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ABSTRACT 
 

THE DESIGN, SYNTHESIS, AND BIOLOGICAL EVALUATION OF STEROID-DERIVED 

INHIBITORS OF THE SONIC HEDGEHOG SIGNALING PATHWAY 

 

Lyndsay M. Leal 

 

Jeffrey D. Winkler 

 

The Sonic Hedgehog (SHH) signaling pathway is required during embryogenesis for cell 

differentiation and growth; however, medulloblastoma, a pediatric malignancy in the cerebellum, 

as well as glioblastoma multiforme (GBM), a malignant and invasive adult brain tumor, also 

require SHH signaling for growth. As SHH signaling remains inactive in healthy adult cells, this 

pathway provides an excellent target for chemotherapeutics. Cyclopamine, a naturally occurring 

alkaloid, inhibits the SHH pathway at the level of Smoothened (SMO) and has demonstrated 

reduced tumor growth in vivo. However, this alkaloid is metabolically unstable. Analysis of the 

hydrophobic core of cyclopamine revealed a similarity to the steroidal ABCD ring system.  Using 

estrone as a hydrophobic surrogate, we have synthesized readily accessible and metabolically 

stable analogs to inhibit the SHH pathway. Using computational analysis in conjunction with high-

throughput biological evaluation, we are continuing to design and synthesize novel antagonists of 

the SHH pathway in hopes to further understand the binding pocket of SMO. To this end, we 

have made significant progress towards elucidating which aspects of the molecules may be 

required for potency and have identified a new class of compounds that exhibit potency ten times 

that of cyclopamine. 
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Chapter 1. The Sonic Hedgehog Pathway 

!

Section 1.1 Overview of the Sonic Hedgehog (SHH) Pathway 

!

1.1.1 Discovery of the Hedgehog (Hh) Signaling Pathway 

For the majority of the 20th century, it was not well understood how a developing 

embryo could temporally and spatially differentiate at the cellular level. In 1980, 

Nüsslein-Volhard and Wieschaus discovered over a dozen individual genes that altered 

the segmentation patterns in the larva of the fruit fly, Drosophila melanogaster. The 

genes they identified were determined to be essential for proper embryonic 

development, and the associated proteins were classified as the Hedgehog (Hh) 

signaling pathway.1 Using genetic sequence alignment, Echelard and coworkers 

discovered three homologous genes in mice: Desert Hedgehog (Dhh), Indian Hedgehog 

(Ihh) and Sonic Hedgehog (Shh).2 Shh was reported to be the most widely expressed 

homolog and is involved in key aspects of embryological development.  

 

1.1.2 Role of Sonic Hedgehog (SHH) Pathway in Embryogenesis 

Since their discovery and isolation, the various proteins associated with the 

Hedgehog (Hh) signaling pathway have been recognized as key components of cellular 

differentiation and growth. The most widely studied Hh homolog, Shh, has been linked to 

patterning of the neuronal tube as well as many other biological processes.3 Levin and 

coworkers determined that the SHH pathway is responsible for the light-to-right axis of 

symmetry in developing chick embryos.4 It has been shown that disruptions of the SHH 
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pathway result in severe embryonic malformations. These malformations range from 

minor disruption of bilateral symmetry to cyclopia, the most severe aberration.5  

The SHH signaling pathway consists of two key transmembrane proteins, 

multiple intracellular proteins, and numerous nuclear targets (Figure 1.1).  To begin the 

signal transduction, a functional HH protein is released from a parent cell. The HH 

protein is modified at both the N- and C- termini by the addition of a palmitic acid and 

cholesterol, respectively. This dually lipidated protein can then bind to the extracellular 

surface and activate the twelve-pass transmembrane receptor protein Patched (PTC).6 

Once activated, PTC releases its inhibitory hold on seven-pass transmembrane protein 

Smoothened (SMO).7,8  

 

Figure 1.1 Proteins and Cellular Targets of the Sonic Hedgehog Pathway 
 

It is believed that the binding of HH to PTC initiates the translocation of SMO 

from an intracellular vesicle to the cell surface.3 On the cell surface, the cytosolic tail of 
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SMO is phosphorylated which allows for the mediation of the downstream cytosolic 

events. Once activated, SMO will signal cytosolic proteins such as Supressor of Fused 

(SUFU) and glioma (GLI). After activation, the GLI proteins are internalized into the 

nucleus where they can act as transcription factors. Once all necessary nuclear proteins 

are sequestered, the transcription of the Gli genes will begin promoting cellular growth 

and differentiation.9  

 

 

1.1.3 The Link Between Sonic Hedgehog Pathway and Cancer  

Shortly after the discovery of the above-mentioned signaling pathway, it was 

quickly determined that Hedgehog plays a key role in embryonic pattern formation, 

including bilateral symmetry. Interestingly, the activation of the Hedgehog pathway is 

only necessary for embryogenesis and modest tissue homeostasis in adult cells. 

However, aberrant activation of the pathway was linked to tumor initiation and growth. 

Up-regulation of the SHH pathway has been associated with both basal cell carcinoma 

(BCC)10,11 and medulloblastoma, as well as numerous other cancers (lung, gastric, 

pancreatic, and prostate).12  

In the 1960’s, scientists identified a familial variant of basal cell carcinoma, a 

non-invasive skin cancer that often results in disfigurement and destruction of surround 

tissues.13 This familial variant is known as Gorlin’s Syndrome, or Nevoid Basal Cell 

Carcinoma Syndrome. Using a genetic screen, it was later determined that mutations in 

the Ptc1 protein were the common link between these two forms of skin cancer.14 These 

mutations prevent Ptc from inhibiting Smo, which results in a constitutively activated 

SHH pathway. Like the inherited variant of BCC, point mutations along the SHH pathway 

have been shown to be responsible for a large portion of sporadic BCC’s. BCC is the 
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most common form of cancer in the Western hemisphere, and with a growth rate of over 

one million new cases annually, there is a high demand for novel chemotherapeutics.  

Similar to BCC, medulloblastoma, a pervasive pediatric brain cancer that 

develops in the cerebellum, has been associated with genetic mutations throughout the 

SHH pathway.  During the development of the cerebellum, the SHH pathway is 

responsible for neuronal differentiation that leads to the proliferation of cerebellar 

granular neuronal precursor (GNP) cells.  Using a mouse model, Scott and coworkers 

showed the relationship between Ptc and gli and the development of medulloblastoma.15 

Furthermore, blockage of the Hedgehog pathway resulted in inhibition of cancer cell 

growth and reduced tumor size.12 This study strongly suggests that inhibitors of the 

Sonic Hedgehog Pathway could serve as anti-cancer targets.  

 

Section 1.2 The Inhibition of the Sonic Hedgehog Pathway 

!

1.2.1 Discovery of the Alkaloid Cyclopamine 

 During a drought in the summer of 1957, a herd of sheep was forced to search 

for food at higher elevation. After the drought was over, the sheep that were pregnant 

during these periods of dry climate gave birth to offspring that exhibited many congenital 

cranial abnormalities.16 After this discovery, scientists spent over ten years searching for 

the cause. By feeding pregnant sheep with a variety of plants native to higher elevations, 

it was later determined that Veratrum californicum, a California corn lily, contained the 

tetratogenic alkaloids responsible for this phenotype.17 In 1968, Keeler successfully 

isolated the major alkaloids from the plant: veratramine, alkaloid Q,18 and cyclopamine 
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(Figure 1.2). After feeding studies, it was determined that cyclopamine was responsible 

for the plant’s teratogenic effects.19,20 

 

 

Figure 1.2 Structures of the Veratrum californicum Alkaloids 

 

After further experimentation, it was found that there were, in fact, three 

structurally related alkaloids that induced cyclopia: jervine (1), cycloposine, and 

cyclopamine (2) (Figure 1.2). The latter was structurally related to jervine, and based on 

crude analysis, it was predicted to be steroidal in nature. To confirm the suspected 

structure of the novel alkaloid, jervine was submitted to Wolff-Kishner reduction, and the 

resulting product was identical to that of cyclopamine (Scheme 1.1).  
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Scheme 1.1 Wolff-Kishner Reduction of Jervine to Cyclopamine 
 

This isosteroidal alkaloid exhibits a hexacyclic framework with a C-nor-D-homo 

backbone. Linked to the relatively hydrophobic backbone, cyclopamine contains a 

functionalized tetrahydrofuran E ring perpendicular to the backbone connected through a 

spirocyclic allylic ether (Figure 1.3). The functionalized piperidine F ring is fused to the 

tetrahydrofuran ring in a fashion which orients the nitrogen on the alpha face of the 

molecule while the oxygen lies on the beta face. 

 

 

Figure 1.3 Structural Analysis of Alkaloid Cyclopamine 
 

The allylic ether moiety renders this molecule unstable to Brønsted or Lewis acidic 

conditions, leading to a rapid ring opening and aromatization to yield veratramine (3) 

(Scheme 1.2). The loss of the DE spirocycle eliminates all cyclopia-inducing properties 

of the parent molecule cyclopamine. 
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Scheme 1.2 Acid-Catalyzed Ring Opening and Aromatization of Cyclopamine 

 

 Based on the work of Tscheche and Kaneko, it is believed that cyclopamine is 

biosynthesized from cholesterol. This was confirmed through feeding studies using 14C-

cholesterol (4). This study also revealed that cyclopamine is the parent compound that 

leads to both jervine and veratramine. The isosteroidal backbone is predicted to arise 

from a Wagner-Meerwein type rearrangement (compound 5 to 6) via an activated 

hydroxy-based leaving group (Scheme 1.3). Subsequent enzymatic oxidations lead to 

14C-cyclopamine. 

 

Scheme 1.3 Generation of Isosteroid Backbone through Wagner-Meerwein 

Rearrangement of Cholesterol  
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1.2.2 Linking Cyclopamine to Sonic Hedgehog 

 Expanding on the work of Keeler, Beachy determined that the Veratrum 

californicum alkaloids were inhibitors of the Sonic Hedgehog pathway.5 Using Shh 

knockout mice as a direct comparison, Beachy and coworkers demonstrated that 

increasing concentrations of jervine and cyclopamine resulted in the same 

holoprosencephaly phenotype in developing chick embryos. This work further elucidated 

that the inhibitors do not simply modify the Shh ligand, but instead they were shown to 

alter the downstream target responses.  Similarly, Incardona and coworkers found that 

cyclopamine disrupts the SHH pathway but not the metabolism of cholesterol, a 

molecule whose decrease in concentration was shown to result in holoprosencephaly in 

developing embryos.21 Beachy and Incardona both hypothesized that cyclopamine could 

be acting in the sterol-sensing domain of Patched due to its steroid-like structure.  

Despite these findings, it remained a mystery how these compounds produced 

their striking phenotypes. Work by Beachy and coworkers in 2000 suggested a Patched-

independent mechanism,22 but in 2002 they showed definitively that cyclopamine acted 

at the level of Smoothened.23 By using both a photoaffinity modified cyclopamine as well 

as BODIPY-cyclopamine (Figure 1.4), which can be observed in live cells due to its high 

levels of fluorescence, Beachy determined that cyclopamine inhibits Sonic Hedgehog by 

binding to and antagonizing the Smoothened heptahelical bundle. In addition, this work 

suggested that cyclopamine and Patched (PTC) may regulate Smoothened in a similar 

fashion, although the mechanism of PTC binding to SMO remained unclear.24  
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Figure 1.4 Structures of biochemical probe derivatives  
 

1.2.3 Shortcomings of Cyclopamine as a Drug Candidate 
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by Keeler, isolating cyclopamine requires six extractions, four column chromatography 
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dried plant material, providing a 0.05% isolated yield.19 
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their seminal works, Giannis and coworkers published the first diastereoselective and 

biomimetic total synthesis of the alkaloid cyclopamine.27 

 

 

Scheme 1.4 Biomimetic Diastereoselective Total Synthesis of Cyclopamine 
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 To begin, Giannis elaborated commercially available dehydroepiandrosterone 7 

to TES-protected hydroxy steroid 8 via C-H activation/oxidation sequence. The E-ring 

carbons were installed using a diastereoselective addition of triethylsilyl propargylate, 

reduction, and cyclization to afford 9, which upon addition of a methyl group provided 

access to 10, the key intermediate for the Wagner-Meerwein rearrangement. Isosteroid 

11 was constructed as desired upon activation of the C12 hydroxyl with triflic anhydride. 

Functionalization of the alpha carbon of the lactone allowed for installation of the 

necessary F-ring nitrogen in 12.  A Horner-Wadsworth-Emmons reaction installed the 

remainder of the carbon skeleton, and azide 13 was reduced and subsequently cyclized 

using Mitsunobu conditions to provide the EF-ring system of the natural material in 14. 

Removal of the protecting groups provided the first diastereoselective synthesis of 

cyclopamine in just over twenty steps.  

 Despite the synthetic elegance of this route, the complexity of the natural product 

and the difficulty to produce material on a biologically useful scale highlight the second 

major shortcoming of cyclopamine as a chemotherapeutic. The third, and most 

important, limitation of the molecule is its instability in aqueous acid. Upon entering a 

mildly acidic environment, the allylic ether of cyclopamine rapidly ring opens and 

aromatizes (Scheme 1.2) and renders the resulting compound inactive. The combination 

of the aforementioned difficulties have led academic and pharmaceutical laboratories to 

search for other antagonists of the Hedgehog pathway, through both diversification of 

the natural alkaloid as well as high-throughput screening to identify new and patentable 

scaffolds. These efforts are summarized below. 
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1.2.4 Pharmaceutical Derivatives and Clinical Trials 

1.2.4.1 Infinity Pharmaceuticals: IPI-926 

 Infinity Pharmaceuticals has developed a series of semi-synthetic cyclopamine 

analogs that shows marked improvement in both cellular activity and metabolic stability.  

As previously stated, the instability of cyclopamine is attributed to the D-ring allylic ether, 

which promotes ring opening and aromatization in acidic environments.  To circumvent 

this ring opening, Infinity utilized an oxidation/cyclopropanation/ring-expansion sequence 

to generate a family of D-homo-cyclopamine analogs (Figure 1.5).28,29 

 

 

Figure 1.5 Infinity Pharmaceuticals: D-homo-cyclopamine Analogs 
 

The major disadvantage to the semisynthetic route is the necessity to grow and harvest 

acres of corn lilies to isolate cyclopamine in less than one gram per kilogram of dried 
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Scheme 1.5 Cyclopropanation/Ring Expansion to D-homo-cyclopamines 
 

After protection of the secondary amine, the most electron rich double bond of 

cyclopamine is cyclopropanated to afford 15.  Using Lewis acid-mediated conditions, the 

six-membered D-ring is expanded through a series of cationic rearrangements (16-18) to 

furnish the homoallylic alcohol 19.  Following this ring expansion, two major 

modifications remain to produce IPI-926. The stereochemistry of the alcohol on the A-

ring of the molecule is inverted and the oxygen exchanged for a methyl sulfonamide to 

enhance solubility. In addition, the unsaturation at the AB ring fusion is reduced to 

provide the cis decalin, drastically altering the overall three-dimensional shape of the 

molecule.  

 After enhancing the pharmacokinetic profile and solubility, IPI-926 has low 

nanomolar activity and leads to reduced tumor size in a mouse tumor model. IPI-926 
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treatment of chondrosarcoma, an invasive bone cancer that has been linked to 

constitutive SHH expression. Infinity Pharmaceuticals pulled saridegib from Phase II 

after it did not perform as anticipated.  

 

1.2.4.2 Curis Pharmaceuticals and Genentech: Cur61414 and GDC-0449 

 In 2003 a small pharmaceutical company, Curis, released a report that identified 

a novel, heterocyclic scaffold that inhibited SHH. Cur61414 (Figure 1.6) was the first 

report of a non-cyclopamine like structure that had been identified to inhibit the SHH 

pathway as well as suppress proliferation in BCC model systems.30 Similar to the 

aforementioned outcome with IPI-926, Cur61414 was pulled from Phase I clinical trials 

due to its inability to reduce the proliferation of BCC. This disconnect of in vivo and in 

vitro results was speculated to be the result of poor skin penetration. Through a strategic 

collaboration with Genentech and Evotec, Curis identified a new scaffold that also 

exhibited potent activity, with the hopes of rescuing their efforts in clinical trials.  

 

 

Figure 1.6 Structure of SHH Antagonist Cur61414 
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that this compound was not acceptable to move forward; however, it did provide an 

excellent starting point.  After optimization of the initial benzimidazole lead, Genentech 

developed GDC-0449 (Figure 1.7), a metabolically stable derivative with improved PK 

properties and increased potency.31 GDC-0449 performed well in Phase II clinical trials 

with patients with advanced BCC, with greater than 50% showing a partial response and 

decrease in tumor size. In January 2012 GDC-0449 became the first FDA approved 

Hedgehog Inhibitor to hit the market.  

 

 

Figure 1.7 Structure of Benzimidazole Lead and SHH Antagonist GDC-0449 
 

Unfortunately, in many cases, patients develop resistance to GDC-0449 by a single point 

mutation in the gene sequence of SMO, highlighting the necessity for multiple, 

complimentary forms of SMO-inhibitory agents for the treatments for BCC.  
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phthalazine core was retained while the benzyl functionality was replaced with a more 

sterically demanding dimethyl morpholine. Their lead compound displayed excellent 

pharmacokinetic properties across species, was not a substrate for human CYP450, and 

showed reduced tumor growth across multiple mouse models.33 

 

 

Figure 1.8 Compounds of Interest for Novartis 
 

 After successfully completing Phase I clinical trials, NVP-LDE225 entered Phase 

II targeting patients with advanced basal cell carcinoma. After six months of treatment 

with the compound, Novartis announced that it had reached a pivotal endpoint of the trial 
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indicating a significant tumor response or absence of the disease. The Phase III clinical 

trial remains ongoing, but in 2014 Novartis filed to market Sonidegib, the trade name 
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States. As of July 2015, the FDA has given Sonidegib approval for the treatment of BCC.  
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and has been shown to remain effective in cell lines that develop resistance to GDC-

0449. Treatment of Ptch+/− p53−/− transgenic mice, which spontaneously develop 

medulloblastoma, with oral administration of LY2940680 produced remarkable efficacy 

and significantly improved their survival. Eli Lilly has recently concluded their Phase II 

clinical trials in healthy participants.  

 

 

Figure 1.9 Eli Lilly Lead Compound LY2940680 
 

Section 1.3 Development of Steroid-Based Analogs 

 Since the discovery of cyclopamine and the unveiling of the relevance to cancer 

biology, there have been a number of approaches taken by pharmaceutical companies 

to develop novel Sonic Hedgehog inhibitors. Summarized above, these approaches 

range from isolation and semi-synthesis, utilized by Infinity Pharmaceuticals to develop 

IPI-926, to more traditional medicinal chemical approaches, such as high-throughput 

screens and SAR analysis used by Genentech, Novartis, and Eli Lilly. The Winkler 

Laboratory took interest in this area and decided to use a more targeted design and 

synthesis technique using the similarities of the cyclopamine carbon skeleton to that of a 

native steroid.  

 As mentioned previously, cyclopamine exhibits a C-nor-D-homo modification of 

the traditional ABDC ring system of a steroid (Figure 1.10). The Winkler laboratory 

envisioned using the commercially available estrone backbone as a surrogate for the 
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pseudo-steroidal backbone of cyclopamine. Preliminary synthetic efforts and biological 

analysis is summarized below.  

 

 

Figure 1.10 Steroid Ring Nomenclature 
  

 

1.3.1 F-Ring Aromatic Derivatives 

 The first generation of estrone-derived cyclopamine analogs was designed as a 

proof-of-principle. Maintaining a linear ABCD backbone and a DE spirocycle, the original 

estrone analog was constructed to maintain the relationship between the oxygen and 

nitrogen atoms of the E- and F-rings, respectively. It had been shown that tomatidine, a 

structurally similar analog with a DE-ring fusion, did not show biological activity (Figure 

1.11). Therefore, it was essential when designing the first generation analogs to maintain 

the DE spirocycle.  Originally synthesized by Professor Andre Isaacs, the estrone analog 

was constructed in only four chemical transformations, with a simple protection, lithium 

mediated addition, Buchwald-Hartwig cyclization, and subsequent deprotection 

(Scheme 1.6).34  
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Figure 1.11 Comparison of Cyclopamine, Estrone Analog, and Tomatidine 
!

!

 

 

Scheme 1.6 Synthesis of Original Estrone Analog 
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 In addition, Isaacs prepared a number of analogs to assess various aspects of 

the proposed two-point binding model (Figure 1.12). This binding model proposed that 

strategic hydrogen bonds could provide the appropriate pharmacophore for both the 

estrone analog and cyclopamine. The mostly saturated hydrophobic backbone could 

easily be replaced with another hydrophobic core. To probe this binding model for 

validity Isaacs designed a C3-deoxygenated analog as well as a C17 epimer (Figure 

1.13).35  

 

 

Figure 1.12 Proposed Two-Point Binding Model 
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Comparing the structures of the estrone analog relative to cyclopamine, there are 

two major modifications: the aromatization of both the A- and F-rings, and the 

hybridization of the F-ring nitrogen.  Based on the above-mentioned two-point binding 

model, the hybridization and basicity of the F ring nitrogen could provide essential 

hydrogen bonds that enhance potency. The next goal was to synthesize F-ring saturated 

derivatives that more closely mimicked the EF ring system of cyclopamine.   

 

 

1.3.2 F-Ring Saturated Derivatives  

 The F-ring saturated derivatives were envisioned using a two-step cyclization 

approach. First, the E-ring would be constructed via iodoetherification and then the F-

ring would be closed via displacement of the primary tosylate and secondary iodide 

(Figure 1.14). It was anticipated that the stereochemistry of the double bond would be 

reflected in the 5-endo ring closure, where the cis olefin would lead to one 

diastereomeric product, and the trans olefin would provide the corresponding 

diastereomer.  Using a common alkyne intermediate, it was envisioned that both 

diastereomers could be generated, and the importance of stereochemistry could be 

easily established.  
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Figure 1.14 Envisioned Approach to F-Ring Saturated Derivatives 
 

To begin, commercially available estrone 20 was protected and treated with 

trimethylsulfonium iodide to provide epoxide 25. A silyl protected pentynol was first 

lithiated and treated with a Lewis acid to afford the epoxide opened product, which could 

be deprotected with a fluoride source to provide alkyne 26, a common intermediate for 

both the cis- and trans- olefins.  Functionalization of the alkyne to the trans-alkene via 

lithium aluminum hydride reduction generated the bis-diol where the most sterically 

accessible alcohol was activated as the primary tosylate 27.  Upon effecting the key 

iodine-mediated cyclization, the trans olefin precursor afforded the expected cis fused 

EF-ring system of 28 which was deprotected to provide the EF-fused saturated 

derivative 29 (Scheme 1.7). 
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Scheme 1.7 Synthesis of Fused F-Ring Saturated Derivative 
 

Similarly, the common alkynyl intermediate 26 was functionalized by reduction to 

the cis-alkene and activation as the primary tosylate 30.  Unexpectedly, the key 

iodoetherification did not furnish the diastereomeric product of 28, but instead the 

exocyclic oxetane 31 was isolated after cyclization with liquid ammonia. Compound 32 

was deprotected and evaluated for biological activity (Scheme 1.8).36 
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Scheme 1.8 Synthesis of 4-exo Oxetane F-Ring Saturated Derivative 
 

1.3.3 Biological Evaluation 

  The estrone analogs described in Section 1.3.1 and 1.3.2 were evaluated in two 

manners: a Gli-luciferase reporter assay and inhibition of Granule Neuron Precursors 

(GNPs). The assays were executed through collaboration with the Dahmane Laboratory 

in The Wistar Institute.  As previously mentioned, the activation of the SHH pathway 

terminates with the transcription of the gli genes. By fusing the gli genes to luciferase, a 

gene with a quantifiable output, an assay was developed that allows for the 

interpretation of pathway activation.  Using the Light2 cells, a mouse 3T3 cell line with a 

gli dependent form of luciferase, the relative potencies of the 24, 29, and 32 were 

established against cyclopamine (Figure 1.15). 
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Figure 1.15 Relative Inhibition of Gli-Luciferase in SHH Light2 Cells 
 

The Light2 cells were first treated with exogenous SHH ligand and then treated with 10 

µM concentrations of the cyclopamine analogs. As a negative control a portion of cells 

were left untreated of SHH ligand (control in Figure 1.15). Estrone analog 24 showed 

increased potency relative to the parent cyclopamine whereas the F-ring saturated 

analogs 29 and 32 both exhibited modest potency.  

 Using a second set of experiments to generate preliminary biological data, 

purified mouse P5 GNPs were treated with SHH (600 ng/ mL), alone or in combination 

with cyclopamine 2 (10 µM), tomatidine, a negative control (10 µM), or steroidal 

analogue 24, 29, or 32 (10 µM). Since the SHH pathway is required for the development 

of many areas of the brain, SHH alone enhances cell proliferation. Addition of 

cyclopamine significantly decreases cell proliferation for cells treated with SHH while 

tomatidine has no effect. At 10 µM, compounds 24, 29, and 32 were equipotent with 

cyclopamine in inhibiting SHH-induced GNP proliferation (Figure 1.16). 
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Figure 1.16 Inhibition of SHH-dependent Granule Neuron Precursor Growth 
 

Section 1.4 Conclusions 

 Due to the metabolic instability of cyclopamine, and the development of GDC-

0449 resistant cancers, there is an immediate need for readily available and potent 

inhibitors of SHH signaling. The Winkler group has initiated a project designed to identify 

novel compounds that are efficient in blocking the SHH signaling pathway. By using a 

steroid core to replace the hydrophobic backbone of cyclopamine previous workers have 

identified a number of analogs that reduce the activity of SHH in cellular assays.  
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Chapter 2. Establishing and Validating a High-Throughput Biological Evaluation 

Method 

 

Section 2.1 Summary of Previous Methods of Biological Evaluation1–3 

 In collaboration with Dr. Nadia Dahmane and her laboratory at the Wistar 

Institute, the previously described estrone-derived analogs of cyclopamine were tested 

using two well-established methods of biological evaluation. Both assays were designed 

to report SHH activity; the first uses a luciferase reporter gene, and the second relies on 

the inhibition of Granule Neuron Precursor (GNP) cell proliferation, a key step in the 

development of the cerebellum.  

 

2.1.1 Luciferase Inhibition Assays 

 One of the most commonly used methods to evaluate SHH activity relies on the 

downstream cellular target, the gli genes.  As shown in Figure 2.1, the SHH pathway 

begins with extracellular activation via Patched and terminates with the expression of the 

gli genes that promote differentiation and growth.  Beachy and coworkers created the 

Shh-Light2 cell line, derived from an NIH/3T3 cell line, that clonally expresses a stable 

gli-dependent firefly luciferase reporter gene.4 The activation of gli-dependent firefly 

luciferase expression is achieved upon treatment of these cells with Shh. Treatment of 

these cells with cyclopamine inhibits SHH-induced activation.  

To obtain the relative potencies of the compounds needed for inhibition of SHH 

signaling, Dahmane and coworkers treated the cells first with SHH ligand to activate the 

signaling pathway and then treated the cells with ten micromolar concentrations of 

compound.  After a period of incubation, the cells were lysed and the gli-dependent 
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firefly luciferase was activated and the luminescence recorded. The levels of 

luminescence were analyzed for all compounds at a single concentration and compared 

directly to the control (SHH induction with no inhibitory compound).  

 

 

Figure 2.1 Activation of the SHH Signaling Pathway Results in Firefly 

Luminescence  

 

 All previously synthesized estrone-derived cyclopamine analogs were tested 

using this luciferase reporter assay.   

 

 

2.1.2 Granule Neuron Precursor (GNP) Cells  

 During the development of the cerebellum, the SHH pathway is responsible for 

neuronal differentiation that leads to the proliferation of cerebellar granular neuronal 
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precursor (GNP) cells.  This was first shown by Scott and coworkers who deduced that 

the division of granule cells in the cerebellum was promoted by Sonic Hedgehog 

released from Purkinje cells.5 Treating these cells with excess SHH resulted in a long-

lived proliferative response, whereas blocking the SHH signaling pathway led to a 

dramatic reduction in proliferation.  The Dahmane laboratory used this principal to 

evaluate the previously synthesized analogs; by treating postnatal day five (P5) mouse 

GNPs with either SHH or SHH plus compound, the relative potency needed for anti-

proliferative activity was established in a luciferase independent assay.  

 

2.1.3 Unanswered Questions from Previous Biological Evaluation Methods 

 The previously acquired data allows for a comparison of the analogs to 

cyclopamine at only one concentration. By using only one concentration, it is impossible 

to quantitatively rank the compounds by potency as only relative activity can be 

elucidated.  In addition, two pieces of information that are essential to consider when 

analyzing inhibition were absent from the aforementioned assays.  The first is to 

determine the viability of cells at the tested concentrations. Since this gli-dependent 

luciferase assay measures the downstream cellular targets of the SHH pathway, any 

disruption of the pathway would result in the same output. For example, a dead cell 

would also have no SHH activation and would present luciferase activity similar to that of 

an inhibited cell.  Additionally, it is essential to assess that the decrease in luminescence 

is due to the inhibition of the SHH pathway and not simply the inhibition of the luciferase, 

a key component required for output.  The granule neuron precursor assay does 

address the off-target luciferase inhibition, but this assay is not easily adapted to a high-

throughput method.  
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 We desired to pursue these compounds as potential chemotherapeutics for the 

inhibition of SHH, and it is essential to understand both the viability limitations and 

potency.    

 

Section 2.2 Development of an In-House Dual Luciferase Reporter (DLR) Assay 

 Considering the unanswered question outlined above, we embarked on a journey 

to establish a high-throughput system of analysis. With guidance from Infinity 

Pharmaceuticals and David Schultz, Director of the Molecular Screening Facility at the 

Wistar Institute, an assay was established that allowed for statistically robust high-

throughput biological evaluation. To enhance efficiency, we opted to use 384-well plates 

as opposed to the more standard 96-well format, which allows for an 80% decrease in 

materials.  Human error and variability were limited by implementing automated pipetting 

workstations for the preparation of serially diluted compounds, transfer of compounds to 

assay plates, and dispensing of all reagents. Two cell lines were used to assess the 

potencies of the analogs: first, C3H10T1/2, a mouse fibroblast line that required 

transfection of both the Renilla reporter and the gli-dependent firefly genes; and second, 

the Shh-Light2 cells, which clonally express both Renilla and gli-firefly and require no 

transfection.  

 

2.2.1 Transient Transfection DLR Assay 

 To begin, C3H10T1/2 cells were transfected with Renilla luciferase, gli-firefly 

luciferase and GFP plasmids.  Due to the sensitive nature of a transient transfection, it 

was important to establish the transfection efficiency using GFP. It was found that there 

was an ideal cell passage window that allowed for maximum transfection efficiency, 
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roughly passage 5-8 with the cells never reaching over 80% confluency.  With a smaller 

well-format, low transfection efficiency could lead to a vastly different number of 

transfected cells per well.  We had determined in our pilot assays that the transfection 

efficiency was correlated inversely to variability and thus needed to be monitored 

closely.  If the cells were not adequately transfected with the Renilla and gli-firefly 

luciferase the induction window, difference between positive and negative control cells 

was too small to glean any reasonable IC50 data.  

 In addition to the GFP control, the reporter assay relies on two main plasmids: 

Renilla luciferase and gli-Firefly luciferase.  The commercial plasmids were reproduced 

using a Maxi-Prep and analyzed by restriction enzyme digest to confirm the identities. 

The Renilla plasmid is constitutively expressed in all cells and acts as a statistical 

normalizer. The gli-Firefly plasmid measures the activity of the SHH signaling pathway 

by correlating the luminescence generated by firefly luciferase to the transcription of the 

gli genes. An activated pathway culminates with the upregulation of gli, which results in 

an increase in luminescence due to an increase in the production of gli-firefly. An 

inhibited pathway would result in the decrease of transcription of gli and therefore a 

decrease in luminescence.  

 After a 24 hour incubation post-transfection, the media was changed to a SHH 

rich media to induce signaling, and various concentrations of our analogs were also 

added.  By using a 384-well format, we could accommodate eight unique concentrations 

(10 µM to 2 nM, 3-fold dilutions) of twelve compounds in triplicate. In addition to the 

analogs, cyclopamine, our control inhibitor, and both positive and negative controls are 

also included on each assay plate.  After incubating for 48 hours, the cells were lysed, 

and both luciferase signals were read. The Renilla intensity was used to calculate 
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relative activity ratios.  These gli-firefly/Renilla ratios were then normalized against the 

activity of the negative control where no SHH ligand was introduced.    

 This dual reporter assay relies on the orthogonal activation of the bioluminescent 

reactions catalyzed by firefly and Renilla luciferases.  After lysing the cells, the firefly 

luciferase is activated first by the addition of a buffer containing beetle luciferin, ATP, 

and magnesium ions (Figure 2.2).  This flash of light depletes over time and must be 

read promptly after mixing. The robotics implemented at the Molecular Screening Facility 

allowed for the rapid addition of the buffer. It was determined that maximum luciferase 

activity occurred immediately after mixing.  

 

 

Figure 2.2 Bioluminescent Reaction Catalyzed by Firefly Luciferase 
 

After reading, this firefly luminescence is then quenched with a second buffer that 

both depletes the remaining ATP and contains coelenterazine luciferin (Figure 2.3). This 

combination serves two purposes: extinguishes the firefly luciferase signal and provides 

the ligand for the Renilla luciferase. The Renilla signal is not dependent on any reporter 

gene and should be expressed evenly across all cells. This Renilla expression therefore 

acts as our normalizer for cell count variability per well.   
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Figure 2.3 Bioluminescent Reaction Catalyzed by Renilla Luciferase 
 

  

 To calculate the potencies, first the firefly luminescence signal in each well is 

divided by the corresponding Renilla luminescence signal. This value is divided by the 

negative control, where no SHH ligand or compound has been added. Using GraphPad 

Prism, the normalized values are plotted against the concentrations, and using a 

nonlinear regression, the IC50 values are determined.   After generating these IC50 

curves, we began to see a wide range of potencies; however, the statistical variability 

and Hill slopes were too large to reasonably conclude structure activity relationships.  It 

was determined that the smaller cell count per well in combination with the transient 

transfection was responsible for the statistical error and heightened variability.  The data 

collected from this first generation assay is summarized below (Figure 2.4 and 2.5).  
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Figure 2.4 IC50 Curves for Aromatic First Generation Analogs 
  

This assay provided insight into the necessity of the C3 hydroxyl for potency (1). 

Removal of the hydroxyl resulted in a six-fold loss in potency (2). The preliminary data 

for the F-ring saturated compounds, outlined in Section 1.3.2, highlights the 4-exocyclic 

oxetane as the most potent analog. Although the variability was too large to conclude 

definitively, we felt reassured that drastic changes to the EF ring system were in fact 

resulting in changes in the potency of the compounds.  
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Figure 2.5 IC50 Curves for Saturated First Generation Analogs 
 

This first round of assays had begun to illuminate the approximate IC50 values 

and the relative rank potencies of the synthesized compounds.  However, due to the 

statistical variability and high Hill slopes, future cell assays were completed with Shh-

Light2 cells, a cell line that clonally expresses both the Renilla luciferase and gli-firefly 

luciferase necessary for analysis. Despite the relatively steep IC50 curves, the preliminary 

analysis did establish the appropriate concentrations needed for analysis. By eliminating 

the high and low points on the curve, our future assays could make more gradual 

dilutions, greatly lowering the Hill slope.   Additionally, we believed that the Shh-Light2 

cells would provide more gradual and smooth IC50 curves, thus providing a more 

accurate depiction of the relative rank potencies of the analogs.  
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2.2.2 Constitutively Expressed DLR Assay 

 As expected, the Shh-Light2 cells provided the statistical robustness that was 

needed to establish reasonable structure activity relationships between the previously 

generated estrone analogs.  Our preliminary transient transfection assay allowed us to 

narrow the dosing window and make more gradual dilutions to generate more points 

along the curves, which decreased the Hill slopes and conserved space on the assay 

plate. This extra space allowed for each dilution in triplicate on one plate, greatly 

reducing the variability overall. The data for the F-ring aromatic and saturated estrone 

analogs are summarized in Figure 2.6 and 2.7, respectively.  

 As suggested by the transient transfection assay, the Shh-Light2 assay 

confirmed that the C3 hydroxyl is in fact necessary for enhanced potency, as seen in 

estrone analog 1.  In this cell line, the original estrone analog exhibits modest potency 

(111 nM ± 31 nM) relative to cyclopamine 3 (72 nM ± 27 nM), but activity is diminished 

when the C3 hydroxyl is removed (2, 735 nM ± 256 nM). Most importantly, this analysis 

corroborates the original findings from the Dahmane Laboratory that the steroidal 

backbone of estrone is an appropriate and viable surrogate for the nonpolar backbone of 

cyclopamine.  It is also worth noting that other research groups have found that the 

overall potencies in Shh-Light2 cells to be slightly lower than those found using 

C3H10T1/2 cells with a transient transfection. For this reason, cyclopamine is always 

used on every assay plate as a positive control.6 
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Figure 2.6 IC50 Curves for Aromatic F-Ring Analogs Using Shh-Light2 Cells  
 

 As described in Section 1.3.2, the F-ring aromatic compounds were originally 

synthesized quickly in only four steps as a proof of principle, but the F-ring saturated 

compounds more closely resemble the saturated secondary amine found in cyclopamine 

in both hybridization and basicity.  The 5,6-fused analog 5 has a similar chemical 

construction to that of cyclopamine, but the cis ring fusion in the analog carves out a 

different chemical space than the trans ring fusion found in the natural alkaloid. This 

stereochemical difference could be responsible for the 20-times loss in potency (1758 

nM ± 537 nM).  

 Interestingly, the oxetane analog 4 exhibited potency twice that of cyclopamine 

(44 nM ± 8 nM). The exocyclic analog is comprised of an oxetane and pyrrolidine, which 

have significantly more freedom about the central carbon-carbon bond than the rigid 
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scaffold present in cyclopamine. Additionally, the five membered ring of the pyrrolidine 

exposes the nitrogen lone pair more prominently than that of the piperidine in the natural 

product and offers slightly enhanced basicity. This flexibility and increased availability for 

hydrogen bonding could explain the increase in potency.   

 

 

Figure 2.7 IC50 Curves for Saturated F-Ring Analogs Using Shh-Light2 Cells 
 

The statistical analysis for the Shh-Light2 cell line is summarized in Table 2.1. The 95 % 

confidence intervals (CI) were calculated by the predicted standard error of logIC50 

generatedby Graphpad Prism. The R-squared values for all the IC50 curves signify an 

excellent fit, and the confidence intervals are relatively small suggesting that this DLR 

assay can quantitatively rank the estrone analogs according to potency.   
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Compound IC50 (nM) 95% CI (nM) R squared 
cyclopamine (3) 72 49 - 106 0.95 

oxetane (4) 44 37 - 52 0.98 
furan (5) 1528 991 - 2355 0.99 

estrone (1) 111 79-156 0.97 
deoxy (2) 735 479 - 1128 0.88 

 

Table 2.1 Statistical Analysis of Shh-Light2 DLR Assay 
!

The high and low data points were removed from the analysis, and the concentrations 

that were later determined to be cytotoxic were also removed due to low Renilla signal. 

At that stage, it can be concluded that the oxetane 4 is more potent than cyclopamine in 

inhibiting the SHH signaling pathway, whereas the estrone analog 1 is slightly less 

potent.  

 

2.2.3 Additional Results of the DLR Assay 

 In addition to screening the previously described analogs, a series of Des-B 

analogs (Figure 2.8) were screened to assess the necessity of the entire steroid 

backbone. In collaboration with Dr. Christian Ventocilla, a small library of analogs was 

developed in hopes to determine the optimal functionalization on the A-ring for maximum 

potency. By using palladium-catalyzed chemistry with an intermediate coupling partner, 

a variety of analogs could be constructed through a divergent cross-coupling approach. 
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Figure 2.8 Des-B Analogs  
 

 The synthesis of these analogs offered a means for late-stage diversification 

through the palladium mediated cross coupling of vinyl nonaflate 7 with a variety of 

commercial aryl boronic acids.  Spirocycle 6, synthesized as reported by Dr. Andre 

Isaacs, was transformed to a stable and isolable nonaflate through reaction with 

perfluorobutanesulfonyl fluoride in the presence of DBU. This vinyl nonaflate is bench 

stable and can be purified using silica gel chromatography unlike the corresponding vinyl 

triflate. The final des-B analogs were constructed via a palladium-catalyzed Suzuki 

reaction.  Construction of Fluoro-Des-B analog 8 is outlined below (Scheme 2.1).  
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Scheme 2.1 Example Synthesis of Des-B Analogs 
 

 The above analogs were tested in the DLR assay and displayed a wide range of 

activity. At first glance it appeared that functionalization of the A-ring was responsible for 

this SAR, but based on the control experiments outlined below, the effects on potency 

remain unanswered.  

 

Section 2.3 Control Experiments 

 The assays previously described provide a basic understanding of inhibition but 

do not confirm the exact mechanism of inhibition.  The DLR assay uses a reporter gene 

as the method of output, and any disruption of the transcription of that gene will result in 

a decrease in luminescence.  It is essential to determine if the SHH signaling pathway is 

indeed a target of the inhibitors or if the cells are simply dying, as the reporter output 

would appear the same in an inhibited cell as a dead cell.  Our first control experiment 

was to use a resazurin screen to identify any possible lethal concentrations of our 

compounds.  

 Additionally, as described in Section 2.2.1, the assay relies on firefly luciferase 

protein to react with its substrate to produce light. Any disruption of the luciferase protein 

would also decrease the luminescence signal. To probe this phenomenon, we 
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implemented a simple biochemical assay with firefly luciferase to probe inhibition of 

luciferase with our steroidal analogs.   

 

2.3.1 Cell Viability 

 Moving forward, we wanted to establish any potential issues with cell viability and 

lethal doses of our compounds.  Since the cells were plated in white-walled plates for the 

luminescence readings, we could not simply visualize cell growth and viability. Using a 

resazurin screen allowed us to quantitate cell viability, and we established that, at high 

concentrations (5-10 µM,) many of the compounds showed little to no cellular activity.  

Interestingly, all assays that were employed by our previous collaborator used 

compounds at 10 µM to show relative luciferase activity, providing evidence for the 

necessity of this screen. 

 Resazurin is a commonly used dye that acts as an electron receptor in the 

electron transport chain, and this reduction results in a change in aromatization, and, 

more importantly, color (Figure 2.9). In its oxidized form, resazurin remains non-

fluorescent, but in the presence of living cells, the resazurin molecules are reduced, 

resulting in a change of color and a fluorescent molecule. This change allows for a rapid 

fluorometric readout that can detect cellular growth. For our purposes, it was important 

to establish dose concentrations of the compounds at which the cells were unable to 

survive. These cell lethal doses were eliminated from the analysis.7    
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Figure 2.9 Mechanism of Resazurin Oxidation 
 

2.3.2 Luciferase Inhibition 

Once IC50 curves were generated for previously synthesized analogs, the 

biological results must be validated. We performed a biochemical assay to probe 

luciferase inhibition, and interestingly, a majority of our des-B analogs were active in the 

screen. This suggested that the activity previously demonstrated was not caused by 

inhibition of the SHH pathway and was instead due to luciferase inhibition.  The overall 

potencies of these compounds therefore cannot be determined by the DLR assay and 

would require orthogonal methods for screening.   

 

Section 2.4 Summary of Biological Data from First Generation Analogs 

 As described above, we have confirmed that the hydrophobic steroid backbone is 

an appropriate surrogate for the more structural complex backbone of cyclopamine. We 

have identified through our first transient transfection assay the importance of 

transfection efficiency as well as a concentration window that works best for our steroidal 

analogs. By adapting this information to the Shh-Light2 cell line, we were able to 

generate IC50 curves for the previously synthesized analogs, including an analog 

containing an exocyclic oxetane pyrrolidine moiety that has two times the potency of the 

naturally occurring alkaloid inhibitor cyclopamine.  
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Section 2.5 Experimental Details 
 

2.5.1 Maxi Prep and Plasmid Purification 

Bacterial transformations were executed with DH5α cells. To a microvial containing 10 

µL DH5α thawed on ice was added 2 µL plasmid (8xGli-Luc or pRL-TK) and 2 µL tris-

EDTA. The mixture was then heat shocked at 37 °C for 45 seconds and returned to ice 

for 2 minutes. Next, 100 µL of SOC was added to each tube, and the contents spread 

onto the center of the culture plates. After 24 hours, one colony was selected and 

incubated for 8 hours at 37 °C in 3 mL LB broth with carbenicillin. This starter culture 

was then added to 1 L of LB broth and incubated at the same temperature for 24 hours.  

The cultures were centrifuged at 5,000 rpm for 20 minutes, and the supernatant was 

removed. Each pellet was suspended in 24 mL of P1 buffer. To this solution was added 

48 mL of P2 buffer (0.2 N NaOH/1% SDS), and the resulting slurry mixed gently by 

inversion.  The suspensions were incubated at room temperature for 5 minutes, the 

tubes inverted, and incubated for another 5 minutes at room temperature. Buffer P3 (48 

mL) was added, the suspension mixed and cooled on ice for 30 minutes and then 

centrifuged for 20 minutes at 25,000 rpm.  A Qiagen-2500 column was equilibrated with 

35 mL of QBT buffer.  

Clarified supernatant was added to the QBT-equilibrated Qiagen-2500 column, allowed 

to pass through via gravity flow, and the column washed with 250 mL of QC buffer via 

gravity. 

Plasmid DNA was eluted with 35 mL of QF buffer into a fresh and sterile tube. The 

solution was transferred into a 250 mL conical centrifuge vial and DNA precipitated by 

adding 30 mL (1 volume) of isopropanol. The precipitate was mixed by inversion and 

incubated at -20 °C for 30 minutes. The nucleic acids were isolated by centrifugation at 
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5,000 rpm for 30 minutes.  The supernatant decanted, and the pellet suspended in 400 

µL of 1X TE, pH 8.0. To the suspended plasmid DNA was added 1/10th volume 3M 

sodium acetate, pH 5.5, and 2.5 volumes (1 mL) of ethanol. The plasmid DNA was 

pelleted by centrifugation for 30 minutes at maximum speed, the supernatant decanted, 

and rinsed with 1 mL 70 % ethanol.  Once the supernatant has been removed, the pellet 

was suspended in 250-500 uL of 1X TE, pH 8.0, the DNA quantified by nanodrop, and 

analyzed by restriction enzyme digest.  

 

2.5.2 Transient Transfection Assay 

Day One: C3H10T1/2 cells were seeded in a 6-well plate at approximately 150K 

cells/well in 3 mL growth media (BME + 10% FBS + 2 mM L-glutamine +Pen/Strep) per 

well.  

Day Two: After 24 hours, to each well was added 1000 ng of total DNA (2:1 ratio 8x Gli-

luc:pRL-TK) in 3 µL GeneJuice and 100 µL OptiMem. After 8 hours of incubation, the 

media was removed, and the cells were trypsinized with 0.5 mL trypsin and incubated for 

5 minutes before the trypsin was quenched with 1.9 mL growth media. The cells were 

pooled and plated in a white walled 384-well format (2K cells/well, 40 µL total volume).  

Day Three: Growth media was aspirated from the cells, and 40 µL either control (BME + 

0.5% FBS + 2 mM L-glutamine + Pep/Strep) or induction (BME + 0.5% FBS + 2mM L-

glutamine + Pep/Strep + 10% Shh ligand) media was added. Immediately after 

induction, 50 nL of compound (or DMSO control) was added to each well. The plates 

were allowed to incubate for 48 hours at 37 °C.  

Day Five: The control and induction media was removed and each well washed with 250 

µL PBS. After the PBS was removed, 40 µL of Passive Lysis Buffer was added and 

agitated for 15 minutes.  Using a cell-plater, 100 µL of luciferase reagent was added and 
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the firefly luminescence recorded.  After reading, 100 µL of Stop/Glo buffer was added to 

quench the firefly and activate the Renilla.  The luminescence readings were recorded 

using a multi-channel plate reader. Percent induction was calculate based on the ratio of 

firely:Renilla and corrected with the negative control.  

 

 

2.5.3 Shh-Light2 Cells DLR Assay 

Day One: Shh-Light2 cells were seeded in a white walled 384-well plate at 

approximately 2K cells/well in 40 µL growth media (DMEM + 10% FBS + 2 mM L-

glutamine +Zeocin) per well.  

Day Two: Growth media was aspirated from the cells, and 40 µL either control (DMEM + 

0.5% FBS + 2 mM L-glutamine + Pep/Strep) or induction (DMEM + 0.5% FBS + 2mM L-

glutamine + Pep/Strep + 10% Shh ligand) media was added. Immediately after 

induction, 50 nL of compound (or DMSO control) was added to each well. The plates 

were allowed to incubate for 48 hours at 37 °C.  

Day Four: The control and induction media was removed and each well washed with 250 

µL PBS. After the PBS was removed, 40 µL of Passive Lysis Buffer was added and 

agitated for 15 minutes.  Using a cell-plater, 20 µL of luciferase reagent was added and 

the firefly luminescence recorded.  After reading, 20 µL of Stop/Glo buffer was added to 

quench the firefly and activate the Renilla.  The luminescence readings were recorded 

using a multi-channel plate reader. In order to determine the percent inhibition, all of the 

firefly luminescence values were divided by the corresponding Renilla luminescence.  

These values were then divided by the average of the negative control, where no ligand 

or compound was added to the cells. The normalized values were then plotted against 
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the concentrations and, using a two-point non-linear regression, the IC50 curves were 

generated.  

 

 

2.5.4 Cell Viability Screen7 

Day One: Shh-Light2 cells were seeded in a clear 384-well plate at approximately 2K 

cells/well in 40 µL growth media (DMEM + 10% FBS + 2 mM L-glutamine +Zeocin) per 

well.  

Day Two: 50 nL of compound or DMSO (to replicate the compound plate setup) was 

added and allowed to incubate at 37 °C for 48 hours.  

Day Four: Resazurin in ddH2O (1.2 mM, 40 µL) was added to each well and allowed to 

incubate at 37 °C for 24 hours.  

Day Five: Fluorometric analysis was completed. The wells were excited at 570 nm and 

the emission was read at 590 nm. The amount of cell growth and reduction of resazurin 

was estimated.  

 

 

2.5.5 Luciferase Inhibition Assay8 

To each well of a white opaque 384 well Optiplate was added 20 µL of 2 nM luciferase 

enzyme solution (1 nM FFluciferase, 50 mM Tris-Acetate pH 7.8, 0.5 mM EDTA, 5 mM 

MgSO4, 0.1 % BSA).  Compound or DMSO was then added to each well (200 nL). 20 µL 

of a solution of 2 µM D-Luciferin/ 20 µM ATP was then added to each well to initiate the 

reaction (1 µM D-luciferin, 10 µM ATP, 50 mM Tris-Acetate pH 7.8, 0.5 mM EDTA, 5 mM 

MgSO4, 0.1 % BSA). Luminescence was measured using an EnVision multichannel 

plate reader and percent inhibition was calculated.   
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2.5.6 Sample Synthesis of Des-B Analogs 

 

 

To spirocycle 6 (0.047 g, 0.180 mmol) in THF (1.25 mL) cooled to 0 °C was added DBU 

(83 µL, 0.53 mmol) then NfF (98 µL, 0.53 mmol).  The mixture was allowed to warm to 

25 °C and stir for 18 h.  The mixture was concentrated in vacuo, and the resultant 

residue was purified by flash chromatography (50 % ethyl acetate in hexanes) to afford 

nonaflate 4 as a viscous yellow oil (0.68 g, 69%): 1H NMR (500 MHz, CDCl3) δ 8.03 (t, J 

= 3.0 Hz, 1H), 7.01 (d, J = 3.0 Hz, 2H), 6.24 (d, J = 2.0 Hz, 1H), 5.64 (s, 1H), 3.51 (d, J = 

16.5 Hz, 1H), 3.07 (d, J = 17.0 Hz, 1H), 2.95 (d, J = 17.0 Hz, 1H), 2.67-2.62 (m, 2H), 

2.42 (dd, J = 18.5, 5.5 Hz, 1H), 1.90 (m, 1H), 1.56-1.52 (m, 1H), 1.18 (s, 3H).  Nonaflate 

7 was carried onto the next reaction within 24 h after its purification to avoid 

decomposition that was seen with its triflate equivalent. 

 

 

To nonaflate 7 (0.068 g, 0.126 mmol) in THF:toluene (1:1, 2 mL) was added 4-fluoro-

phenylboronic acid (0.018 g, 0.126 mmol), Pd(PPh3)4 (0.008 g, 0.005 mmol), Na2CO3 

(0.012 g, 0.126 mmol), and water (0.5 mL).  The mixture was heated in a sealed flask to 

80 °C overnight.  The mixture was allowed to cool to room temperature and diluted with 

CH2Cl2 (5 mL) and water (5 mL).  The layers were separated, and the aqueous layer 

O

O N
NfF

DBU
69 % NfO

O N

NfO

O N
F

B(OH)2

Pd(PPh3)4, Na2CO3
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O N
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was extracted with CH2Cl2 (3 x 5 mL).  The organic layers were combined, washed with 

brine, dried over Na2SO4, filtered, and concentrated in vacuo.  The resultant residue was 

purified by flash chromatography (50 % ethyl acetate in hexanes) to afford analogue 8 

as a pale yellow, waxy solid (0.018 g, 44%).  1H NMR (500 MHz, CDCl3) δ 8.02 (dd, J = 

3.5, 1.0 Hz, 1H), 7.43 (m, 2H), 7.04-7.01 (m, 4H), 6.56 (s, 1H), 5.52 (s, 1H), 3.61 (d, J = 

16.5 Hz, 1H), 3.09 (d, J = 16.5 Hz, 1H), 2.97 (d, J = 16.5 Hz, 1H), 2.64-2.59 (m, 3H), 

1.87 (dt, J = 12.0, 6.0 Hz, 1H), 1.61 (m, 1H), 1.21 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 

163.4, 161.4, 153.5, 151.5, 146.0, 141.5, 137.3, 137.0, 126.9, 122.4, 119.9, 119.6, 

115.3, 98.3, 47.0, 44.2, 39.3, 28.5, 25.9, 18.0; FTIR (thin film) 2928, 1600, 1508, 1429, 

1278, 993, 833 cm-1; HRMS (ESI) m / z calcd for C23H24NO2 (M + H)+  334.1607, found 

334.1607. 
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Chapter 3. Computational Analysis and Molecular Modeling  
 

Section 3.1 Analysis of Seven Pass Transmembrane Smoothened 

 As discussed in Chapter 1, Smoothened (SMO) is an integral component of the 

Sonic Hedgehog (SHH) Signaling Pathway, a cellular signaling mechanism that is 

essential for embryonic growth and development, and is inappropriately upregulated in 

numerous cancer cell lines.  This pathway becomes activated when a hedgehog ligand 

binds to Patched (PTC) and thus releases its repressive hold on seven pass 

transmembrane protein SMO.  Since the discovery of cyclopamine, a naturally occurring 

alkaloid that inhibits the SHH signaling pathway at the level of SMO, there have been 

numerous attempts to discern the binding site of antagonism through protein 

crystallography.   

 Despite their abundance throughout the proteome, crystallography of 

transmembrane proteins has proven to be a difficult problem in the field of chemical 

biology. Residing in the lipid bilayer, a majority of these proteins have a highly 

hydrophobic exterior that makes the purification, solubilization, and stabilization 

exceedingly challenging to master.1 Over the past five years the abundance of 

transmembrane structures has rapidly increased due to the advancing of membrane 

preps and the development of stabilizing groups.2 This chapter will discuss the recent 

advances in the crystallography of Smoothened. 

 

3.1.1 First Crystal Structure 

Using an engineered construct of human SMO receptor, Ray Stevens and 

coworkers published the first crystal structure of the transmembrane protein crystallized 

with a known antagonist, LY2940680 with a resolution of 2.3 Å.3 This truncated construct 
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had a shortened C-terminus that did not interfere with ligand binding and also was 

expressed with an extracellular thermostabilized apocytochrome b562RIL (BRIL) at the N-

terminus.  These modifications eliminated an intracellular unstructured tail and helped to 

induce crystallinity. A dimeric crystal was obtained using a lipidic method, which allows 

the protein to congregate inside a lipid membrane for enhanced structural organization.4 

Due to the lack of structural information prior to the Stevens’ publication, the 

classification of SMO as a canonical GPCR had been controversial.  The amino acid 

sequence of SMO demonstrates high similarity to Frizzled (FZD), a seven pass 

transmembrane protein integral in the WNT signaling pathway.  Both proteins contain 

seven helices that pass through the membrane, a cysteine-rich extracellular domain, a 

linker between the two, and an intracellular carboxy domain. Despite the overall spatial 

similarities described by Stevens, SMO exhibits less than 10 % sequence alignment with 

a classical GPCR, and for this reason, SMO and FZD have been classified as GPCR 

proteins, class F. Based of phylogenetic analysis, the class F GPCRs are more 

conserved than class A, indicating their essential roles in cellular proliferation.   

The crystal structure of SMO (Figure 3.1) highlights the seven helices that pass 

through the membrane, with an additional helix VIII lying perpendicular to the protein, 

along the inside of the cellular membrane.  For clarity, only one monomer of the crystal 

is shown with the BRIL functionality removed. Outside of the lipid bilayer, an extracellular 

linker domain and extracellular loops partially cover a long hydrophobic cavity. This 

aqueous exposed pocket is where LY2940680 was found to bind.  The ligand burrows 

deep into the pocket and resides partially within the membrane space.  
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Figure 3.1 Overall Structure of Human SMO with Antagonist LY2940680 
 

 The crystal structure gave rise to the first ligand-protein interaction diagram, 

illuminating specific residues interacting with the ligand. Most notably, Arg 400 and Asp  

219 have key hydrogen bonding interactions with the phthalazine and amide backbone, 

respectively (Figure 3.2). Towards the top of the pocket, there is the potential for pi-pi 

overlap with Phe 383 and the decorated electron poor aromatic ring of the ligand. 

Similarly, there is the potential of an aromatic overlap between His 470 and the 

methylated pyrazole at the opposite end of the molecule.  Additionally, inside the binding 

pocket there are numerous water molecules that do not directly interact with LY2940680 

but form a larger network of integral hydrogen bonds.  
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Figure 3.2 Ligand Interactions in Binding Pocket (LY2940680) 
 

Most interestingly, Asp 473, a residue that confers resistance to GDC0449 when 

mutated, participates in this network of water-mediated hydrogen bonds.5   

 

3.1.2 Current State of Crystallography 

 Shortly after the seminal publication, Stevens co-published with Weierstall and 

Cherezov a novel method for developing and growing lipidic cubic phase crystals for 

diffraction.6 This work featured the first crystal structure of SMO bound to the natural 

alkaloid cyclopamine.  Unfortunately, by using the method that resulted in the successful 
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crystallization of SMO with LY2940680, they isolated only low quality crystals.  The only 

crystals isolated of reasonable quality resulted in a low-resolution structure, but they 

could identify the binding pocket of the alkaloid within the receptor (Figure 3.3).   

 

Figure 3.3 Density Map of Cyclopamine Bound to Human SMO 

!

 Due to the low-resolution of the crystal (4.5 Å), it was impossible to determine 

exactly how the ligand was binding within the pocket. Previous studies using KAAD-

cyclopamine, an analog of the natural compound with a bulky substituent placed on the 

secondary amine of the F-ring, demonstrated no loss of inhibitory activity. With this in 

mind, Stevens and coworkers oriented cyclopamine in the binding pocket with the 

secondary amine facing the extracellular environment (Figure 3.4) in order to 

accommodate the added bulky group.   
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Figure 3.4 Close Up View of Cyclopamine in Binding Pocket 
 

 Looking closely at the predicted binding orientation of cyclopamine, the hydroxyl 

on the A-ring buried deep within the pocket appears to be anchored by potential 

hydrogen bonds with Glu 518 and Asp 384.  The allylic ether and secondary amine do 

not appear to have any beneficial contacts within the binding pocket, but the secondary 

amine may serve a purpose to enhance solubility. A map of potential interactions is 

outlined in Figure 3.5.  

 

Glu 518 

Asp 384 
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Figure 3.5 Ligand Interactions in Binding Pocket (Cyclopamine) 
 

 Shortly after the release of the cyclopamine complex crystal structure, Stevens 

and coworkers released three more structures of SMO bound to a variety of ligands: 

antagonists SANT1 and Anta XV and agonist SAG1.5.7 The binding sites for these 

ligands all reside within the same pocket, but interestingly, the binding of SANT1 

extended much deeper than the rest of the ligands (Figure 3.6). This sub-pocket, unique 

to the binding of SANT1, lies well within the lipid bilayer and is far removed from the 

aqueous exposed ligand entrance.   
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Figure 3.6 Comparison of Cyclopamine and SANT1 Binding Pocket 

!

 This unique method of binding SANT1 relative to the other antagonists suggests 

that, depending on the functionalities within the molecules, there may be more than one 

possible binding orientation that leads to suppression of the protein. It has been shown 

that the depth of binding is ligand dependent and can vary greatly.  With this information 

in hand, the next step in the analysis of our analogs was to assess their possible 

interactions in the binding pocket and to design novel analogs that could enhance those 

interactions.  

 

Section 3.2 Rigid Protein Molecular Modeling 

 The publication of the first crystal structure of SMO began to shed light on the 

pharmacophore of LY2940680. Despite this advance, the various positions occupied by 

the antagonists in combination with the unresolved cyclopamine structure, there are still 

questions that remain unanswered. Using molecular modeling we began to hypothesize 
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what aspects of these molecules could be interacting with the protein to provide the 

inhibitory effects that were seen in the cellular assays.   

 

3.2.1 Introduction to AutoDock Vina 

 First introduced by Trott and Olson, AutoDock Vina is a molecular docking 

program that predicts the most probable non-covalent bonding orientation of an input 

ligand and receptor protein.8 Using a rigid protein, AutoDock Vina allows the energy-

minimized ligands to have flexibility, defined by a set number of rotatable bonds, and to 

sample numerous orientations within a pre-defined docking site.  The docking site can 

span the entire surface of the protein, but for our analyses, we selected the long 

hydrophobic cavity within SMO that has been shown to bind both agonists and 

antagonists.7     

 AutoDock Vina allows for the rapid formation of docking poses that are scored by 

predicted binding energy. The Vina program has been shown to have a high correlation 

been the predicted free energy of binding and the experimentally calculated energies.  In 

order to begin the analysis, the ligand is first prepared by defining the rigid and rotatable 

bonds using AutoDock Tools, the protein crystal structure is converted to a PDBQT file 

to recognize both atom charge and type, and the docking grid box is defined in three-

dimensional space. Once all parameters are defined, the docking results and scores are 

generated in under five minutes and can be processed.  By maintaining a rigid protein, 

AutoDock Vina can very quickly generate the various poses and score them based on 

steric repulsion, hydrogen bonding, and hydrophobicity.   
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3.2.2 Analysis of Previously Synthesized Analogs 

 Using the recently published crystal structure of SMO, we began analyzing our 

original estrone analogs, both F-ring saturated and aromatic, to hypothesize which 

potential residues could be responsible for potency.  As a proof of principle, we first 

demonstrated using LY2940680 and the SMO receptor in its apo form that we could 

recapitulate the docking pose observed in the original crystallization paper (Figure 3.7).  

Albeit not a perfect match, the residues highlighted in the crystallography paper 

were still in close proximity to the corresponding heteroatoms of LY2940680.  

Specifically, Arg400 showed an interaction with the phthalazine ring system, and the 

fluorinated aromatic ring demonstrated pi-pi overlap with Phe 484. Satisfied with these 

results, we moved to a small series of our estrone analogs. 

 

 

Figure 3.7 Vina Predicted Binding Orientation of LY2940680 with SMO 
 

Arg 400 

Phe 484 
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 Looking first at cyclopamine, AutoDock Vina positioned the ligand with the EF-

ring system deep in the pocket and the A-ring hydroxyl exposed to the aqueous 

surroundings (Figure 3.8).  This binding orientation does not align with the SAR data 

that has previously been shown.  According to Beachy, very large substituents can be 

placed on the secondary amine without loss in potency, which would require the amine 

to be configured facing the extracellular environment.9 Unfortunately, the proposed 

binding of cyclopamine does not match the SAR provided by Beachy, or the crystal 

structure published by Stevens.   

 Despite these inconsistencies, the binding affinity calculated in silico was 

relatively low compared to both the steroidal analogs and known inhibitors docked with 

SMO. This low binding affinity may be indicative of a poor compatibility and lack of 

positive interactions predicted by the software. Additionally, the axial methyl at the AB 

ring fusion creates a hydrophobic clash with the binding pocket that also would disfavor 

this binding mode, thus offering an explanation for the low proposed binding affinity. 
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Figure 3.8 Vina Predicted Binding Orientation of Cyclopamine with SMO 
 

 In comparison, the original estrone analog had a much stronger predicted binding 

affinity with the rigid receptor SMO. In this predicted binding model, the estrone analog 

was positioned with the aromatic A-ring anchored by a pi-pi stack with Phe 484 while 

allowing for the free hydroxyl to interact with Lys 395 (Figure 3.9). The unsaturated EF 

spirocycle was buried deep in the pocket, establishing a potential salt bridge with Asp 

384.   Due to the aromaticity of the A ring, there is no axial methyl that would conflict with 

hydrophobic binding pocket. The more compact steroid backbone may, in fact, be a 

more suitable replacement for the more voluminous cyclopamine ABCD core.  
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Figure 3.9 Vina Predicted Binding Orientation of Estrone Analog with SMO 
 

 Similar to the estrone analog, the most probable predicted binding orientation for 

the oxetane derivative positioned the aromatic A ring for optimal pi-pi stacking with Phe 

484 and in proximity to hydrogen bond with lysine 395 (Figure 3.10).  Unique to this 

saturated exocyclic analog, the basic secondary amine of the pyrrolidine F ring has the 

potential to hydrogen bond with both Arg 400, a residue found to interact with 

LY2940680, and also Tyr 394.  Although, in this predicted binding mode, the oxetane is 

too far away from any residues to form direct hydrogen bonds, the availability of the lone 

pairs for water-mediated hydrogen bonding is not precluded.  

 

Phe 484 

Asp 384 

Lys 395 
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Figure 3.10 Vina Predicted Binding Orientation of Oxetane with SMO 
 

 The biological testing summarized in Chapter 2 confirms that the major 

modifications (saturation, connectivity, ring size, stereochemistry) to the EF ring system 

of the estrone-derived analogs contribute vastly to their potencies. Through rigid 

modeling with AutoDock Vina, it is predicted that the aromatic A-ring acts to anchor the 

analogs in an orientation that places the variable EF scaffold deep inside the binding 

pocket. Due to the major differences in potencies based on the composition of the EF 

scaffolds, the biological data would suggest that these aspects of the molecules are 

oriented in a fashion for high impact with the receptor.  Similarly, the in silico work 

suggests the importance of the C3 hydroxyl hydrogen bonding interaction with Lys 395, 

correlating with the decrease in potency upon loss of the C3 hydroxyl group.  

 

Phe 484 

Asp 384 

Lys 395 

Tyr 395 
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3.2.3 Conclusions from Rigid Molecular Modeling  

 AutoDock Vina allowed for the rapid creation of possible binding modes for the 

previously synthesized analogs with the published crystal structure of receptor SMO. 

Since the receptor was crystallized with a ligand, all of the side chains were oriented in 

the best possible confirmation for the interaction with LY2940680.  It has been shown 

that this GPCR-like protein is flexible in binding and can accommodate ligands of various 

sizes.  The limitations of AutoDock Vina are such that the receptor must stay rigid, 

despite the movement and flexing of the ligands.   

 Looking carefully at the now available crystal structures of SMO, all three have a 

ligand positioned in the same binding pocket.  However, the orientation of multiple side 

chains (R400, F391, Q518, Y323, and E477) vary greatly dependent on the ligand. For 

this reason, another molecular modeling system was implemented that allowed for both 

a flexible receptor and rotatable ligand.   

 

Section 3.3 Flexible Protein Molecular Modeling 

 Many docking programs rely entirely on a rigid receptor given to the program.  In 

reality, the receptor is flexible and accommodates each ligand uniquely, responding to its 

shape and chemical composition.  Using SMO as the receptor protein, Schrodinger 

Induced Fit Docking (IFD) allows for the protein to move in response to each ligand 

conformation.  IFD generates a variety of potential structures that would have been 

impossible to model using a rigid protein receptor and ranks them according to relative 

binding affinity.  
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3.3.1 Introduction to Schrodinger Induced Fit Docking Suite 

The Schrodinger Induced Fit Docking Suite utilizes two major protocols, Glide 

and Prime, in order to modify both the input ligand and receptor protein. Glide, or Grid-

Based Ligand Docking with Energetics, generates the possible ligand conformations that 

could be docked into the receptor. Glide allows for all possible tautomers to be 

generated as well as a variety of protonation states dictated by a target pH. Using a 

series of criteria, the program breaks a ligand into a relatively stable core (rigid ring 

systems) and rotatable regions (side chains with more flexibility). A series of 

conformations is then given for each ligand.   

The conformations are then scanned in the receptor gridbox for a best fit.  By 

utilizing an exhaustive approach, Glide places each conformation at various points within 

the active site and scans for potential clashes or positive interactions.  The next phase of 

refinement locates the potential hydrogen bond donating and accepting atoms within the 

ligand and calculates the distances to corresponding hydrogen bond participating 

residues in the receptor.  The final stage of refinement assesses the van der Waals 

interactions and electrostatic maps of both ligand and receptor.  A combination of the 

aforementioned scores constructs a hierarchy of ligand conformations within the 

receptor and ranks them based on their Induced Fit Docking Score.   

 

3.3.2 Analysis of Previously Synthesized Analogs 

 Using the Schrodinger IFD program, the previously synthesized saturated and 

unsaturated estrone analogs were evaluated for binding with the receptor SMO.  With 

the crystal structure provided by Stevens, the protein was first preprocessed for any 

missing residues, and then the ligand (LY2940680) was removed and a series of the 

synthesized analogs docked in that binding pocket.  Side chains within five angstroms 
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from the ligands were allowed to maneuver to provide a more optimized docking pose 

specific to each ligand.  

 Looking first at cyclopamine (Figure 3.11), the nonaromatic A-ring is buried deep 

in the binding pocket with the EF-ring system facing the extracellular environment.  As 

described above, the secondary amine of the F-ring has been functionalized with large 

substituents with no loss of potency, thus adding validity to this docking pose.  The 

hydrophobic backbone lies parallel to the transmembrane helices, placing the axial 

methyl at the AB fusion relatively close to the surface of the pocket. The hydrophobic 

backbone maintains a close proximity to the relatively hydrophobic binding pocket.  

 

 

Figure 3.11 IFD Predicted Binding of Cyclopamine with SMO 
 

Phe 484 

Asn 521 
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 As depicted in Figure 3.12, the protonated piperidine is capable of adopting an 

orientation at the top of the pocket that results in a cation-pi interaction with Phe 484.10 

The allylic ether, which is responsible for the molecule’s acid sensitivity, does not come 

in contact with any residues that could increase the binding affinity.  The C3 hydroxyl, 

buried deep inside the pocket, picks up a favorable interaction with the amide on the 

side chain of Asn 521.  

 

Figure 3.12 IFD Ligand Interaction Diagram: Cyclopamine with SMO 
 

 When comparing the predicted docking orientation of cyclopamine with the 

estrone analog, the most striking difference is the relative orientation of the molecules 

with respect to the pocket (Figure 3.13).  All of the previously synthesized estrone-

derived analogs orient in a fashion that places the aromatic A-ring closest to the 

extracellular space and the EF-ring system buried in the pocket. Additionally, with an 
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aromatized A-ring, there is no axial methyl at the AB-ring fusion, allowing for more space 

within the pocket.   

 

Figure 3.13 IFD Predicted Binding of Estrone Analog with SMO 
 

 Looking more closely at the most probably docking pose of the estrone analog 

and receptor SMO, there are quite a number of positive interactions identified throughout 

the steroid (Figure 3.14).  Similar to cyclopamine, the hydrophobic backbone runs 

parallel with the helices and does not conflict with any hydrophilic or charged residues.  

Unique to the estrone analog is the ability of the aromatic A-ring to pi-pi stack with Phe 

484. The orientation of the C3 hydroxyl is available in some docking poses to interact 

through a hydrogen bond with Tyr 207 (not shown), but the hydroxyl facing the exterior 

of the protein could also simply assist in solubility.   

Phe 484 

Tyr 394 

Tyr 201 
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 Towards the top end of the molecule, the furan oxygen, similar to the allylic ether, 

does not have any specific interactions of its own. However, the unsaturated pyridine F-

ring exhibits a pi-pi stack with Tyr 394 and interacts with a strategic water molecule to 

contribute to a network of hydrogen bonds.   

 

 

Figure 3.14 IFD Ligand Interaction Diagram of Estrone Analog with SMO 
 

 Similar to the estrone analog, the C3 deoxy analog docking study demonstrated 

all of the same interactions as the previously described analog and also oriented the 

compound with the A-ring towards the extracellular space and the EF-rings buried into 

the pocket (Figure 3.15). Surprisingly, without the electron-donating group on the 

aromatic ring, the pi-pi interaction that was present with the previously described estrone 

analog is no long predicted by the software (Figure 3.16).   
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Figure 3.15 IFD Predicted Binding of Deoxy Estrone Analog with SMO 

 

Figure 3.16 IFD Ligand Interaction Diagram of Deoxy Estrone Analog with SMO 

!

Phe 484 

Tyr 394 
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 Lastly, the oxetane analog has a very different EF-ring system than the 

aforementioned unsaturated F-ring analogs.  As a proof of principle, the estrone analogs 

were synthesized as efficiently as possible, using pyridine as the aromatic F-ring.  

Comparing the structure of these analogs to cyclopamine, the sp3 secondary amine 

present in cyclopamine varies greatly with respect to basicity and hybridization than the 

sp2 pyridine nitrogen described above.  The oxetane analog is comprised of a saturated 

F-ring, albeit one atom smaller, but the pyrrolidine in the oxetane analog provides a 

more accurate structural approximation to the piperidine seen in cyclopamine.   

 

 

Figure 3.17 IFD Predicted Binding of Oxetane Analog with SMO 
 

 The most probable docking pose for the oxetane analog with SMO identifies a 

large number of interactions.  Like the other estrone derived compounds, the aromatic A-

Phe 484 

Tyr 201 

Lys 395 

Glu 518 

Asp 384 

Tyr 394 
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ring overlaps at the top of the pocket with Phe 484 and shows a hydrogen bond with Lys 

395 (Figure 3.17).  The hydrophobic backbone lies in the same hydrophobic cavity, and 

the EF-rings are at the base of the pocket.  Despite the oxetane ether having the 

propensity for hydrogen bonding, no interactions are predicted by the modeling.11 The 

protonated pyrrolidine, however, is capable of adapting an orientation that picks up many 

hydrogen bond donating and accepting interactions (Figure 3.18). 

 

 

Figure 3.18 IFD Ligand Interaction Diagram of Oxetane Analog with SMO 
 

 The exocyclic pyrrolidine may be able to interact with many residues such as Glu 

518, Asp 384, or Tyr 394 in the depths of the pocket due to the rotational freedom about 

the carbon-carbon bond connecting the E and F-rings.  Unlike the unsaturated estrone 

analogs, the exocyclic pyrrolidine is not limited to one conformation.  The five membered 
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ring can pucker in either direction to adopt the conformation with the most favorable 

hydrogen bonding interactions.  

 

 

Figure 3.19 IFD Predicted Binding of Oxetane Analog with Mutant SMO 
 

 To address in silico the importance of the pi-pi overlap with the aromatic A-ring, 

Phe 484 was mutated to a glycine.  After reevaluating the predicted binding affinity with 

the mutant protein, the steroid-derived analog rotates slightly in the pocket since the 

anchoring pi-pi stack is no longer present. The importance of the aromatic A-ring is 

currently being investigated synthetically and will be described in Chapter 4.  

 

 

 



!

81!
!

3.3.3 Conclusions and Correlation with Biological Data 

 Once all of the IFD had been completed, it was important to determine the 

relevancy of the modeling. Since we had recently completed generating IC50 curves for 

the analogs described above, the IC50 values can by plotted against the IFD score 

predicted by the software (Figure 3.20). Interestingly, the modeling and the biological 

data correlate with a relatively high statistical validity. Using a nonlinear regression with 

two degrees, a logarithmic curve fits the data with an R squared of 0.84.  

 

 

Figure 3.20 Correlation of IC50 from DLR Assay and IFD Docking Score 
 

 Additionally, by plotting the logIC50  against the IFD score, a linear trend line with 

a similar R squared is observed (Figure 3.21).   
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Figure 3.21 Correlation of logIC50 from DLR Assay and IFD Docking Score 
 

 Looking back at the molecular modeling in combination with the results from the 

Dual Luciferase Reporter (DLR) Assay in Chapter 2, there is a definite SAR that can be 

elucidated.  Comparing cyclopamine with the estrone analog, their relatively similar 

potencies indicate that the steroid backbone is an appropriate surrogate for the steroidal-

like C-nor-D-homo system of cyclopamine. The modeling suggested that the 

hydrophobic backbones have little involvement with the binding, but the axial methyl 

present in cyclopamine due to the nonaromatic A-ring may be detrimental.  In addition to 

the lack of an axial methyl, the aromaticity of the A-ring does not appear to be 

insignificant.  The potential for a pi-pi stack with phenylalanine 484 is prominent in all 
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docking poses and helps to orient these synthetic analogs with the EF system in the 

base of the pocket. 

 The majority of the SAR of the synthetic analogs revolves around the EF ring 

systems, once again highlighting that these functional groups most likely lie inside the 

pocket where the interactions are more meaningful than the extracellular space.  When 

comparing the oxetane, the most potent analog, to the estrone analog, the flexibility of 

the EF system and the hybridization and basicity of the pyrrolidine may be responsible 

for the increase in potency. The potential connections between the secondary amine and 

Glu518 or Asp384 may offer a hydrogen bonding network that stabilizes the predicted 

interaction between ligand and protein.  

 

Section 3.4 Future Directions 

 With a molecular modeling program validating the biological data, it is now 

possible to design new analogs from multiple directions. In order to synthesize novel and 

potent analogs, the biological data in combination with the molecular modeling will 

provide more guidance than blind design.  The goal of the project is to develop 

molecules synthesized from commercially available, non-plant derived sources that 

could serve as potential chemotherapeutics. A library of analogs was designed to 

explore the hypotheses described throughout this chapter.  Chapter 4 will outline our 

efforts in designing, synthesizing, and evaluating analogs that probe the importance of 

the aromatization of the A-ring, the hybridization of the F-ring, the presence of the E-

Ring, and the overall flexibility of the molecules.   
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Chapter 4. Design and Synthesis of Second Generation Analogs 

 After the establishment of a method for high-throughput biological evaluation and 

a computational model for activity, families of analogs were designed to test hypotheses 

originating from the biological data or specifically to assess the validity of the docking 

experiments.  When looking at the various antagonists of the Hedgehog pathway 

developed by pharmaceutical companies (Chapter 1.2.4), it is unclear which aspects of 

these molecules are responsible for the potency, and there is no clear pharmacophore 

that can be deduced.  Although the crystal structure of Smoothened bound to 

LY2940680 sheds light on important binding interactions, it cannot be assumed that 

each analog would interact with the same residues in the binding pocket.  

 After identifying a lead compound, we had hoped to use synthetic chemistry in 

combination with our biological evaluation to design molecules to tease out the 

underlying molecular features responsible for the potency of the oxetane-pyrrolidine 

analog.   

 

Section 4.1 Sulfonamides 

 IPI-926, the semi-synthetic analog designed by Infinity Pharmaceuticals,1 is 

synthesized via three major modifications to cyclopamine. First, the AB-ring fusion is 

reduced to the cis-decalin and then the acid-labile allylic ether undergoes ring expansion 

through a cyclopropanation sequence to construct the more stable homo-allylic ether.  

Additionally, a methyl sulfonamide is installed on the A-ring, mostly to increase the 

overall solubility of the molecule.   
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 Looking at the predicting binding orientation of IPI-926 (Figure 4.1), the methyl 

sulfonamide is placed in the depths of the binding pocket, in close proximity to tyrosine 

394 (Figure 4.2).  

 

 

Figure 4.1 Predicted Binding Orientation of IPI-926 with SMO 
 

In order to rule out a minimalistic structure of a sulfonamide fused with a steroid 

backbone, compounds 1 and 2 were synthesized (Scheme 4.1 and 4.2). Beginning with 

TBS protected estrone 3, reductive amination with ammonium acetate in the presence 

sodium cyanoborohydride generated beta-amine 4 in good yield.  Exclusive synthesis of 

the beta epimer is consistent with the addition of hydride from the more accessible face 
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of the molecule, away from the axial C18 methyl. Conversion of the primary amine to the 

sulfonamide and deprotection afforded the desired beta epimer.  

 

 

Figure 4.2 Schrodinger Ligand Interaction Diagram for Predicted Binding of IPI-

926 with SMO  
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Scheme 4.1 Synthesis of Beta Sulfonamide 

!

 To construct the alpha isomer, protected estrone 3 was reduced from the more 

accessible face to provide alcohol 6, which was then activated for displacement as the 

secondary tosylate 7.  Sodium azide in dimethylformamide, heated to reflux, installed the 

necessary nitrogen, temporarily masked as azide 8.  The low yield of this displacement 

reaction is attributed to the hindered nature of the secondary neopentyl tosylate.  

Hydrogenolysis resulted in reduction of the azide functionality as well as deprotection of 

the silyl ether to afford phenol 9.  Using a slight excess of methanesulfonyl chloride in 

pyridine, the desired alpha isomer 2 was isolated (Scheme 4.2).  
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Scheme 4.2 Synthesis of Alpha Sulfonamide 
 

 When both the alpha and beta isomers were tested in our Dual Luciferase 

Reporter (DLR) assay, we were pleased to find that these simple constructs were 

relatively inactive, suggesting that elaboration of the EF-ring system is necessary for 

activity . Relative to cyclopamine, the beta isomer exhibited loss in potency by a factor of 

eight, whereas the alpha isomer featured a reduction in potency by a factor of twenty.  

This difference in activity contradicts the original model proposed by Winkler, suggesting 

that the relationship between the oxygen and nitrogen of cyclopamine was essential for 

activity (Figure 4.3).  

 To summarize briefly, cyclopamine, the active inhibitor, is comprised of a DE-

spirocycle, placing the oxygen above its iso-steroidal backbone, on the beta face, and 

the nitrogen, below the steroid backbone, on the alpha face.  Tomatidine, an in active 
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pseudo-isomer, lacks this spirocycle, and does not maintain this relative relationship 

between the oxygen, nitrogen, and steroidal backbone.  

 

Figure 4.3 Proposed Binding Model: Alpha versus Beta Face 
 

This model highlighted the suspected importance of the placement of the oxygen and 

nitrogen relative to the backbone. The increased activity of compound 2 relative to 1 

demonstrates that having a nitrogen functionality on the alpha face is not preferred to the 

beta face in these simple constructs. 

 

Section 4.2 Aryl-Aryl Coupled Analogs 

 Looking at the numerous available crystal structures of SMO bound to a ligand, 

the depth of the binding pocket varies depending on the analog present in the active site. 

This long, narrow, hydrophobic cavity spans almost thirty angstroms.  The predicted 

docking positions of the estrone-derived analogs all show a positive interaction between 

a phenylalanine at the top of the pocket with the aromatic A-ring. This orientation of the 
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molecules leaves the majority of the pocket unoccupied.  To address the importance of 

the depth of the pocket, I designed two aryl-aryl coupled analogs that could potentially 

pi-pi stack with an additional aromatic ring, forcing the EF rings deeper into the binding 

pocket (Figure 4.4). 

 

 

Figure 4.4 Depth of Pocket Hypothesis for Aryl-Aryl Coupled Analogs 
 

 To begin, two analogs were designed with a simple EF spirocycle while 

maintaining the aromatic F-ring of the original analogs.  Although the saturated system 

provided more potency, the aromatic pyridine-derived analogs demonstrated great SAR 

thus far and were significantly easier to synthesize as a proof of purpose.  Starting from 

commercially available estrone 10, the C3 phenol was activated as the aryl triflate 11.  

Palladium-mediated Suzuki cross-coupling with phenyl boronic acid allowed for the 

construction of the aryl-aryl system.  Using freshly prepared lithium diisopropyl amide 

and 2-betabromopicoline, the benzylic lithium anion was added to the alpha-face of the 
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bis-aryl estrone to afford 13 in good yield (Scheme 4.3). An internal hydrogen bond in 

combination with the extended aryl framework produced long needle-like crystals from 

slow evaporation of solvent (Figure 4.5).    

 

Scheme 4.3 Synthesis of Aryl-Aryl Coupled Analog of Buchwald Hartwig 
 

 

Figure 4.5 Single Crystal X-Ray Structure of Compound 13 
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 Completion of the phenyl-coupled analog was proposed to culminate with an 

intramolecular Buchwald Hartwig cyclization of alcohol 13. Unfortunately, initial attempts 

of cyclization with palladium acetate and BINAP afforded only the retro-aldol product 

shown below (Scheme 4.4). Niwa and coworkers have shown that 2-pyridylmethyl 

species can undergo chelation-assisted cleavage of Csp3-Csp3 bonds with palladium 

acting as a Lewis Acid.2  

 

 

Scheme 4.4 Unexpected Retro-Aldol from Buchwald Hartwig Cyclization 
 

When constructing the original estrone analog, Isaacs reported consistently low 

yields of the desired spirocycle.3 I have found that in order to improve this yield and 

eliminate this retro-aldol pathway, the active catalyst must be preformed before the 

introduction of the Lewis basic nitrogen.  By simply flash heating the palladium acetate 

with BINAP in toluene at 100 °C for 90 seconds followed by the addition of substrate, 

base, and water provided enough time and energy for the active Pd(0) catalyst to form 
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without interference from the nitrogen. Following this procedure, the desired analog 14 

was isolated for analysis (Scheme 4.5).  

 

 

Scheme 4.5 Completion of the Phenyl Aryl-Aryl Coupled Analog 
 

 In a similar fashion, the hydroxy phenyl aryl-coupled analog was constructed 

beginning with aryl triflate 11 (Scheme 4.6). Palladium-mediated Suzuki coupling with 4-

hydroxyphenyl boronic acid4 provided the aryl-aryl system in compound 15, which was 

protected as silyl ether 16. Following the same series of addition and cyclization, bromo 

alcohol 17 was generated and subsequently cyclized using palladium acetate to afford 

spirocycle 18.  Deprotection of the alcohol with TBAF gave the desired analog 19.  
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Scheme 4.6 Synthesis of Hydroxy Phenyl Aryl Coupled Analog 
 

Biological evaluation of the compounds suggests that delving deeper into the 

pocket may not be necessary for the steroid analogs.  Comparison of the phenyl aryl 

extended analog to the parent compound showed that activity was lost upon addition of 

the aryl group (Figure 4.6). When looking back to the crystal structure of cyclopamine 

bound to SMO, the majority of the molecule was positioned very close to the 

extracellular surface.  The hydrophobic backbone of the alkaloid interacted with very few 

charged residues, whereas SANT-1, buried deep into the pocket interacted with 

exclusively polar residues (Figure 4.7).5  
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Figure 4.6 Biological Activity for Aryl-Aryl Coupled Analogs 
 

 This analysis in combination with the loss of activity in the DLR assay for the aryl-

aryl extended analogs suggests that the structure of the steroid backbone should not be 

altered.  Presuming that this hydrophobic backbone occupies that same cavity as 

cyclopamine, the EF-ring system should be exposed to the top polar portion of the 

pocket.  Accumulation of additional favorable interactions may be accomplished by 

extending polar functionalities off of the pyridine system as opposed to pushing the 

hydrophobic backbone deeper into the charged part of the binding pocket.  



!

98!
!

 

 

Figure 4.7 Ligand Interaction Diagram for SANT-1 with SMO 
 

Section 4.3 Des-C Analogs and the Importance of Shape  

 When looking at both the lead compounds synthesized by Infinity 

Pharmaceuticals and Eli Lilly, despite the vast differences in chemical identities, the 

overall shapes of the molecules are similar (Figure 4.8).6 These boomerang, or bent, 

molecules both adopt very different shapes as compared to the natural alkaloid 

cyclopamine.  As Stefan Peukert, the SMO antagonist program director at Eli Lilly, 

indicated that all of their most active compounds exhibited the same overall bent shape, 

I decided to investigate the importance of shape in our system.  
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Figure 4.8 Comparison of IPI926, LY2940680, and cyclopamine 
 

Using relatively simple starting materials, Dr. Christian Ventocilla and I 

constructed a small family of Des-C analogs that exhibited a more puckered shape that 

was centered around a cyclopentane D-ring. Commercially available 6-bromo-2-naphthol 

20 was protected as the aryl silyl ether 21 (Scheme 4.7). Lithium halogen exchange 

followed by addition of the electrophile 3-methoxy-2-cyclopentenone resulted in the 

construction of the unsaturated conjugated des-C system 22.  At this stage, it was 

discovered that our picoline nucleophile was too basic as the lithium anion for addition. 

The enolization to the conjugated system could be eliminated using cerium chemistry 

that I developed.7 Cerium trichloride requires extensive preparation, and since we had 

planned to remove the unsaturation in the cyclopentenone at the end, we opted to 

hydrogenate compound 22 at this stage (Scheme 4.7).  
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Scheme 4.7 Construction of des-C framework 
 

The saturated cyclopentanone 23 generated from the reduction of 22 was a more 

competent electrophile, and lithiated beta-bromopicoline could be added without the use 

of cerium to construct alcohol 24 as a mixture of diastereomers. A preformed 

RuPhosPalladacycle was used to effect the Buchwald Hartwig reaction to construct a 

separable mixture of diastereomeric spirocycles 25. Deprotection of the aryl silyl ethers 

with TBAF provided epimeric des-C analogs that placed the oxygen on the concave face 

in 26 and on the convex face in 27 (Scheme 4.8).  

 These truncated Des-C analogs were not potent in our DLR assay, and similar 

to the Des-B analogs discussed in Chapter 1, compound 26 was shown to inhibit 

luciferase. As the inhibitory activity towards SMO cannot be determined for substrates 

that inhibit firefly luciferase, compound 26 was removed from the analysis. Interestingly, 

compound 27, where the oxygen faces the convex face and the nitrogen of the pyridine 

lies on the concave side, did not inhibit luciferase; however, this compound was also 

inactive in the DLR assay.   
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Scheme 4.8 Synthesis of Bent Des-C Analogs 
!

Figure 4.9 Relative Shapes of Des-C Analogs in Comparison to Original Analog 
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Moving forward, the overall linear nature of our molecules does appear to serve a 

purpose within the binding pocket, but more importantly, it prevents these steroid 

analogs from inhibiting luciferase, allowing for the analysis of these molecules with our 

previously established DLR assay.  Additionally, by starting from commercially available 

estrone with no need to modify the ABCD ring system, we can synthesize more readily 

available analogs directly.  

 

Section 4.4 Androsterone Derived Oxetane Analog  

 Described above, the use of estrone as a hydrophobic surrogate for the 

backbone of cyclopamine, although initially selected for practicality and ease of 

synthesis, appears to be more important than originally hypothesized.  It has been 

shown that truncation of the backbone, both with Des-B and Des-C systems, result in 

loss of potency as well as incompatibility with our DLR assay.  Additionally, the 

computational modeling proposed a strong pi-pi interaction between the aromatic A-ring 

of estrone and a phenylalanine at the top of the binding pocket. To probe the importance 

of aromaticity of the steroid backbone, an analog containing the exocyclic oxetane 

pyrrolidine on an androsterone backbone was designed.   

 Compared to estrone, androsterone, an endogenous steroid that has a fully 

saturated ABCD ring system, exhibits more structural similarity to the natural alkaloid 

cyclopamine.  Based on the biological evaluation of the previously synthesized analogs, 

it is clear that the subtle changes in the EF-ring systems are involved in activity of the 
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molecules.  By placing the most potent variation of the EF-ring system on the 

androsterone backbone the role of the aromatic A-ring can be elucidated (Figure 4.10). 

 

 

Figure 4.10 Development of Androsterone Oxetane Analog 
 

 Following the synthesis first developed by Dr. Zhihui Zhang, Dr. Michelle Estrada 

constructed the androsterone oxetane analog using an amended procedure that was 

optimized for reproducibility (Scheme 4.8).  The key alkynyl diol 28 was constructed 

from commercially available starting materials via an epoxidation and subsequent ring 

opening. The alkyne was reduced to the cis alkene 29 using Lindlar’s catalyst, and the 

primary alcohol was selectively activated for displacement as tosylate 30.  

The key transformation was originally carried out with iodine, but upon replication 

of these results, it was found that the oxetane moiety was unstable in acidic 

environments.  By switching the source of electrophilic iodine to N-iodosuccinimide, the 

4-exocyclic iodoetherification was both reproducible and scalable. Using these newly 

developed conditions, tosylate 30 was cyclized to oxetane 31.  Using liquid ammonia to 
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displace both the secondary iodide and primary tosylate constructs pyrrolidine 32, and 

deprotection of the silyl ether unveils the alcohol, completing the synthesis of the 

androsterone oxetane analog 33 (Scheme 4.8).  

 

 

Scheme 4.8 Synthesis of A-Ring Saturated Oxetane Analog  
 

 The biological evaluation of this analog further validated the computational model 

and confirmed that the aromaticity of the A-ring is essential for activity (Figure 4.11). 

The predicted IFD score for the binding of analog 33 correlates well with the curve 

generated from predicted values of previously tested compounds. Moving forward, we 
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believe that estrone is an ideal backbone to use for the development of SMO antagonist 

analogs for multiple reasons. First, this material is non-plant derived and is commercially 

available. Additionally, steroids are well-tolerated within the body, and lastly, the estrone 

backbone has an aromatic A-ring that is important for activity of these analogs as 

inhibitors of the SHH signaling pathway.  

 

 

Figure 4.11 IFD Predicted Binding Affinity for Androsterone 33 
 

Section 4.5 Establishing the Role of Oxygen 

 Upon analysis of the most potent analog and its predicted binding orientation, it is 

unclear what role, if any, the oxygen atom plays. To assess the involvement of the 

oxygen in binding affinity, a series of analogs were designed that lack the oxetane 
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functionality.  Using a carbon-carbon double bond as a surrogate for the oxetane ring, 

we began to explore the development of des-E ring analogs.  

 The first route designed to access the deoxygenated analog was using estrone 

as an electrophile and a proline-derived ylide to construct the carbon-carbon bond using 

traditional Wittig chemistry (Scheme 4.9). After synthesizing the ylide component in four 

steps from proline, all attempts to produce the final product resulted in only 

deprotonation of the alpha protons of the steroid and enolization of the carbonyl.  

 

 

Scheme 4.9 Wittig-Based Retrosynthesis for Alkylidene Analogs 

!

 The second retrosynthetic design of these analogs involved construction of the F-

ring last with the selective deprotonation of the allylic C-H bond and cyclization on a 

primary leaving group.8 This allylic system would be accessed from the reduction of an 

amide, the latter of which would be synthesized from a peptide coupling between a 

steroid derived carboxylic acid and a protected primary amine (Scheme 4.10).  

 

 

Scheme 4.10 Retrosynthetic Analysis for Alkylidene Derivative 
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 To begin, a Horner-Wadsworth-Emmons olefination with tert-butyl P,P-

dimethylphosphonoacetate and protected estrone 3 was carried out to construct a 

mixture of E and Z isomers of the unsaturated butyl esters (Scheme 4.11).9 Due to the 

bulky substituent on the ester, the alkene isomers can be separated on silica.  Upon 

scale up of this reaction, the product was contaminated with both isomers of the 

unsaturated methyl ester. This byproduct could not be removed from the desired 

products resulting in an unproductive mixture.  The only method of purification resulting 

in modest yields of pure materials was preparatory thin layer chromatography.   

 

Scheme 4.11 Generation of Unsaturated Esters 
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the cis alkene with Lindlar’s catalyst gave diol 35, which could be selectively 

functionalized at the more available primary alcohol.  Activation of the primary alcohol as 

a tosylate allowed for the displacement with sodium azide to install the necessary amine 

functionality of 36.  

Azido alcohol 36 underwent a chromium-mediated allylic oxidation to afford the 

unsaturated enone 37; the stereochemistry of the double bond was confirmed by two-

dimensional NMR (noe). To cyclize the F-ring, a one pot Staudinger-Aza-Wittig reaction 

sequence was designed with triphenylphosphine.11 First, the azide was reduced via an 

intermediate iminophosphorane. Following the activation of the azide, the 

iminophosphorane attacks the carbonyl intramolecularly and expels triphenylphosphine 

oxide, generating the unsaturated imine 38.  Removal of the protecting group affords 

compound 39, an unsaturated des-E analog. Attempts towards selective reduction of the 

imine in a 1,2 fashion proved unsuccessful. A variety of conditions were screened but 

ultimately only the 1,4 reduced product or destruction of the pyrrolidine ring were 

observed.  

Compound 39 allows for the evaluation of several structural features as 

compared to the lead oxetane.  First, the removal of the oxygen atom will provide insight 

as to whether the lone pairs of the oxygen are useful in binding. Additionally, at 

biological pH, the imine will most likely be protonated, offering a similar, but distinct, 

hydrogen-bonding partner.  Lastly, the unsaturation in this molecule could serve as a 

Michael acceptor allowing for non-reversible binding and increased affinity for SMO.  
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Scheme 4.12 Synthesis of Unsaturated Imine 
 

 Based on the molecular modeling, the geometry of the double bond does not 

appear to make a large difference in binding affinity.  The hydrophobic backbone has 

enough room in the pocket to completely flip over suggesting that the most favorable 

orientation of the heterocycle would be predominant.  Biological evaluation of this 

unsaturated imine revealed a complete loss in potency, suggesting that the role of the 

oxygen may be more than simply providing an orientation for the pyrrolidine.   
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Section 4.6 Rigidity versus Flexibility 

 Although compound 39 is not an exact deoxygenated mimic of the lead 

compound, thus far, it has been suggested that the oxygen atom is contributing to the 

potency of the analogs. Our next objective was to illuminate whether the rigid scaffold 

would be preferred to a more flexible linker.  Despite the high potency of the oxetane 

analog, the rigid nature of the ligand may not offer the best possible fit within the binding 

pocket. To explore the role of rigidity as well as distance, we designed alkyne and 

alkane derivatives that maintained the oxygen and nitrogen heteroatoms in the most 

potent analog (Figure 4.12).  

Using energy minimized structures, the distances between the oxygen and 

nitrogens were calculated. The oxetane analog maintains a distance of approximately 

three angstroms, whereas these analogs offer more space between the heteroatoms 

and also allow for more possible binding conformations. When comparing these two 

scaffolds, the alkyne isomer offers much less conformational freedom than the alkane 

isomer, and we hoped to utilize this difference to elucidate the importance of flexibility.  

Additionally, the alkane derivatives could adopt many unique conformers to orient the 

pyrrolidine in the most productive manner for binding whereas the alkyne isomers can 

act more as a rigid ruler.  
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Figure 4.12 Heteroatom Distances for Rigid and Flexible Analogs 
 

 To begin, our first set of analogs maintained the carbon framework of the 

oxetane analog but opens the strained four membered ring allowing for the pyrrolidine to 

sample more conformations inside the binding pocket.  Both L- and D- proline analogs 

were developed. Based on the computational modeling and energy minimized 

structures, we felt that the L- and D-derived analogs would have similar potencies. 

Although not derived from an amino acid, the oxetane analog exhibits the same chirality 

as D-proline.  We hoped to show that both epimers would perform similarly, thus 

eliminating the need to carry forward the unnatural amino acid.  

 The carbon framework was assembled through the addition of protected alkynes 

derived from proline.  Alkynes 44 and 45 12 were achieved through an Ohira-Bestmann 

homologation of the chirally pure prolinals 42 and 43.13,14 The aldehydes were 
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synthesized from the corresponding Boc-prolinols via oxidation with Dess Martin 

periodinane (Scheme 4.13).  

 

 

Scheme 4.13 Ohira Bestmann Synthesis of Proline Alkynes 
 

 Using TBDPS protected estrone 46, the alkyne nucleophile 44 was added to 

afford alcohol 47 (Scheme 4.14).  Use of excess nucleophile and slow addition of the 

electrophile resulted in the desired product with minimal recovery of starting material. 

The A-ring of the alkynyl alcohol 47 was deprotected with TBAF and carried forward 

through two distinct pathways.  After exposure to trifluoroacetic acid, the carbamate was 

removed to unveil a secondary amine, and the resulting alcohol 51 was tested for 

activity.  Additionally, protected alkyne 49 was reduced to give the saturated ring opened 

analog 53 which was deprotected to furnish 55. Both 51 and 55 were pursued for 

biological activity. All transformations were also carried out with the D-proline variant 

(even numbered analogs).  
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Scheme 4.14 Synthesis of Flexible Scaffolds 
 

Removal of the oxetane ring allows the pyrrolidine more freedom to rotate around 

multiple bonds.  The alkyne analog possesses a much smaller window of space for 

pyrrolidine to occupy, whereas the fully saturated linker can rotate around multiple 

carbon-carbon single bonds, offering the widest range. Biological evaluation of these 

analogs offered valuable information (Figure 4.13).  First, the removal of the oxetane 

resulted in a global loss of potency.  Interestingly, the D-proline derived analogs 

consistently showed greater potency than the L-derived counterparts.  Also, the alkyne 

analogs resulted in a completely inactive compound whereas the alkane analogs, 

although not as potent as the lead, were significantly more active.  

TBDPSO

O

H

H

H

N
LiBoc

THF

L: 58 %
D: 46 % TBDPSO

H

H

H

OH ∗∗

N
Boc

HO
H

H

H

OH ∗∗

N
Boc

TBAF

THF
quantitative

HO
H

H

H

OH

TFA

DCM

quantitative HO
H

H

H

OH ∗∗

N
H

∗∗

N
R

R = Boc

R = H

TFA
DCM

H2, Pd/C

MeOH

L: 11 %
D: 33 %

quantitative

47: L
48: D

49: L
50: D

51: L
52: D

53: L
54: D

55: L
56: D

46



!

114!
!

 

Figure 4.13 IC50 Data for Flexible Linked Analogs 
 

Section 4.7 Regenerating Rigidity without Oxygenation 

 To further pursue the role of rigidity and oxidation, a route was designed to 

construct des-E alkylidene analogs via the addition of hydride to a Tsuji-Trost pi-allyl 

system (Figure 4.14). The pivotal allylic acetates would be functionalized from the allylic 

alcohols, which in turn would be generated by addition of the steroidal vinyl anion to a 

variety of aldehydes.  
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Figure 4.14 Retrosynthetic Design of Alkylidene Analogs 
 

 Beginning with protected estrone 3 (Scheme 4.15), the carbonyl was first 

converted to the hydrazone with hydrazine and base. After removal of the solvent, 

sequential addition of triethylamine followed by iodine resulted in the elimination of 

nitrogen gas and the construction of vinyl iodide 57. Lithium halogen exchange 

proceeded smoothly with a variety of electrophiles featuring both saturated and 

unsaturated rings to generate a small library of allylic alcohols 58-61. It is noteworthy 

that the nature of the protecting group on the prolinal was essential for reactivity.  

Benzylic and carbamate protecting groups were too small, and only recovered 

dehalogenated vinyl product was observed. Switching to the large trityl protecting group 

prevented this reactivity.15  
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Scheme 4.15 Synthesis of Allylic Alcohols 
 

 At this stage we had hoped to isolate this intermediate and evaluate the allylic 

alcohols for biological activity.  Deprotection of the pyridyl and phenyl derived analogs 

proceeded without issue to afford 62 and 63, respectively (Scheme 4.16). Unfortunately, 

every condition employed to remove the trityl group from the sterically encumbered 

environment resulted in decomposition of either the aromatic system or the allylic 

alcohol. Completion of the saturated pyrrolidine analogs will be discussed in later 

sections.   
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Scheme 4.16 Completion of Phenyl and Pyridyl Allylic Alcohols  
 

 At this point, we were ready to pursue the key transformation. Allylic alcohol 58 

was converted to acetate 64 in excellent yield with acetyl chloride (Scheme 4.17). Tsuji-

Trost pi-allyl chemistry was implemented with palladium acetate and ammonium formate 

as the source of hydride.16 Although the transformation occurred in a relatively high 

overall yield, the ratio of unconjugated (66) to conjugated (65) product was 3:1 for the 

undesired isomer.  
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Scheme 4.17 Tsuji-Trost Elimination of Allylic Acetate 
 

 Both analogs were carried forward through deprotection to generate the 

conjugated trans-alkene 67 and unconjugated isomer 68. Our main goal using this route 

was to construct both aromatic and saturated analogs through this elimination process.  

The pilot analysis with the pyridyl ring suggested that there was a preference for the 

unconjugated product, even in the presence of an aromatic group. This preference could 

be due to allylic strain in the conjugated product.  For this reason, we believed that with 

saturated analogs the barrier to generate exocyclic isomers would be too high.  

 By switching the method of activation and elimination via Appel conditions with 

triphenylphosphine and carbon tetrabromide, we saw both isomers of the conjugated 

vinyl bromide (Scheme 4.18). Upon purification on silica gel, the cis-alkene isomer was 

identified as the unexpected dehalogenated species 70. Deprotection of compound 70 

with TBAF in THF completed the set of E-, Z-, and unconjugated pyridine isomers for 

biological analysis.  
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Scheme 4.18 Completion of cis-pyridyl Analog 
 

 Biological evaluation of this family of analogs revealed a wide range of potencies 

(Figure 4.15). First, despite the original hypothesis that both the oxygen and nitrogen 

were essential for activity, the second most potent analog, phenyl allylic alcohol 63, does 

not contain a second heteroatom. Interestingly, the pyridine derivative of the allylic 

alcohol 62 does not exhibit this same activity. One possible explanation for this 

difference is that the allylic ether 63 is simply acting as an electrophile inside the binding 

pocket.  Activation of the alcohol would activate the alkene for nucleophilic attack and 

displacement of the activated hydroxyl.  In the presence of a Lewis acidic amino acid, 

the oxygen of the phenyl allylic alcohol could be activated. Conversely, in the pyridyl 

analog 62, the nitrogen may preferentially become activated, resulting in a weaker 

electrophile.  
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Figure 4.15 Biological Activities of Allylic Alcohols and Derivatives 
 

 Furthermore, the relationship between E-, Z-, and unconjugated pyridyl alkenes 

is especially interesting.  The trans-alkene 67 and the unconjugated isomer 68 possess 

approximately the same potency. On the other hand, cis-alkene 71 exhibited a complete 

loss in potency. Moving forward, construction of exclusively cis-alkenes did not seem 

necessary.  
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Section 4.8 Second Generation Derivatives of Phenyl Allylic Alcohol  

 With an identification of another potent analog, it is important to tease out the 

necessary functionality required for this activity.  As previously mentioned, the allylic 

alcohol may become activated inside the binding pocket and serve as an electrophile.  

To test this hypothesis, a series of modified compounds were constructed that either 

removed the ability of the molecule to act as an electrophile through unsaturation or 

enhanced the ability to act as an electrophile by oxidation. Disruption of the hydrogen-

bonding network was also investigated while maintaining the unsaturation.   

 First, two saturated analogs were synthesized to assess the importance of the 

potential electrophilicity of the allylic alcohol system (Scheme 4.19). Beginning with 

methylene estrone 72, protection of the free phenol as the silyl ether provided methylene 

73. Hydroboration and oxidation of the methylene provided primary alcohol 74, which 

was selectively oxidized to aldehyde 75 with Dess Martin Periodinane, furnishing our 

electrophilic partner. Lithium halogen exchange with tert-butyllithium and bromobenzene 

followed by addition of 75 assembled the saturated alcohol 76. Oxidation of the benzylic 

alcohol with PCC afforded ketone 78. Both alcohol 76 and ketone 78 analogs were 

deprotected with TBAF and isolated for biological testing as 77 and 79, respectively.  
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Scheme 4.19 Synthesis of Saturated Analogs of Phenyl Construct 
 

 To explore the role of hydrogen bonding, the methylated allylic ether was 

generated from 59 with methyl iodide and deprotected with TBAF to isolate 80 for 

analysis (Scheme 4.20).  
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 The allylic alcohol 63 (Scheme 4.16) shows interesting inhibitory effects on the 

SHH pathway. Conversely, biological evaluation of the saturated derivatives 77 and 79 

showed a complete loss in inhibitory activity, suggesting that the allylic alcohol is 

responsible for the biological activity of this analog. Additionally, the capping of the allylic 

alcohol as methyl ether 80 resulted in a complete loss in activity furthering the 

hypothesis that the allylic alcohol is the essential functionality for inhibition. This activity 

could be due to the electrophilic nature of an activated allylic alcohol.  Or alternatively, 

the allylic alcohol could be oxidized by extracellular proteins to the enone, and this 

functionality could be serving as a Michael acceptor. Both the saturated analogs 77 and 

79, as well as the methyl ether 80 would not be capable of oxidation to an enone, and 

would not serve as potential pro-drug Michael acceptors.  

 To further explore the hypothesis that electrophilicity is involved in potency, a 

more rigid version of the phenyl alcohol was also designed to eliminate the possibility for 

nucleophilic attack. Using cyclobutane as a rigid scaffold, a saturated variant of the 

phenyl allylic alcohol was synthesized beginning with methylene estrone 72. Acylation of 

the phenol was necessary for future transformations. Acylated steroid 81 underwent a 

[2+2] cyclization with dichloroketene, generated in situ from trichloroacetylchloride and 

freshly activated zinc.17,18 Dechlorination of the resulting dichloride 82 with zinc and 

acetic acid afford cyclobutanone 83. Lithiated benzene was added in excess to both 

deprotect the phenol as well as to add to the cyclobutanone, providing analog 84 

(Scheme 4.21).   
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Scheme 4.21 Synthesis of Cyclobutane Analog 
 

 Upon biological evaluation, this rigid scaffold was also inactive, further 

suggesting the importance of the allylic alcohol for potency.  The final analog designed 

to test this hypothesis was the oxidation of the allylic alcohol to the conjugated enone 

(Scheme 4.22). If the enone demonstrates similar potency to the allylic alcohol it would 

suggest the in vivo oxidation of the allylic alcohol system to the enone.  
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Scheme 4.22 Synthesis of Unsaturated Enone 
 

To access the desired enone, compound 59, the benzylic alcohol, was oxidized using 

pyridinium chlorochromate to furnish the protected enone, which was deprotected for 

analysis with TBAF to give 85. Although this compound showed some loss in potency 

relative to the parent allylic alcohol 63, the potential for an activated electrophile appears 

to be essential for the potency of this family of analogs.   

 At this point, the biological data has revealed two distinct ligands that inhibit SMO 

with excellent potency (Figure 4.16).   

 

 

Figure 4.16 Side by Side Comparison of Lead Analogs 
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comprised of only one heteroatom and has the potential to act as an electrophile.  There 

is the possibility that upon activation the oxetane ring system could also serve as a 

potential electrophile. It has been shown that a variety of nucleophiles can add to 

oxetane ring systems, especially in the presence of mild acid.19–21  

 

Section 4.9 Analyzing the Importance of the Nitrogen 

 The biological data summarized above demonstrates that there are two unique 

scaffolds that exhibit inhibitory activity on the SHH pathway.  Despite their structural 

differences, one similarity it the presence of a potential Lewis basic oxygen atom. 

Looking back at the lead analog, we postulated whether the oxetane alone was sufficient 

to drive potency or if the exocyclic pyrrolidine also played a role. To address this 

question, analogs were designed that lacked the pyrrolidine F-ring. Using a gold 

catalyzed cyclization approach, a small sample of oxetanones was generated that 

maintained the oxetane E-ring but lacked the pyrrolidine. 

 To achieve these compounds, ethyl propionate was deprotonated with n-

butyllithium and added to TBDPS-protected estrone to afford compound 86.  Using a 

novel method described by Zhang, oxetanones 87 and 88 were obtained in modest 

yield.22 Due to the hindered nature of the neopentyl alcohol, it was essential for the ester 

to be directly conjugated with the alkyne for activation of the triple bond for cyclization.  

Comparison of this reaction to an adamantyl control substrate, which undergoes facile 

cyclization at lower temperatures, highlights the hindered nature of this steroidal tertiary 

alcohol.   
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Scheme 4.23 Synthesis of Oxetanone Scaffold  
 

 Compound 88 was analyzed for potency and also carried forward through a 

base-induced decarboxylation to generate analog 89 (Scheme 4.23).  

 

 

 

Scheme 4.24 Synthesis of Bare Oxetanone 
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Although these oxetanones are not an exact des-F mimic, they do afford the quick 

access to structurally related analogs. Pleasingly, compounds 88 and 89 showed no 

biological activity, highlighting the importance for the oxetane analogs to be comprised of 

more than simply a four-membered ring. Although it seems unlikely that the ketone 

prevents inhibitory function, further studies to examine the role of the additional carbonyl 

would need to be conducted to confirm the importance of the pyrrolidine F-ring.  

 

Section 4.10 Access to Pyrrolidine Containing Derivatives  

 As described in Section 4.9, the biological evaluation of preliminary oxetanone 

derivatives suggest that the pyrrolidine ring is contributing to the activity of the lead 

oxetane analog. The next family of compounds synthesized maintains a similar spatial 

relationship between the oxygen and the secondary amine but would allow for more 

flexibility in the pocket.  Additionally, the alcohol intermediate could be used to generate 

a variety of analogs with varying oxidation states. Section 4.7 highlighted efforts towards 

the saturated F-ring analogs through the use of lithium halogen exchange with vinyl 

iodide 57 and subsequent addition to trityl protected prolinals (Scheme 4.25).  

 

 

Scheme 4.25 Synthesis of Carbon Framework of Pyrrolidine Allylic Alcohols 
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 Functionalization of the resulting allylic alcohol 60 proved more difficult than 

anticipated.  Activation of the allylic alcohol as either the corresponding mesylate or 

acetate resulted in either no product formation or decomposition.  Removal of the trityl 

protecting group with dilute acid resulted in complex mixtures, and hydrogenation 

attempts at elevated pressures were unsuccessful.  Addition of the vinyl anion to 

aldehydes with alternative nitrogen protecting groups were fruitless and resulted in only 

isolated of the protonated vinyl species.  With these discouraging results, a second-

generation route was designed.   

 By switching the nucleophilic and electrophilic partner, the second generation 

route to these analogs featured the addition of a lithiated pyrrolidine to the corresponding 

steroidal aldehyde (Scheme 4.26). Beginning with the methylenated estrone 7323, the 

free phenol was protected as the para-methoxybenzyl ether 90.  Hydroboration with 9-

BBN followed by oxidation afforded 91 as a single beta-epimer in excellent yield.  Dess 

Martin periodinane selectively oxidized the resulting primary alcohol to aldehyde 92 for 

coupling. After optimization for temperature and time, the lithiation of Boc-pyrrolidine with 

sec-butyllithium in the presence of TMEDA successfully constructed the full carbon 

framework of alcohol 93 as a mixture of three inseparable diastereomers.  
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Scheme 4.26 Nucleophilic Addition to Steroid Aldehyde 
 

 This newly formed secondary alcohol was exceedingly hindered and unreactive 

to numerous elimination and oxidation conditions.  In order to functionalize the alcohol 

for elimination the carbamate must first be removed (Scheme 4.27). Using traditional 

acidic deprotection conditions resulted in the destruction of the PMB protection group; 

however, strong basic conditions resulted in a quantitative yield of the desired product.24  

 

 

Scheme 4.27 Deprotection of Secondary Carbamate 
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the second would be formed from the elimination of a molecule of water and could be 

used to assess the importance of both heteroatoms. With compound 94 in hand, a series 

of elimination conditions were attempted that resulted in no reactivity or destruction of 

the aromatic ring.  However, activation of the secondary alcohol as tosylate 95 was 

obtained in a modest yield (Scheme 4.28). 

 

 

Scheme 4.28 Synthesis of Secondary Tosylate for Elimination 
 

 With 95 in hand, a variety of bases and conditions were employed to generate 

the desired allylic amine.  Unfortunately, the only products isolated were enamine 96 and 

a suspected tosyl-transferred product 97 (Scheme 4.29).  

 

 

Scheme 4.29 Elimination Attempts of Secondary Tosylate 
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 Additionally, when using a model system for removal of the PMB protecting 

group, it was discovered that oxidative methods further oxidized the resulting free phenol 

and acidic conditions resulted in destruction of the alkene.25 Moving forward, we 

transitioned our focus to a more orthogonal protecting group that could be removed with 

mild conditions in the presence of alkene functionalities (Scheme 4.30). 

 

 

Scheme 4.30 Completion of Flexible Pyrrolidine Analog 
 

 Using the chemistry described above, the addition of lithiated Boc-pyrrolidine to 
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basic deprotection conditions described previously to furnish 102 as the first flexible 

variant of the lead oxetane analog with a vicinal relationship between the two 

heteroatoms.  

 To complete the synthesis of this family of derivatives, dehydration of compound 

101 was attempted to construct the rigid alkene analog.  Based on our previous analysis 

of the elimination of tosylate 95, it was believed that elimination from an activated 

alcohol would also provide the undesired enamine. Conversion of alcohol 101 to a 

ketone, trapping the enolate as the enol triflate and reducing to furnish the desired 

alkene, was envisioned to avoid the undesired product.  To our disappointment, all 

efforts to oxidize the alcohol, protected (100) or deprotected (101), were unsuccessful.  

Additional experiments using the acid chloride as the electrophile are currently being 

pursued.  

 Interestingly, the biological evaluation of the flexible analog 101 did not show 

inhibitory activity against the SHH pathway, suggesting once again, the importance of 

the oxetane ring.  The oxetane also may be serving an essential role as a hydrogen 

bond receptor whereas analog 101 is more of a hydrogen bond donor.  
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Figure 4.17 Biological Activity of Flexible Pyrrolidine Analog 
 

  

Section 4.11 Cross-Coupling Approach to Alkylidene Analog 

 As outlined in the above section, efforts towards functionalizing, eliminating, or 

oxidizing the sterically hindered secondary alcohol proved difficult. In order to circumvent 

the issue of late stage installation of the alkene, a third-generation approach was taken 

using novel photoredox cross-coupling chemistry designed by the Molander group 

(Figure 4.18).26 Using pyrroldine trifluoroborate and a steroidal vinyl halide, the 

photoactivated dual catalysis of iridium and nickel would couple the Csp3 and Csp2 atoms 
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of interest.  First, the photoactivated iridium would cleave the C-B bond generating a 

carbon centered radical alpha to the nitrogen. Nickel would insert into the vinyl halide 

bond, and then the carbon-centered radical could coordinate to the nickel to create a 

pentacoordinate species.  Reductive elimination of the allyl amine would allow for 

recycling of the catalyst. 

 

Figure 4.18 Photoredox Cross-Coupling: Single Electron Transmetallation  
 

 To construct the necessary vinyl bromide, a one-step procedure using the 

halogenated Wittig reagent was unsuccessful.  An alternative route was designed to 

access the desired vinyl bromide which required only two chemical transformations from 

the known epoxide (Scheme 4.31).  Acid-catalyzed epoxide opening of 103 with 

aqueous hydrobromic acid afforded halohydrin 104 in good yield.  Elimination of the 

tertiary alcohol with thionyl chloride in pyridine produced a mixture of vinyl halide 105 

and an allylic halide byproduct that were separable by column chromatography.27   
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Scheme 4.31 Attempted Photoredox Cross-Coupling of Vinyl Bromide 
 

 With the assistance of John Tellis, the graduate student that designed the 

seminal photoredox cross-coupling work, and Simon Berritt, the Director of the Merck 

High-Throughput Experimentation Laboratory at Penn, a small screen was designed to 

test solvent, additives, and ligands in the photoredox reaction.  Analysis of the crude 

reaction mixtures identified the product by mass, and the best set of conditions was 

scaled to a full plate.  Despite the overall low yield, this unoptimized reaction represents 

the first use of a steroidal vinyl bromide in conjunction with photoredox catalysis for the 

assembly of novel analogs.  After purification and deprotection, it was determined that 

the only product formed was the undesired enamine.  With this information, the stability 

of the allyl amine in acidic and aqueous environments remained a concern. The nature 

of this chemical pathway suggested that the construction of the allyl amine occurs first 

followed by isomerization to the more thermodynamically favorable enamine.28  
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Section 4.12 Conclusions 

 Through the development of in-house high-throughput biological evaluation and a 

computational model for potency, the Winkler Laboratory continues to design and 

synthesize steroid-derived inhibitors of the SHH signaling pathway.  To date, we have 

identified two unique scaffolds that offer potency at, or near, the level of the alkaloid 

cyclopamine.  Small perturbations to the EF-rings of the synthesized ligands result in 

drastic changes in potency.  To date, we have identified both an oxetane-pyrrolidine 

analog with potency five times that of cyclopamine (Figure 4.19).  Additionally, we have 

recently found a family of allylic alcohols and their derivatives with variable potencies, 

with the most potent phenyl allylic alcohol potentially acting as an irreversible 

electrophile (Figure 4.20).   

 

Figure 4.19 Summary of Biological Activity of Oxetane Derivatives 
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To summarize the oxetane family, any disruption of the four-membered ring results in a 

loss of biological activity.  The role of this four-membered ring remains unclear.   

Recently, Dr. Estrada has shown that the use of excess NIS as the electrophilic 

iodine source results in increased yields of the key iodoetherification step.  With this 

increased yield, the isolation of a second minor diastereomer is now possible (Scheme 

4.32).  Side-by-side biological testing of a 2:1 mixture of diasteromers (108:109) and the 

known oxetane show similar potencies, suggesting the role of stereochemistry is non-

essential. Interestingly, ring opened variants such as 56 (Figure 4.19, column 4) and 

102 (Figure 4.19, column 9) show only modest activity suggesting that the constraint of 

this cyclic system is essential. 

 

Scheme 4.32 Isolation of Two Oxetane Epimers 

 

Turning to the family of phenyl allylic alcohols, any modification that prevents the 

molecule from acting as an electrophile results in the loss of activity.  Conversion of the 
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not the active for of the ligand. With this data, it could be concluded that the oxetane 

moiety and the allylic alcohol are acting as a electrophilic trap in the binding pocket of 

SMO.  Activation of either the lone pairs of the oxetane or the alcohol would render 

these molecules susceptible to attack from neighboring amino acids.  Lastly, it has been 

shown that the selection of estrone as the hydrophobic surrogate is essential for activity.    

 

 

Figure 4.20 Summary of Biological Activity of Phenyl Allylic Alcohol Family 
!
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Section 4.14 Experimental Details  

Experimental Results 

 

General Methods 

Solvents used for extraction and purification were HPLC grade from Fisher. Unless 

otherwise indicated, all reactions were run under an inert atmosphere of argon. 

Anhydrous tetrahydrofuran, ethyl ether and toluene were obtained via passage through 

an activated alumina column. VWR pre-coated silica gel plates (250 µm, 60 F254) were 

used for analytical TLC. Spots were visualized using 254 nm ultraviolet light, with either 

ceric ammonium molybdate or potassium permanganate stains as visualizing agents. 

Chromatographic purifications were performed on Sorbent Technologies silica gel 

(particle size 32-63 microns). 1H and 13C NMR spectra were recorded at 500 MHz and 

125 MHz, respectively, in CDCl3 on a Bruker AM-500 or DRX-500 spectrometer. 

Chemical shifts are reported relative to internal chloroform (δ 7.26 for 1H, δ 77.17 for 

13C). Infrared spectra were recorded on a NaCl plate using a Perkin-Elmer 1600 series 

Fourier transform spectrometer. High-resolution mass spectra were obtained by Dr. 

Rakesh Kohli at the University of Pennsylvania Mass Spectrometry Service Center on an 

Autospec high resolution double-focusing electrospray ionization/chemical ionization 

spectrometer with either DEC 11/73 or OPUS software data system. Melting points were 

obtained on a Thomas Hoover capillary melting point apparatus and are uncorrected. 
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Experimental Details 

Section 4.1 Sulfonamides 

 

 

To a solution of protected estrone 3 (274 mg, 0.71 mmol) in THF (14 mL, 0.05 M) and 

methanol (4.7 mL, 0.15 M) at 25 °C was added ammonium acetate (546 mg, 7.10 mmol) 

and sodium cyanoborohydride (135 mg, 2.14 mmol). The slurry was allowed to stir 

overnight at 25 °C before being quenched with water (10 mL). The aqueous was 

extracted with ethyl acetate (3x 15 mL), washed with brine (10 mL), and dried over 

sodium sulfate.  The organics were removed in vacuo and the crude residue was purified 

by silica gel chromatography with 10% methanol in DCM as the eluent to yield the 

product 4 as a white film (247 mg, 91 %). Spectral data matches the reported. 1H NMR 

(500 MHz, CDCl3): δ  7.14-7.09 (m, 1H), 6.63-6.56 (m, 2H), 3.76 (s, 1H), 2.82 (t, J = 8.9 

Hz, 2H), 2.33-1.80 (m, 8H), 1.52-1.26 (m, 5H), 0.98 (s, 8H), 0.91 (d, J = 5.6 Hz, 1H), 

0.79 (s, 1H), 0.20 (t, J = 3.4 Hz, 5H). 
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To a solution of amine 4 (247 mg, 0.64 mmol) in dry pyridine (2.1 mL, 0.3 M) at 0 °C was 

added methanesulfonyl chloride (60 µL, 0.77 mmol). The reaction was stirred at 0 °C for 

2 hours before quenching with deionized water (10 mL). The aqueous was extracted 

with ethyl acetate (3x 15 mL) and dried over sodium sulfate.  The organics were 

removed in vacuo to afford the crude sulfonamide that was purified by silica gel 

chromatography with DCM as the eluent to afford sulfonamide 5 as a white film (260 mg, 

88 %).  1H NMR (500 MHz; CDCl3): δ  7.11 (d, J = 8.4 Hz, 1H), 6.62 (dd, J = 8.4, 2.6 Hz, 

1H), 6.55 (d, J = 2.6 Hz, 1H), 4.57 (dd, J = 9.0, 8.0 Hz, 1H), 3.02 (d, J = 0.3 Hz, 3H), 

2.88-2.78 (m, 2H), 2.34-2.17 (m, 3H), 2.04 (dt, J = 12.2, 3.1 Hz, 1H), 1.89-1.74 (m, 3H), 

1.58-1.22 (m, 7H), 0.98 (s, 9H), 0.88 (s, 3H), 0.19 (s, 6H).13C NMR (126 MHz; CDCl3): δ 

153.6, 137.8, 132.7, 126.3, 120.1, 117.4, 89.7, 49.2, 43.9, 43.5, 38.6, 38.4, 36.6, 29.6, 

28.1, 27.2, 26.1, 25.9, 23.2, 18.3, 11.9, -4.2. FTIR (thin film) 3023, 2929, 2857, 1607 cm-

1. HRMS (ES) Calcd. for C25H41NO3SSi: 463.2576 (M+D)+, found 465.2457. 

 

 

To a solution of sulfonamide 5 (26 mg, 0.05 mmol) in THF (560 µL, 0.1 M) at 25 C was 

added tetrabutylammonium fluoride (112 µL, 0.11 mmol) dropwise and stirred for two 

hours.  The reaction was quenched with saturated ammonium chloride (1 mL) and 

extracted with ethyl acetate (3x 5 mL), dried with sodium sulfate and concentrated in 

vacuo. The crude product was purified with silica gel chromatography with a gradient of 

0-10 % methanol in DCM as the eluent to afford compound 1 as a white film (18 mg, 95 
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%). 1H NMR (500 MHz; CDCl3): δ  6.87 (d, J = 8.4 Hz, 1H), 6.37 (dd, J = 8.4, 2.7 Hz, 

1H), 6.31 (d, J = 2.7 Hz, 1H), 4.32 (dd, J = 9.1, 7.8 Hz, 1H), 4.28 (s, 2H), 2.81 (s, 3H), 

2.57 (dt, J = 10.4, 4.9 Hz, 2H), 2.09-1.94 (m, 3H), 1.78 (dt, J = 11.9, 2.8 Hz, 1H), 1.65-

1.54 (m, 4H), 1.26-1.01 (m, 7H), 0.63 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 154.2, 

137.5, 130.8, 126.0, 114.9, 112.5, 89.6, 43.4, 43.0, 38.4, 37.5, 36.1, 29.2, 27.6, 26.8, 

25.7, 22.7, 11.3.  FTIR (thin film) 3443, 2922, 1617, 1498 cm-1. HRMS (ES) Calcd. for C-

19H27NO3S: 349.1712 (M+Cl)-, found 385.1463.  

 

 

To a solution of protected estrone 3 (469 mg, 1.22 mmol) in THF (12 mL, 0.1 M) at 0 °C 

was added sodium borohydride (46 mg, 1.22 mmol) in one portion.  The slurry was 

stirred at this temperature for three hours before quenching with saturated ammonium 

chloride (10 mL). The aqueous was extracted with ethyl acetate (3x, 10 mL), dried over 

sodium sulfate, and the solvent removed in vacuo.  The crude product 6 was clean and 

no further purification was required (400 mg, 85%). 1H and 13C NMR spectra match the 

reported data. 1H NMR (500 MHz; CDCl3): δ  7.12 (d, J = 8.5 Hz, 1H), 6.62-6.55 (m, 2H), 

3.75-3.72 (m, 1H), 2.81 (dt, J = 11.2, 5.2 Hz, 2H), 2.30 (dt, J = 9.9, 3.6 Hz, 1H), 2.20-

2.10 (m, 2H), 1.94 (dt, J = 12.6, 3.2 Hz, 1H), 1.88-1.84 (m, 2H), 1.74-1.69 (m, 2H), 1.59 

(s, 2H), 1.52-1.25 (m, 22H), 0.98 (s, 9H), 0.78 (s, 3H), 0.19 (s, 6H). 13C NMR (126 MHz; 

CDCl3): δ 164.5, 153.5, 143.6, 137.99, 137.94, 133.2, 126.27, 126.08, 125.5, 125.0, 

120.1, 117.3, 113.7, 100.21, 100.13, 82.1, 50.2, 44.2, 43.4, 39.0, 36.9, 34.8, 31.8, 30.8, 
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29.8, 29.2, 27.4, 26.4, 25.9, 25.4, 23.3, 22.8, 18.3, 14.3, 11.6, 11.2, -4.2. FTIR (thin film): 

3330, 2926, 1606, 1496 cm-1.  

 

 

Tosyl chloride (226 mg, 1.2 mmol) was added in one portion to a solution of alcohol 6 

(229 mg, 0.6 mmol) in dry pyridine (2 mL, 0.3 M) and stirred at 25 °C overnight. The 

reaction was neutralized with concentrate hydrochloric acid and diluted with water to 

precipitate product.  The crude product was collected via filtration and purified by silica 

gel chromatography with 10 % ethyl acetate in hexanes as the eluent to afford product 7 

(219 mg, 67 %). 1H NMR (500 MHz; CDCl3): δ  7.82 (d, J = 8.3 Hz, 2H), 7.35 (dd, J = 

8.6, 0.6 Hz, 2H), 7.09 (d, J = 8.2 Hz, 1H), 6.61 (dd, J = 8.4, 2.7 Hz, 1H), 6.55 (d, J = 2.6 

Hz, 1H), 4.36 (dd, J = 9.0, 7.8 Hz, 1H), 2.80 (dd, J = 10.9, 5.6 Hz, 2H), 2.47 (s, 3H), 2.22 

(dq, J = 13.7, 3.6 Hz, 1H), 2.12 (td, J = 11.1, 3.9 Hz, 1H), 2.01-1.96 (m, 1H), 1.85-1.64 

(m, 4H), 1.46-1.26 (m, 4H), 1.17-1.10 (m, 2H), 0.99 (s, 9H), 0.84 (s, 3H), 0.19 (s, 6H). 

13C NMR (126 MHz; CDCl3): δ 153.4, 149.6, 144.5, 137.6, 134.3, 132.6, 129.8, 127.9, 

126.2, 120.0, 117.3, 89.9, 49.1, 43.8, 43.35, 43.32, 38.5, 36.2, 29.5, 27.8, 27.1, 25.95, 

25.77, 23.1, 21.7, 18.2, 11.8, -4.3. FTIR (thin film): 2928, 2837, 1606, 1569 cm-1.  
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Sodium azide (208 mg, 3.2 mmol) was added in one portion to a solution of tosylate (219 

mg, 0.4 mmol) in dry DMF (3 mL, 0.13 M) at 25 °C, and the solution heated to reflux and 

and stirred overnight.  The reaction was cooled to 25 °C  and quenched with water (10 

mL) and extracted with DCM (3x, 15 mL) and the organic solvent removed in vacuo. The 

crude material was purified by silica gel chromatography with 10 % ethyl acetate in 

hexanes as the eluent to afford the azide 8 as a white film (39 mg, 33 %). Spectra 

matches that reported. 1H NMR (500 MHz; CDCl3): δ  7.16 (d, J = 8.5 Hz, 1H), 6.63 (dd, 

J = 8.4, 2.8 Hz, 1H), 6.56 (d, J = 2.7 Hz, 1H), 3.59 (d, J = 6.6 Hz, 1H), 2.82 (dd, J = 10.4, 

5.3 Hz, 2H), 2.35 (dd, J = 13.4, 3.0 Hz, 1H), 2.23-2.18 (m, 2H), 1.90-1.67 (m, 5H), 1.54-

1.26 (m, 6H), 0.79 (s, 3H).  

 

 

A slurry of azide 8 (39 mg, 0.13 mmol) and Pd/C (10 mg, 10 % by wt) in methanol (1 mL, 

0.15 M) was sparged with hydrogen and placed under 1 atm of hydrogen at 25 °C. The 

slurry was stirred overnight and then diluted with ethyl acetate and filtered through a pad 

of Celite and the solvent removed in vacuo. The crude product 9 was pure and no further 

chromatography was required (29 mg, quant.), and 1H NMR data matches reported 
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spectra. 1H NMR (500 MHz, CDCl3): δ  6.98 (d, J = 8.4 Hz, 1H), 6.47 (dd, J = 8.4, 2.7 

Hz, 1H), 6.41 (d, J = 2.6 Hz, 1H), 3.98-3.95 (m, 4H), 2.78 (d, J = 6.5 Hz, 1H), 2.69-2.65 

(m, 2H), 2.22-2.18 (m, 1H), 2.14-2.08 (m, 1H), 2.02-2.00 (m, 1H), 1.78-1.66 (m, 2H), 

1.48-1.36 (m, 3H), 1.28-1.22 (m, 3H). 

 

 

To a solution of amine 9 (27 mg, 0.10 mmol) in dry pyridine (333 µL, 0.3 M) at 0 °C was 

added methanesulfonyl chloride (9 µL, 0.12 mmol). The reaction was stirred at 0 °C for 2 

hours before quenching with deionized water (5 mL). The aqueous was extracted with 

ethyl acetate (2x, 10 mL) and DCM (2x, 1 mL), washed with brine (10 mL) and dried over 

sodium sulfate.  The organics were removed in vacuo to afford the crude sulfonamide 

that was purified by silica gel chromatography with a gradient of 0-10 % methanol in 

DCM as the eluent to afford sulfonamide 2 as a white film (13 mg, 37 %).  1H NMR (500 

MHz, CDCl3): δ  7.01 (d, J = 8.4 Hz, 1H), 6.51 (dd, J = 8.4, 2.7 Hz, 1H), 6.44 (d, J = 2.6 

Hz, 1H), 3.69 (s, 4H), 3.32 (dd, J = 8.5, 7.0 Hz, 1H), 3.25 (dt, J = 3.2, 1.6 Hz, 1H), 2.82 

(s, 3H), 2.78-2.65 (m, 3H), 2.32-2.21 (m, 3H), 2.09-2.03 (m, 1H), 1.81-1.73 (m, 3H), 

1.65-1.55 (m, 3H), 1.46-1.14 (m, 10H), 0.70 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 

154.6, 138.1, 131.4, 126.4, 115.2, 112.7, 62.6, 44.9, 43.5, 41.1, 40.3, 39.2, 33.0, 31.6, 

29.7, 28.0, 26.3, 24.2, 18.3. FTIR (thin film)  3302, 2932, 1602, 1500 cm-1 
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Section 4.2 Aryl-Aryl Coupled Analogs 

 

 

Triethylamine (1.03 mL, 7.4 mmol) was added to a solution of estrone 10 (1.0 g, 3.7 

mmol) in dichloromethane (20 mL, 0.2 M) at 0 °C followed by the dropwise addition of 

trifluoromethanesulfonic anhydride (684 µL, 4.1 mmol). The reaction was stirred at 0 °C 

for two hours, diluted with dichloromethane (20 mL) and quenched with aqueous 

saturated sodium bicarbonate (25 mL).  The aqueous was extracted with 

dichloromethane (3x 25 mL), and the organics collected, dried over sodium sulfate, and 

the solvent removed in vacuo. The crude product was purified by silica gel 

chromatography (10 % ethyl acetate in hexanes) to afford 11 as a white film (568 mg, 38 

%). Observed spectra correlates with previously reported characterization. 1H NMR (500 

MHz; CDCl3): δ  7.34 (d, J = 8.7 Hz, 1H), 7.03 (dd, J = 8.6, 2.3 Hz, 1H), 6.99 (s, 1H), 

2.94 (dd, J = 8.5, 3.8 Hz, 2H), 2.51 (dd, J = 18.9, 8.8 Hz, 1H), 2.42-2.38 (m, 1H), 2.32-

2.27 (m, 1H), 2.15 (dt, J = 18.8, 9.2 Hz, 1H), 2.09-2.02 (m, 2H), 1.97 (dt, J = 9.7, 2.7 Hz, 

1H), 1.71-1.44 (m, 6H), 0.91 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 147.7, 140.4, 139.4, 

127.3, 121.3, 118.4, 50.5, 48.0, 44.2, 37.8, 35.9, 31.6, 29.5, 26.2, 25.8, 21.7, 13.9 
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A microwave vial was charged with triflate 11 (214 mg, 0.53 mmol), Pd(PPh3)4 (61 mg, 

0.05 mmol), phenylboronic acid (71 mg, 0.59 mmol) and K2CO3 (242 mg, 1.76 mmol), 

purged and backfilled with argon. Dry toluene (2.6 mL) and degassed water (0.88 mL) 

were added and the resulting mixture was allowed to stir at 75 oC for 12 h. The mixture 

was allowed to cool to  25 °C, quenched with water (10 mL) and extracted with 

dichloromethane (3x 15 mL). The organics were dried over sodium sulfate, concentrated 

and purified by silica gel chromatography (20 % ethyl acetate in hexanes) to yield 12 as 

a white solid (73 mg, 68 %) 1H NMR (500 MHz; C6H6): δ  7.59-7.57 (m, 2H), 7.44-7.31 

(m, 6H), 3.00 (dd, J = 8.9, 4.0 Hz, 2H), 2.55-2.46 (m, 2H), 2.39-2.34 (m, 1H), 2.20-1.98 

(m, 3H), 1.70-1.48 (m, 7H), 0.94 (s, 3H). 13C NMR (126 MHz; C6D6): δ 141.2, 139.07, 

138.97, 137.0, 128.8, 127.9, 127.20, 127.16, 126.0, 124.7, 50.7, 48.2, 44.5, 38.4, 36.0, 

31.8, 31.1, 29.7, 26.7, 25.9, 21.8, 14.0. FTIR (thin film) 2930, 1737, 1484 cm-1. HRMS 

(ES) Calcd. for C24H26O: 330.1984 (M+), found 330.1988.  

 

 

To a solution of diisopropylamine (102 µL, 0.72 mmol) in dry Et2O (2.9 mL) stirred at –78 

oC under argon was added dropwise a solution of 2.3 M n-BuLi in hexanes (313 µL, 0.72 
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mmol). The mixture was stirred at –78 oC for 1 hour. 2-Methyl-3-bromopyridine (124 mg, 

0.72 mmol) was added dropwise. The resulting red mixture was stirred at –78 oC for 2 h 

under argon. Steroid 12 (120 mg, 0.36 mmol) in tetrahydrofuran (720 µL) was added 

dropwise and stirred at –78 oC for 4 h. The reaction flask was allowed to warm to 25 °C 

and was quenched slowly with aqueous saturated ammonium chloride (10 mL). The 

mixture was extracted with ethyl acetate (3x 20 mL), and dried with sodium sulfate. The 

solvent was removed in vacuo, and the crude product was purified by silica gel 

chromatography (20% ethyl acetate in hexanes) to yield 13 as a white solid (89 mg, 49 

%). 1H NMR (500 MHz; CDCl3): δ  8.45 (t, J = 2.3 Hz, 1H), 7.92-7.90 (m, 1H), 7.61-7.59 

(m, 2H), 7.45-7.32 (m, 6H), 7.08 (dd, J = 8.0, 4.7 Hz, 1H), 6.36 (s, 1H), 3.36 (d, J = 15.2 

Hz, 1H), 3.17 (d, J = 15.2 Hz, 1H), 2.98 (t, J = 4.3 Hz, 2H), 2.39-2.32 (m, 2H), 2.01-1.98 

(m, 1H), 1.84-1.60 (m, 8H), 1.48-1.44 (m, 3H), 1.29-1.27 (m, 1H), 1.03 (s, 3H). 13C NMR 

(126 MHz; CDCl3): δ 159.6, 146.7, 141.3, 140.9, 139.8, 138.6, 137.3, 128.8, 127.8, 

127.13, 127.06, 125.9, 124.5, 122.87, 122.74, 83.8, 50.0, 47.2, 44.4, 41.8, 39.5, 36.7, 

32.7, 29.9, 27.7, 26.4, 23.8, 14.3. FTIR (thin film) 3359, 2932, 1575, 1484 cm-1. HRMS 

(ES) Calcd. for C30H32BrNO: 501.1667 (M+), found 502.1746 (M+H+).  

 

 

A microwave vial was charged with Pd(OAc)2 (3 mg, 0.01 mmol) and BINAP (8 mg, 0.01 

mmol) and purged and backfilled with argon. Dry toluene (1.2 mL) and degassed water 
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(10 µL) were added and the resulting mixture was allowed to stir at 110 oC for 2 minutes. 

This solution of precatalyst was transferred to a second microwave vial containing 

Cs2CO3 (29 mg, 0.09 mmol) and alcohol 13 (30 mg, 0.06 mmol). The reaction was 

stirred at 80 oC for 12 hours. The mixture was allowed to cool to 25 °C, diluted with ethyl 

acetate (10 mL), filtered through Celite, concentrated and purified by silica gel 

chromatography (20% ethyl acetate in hexanes) to yield the spirocycle 14 as a white film 

(16 mg, 63%). 1H NMR (500 MHz; CDCl3): δ  8.02 (dd, J = 4.4, 1.2 Hz, 1H), 7.58 (d, J = 

7.4 Hz, 2H), 7.44-7.31 (m, 6H), 7.02-6.97 (m, 2H), 3.57 (d, J = 16.6 Hz, 1H), 3.03 (d, J = 

16.7 Hz, 1H), 2.98-2.96 (m, 2H), 2.39-2.29 (m, 3H), 2.05-1.96 (m, 2H), 1.88-1.84 (m, 

1H), 1.78 (s, 1H), 1.60-1.42 (m, 7H), 1.06 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 153.6, 

151.3, 141.21, 141.19, 139.3, 138.8, 137.1, 128.8, 127.9, 127.1, 126.0, 124.61, 124.59, 

122.4, 114.9, 98.3, 49.0, 46.4, 44.1, 40.4, 39.2, 37.0, 31.7, 29.8, 27.4, 26.1, 22.6, 14.5. 

FTIR (thin film) 2931, 1601, 1575, 1484 cm-1. HRMS (ES) Calcd. for C30H31NO: 

421.2406 (M+), found 422.2491 (M+H+).  

 

 

A microwave vial was charged with triflate 11 (144 mg, 0.36 mmol), palladium acetate (2 

mg, 0.01 mmol), X-Phos (4 mg, 0.01 mmol), 4-hydroxy-phenylboronic acid (64 mg, 0.47 

mmol) and K2CO3 (164 mg, 1.19 mmol), purged and backfilled with argon. THF (1.6 mL, 

0.2 M) and degassed water (0.4 mL, 0.8 M) were added and the resulting mixture was 

allowed to stir at 60 oC for 12 h. The mixture was allowed to cool to 25 °C, quenched 
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with water (10 mL) and extracted with dichloromethane (3x 15 mL). The organics were 

dried over sodium sulfate, concentrated and purified by silica gel chromatography with 

20 % ethyl acetate in hexanes as the eluent to yield the coupled product 15 as a white 

film (125 mg, quantitative) 1H NMR (500 MHz; CDCl3): δ  7.35-7.32 (m, 2H), 7.26-7.23 

(m, 1H), 7.04-7.03 (m, 1H), 7.00 (d, J = 0.3 Hz, 1H), 6.94-6.91 (m, 1H), 6.84-6.83 (m, 

1H), 4.97-4.96 (m, ), 2.96-2.93 (m, 2H), 2.55-2.50 (m, 1H), 2.42-2.38 (m, 1H), 2.32-2.27 

(m, 1H), 2.20-2.12 (m, 1H), 2.10-2.02 (m, 2H), 2.00-1.97 (m, 1H), 1.67-1.44 (m, 9H), 

0.93-0.90 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 155.7, 147.7, 140.4, 139.4, 129.8, 

127.34, 127.16, 121.4, 120.9, 118.5, 115.4, 100.1, 77.87, 77.74, 77.63, 77.58, 77.32, 

77.31, 77.12, 77.06, 50.5, 48.0, 44.2, 37.9, 36.0, 31.6, 29.5, 26.2, 25.8, 21.7, 14.0. FTIR 

(thin film) 3366, 2934, 2865, 1737, 1605 cm-1. HRMS (ES) Calcd. for C24H26O2:346.1933 

, found [M+Na]+: 369.2248.  

 

Section 4.3 Des-C Analogs and the Importance of Shape 

 

 

To a solution of 25 (27 mg, 0.06 mmol) in THF (0.6 mL, 0.1 M) was added TBAF (120 

µL, 0.12 mmol) and the reaction for two hours at 25 °C before being quenched with 

saturated ammonium chloride (1 mL). The aqueous was extracted with ethyl acetate (2x, 
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2 mL) and concentrated in vacuo. The crude residue was purified by silica gel 

chromatography with 50 % ethyl acetate in hexanes as the eluent to afford 26 as a white 

film (12 mg, 61%). 1H NMR (500 MHz, CDCl3): δ  7.88 (dd, J = 4.0, 2.3 Hz, 1H), 7.59-

7.53 (m, 3H), 7.34 (dd, J = 8.5, 1.8 Hz, 1H), 7.04-6.98 (m, 4H), 3.59 (s, 2H), 3.29 (d, J = 

11.0 Hz, 3H), 2.39 (dd, J = 14.4, 9.4 Hz, 1H), 2.31-2.24 (m, 2H), 2.19-2.16 (m, 1H), 2.05-

1.95 (m, 1H), 1.87-1.82 (m, 1H). 13C NMR (126 MHz; CDCl3): δ 154.2, 150.4, 140.2, 

139.5, 133.5, 129.0, 128.3, 126.5, 126.1, 125.0, 122.8, 118.2, 116.1, 108.8, 96.4, 47.6, 

44.0, 41.9, 40.7, 33.7. FTIR (thin film): 2924, 2852, 1604, 1578 cm-1. HRMS (ES) Calcd. 

for C21H19NO2: 317.1416 (M+), found 318.1496 (M+H+). 

 

 

To a solution of 25 (23 mg, 0.05 mmol) in THF (0.5 mL, 0.1 M) was added TBAF (100 

µL, 0.10 mmol) and the reaction for two hours at 25 °C before being quenched with 

saturated ammonium chloride (1 mL). The aqueous was extracted with ethyl acetate (2x, 

2 mL) and concentrated in vacuo. The crude residue was purified by silica gel 

chromatography with 50 % ethyl acetate in hexanes as the eluent to afford 27 as a white 

film (11 mg, 65%). 1H NMR (500 MHz, CDCl3): δ  7.88-7.86 (m, 1H), 7.53 (dt, J = 20.0, 

10.7 Hz, 3H), 7.23 (dd, J = 8.5, 1.6 Hz, 1H), 7.03-6.94 (m, 4H), 3.72 (s, 2H), 3.59-3.55 

(m, 1H), 3.31-3.27 (m, 2H), 2.47-2.43 (m, 1H), 2.34 (dt, J = 8.8, 4.6 Hz, 1H), 2.28-2.22 

(m, 1H), 2.09 (ddd, J = 14.6, 9.9, 5.1 Hz, 1H), 1.95-1.84 (m, 2H).13C NMR (126 MHz; 
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CDCl3): δ 153.1, 150.4, 140.4, 139.1, 133.5, 129.0, 128.4, 126.5, 126.0, 124.7, 122.9, 

118.3, 116.2, 108.9, 97.0, 48.1, 43.7, 40.8, 39.6, 32.4. FTIR (thin film): 2924, 2853, 1604 

cm-1. HRMS (ES) Calcd. for C21H19NO2: 317.1416 (M+), found 318.1494 (M+H+). 

 

Section 4.5 Establishing the Role of Oxygen 

 

 

To a solution of tert-Butyl P,P-dimethylphosphonoacetate (673 mg, 3.0 mmol) in THF 

(4.5 mL, 0.22 M) was added NaH (60 % by wt., 130 mg, 3.3 mmol) in small portions to 

control excessive release of hydrogen gas.  Protected estrone 3 (384 mg, 1.0 mmol) was 

added to the above slurry after 15 minutes, and the reaction mixture was warmed to 

reflux for 4 hours. The reaction was cooled to 25 °C, diluted with water (10 mL), 

extracted with ethyl acetate (3x, 15 mL), dried over sodium sulfate, and concentrated in 

vacuo. The crude product was purified by silica gel chromatography with 10 % ethyl 

acetate in hexanes to isolate a mixture of the four shown products (100 mg). The 

resulting complex mixture was further purified by preparative thin layer chromatography 

(1000 µm, 5 % ethyl acetate in hexanes) to isolate three unique fractions; Z-t-butyl ester 
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(24 mg, 5 %), E-t-butyl and E-methyl esters (30 mg, 6 %), and Z-methyl ester (14 mg, 3 

%).  

Z-t-butyl ester: 1H NMR (500 MHz, CDCl3): δ  7.12 (d, J = 8.5 Hz, 1H), 6.55 (d, J = 2.3 

Hz, 1H), 5.62 (d, J = 1.8 Hz, 1H), 1.49 (s, 10H), 1.42-1.39 (m, 6H), 1.04 (s, 3H), 0.98 (s, 

9H), 0.19 (d, J = 2.9 Hz, 6H). 

E-t-butyl (66 %) and E-methyl esters (33 %): 1H NMR (500 MHz, CDCl3): δ  7.13 (d, J = 

8.6 Hz, 1H), 6.62 (dd, J = 8.4, 2.6 Hz, 1H), 6.56 (t, J = 2.9 Hz, 1H), 5.69 (t, J = 2.0 Hz, ), 

5.50 (t, J = 2.5 Hz, 1H), 3.69 (s, 1H), 2.89-2.78 (m, 4H), 2.63-2.19 (m, 3H), 1.98-1.81 (m, 

3H), 1.49-1.41 (m, 13H), 1.04 (s, 1H), 0.98 (s, 9H), 0.86 (s, 3H), 0.19 (s, 6H). 

Z-methyl ester: 1H NMR (500 MHz, CDCl3): δ  7.12 (d, J = 8.2 Hz, 1H), 6.62 (dd, J = 8.4, 

2.6 Hz, 1H), 6.56 (d, J = 2.6 Hz, 1H), 5.60 (t, J = 2.5 Hz, 1H), 3.70 (s, 3H), 2.90-2.82 (m, 

4H), 1.96 (s, 3H), 1.57-1.43 (m, 7H), 0.98-0.97 (m, 9H), 0.86 (s, 3H), 0.19-0.18 (m, 6H). 

 

 

Cerium trichloride heptahydrate (611 mg, 1.64 mmol) was dried in vacuo overnight at 

140 °C to remove all water.  Once dried, CeCl3 was stirred in THF (6.6 mL) over night 

until homogeneous. nBuLi (1.28 mL, 3.2 mmol) was added to a stirred solution of 4-

pentyn-1-ol (135 mg, 1.6 mmol) in THF (3.3 mL) cooled to -78 °C. The resulting yellow 

solution of dianion was allowed to stir at -78 °C for 30 min.  The dianion solution was 

then warmed to 0 °C and transferred via cannula to a stirring solution of CeCl3 in THF 
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(0.25 M) cooled to -78 °C. After an hour of stirring at -78 °C, TBS-estrone 3 (77 mg, 0.2 

mmol) in THF (1.5 mL) was added dropwise to the solution held at -78 °C. The reaction 

was monitored by TLC until complete (1 h). Saturated aqueous NH4Cl (4 mL) was added 

in one portion to quench the remaining dianion. The aqueous was extracted with ethyl 

acetate (3x, 20 mL), the organics combined, washed with brine (20 mL), dried over 

sodium sulfate, and concentrated in vacuo to yield 34 as a white film (84 mg, 90 %).  

The resulting solid was clean by 1H NMR and no further purification was necessary. 1H 

NMR (500 MHz, CDCl3): δ 7.12 (d, J = 8.5 Hz, 1H), 6.61 (dd, J =2.5, 8.5 Hz, 1H), 6.55 

(d, J = 2.5 Hz, 1H), 3.76 (t, J = 6.3 Hz, 2H), 2.82-2.79 (m, 2H), 2.38 (d, J = 6.8 Hz, 2H), 

2.35-2.31 (m, 1H), 2.27-2.23 (m, 1H), 2.22-2.16 (m, 2H), 2.02-1.96 (m, 2H), 1.87-1.84 

(m, 2H), 1.78 (t, J = 6.5 Hz, 2H), 1.74-1.63 (m, 2H), 1.50-1.32 (m, 5H), 0.98 (s, 9H). 0.87 

(s, 3H), 0.19 (s, 6H). 13C NMR (126 MHz, CDCl3): δ 153.39, 137.95, 133.10, 126.27, 

120.06, 117.28, 85.53, 84.53, 80.11, 61.81, 49.69, 47.29, 43.85, 39.50, 39.25, 33.10, 

31.51, 29.78, 27.44, 26.49, 25.83, 22.93, 18.29, 15.56, 12.98, -4.26 FTIR (thin film): 

3359, 2244, 1607, 1496, 1256 cm-1. HRMS (m/z): calcd for C29H44O3Si: 469.3138, 

found [M+H]+: 469.3131. 

 

 

Quinoline (119 mg, 0.26 mmol) was added to a stirred suspension of 5 % Pd/BaSO4 

(119 mg, 0.53 mmol) in ethyl acetate (2.5 mL). After 20 min at 25 °C the alkyne 34 (124 

mg, 0.26 mmol) was added.  The solvent was sparged with hydrogen, and the resulting 

TBSO

OH

OHTBSO

OH

OH

34 35



!

160!
!

suspension stirred under an atmosphere of H2 (1 atm) for 2 h. The solution was diluted 

with 10 mL ethyl acetate then filtered through a pad of celite and concentrated in vacuo. 

The resulting material was purified via silica chromatography with 50 % ethyl acetate in 

hexanes as the eluent to yield the alkene 35 (97 mg, 54 %) as a white foam. 1H NMR 

(500 MHz; CDCl3): δ 7.11 (d, J = 8.5 Hz, 1H), 6.61 (dd, J =2.5, 8.5 Hz, 1H), 6.54 (d, J = 

2.5 Hz, 1H), 5.61 (d, J = 12 Hz, 1H), 5.41 (m, 1H), 3.66 (m, 2H), 2.86-2.75 (m, 2H), 2.65-

2.58 (m, 1H), 2.38-2.27 (m, 2H), 2.16-2.11 (m, 2H), 1.90-1.85 (m, 2H), 2.02-1.96 (m, 

2H), 1.87-1.84 (m, 2H), 1.78 (t, J = 6.5 Hz, 2H), 1.74-1.63 (m, 2H), 1.50-1.77-1.57 (m, 

6H), 1.51-1.37 (m, 4H) 1.34-1.26 (m, 2H), 0.98 (s, 9H), 0.87 (s, 3H), 0.19 (s, 6H). 13C 

NMR (126 MHz, CDCl3): δ 153.42, 137.95, 134.53, 133.18, 131.18, 126.27, 120.05, 

117.27, 85.32, 61.05, 49.69, 47.88, 43.88, 40.18, 39.77, 32.17, 31.47, 27.54, 26.49, 

25.85, 23.29, 18.31, 13.92, -4.25 FTIR (thin film): 3347, 2929, 2858, 1496, 1255 cm-1. 

HRMS (m/z): calcd for C29H46O3Si: 470.32, found [M+Na]+: 493.3104. 

 

 

To a solution of alcohol 35 (138 mg, 0.29 mmol) and DMAP (4.0 mg, 0.01 mmol) in 

dichloromethane (2.9 mL) was added a solution of TsCl (139 mg, 0.73 mmol) in 

dichloromethane (0.73 mL). The solution was cooled to 0 °C and Et3N (148 mg, 1.47 

mmol) was then added dropwise. After stirring for 12 h at 25 °C, deionized water (10 mL) 

was added and the mixture was extracted with ethyl acetate (3 × 10 mL). The combined 

organic solution was dried over MgSO4 and concentrated in vacuo. The residue was 
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purified by silica gel chromatography (25 % ethyl acetate in hexanes) to afford the 

tosylate (97 mg, 54 %) as a white foam.  1H NMR (500 MHz; CDCl3): δ 7.80 (d, J = 8.5, 

2H), 7.33 (d, J = 8, 2H), 7.10 (d, J = 8.5 Hz, 1H), 6.61 (dd, J =2.5, 8.5 Hz, 1H), 6.54 (d, J 

= 2.5 Hz, 1H), 5.57 (d, J = 12 Hz, 1H), 5.34 (m, 1H) 4.11 (m, 2H), 2.82-2.75 (m, 2H), 

2.48-2.41 (m, 4H), 2.37-2.32 (m, 1H), 2.28-2.25 (m, 1H), 2.14-2.08 (m, 1H), 2.01-1.97 

(m, 1H), 1.89-1.84 (m, 2H), 1.78-1.71 (m, 3H), 1.62-1.36 (m, 8H), 0.98 (s, 9H). 0.91 (s, 

3H), 0.19 (s, 6H). 13C NMR (126 MHz, CDCl3):  δ 153.45, 144.75, 137.93, 135.30, 

133.46, 133.16, 130.45, 129.93, 128.02, 126.23, 120.04, 117.27, 84.84, 70.34, 60.49, 

49.61, 47.75, 43.89, 39.72, 39.66, 32.15, 29.77, 29.32, 27.57, 26.49, 25.84, 25.12 23.34, 

21.74, 21.14, 18.29, 14.32, 13.92, -4.25 FTIR (thin film): 3551, 2930, 1495, 1176 cm-1. 

HRMS: calcd for C36H52O5SSi: 624.33, found [M+Na]+: 647.3212. 

 

 

To a solution of tosylate (518 mg, 0.83 mmol) in dimethylformamide (3.3 mL, 0.25 M) 

was added sodium azide (162 mg, 2.5 mmol) and stirred for 12 h at 25 °C. The reaction 

was diluted with dichloromethane (15 mL) and quenched with deionized water (10 mL). 

The layers were separated and the aqueous extracted with dichloromethane (3x 15 mL), 

the organics washed with brine (10 mL), dried over sodium sulfate, and concentrated in 

vacuo. The crude material was purified with silica gel chromatography (20 % ethyl 

acetate in hexanes) to afford 36 as a white film (382 mg, 93 %). 1H NMR (500 MHz; 

CDCl3): δ  7.11 (d, J = 8.3 Hz, 1H), 6.61 (s, 1H), 6.55 (d, J = 2.6 Hz, 1H), 5.60 (s, 1H), 
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5.41 (d, J = 11.8 Hz, 1H), 3.32 (t, J = 6.9 Hz, 2H), 1.72-1.59 (m, 7H), 1.42 (d, J = 10.3 

Hz, 5H), 0.98 (d, J = 6.0 Hz, 9H), 0.93 (s, 3H), 0.19 (q, J = 2.1 Hz, 6H). 13C NMR (126 

MHz; CDCl3): δ 153.4, 138.0, 135.2, 133.2, 130.8, 126.3, 120.1, 117.3, 84.9, 51.2, 49.6, 

47.8, 43.9, 39.72, 39.71, 32.2, 29.8, 29.1, 27.6, 26.5, 26.3, 25.9, 23.4, 18.3, 14.0, -4.2. 

FTIR (thin film): 3482, 2929, 2857, 2095, 1606 cm-1. HRMS (m/z): calcd for 

C29H45N3O2Si: 495.3281, found [M-N2+H]+: 468.3308. 

 

 

To a solution of allylic alcohol 36 (32 mg, 0.07 mmol) in dichloromethane (0.90 mL, 0.07 

M) was added pyridinium chlorochromate (35 mg, 0.16 mmol) in one portion and was 

stirred for 12 hours at 25 °C.  The reaction was diluted with ethyl acetate (5 mL) and 

filtered through a pad of Celite and concentrated in vacuo. The crude material was 

purified using silica gel chromatography (20 % ethyl acetate in hexanes) to afford 37 as 

a white foam (18 mg, 56 %). 1H NMR (500 MHz; CDCl3): δ  7.12 (dd, J = 8.6, 4.2 Hz, 

1H), 6.62 (dd, J = 8.4, 2.6 Hz, 1H), 6.57-6.56 (m, 1H), 5.99 (t, J = 2.3 Hz, 1H), 3.34 (t, J 

= 6.7 Hz, 2H), 2.91-2.79 (m, 3H), 2.62-2.55 (m, 1H), 2.42-2.37 (m, 1H), 2.26-2.21 (m, 

1H), 2.00-1.87 (m, 4H), 1.58-1.41 (m, 6H), 1.31-1.26 (m, 4H), 0.98 (s, 9H), 0.87 (s, 3H), 

0.19 (s, 6H). 13C NMR (126 MHz; CDCl3): δ 199.6, 176.1, 153.6, 138.0, 132.9, 126.2, 

120.2, 117.4, 115.7, 52.7, 51.1, 46.8, 44.2, 40.5, 38.7, 35.6, 31.6, 29.8, 27.8, 26.7, 25.9, 

TBSO

OH

N3

TBSO

O

N3

36 37



!

163!
!

24.4, 23.5, 18.8, 18.3, -4.2. FTIR (thin film): 2928, 2856, 2096, 1741, 1687 cm-1. HRMS 

(m/z): calcd for C29H43N3O2Si: 493.3140, found [M+Na]+: 494.3208. 

 

 

To a solution of azide 37 (60 mg, 0.12 mmol) in tetrahydrofuran (10 mL, 0.07 M) was 

added triphenylphosphine (132 mg, 0.31 mmol) in one portion and stirred at 25 °C over 

night and then concentrated in vacuo. The crude material was purified with silica gel 

chromatography (10 % ethyl acetate in hexanes) to afford imine 38 as a white film (25 

mg, 42 %). 1H NMR (500 MHz; CDCl3): δ  7.13 (d, J = 8.5 Hz, 1H), 6.62 (dd, J = 8.4, 2.6 

Hz, 1H), 6.56-6.55 (m, 1H), 6.06 (s, 1H), 3.87 (t, J = 7.4 Hz, 2H), 2.82-2.69 (m, 5H), 2.01 

(d, J = 11.9 Hz, 1H), 1.93-1.88 (m, 4H), 1.73 (s, 1H), 1.51-1.41 (m, 5H), 1.26 (d, J = 6.8 

Hz, 3H), 0.98 (d, J = 4.0 Hz, 9H), 0.87 (d, J = 14.0 Hz, 3H), 0.19-0.19 (m, 6H). 13C NMR 

(126 MHz; CDCl3): δ 174.18, 174.16, 164.5, 153.5, 137.93, 137.92, 133.17, 133.14, 

128.2, 126.25, 126.21, 120.17, 120.12, 120.10, 117.36, 117.34, 114.71, 114.69, 114.67, 

60.41, 60.39, 60.37, 53.0, 46.4, 44.2, 38.8, 37.7, 36.0, 29.86, 29.82, 29.77, 27.8, 26.8, 

25.88, 25.85, 25.78, 24.65, 24.64, 23.1, 19.0, 18.3, -4.2. FTIR (thin film): 2928, 2856, 

1651, 1607 cm-1. HRMS (m/z): calcd for C29H43NOSi: 449.3140, found [M+H]+: 450.3196. 
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Tetrabutylammonium fluoride (1.0M in THF, 590 µL, 0.59 mmol) was added dropwise to 

a solution of imine 38 (106 mg, 0.24 mmol) in tetrahydrofuran (2.4 mL, 0.1 M) at 25 °C 

and stirred for 2 hours.  The reaction quenched with saturated NH4Cl (1 mL) and 

extracted with ethyl acetate (3x 15 mL) and concentrated in vacuo. The crude material 

purified by silica gel chromatography (10 % methanol in dichloromethane with 1 % 

ammonium hydroxide) to obtain deprotected imine 39 as a white film (18 mg, 23 %). 1H 

NMR (500 MHz; CDCl3): δ  6.87 (d, J = 8.5 Hz, 1H), 6.38-6.36 (m, 1H), 6.31 (s, 1H), 5.94 

(s, 1H), 3.64-3.61 (m, 2H), 3.09 (dd, J = 1.9, 1.1 Hz, 2H), 2.96-2.93 (m, 2H), 2.72-2.69 

(m, 2H), 2.63-2.55 (m, 3H), 2.50-2.44 (m, 1H), 2.18-2.14 (m, 1H), 2.00-1.94 (m, 1H), 

1.88-1.82 (m, 2H), 1.82-1.69 (m, 4H), 1.42-0.99 (m, 11H), 0.79 (dd, J = 9.4, 5.2 Hz, 3H), 

0.65-0.62 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 154.50, 137.82, 132.02, 131.94, 

131.19, 128.77, 128.68, 126.29, 115.23, 112.80, 58.74, 52.46, 43.87, 40.21, 38.62, 

36.88, 35.43, 30.76, 30.27, 29.66, 29.57, 27.61, 26.53, 24.40, 23.81, 19.65, 18.56, 13.43 

FTIR (thin film): 3148, 2927, 1638, 1580 cm-1. HRMS (m/z): calcd for C23H29NO: 

335.2249, found [M+H]+: 336.2317. 
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Section 4.6 Rigidity versus Flexibility 

 

 

N-Boc-L-Prolinol 40 (1.82 g, 9.0 mmol) was added as a solution in DCM (18 mL, 0.5 M) 

dropwise to a slurry of Dess Martin periodinane (4.77 g, 11.25 mmol) in DCM (45 mL, 

0.25 M) and t-BuOH (945 µL, 9.9 mmol) at 0 °C and stirred for 1.5 hours. The reaction 

was quenched with saturated sodium thiosulfate (20 mL) and saturated sodium 

bicarbonate (20 mL) and stirred for 10 minutes at 25 °C.  The aqueous was extracted 

with DCM (3x, 40 mL), dried over sodium sulfate, and concentrated in vacuo. The crude 

residue was purified via silica gel chromatography with 33 % ethyl acetate in hexanes as 

the eluent to afford N-Boc-L-Prolinal 42 as a white film (1.20 g, 68 %). 1H NMR (500 

MHz, CDCl3): δ  9.55-9.46 (m, 1H), 4.05-4.03 (m, 1H), 3.57-3.43 (m, 2H), 2.13-1.86 (m, 

5H), 1.44 (d, J = 24.8 Hz, 9H). 

 

 

To a slurry of N-Boc-L-Prolinal 42 (1.20 g, 6.0 mmol) and potassium carbonate (2.50 g, 

18.0 mmol) in methanol (60 mL, 0.1 M) at 25 °C was added freshly prepared Ohira-

Bestmann reagent (2.90 g, 15.0 mmol). The solution was allowed to stir overnight at 25 

C, before quenching with water (25 mL).  The aqueous was extracted with ethyl acetate 
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(3x, 40 mL), dried over sodium sulfate, and concentrated in vacuo. The crude material 

was purified with silica gel chromatography with a gradient of 10-25 % ethyl acetate in 

hexanes as the eluent to afford alkyne 44 as a clear oil (820 mg, 70 %).  1H NMR 

matches reported spectra. 1H NMR (500 MHz, CDCl3): δ  4.54-4.39 (m, 1H), 3.48-3.30 

(m, 2H), 2.21-1.89 (m, 6H), 1.48 (s, 9H). 

 

 

N-Boc-D-Prolinol 41 (1.20 g, 6.0 mmol) was added as a solution in DCM (12 mL, 0.5 M) 

dropwise to a slurry of Dess Martin periodinane (3.18 g, 7.5 mmol) in DCM (30 mL, 0.25 

M) and t-BuOH (630 µL, 6.6 mmol) at 0 °C and stirred for 1.5 hours. The reaction was 

quenched with saturated sodium thiosulfate (20 mL) and saturated sodium bicarbonate 

(20 mL) and stirred for 10 minutes at 25 °C.  The aqueous was extracted with DCM (3x, 

30 mL), dried over sodium sulfate, and concentrated in vacuo. The crude residue was 

purified via silica gel chromatography with 33 % ethyl acetate in hexanes as the eluent to 

afford N-Boc-D-Prolinal 43 as a white film (888 mg, 74 %). 1H NMR (500 MHz, CDCl3): δ  

9.56-9.46 (m, 1H), 4.04 (dd, J = 2.2, 0.7 Hz, 1H), 3.56-3.44 (m, 2H), 2.12-1.84 (m, 5H), 

1.48-1.43 (m, 9H). 
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To a slurry of N-Boc-D-Prolinal 43 (888 mg, 4.5 mmol) and potassium carbonate (1.90 g, 

13.5 mmol) in methanol (45 mL, 0.1 M) at 25 °C was added freshly prepared Ohira-

Bestmann reagent (2.14 g, 11.2 mmol). The solution was allowed to stir overnight at 25 

C, before quenching with water (25 mL).  The aqueous was extracted with ethyl acetate 

(3x, 30 mL), dried over sodium sulfate, and concentrated in vacuo. The crude material 

was purified with silica gel chromatography with a gradient of 10-30 % ethyl acetate in 

hexanes as the eluent to afford alkyne 45 as a clear oil (400 mg, 46 %).  1H NMR 

matches reported spectra. 1H NMR (500 MHz, CDCl3): δ  4.53-4.39 (m, 1H), 3.48-3.30 

(m, 2H), 2.20-2.01 (m, 4H), 1.90-1.88 (m, 1H), 1.48 (s, 9H). 

 

 

To a solution of alkyne 44 (400 mg, 2.0 mmol) in THF at -78 °C (4 mL, 0.5 M) was added 

n-BuLi (2.6 M, 770 µL, 2.0 mmol) dropwise, followed by protected steroid 46 (508 mg, 

1.0 mmol) in THF (10 mL, 0.1M). The reaction was allowed to slowly warm to 25 C over 

night, and was quenched with saturated ammonium chloride (25 mL). The aqueous was 

extracted with ethyl acetate (3x, 30 mL), dried over sodium sulfate and concentrated in 

vacuo. The crude residue was purified with silica gel chromatography with 20-33 % ethyl 

acetate as the eluent to afford alkynyl alcohol 47 as a clear oil (411 mg, 58 %) 1H NMR 
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(500 MHz; CDCl3): δ  7.73-7.72 (m, 4H), 7.37 (d, J = 7.3 Hz, 6H), 6.96 (d, J = 8.5 Hz, 

1H), 6.53-6.48 (m, 2H), 4.50-4.50 (m, 1H), 3.44 (dt, J = 1.0, 0.5 Hz, 1H), 3.31 (dd, J = 

2.1, 1.1 Hz, 1H), 2.68 (sextett, J = 9.5, 7.2 Hz, 2H), 2.24 (dt, J = 9.0, 4.0 Hz, 2H), 2.12 

(d, J = 9.4 Hz, 2H), 1.99 (d, J = 13.8 Hz, 3H), 1.89-1.63 (m, 8H), 1.46 (s, 9H), 1.38 (d, J 

= 11.1 Hz, 3H), 1.09 (s, 9H), 0.85 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 160.9, 141.5, 

137.8, 135.7, 133.46, 133.42, 129.89, 129.86, 127.8, 126.0, 119.7, 119.1, 116.9, 101.8, 

60.5, 49.96, 49.78, 49.74, 43.8, 39.5, 33.06, 33.05, 32.8, 29.7, 28.67, 28.63, 27.4, 26.7, 

26.5, 23.0, 21.2, 19.6, 14.4, 13.0. FTIR (thin film): 3418, 2931, 1682, 1606 cm-1. HRMS 

(m/z): calcd for C45H57NO4Si: 703.4057, found [M+Na]+: 726.3956. 

 

 

To a solution of alkyne 45 (400 mg, 2.0 mmol) in THF at -78 °C (4 mL, 0.5 M) was added 

n-BuLi (2.6 M, 770 µL, 2.0 mmol) dropwise, followed by protected steroid 46 (508 mg, 

1.0 mmol) in THF (10 mL, 0.1M). The reaction was allowed to slowly warm to 25 °C over 

night, and was quenched with saturated ammonium chloride (25 mL). The aqueous was 

extracted with ethyl acetate (3x, 30 mL), dried over sodium sulfate and concentrated in 

vacuo. The crude residue was purified with silica gel chromatography with 20-33 % ethyl 

acetate as the eluent to afford alkynyl alcohol 48 as a clear oil (321 mg, 46 %). 1H NMR 

(500 MHz; CDCl3): δ  7.73 (dd, J = 4.0, 2.6 Hz, 4H), 7.43-7.35 (m, 6H), 6.97 (d, J = 8.5 

Hz, 1H), 6.53-6.49 (m, 2H), 4.49-4.49 (m, 1H), 3.46-3.31 (m, 2H), 2.74-2.62 (m, 2H), 

2.24 (ddd, J = 10.4, 8.2, 8.1 Hz, 2H), 2.14-2.09 (m, 2H), 2.03-1.98 (m, 3H), 1.90 (d, J = 
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12.7 Hz, 2H), 1.82-1.59 (m, 6H), 1.47 (s, 9H), 1.38 (d, J = 11.4 Hz, 4H), 1.09 (s, 9H), 

0.85 (s, 3H).13C NMR (126 MHz; CDCl3): δ 156.1, 153.4, 137.8, 135.7, 133.44, 133.41, 

131.7, 129.9, 127.8, 127.3, 126.0, 119.7, 116.9, 79.7, 60.5, 49.8, 39.5, 33.07, 32.90, 

29.7, 28.74, 28.68, 27.4, 26.7, 23.0, 21.2, 19.6, 14.4, 13.4, 13.0. FTIR (thin film): 3420, 

2930, 1680, 1496 cm-1. HRMS (m/z): calcd for C45H57NO4Si: 703.4057, found [M+Na]+: 

726.3970. 

 

 

TBAF (440 µL, 0.44 mmol) was added dropwise to a solution of alkyne 47 (153 mg, 0.22 

mmol) in THF (2.2 mL, 0.1 M) at 25 °C. The reaction was quenched after stirring for 12 

hours with saturated ammonium chloride (5 mL), extracted with ethyl acetate (3x, 10 

mL), dried over sodium sulfate, and concentrated in vacuo. The crude residue was 

purified with silica gel chromatography with 50 % ethyl acetate in hexanes as the eluent 

to afford free phenol 49 (101 mg, 98 %). 1H NMR (500 MHz, CDCl3): δ  7.11-7.02 (m, 

1H), 6.69 (d, J = 8.2 Hz, 1H), 6.60-6.59 (m, 1H), 4.58-4.51 (m, 1H), 3.48-3.47 (m, 1H), 

3.32-3.29 (m, 1H), 2.77-2.71 (m, 2H), 2.25-2.16 (m, 3H), 2.07-1.97 (m, 5H), 1.89-1.60 

(m, 6H), 1.41-1.29 (m, 3H), 0.86-0.84 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 154.47, 

154.23, 138.0, 126.4, 115.44, 112.92, 80.12, 60.6, 49.70, 48.33, 47.4, 46.2, 45.65, 

43.70, 43.27, 39.5, 39.07, 38.90, 34.01, 33.99, 33.22, 33.03, 28.73, 28.63, 27.33, 26.5, 

24.5, 23.79, 23.0, 14.3, 13.0. FTIR (thin film): 3351, 2931, 1671, 1499 cm-1. HRMS 

(m/z): calcd for C29H39NO4: 465.2879, found [M+Na]+: 488.2781. 
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TBAF (900 µL, 0.90 mmol) was added dropwise to a solution of alkyne 48 (320 mg, 0.45 

mmol) in THF (4.5 mL, 0.1 M) at 25 °C. The reaction was quenched after stirring for 12 

hours with saturated ammonium chloride (10 mL), extracted with ethyl acetate (3x, 15 

mL), dried over sodium sulfate, and concentrated in vacuo. The crude residue was 

purified with silica gel chromatography with 50 % ethyl acetate in hexanes as the eluent 

to afford free phenol 49 (207 mg, 99 %). 1H NMR (500 MHz, CDCl3): δ  7.31 (d, J = 0.5 

Hz, 1H), 7.11 (dd, J = 5.6, 0.6 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 6.64 (s, 1H), 3.32-3.31 

(m, 2H), 2.81-2.77 (m, 2H), 2.31-1.62 (m, 14H), 0.87 (s, 3H). 13C NMR (126 MHz; 

CDCl3): δ 154.5, 154.2, 138.0, 131.76, 126.4, 115.5, 112.94, 86.29, 80.29, 80.07, 79.5, 

49.74, 48.34, 47.57, 46.10, 45.66, 43.84, 39.54, 39.09, 33.00, 29.73, 28.60, 27.36, 

26.55, 24.60, 23.83, 22.84, 14.3, 12.94. FTIR (thin film): 3351, 2931, 1673, 1611 cm-1. 

HRMS (m/z): calcd for C29H39NO4: 465.2879, found [M+Na]+: 488.2784. 
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To a solution of carbamate 50 (29 mg, 0.06 mmol) in DCM (600 µL, 0.1 M) was added 

TFA (60 µL, 1.0 M) dropwise.  The reaction stirred at 25 °C for 3 hours before being 

concentrated in vacuo. The crude material 52 was pure and no further methods of 

purification were needed (13 mg, 57 %). 1H NMR (500 MHz, CDCl3): δ  7.07-7.06 (m, 

1H), 6.57 (dd, J = 8.4, 2.5 Hz, 1H), 6.50 (d, J = 2.3 Hz, 1H), 4.35 (t, J = 6.8 Hz, 1H), 

3.39-3.25 (m, 2H), 2.74 (td, J = 9.8, 7.1 Hz, 2H), 2.29-1.91 (m, 8H), 1.82-1.78 (m, 1H), 

1.71-1.61 (m, 3H), 1.52-1.20 (m, 7H), 0.81-0.79 (m, 3H).  13C NMR (126 MHz; CDCl3): δ 

154.3, 138.0, 131.4, 126.4, 115.3, 112.8, 92.4, 79.2, 78.7, 47.3, 44.4, 43.8, 39.4, 38.5, 

33.1, 32.4, 29.7, 27.3, 26.4, 23.5, 22.9, 12.7. FTIR (thin film): 3371, 2928, 1673, 1446 

cm-1. HRMS (m/z): calcd for C24H31NO2: 365.2355, found [M+H]+: 366.2441. 

 

 

To a solution of carbamate 49 (17 mg, 0.04 mmol) in DCM (400 µL, 0.1 M) was added 

TFA (40 µL, 1.0 M) dropwise.  The reaction stirred at 25 °C for 3 hours before being 

concentrated in vacuo. The crude material 51 was pure and no further methods of 

purification were needed (9 mg, 62 %). 1H NMR (500 MHz, CDCl3): δ  7.05 (d, J = 8.5 
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Hz, 1H), 6.56 (dd, J = 8.4, 2.6 Hz, 1H), 6.49 (d, J = 2.4 Hz, 1H), 4.33 (dd, J = 8.8, 5.0 Hz, 

1H), 3.36-3.23 (m, 2H), 2.76-2.72 (m, 2H), 2.29-2.23 (m, 2H), 2.18-1.90 (m, 6H), 1.80-

1.76 (m, 1H), 1.69-1.65 (m, 3H), 1.50-1.19 (m, 7H), 0.79-0.78 (m, 3H). 13C NMR (126 

MHz; CDCl3): δ 154.3, 137.9, 131.5, 126.4, 115.2, 112.8, 92.4, 79.2, 78.5, 47.4, 44.4, 

43.6, 39.5, 38.5, 33.0, 32.2, 29.7, 27.4, 26.4, 23.5, 22.8, 12.7 FTIR (thin film): 3330, 

2926, 1674, 1201 cm-1. HRMS (m/z): calcd for C24H31NO2: 365.2355, found [M+H]+: 

366.2426. 

 

 

A slurry of alkyne 50 (87 mg, 0.18 mmol) and Pd/C (174 mg, 10 % by wt) in methanol 

(3.7 mL, 0.05 M) was sparged with hydrogen gas and then placed under 1 atm of 

hydrogen for 12 hours at 25 °C.  The reaction was then diluted with ethyl acetate, filtered 

through a pad of Celite, and concentrated in vacuo.  The crude residue was dissolved in 

DCM (600 µL, 0.1 M) and TFA (60 µL, 1.0 M) was added dropwise at 0 °C and stirred for 

1.5 hours. The reaction was concentrate in vacuo, and the crude residue purified by 

silica gel chromatography with 50% ethyl acetate in hexanes as the eluent to afford 

deprotected product 56 as a clear oil (22 mg, 33 %). 1H NMR (500 MHz, CDCl3): δ  

7.05-7.02 (m, 1H), 6.54-6.52 (m, 1H), 6.47-6.46 (m, 1H), 3.36-3.32 (m, 1H), 3.28 (dd, J = 

3.0, 1.5 Hz, 1H), 3.19-3.15 (m, 2H), 2.79-2.67 (m, 2H), 2.19-2.05 (m, 4H), 2.02-1.88 (m, 

3H), 1.81-1.73 (m, 3H), 1.66-1.34 (m, 8H), 1.31-1.22 (m, 4H), 1.17-1.11 (m, 5H), 0.53-

0.51 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 154.2, 138.1, 131.9, 126.2, 115.2, 112.6, 
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100.1, 60.8, 54.8, 50.8, 44.6, 44.1, 42.5, 38.8, 37.9, 31.6, 30.3, 29.7, 28.3, 27.8, 27.4, 

26.4, 24.2, 23.5, 12.4. FTIR (thin film): 3343, 2926, 1606, 1501  cm-1. 

 

 

A slurry of alkyne 49 (87 mg, 0.18 mmol) and Pd/C (174 mg, 10 % by wt) in methanol 

(3.7 mL, 0.05 M) was sparged with hydrogen gas and then placed under 1 atm of 

hydrogen for 12 hours at 25 °C.  The reaction was then diluted with ethyl acetate, filtered 

through a pad of Celite, and concentrated in vacuo.  The crude residue was dissolved in 

DCM (600 µL, 0.1 M) and TFA (60 µL, 1.0 M) was added dropwise at 0 °C and stirred for 

1.5 hours. The reaction was concentrate in vacuo, and the crude residue purified by 

silica gel chromatography with 50% ethyl acetate in hexanes as the eluent to afford 55 

as a clear oil (9 mg, 11 %). 1H NMR (500 MHz, CDCl3): δ  7.03 (dd, J = 8.4, 4.1 Hz, 1H), 

6.54-6.46 (m, 2H), 3.38-3.17 (m, 3H), 2.74-2.68 (m, 2H), 2.18-2.05 (m, 3H), 2.02-1.88 

(m, 2H), 1.83-1.73 (m, 3H), 1.69-1.52 (m, 5H), 1.45-1.35 (m, 2H), 1.33-1.21 (m, 4H), 

1.17-1.07 (m, 6H), 0.53-0.49 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 154.2, 138.0, 

131.9, 126.2, 115.2, 112.6, 60.7, 54.7, 50.5, 44.7, 44.1, 42.4, 38.8, 37.7, 31.4, 30.2, 

29.7, 28.2, 27.8, 27.3, 26.4, 24.2, 23.5, 12.4. FTIR (thin film): 3377, 2925, 1682, 1499 

cm-1.  
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Section 4.7 Regenerating Rigidity without Oxygenation 

 

 

To a slurry of protected estrone 3 (115 mg, 0.3 mmol) in EtOH (30 mL, 0.01 M) at 25 C 

was added hydrazone monohydrate (300 mg, 6.0 mmol) and triethylamine (606 mg, 6.0 

mmol). The resulting solution was warmed to 70 °C and stirred overnight.  The reaction 

was cooled to 25 °C and concentrated in vacuo.  The thick white oil was re-dissolved in 

THF (30 mL, 0.01 M) and triethylamine (840 µL, 6.0 mmol) was added at 25 °C.  To this 

solution was added iodine (153 mg, 0.6 mmol) in THF (6 mL, 0.1 M) and an evolution of 

nitrogen gas was observed.  The reaction was stirred at 25 °C for 45 minutes before 

being quenched with saturated sodium thiosulfate (10 mL) and sodium bicarbonate (10 

mL). The aqueous was extracted with ethyl acetate (3x, 15 mL), dried over sodium 

sulfate, and concentrated in vacuo.  The crude material was purified by silica gel 

chromatography with 10 % ethyl acetate in hexanes as the eluent to afford the vinyl 

iodide 57 (72 mg, 49 %). 1H NMR (500 MHz, CDCl3): δ  7.11 (d, J = 8.4 Hz, 1H), 6.63-

6.57 (m, 2H), 6.17 (dd, J = 3.2, 1.6 Hz, 1H), 2.84 (dd, J = 6.6, 2.8 Hz, 2H), 2.25 (ddd, J = 

14.8, 6.3, 3.2 Hz, 2H), 2.06 (dd, J = 11.3, 1.6 Hz, 1H), 1.74-1.41 (m, 6H), 0.98 (s, 9H), 

0.78 (s, 2H), 0.20-0.19 (m, 6H). 13C NMR (126 MHz; CDCl3): δ 153.6, 137.8, 137.5, 

133.0, 126.0, 120.1, 117.3, 112.9, 54.3, 50.5, 44.4, 37.9, 36.5, 33.6, 29.6, 27.6, 26.5, 

25.9, 18.3, 15.5, -4.2. FTIR (thin film): 3425, 2930, 2858, 1607 cm-1. HRMS (m/z): calcd 

for C24H35IOSi: 494.1502, found [M]+: 494.1525. 
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To a solution of iodide 57 (195 mg, 0.40 mmol) in THF (4.0 mL, 0.1 M) at -78 °C was 

added t-butyllithium (790 µL, 0.87 mmol) dropwise. The solution of anion was stirred for 

5 minutes prior to the addition of aldehyde (46 mg, 0.43 mmol) in THF (4.3 mL, 0.1 M).  

The solution was stirred for 1 hour at this temperature before warming to 25 °C and 

being quenched with saturated ammonium chloride (10 mL).  The aqueous was 

extracted with ethyl acetate (3x, 15 mL), dried with sodium sulfate and concentrated in 

vacuo.  The crude reaction mixture was purified by silica gel chromatography with 15 % 

ethyl acetate in hexanes as the eluent to afford the desired alcohol 58 as two 

diastereomers (96 mg, 51 %).  

Diastereomer 1: 1H NMR (500 MHz, CDCl3): δ  8.56 (dd, J = 4.9, 0.8 Hz, 1H), 7.68 (td, J 

= 7.7, 1.6 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.23-7.21 (m, 1H), 7.04 (d, J = 8.5 Hz, 1H), 

6.60-6.54 (m, 2H), 5.56 (d, J = 1.4 Hz, 1H), 5.42 (s, 1H), 2.81-2.79 (m, 2H), 2.19-2.15 

(m, 3H), 1.81-1.78 (m, 1H), 1.59 (dd, J = 9.5, 6.6 Hz, 3H), 1.15 (d, J = 3.7 Hz, 1H), 0.96 

(s, 10H), 0.96 (s, 3H), 0.18 (d, J = 3.9 Hz, 6H).13C NMR (126 MHz; CDCl3): δ 160.6, 

156.7, 153.4, 147.7, 137.9, 136.6, 133.5, 128.1, 125.9, 122.4, 121.6, 120.1, 117.2, 71.9, 

57.4, 47.2, 44.4, 37.3, 35.0, 31.1, 29.7, 27.9, 26.4, 25.9, 18.3, 17.2, -4.2. FTIR (thin film): 

3399, 2929, 1606, 1496 cm-1. HRMS (m/z): calcd for C30H41O2Si: 475.2907, found [M-

OH]+: 458.2880. 

Diastereomer 2: 1H NMR (500 MHz, CDCl3): δ  8.57 (d, J = 4.8 Hz, 1H), 7.67 (dd, J = 

7.6, 1.7 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.24-7.21 (m, 1H), 7.07 (d, J = 8.5 Hz, 1H), 
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6.60-6.54 (m, 2H), 5.60 (t, J = 1.5 Hz, 1H), 5.40 (s, 1H), 2.81 (d, J = 4.9 Hz, 2H), 2.22 

(dd, J = 11.1, 7.8 Hz, 3H), 1.98-1.94 (m, 2H), 1.66 (d, J = 6.4 Hz, 1H), 1.57-1.54 (m, 3H), 

0.98 (t, J = 4.3 Hz, 9H), 0.72 (s, 3H), 0.19-0.17 (m, 6H). 13C NMR (126 MHz; CDCl3): δ 

160.7, 156.9, 153.4, 148.1, 137.9, 136.6, 133.5, 127.7, 125.9, 122.6, 122.1, 120.1, 

117.2, 72.4, 57.1, 47.1, 44.4, 37.2, 35.3, 31.1, 29.6, 27.9, 26.4, 25.9, 18.3, 17.1, -4.2 

FTIR (thin film): 3392, 2929, 2856, 1606, 1496 cm-1. HRMS (m/z): calcd for C30H41O2Si: 

475.2907, found [M-+H]+: 476.2967. 

 

 

 

To a solution of iodide 57 (155 mg, 0.31 mmol) in THF (3.1 mL, 0.1 M) at -78 °C was 

added t-butyllithium (625 µL, 0.69 mmol) dropwise. The solution of anion was stirred for 

5 minutes prior to the addition of aldehyde (36 mg, 0.34 mmol) in THF (3.4 mL, 0.10 M).  

The solution was stirred for 1 hour at this temperature before warming to 25 °C and 

being quenched with saturated ammonium chloride (10 mL).  The aqueous was 

extracted with ethyl acetate (3x, 15 mL), dried with sodium sulfate and concentrated in 

vacuo.  The crude reaction mixture was purified by silica gel chromatography with 15 % 

ethyl acetate in hexanes as the eluent to afford the desired alcohol 59 (76 mg, 52 %). 1H 

NMR (500 MHz, CDCl3): δ  7.42-7.30 (m, 5H), 7.07 (dd, J = 32.2, 8.5 Hz, 1H), 6.63-6.56 

(m, 2H), 5.67 (dt, J = 116.5, 1.5 Hz, 1H), 5.32 (d, J = 26.2 Hz, 1H), 2.85 (dt, J = 10.9, 5.3 
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Hz, 2H), 2.29-2.16 (m, 3H), 1.99-1.89 (m, 4H), 1.70-1.41 (m, 6H), 1.00 (d, J = 0.5 Hz, 

9H), 0.92 (s, 1H), 0.67 (s, 2H), 0.20 (d, J = 6.3 Hz, 6H). 13C NMR (126 MHz; CDCl3): δ 

157.8, 157.3, 153.41, 153.38, 143.00, 142.97, 137.9, 133.4, 128.51, 128.35, 128.0, 

127.68, 127.65, 127.51, 126.9, 126.08, 125.90, 125.88, 124.5, 120.10, 120.07, 117.21, 

117.17, 72.9, 72.3, 57.1, 56.7, 46.79, 46.78, 44.41, 44.31, 37.29, 37.25, 35.29, 35.11, 

30.9, 29.67, 29.63, 27.9, 26.44, 26.41, 25.9, 18.3, 16.94, 16.79, -4.2. FTIR (thin film): 

3434, 2929, 1643, 1495 cm-1. HRMS (m/z): calcd for C31H42O2Si: 474.2954, found [M-

OH]+: 457.2926. 

 

 

To a solution of iodide 57 (145 mg, 0.30 mmol) in THF (600 µL, 0.5 M) at -78 °C was 

added t-butyllithium (510 µL, 0.66 mmol) dropwise. The solution of anion was stirred for 

5 minutes prior to the addition of aldehyde (110 mg, 0.33 mmol) in THF (320 µL, 1.0 M).  

The solution was stirred for 1 hour at this temperature before warming to 25 °C and 

being quenched with saturated ammonium chloride (10 mL).  The aqueous was 

extracted with ethyl acetate (3x, 15 mL), dried with sodium sulfate and concentrated in 

vacuo.  The crude reaction mixture was purified by silica gel chromatography with 10 % 

ethyl acetate in hexanes as the eluent to afford the desired alcohol 60 (80 mg, 38 %) 

and the undesired dehalogenated alkene (60 mg, 54 %). 1H NMR (500 MHz, CDCl3): δ  

7.63-7.61 (m, 6H), 7.35-7.29 (m, 7H), 7.23 (t, J = 7.3 Hz, 3H), 7.10 (d, J = 8.4 Hz, 1H), 

6.65-6.58 (m, 2H), 5.68 (t, J = 1.6 Hz, 1H), 4.77 (s, 1H), 2.86 (d, J = 24.4 Hz, 2H), 2.71 
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(s, 1H), 2.16-2.16 (m, 3H), 1.91 (s, 2H), 1.61-1.56 (m, 3H), 1.40 (dd, J = 46.1, 33.8 Hz, 

5H), 1.02-1.01 (m, 9H), 0.69 (s, 3H), 0.23-0.22 (m, 6H). 13C NMR (126 MHz; CDCl3): δ 

155.6, 153.4, 144.7, 137.9, 133.5, 130.0, 128.0, 127.73, 127.68, 127.58, 127.4, 126.3, 

125.9, 123.9, 120.0, 117.1, 78.2, 73.6, 63.5, 57.6, 53.5, 45.7, 44.3, 37.1, 34.3, 30.9, 

29.6, 27.8, 26.2, 25.86, 25.78, 25.1, 18.3, 17.0, -4.2. FTIR (thin film): 3490, 3056, 2928, 

1606 cm-1. HRMS (m/z): calcd for C48H59NO2Si: 709.4315, found [M+H]+: 710.4393.  

 

 

To a solution of iodide 57 (495 mg, 1.0 mmol) in THF (2.0 mL, 0.5 M) at -78 °C was 

added t-butyllithium (1.7 mL, 2.2 mmol) dropwise. The solution of anion was stirred for 5 

minutes prior to the addition of aldehyde (403 mg, 1.1 mmol) in THF (1.1 mL, 1.0 M).  

The solution was stirred for 1 hour at this temperature before warming to 25 °C and 

being quenched with saturated ammonium chloride (10 mL).  The aqueous was 

extracted with ethyl acetate (3x, 15 mL), dried with sodium sulfate and concentrated in 

vacuo.  The crude reaction mixture was purified by silica gel chromatography with 10 % 

ethyl acetate in hexanes as the eluent to afford the desired alcohol 61 (169 mg, 24 %). 

1H-NMR (500 MHz, CDCl3): δ  7.60 (d, J = 8.0 Hz, 7H), 7.34-7.30 (m, 8H), 7.23 (t, J = 

7.3 Hz, 3H), 7.11 (d, J = 8.5 Hz, 1H), 6.64 (dd, J = 8.4, 2.6 Hz, 1H), 6.59 (d, J = 2.5 Hz, 

1H), 5.69 (d, J = 1.2 Hz, 1H), 4.56 (s, 1H), 3.69 (s, 1H), 3.11 (s, 2H), 2.83 (s, 2H), 2.18 

(dt, J = 6.8, 3.6 Hz, 3H), 1.92-1.89 (m, 2H), 1.54 (s, 2H), 1.47-1.29 (m, 9H), 1.02 (s, 9H), 
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0.68 (s, 3H), 0.24-0.23 (m, 6H). 13C NMR (126 MHz; CDCl3): δ 155.0, 153.4, 147.0, 

144.6, 137.9, 133.4, 130.0, 129.8, 128.05, 128.02, 127.77, 127.66, 127.3, 126.4, 125.9, 

123.4, 120.1, 117.2, 78.2, 72.4, 63.4, 55.8, 53.6, 46.5, 44.4, 37.3, 35.0, 34.80, 34.66, 

31.7, 31.1, 29.7, 27.9, 27.0, 26.6, 26.3, 25.9, 25.4, 25.1, 22.8, 18.3, 16.5, 14.3, -4.2. 

FTIR (thin film): 3494, 3056, 2929, 1607 cm-1. HRMS (m/z): calcd for C48H59NO2Si: 

709.4315, found [M+H]+: 710.4394. 

 

 

To a solution of alcohol 58 (10 mg, 0.02 mmol) in THF (210 µL, 0.1 M) was added TBAF 

(40 µL, 0.04 mmol) dropwise at 25 °C and stirred overnight.  The reaction was quenched 

with saturated ammonium chloride (2 mL) and extracted with ethyl acetate (3x, 10 mL) 

and the solvent removed in vacuo. The crude residue purified via silica gel 

chromatography with 50 % ethyl acetate in hexanes as the eluent to afford the final 

product 62 (7 mg, 92 %). 1H NMR (500 MHz, CDCl3): δ  8.57 (ddd, J = 4.9, 1.7, 1.0 Hz, 

1H), 7.67 (td, J = 7.7, 1.8 Hz, 1H), 7.32-7.30 (m, 1H), 7.23-7.20 (m, 1H), 7.11-7.10 (m, 

1H), 6.62-6.60 (m, 1H), 6.55 (d, J = 2.7 Hz, 1H), 5.60 (dt, J = 3.0, 1.4 Hz, 1H), 5.39 (d, J 

= 0.3 Hz, 1H), 2.86-2.81 (m, 2H), 2.27-2.17 (m, 3H), 2.00-1.93 (m, 2H), 1.90-1.85 (m, 

1H), 1.69-1.32 (m, 10H), 0.70 (d, J = 4.5 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ  170.42, 

156.94, 153.55, 148.06, 138.15, 136.25, 127.40, 126.11, 122.36, 121.77, 115.15, 11.48, 

75.04, 72.26, 71.71, 56.82, 46.83, 44.08, 36.98, 34.99, 30.81, 29.39, 27.53, 26.24, 

16.85. FTIR (thin film): 3431, 2928, 2852, 1607, cm-1.  
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To a solution of alcohol (8 mg, 0.02 mmol) in THF (170 µL, 0.1 M) was added TBAF (34 

µL, 0.04 mmol) dropwise at 25 °C and stirred overnight.  The reaction was quenched 

with saturated ammonium chloride (2 mL) and extracted with ethyl acetate (3x, 10 mL) 

and the solvent removed in vacuo. The crude residue purified via silica gel 

chromatography with 50 % ethyl acetate in hexanes as the eluent to afford the final 

product (6 mg, 87 %). 1H NMR (500 MHz, CDCl3): δ  7.41-7.28 (m, 5H), 7.13-7.04 (m, 

1H), 6.63-6.54 (m, 2H), 5.79-5.54 (m, 1H), 5.35-5.28 (m, 1H), 4.59-4.57 (m, 1H), 2.87-

2.79 (m, 2H), 2.32-2.12 (m, 3H), 2.02-1.85 (m, 3H), 1.69-1.60 (m, 2H), 1.55-1.36 (m, 

3H), 1.28-1.22 (m, 2H), 0.91-0.89 (m, 1H), 0.65 (s, 2H). 13C NMR (126 MHz, CDCl3): δ  

175.29, 175.20, 175.16, 133.03, 128.53, 128.37, 127.68, 127.52, 126.92, 126.09, 

115.39, 112.72, 72.91, 72.31, 70.71, 66.91, 57.08, 51.04, 47.70, 46.79, 45.07, 45.05, 

44.34, 44.25, 42.82, 38.92, 38.87, 37.34, 37.30, 35.27, 32.00, 30.94, 30.60, 30.50, 

30.42, 29.80, 29.65, 29.62, 29.27, 29.06, 29.03, 27.89, 27.85, 27.77, 26.52, 25.67, 

25.43, 23.98, 23.85, 23.83. FTIR (thin film): 3419, 2926, 1644, 1454 cm-1. 
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To a solution of alcohol 58 (28 mg, 0.06 mmol) in DCM (60 µL, 1.0 M) at 0 °C was added 

dry pyridine (6 µL, 10.0 M) followed by AcCl (24 mg, 0.3 mmol) and stirred for 1.5 hours 

at this temperature.  The reaction was quenched with HCl (1 N, 3 mL), the aqueous 

extracted with DCM (3x, 5 mL), dried over sodium sulfate, and concentrated in vacuo. 

The crude acetate 64 was clean and no further purification was necessary. 1H NMR (500 

MHz, CDCl3): δ  8.61 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.68 (dd, J = 7.7, 1.8 Hz, 1H), 7.41-

7.40 (m, 1H), 7.23-7.20 (m, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.60-6.58 (m, 1H), 6.54 (d, J = 

2.6 Hz, 1H), 6.42 (s, 1H), 5.63 (t, J = 1.6 Hz, 1H), 2.20-2.16 (m, 3H), 2.14 (s, 3H), 1.26 

(s, 2H), 0.97 (d, J = 5.2 Hz, 9H), 0.89 (s, 3H), 0.18 (d, J = 5.9 Hz, 6H). 

 

 

To a solution of acetate 64 (81 mg, 0.16 mmol) in degassed dioxane (1.8 mL, 0.1 M) 

was added ammonium formate (24 mg, 0.32 mmol), palladium acetate (12 mg, 0.03 

mmol) and triphenylphosphine (24 mg, 0.08 mmol). The reaction was stirred at 25 C for 

12 hours before being quenched with water (5 mL).  The aqueous was extracted with 

ethyl acetate (3x, 15 mL), dried over sodium sulfate, and concentrated in vacuo.  The 
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crude mixture was purified by silica gel chromatography with 20 % ethyl acetate in 

hexanes as the eluent to afford two products: unconjugated alkene 66 (38 mg, 52 %) 

and conjugated alkene 65 (12 mg, 16 %).  

Unconjugated Product 66: 1H NMR (500 MHz, CDCl3): δ  8.56-8.55 (m, 1H), 7.63-7.60 

(m, 1H), 7.23 (d, J = 7.9 Hz, 1H), 7.14-7.08 (m, 2H), 6.61-6.55 (m, 2H), 5.16 (d, J = 1.1 

Hz, 1H), 3.55 (s, 2H), 2.86-2.80 (m, 2H), 2.30-2.13 (m, 3H), 1.94-1.81 (m, 3H), 1.63-1.54 

(m, 3H), 1.43-1.38 (m, 2H), 0.82 (s, 3H), 0.18 (s, 6H). 

Conjugated Product 65: 1H NMR (500 MHz, CDCl3): δ  8.58-8.57 (m, 1H), 7.63-7.60 

(m, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.5 Hz, 1H), 7.05-7.03 (m, 1H), 6.64-6.62 

(m, 1H), 6.57 (t, J = 0.9 Hz, 1H), 6.28 (s, 1H), 2.95-2.76 (m, 4H), 2.44-2.40 (m, 1H), 

2.28-2.23 (m, 1H), 2.12-2.11 (m, 1H), 1.98-1.92 (m, 2H), 1.61-1.26 (m, 8H), 0.98 (d, J = 

1.1 Hz, 9H), 0.93 (s, 3H), 0.19 (d, J = 1.2 Hz, 6H). 

 

  

To a solution of alkene 65 (11 mg, 0.02 mmol) in THF (240 µL, 0.1 M) was added TBAF 

(48 µL, 0.05 mmol) dropwise at 25 °C and stirred overnight.  The reaction was quenched 

with saturated ammonium chloride (2 mL) and extracted with ethyl acetate (3x, 5 mL) 

and the solvent removed in vacuo. The crude residue purified via silica gel 

chromatography with 50 % ethyl acetate in hexanes as the eluent to afford the final 
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product 67 (6 mg, 73 %). 1H NMR (500 MHz, CDCl3): δ  8.58-8.57 (m, 1H), 7.69-7.65 (m, 

1H), 7.36-7.34 (m, 1H), 7.18-7.16 (m, 1H), 7.10-7.08 (m, 1H), 6.68-6.66 (m, 1H), 6.59 (d, 

J = 0.4 Hz, 1H), 6.33 (t, J = 0.8 Hz, 1H), 2.93-2.71 (m, 4H), 2.41-2.38 (m, 1H), 2.25-2.20 

(m, 1H), 2.09-2.05 (m, 1H), 1.96-1.91 (m, 2H), 1.59-1.25 (m, 8H), 0.91-0.88 (m, 3H). 13C 

NMR (126 MHz; CDCl3): δ 163.8, 159.2, 153.8, 138.3, 132.6, 126.6, 123.1, 120.6, 

120.0, 115.5, 113.0, 106.3, 52.8, 46.5, 45.8, 44.2, 38.8, 36.0, 30.00, 29.84, 27.8, 26.9, 

24.8, 19.0. FTIR (thin film): 3327, 2926, 2845, 1595 cm-1. HRMS (m/z): calcd for 

C24H27NO: 345.2093, found [M+H]+: 346.2174. 

 

 

To a solution of alcohol (8 mg, 0.02 mmol) in THF (170 µL, 0.1 M) was added TBAF (34 

µL, 0.04 mmol) dropwise at 25 C and stirred overnight.  The reaction was quenched with 

saturated ammonium chloride (2 mL) and extracted with ethyl acetate (3x, 10 mL) and 

the solvent removed in vacuo. The crude residue purified via silica gel chromatography 

with 50 % ethyl acetate in hexanes as the eluent to afford the final product (6 mg, 87 %). 

1H NMR (500 MHz, CDCl3): δ  8.55 (dt, J = 5.0, 0.9 Hz, 1H), 7.63 (td, J = 7.6, 1.8 Hz, 

1H), 7.25 (d, J = 7.9 Hz, 1H), 7.16-7.13 (m, 1H), 7.09 (d, J = 8.4 Hz, 1H), 6.62 (dd, J = 

8.4, 2.6 Hz, 1H), 6.57 (d, J = 2.5 Hz, 1H), 5.16 (d, J = 1.4 Hz, 1H), 3.56 (s, 2H), 2.86-

2.76 (m, 2H), 2.29-2.24 (m, 1H), 2.22-2.17 (m, 1H), 2.15-2.11 (m, 1H), 1.95-1.86 (m, 

2H), 1.79 (ddd, J = 12.3, 3.9, 2.4 Hz, 1H), 1.63-1.50 (m, 3H), 1.43-1.35 (m, 2H). 13C 
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NMR (126 MHz; CDCl3): δ 160.1, 154.3, 153.5, 148.4, 138.0, 136.8, 132.0, 126.0, 

125.0, 124.1, 121.4, 115.2, 112.6, 56.4, 47.1, 45.9, 44.3, 37.5, 36.6, 34.6, 30.9, 29.5, 

27.8, 26.4, 15.7 FTIR (thin film): 3315, 2926, 2845,1596 cm-1.  

 

 

To a solution of alcohol 58 (42 mg, 0.09 mmol) in DCM (600 µL, 0.15 M) was added 

triphenylphosphine (43 mg, 0.16 mmol) in DCM (1.25 mL, 0.13 M) and carbon 

tetrabromide (80 mg, 0.24 mmol) in DCM (1.2 mL, 0.2 M). The reaction was stirred at 25 

°C for 30 minutes, then concentrated in vacuo when no starting material was present by 

TLC.  The crude material was purified by silica gel chromatography with 15 % ethyl 

acetate in hexanes as the eluent to afford the debrominated alkene (6 mg, 15 %).  1H 

NMR (500 MHz, CDCl3): δ  7.64 (dd, J = 6.9, 1.0 Hz, 1H), 7.32-7.30 (m, 1H), 7.16 (d, J = 

8.4 Hz, 1H), 6.64 (dd, J = 8.4, 2.7 Hz, 1H), 6.59 (d, J = 2.6 Hz, 1H), 6.46 (dd, J = 6.7, 1.3 

Hz, 1H), 6.25 (s, 1H), 2.89 (dd, J = 13.4, 6.5 Hz, 3H), 2.60 (s, 1H), 2.41 (s, 2H), 2.30-

2.28 (m, 2H), 1.55 (d, J = 3.3 Hz, 3H), 1.25 (s, 3H), 1.00 (s, 3H), 0.99-0.98 (m, 9H), 0.20 

(dd, J = 6.4, 0.7 Hz, 6H). The alkene was solubilized with THF (130 µL, 0.1 M) and 

TBAF (26 µL, 0.03 mmol) was added dropwise, and the reaction stirred overnight at 25 

°C before being quenched with saturated ammonium chloride (2 mL).  The aqueous was 

extracted with ethyl acetate (3x, 5 mL), dried over sodium sulfate and concentrated in 

vacuo.  The crude material was purified by silica gel chromatography with 25 % ethyl 
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acetate in hexanes as the eluent to afford the deprotected product 71 (4 mg, 89%). 1H 

NMR (500 MHz, CDCl3): δ  7.68-7.66 (m, 1H), 7.35-7.32 (m, 1H), 7.23-7.21 (m, 1H), 

6.70-6.67 (m, 1H), 6.63 (dd, J = 1.3, 0.7 Hz, 1H), 6.58-6.56 (m, 1H), 6.49 (td, J = 1.1, 0.5 

Hz, 1H), 6.30-6.25 (m, 1H), 4.54-4.51 (m, 1H), 2.98-2.88 (m, 2H), 2.64-2.63 (m, 1H), 

2.47-2.40 (m, 2H), 2.34-2.29 (m, 1H), 2.03 (dtd, J = 2.7, 1.4, 0.7 Hz, 1H), 1.93-1.86 (m, 

2H), 1.78-1.73 (m, 1H), 1.56-1.56 (m, 3H). FTIR (thin film): 3352, 2920, 2756, 1507 cm-1. 

 

Section 4.8 Second Generation Derivatives of Phenyl Allylic Alcohol  

 

 

To a solution of TBS-methylene 73 (553 mg, 1.5 mmol) in dry THF (20 mL, 0.08 M) was 

added a solution of borane in THF (3 mL, 1 M) at 25 °C. The solution was stirred for 2 h 

or until the consumption of starting material was observed by TLC. The reaction was 

then cooled to 0 °C and 2N sodium hydroxide in deionized water (3 mL) and 30% 

aqueous hydrogen peroxide (2 mL) were added. The solution was stirred overnight at 25 

°C and then diluted with ethyl acetate (50 mL). The organics were washed with brine (5x, 

25 mL) until they tested negative for peroxides and dried over sodium sulfate. The 

solvent was removed in vacuo and the residue purified by silica gel chromatography with 

10% ethyl acetate in hexanes to yield the desired alcohol 74 as a white solid (220 mg, 

38%) as a 3:1 mixture of β:α epimers. 1H NMR (500 MHz, CDCl3): δ  7.12 (d, J = 8.4 Hz, 
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1H), 6.62-6.55 (m, 2H), 3.76 (t, J = 5.2 Hz, 1H), 3.59 (t, J = 5.2 Hz, 1H), 2.80 (d, J = 4.0 

Hz, 2H), 2.24 (s, 2H), 2.02 (d, J = 31.1 Hz, 1H), 1.89-1.87 (m, 2H), 1.75 (d, J = 30.2 Hz, 

2H), 1.42-1.25 (m, 9H), 0.98-0.96 (m, 9H), 0.84 (s, 1H), 0.69 (s, 2H), 0.19 (s, 6H). 13C 

NMR (126 MHz; CDCl3): δ 153.4, 138.0, 133.4, 126.2, 120.1, 117.2, 64.8, 55.2, 53.6, 

53.3, 44.2, 42.3, 39.0, 38.6, 29.8, 28.0, 26.5, 25.87, 25.78, 24.5, 18.3, 12.8, -4.2. FTIR 

(thin film) 3358, 2923, 2852, 1609 cm-1. HRMS (m/z): calcd for C25H40O2Si: 400.2798, 

found [M+Cl]-: 435.2487. 

 

 

To a solution of alcohol 74 (132 mg, 0.34 mmol) in dichloromethane (680 µL, 0.5 M) at 0 

°C was added Dess Martin periodinane (180 mg, 0.43 mmol) in DCM (1.72 mL, 0.25 M). 

The yellow solution was stirred at 0 °C for 1.5 h until no more SM was observed by TLC. 

The reaction was quenched with saturated aqueous sodium bisulfate (10 mL) and 

saturated aqueous sodium bicarbonate (10 mL) and stirred for 15 minutes. The layers 

were separated and the aqueous extracted with dichloromethane (3x 20 mL). The 

combined organic layers were washed with brine (15 mL), dried over sodium sulfate and 

the solvent removed in vacuo. The crude residue was purified by silica gel 

chromatography with 15 % ethyl acetate in hexanes as the eluent to provide the 

aldehyde 75 as a white film (56 mg, 42 %). 1H NMR (500 MHz, CDCl3): δ  9.81 (s, 1H), 

7.11 (d, J = 8.5 Hz, 1H), 6.62-6.55 (m, 2H), 2.81-2.80 (m, 2H), 2.38-1.35 (m, 16H), 0.97 

(s, 9H), 0.96 (s, 1H), 0.80 (s, 2H), 0.19 (t, J = 0.7 Hz, 6H). 13C NMR (126 MHz; CDCl3): 

TBSO

OH

TBSO

HO

74 75



!

187!
!

δ 205.1, 153.5, 137.9, 132.9, 126.2, 120.1, 117.3, 63.1, 55.5, 46.6, 45.3, 44.0, 43.6, 

39.1, 38.6, 38.4, 29.7, 27.9, 26.2, 25.9, 24.7, 21.3, 18.3, 14.1, -4.2. FTIR(thin film): 2924, 

2851, 1716, 1608 cm-1. HRMS (m/z): calcd for C25H38O2Si: 398.2641, found [M+H]+: 

399.2734. 

 

 

To a solution of bromobenzene (34 µL, 0.32 mmol) in THF (1.3 mL, 0.25 M) at -78 °C 

was added t-butyl lithium (630 µL, 0.88 mmol) dropwise and quickly warmed to 25 °C. 

After 30 minutes, the solution of anion was cooled to - 78 °C and aldehyde 75 (56 mg, 

0.14 mmol) was added in THF (170 µL, 1.0 M) and stirred at this temperature for 1 hour.  

The reaction was quenched with saturated ammonium chloride (10 mL), the aqueous 

extracted with ethyl acetate (3x, 10 mL), washed with brine (15 mL). The organics were 

dried and concentrated in vacuo. The crude residue was purified with silica gel 

chromatography with 15 % ethyl acetate as the eluent to afford the desired alcohol 76 as 

two separate diastereomers (35 mg, 53 %).   

Mixture: 1H NMR (500 MHz, CDCl3): δ  7.35-7.27 (m, 5H), 7.14 (dd, J = 14.1, 8.4 Hz, 

1H), 6.63-6.56 (m, 2H), 4.77 (dd, J = 187.4, 6.9 Hz, 1H), 2.82-2.79 (m, 2H), 2.35-2.24 

(m, 3H), 1.91-1.83 (m, 4H), 1.67-1.54 (m, 5H), 1.44-1.14 (m, 9H), 0.94-0.93 (m, 2H), 

0.84 (s, 1H), 0.19-0.17 (m, 9H).13C NMR (126 MHz; CDCl3): δ 153.4, 144.9, 138.0, 

133.5, 128.9, 128.56, 128.43, 127.8, 127.1, 126.9, 126.27, 126.20, 120.1, 117.24, 
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117.17, 73.9, 57.3, 55.2, 54.8, 51.8, 44.1, 43.86, 43.75, 43.3, 40.2, 39.3, 38.8, 29.97, 

29.84, 28.0, 26.84, 26.80, 25.88, 25.83, 24.2, 21.72, 21.66, 18.3, 12.6, -4.2. FTIR (thin 

film): 3465, 3028, 2928, 2858, 1607 cm-1. HRMS (m/z): calcd for C31H44O2Si: 476.3111, 

found [M-OH]+: 459.3087. 

Pure Diastereomer: 1H NMR (500 MHz, CDCl3): δ  7.40-7.31 (m, 5H), 6.98 (d, J = 8.4 

Hz, 1H), 6.56-6.52 (m, 2H), 4.54 (d, J = 9.4 Hz, 1H), 2.78 (d, J = 6.3 Hz, 2H), 1.96 (t, J = 

9.1 Hz, 2H), 1.87-1.80 (m, 5H), 1.36-1.20 (m, 7H), 0.74 (s, 3H), 0.19 (s, 6H). 13C NMR 

(126 MHz; CDCl3): δ 153.3, 144.4, 138.0, 133.4, 128.5, 128.1, 127.3, 126.1, 120.0, 

117.2, 57.7, 55.4, 43.9, 42.1, 38.5, 38.2, 29.8, 27.9, 26.7, 26.3, 25.9, 24.0, 18.3, 13.1, -

4.3. FTIR (thin film): 3399, 3029, 2929, 2858, 1607 cm-1. HRMS (m/z): calcd for 

C31H44O2Si: 476.3111, found [M-OH]+: 459.3079. 

 

 

To a solution of alcohol 76 (7 mg, 0.02 mmol) in THF (200 µL, 0.1 M) was added TBAF 

(40 µL, 0.04 mmol) dropwise at 25 °C and stirred overnight.  The reaction was quenched 

with saturated ammonium chloride (5 mL) and extracted with ethyl acetate (3x, 10 mL) 

and the solvent removed in vacuo. The crude residue purified via silica gel 

chromatography with 33 % ethyl acetate in hexanes as the eluent to afford the final 

product 77 (4 mg, 56 %). 1H NMR (500 MHz, CDCl3): δ  7.40-7.29 (m, 5H), 7.03-7.00 

(m, 1H), 6.57-6.53 (m, 2H), 4.57-4.50 (m, 1H), 2.83-2.76 (m, 2H), 2.15-2.09 (m, 1H), 
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2.08-2.02 (m, 2H), 2.00-1.92 (m, 2H), 1.89-1.75 (m, 3H), 1.67-1.55 (m, 2H), 1.35-1.15 

(m, 7H), 0.75-0.72 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 154.2, 144.3, 138.1, 132.0, 

128.4, 127.9, 127.3, 126.2, 115.2, 112.6, 57.5, 55.3, 43.7, 42.0, 38.6, 38.1, 30.9, 29.7, 

27.8, 26.7, 26.3, 23.9, 12.9. FTIR (thin film): 3347, 2926, 1498 cm-1. HRMS (m/z): calcd 

for C25H30O2: 362.2246, found [M-OH]+: 345.2213. 

 

 

To a solution of alcohol (10 mg, 0.02 mmol) in DCM (210 µL, 0.1 M) was added 

pyridinium chlorochromate (11 mg, 0.05 mmol) in one portion, and the reaction stirred at 

25 °C for 12 hours.  The reaction was diluted with DCM (10 mL) and filtered through a 

pad of silica and the solvent removed in vacuo.  The crude product was clean and 

required no further purification. 1H NMR (500 MHz, CDCl3): δ  7.90 (d, J = 7.3 Hz, 2H), 

7.55 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.04 (d, J = 8.5 Hz, 1H), 6.59-6.55 (m, 

2H), 3.58 (t, J = 8.8 Hz, 1H), 2.81-2.80 (m, 2H), 2.51-2.48 (m, 1H), 2.23-2.16 (m, 2H), 

1.92-1.85 (m, 3H), 1.57-1.50 (m, 5H), 1.45-1.25 (m, 5H), 0.65 (s, 3H), 0.17 (d, J = 4.7 

Hz, 6H). 13C NMR (126 MHz; CDCl3): δ 202.3, 153.5, 139.6, 138.0, 133.0, 132.7, 

128.52, 128.43, 126.1, 120.1, 117.3, 57.6, 56.4, 45.5, 43.9, 39.6, 39.1, 29.8, 28.0, 26.7, 

25.9, 24.7, 24.1, 18.3, 13.9, -4.2. FTIR (thin film): 3501, 2928, 1673, 1607 cm-1. HRMS 

(m/z): calcd for C31H42O2Si: 474.2954, found [M+H]+: 475.3049. 
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To a solution of alcohol (7 mg, 0.02 mmol) in THF (150 µL, 0.1 M) was added TBAF (30 

µL, 0.05 mmol) dropwise at 25 °C and stirred overnight.  The reaction was quenched 

with saturated ammonium chloride (5 mL) and extracted with ethyl acetate (3x, 10 mL) 

and the solvent removed in vacuo. The crude residue purified via silica gel 

chromatography with 33 % ethyl acetate in hexanes as the eluent to afford the final 

product (4 mg, 74 %). 1H NMR (500 MHz, CDCl3): δ  7.91-7.88 (m, 2H), 7.57-7.43 (m, 

3H), 7.08-7.05 (m, 1H), 6.60-6.54 (m, 2H), 4.56-4.53 (m, 1H), 3.60-3.55 (m, 1H), 2.85-

2.78 (m, 2H), 2.51-2.46 (m, 1H), 2.25-2.15 (m, 2H), 1.96-1.79 (m, 3H), 1.57-1.49 (m, 

4H), 1.48-1.32 (m, 4H), 1.32-1.22 (m, 2H), 0.65-0.62 (m, 3H). 13C NMR (126 MHz; 

CDCl3): δ 202.34, 153.53, 139.65, 138.47, 132.75, 130.29, 128.59, 128.49, 126.61, 

115.45, 112.85, 57.70, 56.43, 53.64, 45.58, 43.92, 39.61, 39.27, 39.15, 29.92, 29.84, 

27.96, 26.83, 24.71, 24.11, 13.90. FTIR (thin film): 3397, 2923, 1661, 1499 cm-1. HRMS 

(m/z): calcd for C25H28O2: 360.2089, found [M+H]+: 361.2151. 
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To a solution of alcohol (6 mg, 0.02 mmol) in THF (200 µL, 0.1 M) was added NaH (60 

% by wt, 1 mg, 0.02 mmol) at 25 °C.  After 30 minutes at 25 C, MeI (3 mg, 0.02 mmol) 

was added dropwise.  The reaction was quenched after stirring for 2 hours at 25 C with 

saturated ammonium chloride (3 mL), the aqueous extracted with ethyl acetate (3x, 5 

mL), dried over sodium sulfate, and concentrated in vacuo. The crude residue was 

dissolved in THF (200 µL, 0.01 M) and TBAF (20 µL, 0.02 mmol) was added dropwise. 

The reaction was stirred at 25 °C until reaction complete by TLC, quenched with 

saturated ammonium chloride (2 mL), extracted with ethyl acetate (3x, 5 mL), and 

concentrated in vacuo. The crude material was purified by silica gel chromatography 

with 50 % ethyl acetate in hexanes as the eluent to afford the unsaturated methyl ether 

(4 mg, 54 % over two steps). 1H NMR (500 MHz, CDCl3): δ  7.38-7.29 (m, 5H), 7.19-7.12 

(m, 1H), 6.72-6.61 (m, 2H), 5.66-5.44 (m, 1H), 4.73-4.68 (m, 1H), 3.81-3.76 (m, 3H), 

3.32-3.29 (m, 3H), 2.92-2.84 (m, 2H), 2.33-2.15 (m, 3H), 2.03-1.87 (m, 3H), 0.94-0.81 

(m, 7H), 0.77-0.65 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 157.6, 156.0, 155.3, 140.93, 

140.91, 138.17, 138.15, 133.16, 133.13, 128.31, 128.30, 128.1, 127.79, 127.61, 127.53, 

126.15, 126.13, 125.4, 114.0, 82.0, 81.4, 56.97, 56.87, 56.77, 55.4, 46.87, 46.79, 44.39, 

44.33, 37.40, 37.38, 35.12, 34.99, 32.1, 31.04, 31.02, 29.90, 29.87, 29.83, 29.5, 27.9, 

26.60, 26.52, 22.9, 16.80, 16.69, 14.3. FTIR (thin film): 3583, 2924, 2852, 1609 cm-1.  
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To a microwave vial purged and backfilled with argon preloaded with freshly activated 

zinc (227 mg, 3.5 mmol) was added methylene (216 mg, 0.7 mmol) in THF (1.4 mL, 0.5 

M). The microwave vial was placed in a sonicator bath at 25 °C, and the acid chloride 

(390 µL, 3.5 mmol) in THF (1.75 mL, 2.0 M) was added dropwise and sonicated for 3 

hours.  The microwave vial was then heated to 60 °C for 2 hours.  The reaction was 

cooled to 25 °C, quenched with water (10 mL), extracted with ethyl acetate (3x, 10 mL) 

and concentrate in vacuo to furnish dichloroketone 82. The crude dichloro-

cyclobutanone was dissolved in acetic acid (7 mL, 0.1 M) and activated zinc (364 mg, 

5.6 mmol) was added and the solution refluxed overnight.  The solution was cooled to 25 

°C and the aqueous extracted with ethyl acetate (3x, 20 mL). The crude reaction was 

purified with silica gel chromatography with 20-25 % ethyl acetate in hexanes as the 

eluent to afford the dechlorinated product (37 mg, 11 %). 1H NMR (500 MHz, CDCl3): δ  

7.31-7.29 (m, 1H), 6.86-6.80 (m, 2H), 4.08 (q, J = 6.6 Hz, 1H), 3.43 (t, J = 6.3 Hz, 1H), 

3.18-3.15 (m, 1H), 3.06 (ddd, J = 17.4, 4.0, 2.4 Hz, 1H), 2.91-2.86 (m, 3H), 2.70 (ddd, J 

= 17.3, 5.8, 2.4 Hz, 1H), 2.51 (ddd, J = 17.2, 5.7, 2.4 Hz, 1H), 2.41-2.38 (m, 1H), 2.27 

(dt, J = 1.6, 0.7 Hz, 4H), 2.24-2.18 (m, 1H), 2.13-2.09 (m, 1H), 1.97-1.85 (m, 3H), 1.47-

1.34 (m, 4H), 0.88-0.77 (m, 3H).  13C NMR (126 MHz; CDCl3): δ 208.3, 171.4, 169.88, 

169.87, 148.4, 138.19, 138.15, 137.7, 126.35, 126.26, 126.0, 121.55, 121.49, 121.45, 

118.65, 118.61, 118.59, 118.53, 70.2, 64.4, 56.1, 54.2, 53.5, 52.4, 51.24, 51.11, 44.4, 

43.77, 43.70, 42.8, 39.44, 39.43, 37.3, 36.96, 36.95, 31.8, 31.0, 29.69, 29.55, 29.47, 

29.42, 29.37, 27.55, 27.47, 26.36, 26.34, 26.19, 26.13, 25.95, 25.85, 25.4, 24.1, 21.08, 

20.95, 15.65, 15.63, 15.61, 14.6. FTIR (thin film): 3503, 2932, 2869, 1766 cm-1. HRMS 

(m/z): calcd for C23H28O3: 352.2038, found [M-AcH]-: 309.1863. 
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To a solution of bromobenzene (106 µL, 1.01 mmol) in THF (4.0 mL, 0.25 M) at -78 °C 

was added t-butyl lithium (2 mL, 2.9 mmol) dropwise and quickly warmed to 25 °C. After 

30 minutes, the solution of anion was cooled to - 78 °C and cyclobutanone (80 mg, 0.23 

mmol) was added in THF (230 µL, 1.0 M) and stirred at this temperature for 3 hours.  

The reaction was warmed to 25 °C before being quenched with saturated ammonium 

chloride (10 mL), the aqueous extracted with ethyl acetate (3x, 20 mL), washed with 

brine (25 mL). The organics were dried and concentrated in vacuo. The crude residue 

was purified with silica gel chromatography with 20 % ethyl acetate as the eluent to 

afford the desired compound (83 mg, 93 %).  1H NMR (500 MHz, CDCl3): δ  7.59-7.32 

(m, 5H), 7.23-7.17 (m, 1H), 6.68-6.64 (m, 1H), 6.59 (s, 1H), 2.88-2.81 (m, 2H), 2.63-2.56 

(m, 1H), 2.47-2.16 (m, 5H), 1.93-1.82 (m, 4H), 1.68-1.65 (m, 2H), 1.57-1.54 (m, 3H), 

1.41-1.34 (m, 3H), 0.82-0.71 (m, 3H).13C NMR (126 MHz; CDCl3): δ 153.49, 146.7, 

138.5, 133.0, 128.68, 128.61, 127.51, 126.74, 126.64, 126.0, 125.16, 124.93, 115.38, 

112.8, 75.4, 72.8, 71.63, 71.55, 60.6, 55.4, 55.2, 51.17, 50.3, 44.8, 44.39, 44.27, 43.92, 

43.88, 42.7, 42.2, 39.9, 39.5, 38.3, 37.8, 33.4, 33.0, 30.3, 29.91, 29.88, 29.86, 28.00, 

27.87, 26.57, 26.41, 24.57, 24.46, 21.2, 14.34, , 13.6. FTIR (thin film): 3376, 2930, 2867, 

1716, 1609 cm-1. HRMS (m/z): calcd for C27H32O2: 388.2402, found [M-H]+: 387.2257. 
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To a solution of alcohol 59 (35 mg, 0.07 mmol) in DCM (700 µL, 0.1 M) at 25 C was 

added PCC (40 mg, 0.19 mmol) in one portion.  The reaction was stirred at this 

temperature for 1 hour, diluted with DCM (10 mL) and filtered through a pad of silica. 

The organics were concentrated in vacuo and the crude reaction mixture was purified by 

silica gel chromatography with 20 % ethyl acetate in hexanes as the eluent to afford the 

enone 85’ (22 mg, 72 %).  1H NMR (500 MHz, CDCl3): δ  7.75-7.74 (m, 1H), 7.52 (d, J = 

7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 8.4 Hz, 1H), 6.63 (dd, J = 8.4, 2.5 Hz, 

1H), 6.58 (d, J = 2.5 Hz, 1H), 6.45 (dd, J = 3.1, 1.7 Hz, 1H), 2.87-2.85 (m, 3H), 2.50-2.47 

(m, 2H), 2.35 (s, 2H), 2.23-2.20 (m, 1H), 1.80 (d, J = 6.4 Hz, 1H), 1.70-1.61 (m, 4H), 

1.50 (dd, J = 12.3, 6.7 Hz, 2H), 1.11 (d, J = 18.2 Hz, 3H), 0.20 (d, J = 2.9 Hz, 6H). 13C 

NMR (126 MHz; CDCl3): δ 202.3, 153.5, 139.6, 138.0, 133.0, 132.7, 128.52, 128.43, 

126.1, 120.1, 117.3, 57.6, 56.4, 45.5, 43.9, 39.6, 39.1, 29.8, 28.0, 26.7, 25.9, 24.7, 24.1, 

18.3, 13.9, -4.2. FTIR (thin film): 2929, 2857, 1661, 1609 cm-1 
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To a stirred solution of protected enone 85’ (22 mg, 0.05 mmol) in THF (500 µL, 0.1 M) 

was added TBAF (100 µL, 0.10 mmol) and the reaction stirred at 25 °C over night.  The 

reaction was quenched with saturated ammonium chloride (1 mL), extracted with ethyl 

acetate (3x, 15 mL), dried over sodium sulfate and concentrated in vacuo.  The crude 

product was purified with silica gel chromatography with 50 % ethyl acetate in hexanes 

as the eluent to afford the desired product 85 (6 mg, 34 %). 1H NMR (500 MHz, CDCl3): 

δ  7.75-7.73 (m, 2H), 7.54-7.51 (m, 1H), 7.44-7.41 (m, 2H), 7.18-7.17 (m, 1H), 6.65-6.63 

(m, 1H), 6.46-6.46 (m, 1H), 4.62 (s, 1H), 2.92-2.83 (m, 2H), 2.52-2.46 (m, 2H), 2.38-2.29 

(m, 2H), 2.22-2.16 (m, 1H), 1.97-1.93 (m, 1H), 1.83-1.77 (m, 1H), 1.72-1.61 (m, 3H), 

1.54-1.46 (m, 2H), 1.11-1.10 (m, 3H), 0.99-0.96 (m, 1H), 0.90-0.85 (m, 1H). 13C NMR 

(126 MHz; CDCl3): δ 194.6, 154.0, 153.5, 146.3, 139.5, 138.2, 133.0, 132.0, 129.2, 

128.3, 126.5, 115.4, 112.9, 55.8, 47.9, 44.5, 37.2, 34.6, 32.8, 29.6, 28.0, 26.6, 16.3. 

FTIR (thin film) 3419, 2926, 1644, 1454 cm-1. 

 

Section 4.9 Analyzing the Importance of the Nitrogen 

 

To a solution of ethyl propiolate (222 mg, 2.25 mmol) in THF (4.5 mL, 0.5 M) at -78 °C 

was added n-BuLi (900 µL, 2.25 mmol) dropwise.  After 15 minutes at -78 °C, protected 

steroid (768 mg, 1.5 mmol) was added in THF (3 mL, 0.5 M). The reaction mixture was 

allowed to slowly warm to 25 °C and was quenched with saturated ammonium chloride 
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(20 mL) after 5 hours. The aqueous was extracted with ethyl acetate (3x, 20 mL), dried 

over sodium sulfate, and concentrate in vacuo. The crude product was purified via silica 

gel chromatography with 20-33 % ethyl acetate in hexanes as the eluent. The product 86 

was isolated as a yellow oil (626 mg, 69 %). 1H NMR (500 MHz, CDCl3): δ  7.74 (t, J = 

1.8 Hz, 4H), 7.45-7.37 (m, 6H), 6.98 (d, J = 8.5 Hz, 1H), 6.56-6.50 (m, 2H), 4.25 (q, J = 

7.0 Hz, 2H), 2.72-2.68 (m, 2H), 2.41-2.18 (m, 4H), 2.07-2.02 (m, 1H), 1.83-1.74 (m, 4H), 

1.64 (dd, J = 9.5, 9.1 Hz, 1H), 1.48-1.39 (m, 4H), 1.39-1.29 (m, 6H), 0.90 (s, 3H). 13C 

NMR (126 MHz; CDCl3): δ 153.8, 153.4, 137.7, 135.6, 133.36, 133.32, 132.6, 129.9, 

127.8, 126.0, 119.7, 116.9, 90.6, 80.0, 78.2, 62.2, 50.0, 48.0, 43.5, 39.4, 38.7, 34.8, 

33.1, 31.7, 29.6, 27.3, 26.7, 26.3, 25.4, 23.1, 22.8, 19.6, 14.27, 14.17, 12.8. FTIR (thin 

film): 3448, 2931, 2857, 1710 cm-1. HRMS (m/z): calcd for C39H46O4Si: 606.3165, found 

[M+Na]+: 629.3054. 

 

 

A microwave vial charged with alkynyl alcohol 86 (224 mg, 0.37 mmol), IPrAuNTf2 (16 

mg, 0.02 mmol), and 4-acyl-pyridine-N-oxide (98 mg, 0.74 mmol) was sealed, purged of 

air, and backfilled with argon three times.  To the microwave vial was added DCE (1.5 

mL) and Tf2NH (122 mg, 0.44 mmol) in DCE (2.1 mL) and the resulting solution was 

warmed to 80 °C and stirred for 12 hours.  The reactions was cooled to 25 °C, quenched 

with water (10 mL) and extracted with DCM (3x, 15mL). The organics were dried over 

sodium sulfate and concentrated in vacuo. The crude mixture was purified by silica gel 
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chromatography with 20 % ethyl acetate in hexanes as the eluent to afford two products: 

silyl protected 87 (92 mg, 41 %) and deprotected 88 (34 mg, 24 %).  

Compound 87: 1H NMR (500 MHz, CDCl3): δ  7.72 (d, J = 6.2 Hz, 4H), 7.41-7.38 (m, 

6H), 6.94-6.92 (m, 1H), 6.55-6.48 (m, 2H), 5.57 (d, J = 28.3 Hz, 1H), 4.32-4.27 (m, 2H), 

2.70-2.65 (m, 2H), 2.32-2.10 (m, 5H), 1.95-1.88 (m, 1H), 1.81-1.75 (m, 2H), 1.64-1.59 

(m, 2H), 1.53-1.23 (m, 10H), 1.00-0.95 (m, 3H).13C NMR (126 MHz; CDCl3): δ 199.35, 

199.25, 165.1, 164.5, 153.48, 153.45, 137.64, 137.61, 135.6, 135.3, 134.9, 133.32, 

133.29, 133.27, 132.35, 132.25, 129.91, 129.76, 127.8, 126.03, 126.00, 120.63, 120.46, 

119.73, 119.69, 117.0, 93.6, 93.2, 62.29, 62.15, 49.8, 49.4, 46.7, 46.5, 43.32, 43.26, 

38.87, 38.83, 32.53, 32.37, 31.8, 31.2, 29.5, 27.11, 27.09, 26.7, 25.9, 23.36, 23.30, 19.6, 

19.1, 14.39, 14.30, 12.64, 12.57 FTIR (thin film): 3502, 3071, 2931, 2857, 1820, 1752 

cm-1. HRMS (m/z): calcd for C39H46O5Si: 622.3115, found [M+Na]+: 645.3010. 

Compound 88: 1H NMR (500 MHz, CDCl3): δ  7.11 (q, J = 7.4 Hz, 1H), 6.63-6.56 (m, 

2H), 5.59 (d, J = 27.2 Hz, 1H), 4.34-4.25 (m, 2H), 2.85-2.79 (m, 2H), 2.37-2.10 (m, 5H), 

1.98-1.91 (m, 1H), 1.91-1.74 (m, 3H), 1.57-1.39 (m, 5H), 1.34 (t, J = 6.7 Hz, 3H), 1.00 

(dd, J = 20.5, 13.3 Hz, 3H). 13C NMR (126 MHz; CDCl3): δ 199.41, 199.29, 165.2, 164.6, 

153.73, 153.69, 145.7, 138.24, 138.18, 138.15, 135.6, 132.09, 131.99, 130.9, 129.9, 

127.8, 126.62, 126.61, 124.4, 120.66, 120.50, 115.43, 115.40, 112.9, 93.6, 93.2, 62.36, 

62.22, 60.6, 49.7, 49.4, 46.7, 46.5, 43.29, 43.24, 38.97, 38.94, 32.53, 32.37, 31.8, 31.2, 

29.6, 29.0, 27.08, 27.06, 26.7, 26.0, 25.7, 24.6, 24.2, 23.36, 23.31, 21.2, 14.40, 14.32, 

14.30, 14.18, 12.63, 12.58 FTIR (thin film): 3422, 2930, 1819, 1735 cm-1. HRMS (m/z): 

calcd for C23H25O5: 384.1937, found [M+H]+: 385.2016. 
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A solution of ketoester (43 mg, 0.11 mmol) in aqueous KOH (8 %, 900 µL, 0.1 M) and 

THF (100 µL, 1.0 M) was warmed to 45 °C for 12 hours. The reactions was cooled to 25 

°C, acidified with HCl (1N), and the aqueous extracted with DCM (2x, 20 mL), and 20 % 

i-PrOH in chloroform (1x, 20 mL). The organics were combined, dried over sodium 

sulfate and concentrate in vacuo  to afford the product as a slightly yellow oil (34 mg, 

384, quanitative). 1H NMR (500 MHz, CDCl3): δ  6.99-6.97 (m, 1H), 6.52-6.45 (m, 2H), 

4.01-3.91 (m, 2H), 2.72-2.66 (m, 2H), 2.28-2.16 (m, 2H), 2.07-2.01 (m, 1H), 1.84-1.69 

(m, 4H), 1.42-1.31 (m, 3H), 1.31-1.25 (m, 1H), 1.25-1.11 (m, 5H), 0.99-0.90 (m, 3H). 13C 

NMR (126 MHz; CDCl3): δ 176.5, 172.6, 154.2, 137.9, 131.4, 127.5, 126.1, 115.1, 

112.6, 94.0, 64.8, 43.3, 39.0, 33.8, 30.3, 29.60, 29.52, 27.3, 26.42, 26.24, 24.0, 14.1. 

FTIR (thin film): 3381, 2927, 1741, 1610 cm-1. HRMS (m/z): calcd for C20H24O3: 

312.1725, found [M-H]-: 311.1646. 

 

Section 4.10 Access to Pyrrolidine Containing Derivatives  
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To a slurry of methyltriphenylphosphonium bromide (6.43 g, 18 mmol) in dry toluene (30 

mL) was added potassium tert-butoxide (2.02 g, 18 mmol). The slurry was stirred at 80 

°C for 2 h then cooled to 25 °C. Estrone (1.62 g, 6 mmol) was added in one portion to 

the yellow slurry. The reaction mixture was heated overnight at 80 °C. The reaction was 

cooled to 25 °C and quenched with acetone (25 mL), filtered through a 1 cm pad of silica 

gel, and concentrated in vacuo. The crude material was purified by silica gel 

chromatography with 33% ethyl acetate in hexanes as the eluent to afford the desired 

methylene 73 as a white solid (1.36 g, 85%).  Spectral data matches reported spectra. 

1H NMR (500 MHz, CDCl3): δ  7.18 (d, J = 8.4 Hz, 1H), 6.64 (dd, J = 8.4, 2.7 Hz, 1H), 

6.57 (d, J = 2.6 Hz, 1H), 4.72 (s, 1H), 4.69 (d, J = 2.1 Hz, 2H), 2.87-2.79 (m, 2H), 2.58-

2.52 (m, 1H), 2.38-2.18 (m, 3H), 1.99-1.91 (m, 2H), 1.85-1.79 (m, 1H), 1.59-1.35 (m, 

5H), 1.25 (ddd, J = 12.6, 10.6, 6.4 Hz, 1H). 

 

 

To a solution of methylene 73 (1.36 g, 5.1 mmol) in dry dimethylformamide (10 mL) was 

added cesium carbonate (1.80 g, 5.6 mmol) and paramethoxybenzyl chloride (680 µL, 

5.1 mmol). The reaction was stirred for 12 h at 25° C before being quenched with 

deionized water (25 mL). The organics were extracted with ethyl acetate (3x 25 mL), 

washed with brine (30 mL), and dried with sodium sulfate. The solvent was removed in 

vacuo and the crude material purified by silica gel chromatography with 10% ethyl 

acetate in hexanes as the eluent to yield the product 90 as a white solid (1.94 g, 98%). 
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Spectra matches reported data. 1H NMR (500 MHz, CDCl3): δ  7.35-7.33 (m, 2H), 7.21 

(d, J = 8.6 Hz, 1H), 6.91-6.89 (m, 2H), 6.77 (d, J = 8.5 Hz, 1H), 6.71 (s, 1H), 4.94 (s, 

2H), 4.67 (s, 2H), 3.80 (s, 3H), 2.86-2.84 (m, 1H), 2.53-2.51 (m, 1H), 2.34-2.21 (m, 3H), 

1.96-1.94 (m, 2H), 1.84 (s, 1H), 1.58-1.38 (m, 6H), 0.81 (s, 3H). 

 

 

To a solution of PMB-methylene 90 (1.94 g, 5 mmol) in dry THF (20 mL) was added a 

solution of borane in THF (10 mL, 1 M) at 25 C. The solution was stirred for 2 h or until 

the consumption of starting material was observed by TLC. The reaction was then 

cooled to 0 °C and 2N sodium hydroxide in deionized water (10 mL) and 30% aqueous 

hydrogen peroxide (6.6 mL) were added. The solution was stirred overnight at 25 °C and 

then diluted with ethyl acetate (50 mL). The organics were washed with brine (6x 50 mL) 

until they tested negative for peroxides and dried over sodium sulfate. The solvent was 

removed in vacuo and the residue purified by silica gel chromatography with 30% ethyl 

acetate in hexanes as the eluent to yield the product 91 as a white solid (1.64 g, 81%) as 

a 2:1 mixture of β:α epimers. 1H-NMR (500 MHz; CDCl3): δ  7.37 (d, J = 8.6 Hz, 2H), 

7.22 (d, J = 8.6 Hz, 1H), 6.94-6.92 (m, 2H), 6.79 (dd, J = 8.6, 2.6 Hz, 1H), 6.73 (d, J = 

2.6 Hz, 1H), 4.97 (s, 2H), 3.83 (s, 3H), 3.77 (dd, J = 10.5, 6.8 Hz, 1H), 3.66 (t, J = 6.6 

Hz, ), 3.59 (dd, J = 10.5, 7.5 Hz, 1H), 3.38 (dd, J = 10.5, 7.5 Hz, ), 2.88 (dd, J = 14.7, 5.4 

Hz, 2H), 2.31-2.22 (m, 2H), 2.04-2.01 (m, 1H), 1.94-1.72 (m, 4H), 1.59-1.27 (m, 9H), 

0.87 (s, 1H), 0.71 (s, 2H). 13C NMR (126 MHz; CDCl3): δ 159.4, 156.8, 138.1, 133.2, 
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129.5, 129.2, 126.37, 126.34, 114.90, 114.88, 114.0, 112.3, 69.8, 65.1, 64.6, 62.7, 58.7, 

55.4, 55.1, 53.2, 53.0, 50.9, 50.6, 44.13, 44.11, 43.9, 43.1, 42.3, 39.2, 38.8, 38.6, 35.3, 

34.9, 34.2, 30.01, 29.94, 29.90, 29.88, 28.3, 27.9, 26.57, 26.54, 26.50, 26.49, 25.7, 

25.45, 25.43, 24.40, 24.26, 21.0, 19.0, 14.0, 12.6, 8.3. FTIR (thin film) 3389, 2931, 2867, 

1612, 1515 cm-1.  

 

 

To a solution of PMB-methylene 90 (2.14 g, 5.5 mmol) in dry THF (11 mL) was added a 

solution of 9-BBN in THF (22 mL, 0.5 M) at 25 °C. The solution was stirred for 2 h or until 

the consumption of starting material was observed by TLC. The reaction was then 

cooled to 0 °C and 2N sodium hydroxide in deionized water (11 mL) and 30% aqueous 

hydrogen peroxide (6.6 mL) were added. The solution was stirred overnight at 25 °C and 

then diluted with ethyl acetate (50 mL). The organics were washed with brine (6x 50 mL) 

until they tested negative for peroxides and dried over sodium sulfate. The solvent was 

removed in vacuo and the residue purified by silica gel chromatography (30% ethyl 

acetate in hexanes) to yield alcohol 91 as a white solid (1.85 g, 83%) as exclusively the 

β epimer. 1H NMR (500 MHz, CDCl3): δ  7.34 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.6 Hz, 

1H), 6.90 (d, J = 8.6 Hz, 2H), 6.77-6.70 (m, 2H), 4.94 (s, 2H), 3.81 (s, 3H), 3.74 (t, J = 

5.1 Hz, 1H), 3.59-3.57 (m, 1H), 2.84-2.83 (m, 2H), 2.24 (d, J = 10.6 Hz, 2H), 2.00 (d, J = 

12.2 Hz, 1H), 1.91-1.86 (m, 2H), 1.79-1.70 (m, 3H), 1.50-1.31 (m, 7H), 0.68 (s, 3H). 
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To a solution of alcohol 91 (1.82 g, 4,5 mmol) in dichloromethane (30 mL) at 0 °C was 

added Dess Martin periodinane (2.84 g, 6.7 mmol). The yellow solution was stirred at 0 

°C for 1.5 h until no more SM was observed by TLC. The reaction was quenched with 

saturated aqueous sodium bisulfate (10 mL) and saturated aqueous sodium bicarbonate 

(10 mL) and stirred for 15 minutes. The layers were separated and the aqueous 

extracted with dichloromethane (3x 25 mL). The combined organic layers were washed 

with brine (15 mL), dried over sodium sulfate and the solvent removed in vacuo. The 

crude residue was purified by silica gel chromatography (dry loaded on 4.5 g Si; 20% 

ethyl acetate in hexanes) to provide the aldehyde 92 as a white solid (1.19 g, 65 %). 1H 

NMR (500 MHz; CDCl3): δ  9.84 (d, J = 1.9 Hz, 1H), 7.38 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 

8.6 Hz, 1H), 6.94 (d, J = 8.6 Hz, 2H), 6.81 (dd, J = 8.5, 2.5 Hz, 1H), 6.75 (d, J = 2.3 Hz, 

1H), 4.98 (s, 2H), 3.83 (s, 3H), 2.92-2.88 (m, 2H), 2.42-2.34 (m, 2H), 2.31-2.26 (m, 1H), 

2.23-2.15 (m, 2H), 1.94-1.88 (m, 2H), 1.85-1.79 (m, 1H), 1.67 (td, J = 12.9, 3.7 Hz, 1H), 

1.58-1.38 (m, 5H), 0.82 (s, 3H).13C NMR (126 MHz; CDCl3): δ 204.87, 204.83, 159.4, 

156.9, 137.9, 132.5, 129.32, 129.21, 126.3, 114.8, 114.0, 112.3, 69.7, 63.0, 55.31, 

55.26, 45.1, 43.8, 38.43, 38.29, 29.8, 27.8, 26.2, 24.6, 21.1, 14.0.  FTIR (thin film) 2931, 

2719, 1715, 1612 cm-1. HRMS (m/z): calcd for C27H32O3: 404.2351, found [M-H]+: 

403.2570. 
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To a solution of N-Boc-pyrrolidine (420 mg, 2.45 mmol) and TMEDA (257 mg, 2.21 

mmol) in diethyl ether (5.0 mL, 0.5 M) at - 78 °C was added s-butyllithium (2.0 mL, 2.45 

mmol). The reaction was stirred at this temperature for 3 hours before the dropwise 

addition of aldehyde 92 (333 mg, 0.82 mmol) in THF (1.6 mL, 0.5 M). The reaction was 

allowed to slowly warm to 25 C overnight before being quenched with saturated 

ammonium chloride (20 mL). The aqueous extracted with ethyl acetate (3x, 15 mL), 

washed with brine (25 mL), and dried over sodium sulfate.  The crude material was 

concentrated in vacuo and purified with silica gel chromatography with 33-50 % ethyl 

acetate in hexanes as the eluent to give a mixture of three major diastereomers of 93 

(130 mg, 27 %) 1H NMR (500 MHz; CDCl3): δ  7.35 (d, J = 8.4 Hz, 2H), 7.19-7.17 (m, 

1H), 6.91 (d, J = 8.1 Hz, 2H), 6.77-6.76 (m, 1H), 6.71 (s, 1H), 4.95 (s, 2H), 4.62-4.60 (m, 

), 4.41 (s, ), 4.32-4.30 (m, ), 4.03-3.95 (m, ), 3.81 (s, 3H), 3.77-3.51 (m, 2H), 3.27-3.13 

(m, 1H), 2.87-2.79 (m, 2H), 2.31-2.18 (m, 2H), 1.98-1.72 (m, 8H), 1.52-1.43 (m, 6H), 

0.86-0.75 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 160.9, 159.5, 156.91, 156.84, 138.14, 

138.07, 132.7, 129.50, 129.46, 129.40, 129.28, 126.31, 126.27, 114.9, 114.1, 112.46, 

112.37, 83.3, 77.4, 69.8, 64.3, 60.5, 55.41, 55.22, 55.0, 54.7, 45.4, 43.9, 43.4, 42.6, 

39.2, 38.9, 38.59, 38.42, 31.34, 31.23, 29.99, 29.90, 28.72, 28.68, 28.54, 28.51, 27.88, 

27.78, 26.5, 26.34, 26.31, 24.4, 24.0, 21.22, 21.17, 14.3, 13.9. FTIR (thin film) 3443, 
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2931, 1749, 1688, 1611 cm-1. HRMS (m/z): calcd for C36H49NO5: 575.3611 found [M+H]+: 

576.3698. 

 

 

A solution of alcohol 93 (104 mg, 0.18 mmol) and KOH (100 mg, 1.80 mmol) in MeOH 

(180 µL, 1.0 M) and dry DMSO (1 mL, 0.2 M) was heated to 65 °C for 12 hours.  The 

reaction mixture was cooled to 25 °C, quenched with water (10 mL) and extracted with 

chloroform (2x, 20 mL) and 10 % i-PrOH in chloroform (2x, 20 mL).  The organics were 

combined and concentrate in vacuo.  The crude residue was purified by silica gel 

chromatography with 4 % methanol in DCM as the eluent to afford the deprotected 

product 94 (61 mg, 71 %). 1H NMR (500 MHz, CDCl3): δ  7.34 (d, J = 8.4 Hz, 2H), 7.20-

7.17 (m, 1H), 6.90 (d, J = 8.4 Hz, 2H), 6.77-6.70 (m, 2H), 4.95 (s, 2H), 3.81 (s, 3H), 2.98-

2.82 (m, 3H), 2.22-2.18 (m, 4H), 1.90-1.86 (m, 10H), 1.39-1.20 (m, 12H), 0.77-0.73 (m, 

3H). 13C NMR (126 MHz; CDCl3): δ 159.5, 156.9, 133.2, 129.5, 129.3, 126.37, 126.36, 

126.34, 114.96, 114.95, 114.92, 114.10, 114.06, 112.38, 112.36, 69.9, 55.4, 55.2, 50.9, 

44.10, 44.01, 42.8, 38.7, 29.99, 29.84, 27.9, 26.5. FTIR (thin film): 3055, 2929, 1608 cm-

1.  
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To a solution of alcohol 94 (145 mg, 0.30 mmol) and DMAP (4 mg, 0.03 mmol) in dry 

pyridine (1 mL, 0.3 M) was added TsCl (172 mg, 0.90 mmol) and the reaction stirred for 

12 hours, until the starting material was no longer seen by TLC.  The reaction was 

quenched with water (20 mL) and the aqueous extracted with DCM (3x, 15 mL). The 

organics concentrated in vacuo, and the crude residue purified by silica gel 

chromatography with 33 % ethyl acetate in hexanes as the eluent to afford the desired 

tosylate 95 as a mixture of diastereomers (48 mg, 25 %). 1H NMR (500 MHz, CDCl3): δ  

7.80-7.70 (m, 2H), 7.35 (quintet, J = 8.6 Hz, 4H), 7.20 (dd, J = 8.2, 5.1 Hz, 1H), 6.91 (d, 

J = 8.0 Hz, 2H), 6.79-6.76 (m, 1H), 6.71 (s, 1H), 4.96 (s, 2H), 4.56-4.54 (m, 1H), 3.78 (d, 

J = 0.5 Hz, 3H), 3.60 (s, 1H), 3.41-3.35 (m, 2H), 2.89-2.79 (m, 2H), 2.44-2.41 (m, 3H), 

2.36-2.10 (m, 3H), 1.95-1.85 (m, 2H), 1.85-1.66 (m, 4H), 1.66-1.50 (m, 3H), 1.50-1.33 

(m, 4H), 0.82-0.73 (m, 3H).13C NMR (126 MHz; CDCl3): δ 208.7, 171.3, 159.5, 156.9, 

143.8, 143.5, 138.16, 138.05, 137.99, 136.1, 134.78, 134.59, 132.7, 129.98, 129.94, 

129.92, 129.85, 129.68, 129.44, 129.28, 127.84, 127.76, 127.65, 126.40, 126.35, 

126.33, 114.94, 114.91, 114.89, 114.1, 112.45, 112.43, 112.36, 70.9, 69.8, 67.6, 66.1, 

64.6, 63.2, 60.55, 60.51, 59.3, 56.2, 55.56, 55.41, 55.0, 52.6, 49.6, 48.9, 48.6, 45.9, 

45.4, 44.4, 43.82, 43.71, 43.2, 42.9, 38.85, 38.82, 38.70, 38.63, 38.46, 38.2, 29.99, 

29.91, 29.82, 29.27, 29.23, 28.7, 27.93, 27.89, 27.81, 26.82, 26.69, 26.3, 25.9, 24.95, 

24.83, 24.63, 24.55, 24.49, 24.45, 24.38, 24.21, 21.7, 21.2, 19.8, 14.3, 14.0, 13.7, 13.4, 
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12.4. FTIR (thin film): 3501, 2927, 1716, 1612. HRMS (m/z): calcd for C38H47NO5S: 

629.3175, found [M+H]+: 630.3245. 

 

 

 

To a solution of TBDPS-methylene (1.93 g, 3.8 mmol) in dry THF (7.6 mL, 0.5 M) was 

added a solution of 9-BBN in THF (15.2 mL, 7.6 mmol) at 25 °C. The solution was stirred 

for 2 h or until the consumption of starting material was observed by TLC. The reaction 

was then cooled to 0 °C and 2N sodium hydroxide in deionized water (7.6 mL) and 30% 

aqueous hydrogen peroxide (5.2 mL) were added. The solution was stirred overnight at 

25 °C and then diluted with ethyl acetate (50 mL). The organics were washed with brine 

(5x 50 mL) until they tested negative for peroxides and dried over sodium sulfate. The 

solvent was removed in vacuo and the residue purified by silica gel chromatography with 

20% ethyl acetate in hexanes as the eluent to yield alcohol 98 as a white solid (746 mg, 

37 %) as exclusively the β epimer. 1H NMR (500 MHz, CDCl3): δ  7.73-7.73 (m, 4H), 

7.44-7.37 (m, 6H), 6.97-6.96 (m, 1H), 6.54 (s, 1H), 6.49 (d, J = 8.5 Hz, 1H), 3.76-3.55 

(m, 2H), 2.72-2.64 (m, 2H), 2.18-2.13 (m, 3H), 1.97-1.95 (m, 1H), 1.95-1.80 (m, 3H), 

1.76-1.62 (m, 5H), 1.58-1.20 (m, 13H), 0.70-0.67 (m, 3H).13C NMR (126 MHz; CDCl3): δ 

153.3, 137.8, 135.7, 133.41, 133.37, 133.1, 129.9, 127.8, 126.0, 119.7, 116.8, 64.8, 

55.1, 53.2, 44.2, 42.3, 38.9, 38.5, 29.7, 27.9, 27.6, 26.7, 26.4, 25.8, 24.4, 22.8, 19.6, 

12.7. FTIR (thin film) 3389, 2929, 2857, 1606 cm-1. HRMS (m/z): calcd for C35H44O2Si: 

524.3111, found [M+H]+: 525.3206. 
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To a slurry of Dess Martin Periodinane (747 mg, 1.76 mmol) in DCM (7 mL, 0.25 M) was 

added a solution of alcohol 98 (739 mg, 1.4 mmol) in DCM (2.8 mL, 0.5 M) at 0 °C. The 

yellow solution was stirred at 0 °C for 2 hours until no more SM was observed by TLC. 

The reaction was quenched with saturated aqueous sodium bisulfate (10 mL) and 

saturated aqueous sodium bicarbonate (10 mL) and stirred for 15 minutes. The layers 

were separated and the aqueous extracted with dichloromethane (3x ,20 mL). The 

combined organic layers were washed with brine (15 mL), dried over sodium sulfate and 

the solvent removed in vacuo. The crude residue was purified by silica gel 

chromatography with 10% ethyl acetate in hexanes as the eluent to provide the 

aldehyde 99 as a white solid (627, 86 %). 1H NMR (500 MHz, CDCl3): δ  9.79 (s, 1H), 

7.73 (t, J = 2.9 Hz, 4H), 7.42-7.37 (m, 6H), 6.96 (d, J = 8.5 Hz, 1H), 6.54-6.49 (m, 2H), 

2.73-2.67 (m, 2H), 2.48-2.35 (m, 5H), 2.25-2.05 (m, 6H), 1.91-1.68 (m, 9H), 1.62-1.25 

(m, 15H), 0.77 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 205.0, 153.4, 137.7, 135.6, 

133.31, 133.27, 132.6, 129.9, 127.8, 125.9, 119.7, 116.9, 63.0, 55.4, 45.2, 43.9, 42.05, 

41.99, 38.5, 38.2, 33.4, 29.6, 27.8, 27.3, 26.7, 26.10, 25.94, 25.77, 24.81, 24.64, 21.2, 

19.6, 14.0. FTIR (thin film) 2929, 2856, 1717,1606 cm-1. HRMS (m/z): calcd for 

C35H42O2Si: 522.2954, found [M+H]+: 523.3044. 
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To a solution of N-Boc-pyrrolidine (615 mg, 3.60 mmol) and TMEDA (371 mg, 3.20 

mmol) in diethyl ether (7.2 mL, 0.5 M) at - 78 °C was added s-butyllithium (3.0 mL, 3.60 

mmol). The reaction was stirred at this temperature for 2 hours before the dropwise 

addition of aldehyde 99 (531 mg, 1.20 mmol) in THF (2.4 mL, 0.5 M). The reaction was 

allowed to slowly warm to 25 °C overnight before being quenched with saturated 

ammonium chloride (20 mL). The aqueous extracted with ethyl acetate (3x, 20 mL), 

washed with brine (25 mL), and dried over sodium sulfate.  The crude material was 

concentrated in vacuo and purified with silica gel chromatography with 20-50 % ethyl 

acetate in hexanes as the eluent to give a mixture of three major diastereomers of 100 

(510 mg, 72 %). 1H NMR (500 MHz, CDCl3): δ  7.73 (d, J = 1.3 Hz, 4H), 7.41-7.36 (m, 

6H), 6.96-6.93 (m, 1H), 6.54-6.47 (m, 2H), 3.61-3.54 (m, 2H), 3.34-3.14 (m, 3H), 2.72-

2.67 (m, 2H), 2.22-2.03 (m, 5H), 1.98-1.66 (m, 12H), 1.47-1.45 (m, 8H), 0.80-0.74 (m, 

3H). 13C NMR (126 MHz; CDCl3): δ 160.9, 154.8, 153.37, 153.28, 137.82, 137.77, 

135.69, 135.61, 135.56, 135.53, 133.36, 133.34, 133.31, 133.27, 132.6, 129.9, 127.8, 

125.86, 125.85, 125.81, 119.72, 119.65, 119.57, 116.81, 116.74, 116.73, 85.0, 83.3, 

80.9, 79.0, 64.2, 55.18, 54.99, 46.1, 45.7, 45.4, 45.1, 43.9, 42.5, 38.9, 38.46, 38.28, 

35.8, 31.2, 29.68, 29.57, 28.72, 28.67, 28.63, 28.54, 28.50, 28.3, 27.85, 27.77, 27.74, 

26.66, 26.47, 26.39, 26.31, 26.22, 26.19, 25.85, 25.75, 24.47, 24.41, 24.0, 21.79, 21.70, 

19.6, 13.9. FTIR (thin film) 3458, 2930, 1753, 1691,1607 cm-1. HRMS (m/z): calcd for 

C44H59NO4Si: 693.4213, found [M+H]+: 694.4298. 
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To a solution of alcohol (248 mg, 0.36 mmol) in DCM (3.6 mL, 0.1 M) at 0 °C was added 

TFA (360 µL, 1.0 M) dropwise.  The reaction mixture was stirred at this temperature for 1 

hour and then concentrated in vacuo to afford the deprotected material (210 mg, 98 %).  

1H NMR (500 MHz, CDCl3): δ  7.73-7.71 (m, 4H), 7.43-7.34 (m, 6H), 6.94-6.92 (m, 1H), 

6.54-6.46 (m, 2H), 4.30-4.28 (m, 1H), 3.70-3.51 (m, 3H), 3.17-3.14 (m, 2H), 2.69-2.66 

(m, 2H), 1.58-1.25 (m, 12H), 1.08 (s, 9H), 0.73 (s, 3H). 13C NMR (126 MHz; CDCl3): δ 

161.0, 153.4, 137.8, 135.71, 135.66, 133.36, 133.32, 132.7, 129.9, 127.87, 127.82, 

125.8, 119.8, 116.8, 85.0, 83.3, 68.6, 64.3, 55.22, 55.03, 45.4, 45.2, 43.9, 42.6, 39.0, 

38.3, 35.8, 31.2, 30.9, 29.6, 28.3, 27.81, 27.77, 26.69, 26.65, 26.51, 26.35, 26.25, 26.23, 

25.8, 24.51, 24.46, 24.0, 21.83, 21.74, 19.6, 13.9. . FTIR (thin film) 2931, 1745, 1607 

cm-1. HRMS (m/z): calcd for C39H51NO2Si: 593.3689, found [M+H]+: 594.3765. 

 

 

To a solution of alcohol 100 (28 mg, 0.05 mmol) in THF (250 µL, 0.2 M) was added 

TBAF (100 µL, 0.10 mmol) dropwise, and the resulting reaction stirred overnight at 25 
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HO HN
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°C.  The reaction was then quenched with saturated ammonium chloride (10 mL), the 

aqueous extracted with ethyl acetate (3x, 10 mL), dried with sodium sulfate and 

concentrate in vacuo.  The crude residue was purified by silica gel chromatography with 

50 % ethyl acetate in hexanes as the eluent to afford the product 102 (5 mg, 28 %). 1H 

NMR (500 MHz, CDCl3): δ  7.08-7.05 (m, 1H), 6.60-6.57 (m, 1H), 6.52-6.51 (m, 1H), 

4.29 (t, J = 0.4 Hz, 1H), 3.55-3.52 (m, 2H), 3.13-3.12 (m, 1H), 2.78-2.75 (m, 2H), 0.72 ( 

3H). 13C NMR (126 MHz; CDCl3): δ 161.4, 161.2, 154.3, 138.1, 131.6, 126.48, 126.29, 

115.3, 112.8, 83.7, 64.3, 55.13, 54.93, 54.85, 54.5, 45.2, 45.0, 43.90, 43.85, 43.1, 42.6, 

38.94, 38.90, 38.62, 38.44, 35.8, 31.15, 31.11, 30.8, 29.7, 28.2, 27.91, 27.74, 27.69, 

26.38, 26.34, 26.33, 26.24, 25.7, 24.45, 24.41, 24.38, 23.93, 23.76, 21.72, 21.62, 13.8, 

12.5. FTIR (thin film) 3289, 2921, 1718 cm-1. HRMS (m/z): calcd for C23H33NO2: 

355.2511, found [M-H]+: 354.2431. 

 

 

Section 4.11 Cross Coupling Approach to Alkylidene Analog 

 

 

To a solution of epoxide (126 mg, 0.24 mmol) in dioxane (1 mL, 0.25 M) was added HBr 

(48 % in water, 1 mL, 0.25 M) dropwise at 25 °C.  The reaction was stirred at this 

temperature for three hours before diluting with water (20 mL) and extracting with ethyl 
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acetate (3x, 15 mL). The organics were washed with sodium bicarbonate (20 mL), then 

brine (20 mL), dried over sodium sulfate, and the solvent removed in vacuo. The crude 

mixture was purified with silica gel chromatography with 10 % ethyl acetate in hexanes 

as the eluent to afford the halohydrin product (53 mg, 38 %). 1H NMR (500 MHz; 

CDCl3): δ  7.74 (dt, J = 3.6, 1.7 Hz, 4H), 7.42-7.38 (m, 7H), 6.97 (t, J = 8.3 Hz, 1H), 

6.57-6.50 (m, 2H), 3.81-3.79 (m, 1H), 3.64 (d, J = 10.1 Hz, 1H), 2.73-2.68 (m, 2H), 2.30-

1.27 (m, 20H), 1.11 (s, 9H), 0.99 (d, J = 9.6 Hz, 3H), 0.90 (dt, J = 6.0, 2.7 Hz, 3H). 13C 

NMR (126 MHz; CDCl3): δ 153.5, 137.70, 137.57, 135.7, 135.3, 134.9, 133.35, 133.32, 

132.5, 132.3, 129.91, 129.77, 127.8, 126.03, 125.95, 119.75, 119.72, 117.07, 116.94, 

81.9, 77.42, 77.38, 77.2, 76.9, 50.63, 50.57, 48.1, 47.2, 46.9, 44.1, 43.9, 39.4, 38.4, 

36.2, 36.0, 34.8, 32.3, 31.74, 31.71, 29.59, 29.51, 27.6, 27.1, 26.71, 26.66, 26.2, 25.9, 

25.4, 23.6, 22.8, 21.7, 20.9, 19.6, 19.2, 15.0, 14.3, 14.0. FTIR (thin film) 3453, 2930, 

1732, 1606 cm-1. HRMS (m/z): calcd for C35H43BrO2Si: 602.2216, found [M+H]+: 

603.2289. 

 

 

Thionyl chloride (10 µL, 0.12 mmol) was added dropwise to a solution of halohydrin (53 

mg, 0.09 mmol) in dry pyridine (300 µL, 0.3M) at 25 C.  The reaction was quenched after 

one hour with HCl (2N, 2 mL) and extracted with DCM (3x, 10 mL). The organics were 

concentrated in vacuo and the crude residue purified by silica gel chromatography with 3 

% ethyl acetate in hexanes as the eluent to afford the desired vinyl bromide as a yellow 
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oil (18 mg, 30 %). 1H NMR (500 MHz; CDCl3): δ  7.74-7.72 (m, 4H), 7.44-7.35 (m, 6H), 

6.96 (d, J = 8.5 Hz, 1H), 6.54-6.48 (m, 2H), 5.80 (s, 1H), 2.73-2.67 (m, 2H), 2.42-2.37 

(m, 2H), 2.27-2.26 (m, 1H), 2.18-2.16 (m, 1H), 1.92-1.90 (m, 1H), 1.88-1.83 (m, 2H), 

1.48-1.26 (m, 6H), 0.90-0.84 (m, 3H). 13C NMR (126 MHz; CDCl3): δ 158.1, 153.4, 

137.7, 135.7, 133.38, 133.34, 132.7, 129.9, 127.8, 126.0, 119.7, 116.9, 96.3, 77.42, 

77.38, 77.2, 76.92, 76.86, 54.4, 46.9, 44.0, 38.7, 35.7, 30.7, 29.6, 27.6, 26.7, 26.4, 23.9, 

19.6, 18.8. FTIR (thin film) 3071, 2929, 1607, 1496 cm-1. HRMS (m/z): calcd for 

C35H41BrOSi: 584.2110, found [M+H]+: 585.2193. 
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APPENDIX 
!

A.1 Spectral Images for Chapter 2 
!

A.2 Spectral Images for Chapter 4 
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Appendix A.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

1H NMR Spectrum of Compound 8 
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1H NMR Spectrum of Compound 8 
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13C NMR Spectrum of Compound 8 
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FTIR of Compound 8 
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1H NMR Spectrum of Compound 5  
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1H NMR Spectrum of Compound 1 
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1H NMR Spectrum of Compound 6
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1H NMR Spectrum of Compound 1 
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IR Spectrum of Compound 6 
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13C NMR Spectrum of Compound 7 
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1H NMR Spectrum of Compound 8 
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1 H NMR Spectrum of Compound 2 
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1H NMR Spectrum of Compound 11 
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1 H NMR Spectrum of Compound 12 
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