1). As usual, b is interpreted as

the “bias” of the sender. When the true state is θ, the most preferred action to the

receiver is θ, while that of the sender is θ+ b. Without loss of generality, we assume

that the set of messages, M , and the set of feasible actions, Y , are given by [0, 1].

The receiver’s strategy is her action choice rule y : M → Y where y(m) is the

action she takes after receiving message m. The sender’s strategy is her reporting

rule r : Θ → ∆(M) where ∆(M) is the set of probability measures over the set of

messages, M , and r(θ) is her reporting policy conditional on observation of state θ.

Definition 2 The strategy profile (r∗, y∗) constitutes an equilibrium if
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(1) given y∗, if m′ is sent by the sender (m′ is in the support of r∗ (θ)), then

m′ ∈ arg max
m∈M

US(y∗(m), θ, b) = −(y∗(m) − (θ + b))2, and

(2) given r∗, for all m ∈M ,

y∗(m) ∈ arg max
y
E[UR(y, θ)|m].

Since the receiver has a quadratic utility function, the second requirement reduces

to y∗(m) = E[θ|m]. That is, the receiver’s optimal strategy is always to choose the

conditional expectation of θ.

3.2.2 Equilibrium Characterization

An equilibrium in the cheap talk game is characterized by a partition {θ0 = 0, θ1, ..., θn =

1} and a sequence {y1, ..., yn}. The sender sends an essentially identical message on

each partition element, [θk−1, θk]. The receiver infers only in which partition element

the true state, θ, lies, and thus takes only a finite number of actions, {y1, ..., yn}.
The following two conditions are necessary and sufficient:

yk = θk−1+θk

2
, k = 1, ..., n, (BR)

(θk + b) − yk = yk+1 − (θk + b), k = 1, ..., n− 1. (NA)

BR (Best Response) corresponds to the receiver’s optimality and NA (No Arbitrage)

corresponds to the sender’s. NA states that the sender must be indifferent between

yk and yk+1 at state θk for each k = 1, ..., n− 1. This is necessary and sufficient for

the sender’s optimality because the sender’s utility function is quadratic and thus

the single crossing property holds.11

Figure 3.1 illustrates how the two conditions interact. We exploit this type of

graphical representation throughout the rest of the paper. The bottom line represents

the state space, Θ, and the top line represents the receiver’s action space, Y . In

11If the sender prefers y to y′ at θ where y > y′, then he prefers y to y′ at any state θ′ such that
θ′ > θ, and vice versa.
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sender

receiver

0 1θ1 θ1 + b

y1 y2

Figure 3.1: An equilibrium with two partition elements in the standard cheap talk

game.

equilibrium, the sender partitions the state space and the receiver takes as many

actions as the number of partition elements. When there are two partition elements,

[0, θ1] and [θ1, 1], the receiver takes either y1 or y2. BR requires that the receiver’s

action (yk) be the conditional expectation of θ, while NA states that the sender’s

most preferred action at state θ1, θ1 + b, is the average of the two actions induced in

equilibrium.

3.2.3 Incentive Compatibility Lemma

We present a lemma that is used throughout this paper. Consider a cheap talk game

in which the set of sender types is given by T . Let h represent the honest type.

Denote by B the subset of T that contains only strategic types. A typical element

of B, denoted by b, represents the bias of the strategic sender. Then in the standard

game T = B = {b}, in the honesty model T = {h, b} and B = {b}, and in the white

lie model T = B = {0, b}.
Fix an equilibrium of a cheap talk game. The outcome of the equilibrium is

represented by a function z : Θ × T → Y where z(θ, t) is the action chosen by

the receiver when the true state is θ and the sender’s type is t. In addition, let
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V S : Θ×B → R be the indirect utility function of the equilibrium where V S(θ, b) is

the utility that the strategic sender with bias b obtains at state θ in the equilibrium.

A necessary condition for an equilibrium is that its outcome is interim incentive

compatible for any strategic sender. As in the Bayesian mechanism design, this

imposes certain restrictions on possible equilibrium outcomes, which are presented

in the following lemma.

Lemma 15 The outcome z(·, b) is interim incentive compatible for the strategic

sender with bias b if and only if

(i) z(·, b) is nondecreasing,

(ii) V S(·, b) is continuous, and

(iii) if z1(θ, b) = ∂z(θ, b)/∂θ exists, then

∂US(z(θ, b), θ, b)

∂y
· ∂z(θ, b)

∂θ
= 0.

In this paper, we exploit, in particular, the implications of part (iii). In equi-

librium, for almost all states, the sender must induce either a constant action around

each state (∂z(θ, b)/∂θ = 0) or induce his most preferred action (∂US(z(θ, b), θ, b)/∂y =

0). To understand this in the context of the cheap talk literature, consider an equi-

librium outcome in CS and the case where the receiver delegates the authority to

choose an action to the sender in the sense of Dessein (2002).12 The sender has

no incentive to deviate in both cases, but for different reasons. In the latter, the

sender is achieving the first-best payoff at each state, while in the former, a small

deviation does not change the outcome and a large deviation lowers the sender’s

payoff. In other words, in CS, ∂z(θ)/∂θ = 0 almost everywhere, while in Dessein,

∂US(z(θ, b), θ, b)/∂y = 0 everywhere. Part (iii) of the lemma implies that if there

exist any other kinds of equilibrium outcomes, then it must be that the structures

are some combinations of partitional outcomes as in CS and outcomes in which the

sender implements his most preferred actions as in Dessein.

12In other words, the receiver is committed to following the sender’s recommendation.
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3.3 Honesty Model

3.3.1 Setup

In this section, the sender is honest with probability µ ∈ (0, 1), and is strategic with

bias b with the complementary probability. The honest type is behavioral and his

strategy is to send different messages for each state, so that the receiver knows the

state for sure if the sender’s type is known to be honest. Without loss of generality,

we focus on the case where the honest type sends message θ when he observes state

θ.13 The strategies of the receiver and the biased type are the same as in the previous

section. We denote by rb the biased type’s strategy.

Definition 3 The strategy profile (r∗b , y
∗) constitutes an equilibrium if

(1) given y∗, if m′ is sent by the biased type (m′ is in the support of r∗b (θ)), then

m′ ∈ arg max
m∈M

US(y∗(m), θ, b) = −(y∗(m) − (θ + b))2, and

(2) given r∗b , for all m ∈M ,

y∗(m) ∈ arg max
y
Eµ,r∗

b
[UR(y, θ)|m],

⇔ y∗(m) = Eµ,r∗
b
[θ|m],

where Eµ,r∗
b

is the conditional expectation operator generated by µ, the honest type’s

behavior, and r∗b .

3.3.2 CS Equilibrium Outcomes

We first consider an equilibrium in which every message induces the receiver to take

the same action. In CS, this equilibrium is called a “babbling” equilibrium because

the sender essentially randomizes over the entire message space independently of his

13We consider any sender with a bijective mapping of states to messages as honest. So long a
sender’s strategy is such, then a receiver who knowingly faces this sender will know the state for
sure.

94



private information. Since the honest type always reports the true state, a babbling

equilibrium does not exist.

A no communication equilibrium still exists in a different form as long as µ ≤ 1/2.

Consider the following strategy profile.

rb(θ) =







1 − θ, with probability µ

1−µ
,

m ∼ U [0, 1], with probability 1−2µ

1−µ
,

y(m) =
1

2
,∀m.

In this profile, at state θ, the biased type sends message 1 − θ with probability

µ/ (1 − µ) and uniformly randomizes over the entire message space with the com-

plementary probability. Having received any message m, the conditional probability

that the message came from the honest type is equal to the unconditional probability

of the honest type (µ). Similarly, the conditional probability that the message came

from the biased type who is reporting 1 − θ and the conditional probability that it

came from the biased type who is uniformly randomizing over [0, 1] are µ and 1−2µ,

respectively. As such, for any m, the conditional expectation of the receiver on the

true state is

E[θ|m] = µm+ (1 − µ)

(

µ

1 − µ
(1 −m) +

1 − 2µ

1 − µ

∫ 1

0

θdθ

)

=
1

2
.

Therefore, the receiver takes a single action independently of message. This, in turn,

makes the biased type indifferent over all messages.

We note that although the receiver takes a single action, she updates her belief

nontrivially. In the babbling equilibrium in CS, every posterior distribution is equal

to the prior distribution. Under the strategy above, the receiver’s posterior puts mass

on the message she received, m, and its counterpart, 1−m. Therefore, her posterior

is different for each message even though her action is independent of message. It is

only the conditional expectation of the true state that is constant across messages.

This equilibrium construction generalizes to all equilibrium outcomes in CS. We

can use the same trick partition element by partition element: the biased type reports
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exactly the “opposite” state in each partition element with probability µ/ (1 − µ) and

randomizes over the interval with the remaining probability.

Proposition 16 Fix an equilibrium outcome in CS that is characterized by a par-

tition {θ0 = 0, θ1, ..., θn = 1} and a sequence {y1, ..., yn}. If µ ≤ 1/2, then there

exists an equilibrium in the honesty model in which the receiver takes the action yk

whenever the true state lies in [θk−1, θk], independently of the sender’s type, for all

k = 1, ..., n.

Proof. Suppose µ ≤ 1/2. Consider the following strategy of the biased type: for

each k = 1, ..., n and each θ ∈ [θk−1, θk],

rb(θ) =







θk−1 + θk−1 − θ, with probability µ

1−µ
,

m ∼ U [θk−1, θk], with probability 1−2µ

1−µ
,

.

Given this strategy of the biased type and the behavior of the honest type, the

conditional expectation of the receiver is equal to yk whenever the message m belongs

to the interval [θk−1, θk]. In turn, since we begin with an equilibrium in CS, in each

state θ ∈ [θk−1, θk], the biased sender is indifferent over all messages in [θk−1, θk] and

strictly prefer those to the other messages.

3.3.3 Mass Balance Condition

In this subsection, we characterize a lower bound on the amount of information that

can be transmitted in an equilibrium of the honest model. This lower bound depends

on the probability of the honest sender µ. For example, if µ > 1/2, the strategy

profiles used in the previous subsection are not well defined and thus cannot be used

to support CS equilibrium outcomes. The lower bound established in this subsection

then implies that for µ > 1/2 no other strategy profile induces any CS equilibrium

outcome.

Suppose the receiver receives a message m in an interval [m′,m′′]. In addition,

suppose the receiver knows that the biased type sends messages [m′,m′′] if and only
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if the state is in an interval [θ′, θ′′]. Let B(µ,m′,m′′, θ′, θ′′) be the expectation of

the state conditional on the event that the message belongs to the interval [m′,m′′].

Formally,

B(µ,m′,m′′, θ′, θ′′) ≡ µ(m′′ −m′)

µ(m′′ −m′) + (1 − µ)(θ′′ − θ′)

m′ +m′′

2

+
(1 − µ)(θ′′ − θ′)

µ(m′′ −m′) + (1 − µ)(θ′′ − θ′)

θ′ + θ′′

2
.

Under what conditions is it possible that the receiver makes no further inference

and implements only a constant action B(µ,m′,m′′, θ′, θ′′) over all messages in the

interval [m′,m′′]? The following lemma establishes that it is possible if and only if it

is sufficiently unlikely that the sender is honest (µ is small) or the biased type sends

those messages on a sufficiently large range of states (θ′′ − θ′ relative to m′′ −m′).

In other words, for the receiver to draw a single inference from a mass of messages,

there must be sufficient mass of probability from the biased sender that washes out

the inherent information in the messages.

Lemma 16 (Mass Balance Condition) Suppose 0 ≤ m′ < m′′ ≤ 1 and 0 ≤
θ′ < θ′′ ≤ 1. There exists a collection of probability measures {r (θ) , θ ∈ [θ′, θ′′]} ⊂
∆ ([m′,m′′]) such that

Eµ,r[θ|M] = B(µ,m′,m′′, θ′, θ′′) for any Borel set M in [m′,m′′],

if and only if

µ(m′′ −m′)2 ≤ (1 − µ)(θ′′ − θ′)2,

where Eµ,r is the conditional expectation operator generated by µ and r.

This lemma relates the inherent informational content of messages to the biased

type’s strategy by providing a necessary and sufficient condition for the biased type

to be able to induce a single inference (and, consequently, a single action for the

receiver) over an interval of messages. The condition shows how the honest type’s
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commitment to telling the truth imposes a lower bound on the amount of information

transmission and thus highlights the effects of honesty on communication.

Intuitively, when µ is small or m′′−m′ is relatively smaller than θ′′−θ′, the biased

sender can keep the receiver from drawing any further inference and thus induce her

to take a constant action. However, when µ is large or m′′ −m′ is relatively larger

than θ′′−θ′, the biased type does not have enough latitude to stop more information

being transmitted to the receiver. From the receiver’s viewpoint, it is likely that the

messages were sent by the honest type and thus she must take seriously into account

the messages in her decision making.

The lemma implies that the converse of Proposition 16 is also true. That is, if

µ > 1/2 then no equilibrium outcome in CS can be supported as an equilibrium

outcome in the honesty model.

Corollary 3 Fix an equilibrium outcome in CS that is characterized by a partition

{θ0 = 0, θ1, ..., θn = 1} and a sequence {y1, ..., yn}. If µ > 1/2, then there does not

exist an equilibrium in the honesty model in which the receiver takes the action yk

whenever the true state lies in [θk−1, θk], independently of the sender’s type, for all

k = 1, ..., n.

Proof. Suppose such equilibrium exists. Then, by the previous lemma, it must

be that µ(θk − θk−1)
2 ≤ (1 − µ)(θk − θk−1)

2 for all k = 1, ..., n. But the inequalities

do not hold if µ > 1/2.

We will make use of the following reporting strategy of the biased sender through-

out the paper:

rb(θ) =







m′′−m′

θ′′−θ′
(θ′′ − θ) +m′, with probability µ

1−µ

(m′′−m′)2

(θ′′−θ′)2
,

m ∼ U [m′,m′′], with probability 1 − µ

1−µ

(m′′−m′)2

(θ′′−θ′)2
.

For notational simplicity, we denote this strategy by “rb(θ) = r̃([m′,m′′]) if θ ∈
[θ′, θ′′].”
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3.3.4 Type I Equilibrium

Returning back to the least communication outcome, for µ > 1/2, the following

strategy profile is a natural extension of no communication equilibrium: for some

m0 > 0,

rb (θ) = r̃([m0, 1]),∀θ

y (m) =







m, if m < m0,

B(µ,m0, 1, 0, 1), if m ≥ m0.

In this strategy profile, the biased type sends messages above m0. The receiver

believes that only the honest type sends messages below m0, and so perfectly trusts

their contents.

The strategy profile is specifically designed to overcome the binding mass balance

condition. Notice that the mass balance condition is satisfied if m0 is high enough:

µ(1 −m0)
2 ≤ 1 − µ. Of course, we must ensure that the biased type does not want

to deviate to some message below m0. Therefore, it must be that

m0 ≤ b and |B (µ,m0, 1, 0, 1) − b| ≤ b−m0.

The first inequality guarantees that the biased type cannot implement her most

preferred action by deviating to below m0 at state 0. The second inequality ensures

that the biased type prefers B (µ,m0, 1, 0, 1) to m0 at state 0. By the single crossing

property, the biased type does not deviate at any other state.

Example 1 Suppose µ > 1/2 and b ≥ 1
2

(√
µ−√

1−µ√
µ

+
√

µ√
µ+

√
1−µ

)

. Then the following

strategy profile is an equilibrium.

rb (θ) = r̃

([√
µ−√

1 − µ
√
µ

, 1

])

,∀θ

y (m) =







m, if m <
√

µ−√
1−µ√

µ
,

√
µ√

µ+
√

1−µ
, if m ≥

√
µ−√

1−µ√
µ

.

In this strategy profile, m0 is chosen so that the mass balance condition is always

binding, that is, µ(1 −m0)
2 = (1 − µ).
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This strategy profile also constitutes an equilibrium when µ < 1/2. Since the

mass balance condition is satisfied vacuously, the strategy profile is an equilibrium

as long as the incentive compatibility condition is satisfied.

Definition 4 (Type I Strategy Profile) A type I strategy profile is represented by

two partitions in a unit interval, {0,m0,m1, ...,mn = 1} and {θ0 = 0, θ1, ..., θn = 1},
and a sequence, {y1, ..., yn}, such that14

rb (θ) = r̃ ([mk−1,mk]) , if θ ∈ [θk−1, θk], ∀k = 1, .., n,

y (m) =







m, if m < m0,

yk, if m ∈ [mk−1,mk],∀k = 1, .., n.

In this strategy profile, the biased type sends [mk−1,mk] on [θk−1, θk] and does not

send any message below m0. The following conditions are necessary and sufficient

for a type I strategy profile to be an equilibrium:

|y1 − b| ≤ b−m0 and m0 ≤ b if m0 > 0, (IC)

yk + yk+1 = 2(θk + b),∀k = 1, ..., n− 1, (NA)

yk = B (µ,mk−1,mk, θk−1, θk) ,∀k = 1, ..., n, (BR)

µ(mk −mk−1)
2 ≤ (1 − µ)(θk − θk−1)

2,∀k = 1, ..., n. (MB)

IC is the incentive compatibility condition for the biased type to not deviate to

below m0. NA and BR are the same conditions as in CS. BR is modified to reflect

uncertainty over the sender’s type. MB is the mass balance condition in Lemma 16.

As µ tends to 0, NA and BR converge to the equilibrium conditions in CS, and IC

and MB become negligible. Notice that should there exist an equilibrium with n

partition elements, there will typically exist a continuum of such equilibria due to

the flexibility of MB.

Figure 3.2 shows an example of type I equilibrium. The biased type sends mes-

sages [m0,m1] on [0, θ1] and messages [m1, 1] on [θ1, 1]. The receiver believes that

14We do not explicitly specify what the sender’s reporting policies are at the boundary points of
each partition element. They do not affect both players’ ex ante utilities because the set has zero
measure.
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biased type

honest type

receiver

0 1θ1

m0 m1

y1 y2

Figure 3.2: Type I equilibrium when b = 0.15 and µ = 0.1.

if message m is below m0, it was sent by the honest type and thus implements m.

If the message is above m0, then she chooses y1 or y2 depending on whether the

message lies in [m0,m1] or [m1, 1]. The two policies induced by the biased type, y1

and y2, are conditional expectations of the true state (BR), and the biased type is

indifferent between y1 and y2 at state θ1 (NA). Though m1−m0 > θ1, MB is satisfied

because µ is small.

3.3.5 Type II Equilibrium

For µ sufficiently large, there cannot exist any type I equilibrium. As µ increases,

m0 must increase so that MB holds. But then IC binds because b is an upper bound

of m0 in type I equilibrium. Therefore, we need an alternative way to consume an

excess of mass with the honest type in order to satisfy both IC and MB. The key

to this issue is in Lemma 15. According to Lemma 15, Θ = [0, 1] (conditional on

the event that the sender is strategic and has bias b) can be decomposed into the
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following three subsets:

Θ1 = {θ ∈ Θ : z(θ, b) = θ + b}

= {θ ∈ Θ : the sender implements his most preferred action} ,

Θ2 =

{

θ ∈ Θ : z1(θ, b) =
∂z(θ, b)

∂θ
= 0

}

= {θ ∈ Θ : the same action is implemented around θ} ,

Θ3 = {θ ∈ Θ : z1(θ, b) does not exist} .

In many variations of the cheap talk game, Θ2 has full measure; equilibrium features

a partitioning of Θ with which a constant action is induced on each partition element.

However, for µ sufficiently large, Θ2 cannot have full measure because of the conflict

between MB and IC. Then, Θ1 is the only alternative of use, as the non-decreasing

property of z(·, b) implies that Θ3 has zero measure (see part (i) of Lemma 15). On

Θ1, the biased type induces his own optimal action. This possibility does not arise

in CS and many other contexts. However, Θ1 is necessary in the honesty model for

µ sufficiently large.

Definition 5 (Type II Strategy Profile) A type II strategy profile is represented

by two partitions, {0,m0, ...,mn} and {0, θ0, ..., θn}, and a sequence, {y1, ..., yn}, such

that

rb(θ) =







θ + b/µ, if θ ∈ [0, θ0],

r̃ ([mk−1,mk]), if θ ∈ [θk−1, θk], k = 1, ..., n,

y(m) =



















m, if m ≤ b/µ,

µm+ (1 − µ) (m− b/µ), if b/µ < m ≤ m0,

yk, if m ∈ [mk−1,mk],

In this strategy profile, the biased type induces his own optimal action on [0, θ0].

For example, suppose θ = 0. Then the biased type sends message b/µ. When the

receiver receives this message, her inference on θ is µ · (b/µ) + (1 − µ) · 0 = b, which
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biased type

honest type

receiver

0 1θ0

b/µ θ0 + b/µ

b θ0 + b

Figure 3.3: Type II equilibrium when b = 1/8 and µ = 0.6.

is optimal to the biased type. The conditions required for this strategy profile to be

an equilibrium are as follows:

b/µ ≤ θ0 + b, (IC),

m0 = θ0 + b/µ, (EL),

y1 = θ0 + b, (NA0),

yk + yk+1 = 2(θk + b),∀k ≥ 1, (NA),

yk = B (µ,mk−1,mk, θk−1, θk) ,∀k ≥ 1, (BR),

µ(mk −mk−1)
2 ≤ (1 − µ)(θk − θk−1)

2,∀k ≥ 1, (MB).

NA, BR, and MB are the same as before. NA0 is the condition required to prevent

the biased type from deviating to [b/µ,m0] for θ > θ0. IC guarantees that the

deviation to [0, b/µ), where the receiver perfectly trusts messages, is not profitable.

EL (Equal Length) is an obvious requirement from the structure of equilibrium.
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Example 2 For µ ≥ 1/2 and b ≤ µ/
(

1 +
√

µ (1 − µ)
)

, the following strategy pro-

file is a Type II equilibrium.

rb(θ) =







θ + b/µ, if 0 ≤ θ < θ0,

r̃([θ0 + b/µ, 1]), if θ ∈ [θ0, 1],

y(m) =



















m, if m ≤ b/µ,

m− 1−µ

µ
b, if b/µ < m < θ0 + b/µ,

θ0 + b, if m ∈ [θ0 + b/µ, 1],

where θ0 = 1 − b− b
√

(1 − µ) /µ.

Figure 3.3 shows the structure of this equilibrium. The biased type sends message

θ + b/µ if θ < θ0, and sends messages [θ0 + b/µ, 1] on [θ0, 1]. The receiver perfectly

trust the sender’s report if the message is below b/µ, while she believes that any

message above b/µ might be sent by the biased type. The receiver discounts the

sender’s recommendation by the same amount, (1 − µ)/µ · b, on [b/µ, θ0 + b/µ],

while she takes a single action, θ + b, on [θ0 + b/µ, 1]. Notice that the biased type

induces her most preferred actions on [0, θ0], and actions [b, b/µ] are chosen both

when m ∈ [b, b/µ] and when m ∈ [b/µ, 2b/µ− b].

3.3.6 Other Possibilities

The two equilibrium structures do not exhaust all equilibria in the honesty model.15

Still, they are the only equilibria that satisfy two natural properties of the strategy

profiles, one for each player. We introduce each property and present an example of

equilibrium that violates the property.

Definition 6 (Convexity) The biased type’s reporting strategy is convex if there ex-

ists m0 ∈ [0, 1] such that the biased type never sends messages below m0 and sends

15Either type I or type II equilibrium always exists for b ≤ 1/2. For µ ≤ 1/2, equilibria that
yield CS equilibrium outcomes, which are type I, exist, as shown in Proposition 16. For µ > 1/2,
Example 3.2 and Example 3.3 establish that at least one of the equilibria exists. The two examples
also show that for b > 1/2 type I equilibrium exists when µ is not too large and type II equilibrium
exists when µ is sufficiently large.
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biased type

honest type

receiver

0 1

y1

0 1

y1 y2

Non-convex equilibrium Non-monotone equilibrium

Figure 3.4: Equilibria that do not satisfy convexity or monotonicity

all messages above m0.

That is, if the biased type’s strategy is convex, then there is a cutoff point in

the message space such that all messages above the point are contaminated by the

biased type. This is natural because the biased type, due to his positive bias, is

less willing to deviate to lower messages, but there are equilibria that violate this

property.

Example 3 Suppose µ = 1/8 and b = 2/5. The following strategy profile is an

equilibrium but does not satisfy convexity. See the left panel of Figure 3.4 for the

equilibrium structure.

rb (θ) = m ∼ U [0, 1/8] ∪ [1/4, 1],∀θ,

y (m) =







m, if m ∈ [1/8, 1/4],

509/1008, otherwise.

Definition 7 (Monotonicity) The receiver’s strategy y is monotone if for all m′ > m

such that m ∈ supp rb(θ) and m′ ∈ supp rb(θ
′) for some θ and θ′, y(m′) ≥ y(m).
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In words, for those messages that the biased type may send, the higher message

the receiver gets, the weakly higher action she implements. This restriction makes

the biased type’s strategy weakly monotone in the sense that a strictly higher action

can be induced only by sending a message higher than any message that would induce

a lower action.

Example 4 Suppose µ = 1/8 and b = 87/448. The following strategy profile is an

equilibrium but does not satisfy monotonicity. See the right panel of Figure 3.4 for

the equilibrium structure.

rb (θ) =







m ∼ U [1/8, 1/4], if θ ∈ [0, 1/8]

m ∼ U [0, 1/8] ∪ [1/4, 1], otherwise,

y (m) =







5/64, if m ∈ [1/8, 1/4],

251/448,, otherwise.

Proposition 17 Any equilibrium in which the biased type’s strategy is convex and

the receiver’s strategy is monotone is either Type I or II.

3.4 White Lie Model

3.4.1 Setup

In this section, the receiver is uncertain about the sender’s bias. The sender has no

bias with probability µ, and has bias b > 0 with the complementary probability. We

denote by r0 and rb the white liar’s and the biased type’s strategies, respectively.

Definition 8 The strategy profile (r∗0, r
∗
b , y

∗) constitutes an equilibrium if

(1) given y∗, if m′ is sent by the biased type at state θ (in the support of r∗b (θ)),

then

m′ ∈ arg max
m∈M

US(y∗(m), θ, b) = −(y∗(m) − (θ + b))2,
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(2) given y∗, if m′ is sent by the white liar at state θ (in the support of r∗0 (θ)),

then

m′ ∈ arg max
m∈M

US(y∗(m), θ, 0) = −(y∗(m) − θ)2, and

(3) given (r∗0, r
∗
b ), for all m ∈M ,

y∗(m) ∈ arg max
y
Eµ,r∗0 ,r∗

b
[UR(y, θ)|m]

⇔ y∗(m) = Eµ,r∗0 ,r∗
b
[θ|m].

where Eµ,r∗0 ,r∗
b

is the conditional expectation operator generated by µ, r∗0 and r∗b .

3.4.2 CS Equilibrium Outcomes

Consider the babbling equilibrium in CS. Such equilibrium always exists in the white

lie model. Suppose both sender types uniformly randomize over the entire message

space independently of state. Then the receiver cannot make any meaningful infer-

ence and thus takes a single action independently of message. This in turn makes

both sender types indifferent over all messages independently of state.

Unlike in the honesty model, any other equilibrium outcome in CS cannot be

supported as an equilibrium outcome in the white lie model.

Proposition 18 Suppose µ > 0 and fix an equilibrium outcome in CS that is char-

acterized by a partition {θ0 = 0, θ1, ..., θn = 1} and a sequence {y1, ..., yn}. If n > 1,

then there does not exist an equilibrium in the white lie model in which the receiver

takes the action yk whenever the true state lies in [θk−1, θk], independently of the

sender’s type, for all k = 1, ..., n.

Proof. Suppose such equilibrium exists in the white lie model. The biased type

is indifferent between yk and yk+1 at state θk. But the white liar wants to induce a

lower action than the biased type at any state and thus strictly prefers yk to yk+1 at

state θk. Consequently, the white liar deviates.
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3.4.3 No Arbitrage Condition for the White Liar

The proof of Proposition 18 suggests a new equilibrium condition in the white lie

model, no arbitrage condition for the white liar (NAW): at the boundary state of

two partition elements, the white liar must be indifferent between the two induced

actions. This condition is a consequence of the white liar’s flexibility: whenever this

condition does not hold, the white liar can increase the receiver’s utility by adjusting

his report. Together with no arbitrage condition for the biased type (NAB), this

implies that if two actions, and no action in between, are induced by both types in

equilibrium, then both white liar and biased type must be indifferent between the

two actions at their own boundary states.16

3.4.4 Equilibrium Characterization

The following proposition characterizes the set of all equilibria in the white lie model.

Proposition 19 Any equilibrium in the white lie model is characterized by two fi-

nite partitions, {0, θ0
0, θ

0
1, ..., θ

0
n = 1} and {θb

0 = 0, θb
1, ..., θ

b
n = 1}, a finite sequence,

{y1, ..., yn}, and n0 ∈ N ∪ {∞} if θ0
0 > 0 such that17

y1 + 2n0−1
2n0

θ0
0 ≤ 2b if θ0

0 > 0, (ICB)

y1 = 2n0+1
2n0

θ0
0 if θ0

0 > 0, (ICW)

yk + yk+1 = 2(θb
k + b), (NAB)

yk + yk+1 = 2θ0
k, (NAW)

yk = B(µ, θ0
k−1, θ

0
k, θ

b
k−1, θ

b
k). (BR)

16This insight immediately generalizes into the case where there are more than two types. See
Dimitrakas and Sarafidis (2005) for the case with a continuum of sender types.

17Morgan and Stocken (2003) consider the same model and characterize the cases where n0 =
0 (categorial ranking system equilibria) or n0 = ∞ (semiresponsive equilibria). The subsequent
paragraph explains the importance of the additional equilibria we characterize here.
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We first explain the role of n0.
18 Unlike in the honesty model, the receiver does

not simply follow the messages even though she knows that those were sent by the

white liar. To see this, consider the case where µ = 1. In that case, there exists a

perfect communication equilibrium as well as a babbling equilibrium. In addition,

there exist infinitely many equilibria that lie in between. Those equilibria have the

following form: for each natural number n0, the white liar evenly partitions the state

space into n0 subintervals, and the receiver takes actions that are at the average of

each partition element. The even size of partition elements is due to NAW. The

babbling equilibrium and the perfect communication equilibrium can be interpreted

as the limits of these equilibria as n0 tends to 1 and infinity, respectively. When

µ < 1 and for some values of b, there may exist an interval of Θ on which the white

liar is revealed (below θ0
0). That is, the conditional probability that the receiver is

facing the white liar is equal to 1. A similar logic then holds and this is why n0 ∈ N

appears in Proposition 19.

Figure 3.5 illustrates the equilibrium structure. Type i sender induces the receiver

to take an action yk when she observes θ in [θi
k−1, θ

i
k]. The white liar separates from

the biased type when he observes θ in [0, θ0
0]. If n0 <∞ then the white liar induces

the receiver to take an action 2k−1
2n0

θ0
0 when he observes θ ∈ [k−1

n0
θ0
0,

k
n0
θ0
0] (see the left

panel of Figure 3.5). If n0 = ∞ then the white liar induces the receiver to take their

most preferred action when the true state is in [0, θ0
0] (see the right panel of Figure

3.5). The latter case is similar to type I equilibrium in the honesty model.

Among the equilibrium conditions, BR and NAB are straightforward generaliza-

tions of the equilibrium conditions in CS. Also, as we explained, NAW must hold

due to the rationality of the white liar. ICB guarantees that the biased type does

not deviate to any action below y1. Similarly, ICW ensures that the white liar does

not deviate to any action below y1 at state above θ0
0.

19

18The number n0 need not be unique. As n0 increases, so too does the highest action induced
only by the honest sender. Whether equilibrium allows for larger n0 then depends on the incentive
compatibility constraint for the biased sender which depends on the value of b.

19ICW can be understood as another NAW.
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biased type

White Liar

receiver

0 θb
1 1 0 1

θ0
0 θ0

1

y1 y2

0 1θb
1

θ0
0 θ0

1

y1 y2

Figure 3.5: Equilibrium structure in the white lie model. There are two partition

elements below θ0
0 in the left panel (n0 = 2), while the white liar induces her most

preferred action on [0, θ0
0] in the right panel (n0 = ∞).

Example 5 Consider the following strategy profile.

r0 (θ) =







m ∼ U [k−1
n0
θ∗, k

n0
θ∗], if θ ∈ [k−1

n0
θ∗, k

n0
θ∗],

m ∼ U [θ∗, 1], if θ ∈ [θ∗, 1],

rb (θ) = m ∼ U [θ∗, 1], if θ ∈ [0, 1],

y (m) =







2k−1
2n0

, if m ∈ [k−1
n0
θ∗, k

n0
θ∗],

2n0+1
2n0

θ∗, if m ∈ [θ∗, 1],

where

θ∗ =
2n0

2n0 + 1 +
√

4(1 − µ)n2
0 + 4(1 − µ)n0 + 1

.

This strategy profile is an equilibrium if and only if

4n0 + 1

2n0

θ∗ ≤ 2b.

Now we present a way to find the set of equilibria. First, given µ and b, suppose

there exists an equilibrium with n partition elements and θ0
0 = 0. From all equality
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conditions, we find

θb
k = kθb

1 + b(k − 1)

[

2(1 − µ)k + µ− µ(1 − µ)b

θb
1 + µb

]

, k = 2, .., n− 1, (3.1)

θ0
k = θb

k + b,∀k = 1, ..., n− 1,

3θb
n−1 − θb

n−2 + 2b(2 − µ) = 2B(µ, θ0
n−1, θ

0
n, θ

b
n−1, θ

b
n).

Combined with θb
n = θ0

n = 1, this system of equations has a unique solution for each

n. The necessary condition for the existence of this equilibrium is θb
1 > 0. As in CS,

this condition imposes an upper bound on the possible number of partition elements.

Now suppose θ0
0 > 0 and there are n0 partition elements below θ0

0. By a similar

algebra, we get

θb
k = 2kθb

1 +

(k − 1)

[

2(1 − µ)bk − µ(b+ θ0
0)(θ

b
1 + b− θ0

0)

θb
1 + µ(b− θ0

0)

]

, k = 2, .., n− 1 (3.2)

θ0
0 =

2n0

2n0 + 1
B(µ, θ0

0, θ
0
1, 0, θ

b
1),

θ0
k = θb

k + b,∀k = 1, ..., n− 1.

3θb
n−1 − θb

n−2 + 2b(2 − µ) = 2B(µ, θ0
n−1, θ

0
n, θ

b
n−1, θ

b
n)

Again using θb
n = θ0

n = 1, we can identify all equilibrium values. In this equilibrium,

there are two restrictions on the number of partition elements above θ0
0. The first

one is the same as above: θb
1 > 0. As in CS, this condition imposes an upper bound

on the possible number of partition elements. The second condition is the incentive

compatibility for the biased type: θ0
0 = 2n0

2n0+1
y1 ≤ b. This condition imposes a lower

bound on n. Different from the case with θ0
0 = 0, an equilibrium with θ0

0 > 0 exists

only when there are enough number of partition elements above θ0
0.
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3.5 Welfare Comparison

Now we compare the maximal expected utilities the receiver can achieve in the two

models.20

When µ is large

The following proposition establishes that when the sender is honest or a white liar

in each model with sufficiently high probability, the receiver is strictly better off in

the honesty model than in the white lie model.

Proposition 20 Given ε > 0, there exists µ(b) such that if µ > µ(b) then the

expected payoff of the receiver in any equilibrium in the honesty model is ε-close to

that under perfect communication. On the other hand, there exists δ > 0 such that

the maximal expected payoff of the receiver in the white lie model is less than that

under perfect communication at least by δ.

Proof. Suppose µ is close to 1 and consider the honesty model. Fix any strategy

for the biased sender and suppose the receiver simply follows the recommendation of

the sender. That is, suppose the receiver’s strategy is y(m) = m. Then, the receiver

takes her most preferred action with at least probability µ. Since the receiver can

do no worse than this strategy, her ex-ante expected utility is close to that under

perfect communication.

Now consider the white lie model. From Equation (3.1), for θ0
0 = 0, the number

of partition elements is bounded by 1/b + 2, because the left-hand side is less than

1, while the right-hand side is greater than b(n − 2) in the limit as µ tends to 1.

Similarly, from Equation (3.2), the size of partition elements (θ0
k − θ0

k−1) is bounded

20Since there are typically multiple equilibria in each model, unless µ is sufficiently close to 1, our
welfare results do not imply that the receiver will be better off in one model than in the other for
sure. However, we think comparing the maximal utilities is still a meaningful exercise. Not only is
it the standard choice in the literature when there are multiple equilibria without definite Pareto
rankings, but also does it highlight the difference between honesty and white lies in communication,
which is part of our motivation.
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strictly above 0 and so the number of partition elements in [θ0
0, 1] is bounded above

also when θ0
0 > 0. These immediately establish the second part of the proposition.

The intuitions behind this result are as follows. When µ is equal to 1, in the

honesty model, there is a unique equilibrium in which the first-best outcome is

achieved. Therefore, when µ is close to 1, any equilibrium will be close to the perfect

communication. On the other hand, in the white lie model, when µ is equal to 1,

as discussed before, there are infinitely many equilibria, from no communication to

perfect communication. It turns out that the perfect communication outcome in the

white lie model when µ is equal to 0 is not lower hemi-continuous. That is, even

a small probability introduces a non-trivial noise in the white lie model, and thus

the loss from imperfect communication does not vanish even when the sender is the

white liar almost for sure.

When µ is small

Now we consider the case where µ is small, that is, the sender is biased with a high

probability. The following result shows that if µ is sufficiently close to 0, for the

majority of bias values, the receiver is better off in the honesty model than in the

white lie model.21

Proposition 21 Whenever b ∈
(

1
2n(n+1)

, 1
2n(n+0.5)

)

∪
(

1
2n2 ,

1
2n(n−1)

)

for some natural

number n, there exists µ(b) > 0 such that if µ ≤ µ(b) then the receiver’s maximal

utility is weakly greater in the honesty model than in the white lie model.

The key idea of the proof is as follows. For µ small, equilibrium is Type I in

the honesty model. Then, the honesty model and the white lie model (for the cases

where n0 = 0 or n0 = ∞) share equilibrium conditions other than MB for the former

and NAW for the latter. As µ tends to 0, MB becomes negligible and thus imposes

21These intervals cover approximately 79.1% of bias values.
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no restriction on equilibrium outcome. To the contrary, NAW is independent of µ

and thus still binds. Consequently, when µ is sufficiently close to 0, any equilibrium

outcome in the white lie model with the same structure as that of type I equilibrium

can be replicated in the honesty model.22

The following example shows that the receiver can be strictly better off in the

honesty model than in the white lie model.

Example 6 Consider the case where b ∈
(

1
4
, 1

3

)

. When µ is sufficiently close to 0,

the babbling equilibrium is the unique equilibrium in the white lie model (see Lemma

19 in the omitted proofs). To the contrary, in the honesty model, there exists an

equilibrium in which the biased type does not send messages below m0 ∈ (0, 2b− 0.5).

The latter yields a strictly greater receiver utility than the former.

The following proposition is a partial converse to Proposition 21.

Proposition 22 For µ sufficiently close to 0, if b ∈
(

1
2n(n+0.5)

, 1
2n2

)

for some natural

number n, there is an equilibrium in the white lie model whose outcome cannot be

replicated in the honesty model. Also, for a fixed (small) µ there exists a b̄n(µ) such

that for b ∈ [ 1
2n(n+1)

, b̄n(µ)] there exists an equilibrium in the white model whose

outcome cannot be replicated in the honesty model.

The two cases have different reasons. For µ positive, if b is slightly greater

than one of CS critical values, the number of partition elements increases, but such

increase is faster in the white lie model than in the honesty model. Therefore, there

may be an (n + 1)-partition-element (above θ0
0) equilibrium in the white lie model,

while the maximal number of partition elements is still n in the honesty model.

22In the omitted proofs, we show that if b ∈
(

1
2n(n+1) ,

1
2n(n+0.5)

)

, when µ is close to 0, there

does not exist an equilibrium in the white lie model in which n0 > 1 (Lemma 19). In addition,

if b ∈
(

1
2n2 , 1

2n(n−1)

)

, then it is possible that n0 > 1. However, we show in this region of b, for a

finite n0, there exists a corresponding equilibrium in the honesty model in which the biased sender’s
behavior is unchanged and the fully revealing subintervals of the white liar are replaced by perfect
communication with the honest sender. Such an equilibrium yields strictly higher utility to the
principal (Lemma 20).
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For b ∈
(

1
2n(n+0.5)

, 1
2n2

)

, there is an equilibrium with a finite number of partition

elements below θ0
0 > 0 whose outcome cannot be replicated in the honesty model.

The reason for this is that in the honesty model, for all states in which the honest

sender is revealed, there is full communication. Meanwhile, in the white lie model,

in equilibria where n0 < ∞, the states in which the white liar is revealed exhibit

imperfect communication. The full communication with the honest sender below

θ0
0 implies more equilibrium actions and imposes greater restrictions on the biased

sender to not deviate. To see this, notice that θ0
0 = 2n0

2n0+1
y1 in an equilibrium with

n0 positive and finite. For this to be an equilibrium, the biased type must prefer

to induce y1 to 2n0−1
2n0+1

y1 at state 0. If we try to replicate the equilibrium outcome

in the honesty model by setting m0 = θ0
0, the biased type must now prefer y1 to

θ0
0 = 2n0

2n0+1
y1 >

2n0−1
2n0+1

y1, which cannot be the case when b ∈
(

1
2n(n+0.5)

, 1
2n2

)

and n0

takes its largest possible value.

White lies are sometimes preferred

Proposition 22 does not establish that when b satisfies conditions in the proposition

the receiver is necessarily better off in the white lie model. We show for the special

case of n = 1 that white lies may or may not be preferable to honesty in such

conditions and explain its underlying reason.23

Consider the case where b ∈
(

1
3
, 1

2

)

. Given µ and b, let UW (µ, b) and UH(µ, b)

be the maximal receiver utilities in the white lie model and in the honesty model,

respectively. When µ is sufficiently close to 0, there can exist only one partition

23Numerical analysis suggests that the considerations for the n = 1 yield the same conclusions
for the case where n > 1, though we are unable to prove the result analytically.
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element above θ0
0 and m0 in each model.24 Therefore,

UW (µ, b) = −µ
[

n0
∑

k=1

∫ k
n0

θ0
0

(k−1)
n0

θ0
0

(

θ − (2k − 1)

2n
θ0
0

)2

dθ +

∫ 1

θ0
0

(θ − y1)
2dθ

]

−(1 − µ)

∫ 1

0

(θ − y1)
2dθ,

where n0 is the maximal number of partition elements below θ0
0. Also,

UH(µ, b) = −µ
∫ 1

m0

(θ − y1)
2dθ − (1 − µ)

∫ 1

0

(θ − y1)
2dθ,

where m0 is the largest value subject to the incentive compatibility of the biased

sender. Then,25

lim
µ→0

∂UW (µ, b)

∂µ
= −



n0

∫

θ0
0

n0

0

(

θ − θ0
0

2n

)2

dθ +

∫ 1

θ0
0

(θ − y1)
2 dθ



−
∫ 1

0

(θ − y1)
2 dθ,

lim
µ→0

∂UH(µ, b)

∂µ
= −

∫ 1

2b−y1

(θ − y1)
2 dθ −

∫ 1

0

(θ − y1)
2 dθ.

As µ tends to 0, y1 converges to 1
2
, n0 to the largest integer that is weakly smaller

than b
1−2b

, θ0
0 to n0

2n0+1
, and m0 to 2b− y1. Hence,

lim
µ→0

∂UW (µ, b)

∂µ
− lim

µ→0

∂UH(µ, b)

∂µ
= −n0

∫

θ0
0

n0

0

(

θ − θ0
0

2n0

)2

dθ +

∫ θ0
0

2b−y1

(θ − y1)
2 dθ.

(3.3)

The two terms in Equation (3.3) show that when µ is sufficiently close to 0, the

difference between equilibrium welfare in the two models arises from the outcomes

when the sender is not biased and the state is in [0, θ0
0]. In the honesty model, when

the sender is honest, perfect communication occurs on [0, 2b − y1] and y1 is taken

on [2b − y1, θ
0
0] (see the right panel of Figure 3.6). In the white lie model, a finite

24One can easily show that when the biased type induces a single action in the honesty model, the
welfare maximizing equilibrium strategy profile satisfies both convexity and monotonicity. There-
fore, the restriction to such equilibria in the welfare comparison is without loss of generality.

25The terms involving ∂y1

∂µ
vanish as µ → 0.
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UR(y, θ)

0 y1θ0
0y0

UR(y, θ)

0 y1θ0
02b− y1

Figure 3.6: The receiver’s ex post utilities in the white lie model (left) and in the

honesty model (right) when b ∈
(

1
2n(n+0.5)

, 1
2n(n+0.2)

)

, the sender is either honest or

a white liar, and µ is sufficiently small.

number of actions that are uniformly distributed are taken on [0, θ0
0] (see the left

panel of Figure 3.6). The first term represents the losses in the white lie model due

to imperfect communication between the white liar and the receiver, while the second

term represents the excessive losses in the honesty model due to the honest sender’s

inflexibility. Perfect communication must occur whenever the receiver knows that

the sender is honest. Therefore, it is harder in the honesty model to deter the biased

sender from deviating to lower messages than in the white lie model. As shown in

Figure 3.6, the latter can be relatively large because of the concavity of quadratic

utility function.

Figure 3.7 shows when white lies are preferable to honesty for µ sufficiently close

to 0. Each jump in welfare corresponds to a jump in the maximum possible n0.

As b increases, the maximum n0 is locally constant and consequently, the maximum

welfare in the white lie model is fixed. However, the maximum welfare in the honesty

model increases, as higher b allows for a larger region of perfect communication with

the honest sender. Thus, the negative welfare effect in the honesty model arising

from the quadratic utility loss shrinks as b increases. For some ranges of b, this

allows for a higher maximum welfare under the honesty model.
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Figure 3.7: Welfare comparison for b ∈ (1/3, 1/2) when µ is sufficiently small.

Intermediate Cases

For intermediate values of µ, we explain the underlying reasons why the receiver

can be better off in the honesty model than in the white lie model. We support our

arguments by providing some numerical examples.26

In the intermediate case, the welfare gain in the honesty model mainly comes

from reducing the excessive losses in communication due to strategic considerations

of players. To see this, recall that in the original CS game, partition element size

increases for higher θ. This is true in the white lie model as well, though the increase

in partition element size is decreasing in µ. In the honesty model, however, this is

not necessarily true. The inequality property of MB does not require that partition

element sizes increase in the honesty model as they must in the white lie model.

Partition elements can be adjusted (as long as all MB constraints are satisfied) so

that higher partition elements need not be larger than lower partition elements.

This has the consequence of allowing better communication in the honesty model at

26The analytical difficulty for intermediate cases lies in characterizing the set of equilibria in the
honesty model. The set of equilibria is very large (due to the inequalities of MB), not convex (IC is
necessary only when m0 > 0), and possibly not closed (due to m0 < m1 < .. < mn). Furthermore,
we cannot fix the dimension of control variables, because the maximal number of partition elements
is not analytically available.
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higher θ values where the welfare losses were largest in the white lie model.

The first consequence of this is that such a freedom in the honesty model allows for

more uniform partition element sizes by manipulating the partitioning of the message

space. While this may reduce the expected welfare conditional on the sender being

honest, it also makes the biased type’s partitioning more uniform, which is directly

beneficial to the receiver due to the concavity of quadratic utility function. This

effect is highlighted in Example 7.

Example 7 Suppose b = 0.15 and µ = 0.1. In the white lie model, there exist 2-

partition-element equilibria for each n0 ∈ N ∪ ∞ and the equilibrium yielding the

maximal receiver utility, -0.0392, is characterized by

θ0 = {0.126, 0.371, 1}, θb = {0, 0.221, 1}, y = {0.126, 0.617}, and n0 = ∞.

The ex-ante expected loss from communication with the white liar and biased sender

are −0.0029 and −0.0363, respectively. In the honesty model, there exists a 2-

partition-element equilibrium that is characterized by

m = {0.138, 0.575, 1}, θb = {0, 0.2478, 1}, y = {0.162, 0.634}.

In this equilibrium, the receiver achieves utility −0.0374 where the ex-ante loss from

communication with the honest and biased senders are −0.004 and −0.0335, respec-

tively.

The second consequence of allowing for more uniform partition element sizes is

that as µ increases, the maximal number of partition elements increases faster in the

honesty model than in the white lie model. In the white lie model, the increasing

partition element sizes for both white liar and biased sender inhibit the ability for

larger number of partition elements. In the honesty model, smaller mass from the

honest sender may be placed on higher messages, raising the higher actions, shrink-

ing the largest partition elements, and allowing for greater number of intermediate

equilibrium actions. This is illustrated in Example 8.
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Example 8 Consider the case where b = 1/12 and µ = 1/4. The largest number

of partition elements (above θ0
0) in the white lie model is 3 and any n0 ∈ N ∪∞ is

possible, with n0 = ∞ yielding the maximal receiver utility. There exists a 5-partition

equilibrium in the honesty model that is characterized by

m = {0.083, 0.228, 0.539, 0.756, 0.796, 1},
θb = {0, 0.083, 0.263, 0.387, 0.565, 1},
y = {0.083, 0.250, 0.443, 0.498, 0.798}.

Note that the partition element sizes for the biased sender are 0.083, 0.180, 0.124, 0.178

and 0.435, respectively. If we consider any 5-partition equilibrium in the white lie

model, then it must be that the third and fourth partition elements increase in size

by 4b(1 − µ) = 1/4 from the preceding element. Relative to honesty, this is a con-

straining factor in allowing partition equilibria with greater number of elements as µ

increases. The maximal receiver utility in the white lie model is −0.0198, while it is

−0.0147 in the honest model.

3.6 Discussion

3.6.1 Generalization

All our analyses have been performed under a convenient uniform-quadratic envi-

ronment. We discuss to what extent our results can generalize.

All of our qualitative results, including our analytical welfare results, immediately

generalize to the class of utility functions that satisfy the following three properties:

1. UR(·, θ) and US(·, θ, b) are symmetric and strictly concave around yR (θ) and

yS (θ, b),

2. yS (θ, b) − yR (θ) = b for all θ,
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3. UR(y, θ) = UR(y + (θ′ − θ) , θ′), US(y, θ, b) = US(y + (θ′ − θ) , θ′, b),∀y,∀θ,

where yR (θ) = arg maxy U
R(y, θ) and yS (θ, b) = arg maxy U

S(y, θ, b). One can check

that we have used only these properties in the equilibrium characterization and

analytical welfare comparison.

Regarding the distribution over the state space, the only non-trivial problem is

how to generalize the mass balance condition. A closed-form mass balance condition

is not available for the general distribution, but a partial characterization is still

possible.

Suppose θ ∈ [0, 1] is drawn from a distribution function F with a positive and

continuous density f . Fix µ ∈ (0, 1) and [θ′, θ′′] , [m′,m′′] ⊆ [0, 1]. Let

y =
µ (F (m′′) − F (m′))

µ (F (m′′) − F (m′)) + (1 − µ) (F (θ′′) − F (θ′))
E [θ|θ ∈ [m′,m′′]]

+
(1 − µ) (F (θ′′) − F (θ′))

µ (F (m′′) − F (m′)) + (1 − µ) (F (θ′′) − F (θ′))
E [θ|θ ∈ [θ′, θ′′]] .

We want to know under what conditions there exists a collection of probability

measures {r (θ) , θ ∈ [θ′, θ′′]} ⊂ ∆ ([m′,m′′]) such that

Eµ,r[θ|M] = y,∀m ∈ (m′,m′′), for any Borel set M in [m′,m′′].

Suppose such a collection {r (·)} exists. Define γ : ∆ ([m′,m′′]) → [0, 1] by

γ (M) =

∫ θ′′

θ′
r (θ) (M) dF (θ) , for all Borel set M ⊂ [m′,m′′] .

In addition, define γ1, γ2 : [m′,m′′] → [θ′, θ′′] so that

y =
µ (F (m) − F (m′))

µ (F (m) − F (m′)) + (1 − µ) (F (θ′′) − F (γ1 (m)))
E [θ|θ ∈ [m′,m]]

+
(1 − µ) (F (θ′′) − F (γ1 (m)))

µ (F (m) − F (m′)) + (1 − µ) (F (θ′′) − F (γ1 (m)))
E [θ|θ ∈ [γ1 (m) , θ′′]] ,

and

y =
µ (F (m′′) − F (m))

µ (F (m′′) − F (m)) + (1 − µ) (F (γ2 (m)) − F (θ′))
E [θ|θ ∈ [m,m′′]]

+
(1 − µ) (F (γ2 (m)) − F (θ′))

µ (F (m′′) − F (m)) + (1 − µ) (F (γ2 (m)) − F (θ′))
E [θ|θ ∈ [θ′, γ2 (m)]] .

121



Both γ1 and γ2 must be well-defined if a collection {r (·)} exists. In addition,

γ([m′,m]) ≥ γ1 (m) and γ([m,m′′]) ≥ γ2 (m) for all m ∈ [m′,m′′]. Since γ([m′,m])+

γ([m,m′′]) = F (θ′′) − F (θ′), this condition implies that

γ1 (m) + γ2 (m) ≤ F (θ′′) − F (θ′) ,∀m ∈ [m′,m′′] .

Of particular interest is when this condition holds with equality for all m ∈
[m′,m′′], that is, γ1 (m) + γ2 (m) = F (θ′′)−F (θ′) ,∀m ∈ [m′,m′′]. In this case, r (θ)

is a degenerate random variable and r−1 coincides with γ1. Furthermore, γ1 satisfies

the following first-order ordinary differential equation:

(1 − µ) f (γ1 (m)) (γ1 (m) − y) γ′1 (m) = µf (m) (m− y) ,∀m ∈ [m′,m′′] ,

with boundary conditions, γ1 (m′) = θ′′ and γ1 (m′′) = θ′. For the uniform distribu-

tion, this happens when µ (m′′ −m′)2 = (1 − µ) (θ′′ − θ′)2, and

γ1 (m) = θ′′ − θ′′ − θ′

m′′ −m′ (m−m′) ,

which was used in Section 3.3.

3.6.2 Equilibrium Selection

Chen, Kartik, and Sobel (2008) show that the limit of message-monotone equilibria

as the probabilities of the honest sender and the naive receiver vanish satisfies NITS

(Proposition 5 in their paper), and thus the behavioral perturbation provides a way

to select the most informative equilibrium in CS. They note that the monotonicity

restriction on equilibrium strategies is necessary for the result. Our analysis (in par-

ticular, Proposition 16) suggests that the selection through behavioral perturbation

may fail once other equilibria are considered. Of course, the answer is not definite

because the naive receiver is absent in our model, while the presence of the naive

receiver introduces an intrinsic cost of lying and thus may dramatically change the

set of equilibria. One can attempt to examine this issue by building upon this paper
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and other relevant papers (in particular, Ottaviani and Squintani (2006), Kartik,

Ottaviani, and Squintani (2007), and Chen (2009)).

3.7 Omitted Proofs

Proof of Lemma 15. Let z+(θ′, b) = limθ→θ′+ z(θ, b), z
−(θ′, b) = limθ→θ′− z(θ, b).

(⇒) (i) z(·, b) is nondecreasing.

Suppose z(·, b) is strictly decreasing on (θ1, θ2) with θ1 < θ2. For z(·, b) to be

incentive compatible, US(z(θ1, b), θ1, b) ≥ US(z(θ, b), θ1, b) and US(z(θ2, b), θ2, b) ≥
US(z(θ, b), θ2, b) for all θ ∈ Ω. Since z(·, b) is strictly decreasing on (θ1, θ2), z(·, b)
is continuous except countably many points. Pick some θ ∈ (θ1, θ2) at which z(·, b)
is continuous. If ∂US(z(θ, b), θ, b)/∂y 6= 0, then the strategic sender has a profitable

deviation (If ∂US(z(θ, b), θ, b)/∂y > (<)0 then the strategic sender deviates to θ′ <

(>)θ). Hence ∂US(z(θ, b), θ, b)/∂y = 0 almost everywhere on (θ1, θ2). But this is a

contradiction because we assumed that z(·, b) is strictly decreasing on (θ1, θ2).

(ii) V S(·, b) is continuous.

Suppose V S(·, b) is not continuous at θ′ ∈ (0, 1). Then z(·, b) cannot be continuous

at θ′. Since z(·, b) is nondecreasing, this means z(·, b) has jump at θ′. Pick θ− and

θ+ sufficiently close to θ′ where θ− < θ′ < θ+. We have the following three cases: (1)

z(θ+, b) ≤ θ′ + b, (2) z(θ−, b) < θ′ + b < z(θ+, b) and (3) θ′ + b ≤ z(θ−, b). In case (1),

the strategic sender has an incentive to deviate at θ−, while he does at θ+ in case

(3). In case (3), no type has an incentive to deviate only when limθ→θ′+ V
S(θ, b) =

limθ→θ′− V
S(θ, b). Hence V S(·, b) is continuous.

(iii) If z1(θ, b) exists, then US
1 (z(θ, b), θ, b) · z1(θ, b) = 0.

The differentiability of z at θ implies the differentiability of V S(·, b) at θ, because

V S(θ, b) = US(z(θ, b), θ, b). By the Envelope theorem,

∂US(z(θ, b), θ, b)

∂y

∂z(θ, b)

∂θ
= 0.
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(⇐) We want to show that US(z(θ′′, b), θ′′, b) ≥ US(z(θ′, b), θ′′, b) for all θ′, θ′′ ∈ Ω.

US(z(θ′′, b), θ′′, b) − US(z(θ′, b), θ′′, b) = [US(z(θ′′, b), θ′′, b) − US(z(θ′, b), θ′, b)]

−[US(z(θ′, b), θ′′, b) − US(z(θ′, b), θ′, b)]

=

∫ θ′′

θ′

∂V S(θ, b)

∂θ
dθ −

∫ θ′′

θ′
US

2 (z(θ′, b), θ, b)dθ

=

∫ θ′′

θ′
US

2 (z(θ, b), θ, b)dθ −
∫ θ′′

θ′
US

2 (z(θ′, b), θ, b)dθ

=

∫ θ′′

θ′

[

∫ z(θ,b)

z(θ′,b)

US
12(z(t, b), θ, b)dz

]

dθ.

V S is absolutely continuous via application of an Envelope theorem for this environ-

ment ( see Milgrom and Segal (2002)).

If θ′′ > θ′, then z(θ, b) ≥ z(θ′, b),∀θ ∈ [θ′, θ′′], and so US(z(θ′′, b), θ′′, b) −
US(z(θ′, b), θ′′, b) ≥ 0. Similarly, if θ′′ < θ′, then z(θ, b) ≤ z(θ′, b),∀θ ∈ [θ′, θ′′],

and again US(z(θ′′, b), θ′′, b) − US(z(θ′, b), θ′′, b) ≥ 0. Q.E.D.

Proof of Lemma 16. (⇐) For each θ, consider the following probability mea-

sure.

r(θ) =







m′′−m′

θ′′−θ′
(θ′′ − θ) +m′, with probability µ

1−µ

(m′′−m′)2

(θ′′−θ′)2
,

m ∼ U [m′,m′′], with probability 1 − µ

1−µ

(m′′−m′)2

(θ′′−θ′)2
.

This probability measure is well-defined when µ(m′′−m′)2 ≤ (1−µ)(θ′′−θ′)2. Then

for any m ∈ [m′,m′′],

Eµ,r[θ|m] =
µ (m′′ −m′)

µ (m′′ −m′) + (1 − µ) (θ′′ − θ′)
m

+
(1 − µ) (θ′′ − θ′)

µ (m′′ −m′) + (1 − µ) (θ′′ − θ′)

µ

1 − µ

(m′′ −m′)2

(θ′′ − θ′)2

(

θ′′ − θ′′ − θ′

m′′ −m′ (m−m′)

)

+
(1 − µ) (θ′′ − θ′)

µ (m′′ −m′) + (1 − µ) (θ′′ − θ′)

(

1 − µ

1 − µ

(m′′ −m′)2

(θ′′ − θ′)2

)

θ′′ + θ′

2

= B(µ,m′,m′′, θ′, θ′′).
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(⇒) Let m∗ ∈ [m′,m′′] be the value such that m∗ −m′ = m′′ −m∗ . Let θ∗ be the

value such that

B(µ,m′,m∗, θ∗, θ′′) = B(µ,m′,m′′, θ′, θ′′).

Such θ∗ is well-defined if and only if µ (m′′ −m′)2 ≤ (1 − µ) (θ′′ − θ′)2.

Suppose there exists a collection of probability measures, {r (θ) , θ ∈ [θ′, θ′′]},
that satisfies the given property. Then by construction,

∫ θ′′

θ′
r (θ) ([m′,m∗])dθ ≥ θ′′ − θ∗.

Therefore, θ∗ must be well-defined, which is true only when

µ (m′′ −m′)
2 ≤ (1 − µ) (θ′′ − θ′)

2
.

Q.E.D.

Proof of Proposition 17: Given that we excluded both non-convex and non-

monotone strategy profiles, the only equilibrium structure that may not be either

type I or type II is the one with more than one intervals of states on which the

biased type induces his more preferred action. The following lemma establishes that

it cannot be the case and thus completes the proof.

Lemma 17 Fix θ0 ∈ (0, 1 − b/µ) and m0 = θ0 + b/µ. There cannot exist θ ∈ [0, θ0)

and m ∈ [0,m0) such that B(µ,m,m0, θ, θ0) = θ0 + b.

Proof. Suppose not. Then for some θ and m,

θ0+b =
µ (m0 −m)

µ (m0 −m) + (1 − µ) (θ0 − θ)

m+m0

2
+

(1 − µ) (θ0 − θ)

µ (m0 −m) + (1 − µ) (θ0 − θ)

θ + θ0

2

Re arranging terms,

θ2
0 − 2 (µm+ (1 − µ) θ − b) θ0 + 2b (b− µm− (1 − µ) θ) − b2

µ
+ µm2 + (1 − µ) θ2

=
[

θ2
0 − (µm+ (1 − µ) θ − b)

]2
+ µ (1 − µ)

[

(m− θ)2 −
(

b

µ

)2
]

= 0
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For the solution to exist, the right-hand side should be not more than 0 when θ0 =

µm+ (1 − µ) θ − b. But in that case,

(m− θ)2 −
(

b

µ

)2

=
1

µ2

[

(θ0 − θ)2 + 2b (θ0 − θ)
]

> 0.

Hence there cannot exist such θ and m.

Q.E.D.

Proof of Proposition 19: Take any equilibrium in the white lie model. Due to

the flexibility of the white liar, the biased sender cannot induce his most preferred

action on a positive measure of states.

Now let Θ∗ be the set of states on which the white liar induces actions that are

not induced by the biased sender and let θ be the supremum of Θ∗. θ is less than or

equal to any equilibrium action induced by the biased sender, otherwise there would

be some state at which the biased sender would deviate to induce it. In addition, Θ∗

is convex. This is because by part (i) of Lemma 15, the white liar induces a (weakly)

lower action than θ at any state θ < θ.

All other arguments are straightforward from equilibrium necessary conditions.

Q.E.D.

Proof of Proposition 21:

The following three lemmas establish the proof of the proposition.

Lemma 18 Suppose b 6= 1
2n(n−1)

. If µ is sufficiently close to 0, for any equilibrium

in the white lie model in which θ0
0 = 0 (that is, n0 = 0) or the white liar induces

his more preferred actions on [0, θ0
0] (that is, n0 = ∞), there exists a corresponding

equilibrium in the honesty model which yields the same outcome.

Proof. Notice that all partition element sizes for the white liar are less than or

equal to the partition element sizes for the biased sender except the first partition

element, because θ0
k = θb

k + b,∀k = 1, .., n− 1. Therefore, given an equilibrium in the

126



white lie model, MB trivially holds for all but the first partition element as long as

µ ≤ 1/2.

Suppose that as µ→ 0, θb
1 → θ̄ > 0. Then the proof is immediate as any equilib-

rium outcome in the white lie model {θb, θ0, y} can be replicated as an equilibrium

in the honest model for µ sufficiently small.

Now consider the case in which θb
1 → 0. First, suppose θ0

0 = 0. It is straight-

forward to show that θb
1 → 1−2n(n−1)b

n
. Therefore, θb

1 → 0 only when b is a critical

CS value. Second, suppose θ0
0 > 0. Let θ0

0 → θ̄0 and consider the case where

θb
1 → 0. Then θb

n → 2(nb − θ̄0)(n − 1) = 1 so that θ̄0 = 2(n−1)nb−1
2(n−1)

. Respecting

θ0
0 ≤ y2 and noting that limµ→0 y2 = θb

2/2 and limµ→0 θ
b
2 = 1−2n(n−1)b

n
it must be

that 2n(n−1)b−1
2(n−1)

≤ 1−2n(n−1)b
2n

. Combined with the fact that θ̄0 ≥ 0, this implies that,

b = 1
2n(n−1)

.

Lemma 19 For b ∈
(

1
2n(n+1)

, 1
2n(n+0.5)

)

, if µ is sufficiently small, there is no equi-

librium in the white lie model in which there are n partition elements in the biased

sender’s strategy and the white liar separates from the biased sender on a positive

measure of states, that is, θ0
0 = 0 in any equilibrium with n partition elements above

θ0
0 in the white lie model.

Proof. Suppose θ0
0 > 0 and let y1 be the lowest action induced by the biased

sender. By the incentive compatibility of the biased sender, θ0
0 = 2n0

2n0+1
y1 ≤ b. This

condition does not hold for any n0 ≥ 1 if and only if y1 > 1.5b. When µ is sufficiently

close to 0, the strategies of the biased sender and the receiver are close to those of

CS, and thus y1 ≃ 1/(2n) + b(1 − n) (see Crawford and Sobel (1982), Section 4).

Applying this result to y1 > 1.5b, we get the condition in the lemma.

Lemma 20 For b ∈
(

1
2n2 ,

1
2n(n−1)

)

, if µ is sufficiently small, for any equilibrium in

the white lie model, there exists a corresponding equilibrium in the honesty model

which yields a weakly better utility to the receiver.
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Proof. If b ∈
(

1
2n2 ,

1
2n(n−1)

)

, for µ sufficiently small, then the lowest action

induced by the biased sender, y1, is smaller than b. Then, the biased sender has no

incentive to deviate to below θ0
0, even though the receiver perfectly trusts messages

below θ0
0. Then consider a type I strategy profile that inherits all the properties

of the original white lie equilibrium except that the receiver follows the sender’s

recommendation whenever the message is below θ0
0 (that is, set m0 = θ0

0). This is

obviously an equilibrium in the honesty model and yields at least as much utility to

the receiver as the original white lie equilibrium.27

Q.E.D.

Proof of Proposition 22: We first prove the first half of the statement. Suppose

µ is arbitrarily close to 0 and 2n0+3
2n0+2

b < y1 ≤ 2n0+1
2n0

b for some natural number n0.

Then there exists an equilibrium in which there are n0 partition elements below θ0
0.

In such an equilibrium, θ0
0 = 2n0

2n0+1
y1. This equilibrium outcome cannot be replicated

in the honesty model, because m0 ≤ 2b−y1 due to the incentive compatibility of the

biased sender, while θ0
0 > 2b − y1 by construction for the case with n0 = 1). Since

this argument holds for any natural number n0, there is an equilibrium with θ0
0 > 0

whose outcome cannot be replicated in the honesty model when b < y ≤ 1.5b, whose

condition coincides with b ∈
(

1
2n(n+0.5)

, 1
2n2

)

.

Next, we prove the case where b is greater but sufficiently close to 1
2n(n−1)

. For

small but positive µ, there exists an n-partition equilibrium in the white lie model

with θb
1 small but positive. MB requires that µ(θb

1 + b−θ0
0)

2 ≤ (1−µ)(θb
1)

2. We show

that this condition does not hold when b = 1
2n(n−1)

. By continuity, the condition

does not hold for b is greater but sufficiently close to 1
2n(n−1)

as well.

Fix µ close to 0. From Equation (3.1), we know that θb
1 satisfies

1 = nθb
1 + (n− 1)

[

2 (1 − µ)nb+ µb− µ (1 − µ) b2

θb
1 + µb

]

.

27If n0 < ∞ (n0 = ∞), then the new equilibrium yields a strictly greater (the same) utility to
the receiver.
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Since b = 1
2n(n−1)

,

1 = nθb
1 + (1 − µ) +

µ

2n
− µ (1 − µ)

2n (n− 1) θb
1 + µ

1

2n
.

Arranging terms,

µ
[

2n (n− 1) (2n− 1) θb
1 + µ (2n− 1) + (1 − µ) − 2n2θb

1

]

= 4n3 (n− 1)
(

θb
1

)2
.

When µ is close to 0, θb
1 is also close to 0 because b is near a critical value, and

µ ≈ 4n3 (n− 1)
(

θb
1

)2
.

Therefore,

µ(θb
1 + b− θ0

0)
2 ≈ 4n3 (n− 1)

(

θb
1

)2 1

4n2 (n− 1)2 =
n

n− 1

(

θb
1

)2

>
(

θb
1

)2
> (1 − µ)(θb

1)
2.

Q.E.D.
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