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Abstract

A new class of control algorithms — “mirror algorithms” — gives rise to experimentally observed juggling behavior in a simple
robotic mechanism. The simplest of these algorithms (upon which all the others are founded) is provably correct with respect to
a simplified model of the robot and its environment. This paper reviews the physical setup and underlying mathematical theory,
discusses two significant extensions of the fundamental algorithm, provides data from our successful empirical verifications of these
control strategies. and briefly speculates upon the larger implications for the field of robotics.

1 Introduction

We have built a one degree of freedom robot capable of juggling
two pucks falling freely on a frictionless plane inclined into the
earth’s gravitational field. The robot responds sensibly to logi-
cally distinct eircnmstances: when it senses the presence of one
puck it will attempt to juggle the single body into a prescribed
periodic motion; when it senses the presence of a second body it
will attempt to adjust the intervals of time between and veloc-
ity of impacts with both bedies until they reach the prescribed
periodic trajectories with the desired phase angle relationship
between them. The juggling algorithm works on the princi-
ples of feedback theory and implements what might be called
“visual servoing:” the sensor based algorithm translates puck
states into an online reference trajectory for the robot controller
via a carefully chosen nonlinear function. Thus, the robot is
“programmed” using a mathematical formula rather than an
expert system or some other “syntactic” means. It succeeds
over a wide range of initial puck locations and recovers grace-
fully from unexpected perturbations of the puck states during
flight.

This paper reviews the experimental setup and abstract
theory we have developed. It describes the geometric con-
structs underlying the mathematical formulae that comprise
the robot's “program.” It presents raw data as well as sta-
tistical summaries {rom extensive experiments attesting to the
physical validity of this new class of algorithms that we call
“mirror” laws. Beyond the level of simple visceral pleasure af-
forded by machine juggling, we believe that the experiments
and mathematical reasoning presented here offer the rudiments
of a general approach to many other classes of robotic tasks. It
seems worth pausing to motivate such claims before proceeding
with the subject proper.

1This work hias been supported in part by PMI Motion Technolo-
gies, INMOS Corporation and the National Science Foundation under
a Presidential Young Investigator Award held by the second author.

1.1 Geometric Robot Programming

A central theme of this paper {and, indeed, our general program
of research in robotics {11, 12, 13)) is the desirability of trans-
lating abstract user defined goals into phase space geometry for
purposes of task encoding and control. A number of advantages
atise from the absence of logic implemented in some more or
less formal syntax. First, physical robots and the environments
within which they must operate are dynamical systems. Thelr
coupling via functional relationships admits some possibility of
correctness proofs (as evidenced below) while the recourse to
syntactic prescriptions all but eliminates that hope (for exam-
ple, see the related discussion in [2]). Second, there is good rea-
son to expect that careful attention to the (provable) geometric
invariants of a particular task domain will Teveal general prop-
erties required of any successful controller. These would need
merely be “instantiated” by the appropriate change of coordi-
nates (for example, as in [19]), thereby solving an entire range
of problems with one controller structure. Although properly
modular software is re-usable, one is hard pressed to imagine
a careful study of the code itself revealing whick modules are
essential. Further nore, we have consistently experienced less
brittle modes of failure and decreased sensitivity to modeling
errors in experiments using geometrically expressive control al-
gorithms in comparison Lo experiments with more syntactically
expressive laws, The insensitivity to noise and unexpected per-
turbations and the strong stability properties of our juggling
algorithms are apparent from the experimental data presented
in Section 2.3 and 3. Finally, the geometry is intrinsic to the
problem and does not commit the controller to a particular
computational model. Logical statements, in contrasi, are in-
timately wedded to a discrete symbolic model of computation
that best fits a digital computer equipped with a computer
language. Yet the contemporary hegemony in information pro-
cessing of digital computers may represent a brief interiude in
the history of technology. Moreover, those roboticists who lock
to biological systems for inspiration (or who, more radically,
treat their robots as plausibility models of biclogical organiza-
tion) will surely not be content with the grip of logic. and syntax
upon their field,




The apparent disadvantage of geometric task encoding rel-
ative to syntactic prescriptions is a dramatic reduction in ease
of expression. Whether or not the robot’s and environment’s
dynamics will “understand,” at least we think we know wlhat
we mean when we write down if-tlien-clse statements in our
favorite programming language. Thus, a central alm in the
presentation below is the demonstration that even complicated
goals involving some combinatorial component (as does the
two-juggle in Section 3.1} may be readily expressed via the ap-
propriate geometric formalism. The intuitively generated ex-
tensions to the fundamental mirror algorithm of Section 2.3
described and tested in Section 3.1 and 3.2 have as yet no bet-
ter claim to analytical origins than any old computer program.
But, by the same measure, their generation has been no more
arcane than writing code in any new computer language.

We do not seriously expect that all robot tasks at any level
can or should be forced into the geometric formalism developed
here. However, we feel that this approach is particularly suited
to robotics in an intermittent dysamical environment,

1.2 Intermittent Dynamical Environments

There is a large and important range of robotic problems re-
quiring systematic interaction with physical objects governed
by independent kinematics and dynamics whose characteristics
change subject to the robot’s actions. The first systematic work
in this task domain has been the pioneering research of Raibert
whose careful experimental studies verify the correctness of his
elegant control strategies for legged locomotion [18]. McGeer
has successfully used local linearized analysis to build passive
{unpowered) walking robots [17, 16], and feels that similarly
tractable analysis should suffice for controlling running ma-
chines as well [15]. Wang [21} has proposed to use the same
local techniques for studying open loop robot control strategies
in intermittent dynamical environments, although his ideas re-
main to be tested. Research by Atkeson et al. on juggling 1]
suggests that task level learning methods may relieve dynam-
ics based (or any other parametric) controller synthesis meth-
ods of the need to achieve precise performance requirements as
long as a basically functioning system has been assured. Thus,
increasing numbers of researchers have begun to explore the
problems of robotics in intermittent dynamical environments
with increasingly successful results.

Our work is principally inspired by Raiberl's success in tap-
ping the natural dynamics of the environment to achieve a task.
We have previously shown via analysis similar to that reviewed
in this paper [10] that (a greatly simplified version of) Raib-
ert’s hopping algorithm {18] is correct. Thus convinced of its
value, we have borrowed Raibert’s idea of servoing around a
mechanical energy level to produce a stable limit cycle, and
will demonstrate below that this procedure accounts for the
success of the fundamental mirror algorithm as well. Its ex-
tension to the problem of juggling two bodies simultaneously
may, in turn, have significance with respect to problems of gait
in legged locomotion. Presumably, our robot “settles down”
to a characteristic steady state juggling pattern because that
pattern is an attracting periodic orbit of the closed loop robot.
environment dynamics. Very likely, similar “natural” control

mechanisms would make good candidates for gait regulation.
We have proven only that this presumption is correct for the
case of a single puck on our juggling plane. The proof of the
two puck case is currently in preparation, Establishing the for-
mal connection to gait mechanisms will obviously require more
work.

Further, we believe that the successful control by a one de-
gree of freedom robot of a two and a four degree of freedom
intermittent dynamical environment has implications for gen-
eral robot manipulation of objects in the absence of “guarded
moves.” Prior to the static grasp phase wherein the myriad
robot degrees of freedom may be simultaneously engaged to
control a (typically) six degree of freedom object there must
be a “fumble” phase — a series of controlled collisions involv-
ing unpredictable combinations of the robot link surfaces and
the surfaces of the object. During a fumble, far fewer robot
degrees of freedom may be engaged with the environment, and
only intermittently. We show by experiment below (but have
not yet formally proven} that a variation of the mirror algo-
rithm used for juggling results in a quick stable “catch.” More-
over, by “juggling” the puck into a specified orbit, a catch may
be effected at any portion of the robot’s link surface. Mason
and colleagues have studied carefully manipulation involving
impact with a dynamical environment |i4, 20, 231 and have re-
cently begun the study of impacts with intermittent dynamical
environments in the absence of sensors as well {9, 22]. There
is presumably a clear relationship between these theories: its
elucidation would strengthen the applicability of each.

1.3 Organization

This paper is organized as follows. Section 2 summarizes cur
analytical and experimental results concerning the original mir-
ror algorithm that achieves a simple vertical one-juggle. Much
of the material has appeared (or will appear) in other publi-
cations to which we will refer where appropriate. The central
contributions of this paper are made in Section 3 where we de-
scribe work in progress generalizing the original algorithm. We
present working mirrer-like algorithms for juggling two pucks
with a one degree of freedom actuator and for catching objects
that are falling freely in the gravitational field.

2 The Mirror Algorithm for a Vertical
One-Juggle

This section summarizes work reported elsewhere {4, 6, 5, 7}
concerning the fundamental mirror algorithm. Section 2.1
presents our experimental setup and a simplified mathematical
model. In Section 2.2 we first introduce the vertical one-juggle
task. We then demonstrate that, assuming the availability of
perfect state information at each successive impact, it Is logi-
cally achievable. Sensory information concerning the state of
the puck at impact being very difficult to obtain in reality, we
will develop in Section 2.3 for purposes of robot implementation
a contral strategy which uses continuous free flight information
about the body. After a summary of analytical results showing
that this strategy ~- the “mirror algorithm” — is correct, we
present physical demonstrations of working one-juggles.




2.1 Robot and Environment Models

Here we state the “environmental control problem,” which en-
ables us to pose and solve robot jugpling tasks as formal prob-
lems in control theory. We fecl this analysis is central to under-
standing how robotic tasks in this domain may be planned and
effected. For tractability, our analysis is based on the discrete
puck states just before hpact, and therefore examines a map
between impact states as a {unetion of discrete robot inputs at

those impacts.

2.1.1 Experimental Apparatus
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Figure 1: The Yale Juggler

The physical apparatus consists of a puck, which slides on an
inclined plane and is batted successively by a simple “robot:”
a bar with billiard cushion rotating in the juggling plane as
depicted in Figure 1. All intelligent sensor and controller func-
tions are performed by a four node distributed computational

network formed from the INMOS transputer based Yale XP/DCS

control node [8). Implementation details describing how the
computational resources are mapped to the mechanical hard-
ware can be found in [6, 5%

2.1.2 Mathematical Model

We now motivate and present without further derivation a sim-
plified model of our apparatus which abstracts away as much
of the extraneous physics as is possible while retaining the es-
sential aspects of a robot and environment whose dynamics are
intermittently coupled. For a more complete discussion and
formal derivation of this model we refer to [5]. The vindication
of our claim to have retained the essential aspects, of course, is
only possible by recourse to physical experiment, and will be
~ provided in Section 2.3.3.

A puck trajectory with a puck-robot collision is depicted in
Figure 2. We will use this figure to informally introduce the
notation used in the model and the remainder of the paper.
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Figure 2: The Impact Event

The configuration space of the entire problem is the cross
produet, € £ B x R, of the body and the robot configura-

tions. We will model the robot’s configuration space as R 2
[-7/2,%/2) C R, which we restrict to a half revolution, since
for present purposes, it will suffice to consider only those loca-
tions of the bar in the right half of the juggling plane for which
the hitting billiard cushion is facing up. We will represent the
location of the falling body on the plane B = IR? with the co-
ordinates b 2 [bs b;}T denoting, respectively, the position of
its centroid relative to the horizontal and vertical axes of the
reference frame, Fg.

In isolation, the robot’s dynamics occur in its phase space,

vV ERx IR, of angular positions and velocities, and may
be modeled by the standard double integrator forced by com-
manded torque. In isolation, the puck’s dynamics occur in
its phase space, W £ B x It?, and may be modeled simply
by the equations of free flight in the earth’s constant gravita-
tionat field. In reality, there is noticeable coulomb friction on
the sliding plane, and we have found it interesting to compare
numerical simulations of the robot control laws in the ideal-
ized frictionless environment with the same strategies run in
the more realistic simulation model with friction, as against
empirical data, The coupling of robot and puck dynamics is
represented by a collision map, c, that takes the 4 priori puck-
robot states at contact, (v =(rM) eV w=(bb) € W), into
the new puck velocity vector after contact,

B =e () (5,7),

making the simplifying assumption that the nature of energy
loss and momentum exchange can be captured via the coef-
ficient of restitution, a. This model is derived carefully in
[4, 6, 5].

The future trajectory of the body in W subsequent to an
impact event may now be readily derived (as a function of the
puck-robot states just before impact, w, the robot velocity at
impact, #, and the time of flight, 1) by integrating the free flight



(i) w € T, the vertical one-juggle tusk set, where

Tizk{weﬂ-‘:bg:ﬁ, 6;20}.

(i) glwt) = v £ [ - }z};.
t+a
Notice that 7 corresponds exactly to those constant set
points which our intuitive thinking leads us to understand would
cause a purely vertical periodic puck trajectory which returns
to the same apex point again and again. Thus we call any set
point w* € T a vertical one-juggle task .

But it is not enough to merely achieve a vertical one-juggle
fixed point. We must insure as well that perturbations away
from the desired behavior are dissipated. We now ask which
vertical one-juggle task points, w* € 7, can be made asymp-
totically stable fixed points of (3) by an appropriate choice of
g. The following result shows the answer to be: all points in
the vertical one-juggle task set may be stabilized.

Proposition 2.2 ({5]) If
weT

and ¢ fires w", flw} = w*. (8) then system (2} is locally
controllable al (w™,g{w™}).

Since the local linearized system around any fixed point
w* € T is controllable, it follows from linear control theory,
that for any desired set of poles whose complex elements appear
in conjugate pairs,

A=), CG

there exists a matrix, K € HM**" such that the linear affine
state feedback law,

g(w) 2wt + Kplw - w) (4)

places the poles of the linearized closed loop system at A. Thus
we have shown that the vertical one-juggle is logically achiev-
able.

2.2.3 Missing: A Solution to the Robot Contrel Prob-
lem

This discrete analysis confirms the intuition that only state
information at impact should be required for a successful jug-
gling algorithm — that full trajectory information is redundant.
Conceptual appeal notwithstanding, in reality state informa-
tion at or very near the impact event is exceedingly difficult
to measure. Moreover, we have said nothing yet concerning
the ability of the robot to realize any particular feedback strat-
egy, g, much less one which stabilizes a desired set point, w*:
it is completely up to the designer to solve the robot control
problem and achieve an approximation to the required impact
strategy. Finally, employing affine feedback (4} guarantees only
local asymptotic stability: it is not clear how to enlarge the
domain of attraction around the fixed point sufficient for the
approptiate equilibrium state to be observed in the physical

world. In a previous paper [7] we have reported our failure
to achieve experimental suceess with any implementation of a
locally stabilizing feedback strategy (4), essentially for these
reasons.

Evidently, missing still from our physical model of the task
itself is an account of how the robot dynamics should be coupled
to the environment’s reaction. The environmental control prob-
lem ignores the robot control problem and we must seek some
further algorithmic procedure for generating a robot controller
capable of inducing effective abstract feedback strategies, g.

2.3 The Mirror Algorithm

We now introduce the mirror algorithm which meets the desider-
ata of the previous paragraph. In Section 2.3.1 we provide an
intuitive motivation for the mirror law, We review our analyt-
ical results concerning this algorithm in Section 2.3.2. Finally,
the last section attests to the empirical relevance of our find-
ings.

2.3.1 Intuitive Molivation

Intuitively, two different ideas are combined to produce an algo-
rithm that is implemented by recourse to standard trajectory
tracking techniques. First, we “reflect” the continuous puck
trajectory in w(?) into a “distorted mirror image” reference
trajectory for the robot r which is “favorable” to the task at
hand. In the specific case of our planar juggler, as depicted
in Figure 1, the robot is forced to track the distorted “puck
angle,” 8 = aian%f , to control the puck’s vertical motion, mod-
ulo a PD feedback term for stabilization around a fixed desired
horizontal position, (b‘{,f:’; =9),

r=—plw) = —k1{wif + k(b ~ b7) + Koab. {5)

Both ky; and ka; are fixed constant gains.

Second, in order to stabilize the vertical periodic motion we
borrow from Raibert [18, 3] the idea of modifying the robot’s
trajectory by “servoing” on the discrepancy between the {con-
stant) total mechanical energy of the puck in its desired steady
state, n(b3,b3), and the (constant during flight, as we neglect
friction) currently measured value (b2, by):

. & -
f1{w, w™) = k10 + Kn[n(w”) - p{w))
Here K¢ is determined by the fixed point condition, and %y is

again a fixed constant gain. A more complete intuitive account
of this mirror algorithm is provided in {5, 6].

2,5.2 Formal Results

In this section we will present a summary of analytical results
that are taken from the complete presentation in [5]. When the
robot has achieved the reference “mirror” trajectory described
above then the puck and robot trajectories lie on a “mirror
surface,” M C W x R, in the cross product phase space,

ME (0,5 (r) € Wx v (r,7) = (u(b, D) e, 0) }




Formally, this is specified as the graph of the function p(w) (5)
and its derivative along the motion of the puck.

Examination of the intersection between A and the veloci-
ties over the contact set, where # = r, reveals how to choose the
gain kg in (5) to achieve the fixed point conditions of Propo-
sition 2.1 for any w* € 7. A central result, 5, Proposition
5.2], shows via projection of this intersection onto WV, that the
robot’s “mirraring” motion induces a three dimensional invari-
ant submanifold of the environmental control system {2}. In
consequence, (5, Corollary 5.3], the local stability behavior of
any valid vertical one-juggle task, w™ € 7, may be adjusted by
the appropriate choice of gains in {5).

Although this result obtained from ihe linearized system
provides a format proof of correctnes of the mirror algorithm,
it does not furnish a characterization of the domain of attrac-
tion. Such information is very important, as local stability
by itself does not guarantee a successful practical implemen-
tatjon without a sufficiently large basin of attraction, While
a nonlinear analysis of the planar juggler operating under the
mirror algorithm is presently incomplete, we have achieved the
analogous result for a simplified version of our juggler: a one
degree of freedom robot operating in a one degree of freedom
environment. These results provide us with more insight into
the qualitative behavior of the higher dimensional system, and
suggest how to achieve the nonlinear analysis.

2.3.3 Empirical Verification

We now present a direct application of the mirror algorithm for
the vertical one-juggle implemented by the revolute robot in a
two degree of freedom envirenment. We will compare experi-
mental results obtained using the apparatus described in Sec-
tion 2.1.1 with computer simulations of the models developed
in Section 2.1.2. First, we review the manner in which the the-
oretical understanding developed in Section 2.3.2 informs our
setection of gains.

The horizontal impact position and the apex point (via the
vertical impact velocity) of the desired vertical one-juggle are
determined by the selection of an appropriate fixed point. In
the data displayed below, we have chosen

5 11 inches
w" = ¢ 1= 0
0T 0
by —125 inches/sec

The analytical results guarantee that for this fixed point, the
vertical one-juggle task is achievable. Exact tracking of the
mirror function {5) induces an environmental feedback strat-
egy, whose closed loop dynamics defines a three dimensional
invariant submanifold in the four dimensional phase space of
the puck, W, that contains the desired fixed point, w*. The
analysis also reveals how to choose the specific gain settings in
order to keep all poles inside the unit circle. We have chosen
the following gain settings,

Ky = 30 - 10_6; Koy = 5+ 10_3; Kpp = Kpy = 7 10”3,

in the data displayed below. The coeficient of restitution, a,
was experimentally found to be 0.7. The resulting linearized
system has the poles

A 2{-0.35 021, 0.18}.

Since these fie within the unit cirele of &, w* is an asymptoti-
cally stable fixed point.

Figure 3, a “recording” of a successful vertical one-juggle
nicely depicts the rapid convergence for initial conditions {in
drop-ofl position) from a large region within the puck’s work-
space. Since the global analysis is still incomplete, we have not
tested the exact extent of the domain of attraction. It is likely,
as in the one degree of freedom case that w* is not, in general,
globally asymptotically stable. Notice, even at steady state,
that the impacts do not occur at zero height, but rather at a
fixed offset: this is an artifact of the non-zere puck radius and
the robot dimensions ignored in the simplified model. Despite
these departures from the idealized model and the relatively
large sensor noise it may be observed from this and the subse-
quent plots that our algorithm produces steady reliable juggling
performance. We have recorded vertical one-juggle runs with
hundreds of impacts without encountering any failures.
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Figure 3: Sample continuous data

Figures 4 and 5 compare the responses of the analytical
model with and without friction with the responses of our ex-
perimental setup for two different initial conditions, The steady
state values in the horizontal position, &y, are very close around
the desired value for all three curves. The plots of the vertical
impact velocity, by, exhibits that, first, as we expected the efl-
fect of the unmodeled friction is a steady state deviation, which
second, is rather accurately predicted by the model augmented
with friction. Examining the translents, notice that the ex-
perimental transient responses for b, (lower plots) consistently
match the responses of the model with friction, as expected.
However, for b; {upper plots) the experimental transient re-
sponses are closer to the much faster transient model responses
without friction than to those of the model with friction. This
latter positive effect is not completely understood at present.
We suspect that the unmodeled effect of spin on the impact
might be responsible for this benign discrepancy.
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3 Applications

We now present two extensions of the vertical one-juggle mirror
algorithm described in the previous section. We pose two new
tasks. The vertical two-juggle task discussed in Section 3.1 in-
troduces new aspects of timing and combinatorial choice to the
problems of intermittent dynamical environments that we feel
are closely related to issues of gait regulation in legged locomo-
tion. The catch task discussed in Section 3.2 has significance
for the “fumbling” stage of robot manipulation. Beyond the in-
trinsic interest of both extensions, their presentation affords the
opportunity for a more detailed examination of the geometric
programming methodology implicit in the original mirror law
as described in the introduction.
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3.1 The Two-Juggle

Qur first — and most obvious — generalization of the one-
juggle is the “two-juggle:” the task of simultaneously keeping
two pucks on either side of the juggling plane in a specified
periodic orbit by repeated impacts. A successful two-juggle al-
gorithm must intermittently control the horizontal impact po-
sitions and vertical impact velocities of the two pucks, their
phase angle separation and, in addition, must resolve the one
degree of freedom robot’s kinematic restrictions. In this sec-
tion we will describe how the one-juggle mirror algorithm can
be extended in a straightforward fashion to achieve the two-
juggle. The resulting algorithm maintains the pure geometric
features of the original mirror law in that it maps the continu-




ous phase space trajectory of boll pucks shmultaneously into a
reference trajeclory in the robot’s phase space. There is no ex-
plicit use of time, and there is no logical syntax. The extended
algorithm experimentally exhibits global convergence and ro-
bustness properties in its four degree of freedom case similar
to those of the original mirror algorithm in the two degree of
freedom case. We suspect that a very similar analysis will go
through as well but have not yet attempted a rigorous stability
investigation. Moreover, as stated in the introduction, we an-
ticipate that some of the insights developed here will generalize
to the problems of active gait stabilization in legged locomo-
tion. \We have not yet pursued these connections.

3.1.1 Extending the Mirror Law

The two-juggle task can be loosely described as follows: Per-
form two one-juggles, wy and w,, one on each side of the juggling
plane with

-b; b

w‘ = 0 u!' = 0
4 0 3 r 0 ’

b3 b3

while maintaining a specified time between impacts {phase an-
gle relationship) as well. For simplicity, we shall specify for
this initial implementation that alternative impacts occur max-
imally separated in time. There is a provably correct and em-
pirically verified mirror law, yy 2 ), s & n(w;), (5) for
each puck. An obvious approach to the two-juggle problem
is to prescribe a weighting rule by means of which the robot
can decide which mirror law is more critical at any time. Two
distinct issues arise in the determination of a viable weighting
rule: what to do in an emergency situation when both pucks
are roughly equally needy of attention at once; and what to do
when the pucks are reasonably well separated in phase angle
in order to keep them away from the emergency sitnation. We
loosely refer to the first as the global phase angle problem and
the second as the local phase angle problem.

The Local Phase Angle Control Problem Wecan readily
identily a purely geometric measure of either puck’s phase an-
gle, ¢, that indicates how much of the total trajectory has been
traversed, and does not depend on other state variables, Jike
horizental position, absclute height, or vertical energy n{w) =
%bg + ~be. For '

any puck trajectory maps onto the interval {—1, 1) between im-
pacts (assuming they occur close to zero height), and evaluates
to zero at the apex. A geometric version of the phase angle
error built from this function,

eon = le(un) — e(we)}® - 1,

vanishes when, for example, one puck is at apex and the other
is very near (either just before or after) an impact. The farther
away the two pucks are from the desired phase angie separation,
the larger the phase angle error grows.

When the pucks are well separated in phase angle then their
conflicting mirror laws may be relatively easily satisfied one at a

time. Thus, it makesintujtive sense to allow the robot to track
the original mirror algorithm only when e, is close to zero,
and 1o force the phase angle error back toward zero even at
the temporary expense of the accuracy of either puck’s vertical
one-juggle. This intuition is most simply expressed by adding
the phase angle error term as a perturbation on the original
mirror Jaw (5) as follows,

by (g we, w) = kio + knfn{w*) — n{we )] + kroepn{w, wi ),

while leaving the remainder of (5} unchanged.

The Global Phase Angle Control Problem In an emer-
gency situation, when both pucks are faliing toward the bar
nearly at the same time, it is imperatjve to service the nearest
first yet sacrifice any needed one-juggle performance measures
to the work of restoring phase angle separation. This intu-
ition can be readily implemented by mediating between the
the two reference trajectories from the two puck’s independent
one-juggle algorithm via a “weighting function”,

= a(w:;(-:utf)(wr)’ o) = alwln(w)
a{w) = % - %atun[km(fi: - b20)},

1 1 ;
a{w) = 2 + ;Gfﬂ?![k;;}(—bg)].

The function ¢, constitutes the heart of the global phase angle
separation. With by g and kyz set properly it evaluates to one in
the vicinity the robot and decreases to zero further away. Using
a simple vertical distance works out well due to the simplifying
fact that impacts occur close to b3 = 0, even when the puck
motion is away from the fixed point. The function o, scales
the previous one in a smooth fashion such that weight is only
assigned during the the descending part of the puck trajectory.
The function s then simply normalizes the contributions of oy
and oy.

The Extended Mirror Law The mirror law extension for
the two-juggle may now be written as
Hajug = sp(w:) + (1 - 3) #(wr)‘

In the case of good phase angle separation, each puck gets “full
attention” from the robot close to impact. If the phase an-
gle separation is not good, both pucks can be close to impact
simultaneously, and thus both a{w;) and g{w,} can approach
one. In this case both mirror algorithms p{w;) and uf{w,) will
contribute to the robot reference trajectory in such a fashion
that the puck closer to impact receives more weight. If both
pucks fall identically in phase angle at once (that is, if they
possessed the exact same trajectories, except for a sign reversal
in &), p2jug evaluates to zero and the robot does not move at
all. Both pucks eventually come to rest. This fallure mode is
very rarely observed in practice.

3.1.2 Discussion of Experimental Data

We implemented the two-juggle algorithm as described above
on our planar juggling apparatus. To provide better qualitative




insight into its convergence and robustness properties, we dis-
play in Figure G the vertival positians, &, of the two pucks versus
time (for shplicity, not showing the horizontal positions, b;).
They are dropped simultaneously from slightly different initial
heights. This results not only in initial errors in vertical impact
velocity (and thus height), but also, as can be clearly seen at
the first impact, in very close impacts (large initial phase angle
error}). Subsequent impacts display the recovery from both the
error in phase angle as well as impact velocity. After reaching
steady state, the motion is drastically perturbed again. The
arrow in the plot marks the instance where the ascending puck
was knocked away by hand before its apex. The resulting large
velocity (height) error for tliat puck and the phase angle error
{very close impacts) are obvious {tom the data. Again. steady
state is recovered within roughly five impacts per puck.
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Figure 6: Continuous vertical positions of the two-juggle

Next, we present data plots of the puck states Jjust before
impact. These figures display statistical information {mean
and standard deviations, or min/max) obtained from a num-
ber of successive runs (without handpicking), while also giving
the number of failures encountered. We feel that this presen-
tation offers a closer rendering of true performance than one
based upon a handpicked best run. Such presentation methods
are standard practice in other natural sciences, but seem only
slowly to be entering the field of robotics {17].

The following plots of impact states show the simultaneous
convergence properties in all three initial errors in this fashion.
Both pucks were dropped by hand simultaneously from their
initial positions (b; = —14 inches, b; = 33 inches and by = 14
inches, by = 38 inches for the left and right puck respectively).
During the following one hundred impacts (fifty per puck) each
puck’s horizontal impact position, by, the vertical impact veloc-
ity, by, and the pase error €y, was recorded. This was repeated
for 35 runs. Two runs were discarded because they failed dur-
ing the first five impacts. Al other runs completed successfully.
From the first 30 completed runs we show the mean with er-
ror bars indicating one standard deviation in both directions.
In Figure 7 we see the convergence to steady state within five
impact for the initial transients in horizontal impact positions.
The 1 inch offset for the left puck is readily explained as a

consequence of inaccurately modeling the steady state verti-
cal impact position which depends on the amount Lthe elastic
billard cushion is compressed. Modeling errors translate jnto
shifts in horizontal impact positions. Following, Figure 8 shows
both puck’s convergence to the value predicted by the model
taking friction into account, in a similar fashion to Figure 4 or
5. Finally, Figure 9 shows the simultaneous rapid elimination
of the phase angle error between the two pucks. In all the plots,
the standard deviations, after some increase duriug transients,
stay fairly constant.

Horizontal Impact Position {inches)

1 1 ]
12 -} E)

Left Puck Impacts

Horizontal Impact Position {inches)
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L} 18 : -] xn

Right Puck lapacts

Figure T: Horizontal position impact data of the two-juggle

In addition to the displayed convergence properties this al-
gorithm has further desirable attributes. It runs consistently
for hundreds and hundreds of impacts. Notice {again, in con-
sequence of the geometric nature of the algorithm) at no point
in time does it depend on a single measurement, like flight
time, impact position, impact phase angle error, apex posi-
tions, ete. This means that the system is more tolerant of
noise and measurment errors. Furthermore, during the two-
juggle, one or even two pucks can be manually halted and re-
leased without causing the system to fail. When the first puck
is halted, the second one continues jts motion; as soon as the
first one is released again, the two-juggle continues., All this




is accomplished by no other means than the relatively simple,
smootl algorithmn, gy, described above. There is no addi-
tional higher level decision making or conditional branching as
found in implementations purely characterized by a computer
program. Therefore, not only simple and robust, this approach
lends itself, in a similar fashion as does the one-juggle {5), to
rigorous analysis.
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3.1.3 Alternative Extensions

There are many different approaches Lo the two-juggle which
we could have taken. In fact, the first working implementa-
tion of the two-juggle servoed around the error in flight time.
This error term entered the one-juggle mirror algorithm in the
same fashion as the phase angle error term described above.
The global phase angle separation was accomplished by sim-
ply switching s between one and zero at each impact, While
this resulted in a working implementation that produced good
steady state regulation, it suffered from a number of short-
comings which seem to be typical of algorithms that take time
explicitly into account. It had poor global angle phase perfor-
mance: emergency situations almost always caused a failure.
Moreover, the time based two-juggle is much more brittle: it
cannot tolerate the removal of one or the other of the pucks dur-
ing a run as can the algorithm sketched above. It relies strictly
on the expectation that the two pucks will impact alternatively.
Finally, while the purely geometric extension of the mirror law
does not rely on any single event measure, in the time based
version we must accurately detect the impact events in order to
determine the time between impacts. In the presence of noise
and measurement errors this leads to a more difficult and less
robust implementation. The scheme of switching the mirror
laws at impacts worked well at steady state, with both pucks’
phase angle well separated. It failed with perturbations of mag:
nitudes as displayed in Pigures 6 to 8. The time between the
two close impacts is much too short for the robot to track the
reference trajectory sufficiently well to maintain the two-juggle.

3.2 Catching

In this section we continue our informal application and exten-
sion of the theory of Section 2 to a rather different task domain
— “catching” — which we fee] sets our research off in the di-
rection of dynamical manipulation through the investigation of
fumbles described in the introduction.

Define a catch to be characterized by steady state pointsin
the “catch set,”

AR {{®B),(r,R) thi=rbe=0,by = by =7 =0}, (6)

the points in puck-robot phase space with the same position and
zero velocity. It would be appealing to treat a catch as a partic-
wlar instance of a vertical one-juggle whose apex point happens
10 be at zero height. There are, however, two distinct problems
with this point of view. Operationally, the theory as set out
in Section 2.3.2 may fail since A is contained in the degenerate
set T whereon (2) is not completely controllable according to
Proposition 2.2. Moreover, the vertical one-juggle task is de-
fined in terms of asymptotic convergence to a fixed point. Yet
in the present setting an asymptotic catch (at least to an un-
specified horizontal position on the bar) obtains trivially from
any initial condition (by the strategy of commanding the robot
gripper remain stationary) since the coefficient of restitution is
less than one. We areled fo distinguish asymptotic convergence
1o A from convergence in finite time: borrowing from discrete
time linear control theory, iet us call the latter a “deadbeat
catch.”




We now present in an informal fashion a variation on the
theme of the mirror algorithm which produces a deadbeat catch
in one step. We will display below experimental data attesting
to its efficacy {in the two degree of freedom environment) and
defer to a future paper for its theoretieal justification. For ease
of exposition, consider first a one degree of freedom robot in a
one degree of freedom environment, where r and b represent,
respectively, the robot’s and puck’s vertical position. Consider
the variant mirror law,

Heareh{w) = Kypatan (K1, 8(b)). (M)

Notice, first, that contact between robot and puck will occur if
and only if #(b) = b = r = 0. Taking the derivative of (7) and
evaluating at b = 0 results in

F lo=r=0= KioK11b.

By setting Kjpryy = 1, we not only have satisfied the catch
conditions, but also aceomplish them at r = b = 0. The exten-
sion to our physical revolute robot in the two degree of freedom
environment is readily accomplished: now r denotes the robot
angle and @, the body angle as defined previously. With this
change of notation, the same insights apply as above.

As mentioned above, a deadbeat catch is possible in the
two degree of freedom environment only to the horizontal pesi-
tion on the robot’s bar corresponding to that of an initial drop
state with zero horizontal velocity. With a mind toward even-
tual applications to general rabot manipulation, we now point
out that the two task capabilities — the vertical one-juggle and
the deadbeat catch — offer a general means of rapidly transfer-
ring the body from one rest pesition (or, for that matter, any
initial state on the juggling plane) to any other rest position
on the robot’s bar. Namely, given a desired steady state in 4,
one commands a vertical one-juggle to any point in 7 whose
horizontal component matches that of the desired catch point.
After the puck settles down to its steady state trajectory corre-
sponding to the task point in 7 (theoretically after an infinite
amount of time, in practice, after four or five impacts), one
commands a deadbeat catch.

We will now present the measured data from an implemen-
tation of the deadbeat catch algorithm for our physical revo-
lute robot in the two degree of freedom environment. Figure 10
shows the continuous vertieal puck position data starting from
the dropping condition. The horizontal components we pre-
sume to be correct at the initial conditions, thus, the deadbeat
catch could be implemented at the very first impact. Instead,
to underscore the comments of the previous paragraph, we first
use the mirror algorithm (5} to achieve a good vertical one-
juggle above the desired catch point in 4. Following the fifth
impact, the control law is switched 1o the variant catch algo-
rithm (6), and the puck is “caught” at the correct horizontal
position on the robot’s bar,

A final comment concerning data interpretation is now in
order. Although it is not clear from the plot (for the reasons
listed in [5] concerning measurement noise} we emphasize that
the puck remains in contact with the robot bar after the catch.
The subsequent jitter in the figure is not a result of repeated
impacts, but a consequence of the motion of the robot bar. This
motion, generally not energetic enough to cause visually verifi-
able loss of contact, is partially the result of improperly tuned

constants in {6}, and more likely 2 consequence of the difficulty
we have in sensing puck events in the vicinity of the robot bar
{as explained above}. A theoretically informed choice of Heateh
would presumably cnable us shape the local transients more
effectively, but the robot cannot match the ball velocity ezactly
anyway, and will not come 1o rest immedijately no matter how
carefully {6) is adjusted. In a real application, one might imag-
ine adding a dead zone or some other more sophisticated open
loop strategy for taming the final phase of the cateh.
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Figure 10: Continuous vertical positions of the catch
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