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The following notes rework a discussion due to Kevin Kelly on the application of topo-
logical notions in the context of learning (see Kelly (1990)). All the results except for (2)
(4) and (9) are due to Kelly, but are proved differently.

)

1 Preliminaries

1.1 Hierarchies

Fix a countable set O. We suppose O is equipped with adequate structure to allow the
definition of recursive relations on the product spaces O<“ x w" for n € w. We assume
familiarity with the definitions and basic properties of the relativized arithmetical hierarchy
and the (finite levels of) the Borel hierarchy (see Hinman (1978), Chapter 3, Section 1).
We use the following notation: ¥,[8] is the n-th level (on the ¥ side) of the arithmetical
hierarchy relativized to 8 € w*; similarly, 3, = Ugeuw Sa[B] is the n-th level (on the ¥ side)
of the Borel hierarchy. II,[3] and II,, are defined similarly. We make use of the following fact
which is a consequence of the normal form theorem for relativized arithmetical relations.

(1) FACT: For every X C O¥, X € %,[f] if and only if there is a recursive in S relation
R C O<“ x w? such that Vt € O“(t € X « ImVnR(t(n),n,m)).

Let K C O“ be given. Define X,[f](K) = {X NK | X C OY A X € E,[8]}. T.(K),
I1,[8](K), and I1,(K) are defined similarly. Define ¥,(K) = £,[8](K) for § recursive. II,,(K)
is defined similarly.

1.2 Detection

Let X C 0¥ P C K, and ¥ : O<“ — {0,1} be given. For t € O we write ¥(t) = 1 if
U(#(n)) = 1 almost everywhere, and similarly for ¥(¢) = 0. U semi-detects P in K just in
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case for allt € K, U(¢t) =1 iff t € P. In this case P is semi-detectable in K. If there is such
a U which is recursive [in 8], P is [3-]effectively semi-detectable in K.

2 Characterization results

The following proposition characterizes relativized effective semi-detectablity in terms of the
relativized arithmetical hierarchy; it is a relativized version of Theorem 5 of Gold (1965), p.
38.

(2) PROPOSITION: Let K C O be given. P C K is B-effectively semi-detectable in K iff
P e %,[p)(K).

Proof: only if. Let ¥ be recursive in # and semi-detect P in K. Define R C O<¥ x w?
by R(o,n,m) « ((length(c) = n An > m) — ¥(o) = 1). Then, R is recursive in § and
P = {t € O¥ | ImVnR(t(n),n,m))} N K. Hence, by (1), P € Z,[8](K).

if. Suppose that P € X3[3](K). Then, by (1), there is an R C O<“ x w? such that
R is recursive in § and P = {t € O“ | ImVnR({(n),n,m))} N K. Define f : O<“ — w
by f(o) = pm < length(o)(Vr C oR(7,length(r),m)), if such an m exists; = length(o),
otherwise. Define ¥ : O<“ — {0, 1} as follows.

U(o) = 1 if f(o) = f(o0—), where o— is o without its last member.
7= 1 0 otherwise.

It is easy to verify that ¥ is recursive in B and semi-detects P in K. B
The following corollary to Proposition (2) combines the results of Kelly (1990), Theorem
2.2, pp. 6-8, and Theorem 3, pp. 15-16.

(3) COROLLARY: Let K C O be given.

(a) P C K is semi-detectable in K iff P € X,(K).
(b) P C K is effectively semi-detectable in K iff P € £,(K).

3 An application of the characterization results to
first-order logic

Fix a countable, first-order language £ with formulas L, and sentences Lgen. We will
suppose a formulation of first-order languages in which the set of variables which are allowed
to occur free in formulas is disjoint from the set of variables which are allowed to occur
bound in formulas. We reserve the symbols vg, vy, ... for variables of the first kind.

For purposes of this section, let O be the (countable) set of basic formulas of £, that is,
formulas which are either atomic formulas or negations of atomic formulas of £; if e € O, we



say that eis an environment. Let S be a structure for £. Any mapping g : {vo,v1,...} — |S]
is an assignment to S. We say g is a complete assignment to S just in case range(g) = |S|. We
say e € O is an environment for S via g just in case for every basic 8 € Lform, 8 € range(e)
if and only if § = B[g].

Fix theory T' C Lsen. Given 0 € Lform and environment e, we say that e sustains 6 just
in case there is a structure § and complete assignment g to S such that:

(a) eis for S via g

(b) S I=0lg]

We let E(0) = {e | e sustains 8}. We let E(T) = {e | e sustains every § € T} = {e |
e is for a structure that satisfies T'}.

Let T, IIZ be the quantifier-alternation hierarchy for £ form over the theory T', that is,
0 € ©T iff § is equivalent over T to a prenex normal form formula whose quantifier prefix
begins with an existential quantifier and contains n — 1 alternations of blocks of quantifiers
of like kind and similarly for IIZ with “universal” in place of “existential.” The following
proposition relates the quantifier complexity (over T') of a formula 6 to the arithmetical
complexity of the collection of texts which sustain 7'U {6}. The proof of this proposition
is a variant of well-known demonstrations that that the satisfaction relation for first-order
formulas in countable structures is A}l (see, e.g., Moschovakis (1980), p. 464); Kelly (1990),
Proposition 4.1, pp. 19-20, proves a weaker result than Proposition (4) with X,(E(7)) and
IL.(E(T)) in place of X,(E(T)) and II,(E(T)).

(4) PropPOSITION: For alln > 1 and all § € Lform:
(a) if 0 € £T then E(O)NE(T) € Z.(E(T)).
(b) if € I then E(O)NE(T) € I, (E(T)).

Proof: We illustrate the proof for the case where § € 7, using the special case of the
normal form theorem cited under (1). The general case follows from the full normal form
theorem for the arithmetical hierarchy.

Suppose § € EI. Without loss of generality we may suppose § = JyVzg, where ¢ is
quantifier free (the case for longer quantifier strings of like kind may be handled by the stan-
dard technique of contraction of quantifiers using the recursive encoding of finite sequences

of natural numbers by natural numbers). By (1), it suffices to exhibit a recursive relation
R C O<¥ x w? such that for all environments e,

(5) e sustains 4 iff ImVnR(e(n),n, m)).
Toward the definition of such an R note first that
(6) for all environments e and for all quantifier free ¢

(a) e sustains ¢, iff,



(b) In € w(Ae(n) E ¥), iff,
(c) Vn € w(A&(n) & ~3).

(5) follows from (6) if we define recursive R C O<“ x w? as follows:

(7) R(o,n,m) & Vi <n(Ao [ ~¢[(z | vi), (y | vm)]). B

Proposition (4) and Proposition (2) yield the next corollary, which is proved differently
in Kelly (1990), Proposition 4.3, p. 22.

(8) COROLLARY: Let T C Ly, and 6 € Lgep be given. If § € T then E(0) is effectively
semi-detectable in E(T).

The following is an immediate consequence of Osherson, Stob, & Weinstein (1990), Corol-
lary 42(a); it also appears as Kelly (1990), Proposition 4.2, p. 21.

(9) COROLLARY: Let T' C Lgen and § € Lgepn be given. If () is semi-detectable in
E(T), then 0 € ©7.

Corollaries (8) and (9) yield the following characterization of semi-detectability for first-
order sentences in first-order theories; it is also a corollary of Kelly (1990), Theorems 2.2, 3,
Corollary 4.2.a, and Proposition 4.3.

(10) COROLLARY: Let T' C Lge, and 8 € Lgep be given. The following conditions are
equivalent.

(a) E(0) is semi-detectable in E(T).

(b) E(0) is effectively semi-detectable in E(T').
(c) 0 € L.

(d) E(9)NE(T) € Z,(E(T)).

(e) E(0)NE(T) € B2(E(T)).
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