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Modifications to the gravitational potential affect the nonlinear gravitational evolution of large scale

structures in the Universe. To illustrate some generic features of such changes, we study the evolution of

spherically symmetric perturbations when the modification is of Yukawa type; this is nontrivial, because

we should not and do not assume that Birkhoff’s theorem applies. We then show how to estimate the

abundance of virialized objects in such models. Comparison with numerical simulations shows reasonable

agreement: When normalized to have the same fluctuations at early times, weaker large scale gravity

produces fewer massive halos. However, the opposite can be true for models that are normalized to have

the same linear theory power spectrum today, so the abundance of rich clusters potentially places

interesting constraints on such models. Our analysis also indicates that the formation histories and

abundances of sufficiently low mass objects are unchanged from standard gravity. This explains why

simulations have found that the nonlinear power spectrum at large k is unaffected by such modifications to

the gravitational potential. In addition, the most massive objects in models with normalized cosmic

microwave background and weaker gravity are expected to be similar to the high-redshift progenitors of

the most massive objects in models with stronger gravity. Thus, the difference between the cluster and

field galaxy populations is expected to be larger in models with stronger large scale gravity.

DOI: 10.1103/PhysRevD.79.084013 PACS numbers: 04.50.Kd

I. INTRODUCTION

When we consider the cosmological data from the
Wilkinson Microwave Anisotropy Probe (WMAP),
supernovae Ia, galaxy clustering on large scales, and
cross-correlations between galaxies and the cosmic micro-
wave background (CMB), we are faced with several pos-
sible conclusions. One is that we live in a spatially flat
Friedmann-Robertson-Walker universe currently domi-
nated by either a cosmological constant or repulsive dark
energy. The best fit for the dimensionless energy density
parameters are �m ¼ 0:28 and �� ¼ 0:72, within the
concordance �CDM model [1]. The advantage of this
model is that nearly all available observational data sup-
ports it; the disadvantage is that it requires the vast majority
of the energy density in the Universe to be in two unknown
substances, dark matter and dark energy.

This conclusion rests on the accuracy of our current
gravity model, general relativity. The key equation of
general relativity, Einstein’s equation, relates the curvature
and the expansion rate of the Universe to its matter and
energy content. The current paradigm is to modify the
matter content of the Universe, by including dark matter
and dark energy, to account for observations. Instead,
however, we might modify how the Universe curves in
response to matter, which would mean modifying our
theory of gravity.

There are many possible ways to modify gravity, de-
pending on what one wishes to ‘‘fix.’’ For example, modi-

fied Newtonian dynamics [2,3] removes the need for dark
matter to account for galactic rotation curves and has
several other interesting results, but seems to fail at the
scale of galaxy clusters, with even optimistic accountings
needing roughly as much dark matter as baryonic matter.
At the other end is something like Dvali, Gababadze, and
Porrati gravity or conformal gravity, which hopes to ac-
count for the acceleration of the Universe without invoking
a cosmological constant [4–7]. In addition, there are other
models which seek to unify dark matter and dark energy
[8–12]. What we seek to do in this paper is to study the
problem more phenomologically. For example, regardless
of how the force law for gravity is modified, it will often be
stronger or weaker, relative to the standard model, at larger
or shorter scales. One way to parametrize this is to intro-
duce a modified Yukawa-like potential for a point mass:

�ðrÞ ¼ Gm
1þ �ð1� e�r=rsÞ

r
; (1)

[13–16] where � indicates the strength and rs the scale
(constant in physical rather than comoving coordinates) on
which this modification is most relevant. On scales smaller
than rs, �ðrÞ reduces to the standard Newtonian potential;
on larger scales it transitions to the Newtonian potential
multiplied by a factor of (1þ �). This is similar to the
interaction considered in [17], in which a long range dark
matter interaction is introduced yielding a different
Yukawa-like potential that instead modifies gravity on
short length scales.
Note that this is not a cosmological model: There is no

prescription for determining things like the expansion
factor and the resulting Hubble factor. Like previous work-
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ers, we will assume that these are the same as in the
standard cosmology. The main goal of studying such a
model is to gain intuition for some generic effects of
modifications to standard gravity.

For example, in the linear theory of such a model, the
growth of fluctuations is k-dependent [14]—it is not in
standard gravity. As a result, a smooth spherical region
within which the density is the same as the background
universe will evolve. This qualitatively different behavior
from standard gravity has not been emphasized—so it is
worth showing the argument explicitly. Consider the den-
sity field smoothed on scale R at some early time ti. We can
write this field in terms of its Fourier modes, and the
(Fourier transform of the) smoothing kernel as

�Rðx; tiÞ ¼
Z

dk expðik � xÞ�ðkÞWðkRÞ: (2)

The linearly evolved field is

�Rðx; tÞ ¼
Z

dk expðik � xÞ Dðk; tÞ
Dðk; tiÞ�ðkÞWðkRÞ; (3)

where D is the linear theory growth factor. In standard
gravity, D is independent of k, so if �Rðx; tiÞ ¼ 0 then
�Rðx; tÞ ¼ 0 also. But if D depends on k, then if �RðxÞ ¼
0 at some time t, it will, in general, be nonzero at other
times (the exception being if the k dependence of W
happens to exactly cancel that of D). For the Yukawa-
like modification considered here, the k dependence of
the spherical tophat filter does not cancel that of D.
Thus, we are led to the rather remarkable conclusion
that, when the gravitational potential has been modified,
then linear theory predicts that a spherical tophat patch
within which the density is the same as the background will
evolve! The reason why can be traced to the fact that
Birkhoff’s Theorem no longer applies once the
Newtonian potential has been modified. Without this
Theorem, the spherical tophat filter is no longer special,
and our common sense prejudice from standard gravity—
that initially overdense regions become denser, underdense
regions less dense, but regions within which the density is
the same as the background do not evolve—must be treated
with caution.

The evolution of nonlinear clustering in this model has
been studied using numerical simulations by [15,16]. Our
goal in what follows is to provide a framework for under-
standing this nonlinear evolution more completely. To this
end, we will use the spherical evolution model, which has
found extensive use in the standard model—it is used to
motivate estimates of the abundance of nonlinear objects
[18], a crucial ingredient in methods which describe the
growth of nonlinear gravitational clustering [19]. It also
provides a framework for discussing the environmental
dependence of clustering [20,21].

Section II summarizes what is known from the linear
theory of this Yukawa-like model, and then shows our

estimate of the key, and sometimes subtle, changes to the
spherical evolution model. Section III compares this work
to the simulations of [16]. A final section summarizes.

II. THE MODEL

A. Linear theory and a slightly modified potential

We begin by considering the evolution of density per-
turbations. This can be done by either considering the fluid
equations in expanding coordinates, or by considering the
conservation of stress-energyraT

ab ¼ 0. If we start with a
smooth background, add small perturbations, and linearize
the resulting equations, we get a second order differential
equation for the evolution of the fractional overdensity,
�ðx; tÞ that depends on time, scale factor a, the Hubble
parameterH ¼ _a=a, and the potential�. In standard grav-
ity, we would use the Poisson equation to set the relation-
ship between � and �, but here we will assume a modified
Poisson equation that results in the above potential, Eq. (1),

€�þ 2HðtÞ _� ¼ r2�: (4)

It is easier to work with the Fourier transform of this
equation:

€� k þ 2H _�k ¼ 3

2

�
1þ �

a2

a2 þ k2r2s

��
1�H2

0��

H2

�
H2�k:

(5)

This can be solved relatively easily to determine the linear
growth of structure associated with Eq. (1).
The dashed lines in Fig. 1 show how this growth differs

from that in the standard model. Note, in particular, that
�Lin
k ðtÞ ¼ Dðk; tÞ�initial

k , whereas the standard model has no

k dependence in the growth factor DðtÞ. The figure shows
the effects that one expects to see, namely, that for negative
� the growth factor is smaller at small k (large scales),
whereas for positive � the growth factor is larger at large
scales. Both have a region where they deviate from being
scale independent, until on very large scales they return to
scale independence, though with a different value than in
general relativity.
While this is not a significant problem for linear theory,

we decided to explicitly force the potential back to normal
gravity at large scales for reasons which will become clear
in the next section; briefly, because we want to assume that
the cosmological model is indistinguishable from �CDM,
on the largest scales we want gravity to be the same as in
�CDM. The potential we are using from this point onward
is

�ðrÞ ¼ Gm
1þ �ð1� e�r=rsÞ � �ð1� e�r=rcÞ

r
: (6)

With this potential, the rc � rs term serves to make ex-
plicit the return to normal gravity at large scales. The linear
theory equation becomes
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€�k þ 2H _�k ¼ 3

2

�
1þ �

a2

a2 þ k2r2s
� �

a2

a2 þ k2r2c

�

�
�
1�H2

0��

H2

�
H2�k; (7)

and the linear growth associated with this solution is shown
as the solid lines in Fig. 1, when rc ¼ 70h�1 Mpc. The
dotted line shows what happens if rc ¼ 350h�1 Mpc—a
scale which is large compared to that probed by baryon
acoustic oscillations (BAOs). Although the analysis which
follows uses rc ¼ 70h�1 Mpc, the results which follow are
not sensitive to this choice.

B. Spherical collapse

Excursion set methods [22–24] are used to estimate the
number density of collapsed halos, the merger rates of
halos, the conditional mass function of progenitors as a
function of final halo mass and time, and the nonlinear
counts-in-cells distribution, all of which help us to link
what we observe about the properties of galaxies and
galaxy clusters with cosmology. Essentially, excursion set

methods relate the properties of halos today to the initial
density fluctuation field. An advantage of such methods is
that we only need a few things in order to use them: One is
an assumption that the initial fluctuations are small and
Gaussian; the other is a model for determining how dense
something must have been initially to collapse at a given
time. The first is given to us by WMAP; the second is more
difficult.
A simple model for how to determine this critical den-

sity is given by the spherical evolution model, in which one
considers a spherical top hat perturbation in the initial
density fluctuation field. In the standard model, the gravi-
tational evolution of such a patch is determined only by the
mass within it, and so one can determine how overdense
such a patch needs to be initially in order to collapse by a
given time. This critical overdensity �c generically de-
pends on the background cosmology [25].
The spherical collapse calculation begins with the state-

ment that the force driving the acceleration is related to the
gravitational potential by

d2r

dt2
¼ F ¼ �r�ðrÞ: (8)

This can be integrated once to get

1

2

�
dr

dt

�
2 þ�ðrÞ ¼ C; (9)

where �ðrÞ is the integral of the potential over the mass
distribution, and C is the total energy of the patch, which is
constant. In standard gravity, the potential of a shell of
mass M is the same as that of a point mass at the center of
the sphere, so �ðrÞ reduces to GMð<rÞ=r. The constant C
can be related to the initial overdensity and/or expansion
rate of the patch: The initial expansion rate is given by the
Hubble expansion rate of the background in which the
patch is embedded, namely, in comoving coordinates _xi ¼
0, so _ri ¼ _aixi ¼ _ai=aiðaixiÞ, so ðdr=dtÞi ¼ Hiri.
Including a cosmological constant presents no conceptual
difference.
In standard gravity one can directly solve this equation.

The solution is a cycloid for which the critical value of the
initial overdensity required for collapse, �c, does not de-
pend on the initial size of the patch. This scale indepen-
dence of �c is a result of Birkhoff’s theorem: The evolution
of a tophat sphere is the same as that given by Friedmann’s
equations, so the actual size of the patch drops out.
When gravity is modified, things are no longer so sim-

ple. For example, when the potential is given by Eq. (6),
Birkhoff’s theorem no longer applies: A particle off center
in a uniform spherical shell will feel a force from the shell
because we no longer have a 1=r2 force law. This has two
consequences. First, Eq. (8) can still be integrated once to
get Eq. (9), only now �ðrÞ has contributions from both the
internal and external mass distributions. We can get � by
integrating Eq. (6) of the mass distribution, leaving C and

FIG. 1. Ratio of linear theory growth factor to that in standard
�CDM, at a ¼ 1, when rs ¼ 5h�1 Mpc and � ¼ 1 (top) and
� ¼ �1 (bottom). Dashed lines show this ratio for the model in
Eq. (1), and solid lines for Eq. (6). For the solid lines, rc ¼
70h�1 Mpc, and dotted rc ¼ 350h�1 Mpc.
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the initial value for dr=dt to be determined. As before, C is
the total energy (constant in time), and we set ðdr=dtÞi ¼
Hiri. [This was why we used Eq. (6) rather than Eq. (1).]
Second, whereas evenly spaced concentric shells remain
evenly spaced in the standard tophat model, this is no
longer the case when the potential is modified. As a result,
the initial tophat perturbation develops a nontrivial density
profile as it collapses.

Of course, neither of these changes prevent us from
solving for the evolution of rðtÞ. Our main interest in
what follows is not in the details of how the density profile
is modified (this is interesting in its own right), but in the
modification to the critical density required for collapse. To
estimate this in practice, two things require care, both of
which are related to the breakdown of Birkhoff’s theorem.
The first is that, because the shape of the perturbation
evolves, one must follow the evolution not just of a shell
at the boundary of the perturbation, but of a series of
concentric shells. So the question is: How finely spaced
must the shells be before one converges to the correct
solution? The second is that one now cares not only about
the mass initially interior to the initial boundary, but the
mass exterior as well. In this case, the question is: How far
beyond the initial boundary of the perturbation matters
before one reaches convergence?

Therefore we start with an initial patch which is sub-
stantially larger than that within which there is an initial
overdensity, and use a simple one-dimensional N-body
simulation to solve for rðtÞ. We found that volumes having
twice the initial comoving radius or larger were sufficient
to account for the lack of Birkhoff’s theorem, regardless of
� or rs. We also found that for objects of mass up to
1015h�1M�, using 3 (linearly spaced) wide shells provided
a �c that was within 1% of 200 shells (see Fig. 2). For
higher mass objects we found that we needed more than 3
shells, but by 40 shells �c is within 0.02% of �c calculated
with 200 shells.

Having determined that our numerical solution had con-
verged, we evaluated rðtÞ at the present time in a �CDM
background model, for a grid of initial sizes and over-
densities. By finding which pairs of initial density and
size ri when evolved result in rðt0Þ ¼ 0, we obtained
�ciðriÞ. Since the initial overdensity is always small, we
can use the fact thatM ¼ ð4�=3Þr3i ��ið1þ �iÞ � ð4�=3Þr3i
to express this critical density as a function of mass rather
than initial radius. This is shown in Fig. 3. Notice that �c

depends on mass; this is not unexpected, because patches
which remain smaller than rs throughout their evolution
(and become small mass halos) are unlikely to notice any
modification, whereas those which are larger than rs at any
time during their evolution will. This mass dependence of
�c means that we expect to see a variation in cluster
abundances only at masses larger than �1014h�1M�.

FIG. 2. Convergence to solution as number of shells increases for two objects with mass 1014:5h�1M�, with � ¼ 0:5 (left) and
�� 1:0 (right). The thick solid lines are actually the positions of the shell on the edge of the density perturbation for 3, 10, 20, 40, 50,
60, 80, 100, and 200 shells; note they all lie nearly on top of each other. The dashed curves show the evolution when � ¼ 0.

FIG. 3. Ratio of initial density required for collapse at the
present time to that in the standard gravity model, when the
background cosmology is �CDM, rs ¼ 5h�1 Mpc, and rc ¼
70h�1 Mpc. From top to bottom, curves show models in which
� ¼ �1, �0:5, 0, 0.5, and 1 (note that � ¼ 0 is standard
gravity).
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This is a consequence of the fact that rs ¼ 5h�1 Mpc, for
which the mass scale is about 5� 1013h�1M�. (For fixed
�, the mass scale is proportional to r3s .)

C. The abundance of virialized objects

Figure 3 shows that, when the potential is modified, then
�c is no longer scale independent. Because it depends on
mass, the relevant excursion set problem is one with a
‘‘moving’’ rather than ‘‘constant’’ barrier, so it is of the
type first studied by [21]. Figure 4 shows the result of using
this formalism to estimate the abundance of virialized
objects. Briefly, making this estimate requires that one
generate an ensemble of random walks in the ð�i; SiÞ plane,
where Si � �2

i ðMÞ is the variance in the initial fluctuation
field when smoothed on scale ri. Since �iðMÞ is a mono-
tonic function of M, the variables Si, M, and ri are essen-
tially equivalent to one another. In particular,

Si �
Z dk

k

k3PiðkÞ
2�2

W2ðkriÞ; (10)

where WðxÞ ¼ ð3=x3Þðsinx� x cosxÞ. One then finds the
first crossing distribution fðSiÞdSi of the ‘‘barrier’’
�ciðMÞ ¼ �ciðSiÞ. The abundance of objects is
dn=d lnMd lnM ¼ ð ��=MÞfðSiÞdSi.

Figure 4 shows that the abundance of massive objects
increases as � increases, whereas the abundance of low
mass objects is essentially unchanged from when � ¼ 0.
We argued above that this makes intuitive sense: The lower
mass objects do not feel the change in gravity because they
were smaller than rs throughout their evolution; the more
massive objects are able to become even more massive if �
is positive, since then gravity is stronger.

D. Choice of normalization and incompatibility with
standard gravity

Before moving on, it is worth noting that we were care-
ful to describe and implement the excursion set approach in
initial rather than linearly evolved variables. In standard
gravity (� ¼ 0), it is more common to frame the discussion
in terms of linearly evolved variables. Since the linear
growth factor is independent of k when � ¼ 0, this is
straightforward. However, this is no longer the case when
� � 0, because of the k dependence in Dðk; tÞ.
Indeed, the barrier shape in Fig. 3 is qualitatively like

that of the linear growth factor in Fig. 1, so one might ask if
the difference that we see in the mass function is entirely a
consequence of the k dependence of the linear growth
factor. More specifically, the differences shown in Fig. 4
are really a consequence of two effects: First, we have
assumed that SiðMÞ is the same for all �. Therefore, S0ðMÞ
is not: The linear theory evolution when �> 0 results in
more large scale power than when � 	 0, so the rms
fluctuation in the present-day fields are different—in the
jargon, �8 at z ¼ 0 is larger for the �> 0 models. Since
we know that, in standard gravity, the abundance of mas-
sive halos is exponentially sensitive to �8, one might
wonder if this alone accounts for much of the effect.
(Later on, we will discuss another consequence of normal-
izing the models at the initial rather than final time.) To
quantify this, we would like to compare the predicted
abundances when the models are normalized so that
S0ðMÞ, rather than SiðMÞ, is the same. This will isolate
the effect of a mass-dependent �cðMj�; rs; rcÞ on the halo
abundances.
Therefore, we used the excursion set approach with the

same constant barrier height as one would have in the
standard (� ¼ 0) linearly evolved gravity model, and
then evaluated S0ðMÞ, rather than SiðMÞ, using the
k-dependent linear growth factor. That is,

S0 �
Z dk

k
D2ðk; t0Þ k

3PiðkÞ
2�2

W2ðkriÞ: (11)

The resulting first crossing distribution fðS0ÞdS0 is the
same as in standard gravity (after all the barrier is con-
stant), but when expressed as a function of mass M, the
abundances are different because the relation between S0
and M depends on ð�; rs; rcÞ. The dashed line in Fig. 5
shows that this method yields a mass function that also
differs substantially from the standard one: It drops sub-
stantially below unity for large M. In this case, however,
the drop is entirely due to the k-dependent growth factor. In
addition, notice that although it is qualitatively like the
solid line, for which �c is mass dependent, it can be
substantially different (i.e., the ratio of the solid to the
dashed line is greater than unity) at large M. This shows
that there is more to the change in the mass function than
simply the change in the relation between S and mass.

FIG. 4 (color online). Expected halo abundance,
logdN=d logm, as a function of mass m for models with � ¼
1 (short dashed) and � ¼ �1 (long dashed), the solid line is for
� ¼ 0. The rapid rise of the negative � barrier in Fig. 3 is why
there is a larger effect on the abundance of high mass halos for
negative � than positive �.
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Whereas the solid line shows results in which the initial
power spectra are the same for all � [i.e., SiðMÞ is the same
for all models], the dashed line shows what happens if we
adjust the shape of the initial power spectrum in the � ¼ 0
model so that S0ðMÞ is the same as for the � ¼ �1 model.
The dotted line shows the result of adjusting instead the
initial PðkÞ of the � ¼ �1 model so that it produces the
same S0ðMÞ as the original � ¼ 0 calculation. In this case,
the � ¼ �1 initial conditions now have substantially more
large scale power, so the predicted abundance of massive
halos is larger, until the mass dependence of �c begins to
matter (this is not evident in the figure, because it happens
at M> 1016:7M�=h).

The fact that none of the curves shown in Fig. 5 are unity
for all M, nor are any two curves the same, means that
cluster abundances in modified gravity models cannot be
mimicked in standard gravity simply by changing the
shape of the initial power spectrum so that it agrees with
modified linear theory at z ¼ 0. Trading ‘‘CMB’’ normal-
ization for ‘‘cluster’’ normalization does not work, because
the cluster mass function depends on the nonlinear physics
of gravitational collapse: Cluster counts are sensitive to
more than the change to linear theory. For CMB-
normalized models, we feel that the appropriate estimate
of the effect of modifying gravity is shown by the solid
line. In the following section we use numerical simulations
to test this prediction.

III. COMPARISON TO SIMULATIONS

We now compare our spherical collapse predictions for
halo abundances with measurements in the simulations of
[16]. These simulations followed the evolution of 1283

particles in a periodic box of size 100h�1 Mpc, for various
choices of � and rs. In all cases, the background cosmol-
ogy was flat �CDM with � ¼ 0:3, and the particle mass

was 1:1� 1010M�. In addition, the simulations were al-
ways started from the same initial phases, a feature we will
exploit shortly. We identify halos in the standard way using
a friends-of-friends algorithmwith link length 0.2 times the
interparticle separation. In what follows, we show results
from the rs ¼ 5h�1 Mpc runs. The � ¼ 0 simulation, with
standard initial conditions has �8 ¼ 1:0 at z ¼ 0, the
corresponding runs for � ¼ 0:5 and � ¼ �1 have �8 ¼
1:2 and 0.7, respectively. Following our discussion of how
the counts depend on the shape and normalization of the
initial power spectrum, we also study results from � ¼ 0
simulations in which the initial power spectrum was modi-
fied so that, at z ¼ 0, it has the same shape as the two � �
0 cases (�8 ¼ 1:2 and 0.7).
Figure 6 shows how the mass function depends on �.

The panels shows the ratio to � ¼ 0, and curves show the
predictions from our excursion set with moving or standard
barrier calculation with standard or modified initial power
spectrum. The calculation is in reasonably good agree-
ment—note, in particular, that it captures the sense of the
trends with �.
Because the simulations all had the same initial phases,

we were able to perform a slightly more stringent test.
Namely, we directly compared the masses of individual
halos in the � ¼ 0:5 and � ¼ �1 runs with those when
� ¼ 0 (i.e. standard gravity). The filled triangles in Fig. 7
show the result of selecting the most massive halos in the
� � 0 runs and plotting the number of particles they con-
tain versus the number of particles they contained in the
� ¼ 0 run. The open squares show the result of making the
selection in the � ¼ 0 run. The top and bottom panels
show results for � ¼ �1 and 0.5, respectively. This illus-
trates that with stronger gravity (larger �), a given halo is
more likely to become more massive, but this only matters
for halos more massive than about ��r3s .

FIG. 5. Ratio of halo abundances when � ¼ �1 (left) and � ¼ 0:5 (right) to that when � ¼ 0. Solid curve shows this ratio when the
excursion set method is correctly implemented, using the initial fluctuation field values SiðMÞ and a moving barrier �cðMÞ, and SiðMÞ
is independent of �. Dashed curve uses S0ðMÞ from the linearly evolved field and a constant barrier �c ¼ 1:686. Dotted curve uses
SiðMÞ and �cðMÞ, but now SiðMÞ is modified so that S0ðMÞ is the same for both values of �. Note that all these approaches produce
different results.
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IV. CONCLUSIONS

We presented a study of nonlinear effects in a model
with a modified gravitational potential [Eq. (6)]. In par-
ticular, we showed how the spherical evolution model is
modified, and the effect this has on the abundance of
virialized objects. Halos are more massive in models where
gravity is stronger on large scales (Fig. 7), although this
effect is only important for sufficiently massive objects
whose evolution brings them close to the scale rs on which
gravity was modified. The effect this has on the abundance
of massive objects depends on how the models are normal-
ized. If normalized so that the fluctuation field is the same
at early-times (CMB-normalized), then the models with
�> 0 have more massive halos (solid curves in Fig. 5
differ from unity). This remains true, although the depen-
dence on� is reduced, if the models are normalized to have
the same (�-dependent) linear theory rms fluctuations to-
day (compare solid and dashed curves in Fig. 5). If nor-

malized to have the same (linear theory) rms fluctuations
today, whatever the value of�, then the trends can be rever-
sed (compare dotted curves with unity in Fig. 5). This last
normalization convention is sometimes known as ‘‘cluster-
normalized’’: Our work suggests that, in the context of
modified gravity models, this jargon is misleading!
We showed that our analysis captures the essence of the

trends seen in the simulations (Fig. 6) so, in principle, the
abundance of rich clusters should place interesting con-
straints on modifications to the gravitational potential. In
particular, the modification to cluster abundances cannot
be reproduced by standard gravity with initial conditions
modified to match the change in the linear theory power
spectrum; the differences in abundance can be larger than
10% for sufficiently massive halos (Fig. 5). However, to
use cluster counts quantitatively in this way, our analysis
should be extended to models in which objects form from
an ellipsoidal collapse, as was necessary for standard grav-
ity [26,27].

FIG. 6 (color online). Halo abundances with rs ¼ 5 Mpc ratioed to � ¼ 0. In all panels, data points are from simulation, whereas
curves are from our excursion set calculation. In the top left panel, (blue) long dashed and (red) short dashed curves are for � ¼ 0:5
and �1, respectively, and all models had the same initial fluctuation spectrum (so that � ¼ 0 has �8 ¼ 1 today). The top right panel
shows the ratio of counts in two � ¼ 0 runs, but with different initial conditions, tailored so that �8 at z ¼ 0 is the same as in the
� ¼ 0:5 (long dashed) and�1 (short dashed) runs. Short dashed curves in bottom panel show the ratio of the � ¼ 0:5 counts to that in
the � ¼ 0 run when it has been normalized to have the same (linear theory) power spectrum at z ¼ 0 as the � ¼ 0:5 run. Long dashed
curve shows a similar analysis of the � ¼ �1 case. This panel shows the ratio of the numerators in the previous two panels.
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Our analysis also helps to understand an interesting fact
about the shape of the nonlinear power spectrum in modi-
fied gravity theories. Figure 7 in [16] shows that whereas
the large scale power spectrum in modified theories may be
rather different than in standard gravity (because the linear
growth factor is modified), the power on small scales (k >
1) is unchanged. Our analysis shows that, because small
mass objects were never larger than the scale rs on which
gravity was modified, they are not affected by the modifi-
cation, so their abundance is the same as in the standard
case. This is not affected by the initial conditions that we
choose so that, both when� is nonzero and when the power
spectrum is changed so that we end up with a final power
spectrum the same as in the case of modified gravity, the
abundances of small halos is unaffected. In addition, their
formation histories will also be unchanged, so their internal
structural parameters (shapes, density profiles) are also
unchanged. In the halo model description of large scale

structure [19], the power at k > 1 is dominated by small
mass halos. Since these are the ones for which gravity is
essentially unmodified, the small scale power spectrum is
also unchanged.
Figure 8 shows the result of a complementary study. In

this case, we selected a massive halo from one of the
simulations (say � ¼ 0:5), and then looked at where its
particles were in the other runs (with different �). The
figure illustrates clearly that when � ¼ 0:5, then the par-
ticle distribution is more compact. For example, in the top
panel, the large halo in the � ¼ 0:5 run is broken up into
three smaller haloes in the � ¼ �1 run. The bottom panel
shows another effect: that the particles which made up a
halo in the � ¼ �1 run are in a different location in the
� ¼ 0:5 run, suggesting that the peculiar velocities of the
most massive halos are also sensitive to �.
The sequence of contours associated with the different �

runs looks rather similar to the time evolution of an object
in, say, an � ¼ 0 model. Thus, the most massive halos in

FIG. 8 (color online). Spatial distribution of a massive halo
chosen from the � ¼ 0:5 (top) and�1 (bottom) simulations. The
black, green, blue, and red contours show the positions of the
particles that make up the chosen halo in the � ¼ 0:5, 0, �0:5,
and �1 simulations, respectively. In the top panel, note that the
central dense halo spreads out for weakening gravity, and in the
bottom panel the upper left halo merely moves. Axes show the
ðx; yÞ coordinates of the halos in grid coordinates,
100=256h�1 Mpc.

FIG. 7. The panel on the top is for � ¼ �1:0 vs standard; the
bottom is � ¼ 0:5 vs standard. The points come from selecting
big halos in each realization of the modified gravity simulation
and then finding the corresponding halo in the standard gravity
simulation, and then the reverse. N is the number of particles in
the identified halos. The tilt shows that in stronger gravity
massive halos are likely to have more particles. The ‘‘tails’’ in
the lower left are unimportant.
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models with �< 0 may be like high-redshift versions of
the most massive halos in models with �> 0. Therefore,
these figures suggest that the galaxy populations in massive
clusters may be rather different in models with large � than
when � is small. In particular, it is likely that the difference
between the cluster and field galaxy populations increases
as the strength of gravity on large scales increases. This is
largely a consequence of the different �8 values in these
runs—so clusterM=L ratios, currently used to constrain�8

(e.g. [28,29]), may one day be used to constrain modifica-
tions to gravity.

Furthermore, in standard gravity models, there is a
strong correlation between evolution and environment
[20,21,30]. There are two reasons to suspect that this will
be different if the gravitational potential is modified. First,
in the standard model, the correlation between local envi-
ronment and evolution is a consequence of Birkhoff’s
theorem. Birkhoff’s theorem is lost when the force law is
modified (it is this which modified our spherical evolution
model from the standard case). And second, Fig. 8 shows
that the time scale for the assembly of objects is modified.
The environmental dependence of galaxy properties is in
rather good agreement with the standard model [31–33], so
it may be that this will one day provide interesting con-
straints on �. This is the subject of work in progress. In
standard gravity, the formation and abundance of voids can
be estimated using similar methods to those used for
clusters [34]—extending our analysis of the modified po-
tential to voids is also work in progress.
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APPENDIX: FITTING FORMULAE FOR THE
‘‘MOVING’’ BARRIERS

This Appendix provides fits to the barriers in Fig. 3.
First, let x ¼ logM=ð ��r3sÞ, whereM is measured in units of
1010h�1M� and rs is measured in h�1 Mpc, then for
positive �,

�c

�cðstandardÞ ¼ 1� ð�=26:84Þð3M=4�r3sÞ0:33; (A1)

whereas for negative �,

�c

�cðstandardÞ ¼ 1þ j�=8:38j1:5ð3M=4�r3sÞ0:48: (A2)

These fits are accurate to a few percent in the range of
ð�7; 3Þ for x, rs up to 20h�1 Mpc, and � between �1 and
1. For rs ¼ 5h�1 Mpc, the high end of the range of x
corresponds to 1016h�1M�. The dependence here makes
sense, because we expect the mass scale of the modifica-
tion to scale as r3s . As for the � dependence, we can see
from Fig. 3 that for negative � the deviation from standard
gravity is stronger, hence the dependence on � for positive
�, and j�j1:5 for negative �.
In principle, one can use these expressions to generate

analytic approximations to the halo mass function as fol-
lows. For a given initial power spectrum, x can be written
as a function of SiðMÞ; this specifies the barrier shape in the
units which are useful for the excursion set approach. Then
insert this barrier shape into the expressions for the first
crossing distribution given by [21]. The ratio of this first
crossing distribution to that associated with a barrier of
height �c quantifies the change in halo abundances which
is due to � and rs. Multiplying this ratio by the actual halo
abundances in the standard model [26] yields an analytic
expression for the abundances in the modified model.
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