
Stability and superluminality of spherical DBI Galileon solutions

Garrett L. Goon,* Kurt Hinterbichler,† and Mark Trodden‡

Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania,
Philadelphia, Pennsylvania 19104, USA

(Received 20 September 2010; published 12 April 2011)

The Dirac-Born-Infeld (DBI) Galileons are a generalization of the Galileon terms, which extend the

internal Galilean symmetry to an internal relativistic symmetry, and can also be thought of as general-

izations of DBI which yield second order field equations. We show that, when considered as local

modifications to gravity, such as in the Solar System, there exists a region of parameter space in which

spherically symmetric static solutions exist and are stable. However, these solutions always exhibit

superluminality, casting doubt on the existence of a standard Lorentz invariant UV completion.
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I. INTRODUCTION

The Dirac-Born-Infeld (DBI) action, which describes
the dynamics of a brane embedded in a higher-dimensional
spacetime, has provided an important setting within which
to study inflation [1,2], late-time cosmic acceleration [3],
tunneling [4], and exotic topological defects [5–9]. The
DBI action has been extensively studied in recent years,
and its rather special properties are now well understood.

At the same time, increasing attention has been paid to
induced gravity theories, such as the Dvali-Gabadadze-
Poratti (DGP) model [10]. In these, branes in extra dimen-
sions again form the basic objects, but the Einstein-Hilbert
action for gravity is written both in the bulk and on the
branes themselves, leading to a highly nontrivial behavior
of the resulting 4D effective theory on the brane. The
theory admits a limit which contains a scalar field � which
interacts through a higher derivative cubic coupling pos-
sessing an internal Galilean invariance �� ¼ !�x

� þ �

(with !� and � infinitesimal constants) and second order

field equations [11,12]. These general properties can be
generalized to higher order interactions, and the resulting
theories are known as Galileons [13].

It has recently been shown [14] that the Galileon and
DBI theories are intimately related. Beginning from a
codimension one probe brane in a 5D Poincare sym-
metric bulk, a 4D action can be formed using solely the
4D Lovelock invariants and the boundary terms of 5D
Lovelock invariants. The resulting action then consists of
DBI Galileon terms. These terms are generalizations of
the square root DBI action, in the sense that they share its
symmetries and yield second order field equations. In a
small field limit, the relativistic symmetry stemming from
the 5D Poincare symmetry and brane reparametrization
invariance reduces to the Galilean symmetry of the DGP
model and the DBI Galileon terms reduce to the Galileon

terms catalogued in [13]. Several authors [15–18] have
now demonstrated that a natural generalization of these
Galileon models to codimension greater than one exists,
and that many features, including a powerful nonrenorm-
alization theorem and a consistent effective field theory
[16], hold in general.
In this paper, we find general static spherically symmet-

ric solutions of DBI Galileon theories and explore their
stability. Such an analysis was performed for the ordinary
Galileons in [13], and for multi-Galileon theories in
[19,20]. In the case of the DGP model [13], it was found
that for some choices of parameters, stable solutions exist
but always contain superluminal signal propagation. We
follow the same approach here, extending the results to the
DBI Galileons, and reach similar conclusions. The analysis
is only valid in the Mp ! 1 limit. As shown in [21], the

stability of these theories depends on terms suppressed by
the square of the Planck mass.

II. DBI GALILEAN TERMS AND EQUATIONS
OF MOTION

We are interested in the generalizations of DBI dis-
cussed in [14]. The relevant theory consists of a single
scalar �, in 3þ 1 dimensions, with an action invariant
under the internal relativistic symmetry

�� ¼ !�x
� �!��@��þ �; (1)

with x� the spacetime coordinate,!� a constant infinitesi-

mal vector, and � an infinitesimal constant.
To construct the action for �, one follows the prescrip-

tion of [14] (see also [16] for further details). Consider an
embedding of a 3-brane in flat 5D Minkowski space,
XAðx�Þ (where A is the 5D bulk index and � the 4D
world-volume index), and a world-volume action which
is invariant under world-volume reparametrizations and
bulk Poincare transformations. The reparametrization
invariance forces the action to be a diffeomorphism

scalar constructed out of the induced metric g��ðxÞ �
@XA

@x�
@XB

@x� GABðXðxÞÞ, where GAB is the bulk metric as a
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function of the embedding variables XAðxÞ. Poincare in-
variance requires the bulk metric to be the flat Minkowski
metric GABðXÞ ¼ �AB. We then fix the gauge X�ðxÞ ¼ x�,
and let the unfixed degree of freedom be X5 � �, so that
the induced metric becomes

g�� ¼ ��� þ @��@��: (2)

Any action which is a diffeomorphism scalar, evaluated on
this metric, will yield an action for � having the invariance
(1), in which !� is a boost in the fifth direction along

with a compensating gauge transformation to maintain the
gauge choice X�ðxÞ ¼ x�. The parameter �, the shift on �,
is the translation in the fifth dimension. In addition, the
action will have the usual 4D spacetime Poincare invari-
ance, which combines with the boost and the shift (1) to
form the full 5D Poincare group.

The ingredients available to construct such an action are
the induced metric g��, the covariant derivative r� com-

patible with the induced metric, the Riemann curvature
tensor R�

��� corresponding to this derivative, and the

extrinsic curvature K�� of the embedding. Thus, the most

general action is =

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Fðg��;r�; R

�
���; K��Þjg��¼���þ@��@��:

(3)

For example, the DBI action arises from =Z
d4x

ffiffiffiffiffiffiffi�g
p !

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

q
; (4)

where here, and in the remainder of this paper, we use the
mostly plus metric convention.

As detailed in [14], only certain choices of F in (3) will
lead to theories that have second order equations of
motion; the Lovelock invariants and their boundary terms.
The terms available are

L 2 ¼ � ffiffiffiffiffiffiffi�g
p

; (5)

L 3 ¼ ffiffiffiffiffiffiffi�g
p

K; (6)

L 4 ¼ � ffiffiffiffiffiffiffi�g
p

R; (7)

L 5 ¼ 3

2

ffiffiffiffiffiffiffi�g
p

KGB; (8)

where

K GB ¼�2

3
K3

��þKK2
���1

3
K3�2

�
R���1

2
Rg��

�
K��

(9)

is the Myers boundary term from the second order
Lovelock invariant in the bulk [22], and L3 is the
Gibbons-Hawking-York boundary term for the Einstein-
Hilbert action in the bulk [23,24].

In the following, we use the notation � for the matrix
of partials ��� � @�@��, and ½�n� � Trð�nÞ, e.g.

½�� ¼ h�, ½�2� ¼ @�@��@
�@��, as well as

½�n� � @� ��n�2 � @�, e.g. ½�2� ¼ @��@
��, ½�3� ¼

@��@
�@��@��. Indices are raised and lowered with

the flat metric, and we use the mostly plus signature.
Also, we define

	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2p : (10)

In terms of these combinations of the field � and its
derivatives, the terms above become

L 2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

q
; (11)

L 3 ¼ �½�� þ 	2½�3�; (12)

L 4 ¼ �	ð½��2 � ½�2�Þ � 2	3ð½�4� � ½��½�3�Þ; (13)

L5 ¼ �	2ð½��3 þ 2½�3� � 3½��½�2�Þ � 	4ð6½��½�4�
� 6½�5� � 3ð½��2 � ½�2�Þ½�3�Þ; (14)

where we have explicitly retained all total derivatives.
In 3þ 1 dimensions, the above terms are the only ones

possessing the symmetry (1) and yielding second order
equations of motion. The first term is the DBI action,
which when expanded gives the standard kinetic term
for the scalar. The second is the relativistic version of the
cubic DGP �-Lagrangian (up to a total derivative). These
are the DBI generalizations of the Galileons studied in
[13]. The Galileons are recovered by expanding in powers
of the field � and taking the lowest nontrivial contribution
from each term [14].
The resulting equations of motion take the form En ¼ 0,

with n ¼ 2, 3, 4, 5, and

E 2 ¼ 	½�� � 	3½�3�; (15)

E 3 ¼ 	2ð½��2 � ½�2�Þ þ 2	4ð½�4� � ½��½�3�Þ; (16)

E4 ¼ 	3ð½��3 þ 2½�3� � 3½��½�2�Þ þ 	5ð6½��½�4�
� 6½�5� � 3ð½��2 � ½�2�Þ½�3�Þ; (17)

E5 ¼ 	6ð½��4 � 6½�2�½��2 þ 8½��½�3�
þ 3½�2�2 � 6½�4�Þ: (18)

These satisfy the following interesting recursion relation
noticed in [14]:

�

��
ð ffiffiffiffiffiffiffi�g
p Þ ¼ K; (19)

�

��
ð ffiffiffiffiffiffiffi�g
p

KÞ ¼ R; (20)
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�

��
ð ffiffiffiffiffiffiffi�g
p

RÞ ¼ 3

2
KGB; (21)

�

��
ð ffiffiffiffiffiffiffi�g
p

KGBÞ ¼ 2

3
LGB4

; (22)

where LGB4
¼ R2 � 4R2

�� þ R2
��
� is the second order

Lovelock invariant.
In this paper, we consider a theory containing these

terms with arbitrary coefficients dn, and which is linearly
coupled to the trace T of the energy momentum tensor of
matter, so that the complete Lagrangian density is

L ¼ X5
n¼2

dnLn þ �T; (23)

with equation of motion E ¼ 0, where

E � X5
n¼2

dnEn þ T: (24)

The linear coupling is not invariant under the symmetry
operation (1). Rather, it was chosen for simplicity and
for comparison with the results of [13], where the same
choice was made. It is also the coupling that arises if the
scalar is considered as a modification to gravity that con-
formally mixes with the graviton, as happens in the DGP
model. Although there may exist physically interesting
couplings which obey the symmetry, the simplest example,
@��@��T

��, which arises naturally from the brane con-

struction, gives no contribution to the equations of motion
for static sources.

Our goal is to derive constraints on these models
from the requirements of stability and subluminality of
mode propagation around spherically symmetric back-
grounds. We shall begin this analysis in the next section,
but it is important to note that one constraint can be seen
immediately;

d2 > 0; (25)

since otherwise the kinetic term will yield a ghost (or will
be absent, if we set d2 ¼ 0).

III. SPHERICAL SOLUTIONS

We search for static spherically symmetric solutions to
the equations of motion in spherical polar coordinates
ðr; �; 
Þ, in the presence of a positive mass delta function
source at the origin

T ¼ �M�3ðrÞ; M > 0: (26)

To evaluate the equations of motion we need find only
the nonvanishing elements of ��� ¼ @�@��� �


��@
�.

These are�rr ¼ �;rr,��� ¼ r�;r, and�

 ¼ rsin2��;r.

Since the flat metric is diagonal, we then have

½�n� ¼ ð�rr�
rrÞn þ ð����

��Þn þ ð�

�


Þn

¼ �n
;rr þ 2�n

;r

rn
; (27)

½�nþ2� ¼ �2
;rð�rrÞnð�rrÞnþ1 ¼ �2

;r�
n
;rr: (28)

Using these, the equations of motion (24) become

E 2 ¼ 1

r2
d

dr
½r3y�; (29)

E 3 ¼ 2

r2
d

dr
½r3y2�; (30)

E 4 ¼ 2

r2
d

dr
½r3y3�; (31)

E 5 ¼ 0; (32)

where we have defined

y � 	�0

r
: (33)

The fifth order term vanishes because our focus on
static solutions reduces the problem to a 3D one, and the
fifth-order term is trivial in three dimensions. The remain-
ing equations of motion can be written as a polynomial
in y as

1

r2
d

dr
½r3PðyÞ� ¼ M�3ðrÞ; (34)

with

PðyÞ � d2yþ 2d3y
2 þ 2d4y

3: (35)

Note that the equations of motion are a total
r-derivative. This is a consequence of the shift invariance
� ! �þ c of the Lagrangian, which has an associated
Noether current J�, in terms of which the equations of
motion take the form @�ð�J�Þ ¼ 0. We may therefore

integrate the equations of motion once to obtain

PðyÞ ¼ M

4�r3
: (36)

We now study the existence of spherically symmetric
solutions, and the resulting constraints on the coefficients
d2, d3, d4. Our boundary condition is that � approaches a
constant as r ! 1. The other boundary condition is fixed
by the delta function at the origin. Focusing on small r,
(36) yields

�03

ð1þ �02Þ3=2 d4 ¼
M

8�
: (37)

This determines a finite value for �0 at the origin, and
therefore implies that � must also be finite there. Since the
absolute value of the prefactor in front of d4 on the left
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hand side is always less than unity, we then obtain the
constraint

jd4j> M

8�
: (38)

This constraint is unique to the DBI action—no such
constraint arises in the usual Galileon theories. The
fourth-order term dominates at short distances, and its
nonlinearities render � finite at the origin. In particular,
therefore note that there are no spherically symmetric static
solutions in the pure DBI model, for which d3 ¼ d4 ¼ 0.

As we have demonstrated, �0ðrÞ ranges from some finite
nonzero value at r ¼ 0, to zero as r ! 1 (since � itself
goes to a constant). Thus, the variable y ¼ 	�0=r ranges
from infinity to zero as r ranges from zero to infinity (we
will see shortly that it does so monotonically).

As r varies from the origin to infinity, the right-hand side
of (36) ranges from zero to infinity, so the cubic polyno-
mial on the left must do so as well. Looking at small y,
along with the requirement d2 > 0 for a healthy kinetic
term, tells us that PðyÞ intersects the origin and is mono-
tonically increasing near the origin, and hence that y as a
function of r is monotonically decreasing in the same
region. As y gets larger (r smaller, PðyÞ larger), the solution
for yðrÞmust continue to exist and be smooth, which means
that PðyÞ must not have any of its critical points in the
region y > 0. Thus, PðyÞ monotonically increases for
y > 0, and hence yðrÞ is monotonically decreasing for
r > 0. Looking at the form of y, this implies in turn that
�0ðrÞ is monotonic, ranging from some finite value to zero
as r goes from zero to infinity. Integrating, we see that�ðrÞ
is monotonic as well.

The condition we have then is

P0ðyÞ ¼ d2 þ 4d3yþ 6d4y
2 > 0; for y > 0: (39)

Focusing on large y implies that d4 � 0, so that we can
now remove the absolute value sign in (38). We already
know that d2 > 0, from the requirement of a healthy
kinetic term, but it is worth pointing out that a direct
implication of (39), applied at small y, is that spherical
solutions do not exist for a ghostlike theory with d2 < 0.
Furthermore, we are safe if the minimum of P0ðyÞ occurs
above zero, which happens if

jd3j<
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
d2d4

s
: (40)

Otherwise, the largest root of P0ðyÞ must occur for y � 0,
which happens if d3 � 0.

In summary, the flat space theory is ghost-free and
spherical solutions exist if and only if

d2 > 0; d4 >
M

8�
; d3 >�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
d2d4

s
: (41)

IV. STABILITY

The existence of spherically symmetric solutions is, of
course, not sufficient to guarantee viability of the theories
in question. The next test is to examine the stability of
these solutions. To do this, we expand the action in pertur-
bations around the spherical solutions

�ðxÞ ¼ �0ðrÞ þ ’ðxÞ; (42)

and isolate the terms quadratic in ’. These terms take the
form

S’ ¼ 1

2

Z
dt

Z
d2�

Z 1

0
r2dr½KtðrÞ _’2 � KrðrÞð@r’Þ2

� K�ðrÞð@�’Þ2�; (43)

where overdots denote time derivatives, ð@�’Þ2 ¼
ð@�’Þ2 þ 1

sin2�
ð@
’Þ2 is the angular part of ð ~r’Þ2, and

the kinetic coefficients K depend on r through the back-
ground radial solution �0ðrÞ and its derivatives. Note that
the quadratic action contains only second derivatives
acting on the perturbations. This is because the field equa-
tions are second order, despite the fact that the Lagrangian
is higher derivative, as we mentioned earlier.
In order for the solution to be stable, eachKiðrÞ (i ¼ t, r,

�) must be positive for all r > 0. If Kt is negative in some
region, then localized excitations will be ghostlike and will
carry negative energy. If either of Kr, K� are negative in
some region, then it is possible to find localized perturba-
tions for which gradients lower the energy of the back-
ground solution. This kind of instability, associated with
negative gradient energy for certain classes of fluctuations,
is more troublesome than a tachyonlike instability associ-
ated with a negative mass squared term or upside down
potential. A tachyonlike instability is, like the Jeans insta-
bility, dominated by modes with momenta of order the
tachyonic mass scale, which can be parametrically smaller
than the UV cutoff, and thus computable within the effec-
tive theory. By contrast, the gradient instability can be due
to very short wavelength wave-packets with high momen-
tum. Thus, this instability also plagues fluctuations right
down to the UV cutoff of the theory, so that quantities such
as decay rates are dominated by the shortest distances in
the theory, and cannot be reliably computed within the
effective theory.
To obtain explicit expressions for the functionsKiðrÞ, we

expand the equations of motion to linear order in ’

E½�0 þ ’� ! �S’

�’
¼ �KtðrÞ €’þ 1

r2
@rðr2KrðrÞ@r’Þ

þ K�ðrÞ@2�’; (44)

where @2� ¼ 1
sin�

@
@� ðsin� @

@�Þ þ 1
sin2�

@2

@
2 is the angular part

of the Laplacian.
We begin with the radial perturbations, and find Kr

simply by perturbing the radial Eq. (34), using a perturba-
tion that depends only on r
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�E ¼ 1

r2
d

dr
½r3P0ðyÞ�y� ¼ 1

r2
d

dr
½r2P0ðyÞ	3’0�: (45)

From this, we read off

KrðrÞ ¼ 	3P0ðyÞ: (46)

From (39), we then see that if the solution exists, then KðrÞ
is automatically positive, since 	 > 0.

Now turn to the angular perturbations. To find K�, we
vary the full Eqs. (24), allowing the perturbation to depend
only on angular variables, and keeping in mind that the
background depends only on r. Using the following useful
expressions

�½�n� ¼ n�0n�1

rn�1
@2�’; �½�n� ¼ 0; �	 ¼ 0;

(47)

it is simple to show that

K�ðrÞ ¼ 	

2r

d

dr
½r2P0ðyÞ�: (48)

Recall that the coefficient d5 does not enter in either Kr or
K�, because we are still considering static configurations,
for which the fifth DBI term vanishes.

Lastly, we consider the temporal perturbations. We find
Kt by varying the full Eqs. (24), this time allowing the
perturbation to depend only on time. Once again, some
useful expressions

�½��¼� €’; �½�n�¼0ðn>1Þ; �½�n�¼ 0; �	¼0;

(49)

allow us to show that

KtðrÞ ¼ 	

3r2
d

dr
½r3ðd2 þ 6d3yþ 18d4y

2 þ 24d5y
3Þ�:
(50)

We see that d5 enters here for the first time, since we have
deviated, at last, from static equations.
As we have written them, the functions KiðrÞ depend on

	, r, dydr and y. However, we may eliminate dy
dr in favor of y

by using the implicit function theorem on the function
Fðy; rÞ ¼ PðyÞ � M

4�r3
¼ 0. This yields

dy

dr
¼ � @rF

@yF
¼ � 3

r

PðyÞ
P0ðyÞ :

Substituting this into our expressions for the KiðrÞ, we
obtain

Kr ¼ 	3½d2 þ 4d3yþ 6d4y
2�;

K� ¼ 	

�
d22 þ 2d2d3yþ ð4d23 � 6d2d4Þy2

d2 þ 4d3yþ 6d4y
2

�
;

Kt ¼ 	

�
d22 þ ð4d2d3Þyþ 12ðd23 � d2d4Þy2 þ 24ðd3d4 � 2d5d2Þy3 þ 12ð3d24 � 4d3d5Þy4

d2 þ 4d3yþ 6d4y
2

�
:

(51)

Note that the explicit r dependence has canceled out.
Since the solution spans all positive values of y as r

varies from zero to infinity, we require Kt and K� to be
positive for all y > 0. The denominators in (51) are auto-
matically positive, from (39). Given the constraints (41),

the numerator in K� is positive for d3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 d2d4

q
, which

also ensures that the numerator in Kt is positive provided

d5 � 3
4

d24
d3
.

The radial solution therefore exists and is stable if and
only if

d2 > 0; d4 >
M

8�
; d3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
d2d4

s
; d5 � 3

4

d24
d3

:

(52)

V. PROPAGATION SPEED OF FLUCTUATIONS

As a final test of the viability of the DBI Galileon
theories, we consider the propagation speeds of small
fluctuations around the stable spherical solutions. For ra-
dially propagating fluctuations, this speed is

c2r ¼ Kr

Kt

: (53)

At large distances from the source (small y), this becomes

c2r ¼ 1þ 4
d3
d2

yþOðy4=3Þ> 1; (54)

where here and in what follows we express 	 in terms
of y via

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2y2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
M

4�PðyÞ
�
2=3

y2

s
: (55)

Therefore, given the constraints implied by existence and
stability of the solutions, this is always superluminal.
At smaller distances (larger y), the speed is

c2r ¼ 3d24
3d24 � 4d3d5

�
1�

�
M

8�d4

�
2=3

�
þO

�
1

y

�
; (56)

so the propagation speed is subluminal in this region if
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d5 <
3d24
4d3

�
M

8�d4

�
2=3

: (57)

The speed of angular excitations is

c2� ¼ K�

Kt

: (58)

The difference between the numerator and the denominator
is, apart from an overall positive factor,

K� � Kt ��2d2d3y� ð8d23 � 6d2d4Þy2
� 24ðd3d4 � 2d2d5Þy3 � 12ð3d24 � 4d3d5Þy4:

(59)

Given the constraints (52), this is always negative,
so the speed of angular excitations is always subluminal.
Also, the angular speed goes to zero as r goes to zero. The
radial and angular speeds for a sample solution are shown
in Fig. 1.

Certainly the existence of superluminally propagating
modes raises questions about the viability of Galileon DBI
theories. Whether such a feature is really a problem that
conclusively rules out a low-energy effective theory is still
being debated [25–27], but it has been argued that, at the
least, it may preclude the possibility of embedding the
theory into a local, Lorentz invariant UV completion [28].

VI. CONCLUSIONS

The DBI Galileon theories establish a natural general-
ization of, and connection between, the Galileon and DBI
models through their higher-dimensional realizations and
brane actions. In this paper, we have studied spherically
symmetric solutions to the DBI Galileon models, demon-
strating that there exists a range of parameters in which
such solutions exist. We have also examined the stability of
these solutions and computed the propagation speeds of
perturbations around the solutions. While we have found
that there exists a region of parameter space in which our

solutions are stable, we have shown that these solutions
always exhibit superluminal propagation. Such behavior is
familiar from that of the ordinary Galileon theories. Thus,
although one might have thought that the 	 factors appear-
ing for DBI Galileons could cure the superluminality is-
sues, the results we find here indicate that they do not.
We have worked in dimensionless units, which corre-

sponds to setting to unity a scale, �, suppressing all the
nonlinearities in the Lagrangian. In addition, we have
absorbed into the stress tensor a scale, Mp, representing

the coupling strength. Restoring these scales, the condition
(38) tells us d4 * M=Mp, so in gravitational applications,

where M is the mass of the Sun and Mp the Planck mass,

this tells us that d4 must be huge, of order the solar mass in
Planck units. One might worry that this necessitates strong
coupling, but this is not the case because the coefficient d2,
which multiplies the kinetic term, may also be chosen to be
very large, so that after canonical normalization the true
couplings are still small.
To see the consequences of this, consider expanding

the action with the scale � restored. The DBI term

reads schematically d2�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

�4

q
� ð@�̂Þ2 þ 1

d2�
4 �

ð@�̂Þ4 þ � � � , with the canonically normalized field �̂ ¼
d1=22 �. The scale suppressing the nonlinear terms here is

d1=42 �. Similarly, the quartic Galileon term is, schemati-

cally, d4½1þ ð@�Þ2
�4 þ � � �� 1

�6 ð@2�Þ2ð@�Þ2 ¼ d4
d2�

2
1

d2�
4 �

ð@2�̂Þ2ð@�̂Þ2 þ d4
d2�

2
1

d2
2
�8 ð@2�̂Þ2ð@�̂Þ4 þ � � � , which means

that the strong coupling scales are ðd22d4Þ1=6�, ðd32d4Þ1=10�; � � � .
Since d4 is so large, keeping the lowest strong coupling
scale reasonably high requires choosing d2 large, say
d22 � d4, in which case all the higher order DBI scales

are much higher (corresponding to small coupling), and
the theory becomes very similar to the ordinary Galileons,
explaining why we find conclusions similar to the conclu-
sions in that case. In addition, note that the coupling to the
stress tensor, in terms of the canonically normalized field,
is � 1

d1=2
2

Mp

�̂T, so that the true Planck mass is actually

�d1=22 Mp, and the necessary size of d4 is actually larger

than the solar mass in physical Planck units.
On the other hand, in some situations, it may be too

much to demand that the spherical solutions exist for all r.
For example, if � represents the fifth coordinate of a brane
embedding, we should not expect that the brane con-
figuration should be everywhere expressible as a single
valued function of the four coordinates x� (the solutions
of [29–32] are examples of this). In this case, the restric-
tions on the coefficient d4 may be relaxed.
DBI Galileon theories therefore, like the ordinary

Galileons, face a challenge from the superluminal propa-
gation of perturbations around simple spherically symmet-
ric solutions. Whether these theories are viable depends on
the development of an argument that this superluminality

FIG. 1. Speed of fluctuations c2r and c2�, in the radial and
angular directions, respectively, for a sample solution satisfying
the existence and stability constraints (52), as well as (57). The
values chosen are d2 ¼ 1, d3 ¼ 2, d4 ¼ 1, d5 ¼ �1, M ¼ 1.
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does not lead to the pathologies that are traditionally
associated with this behavior, or whether a modification
to the theory or its couplings to matter or gravity can
eliminate this behavior. If the effects of gravity are taken
into account, it should be mentioned that the coupling of
Galileons to gravity is nontrivial if one wishes to keep the
equations of motion second order [33,34], and the issue of
superluminality should in principle be reexamined in the
full covariant context, though the effects should be Planck
suppressed. It should be straightforward to extend these

results to anti-DBI type theories [35,36], which do
not necessarily have a higher-dimensional brane
interpretation.
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