
P

E

N

N

University of Pennsylvania
Founded by Benjamin Franklin in 1740

The Institute For
Research In Cognitive

Science

Process Algebra, CCS, and
Bisimulation Decidability

by

Seth Kulick

IRCS Report 94-06

University of Pennsylvania
3401 Walnut Street, Suite 400C
Philadelphia, PA 19104-6228

April 1994

Site of the NSF Science and Technology Center for

Research in Cognitive Science

Process Algebra� CCS� and Bisimulation Decidability �

Seth Kulick

Computer and Information Science

University of Pennsylvania

Philadelphia� PA �����

April ��� ����

Abstract

Over the past �fteen years� there has been intensive study of formal systems that can model
concurrency and communication� Two such systems are the Calculus of Communicating Sys�
tems� and the Algebra of CommunicatingProcesses� The objective of this paper has two aspects�
��� to study the characteristics and features of these two systems� and ��� to investigate two
interesting formal proofs concerning issues of decidability of bisimulation equivalence in these
systems� An examination of the processes that generate context�free languages as a trace set
shows that their bisimulation equivalence is decidable� in contrast to the undecidability of their
trace set equivalence� Recent results have also shown that the bisimulation equivalence problem
for processes with a limited amount of concurrency is decidable�

� Introduction

Over the past �fteen years� there has been intensive study of formal systems that can model
concurrency and communication� These formalisms allow both rigorous speci�cation of desired
systems and the means to verify the correctness of such speci�cations� The objective of this paper
has two aspects� ��� to study the characteristics and features of two such systems� and ��� to
investigate some interesting formal proofs that have arisen in the context of these systems�

One such formalism is the Calculus of Communicating Systems �CCS�� developed by Robin Milner�
and the Algebra of Communicating Processes �ACP �� developed by a group led by Bergstra and
Klop at Amsterdam� Although strongly related� they start from di�erent viewpoints and have
di�erent strengths and weaknesses� Collectively they will be referred to in this paper as 	process
calculi
� Section � develops CCS but will also be used to explicate the general principles that
underly both CCS and ACP � Section � describes ACP by comparing and contrasting it with
CCS�

One crucial aspect of both these systems is the concept of bisimulation equivalence� Bisimulation
decidability for the full CCS and ACP systems is undecidable� but for smaller subsets of the system
some surprising results have been found� In particular� in a subset of ACP it has been shown that the
decidability of bisimulation equivalence for processes generating context�free languages is decidable�
in contrast to the well�known undecidability of context�free languages in automata theory� Another

�This work is submitted as partial ful�llment of the requirements of the WPEII �Doctoral Written Preliminary
Examination��

�

� CCS �

A Ba b
_

c c
_

Figure �� The composite agent A j B

decidability result� within the context of CCS� allows for a limited amount of concurrency� I will
give an overview of these decidability results and sketch the methods of proof�

� CCS

��� De�nition and Features

The goal of the Calculus of Communicating Systems Milner ����� is to formalize a theory of
concurrent processing in terms of a few primitive notions� in which communication is the central
primitive� Each process in the system is called an agent� and the agents communicate with each
other in a limited way via their input�output ports� Arbitrary agents are referred to by an element
from the set of agents P � fP�Q� � � �g� and agents that are explicitly de�ned are denoted by an
element from the set of agent constants K � fA�B� � � �g � An agent�s input ports are speci�ed
by the set of names A � fa� b� c� � � �g and the output ports are speci�ed by the set of co�names
A � fa� b� � � �g� Any output port xmay only communicate with its corresponding input port x� This
enforces the underlying idea of CCS that handshaking is the essential communication primitive�
However� it need not be a one�to�one relationship� e�g�� there can be many input ports on di�erent
agents all connected to the the same output port� An action is �almost� therefore the same as
specifying the name of a port� The one exception is the silent action � � to be explained shortly�
The set of labels L � A � A and the set of actions Act � L � f�g�

A simple example of an agent de�nition is that for a one�element bu�er � �with input port a and
output port b �

C
def
� a�C�

C�
def
� b�C

Now consider a bu�er of length two created by hooking two copies of the agent C together �call
them C� and C���

� A problem is that the output b of C� will be hooked to the input a of C��
which violates the condition on port interaction� Therefore� an unused port name� e�g� c � � is
used to relabel C��s output port to be c and B�s input port to c� The composition of C� and C��
written C� j C�� can now take place� For simplicity� let A and B now refer to C� to C�� and so
the composition appears as in Figure �� However� this is still not quite right� because we need to
enforce the handshaking communication � that is� when C� sends out on �c� that it is received and
acted upon by B� Also� this is purely internal and so should be 	hidden
 from agents outside of
A j B� Both these aims are achieved by imposing the restriction nc upon A j B� which signi�es
that the restricted composite agent �A j B� n c may not perform c or c actions� although it may�
crucially� perform a silent step� written � � which results from the communication �c� c� between C�

�These name restrictions will be relaxed in examples for clarity�
�For simplicity� the actual values passed through the bu�er will be ignored for now
�There is no connection between the names of the agents and the names of the ports
�Really� anything except a or b�

� CCS �

D

D D21

a b
_

b
a_(A | B) \ c

(A’ | B) \ c

(A’ | B’) \ c

(A | B’) \ c
b a

a b

τ

Figure �� Derivation trees in CCS

and B� In terms of transition rules� we can have �A j B�
a
� �A� j B� but not �A� j B�

c
� �A j B��

What is allowed instead is �A� j B�
�
� �A j B���

A formal summary of the discussion above is provided the de�nition of the set E of agent expressions�
which de�nes the possible ways in which agents can be joined together via communication� E is
the smallest set which includes K and the following expressions� where E and Ei are already in E �

��E pre�x �� � Act�P
i�I summation �I an indexing set�

E� j E� composition
E nL restriction�L � L
Ef � relabelling �f a relabelling function�

����� Recursive Equations

Processes may sometimes be de�ned as the solution of a �nite system of recursive equations fXi
def
�

Eig� In order to guarantee a unique solution to such a system� it is usually required that the Ei

be guarded� meaning that each variable Xi in Ei is preceded by an atomic action� For an extreme
example of where this is not true� consider the equation X � X � which is not guarded� and for
which every process is a solution� The recursive equations in this paper will all be guarded� �

����� derivation trees and bisimulation

Any agent will have a certain set of possible transitions� which can be collected into a derivation
tree� For example� the left side of Figure � shows the derivation tree for �A j B�nc� The comparison
of derivation trees for di�erent processes is a crucial aspect of CCS �and process calculi general��
and CCS has three di�erent concepts for this purposes� which equate trees based on varying notions
of 	similiarity
� This is the crucial departing point between CCS and classical automata theory�
Whereas in the latter the resulting language is the object of concern� here we are concerned with
the branching activity of the process� as represented in the derivation tree or process de�nition�

The �rst notion of 	similarity
 is that of strong bisimulation� in which every � action of one agent
must be matched by an � action of the other� even for � actions� A pair of examples before the
formal de�nition�

�The theory of guarded equations and unique solutions is actually considerably more complex and subtle than
described here� but the extra complexity will not be a factor in the examples in this paper� The brief discussion
above is just meant to introduce the notion of guarded equations� which will be needed later�

� CCS �

�� A � a�b � c�� B � ab � ac� These two are not strongly bisimilar� Note that this entails a
rejection of the distributive law� In A� �rst a must be executed� and then a choice is made
between b and c� However� in B� �rst a choice is made� and then the chosen term is executed�
The moment of choice is di�erent� and so they are distinguished by strong bisimulation�

�� A� � ab� B� � ab� a�b� b�� These two are strongly bisimilar� Based only on what action is
taking place� A� and B� cannot be distinguished�

Note that the last example shows that it would be too strong to require identical derivation trees�

De�nition � A binary relation S � P � P over agents is a strong bisimulation if �P�Q� � S

implies� for all � � Act�
�i� Whenever P

�
� P � then� for some Q�� Q

�
� Q� and �P �� Q�� � S

�ii� Whenever Q
�
� Q� then� for some P �� P

�
� P � and �P �� Q�� � S�

De�nition � P and Q are strongly bisimilar� written P�Q� if �P �� Q�� � Sfor some strong bisim�
ulation S� Equivalently� � is the largest strong bisimulation or�

� � �fS j S is a strong bisimulationg

Strong bisimulation is the simplest of the three equivalence de�nitions because it treats � just like
any other action� Recall that � is supposed to represent an action that is 	hidden
 from observance�
and thus it should not really be treated just like any other action� The various ways of handling the
silent action leads to a variety of ways for comparing derivation trees� One of the most important
variations is the requirement that each � action be matched by zero or more � actions � this is called
weak bisimulation� For example� in Figure � the two derivation trees are not strongly bisimilar�
but are indeed weakly bisimilar� because S is a bisimulation� where

S � f��A j B�� n c�D�

��A j B� n c�D���

��A� j B�� n c�D���

��A� j B� n c�D�g

Two preliminary de�nitions are needed before the de�nition of weak bisimulation�

�� De�nition � if t � Act
�� then �t � L� is the sequence obtained by deleting all occurrences of

� from t� In particular� c�n � ��

�� De�nition � If t � �� � � ��n � Act
�� then E

t
� E� if

E�
�
����

�����
�
��� � � � �

�
����

�n���
�
���E�

Note also that E
�
� E� i� E

�n
� E� for some n � ��

De�nition � A binary relation S � P � P over agents is a �weak� bisimulation if �P�Q� � S
implies� for all � � Act�

�i� Whenever P
�
� P � then� for some Q�� Q

��
� Q� and �P �� Q�� � S

�ii� Whenever Q
�
� Q� then� for some P �� P

��
� P � and �P �� Q�� � S�

� CCS �

De�nition � P and Q are �weakly� bisimilar� written P	Q� if �P �� Q�� � S for some �weak� bisim�
ulation S� Equivalently� 	 is the largest weak bisimulation or�

� � �fS j S is a weak bisimulationg

A crucial property of bisimulation is that for any agent P� P	� �P �this is not true for ��� This is
exactly what allows � to be ignored to a certain extent when comparing agents� Consider� however�
P � a�� � b�� and Q � a�� � � �b��� P is deterministic in the sense that there is always available
a choice between a and b� while in Q� because of the silent action� the choice for a may no longer
be available even though to the external observer there appears to have been no action� Therefore�
even though b��	� �b��� a�� � b��
 	a�� � � �b��� Thus� 	 is not a congruence relation with respect
to summation�

The �nal notion of equivalence is aimed at capturing the largest congruence relation included in 	�

De�nition � P and Q are equal or observation�congruent� written P � Q� if for all ��
�i� Whenever P

�
� P � then� for some Q�� Q

�
� Q� and P �	Q�

�ii� Whenever Q
�
� Q� then� for some P �� P

�
� P � and P �	Q�

One important law of equality is that ����P � ��P � Note that equality lies between strong and
weak bisimilarity� P�Q implies P � Q implies P	Q�

����� Expansion law

The expression for the two�cell bu�er� �C� j C�� n c� is typical of many system expressions� and
so a restricted composition of relabelled components is called standard concurrent form �scf�� Its
general format is�

�P�f�� j � � � j Pnfn�� n L�

One more important law of CCS is the expansion law� which is concerned with the immediate
actions of an agent in standard concurrent form� These actions could result from two possibilities�

�� the action � of a single component Pi� Then the scf will have an action fi���� and result in
the new scf �P�f�� j � � � j P

�
i fi� j � � � j Pnfn�� n L meaning that only the ith component has

changed�

�� a � action� a communication resulting from actions li and lj by Pi and Pj � respectively �for
� � i � j � n�� such that fi�li� � fj�lj�� The result is the new scf
�P�f�� j � � � j P

�
i fi� j � � � j P

�
j fj � j � � � j Pnfn�� nL meaning that exactly two components have

changed�

Proposition 	 The Expansion Law � Let P � �P� j � � � j Pn� n L with n � �� Then

P �
P
f���P� j � � � j P

�
i j � � � j Pn� n L � Pi

�
� P �i � �
� L � Lg

�
P
f� ��P� j � � � j P �i j � � � j P

�
j j � � � j Pn� n L � Pi

l
� P �i � Pj

l
� P �j � i � jg

Essentially� repeated application of the expansion law will result in the derivation tree for a process�
The expansion law will be a crucial aspect of the decidability proof in section � �����

�This is actually a simpli�ed version �without any renaming functions allowed� used for clarity� With renaming�
it would work along the lines indicated by the immediately previous discussion�

� CCS �

Timer Timer

Send(b)

Ack(s)

Trans(t)

Reply(b)
accept

time
timeout

ack

send

reply

trans
timeout

time

deliver

Figure �� Alternating bit protocol in CCS

��� Verifying the bu�er

The previous section de�ned a bu�er of length two created by linking two single�element bu�ers
together� It is desired to verify that the two bu�ers together work as if they were actually one two�
element bu�er� In order to verify this� we �rst need an independent speci�cation of a two�element
bu�er and then we need to prove that the two speci�cations specify equivalent processes� Once
again� C� and C� will be referred to as A and B� respectively� Now consider a speci�cation for a
bu�er of length �� Buf�����

Buf����
def
� a�Buf����

Buf����
def
� a�Buf���� � �b�Buf����

Buf����
def
� �b�Buf����

Thus the goal is to prove that �A j B� n c 	 Buf����� Note� however� that it was already shown
that �A j B� n c 	D� � where D� � a�D and D � a��b�D � �b�a�D� Thus� D and Buf���� denote
exactly the same process� and the same bisimulation is used to show that �A j B� n c 	 Buf�����

��� Specifying and Verifying the Alternating Bit Protocol

The alternating bit protocol �hereafter ABP�� is a protocol designed to ensure reliable communi�
cation through unreliable transmission mediums �see Figure ��� Here� Send and Reply will be
agents that accept and deliver messages� Send routes messages through a medium represented by
the process Trans� and Reply responds to Send through a medium represented by the agent Ack�
Messages get tagged with bits � and �� alternately� After Sender gets a message� it sends it with
a bit b along the Trans line and sets a timer� There are then three possibilities�

 it may get a �time�out� from a timer� upon which it sends the message again with b�

� CCS �

 it gets an acknowledgment b from Ack� which means that the message made it through� and
thus is now ready to accept another message� which it will send with bit �b � �� b�

 it gets an acknowledgment �b� which it ignores�

After the replier delivers a message� it acknowledges it with a bit b along the Ack line and sets a
timer� There are also three possibilities�

 it gets a �time�out� from the timer� upon which it sends its acknowledgment b again�

 it gets a new message with bit �b from Trans� which it then delivers� and acknowledges with
bit �b�

 it gets a transmission of the previous message with bit b� which is ignored�

If Send�b� and Reply�b� are composed with their timers� under the restriction ftime
timout g�
then the de�nitions of Send�b� and Reply�b� are�

Send�b� � sendb�Sending�b�

Sending�b� � � �Send�b� � ackb�Accept��b� � ack�b�Sending�b�

Accept�b� � accept�Send�b�

Reply�b� � replyb�Replying�b�

Replying�b� � � �Reply�b� � trans�b�Deliver�
�b� � transb�Replying�b�

Deliver�b� � deliver�Reply�b�

Note that the silent action represents the internal communication between a timer and the sender
or receiver� The communication lines Trans and Ack will be de�ned by giving transition equations�
It is assumed that these lines may lose or duplicate� but not corrupt messages� and that bu�ers
have an unbounded message capacity�

Ack�bs�
ackb� Ack�s� Trans�sb�

transb� Trans�s�

Acks�s�
replyb� Ack�sb� Trans�s�

sendb� Trans�bs�

Ack�sbt�
�
� Ack�st� Trans�tbs�

�
� Trans�ts�

Ack�sbt�
�
� Ack�sbbt� Trans�tbs�

�
� Trans�tbbs�

Note that sbt represents the concatenation of s� b� t� where s� t � f�� �g�� b � f�� �g� The last two
lines of Ack and Trans represent loss and duplication� respectively� of any bit in transit�

So to represent the complete system� let

AB
def
� �Accept��b� j Trans��� j Ack��� j Reply�b�� n L

where L is the set of all internal actions �that is� all actions except accept and deliver� AB
represents the state in which a message has just been delivered� a new message is about to be
accepted� and the transmission lines are empty� AB is the de�nition of the protocol� It speci�cation
is that it should act as a simple bu�er� as follows�

Buf
def
� accept�Buf �

Buf �
def
� deliver�Buf

� ALGEBRA OF COMMUNICATING PROCESSES �

and so to prove that ABP meets its speci�cation� it needs to be shown that ABP	Buf � Such a
bisimulation S can be found�

AB States Buf states

Accept��b� j Trans�bn� j Ack�Bp� j �Reply�b� or Replying�b�� Buf

�Send��b� or Sending��b�� j Trans��bmbn� j Ack�bp� j �Reply�b� or Replying�b�� Buf �

�Send��b� or Sending��b�� j Trans��bm� j Ack�bp� j Deliver��b� Buf �

�Send��b� or Sending��b�� j Trans��bm� j Ack�bp�bq� j �Reply�b� or Replying�b�� Buf

Note that b � f�� �g and m�n� p� q � �� to represent the arbitrary bit�sequences in the transmission
lines� By choosing either of two alternatives where possible for the AB states� there are twelve
groups altogether�

Two remarks�

�� A rather tedious case analysis can be used to verify that this is indeed a bisimulation� This
type of analysis could be automated� and indeed the search for a bisimulation is an obvious
candidate for automation�

�� Nothing disallows the possibility that one of the transmission lines could lose data inde�nitely�
It is assumed that the behavior of the agents will be 	fair
 and thus this will not happen�
This issue will reappear in the context of ACP �

� Algebra of Communicating Processes

The other system of process calculus under discussion here is the Algebra of Communicating Pro�
cesses �ACP �� ACP is very closely related to CCS� but with some di�erences in de�nition and
expressibility� and based on a di�erent methodological approach�

CCS can be seen as �xing a model �the derivation trees of various agents�� and deriving various
laws based on that model� In constrast� ACP is an axiomatic approach� in which various axioms are
stated� and its concern is with any model that satis�es those axioms� For example� a model could
be one that contains only 	�nitely branching
 � processes� or one that allows in�nite branching� An
advantage of this approach is that it allows� more so than with CCS� an explicit modularization
of the various problems and features involved in these systems� ACP is actually built up from a
series of smaller systems� and the ideal is that an applications designer could pick just the right
axiom set for the desired system� Nothing really prevents such an approach with CCS � indeed�
the proof in section � ������ does just that� by choosing a subset of CCS� The designers of ACP �
however� has gone much further with such an approach� This paper will follow Baeten � Weijland
in Baeten and Weijland ����� and refer to all of the various axiomatic systems that lead up to ACP
Process Algebras� 	 The �rst such system that will be examined is called Basic Process Algebra

�A �nitely branching graph has only �nitely many edges leaving from each node
�This is a somewhat unfortunate choice of names� since one of the axiomatic systems is itself called �Process

Algebra�� However� the context should make clear what is being referred to�

� ALGEBRA OF COMMUNICATING PROCESSES �

�BPA�� and will be gone into in some detail because it is the system used for the proof in section
� �����

��� Basic Process Algebra

The signature of BPA
 consists of the set of atomic actions A � fa� b� � � �g� a set of variables
fx� y� � � �g� and the binary operators � and � �� BPA consists of its signature together with the
following axiom set�

x� y � y � x A�
�x� y� � z � x� �y � z� A�
x� x � x A�
�x� y�z � xz � yz A�
�xy�z � x�yz� A�

If some M is a model for BPA� then the elements of its domain are called processes� The variables
in the axiom equations stand for processes for some arbitrary model of BPA� and are assumed to
be universally quanti�ed� Some remarks on the BPA axioms�

�� BPA is a very simple axiom set� as it doesn�t even handle concurrency�

�� The semantic meanings of the axioms are the obvious ones� � is sequential composition� x � y
is the process that �rst executes x and upon completion of x begins executing y� � is the
alternative composition� x � y is the process that either executes x� or executes y� but not
both�

�� The left�distributive law is not included� for the same reason that it was not valid for CCS�

�� One di�erence between BPA and CCS is already apparent� whereas CCS allowed pre�x mul�
tiplication �atomic action a and process p can yield a � p�� BPA allows general multiplication
�processes p and q yield p � q�� Bergstra and Klop Bergstra � Klop ����� claim that there
exist examples of recursively de�ned processes that have �nite recursive de�nitions in terms
of general� but not pre�x� multiplication�

The introduction of general multiplication requires that BPA make more explicit the possibility of
deadlock� In CCS� the idea of deadlock was always� in a sense� 	lurking in the background
 of the
idea of looking at branching structure instead of just the traces� With general multiplication in
BPA� however� it must be dealt with in a more explicit manner� Consider a process x � y� where
x is a process that might reach a state of deadlock �for example x might consist of several other
processes running in parallel�� �� If x reaches a state of deadlock� then y cannot begin to execute�
To describe this possibility� the special constant � is used to signify deadlock� and the following two
axioms are added to A����

x� � � x A�
�x � � A�

�The set of constant and function symbols that may appear in the speci�cation
�	Usually left out� so that x � y � xy �
��Not strictly expressible in BPA� which can	t express concurrency� but this example is just meant to motivate the

deadlock constant which is used throughout the entire range of process algebras�

� ALGEBRA OF COMMUNICATING PROCESSES ��

BPA together with A� and A� is referred to as BPA� � A� states that as long as there is any
alternative that can proceed� there is no deadlock� and A� states that no other action can follow
a deadlock� BPA� can also get extended with a counterpart to �� the new constant � is used to
represent an empty process� one that does nothing but have immediate successful termination�

x� � x A�
�x � x A�

So BPA�has axioms A��� and A��A�� while BPA�� � with both new constants included� includes
axioms A���� In contrast to CCS� which has one constant to represent termination� BPA has
constants for both successful and unsuccessful termination� However� the inclusion of � signi�cantly
complicates the axiom system when concurrency and communication are introduced� and since the
examples to be presented to do not require �� it will only be included in the BPA system�

����� Some Models for BPA��

A CCS derivation tree corresponds to a process graph in the context of BPA�

De�nition � A process graph is a graph in which every edge has a label from A� and in which the
nodes may carry a label �� which indicates whether or not the state represented by the node has a
termination option� ��

Using process graphs� a hierarchy of some models for BPA� will now be presented� The �rst
model�G�� consists of countably branching process graphs with edge labels from A� Bisimulation
is de�ned in terms of these graphs�

De�nition �� Let g� h � G� and let R be a relation between the nodes of g and the nodes of
h� R is a bisimulation between g and h� written R�g�h� when the same conditions as for strong
bisimulation in CCS are satis�ed� plus the condition that if R�s� t�� then s � i� t ��

G��� will be the set of processes that form a model for BPA�� � However� in order to be a model�
the operators � and � need to be given a meaning in terms of members of G�� Before this can
be done� the preliminary notion of root unwinding needs to be mentioned� for any process graph
g � G�� its unwound version ��g� can be constructed such that ��g� has no edges going back to
its root� and such that g���g�� This is a simple idea borrowed from basic automata theory�

De�nition �� For process graphs g� h � G�� g � h is constructed by identifying the roots of
��g�� ��h�� g � h is constructed by identifying every node in g having label � with the root node of a
distinct copy of ��h�� Every node emerging from such identi�cation has label � i� h �� If g has no
labels �� then the result is just g� �see Figure ��

It can be shown that G�	� j� BPA� � Other models for BPA� can be obtained by taking smaller
subsets of the carrier set with the obvious restrictions on the � and ��

�� G	� � �nitely branching process graphs�

��
Baeten and Weijland ���� are unclear on the meaning of �� but its purpose appears to be that if a node has
deadlock� then it will be a leaf without ��

� ALGEBRA OF COMMUNICATING PROCESSES ��

a b a b+ = b a b+ =a

a

a

=

a

bb b =a b a

Figure �� Examples of � and � in BPA

�� R	� � �nite process graphs�

�� F	� � �nite acyclic process graphs�

It�s clear the F � R � G � G�� Also� the graphs sets of each of the models can be easily restricted
such that they become models for BPA� In particular� G	� is the model used throughout the
decidability proof in section � �����

��� Process Algebra�PA�

PA is an extension to BPA that can describe processes that are executing in parallel� This is done
by introducing two new operators�

�� k � composition�merge� � this is an interleaving composition� as in CCS�

�� k � left�merge � this was not in CCS� It helps to simplify various calculations and� according to
Baeten �Weijland� it has been proven that the merge operator cannot be �nitely axiomatized
without such an auxiliary operator�

and the following new axioms�

x k y � xk y � yk x M�

ak x � ax M�

axk y � a�x k y� M�

�x� y�k z � xk z � yk z M�

�a is an arbitrary element of A� and axioms M� and M� are in fact axiom schemas� since there
is an axiom for each element of A� which is assumed to be �nite�� The system PA consists of
BPA�M��M�� Axiom M� de�nes the merge in terms of the left�merge� when processes x and y
get merged� then either the �rst step will come from x� or the �rst step will come y� and axioms
M��M� de�ne left�merge� �� Also� � can be easily included in PA� PA� � PA � A�� A� with the
stipulation that in axiom schemas M��M�� the constant a ranges over A � f�g �instead of just A��

��� binds stronger than k or k � so the left�hand side of M�� for example� stands for �a � x�k y�

� ALGEBRA OF COMMUNICATING PROCESSES ��

����� Some models for PA�

The model G��� can be extended to become a model for PA� by de�ning the operators k and
k �

De�nition �� For process graphs g� h � G�� the graph g k h is the cartesian product of the graphs
g and h� More precisely�

	� the nodes of g k h are all pairs of nodes from g and nodes from h�

� a node �s� t� in g k h has label � i� both s and t do�

�� there is an edge �s� t�
a
� �s�t� in g k h precisely if there is an edge s

a
� s� in g�

there is an edge �s� t�
a
� �s� t�� in g k h precisely if there is an edge t

a
� t� in h

�� the root node of g k h is the pair of roots from g and h�

The graph gk h can be constructed as follows�

�� construct g k h and unwind it� getting ��g k h��

�� if �s� t� is the root of ��g k h�� then remove all edges �s� t�
a
� �s� t�� where t

a
� t� is an edge in

h �that is� remove the edges that originate from h��

�� remove all parts of the graph that have become inaccessible from the root node�

It can be shown that bisimulation is a congruence relation with respect to k and k � and that
G�	� j� PA� � As in the last section� G��� can be restricted to form the smaller models�

��� ACP

Although the axioms of PA can now handle concurrent processing� there is no method to describe
communication between processes� The next extension of the theory� the Algebra of Communicating
Processes �ACP �� aims to correct this defect�

There are several components to the implementation of communication�

A communication function
 � which is a partial binary function on A� For example� if
�b� c� �
a� then a is a communication action resulting from b and c� and if
�b� c� is not de�ned� then
b and c do not communicate�

the communication merge operator j � a binary operator on processes� x j y represents a
merge of two processes x and y with the restriction that the �rst step is a communication
between x and y� In case communication is not de�ned between the �rst actions of x and y�
then the communication merge is equal to �� This means that ACP must be extension of PA��
not just PA� because the deadlock constant is essential once communication is introduced�

An encapsulation operator �H � For some set of actions H � A� �H is a function that renames
all members of H to �� and is otherwise the identity function� Its purpose is to encapsulate a
process p w�r�t� H � so that �H�p� cannot communicate with its environment via communica�
tion actions in H � Encapsulation in ACP is very close to CCS�s restriction operator� but is

� ALGEBRA OF COMMUNICATING PROCESSES ��

x� y � y � x A� �H�a� � a if a
� H D�
�x� y� � z � x� �y � z� A� �H�a� � � if a � H D�
x� x � x A� �H�x� y� � �H�x� � �H�y� D�
�x� y�z � xz � yz A� �H�xy� � �H�x� � �H�y� D�
�xy�z � x�yz� A� a j b �
�a� b� if
 de�ned CF�
x� � � x A� a j b � � otherwise CF�
�x � � A� ax j b � �a j b� � x CM�
x k y � xk y � yk x� x j y CM� a j bx � �a j b� � x CM�

ak x � ax CM� ax j by � �a j b� � �x k y� CM�

axk y � a�x k y� CM� �x� y� j z � x j z � y j z CM�

�x� y�k z � xk z � yk z CM� x j �y � z� � x j y � x j z CM�

Figure �� ACP axiom set

not quite the same� Unlike the latter� �H does not hide the internal actions from outside pro�
cesses� That is� it does enforce the restriction that the actions cannot actually a�ect external
actions� but the encapsulated actions can still be seen� When communication is introduced
to ACP in section � ����� the consequence will be that the abstraction act is separated from
the communication� Communication will not immediately result in a silent action� but rather
yield an internal action that is still visible and will then have to be abstracted away by an
abstraction operator�

The axiom set for ACP is show in Figure �� Note that axiom CM� expands axiom M� of PA to
include the possible communication� so that for a merge x k y� it can either start with a �rst step
from x �xk y�� a �rst step from y �yk x�� or a communication step between x and y �x j y�� Axioms
CM�� � are the same as M��M� of PA� Axioms CM�� � de�ne the communication operator�

Note that although the operator j in CCS can be compared with k in ACP � there are several
di�erences�

�� the de�nition of k in CCS uses auxiliary operators �k and j� that are not used in CCS�

�� communication is more �exible in ACP than in CCS� Whereas in CCS communication is
limited to interaction between co�named ports� in ACP communication is de�ned by the

function� and need not even be handshaking communication �i�e��
�a� b� c� � d means that
a� b� c communicate together to result in d�� It�s questionable as to how useful this extra
capability is� though� Enforcing handshaking in CCS would simply mean that �a� b� c �
A�
�a� b� c� is unde�ned�

�� encapsulation is ACP is likewise more �exible than restriction in CCS� due to the more
�exible communication possibilities� For some process x and action a in CCS� then the CCS
expression x n a is equivalent to �H�x� for H � fa� ag in ACP �

����� Some models for ACP

The model G��� from section � ������ can also be extended to become a model for ACP by
de�ning the operators k�k � j� and �H There is little point in going through the entire formal

� ALGEBRA OF COMMUNICATING PROCESSES ��

de�nition� but the basic idea is that for some graphs g� h � G�� the graph g k h gets constructed
basically the same as before except that if for some nodes r� r� � g and s� s� � h� with r

a
� r� in g

and s
b
� s� in h and
�a� b� � c then g k h also has an edge �r� s�

c
� �r�� s��� Also� �H�g� is obtained

from the graph for g by removing all edges with labels from H �

It can be shown that bisimulation is a congruence relation with respect to k�k �j� and �H and that
G�	� j� ACP � As before� G��� can be restricted to form the smaller models�

����� Some example speci�cations in ACP

Now we will give two examples of speci�cation in ACP that correspond to previous examples from
CCS� ��� two one�cell bu�ers connected together� and ��� the alternating bit protocol� ��

A one�cell bu�er� with input port labelled 	�
 and output port labelled 	�
� bu�ering elements of
some �nite data set D� may be speci�ed as�

B�� �
X
d�D

r��d� � s��d� �B
��

�The names of the ports of the process are in superscript�� Likewise� a one�cell bu�er with input
port 	�
 and output port 	�
 would be speci�ed as�

B�� �
X
d�D

r��d� � s��d� �B
��

A bu�er of capacity �� with input port 	�
 and output port 	�
� can be speci�ed with two equations�

B��
� �

X
d�D

r��d� �Bd

Bd � s��d� �B
��
� �

X
e�D

r��e� � s��d� �Be�

The bu�ers B�� and B�� will be joined together and compared to the two�element bu�er� Just as
in CCS� is is desired to encapsulate the two 	halves
 of communication at the internal ports� This
is done in ACP by setting H � fr��d�� s��d� � d � Dg and considering the process �H�B�� k B����
This simple expression can now be manipulated in accordance with the axioms of ACP to derive
a set of recursive equations for this process using process variables X and Xd �for d � D��

X
def
� �H�B

�� k B���

� �H�B
��k B��� � �H�B

��k B��� � �H�B�� j B���

� �H�
X
d�D

r��d� � �s��d�B
�� k B���� � � � �

�
X
d�D

r��d� � �H�s��d�B
��k B�� �B��k s��d�B

�� � s��d�B
�� j B���

�
X
d�D

r��d� � �� � � � c��d� � �H�B�� k s��d�B
����

�
X
d�D

r��d� � c��d� �Xd

��Unlike before� we now include the data to be transmitted in the speci�cation�

� ALGEBRA OF COMMUNICATING PROCESSES ��

1

2

6

3

5

4

S

K

L

R

Figure �� Alternating bit protocol for the ACP speci�cation

and

Xd
def
� �H�B�� k s��d�B

���

� �H�B��k s��d�B
��� � �H�s��d�B

��k B��� � �H�B�� j s��d�B
���

�
X
e�D

r��e� � �H�s��e�B
�� k s��d�B

�� � s��d� � �H�B�� k B��� � �

�
X
e�D

r��e� � �� � s��d� � �H�s��e�B
�� k B��� � �� � s��d� �X

�
X
e�D

r��e� � s��d� � �� � � � c��e� � �H�B
�� k s��e�B

���� � s��d� �X

�
X
e�D

r��e� � s��d� � c��e� �Xe � s��d� �X

Thus the result of all this manipulation is that �H�B�� k B��� is equivalent to the recursive
speci�cation�

X �
X
d�D

r��d� � c��d� �Xd

Xd � s��d� �X �
X
e�D

r��e� � s��d� � c��e� �Xe

A comparison of this speci�cation with the previous one for the two�element bu�er �B��
� � shows

that they are identical except for the internal actions c��d�� This shows the e�ect of the separation
out of encapsulation from abstraction� Although the actions on the internal port have been� in a
sense 	isolated
� they are not invisible to external processes�

The alternating bit protocol speci�cation will use the port labelling as shown in Figure �� The
goal is to de�ne processes S�K� L�R such that the behavior of the entire process� aside from the
communications at the internal ports �������� behaves as a one�element bu�er and so satis�es the
equation�

B�� �
X
d�D

r��d� � s��d� �B
��

Let D be the �nite data set and de�ne the set of frames of data by F � fd�� d� � d � Dg� The

� ALGEBRA OF COMMUNICATING PROCESSES ��

channels K and L are de�ned as follows� ��

K �
X
x�F

r��x��i � s��x� � i � s����� �K

L �
X
n����

r��n��i � s��n� � i � s����� � L

The atom i is used to make the choice non�deterministic so that the decision whether or not the
frame will be corrupted is internal to K or L� Note that unlike the example in CCS� the data is
not duplicated or lost� merely corrupted� The sender S is de�ned as follows �n � �� �� d � D��

S � S� � S� � S

Sn �
X
d�D

r��d� � Snd

Snd � s��dn� � Tnd

Tnd � �r���� n� � r����� � Snd � r��n�

The receiver R is de�ned as follows �n � �� ���

R � R� �R� �R

Rn � �
X
d�D

r��dn� � r����� � s��n� �Rn �
X
d�D

r��d��� n�� � s��d� � s���� n�

Note the slight di�erence in the de�nition of the ABP in this case as contrasted with the CCS
example� Since no timer is being used� retransmission is triggered by receiving a bad acknowledge�
ment� The composition of these four processes is �H�S k K k L k R�� where H � frk�x�� sk�x� �
x � F � f�� ���g� k � �� �� �� �g �the internal actions�� Recursive equations can be derived for this
process using the ACP axioms� The calculations are quite tedious and long �basically using the
expansion law and axioms of encapsulation� and are omitted here� The equations are de�ned in
terms of the following abbreviations �for every d � D��

X � �H�S k K k L k R�

X�d � �H�S�d � S k K k L k R�

X�d � �H�T�d � S k K k L k s���� �R� �R�

Y � �H�S� � S k K k L k R� �R�

Y �d � �H�S�d � S k K k L k R� �R�

Y �d � �H�T�d � S k K k L k s���� �R�

The resulting recursive speci�cation is shown in Figure � In order to make sense of what these
recursive variables refer to� see Figure �� which shows a process graph for one data element for X
and Y � Note that the symmetry of the graph simply re�ects processes that are the same except
for the current bit being used for everi�cation� Before going on with a veri�cation of this protocol�
it�s worth noting that it is clearly a mess� With the previous example of the linked bu�ers� it was
easy to see that it was equivalent to a two�element bu�er if one could 	mentally abstract
 away
from the internal port� That�s obviously more di�cult in this case� What is desired is to formalize
abstraction such that Figure � looks more like Figure �� where only the action on the external
ports � and � are seen� and the four individual segments that cycle only within themselves are
hidden�

��� represents an error message� it is assumed that an incorrect transmission can be recognized�

� ALGEBRA OF COMMUNICATING PROCESSES ��

�H�S k K k L k R� �

X �
X
d�D

r��d� �X��d�

X�d � c��d���i � c���� � c�����i � c���� � i � c����� �X�d � i � c��d�� � s��d� �X�d�

X�d � c�����i � c���� � c��d���i � c���� � i � c��d���X�d� i � c���� � Y �

Y �
X
d�D

r��d� � Y ��d�

Y �d � c��d���i � c���� � c�����i � c���� � i � c����� � Y �d � i � c��d�� � s��d� � Y �d�

Y �d � c�����i � c���� � c��d���i � c���� � i � c��d���Y �d � i � c���� �X�

Figure �� Speci�cation for �H�S k K k L k R�

Y2

X2

Y1

Y

X1

X

r1(d)

c2(d0)

i

c3(d0)

c6(1)
i

i

c6()

c5(1)

c3()

s4(d)

c3(d0)

i i

c2(d0)

i

i c6(0)

r1(e)

c2(e1)

ii

c5(0)

i

i c6(0)

c3(e1)
s4(e)

c3(e1)

i
i

c5(1)

i

i

c2(e1)

c3()

c6()

c6()

c3()

c3()

c6()

i

Figure �� Graph for alternating bit protocol in ACP

� ALGEBRA OF COMMUNICATING PROCESSES ��

s4(e)

r1(e)

s4(d)

r1(d)

X

Y

Figure �� Desired abstraction for alternating bit protocol in ACP

��� ACP with abstraction �ACP ��

The separation of encapsulation and abstraction� while perhaps not as intuitive and simple as in
CCS� appears to allow a greater re�nement of abstraction possibilities� Consider again Figure ��
If the set of internal steps is I � fck�x� � x � F �f�� ���g� k � �� �� �� �g�fig� then only the actions
r��d� and s��d� are external� What is desired is to have an abstraction operator �I � making internal
steps invisible� such that �I�X� � B���

Thus� the silent step � and abstraction operator �I are added to ACP � along with the following
new axioms�

x� � x B�
x���y � z� � y� � x�y � z� B�
�I�a� � a if a
� I TI�
�I�a� � � if a � I TI�
�I�x� y� � �I�x� � �I�y� TI�
�I�xy� � �I�x� � �I�y� TI�

����� models for ACP �

Just as with CCS� the introduction of � �actions leads to the possibilities for various de�nitions of
bisimilarities on process graphs� What Baeten � Weijland call branching simulation� written �b�
can be thought of as corresponding to CCS�s weak bisimulation� Also� just as weak bisimulation
was not a congruence relation with respect to CCS� branching bisimulation is not a congruence
relation with respect to ACP � Thus� rooted branching �rb� bisimulation� written�rb� is introduced
in ACP � just as � was introduced in CCS� The graph model G� is easily altered to handle
abstraction by stipulating that for any graph g� the graph �I�g� is created by replacing all labels
from I by � � It can be shown that G	�rb j� ACP � �

� ALGEBRA OF COMMUNICATING PROCESSES ��

����� Example veri�cation in ACP �

In order to complete the veri�cation of the alternating bit protocol� we need to show that

�I�I���H�S k K k L k R� � B���

From the de�nition of B��� this is equivalent to showing that�

�I�I���H�S k K k L k R� � �
X
d�D

r��d� � s��d� � �I��H�S k K k L k R���

In order to accomplish this� a rule called the Cluster Fair Abstraction Rule �CFARb� is developed
based on the ACP � axioms� assuming branching bisimulation� that allows the grouping together
of internal cycles such as in the ACP graph� For example� the cluster around X�d is de�ned as
follows �refer to Figure ��

X�d � c��d�� � Z�

Z� � i � Z� � i � c��d�� � s��d� �X�d

Z� � c���� � Z�

Z� � c���� �Z�

Z� � i � Z� � i �Z�

Z� � c���� �X�d

Z� � c���� �X�d

Then fX�d� Z�� Z�� Z�� Z�� Z�� Z�� Z�g is a cluster and from CFARb it can be derived that�

�I�X�d� � � � �I�i � c��d�� � s��d� �X�d�

� � � s��d� � �I�X�d�

In other words� this means that X�d may cycle within itself some number of times before �nally
sending data on the s� line and entering state X�� Similarly� the cluster around X�d is reduced to
get�

�I�X�d� � � � �I�i � c���� � Y �

� � � �I�Y ��

After some more equational manipulation� which is omitted here� the results are�

�I�X� �
X
d�D

r��d� � s��d� � �I�Y �

�I�Y � �
X
d�D

r��d� � s��d� � �I�X�

It can be shown that it follows by properties of recursive equations in ACP � that �I�X� � �I�Y �
and so the de�nition of B�� is satis�ed by �I�X��

The de�nition of the rule CFARb is speci�cally de�ned on the assumption that the choices made by
the channels are fair � that is� no channel is completely defective and corrupts a message in�nitely
many times in a row� This was also the assumption in the CCS speci�cation of ABP� The di�erence
is that Baeten � Weijland also describe� in great detail� a di�erent rule and its consequences should

� DECIDABILITY ��

such a fairness condition does not hold� The greater degree of formal rigor in ACP � is typical of
the di�erence in the two approaches�

The di�erence in approaches to bisimulation equivalence is worth noting� In CCS� an extensive
comparison of nodes in derivation trees is required� whereas in ACP � the same results are accom�
plished via equational manipulations� It would be interesting to compare attempts at automation
of bisimulation searching for these two approaches� As mentioned� CCS might be more easily au�
tomated in a 	brute force
 fashion� while ACP � might require more sophisticated proof techniques�
Although not discussed in this paper� there is also an equational theory for CCS� but much more
emphasis is put on such a system in ACP � �

� Decidability

Since bisimulation is a crucial issue in process veri�cation� the question of decidability of whether
two processes are bisimilar is obviously of interest� There is another point of view� however� from
which to view this question� In addition to its use for process speci�cation� process calculi can
be thought of as a successor to automata theory� with the main di�erence of course being to look
at the behavior of the processes� and not just their execution traces� From that perspective� a
reconsideration of automata theory results in this new framework is of interest� and it is from this
perspective that the proof in the next section proceeds�

��� Decidability of Processes Generating Context	Free Languages

It is a well�known result in automata theory that the question of equivalence between context�free
languages is undecidable� In remarkable contrast to this result� it has been shown Baeten et al� �����
that when CFLs are examined in a process calculi framework� the bisimulation equivalence of those
processes is decidable�

����� Encoding of CFLs in BPA

The process calculus that will be used for the encoding of context�free languages is BPA �without
��� as described in section � ����� Before describing a translation of a CFG G into a member of the
model G�� consisting of �nitely branching process graphs �see section � �������� two concepts are
needed �rst�

�nite trace set � Each process graph g has a �nite trace set� written ftr�g�� An element of ftr�g�
consists of all the actions from the root to a termination node�

norm The norm of a process graph g� written jgj� is the least number of steps it takes from the
root to reach a termination node� if any such node is reachable� That is� jgj is the minimum
length of a completed �nite trace of g� The norm of a node s in a process graph g� written
jsj� is the norm of the subgraph determined by s� The norm of a process p is the norm of
the representing process graph� and a process is normed if every subprocess has a norm� ��

What this essentially means is that there are no super�uous parts of the graph that do not
contribute to the generation of �nite traces�

��Process q is called a subprocess of process p if p� q have representing process graphs g� h� respectively� such that
h is a subgraph of g�

� DECIDABILITY ��

X

XX

XXXX

a

a b

b

Figure ��� The process graph for X � a� bXX

Proposition �� Every CFL �without �� is the �nite trace set of a normed process p� recursively
de�ned by means of a guarded system of recursion equations in restricted GNF�

Sketch of proof� Consider some CFL L generated by a grammar CFG G� Convert G into G��
where the latter is in restricted GNF form� �� A trivial notational change to G� results in the
recursive speci�cation EG�

in the language of BPA� �	 Although EG�

now de�nes a process in
BPA� that process may not be normed� Baeten et al� give a detailed description of how to translate
EG�

into E�G
�

� where the latter is normed� For example� the system � �� gets converted to system
� ���

E � fX � aY � bXZ � cXX� Y � d� cY Y� Z � aZ � bY Zg ���

E � fX � aY � cXX� Y � d� eY Y g ���

This is� of course� just the usual procedure for eliminating useless variables and productions from a
CFG �see� for example Hopcraft � Ullman ������� placed in the context of BPA recursion equa�
tions� Since E�G is a guarded system� it will have one solution� namely the process graph p� The
�nite trace set of p will be exactly the CFL generated by G�� This is because every path from the
root of p to a terminating node is a leftmost derivation in G�� For a simple example� consider the
graph for the one�variable recursive speci�cation E � fX � a � bXXg in Figure ��� where each
node is labelled with the process that remains to be done at that node� For example� bbaaa � ftr�p�
because X � bXX � bbXXX � bbaXX � bbaaX � bbaaa� Thus� proposition � ��� states that
the set of irredundant CFG�s corresponds exactly with the set of normed processes in BPA� The
goal of the rest of the proof is to prove that the the bisimulation equivalence of two normed sys�
tems of recursion equations is decidable� This essential idea behind the proof is that the process
graph of any normed process exhibits a certain periodic regularity� The same structural patterns in
the graph get repeated throughout� and crucially there are only a �nite number of such patterns�
Thus� for any two such graphs� there will be a certain 	level
 k �	level
 will be precisely de�ned��
at which all the structural patterns that will ever appear in the graphs have already appeared� It
is shown that if there is no bisimulation up to level k� then there is no bisimulation at all� Since k
is computable� and for any k there are only a �nite number of possible bisimulations �since only a
�nite number of nodes are being compared�� the decidability follows�

��A CFG in which every production is of the form A � a�� where A is a variable� a is a terminal� � is a possibly
empty string of variables� is said to be in Greibach Normal Form GNF� If moreover the length of � does not exceed
�� then the CFG is in restricted GNF form� It	s a known theorem that every CFG that does not generate � can be
rewritten as a CFG in restricted GNF that is weakly equivalent to the original grammar�

��By replacing composition � with j and � with �

� DECIDABILITY ��

X

YX

YXX XYX YYX

XX

XXX

Y

XY YY

XXY YXY XYY YYY

Figure ��� t�E� for X� � fX� Y g

����� Universal Tree � Translation Equivalence

Much of the detail of the proof is devoted to explicitly capturing the periodicity of the graph� Two
of the most important concepts for this purpose are�

Universal Tree � The universal tree t�E� is the tree having as nodes all the words w � X� �
fX�� ���� Xng

�� where X�� ���� Xn are the variables used by E� The top node is the empty word
�called the termination node�� and has as children X�� ��� Xn� Each succeeding level is de�ned
inductively� if w is a node of t�E� then its children are X�w���Xnw� Figure �� shows the
tree t�E� for X� � fX� Y g�

The idea of t�E� is that it will serve as the underlying 	node space
 for the process graph
g�E� determined by E� Any process graph can be thought of as being overlaid on top of
t�E�� and so several concepts that follow are de�ned in terms of t�E� rather than a particular
graph� A process graph may not use up all of t�E��

Translation Equivalence � Let w � X�� The translation Tw is the mapping from X� to X�

de�ned by� Tw�v� � vw� the concatenation of v followed by w� The inverse translation T��w

is the partial mapping from X� to itself that removes the post�x w� A shift is an inverse
translation followed by a translation� TwT��v and so a shift replaces a post�x v by a post�x
w�

Let V�W � X� and suppose that for some U and v� w we have� Tv�U� � V� Tw�U� � W �
Then V�W are equivalent modulo translation� written V �T W � meaning that V�W di�er by
a shift� �T can be shown to be an equivalence relation�

As will be seen� translation equivalence is used to capture the relationship between repeated
occurrences of the same structure in a graph�

Some more de�nitions�

length � For w � X�� the length of w� lth�w�� is the number of symbols in w�

distance � For v� w � X�� the distance d�v�w� between v and w is the minimum number of
steps�edges� necessary to go from v to w in t�E�� where E has variables X� An equiva�
lent de�nition is� Let u be the maximal common post�x of v� w� and v � v�u and w � w�u�
then d�v� w� � lth�v�� � lth�w���

far apart � For v� w � X�� v and w are far apart if d�v� w�� �� If V�W � X�� then the sets V�W
are far apart if all pairs v � V� w �W are far apart�

� DECIDABILITY ��

Figure ��� A slicing of t�E�

sphere d � The sphere with center w and radius r� B�w� r�� is the subset of X�� in t�E�� consisting
of all v whose distance to w does not exceed r� Also� Br is the collection all spheres with a
�xed radius r�

uniformly bounded � IfV � fViji � Ig is a collection of subsets ofX�� and� �r�i�wVi � B�w� r��
then the elements of V are uniformly bounded�

The two most important results obtained using these concepts are�

Proposition �� Let V be a uniformly bounded collection of subsets of X�� Then V is �nitely
partitioned by translation equivalence�

Baeten et al� do not give a rigorous proof� but instead attempt to motivate a feeling for why this is
valid� Consider the set B� of all spheres with radius one in the the example universal tree shown
in Figure ��� Now consider the set Z consisting of the three spheres B��� ��� B�X� ��� and B�Y� ���
Every sphere with radius one is translation equivalent to one of the spheres in Z� For example�
the sphere B�Y X� �� � fX� YX�XYX� Y Y Xg �T B�Y� �� � f�� Y�XY� YY g� So the set B� can be
partitioned into a �nite number of equivalence classes� where each class corresponds to one of the
members of Z� The same idea should work for any uniformly bounded collection of subsets of X��

Proposition �� Let W be a subset of X�� such that�
�i� �c�� c� � N �w � Wc� � lth�w� � c�
�ii� W cannot be partitioned into W��W� which are far apart�

Then W is contained in a sphere B�w� r� where r depends only on c�� c��

Proof �sketch�� The proof of this given by Baeten et al� is ambiguous and quite unsatisfactory�
although I think that the proposition itself is valid� A detailed examination of this proposition will
detract from an overall understanding of the proof� so I will attempt� with a �gure� to illustrate the
motivation for this proposition� Consider Figure ��� which shows t�E� from Figure ��� divided into
slices of thickness one� Each rectangle indicates one W that cannot be partitioned into subparts
W��W� that are far apart� According to prop � ���� this collection of rectangles is uniformly
bounded �by de�nition of the latter�� and so by prop � ��� this collection is �nitely partitioned by
translation equivalence� The same could be done for slices of di�erent 	thickness
�

� DECIDABILITY ��

X � a� bY � fXY

Y � cX � dZ

Z � gX � eXZ

Figure ��� An example recursive speci�cation

Propositions � ��� and � ��� are key results for the entire proof� because in section � ������ an
arbitrary process graph will be sliced up into principal fragments that are far apart and thus shown
to be �nitely partitioned by translation equivalence� The next part of the proof� in section � �������
is dedicated to using the results of these two propositions in the context of an actual process graph
instead of t�E�� and then in section ����� those revised versions of the propositions will be used to
obtain the important regular decomposition result�

Note that since by assumption E is normed� then by de�nition of normed� each w � X� has a norm
j w j� in addition to its lth�w�� It can be shown �proof omitted� that prop � ��� remains valid with
lth�w� replaced by j w j� and this is the form in which the proposition will be used later in the
proof�

����� The Process Graph � Process Graph Fragment

The process graph g�E� for the system E has so far been considered as graph of the possible
transitions� However� it can also be thought of by �rst creating t�E� for the variables X in E�
�lling in labelled edges in t�E�� and then deleting parts of the graph that are inaccessible from the
root node� Note that although a process graph is not a tree� it nevertheless exhibits� from a more
global point�of�view� a certain 	tree�like
 structure� For example� look at Figure ��� which is a
partial process graph for the system shown in Figure ��� Note also that in Figure ��� the the
norms are 	respected graphically
 � that is� a node with norm n will be positioned on level n�

The notion of process graph fragment is aimed at capturing these repeating patterns� Let E be a
system of recursion equations with variables X � fX�� ���� Xng and action alphabet A�E��

Process Graph Fragment � A �process� graph fragment in the space t�E� consists of some subset
N of nodes of X� together with some edges w �a v�w� v � N� labelled by atoms in A�E��
�� �� �� will be used to denote graph fragments�

Two notions previously used are updated for use in the context of graph fragments�

weakly fragmented A graph fragment is weakly connected if it cannot be partitioned into two
graph fragments which are far apart�

translations Translations Tw of graph fragments are de�ned as for node sets� with the extra
requirement that a translation also respects labelled edges�

Proposition �� Let � be a graph fragment of g�E� such that
�i� �c�� c� � N �w � � c� � j w j � c�� and
�ii� � is weakly connected�

Then � is contained in a sphere B�w� r� where r depends only on c�� c�� and E �in a computable
way��

� DECIDABILITY ��

7

6

5

4

3

2

1

0

X

XY

XYY

Z

ZY

XZ

XYZ

XYYY XZYY XYZY XZZY XYYZ XYZZ XZZZ

ZZZZY ZZZYZYY

XZZ

ZZ

YYY YZY YYZ YZZ

XZY
YY YZ

Y

XZYZ

Figure ��� A partial process graph�

Proof� From proposition � ����

Proposition �� Let ��i�i�I be a collection of fragments of g�E�� and let the �i be uniformly
bounded� Then the collection is �nitely partitioned by translation equivalence� Moreover� the number
of elements of the partition can be computed from E�

Proof� Since the collection is uniformly bounded� it follows from prop � ��� the collection is �nitely
partitioned by translation equivalence� The 	computable
 part of the proof is very vague� since it
depends on the proof of prop� ���� which itself is very vague� It most likely is supposed to refer to
a calculation of the number of equivalence sets�

����� The Regular Decomposition of the Process Graph

In this section a decomposition of a process graph into slices and principal fragments will be de�ned�
Propositions � ��� and � ��� allow us to show that for this decomposition there are only a �nite
number of such fragments modulo translation equivalence� This not quite adequate� however�
because it also needs to be shown that these fragments are not in some haphazard layout in the
graph� but instead make up a regular tree�like structure� The concept of a regular decomposition is
used to capture this notion�

regular tree A node�labelled tree is regular if there are �modulo isomorphism of node�labelled
trees� only �nitely many subtrees� The labels in this case will be very complicated � translation
equivalence classes of process graph fragments�

Regular Decomposition A regular decomposition of the process graph g�E� is a tree T where
each node s is labelled with a graph fragment �s� such that

� DECIDABILITY ��

�� each �s is a �nite graph fragment in t�E��

�� the union of all �s is g�E��

�� for nodes s� t in T � �s and �t are disjoint i� s� t are not connected by a single edge in T �

�� the collection of all �s �all nodes s in T � is �nitely partitioned by translation equivalence�

�� if ��� ���� �k denote the �nitely many equivalence classes in which the �sare partitioned�
and each label �sis replaced by the label denoting its equivalence class� the resulting
node�labelled tree T � is regular�

A decomposition for any process graph g�E� is de�ned as follows� and this decomposition will be
shown to be regular�

�� g�E� will be divided into fragments� called slices� numbered ��������� Each slice has thickness
d� and d is called the amplitude of the decomposition�

�� The nth slice contains the nodes s of g�E� with nd � jsj � �n � ��d and also those nodes
reachable by one step in g�E� from a node s with nd � jsj�n� ��d� �

�� The nth slice is now the fragment of g�E� obtained by taking the restriction of g�E� to the
set of nodes of the nth slice�

�� The nodes of the nth slice will be partitioned into equivalence classes as follows� de�ne for
nodes s� t in the nth slice� s � t i� s� t have distance ������ or �� Let � be the transitive
closure of �� This is an equivalence relation on the nodes of the nth slice� partitioning these
nodes into equivalence classes denoted by s���

�� The restriction of g�E� to the set of nodes s�� in slice n� is called a principal fragment�

Proposition �	 Let g�E� be divided in slices� Then the corresponding principal fragments of
g�E� are uniformly bounded� and thus �nitely partitioned by translation equivalence� Moreover� the
number of principal fragments of g�E� can be computed from E�

Proof�

�� By the de�nition of a principal fragment� all principal fragments of a slice n are far apart�

�� By prop � ���� the collection of all principal fragments �of all slices� of g�E� is a uniformly
bounded collection�

�� By prop � ���� the collection of principal fragments is �nitely partitioned by translation
equivalence� and the number of elements is computable from E�

The following proposition is needed to prove theorem � ����

Proposition �� Let � and �� be fragments of g�E�� which are translation equivalent� Let s be a
node in � that is not minimal in �� Suppose s�a t is an edge such that � � fs�a tg is again a
fragment of g�E�� Let s� be the point in �� corresponding �after the same shift as from � to ��� to
s�

Then there is a t� and an edge s� �a t� such that �� � fs� �a t�g is also a fragment of g�E��
moreover� the two extended fragments are again translation equivalent by the same shift�

��There is no explanation for this extra clause ��and also������ I am not sure why it is needed

� DECIDABILITY ��

α

β γ

Figure ��� No possible con�uence in the decomposition

Proof� details omitted� It�s a straightforward proof based on the properties of translation equiva�
lent fragments�

Theorem �� Let E be a normed system of recursion equations in restricted GNF� in the signa�
ture of BPA� and let g�E� be the corresponding normed process graph� Then g�E� has a regular
decomposition� moreover� the amplitude d of the decomposition can be chosen arbitrarily such that
d � c�E� for some constant c�E� computable from E�

Proof� This theorem is the culmination of the proof so far� and follows in a mostly direct manner
from the work so far�

�� A tree of graph fragments can be created� and it is guaranteed to be a well�formed tree
because no 	con�uence
 can occur� as in Figure ��� This is because by the very de�nition
of a graph fragment� all the points of � and
 are far apart� and so going downwards from
such points only increases the distance� and so no con�uence of lower principal fragments is
possible�

�� From propositions � ��� and � ���� it follows that there are only �nitely many labels �frag�
ments� modulo translation equivalence�

�� All that remains is to show the regularity of the decomposition� Consider two nodes s� t in
T occupied by �s� �t� with �s �T �t� Let Ts� Tt be the subtrees of T determined by s� t

respectively� Let Gs� Gt be the graph fragments of g�E� obtained by taking the unions of all
the labels in Ts and Tt� respectively� Then it needs to be shown that Gs �T Gt� This follows
from repeated application of prop � ����

The one questionable part of this theorem is in the statement that the 	amplitude d of the decom�
position can be chosen arbitrarily such that d � c�E� for some constant c�E� computable from E�

It is unclear as to what this restriction on d would be�

Remark� It is surprising to note that so far the restriction to normed process graphs has not been
crucial� All the proofs so far will carry over if the length lth is used instead of the norm� So in fact
the following more general version of theorem� ��� holds�

Theorem �� Let E be a system of recursion equations in BPA in restricted GNF � Then the
corresponding graph g�E� has a regular decomposition�

����� The main result

Some de�nitions� Let E�� E� be normed systems of recursion equations in restricted GNF�

� DECIDABILITY ��

n�pre�x If R is a bisimulation between g�E��� g�E��� then the pre�x up to n� or n�pre�x is the
restriction of R to the nodes of g� h whose level does not exceed n�

partial bisimulation up to level n � A partial bisimulation between g�E��� g�E�� up to level
n is a relation R whose domain consists of the nodes of g�E�� with level � n� and whose
codomain consists of the nodes of g�E�� with level � n� such that R is a bisimulation�

d�su�cient � Suppose that g�E�� and g�E�� have regular decompositions with common amplitude
d� and let R be a partial bisimulation up to slice k� R is d�sucient if the following holds
true�

Suppose that � is a fragment of slice k in g�E��� and � is a fragment of slice k in g�E���
Also� the successor fragments of � are ��� ���� �n and the successor fragments of � are ��� ����m
for some n�m� Suppose also that fragments �� � are related by the partial simulation R and
that at least one slice higher �that is� a slice with level � k�� there are translation equivalent
copies ��� �� of �� � �which then must have children ���� ���� �

�
n and ���� ���� �

�
m� such that the

restriction of R to � � � coincides� modulo translation equivalence �T � with the restriction
of R to �� � ��� If for each pair �� � in the kth slice such a copy ��� �� exists� then the partial
simulation R is called d�sucient�

In other words� d�su�ciency is a formalization of the idea that if there are only a �nite
number of patterns that need to be related under a bisimulation� then at a certain level
all such patterns will have appeared� It is easy to show that if a partial simulation R is
d�su�cient� then it can be extended to a total bisimulation�

Theorem �� Let g�E��� g�E�� be process graphs� each with regular decompositions of common
amplitude d� and let R be a bisimulation between them� Then R has a d�sucient M �pre�x for
each M � N�E�� E�� d�� where N�E�� E�� d� is some constant computable from E��E�� and d�

Proof�sketch�� The proof given by Baeten et al� is again very vague� but the idea appears to be
this� since g�E�� and g�E�� both have regular decompositions� then there are only a �nite number
of graph fragments modulo translation equivalence and so there are only �nitely possible relations
������R� Thus� there must be a certain level N �computable in some vague way from E�� E�� d�
such that all such relations have already appeared� and so any level M � N must be d�su�cient�

Theorem �� �i� Let E�� E� be normed systems of recursion equations �over BPA� in restricted
GNF� Then the bisimilarity relation g�E���g�E�� is decidable�
�ii� Equality of recursively de�ned normed processes in the graph model G of BPA is decidable�

Proof� �i� Let g�E��� g�E�� be the process graphs forE�� E�� Then according to theorem � ���� they
each have a regular decomposition� with a common amplitude d �where d � c�E�� and d � c�E��� for
some constants c�E�� and c�E�� computed from E� and E�� respectively�� According to theorem
� ���� there is some computable level N such that if any bisimulation exists between g�E�� and
g�E�� then there would be a d�su�cient partial bisimulation up to level N� The search space of all
such partial bisimulations up to N is the set of all ��nitely many� relations between the nodes of
g�E�� and g�E�� up to level N� There is a bisimulation between g�E�� and g�E�� i� such a partial
bisimulation is found�
�ii� This is just a rephrasing of �i��

� DECIDABILITY ��

����� Remarks

Theorem � ��� is explicitly stated to be true only for normed systems of recursion equations�
However� up until section � ������� the normed condition is irrelevant� An unclear aspect of this
proof is where exactly the normed condition is essential� Although Baeten et al� are not at all
explicit about this� it most likely has to do with the fact that if two process graphs are drawn
with their norms respected graphically �e�g�� as in Figure ���� then all related pairs of nodes in a
bisimulation are horizontal connections between the two graphs�

Note that if g� h are bisimilar graphs� then ftr�g� � ftr�h�� but the converse is always true� In one
special case� however� that of normed� deterministic �� graphs� then the converse is in fact true�
Also� a simple �� CFG corresponds to a normed� deterministic graph� Since the bisimilarity of two
such CFGs is decidable� the equivalence of their �nite trace sets is also decidable� Thus a corollary
of theorem � ��� is another proof of the known theorem that 	The equivalence problem for simple
CFLs is decidable�

All the examples grammars by Baeten et al� have a common feature� none have productions of the
form X � aY �bY � Grammars with such a production could probably be handled within the proof
simply by stipulating that an edge within t�E� is kept if at least one production uses that edge�
Still� mention should at least have been made of this possibility�

Aside from the decidability result� the representation of the CFGs in BPA is notable� Unfortu�
nately� the usage of restricted�GNF form� while resulting in the desired property of guardedness in
the resulting BPA process de�nition� also severely changes the structural relation to the original
grammar� although it of course preserves the language itself� Thus� from the point�of�view of ex�
amining the structural nature of two grammars that are not in GNF form� the proof is of limited
interest� Still� it would be an interesting challenge to attempt to represent other formal language
representations in a process algebraic framework� Also� whereas the encoding in this proof repre�
sents CFGs in BPA from a language generation persective� encoding a language acceptor would be
worthwhile� Baeten et al� have a short� quite mysterious mention of this possibility�

One can associate to push�down automata �PDAs� in a similar manner to a process�
however as pointed out in � � � � there is a PDA� even without � and deterministic� whose
associated graph does not display the periodicity exploited in this paper�

This proof by Baeten et al�� although long and complex� was the �rst to use the new techniques of
process algebra to reexamine CFGs� Two obvious desired extensions to theorem � ��� would be to
remove the condition on normed processes� and to include a bigger subset of process algebra� The
former was accomplished in Christensen et al� ������ using a completely di�erent proof technique�
Also� a completely di�erent� much simpler� version of the proof of theorem � ��� was given in
H uttel � Stirling ������ Although it didn�t extend the result of this paper� it had the advantage of
being extendable to include some aspects of concurrency� This is the subject of the section � �����

��� Decidability of Basic Parallel Processes

The decidability results in section � ���� are concerned with a subset of ACP� one that does not use
parallel processing or communication between parallel processes� These two concepts are of course
of great importance in process calculi� Recently some positive decidability results have been found

�	A process graph g is deterministic if there is no node s � g having two outgoing edges with the same label�
��A CFG in GNF form is simple if there is no pair of di�erent productions A� a�� A� a��

� DECIDABILITY ��

X X || b X || b
2

X || b
3

a a a a

bb b b

Figure ��� A sample transition graph

for processes that are de�ned using a parallel combinator within recursive equations� The following
is based on the proof given in Christensen et al� ������

����� Basic Parallel Processes

For the purposes of this proof� the authors de�ne a class of Basic Parallel Processes �BPP� ex�
pressions� It consists of a countably in�nite set of atomic actions ! � fa� b� c� ���g and a countably
in�nite set of process variables V ar � fX� Y� Z� ���g� and a class of recursive equations de�ned by�

E �� � �inaction�
j X �process variable� X � V ar�
j aE �action pre�x� a � !�
j E �E �choice�
j E k E �merge�

The expression En represents the term E k ��� k E consisting of n copies of E combined in parallel�
Also� ��absorption allows trailing �s to be omitted from expressions� and so the term a� can be
written as just a� A BPP process is de�ned by a �nite family of recursive process equations

" � fXi � Eij� � i � ng

where the Xi are distinct and the Ei are BPP equations containing at most the variables V ar�"� �
fX�� ���� Xng� It is also assumed that each variable occurrence in the Eis are guarded� and the
variable X� is singled out as the leading variable and X� � E� is the leading equation� For example�
if " is the family fX � a�X k b�g� then X generates the in�nite�state transition graph in Figure
���

Bisimilarity is de�ned as strong bisimilarity �since silent actions are not an issue here�� and is
written �� The set of �nite multisets over V ar�"� � fX�� ���� Xng is denoted by V ar�"�� and
�� �� ��� are members of V ar�"��� So each such � denotes a BPP process formed by combining
the elements of � in parallel� The empty product is �� and ordering of variables in products is
ignored� so that processes denoted by elements of V ar�"�� are identi�ed up to associativity and
commutativity of merge�

De�nition �� A �nite family " � fXi � Eij� � i � ng of guarded BPP equations is de�ned to
be in standard form i� every expression Ei is of the form

a��� � ���� am�m

where for each j we have �j � V ar�"��� The empty sum is �� and the ordering of expressions in
sums is ignored� thereby de�ning the notion of standard form modulo associativity and commuta�
tivity of choice�

� DECIDABILITY ��

rec � � �

unf��� � unf���

sum
Pn

i�� ai�i �
Pm

j�� bj�j
fai�i � bf�i�f�ig

n
i�� fbj�j � af�i�g�jg

m
j��

wheref � f�� � � � � ng � f�� � � � � mg
g � f�� � � � � mg � f�� � � � � ng

prefix a� � a�

� � �

subL � k
 � � if the dominated node is labelled

� k
 � � � � � or � � � with � � �

subR � � � k
 if the dominated node is labelled

� � � k
 � � � or � � � with � � �

Figure ��� Rules of the tableau system

The authors also claim� with no proof given in the paper� that the following lemma holds�

Lemma �� Given any �nite family of guarded BPP equations " we can e�ectively construct an�
other �nite family of BPP equations "� in standard form in which " � "��

For the rest of this proof� all BPP will equations under consideration will be assumed to be in
standard form� The following de�nition is crucial to the proof�

De�nition �� The well�founded ordering � on V ar�"�� is given as follows�

Xk�
� k � � � k Xkn

n � X l�
� k � � � k X ln

n

i� there exists j such that kj � li and for all i � j� ki � li�

Two important properties of � are�

�� it is total� meaning that for any �� � � V ar�"�� with �
� �� either � � � or � � ��

�� � � � implies � k
 � � k
 for any
 � V ar�"��

����� the tableau decision method

The authors present a tableau decision method for the purpose of deciding� for any �� � of V ar�"���
whether or not � � �� The rules of the tableau system� presented in Figure ��� are built around
equations E � F � where E and F are BPP expressions� An example tableau is shown in Figure
�� for the family of BPP processes shown in �gure ���

The basic idea of the proof is this� The rules of the tableau respect properties of bisimulation
equivalence� and for some �� �� a tableau can be built up to prove whether or not � � �� In fact�

� DECIDABILITY ��

� � �

rec ##########P
ai�i �

P
bi�i

sum ######################
a��� � bi�� an�n � bn�n

prefix ############ � � � ############ prefix

�� � �� �n � �n

Figure ��� The schema for a basic step�

theorems � ��� and � ��� below show that � � � i� there is a successful tableau with root labelled
� � �� Also� the ordering � de�ned previously� used in conjunction with the subL and subR rules�
will ensure that all tableaus are �nite� and that for any �� � there are only a �nite number of
tableaux� The decidability follows as a consequence�

First� some terminology before an explanation of the rules� A tableau for � � � is a maximal proof
tree whose root is labelled � � � and whose successive nodes are determined by application of the
rules of tableau system� The rules are applied only to nodes that are not terminal� A terminal node
can be either successful or unsuccessful� A successful terminal node is one labelled � � �� while
an unsuccessful node is one labelled either a� � b� with �
� � or a� � � or � � b�� A tableau
is successful i� if all terminal nodes are successful� Tableaux are denoted by T �or T �� � �� to
indicate the label of the root�� Paths are denoted by and nodes are denoted by n� If a node n
has a label E � F it may be written n � E � F �

rec This rule is essentially an encoding of the expansion law �� for merge� as discussed in section
� ������� The notation unf��� represents the unfolding of �� as follows�
given Yi �

Pni
j�� aij�ij for � � i � m�

unf�Y� k � � � k Ym� �
Pm

i��

Pni
j�� �ij�Y� k � � � k Yi�� k �ij k Yi�� k � � � k Ym��

sum After 	breaking apart
 an equality with rec� this rule is used to continue the bisimulation
testing on the individual components� The authors do not state this� and it is not stated
explicitly in the rule� but the consequents should only attempt to relate summands of � and
� that begin with the same action� This is because if there was some consequent ai�i � bi�i�
with ai
� bi� then it would be an unsuccessful terminal and the entire tableau would crash�

prefix straightforward

Note� The rec� sum� and prefix rules are used together� in components called basic steps from
which the larger tableaux is built� The schema of a basic step for � � � is shown in Figure
��� and as can be seen consists of an application of rec to � � � followed �possibly� by an
application of sum� and followed by an application of prefixto each of its consequents� A
basic step represents a set of single transition steps in the operational semantics� for each
consequent �i � �i we have �

ai� �i and �
ai� �i�

Nodes of the form n�� � � are called basic nodes� A basic node n� � k
 � � or n� � � � k

dominates any node n��� � � or n��� � � which appears above n in the tableau in which � � �

and to which the rule REC has been applied�

��But without considering silent actions�

� DECIDABILITY ��

X� � a�X� k X��

X� � aX�

X� � �X� k X�� � bX�

X� � b

Figure ��� An example family of BPP processes in standard form

rec X� � X�

prefix a�X� k X�� � aX�

subL �X� k X�� � X�

rec X� k X� � X�

sum a�X� k X�� � bX� � a�X� k X�� � bX�

prefix a�X� k X�� � a�X� k X�� bX� � bX� prefix

X� k X� � X� k X� X� � X�

Figure ��� A successful tableau for X� � X��

subL
 subR Whenever a basic node dominates a previous one� one of the SUB rules is applied to
reduce the terms before applying the REC rule�

Theorem �� Every tableau for � � � is �nite� Furthermore� the number of tableaux for � � � is
�nite�

Proof �by contradiction�� Let T�� � �� be a tableaux with root labelled � � �� and assume that it
is in�nite� It can only be in�nite if there exists an in�nite path� since every node has only a �nite
number of possible branches� so let be an in�nite path starting from the root� Note that the only
way in which could be in�nite is if it contains in�nitely many applications of the rec rule� This
is because the applications of the subL and subR rules will continually reduce the terms and due
to the well�foundedness of � this process will eventually terminate� Thus must contain an in�nite
sequence of basic nodes to which REC is applied� Let S be this sequence� S � fni � �i � �ig�i���
where n� � �� � �� is the root� n� � �� � �� is the second node along at which REC is applied�
and so on� The contradiction will arise by considering �

Since each expression � is � V ar�"��� it can be viewed as a vector v of N n� where the value of
the ith coordinate of v� denoted v�i�� indicates the number of occurrences of variable Xi in �� Thus
the sequence S can be represented by an in�nite sequence of vectors fuig�i�� where ui � N �n for
all i� The �rst n coordinates represent �i and the last coordinates represent �i�

Now the goal is to extract an in�nite subsequence of S such that all coordinate sequences are
nondecreasing� Consider �rst the in�nite sequence fui���g�i�� consisting of all the �rst coordinates
of vectors of the sequence S� If this sequence has an upper bound then extract from S an in�nite
sequence S� of vectors fvig

�
i�� with the property that the �rst coordinate of vi remains constant

throughout S�� If the sequence fui���g�i�� does not have an upper bound then extract from S

an in�nite sequence S� of vectors fvig
�
i�� with the property that the �rst coordinate of vi is

nondecreasing� Continuing in this way for each coordinate of S results in an in�nite sequence S�n
of vectors fwig

�
i�� with the property that all coordinate sequences are nondecreasing� Thus� in this

� DECIDABILITY ��

sequence every node is dominated by every node after it� Recall that a rule rec cannot be applied
to a node if that node dominates a previous one� because either subL or subR must be applied
�rst� This means that in S�n� the rule rec cannot be applied to any node� thus resulting in the
contradiction�

For the second claim of the theorem� the argument given by Christensen et al� is that since there
are only a �nite number of tableaux of a given �nite size� then there can only be an in�nite number
of tableaux if there is some in�nite sequence of partial tableaux �each derived from the previous
one�� which produces an in�nite tableaux in contradiction to the �rst part of the theorem� The
claim that there are only a �nite number of tableaux for a given �nite size seems to me to need
some clari�cation� Although a minor point� 	size
 should be precisely de�ned� the number of rows
is not adequate� since a row may have some ��nite� number of entries on it� as the result of a sum
rule �e�g�� see Figure ���� Perhaps 	size
 could be de�ned as 	the number of E � F expressions
in a tableau
 � e�g�� the tableau in Figure �� would have size �� It would indeed follow that there
can only be a �nite number of tableaux for a given �nite size� since the number of Xi is �nite and
so there cannot be an in�nite number of tableaux for a given size k�

����� Completeness
 Soundness
 and Decidability

Theorem �	 �Completeness� If � � � then there exists a successful tableau with root labelled
� � ��

Proof� Suppose � � �� If a tableau T �� � �� can be constructed with the property that any node
n � E � F of T satis�es E � F � then by theorem � ��� that construction must terminate� and so if
the desired property indeed holds then each terminal will be successful and T will be a tableau for
� � ��

The desired property can be guaranteed if the rules of the tableau system can be shown to be forward
sound� in the sense that if the antecedent as well as all nodes above relate bisimilar processes then
the set of consequents relate bisimilar processes� This is straightforward from the properties of
bisimulation and the de�nitions of the rules� For example� as mentioned above the rule rec is just
an encoding of the expansion law for merge� and the forward soundness for subL� subR follow
from the fact that bisimilarity is a congruence relation with respect to merge�

Remark� Christensen et al� de�ne forward soundness as requiring that 	if the antecedent���relate
bisimilar processes then it is possible to �nd a set of consequents relating bisimilar processes�
 This
seems unnecessarily weak� since the only rule that produces more than one consequent is sum� and
if the antecedent relates two bisimilar processes� then all the consequents must do so as well�

Theorem �� �Soundness� If there is a successful tableau for � � �� then � � ��

Proof�by contradiction�� Suppose T �� � �� is a tableau for � � �� and that �
� �� A path
 � fni � Ei � Fig through T is constructed starting at the root in which Ei
� Fi for each i� Since
the tableau must be �nite� then ends in a terminal node� En � Fn for which En
� Fn� By the
very de�nitions of successful nodes and bisimularity� this means that such a terminal node cannot
be successful� and so the tableau cannot in fact be successful�

The construction of is very detailed and will not be presented in full here� The basic idea is that
for any node ni that relates processes that are not bisimilar� then it has a consequence ni�� for
which the same holds� It is shown how this is done for each of the rules� with subL and subRbeing
the most di�cult cases�

REFERENCES ��

Theorem �� Bisimulation equivalence is decidable on BPP processes�

Proof� Given some processes �� �� then from the two previous theorems� � � � i� there�s some
successful tableau with root � � �� Since according to theorem � ���� there are only a �nite number
of such tableau for � � �� all that remains is to list systematically all such tableau and if a successful
one is found� then � � �� Note that it is important that the tableaux are listed systematically� since
it can only be determined that �
� � after all possible tableaux have been listed� Unfortunately�
the Christensen et al� do not specify an algorithm for listing the tableaux� and such an algorithm
can potentially be non�trivial�

����� Remarks

The communication operator included in BPP � k� has no communication capabilities� The authors
claim that the results can also be shown to hold if a limited form of communication� handshaking�
is allowed� Thus BPP can be considered to be a subset of CCS in which all equations are guarded�
there is no restriction �thus allowing the huge simpli�cation of disregarding silent actions�� and no
relabelling� Interesting� Baeten et al� ����� leave it as an open question as to whether or not the
bisimulation equivalence problem is decidable for PA� PA is distinguishable from BPP by the
inclusion of left�merge and general� not just pre�x� multiplication� It would be interesting to try
to extend the methods of this proof to handle the PA system�

References

Milner ����� Calculus of Communicating Systems� Robin Milner�

Baeten et al� ����� Baeten� Bergstra� and Klop� Decidability of Bisimulation Equivalence for Pro�
cesses Generating Context�Free Languages� Journal of the ACM� July �����

Hopcraft � Ullman ����� Hopcraft� J�E�� and Ullman� J�D� Introduction to Automata Theory�
Languages� and Computation� Addison�Wesley� �����

Christensen et al� ����� Bisimulation Equivalence is Decidable for Basic Parallel Processes� CON�
CUR ���� pp� ��������

Baeten and Weijland ����� Process Algebra� J�C�M� Baeten � W�P� Weijland

Bergstra � Klop ����� Algebra of Communicating Processes with Abstraction� Theoretical Com�
puter Science ��� pp� �������

Bergstra � Klop ����� Process Algebra for Synchronous Communication� Information and Con�
trol ��� pp���������

Christensen et al� ����� Bisimulation Equivalence is Decidable for all Context�Free Processes�
CONCUR ��
� pp� ��������

H uttel � Stirling ����� Actions Speak Louder than Words� Proving Bisimilarity for Context�Free
Processes� Proceedings of LICS �	� pp� ��������

