
Motion Planning in Urban Environments: Part II
Dave Ferguson

Intel Research Pittsburgh
Pittsburgh, PA

dave.ferguson@intel.com

Thomas M. Howard
Carnegie Mellon University

Pittsburgh, PA
thoward@ri.cmu.edu

Maxim Likhachev
University of Pennsylvania

Philadelphia, PA
maximl@seas.upenn.edu

Abstract— We present the motion planning framework for
an autonomous vehicle navigating through urban environments.
Such environments present a number of motion planning chal-
lenges, including ultra-reliability, high-speed operation, com-
plex inter-vehicle interaction, parking in large unstructured
lots, and constrained maneuvers. Our approach combines a
model-predictive trajectory generation algorithm for computing
dynamically-feasible actions with two higher-level planners for
generating long range plans in both on-road and unstructured
areas of the environment. In this Part II of a two-part paper,
we describe the unstructured planning component of this system
used for navigating through parking lots and recovering from
anomalous on-road scenarios. We provide examples and results
from “Boss”, an autonomous SUV that has driven itself over 3000
kilometers and competed in, and won, the Urban Challenge.

I. INTRODUCTION

Motion planning for autonomous vehicles operating in ur-
ban environments is extremely challenging, requiring both
high speed navigation on roads and complex maneuvering
in unstructured parking lots, all while interacting with other
vehicles and obstacles. In this Part II of a two-part paper,
we describe the unstructured driving component of a motion
planning system for autonomous urban driving. This system
was developed for Carnegie Mellon University’s winning entry
into the Urban Challenge, “Boss”. This system enabled Boss to
travel quickly and smoothly through parking lots and off-road
areas, as well as perform complex error recovery maneuvers
in anomalous on-road scenarios.

Part I of this two-part paper described the on-road driving
component of the motion planner, as well as the underlying
trajectory generation algorithm used to track paths in both on-
road and unstructured planning scenarios. Part I also provided
some background of the architecture of the overall software
system used by Boss. However, in the following section for
comprehensiveness we re-iterate the high-level responsibilities
of the motion planner within our architecture. We then describe
how Boss generates complex maneuvers in large, unstructured
environments, along with how it exploits the context of the
scenario to efficiently bias its behavior appropriately. Through-
out, we present example results and illustrations drawn from
over 3000 kilometers of autonomous driving and the Urban
Challenge competition itself. We conclude with a discussion
of lessons learned and related work.

II. MOTION PLANNING

In Boss’ software architecture, the motion planning layer is
responsible for executing the current motion goal issued from

the Behavioral Executive. This goal may be a location within a
road lane when performing nominal on-road driving, a location
within a parking lot or obstacle field when traversing through
one of these areas, or any location in the environment when
performing error recovery. The motion planner constrains itself
based on the context of the goal and the environment to abide
by the rules of the road.

During nominal on-road driving, the goal entails a desired
lane and a desired position within that lane (typically a stop-
line at the end of the lane). In such cases, the motion planner
invokes a high-speed lane-based planner to generate a path
that tracks the desired lane. During unstructured driving, such
as when navigating through parking lots, the goal consists of
a desired pose of the vehicle in the world. In these cases,
the motion planner invokes a 4D lattice planner that generates
a global path to the desired pose. These unstructured motion
goals are also used when the vehicle encounters an anomalous
situation during on-road driving and needs to perform a
complex maneuver (such as when an intersection is partially
blocked and cannot be traversed through in the desired lane).

Given a motion goal, the motion planner creates a path
towards the desired goal then tracks this path by generating
a set of candidate trajectories that follow the path to vary-
ing degrees and selecting from this set the best trajectory
according to an evaluation function. As mentioned above, the
nature of the path generated differs based on the context of the
motion goal and the environment. In addition, the evaluation
function differs depending on the context but always includes
consideration of static and dynamic obstacles, curbs, speed,
curvature, and deviation from the path. The selected trajectory
is then directly executed by the vehicle.

III. UNSTRUCTURED PLANNING

During unstructured area navigation, the motion goal from
the Behavioral Executive is a pose (or set of poses) in
the environment. The motion planner attempts to generate
a trajectory that moves the vehicle towards this goal pose.
However, driving in unstructured environments significantly
differs from driving on roads. As mentioned in the Part I,
when traveling on roads the desired lane implicitly provides a
preferred path for the vehicle (the centerline of the lane). In
unstructured environments there are no driving lanes and thus
the movement of the vehicle is far less constrained.

To efficiently plan a smooth path to a distant goal pose,
we use a lattice planner that searches over vehicle position

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 1070

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

Fig. 1. Replanning when new information is received

(x, y), orientation (θ), and velocity (v). The set of possible
local maneuvers considered for each (x, y, θ, v) state in the
planner’s search space are constructed offline using the same
vehicle model as used in trajectory generation, so that they can
be accurately executed by the vehicle. This planner searches in
a backwards direction out from the goal pose(s) and generates
a path consisting of a sequence of feasible high-fidelity maneu-
vers that are collision-free with respect to the static obstacles
observed in the environment. This path is also biased away
from undesirable areas within the environment such as curbs
and locations in the vicinity of dynamic obstacles.

This global high-fidelity path is then tracked by a local
planner that operates similarly to the on-road lane tracker, by
generating a set of candidate trajectories that follow the path
while allowing for some flexibility in local maneuvering. The
local planner runs at a fixed 10Hz during operation, with the
lattice planner also nominally run at 10Hz. However, in very
difficult planning scenarios the lattice planner may take longer
(up to a couple seconds) to generate its initial solution and
it is for this reason that pre-planning is performed whenever
possible (as will be discussed later). In the following sections,
we describe in more details the elements of our approach and
how it exploits the context of its instantiation to adapt its
behavior based on the situation (e.g. parking lot driving vs
off-road error recovery).

IV. PLANNING COMPLEX MANEUVERS

To efficiently generate complex plans over large, obstacle-
laden environments, the planner relies on an anytime, re-
planning search algorithm known as Anytime Dynamic A*
(Anytime D*), developed by Likhachev et al. [1]. Anytime
D* quickly generates an initial, suboptimal plan for the
vehicle and then improves the quality of this solution while
deliberation time allows. The algorithm is also able to provide
control over the suboptimality bound of the solution at all
times during planning. Figure 8 shows an initial, suboptimal
path converging over time to the optimal solution.

When new information concerning the environment is re-
ceived (for instance, a new static or dynamic obstacle is
observed), Anytime D* is able to efficiently repair its existing
solution to account for the new information. This repair
process is expedited by performing the search in a backwards
direction, as in such a scenario updated information in the
vicinity of the vehicle affects a smaller portion of the search
space and so Anytime D* is able to reuse a large portion of its
previously-constructed search tree in re-computing a new path.
Figure 1 illustrates this replanning capability. These images
were taken from a parking task performed during the National
Qualification Event (the bottom-left image shows the parking
lot in green and the neighboring roads in blue). The top-left
image shows the initial path planned for the vehicle to enter
the parking spot indicated by the white triangle. Several of
the other spots were occupied by other vehicles (shown as
rectangles of varying colors), with detected obstacles shown
as red areas. The trajectories generated to follow the path are
shown emanating from our vehicle (discussed later). As the
vehicle gets closer to its intended spot, it observes more of
the vehicle parked in the right-most parking spot (top, second
from left image). At this point, it realizes its current path is
infeasible and replans a new path that has the vehicle perform
a loop and pull in smoothly. This path was favored in terms
of time over stopping and backing up to re-position.

To further improve efficiency, the lattice planner uses a
multi-resolution state and action space. In the vicinity of the
goal and vehicle, where very complex maneuvering may be
required, a dense set of actions and a fine-grained discretiza-
tion of orientation are used during the search. In other areas,
a coarser set of actions and discretization of orientation are
employed. However, these coarse and dense resolution areas
both share the same dimensionality (specifically, x, y, θ, v) and
seamlessly interface with each other, so that resulting solution
paths overlapping both coarse and dense areas of the space are
smooth and feasible. Figure 2 illustrates how the dense and

1071

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

(a) Dense action space (b) Coarse action space

Fig. 2. Dense and coarse resolution action spaces. The coarse action space
contains many fewer actions (24 versus 36 in the dense action space) with
transitions only to states with a coarse-resolution heading discretization (in
our case, 16 headings versus 32 in the dense-resolution discretization). In
both cases the discretization in position is 0.25m.

coarse action and state spaces differ.
The effectiveness of the Anytime D* algorithm is highly

dependent on its use of an informed heuristic to focus its
search. An accurate heuristic can reduce the time and memory
required to generate a solution by orders of magnitude, while a
poor heuristic can diminish the benefits of the algorithm. It is
thus important to devote careful consideration to the heuristic
used for a given search space.

Since in our setup Anytime D* searches backwards, the
heuristic value of a state estimates the cost of a path from
the robot pose to that state. Anytime D* requires these values
to be admissible (not to overestimate the actual path cost)
and consistent [2]. For any state (x, y, θ, v), the heuristic we
use is the maximum of two values. The first value is the
cost of an optimal path from the robot pose to (x, y, θ, v)
assuming a completely empty environment. These values are
pre-computed offline and stored in a heuristic lookup table [3].
This is a very well informed heuristic function when operating
in sparse environments and is guaranteed to be admissible. The
second value is the cost of a 2D path from the robot (xr, yr)
coordinates to (x, y) given the actual environment. These val-
ues are computed online by a 2D grid-based Dijkstra’s search.
This second heuristic function is very useful when operating
in obstacle-laden environments. By taking the maximum of
these two heuristic values we are able to incorporate both
the constraints of the vehicle and the constraints imposed by
the obstacles in the environment. The result is a very well-
informed heuristic function that can speed up the search by
an order of magnitude relative to either of the component
heuristics alone.

For more details concerning the benefit of this combined
heuristic function and other optimizations implemented in our
lattice planner, including its multi-resolution search space and
how it efficiently plans and replans, see [4].

A. Incorporating Environmental Constraints

In addition to the geometric information provided in the
static obstacle map from perception, we incorporate context-
specific constraints on the movement of the vehicle by creating
an additional cost map known as a constrained map. This
2D grid-based cost map encodes the relative desirability of
different areas of the environment based on the road structure

Fig. 3. Biasing the cost map for the lattice planner so that the vehicle keeps
away from dynamic obstacles. Notice that the high-cost region around the
dynamic obstacle is offset to the left so that Boss will prefer moving to the
right of the vehicle.

in the vicinity and, if available, prior terrain information. This
constrained cost map is then combined with the static map
from perception to create the final combined cost map to be
used by the lattice planner. Specifically, for each cell (i, j) in
the combined cost map C, the value of C(i, j) is computed as
the maximum of EPC(i, j) and CO(i, j), where EPC(i, j) is
the static map value at (i, j) and CO(i, j) is the constrained
cost map value at (i, j).

For instance, when invoking the lattice planner to plan a
maneuver around a parked car or jammed intersection, the
constrained cost map is used to specify that staying within the
desired road lane is preferable to traveling in an oncoming
lane, and similarly that driving off-road to navigate through
a cluttered intersection is dangerous. To do this, undesirable
areas of the environment based on the road structure are
assigned high costs in the constrained cost map. These can be
both soft constraints (undesirable but allowed areas), which
correspond to high costs, and hard constraints (forbidden
areas), which correspond to infinite costs. Figure 4 shows
the constrained cost map generated for an on-road maneuver,
along with the expanded perception cost map and the resulting
combined cost map used by the planner.

B. Incorporating Dynamic Obstacles

The combined cost map of the planner is also used to
represent dynamic obstacles in the environment so that these
can be avoided by the planner. The perception system of
Boss represents static and dynamic obstacles independently,
which allows the motion planner to treat each type of obstacle
differently. The lattice planner adapts the dynamic obsta-
cle avoidance behavior of the vehicle based on its current
proximity to each dynamic obstacle. If the vehicle is close
to a particular dynamic obstacle, that obstacle and a short-
term prediction of its future trajectory is encoded into the
combined cost map as a hard constraint so that it is strictly
avoided. For every dynamic obstacle, both near and far, the
planner encodes a varying high-cost region around the obstacle
reflecting the uncertainty regarding its future behavior to
provide a safe clearance. Although these high-cost regions are
not hard constraints, they result in the vehicle avoiding the
vicinity of the dynamic obstacles if at all possible. Further,

1072

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)
Fig. 4. A snapshot from a qualification run during the Urban Challenge, showing (b) the obstacle map from perception (obstacles in white), (c) the constrained
cost map based on the road structure (lighter areas are more costly), and (c) the resulting combined cost map used by the planner.

the generality of this approach allows us to influence the
behavior of our vehicle based on the specific behavior of the
dynamic obstacles. For instance, we offset the high-cost region
based on the relative position of the dynamic obstacle and our
vehicle so that we will favor moving to the right, resulting in
yielding behavior in unstructured environments quite similar
to how humans react in these scenarios. Figure 3 provides an
example scenario involving a dynamic obstacle along with the
corresponding cost map generated.

V. TRACKING COMPLEX PATHS

The resulting lattice plan is then tracked by the local
planner in a similar manner to the paths extracted from
road lanes: the motion planner generates a set of trajectories
that attempt to follow the plan while also allowing for local
maneuverability. However, in contrast to when following lane
paths, the trajectories generated to follow the lattice path all
attempt to terminate on the path. Each trajectory is in fact a
concatenation of two short trajectories, with the first of the
two short trajectories ending at an offset position from the
path and the second ending back on the path. By having all
concatenated trajectories return to the path we significantly
reduce the risk of having the vehicle move itself into a state
that is difficult to leave.

Figure 7 illustrates the local planner following a lattice
plan to a specified parking spot. Figure 7(a) shows the lattice
plan generated for the vehicle (in red) towards the desired
parking spot (desired pose of the vehicle shown as the white
triangle). Figure 7(b) shows the set of trajectories generated
by the vehicle to track this plan, and Figure 7(c) shows the
best trajectory selected by the vehicle to follow the path.

Both forwards and reverse trajectories are generated as
appropriate based on the velocity of the lattice path being
tracked. When the path contains an upcoming velocity switch-
ing point, or cusp point, the local planner generates trajectories
that bring the vehicle to a stop at the cusp point. Figure 5
shows reverse trajectories generated to a cusp point in the
lattice path.

As mentioned above, one of the desired capabilities of our
vehicle was to be able to exhibit human-like yielding behavior
in parking lots, to allow for safe, natural interaction with
other vehicles. Through our biased cost function, the lattice
planner typically generates paths through parking lots that

Fig. 5. Reversing during path tracking.

(a) (b)
Fig. 6. Defensive driving when in unstructured environments. (a) Trajectories
thrown to right of path (other vehicle should likewise go to right). (b) New
path planned from new position.

keep to the right of other vehicles. However, it is possible
that another vehicle may be quickly heading directly towards
Boss, requiring evasive action similar to the on-road defensive
driving maneuvers discussed in Part I. In such a case, Boss’
local planner detects that it is unable to continue along its
current course without colliding with the other vehicle and it
then generates a set of trajectories that are offset to the right
of the path. The intended behavior here is for each vehicle to
move to the right to avoid a collision. Figure 6 provides an
example of this behavior in a large parking lot.

In addition to the general optimizations employed by the
lattice planner, there are several context-specific steps per-
formed in different urban driving scenarios for which the
lattice planner is invoked. In the following two sections
we describe different methods used to provide optimized,
intelligent behavior in parking lots and on-road error recovery
scenarios.

VI. PLANNING IN PARKING LOTS

Because the location of parking lots is known a priori, this
information can be exploited by the motion planning system
to improve the efficiency and behavior of the lattice planner

1073

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d) (e)
Fig. 7. Following a lattice plan to a parking spot. Here, one planner is updating the path to the spot while another is pre-planning a path out of the spot.

within these areas. First, we can use the extents of the parking
lot to constrain the vehicle through the constrained cost map.
To do this, we use the a priori specified extents of the parking
lot to set all cells outside the lot in the constrained cost map
to be hard constraints. This constrains the vehicle to operate
only inside the lot. We also include a high cost buffer around
the perimeter of the parking lot to bias the vehicle away from
the boundaries of the lot.

When prior terrain information exists such as overhead
imagery, this information can also be incorporated into the
constrained cost map to help provide global guidance for the
vehicle. For instance, this information can be used to detect
features such as curbs or trees in parking lots that should be
avoided, so that these features can be used in planning before
they are detected by onboard perception.

Further, because the parking lot goals are also known in
advance of entering the parking lot (e.g. the vehicle knows
which parking spot it is intending on reaching), the lattice
planner can pre-plan to the first goal pose within the parking
lot while the vehicle is still approaching the lot. By planning
a path from the entry point of the parking lot in advance,
the vehicle can seamlessly transition into the lot without
needing to stop, even for very large and complex lots. Figure
8 illustrates the pre-planning used by the lattice planner.

In a similar vein, when the vehicle is in a lot traveling
towards a parking spot, we use a second lattice planner to
simultaneously plan a path from that spot to the next desired
location (e.g. the next parking spot to reach or an exit of the
lot). When the vehicle reaches its intended parking spot, it then
immediately follows the path from this second planner, again
eliminating any time spent waiting for a plan to be generated.
Figure 7 provides an example of the use of multiple concurrent
lattice planners. Figure 7(a) shows the lattice plan generated
towards the desired parking spot. Figure 7(d) shows the path
simultaneously being planned out of this spot to the exit of
the parking lot, and Figure 7(e) shows the paths from both
planners at the same time.

VII. PLANNING IN ERROR RECOVERY SCENARIOS

The lattice planner is flexible enough to be used in a large
variety of cases that can occur during on-road and unstructured
navigation. In particular, it is used during error recovery when
navigating congested lanes or intersections and to perform
difficult U-turns. In such cases, the nominal on-road motion

planner determines that it is unable to generate any feasible
trajectory and reports its failure to the Behavioral Executive,
which in turn issues an unstructured goal pose (or set of
poses) to the motion planner and indicates that it is in an
error recovery mode. The motion planner then uses the lattice
planner to generate a path to the set of goals, with the lattice
planner determining during its planning which goal is easiest
to reach. In these error recovery scenarios the lattice planner
is biased to avoid areas that could result in unsafe behavior
(such as oncoming lanes when on roads) through increasing
the cost of undesirable areas in the constrained cost map (see
Figure 4).

The ability to cope with anomalous situations was a key
focus of Boss’ software system and the lattice planner was
used as a powerful tool to maneuver the vehicle to arbitrary
locations in the environment.

The lattice planner is also invoked when the road shape
is not known a priori and cannot be reliably detected online
due to the absence of road lane markers or clear geometric
features such as curbs. In such cases the lattice planner is
used to generate obstacle-free paths for the vehicle and it is
biased to stay within any detected geometric extents of the
road.

VIII. RESULTS AND DISCUSSION

Our motion planning system was developed over the course
of more than a year and tested over thousands of kilometers of
autonomous operation in three different testing sites, as well
as the Urban Challenge event itself. Through this extensive
testing all components were rigorously debugged and the
planners were incrementally improved upon.

A key factor in our system-level design was that Boss should
never give up. As such, the lattice planner was designed to
be general enough and powerful enough to plan in extremely
difficult scenarios. In addition, the Behavioral Executive was
designed to issue an infinite sequence of pose goals to the
motion planner should it continue to fail to generate plans
(see [5] for details of this error recovery framework). And
in the final Urban Challenge event, as anticipated, this error
recovery played a large part in Boss’ successful completion of
the course. Over the course of the three final event missions,
there were 17 different instances where the lattice planner was
invoked due to an encountered anomalous situation (some of
these included getting cut off at intersections, coming across

1074

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

Fig. 8. Pre-planning a path into a parking spot (parking lot boundary shown in green, parking spot indicated by white triangle and multicolored goals) and
improving this path in an anytime fashion. A set of goal poses are generated that satisfy the parking spot and an initial path is planned while the vehicle is
still outside the parking lot. This path is improved as the vehicle approaches, converging to the optimal solution shown in the right image.

other vehicles blocking the lane, and perception occasionally
observing heavy dust clouds as static obstacles).

Incorporation of an accurate vehicle model was also an
important design choice for Boss’ motion planning system.
This allowed Boss to push the limits of acceleration and speed
and travel as fast as possible along the road network, confident
in its execution. Combining this model with an efficient on-
road planner that could safely handle the high-speeds involved
was also central to Boss’ on-road performance.

In addition, the efficiency and path quality of the lattice
planner enabled Boss to also travel smoothly and quickly
through parking lot areas, without ever needing to pause
to generate a plan. As well as generating smooth paths in
(x, y, θ), by also considering the velocity dimension v the
lattice planner was able to explicitly reason about the time
required to change direction of travel and was thus able
to generate very fast paths even when complex maneuvers
were required. Overall, the focus on execution speed and
smoothness strongly contributed to Boss finishing the four-
hour race 19 minutes and 8 seconds faster than its nearest
competitor [6].

One of the important lessons learned during the develop-
ment of this system was that it is often extremely beneficial
to exploit prior, offline processing to provide efficient online
planning performance. We used this idea in several places,
from the generation of lookup tables for the trajectory genera-
tor and lattice planner heuristic function to the pre-computing
of constrained cost maps for parking lots. This prior processing
saved us considerably at run-time. Further, even when faced
with calculations that cannot be pre-computed offline, such as
planning paths through novel environments, it can often pay
to begin planning before a plan is required. This concept was
the basis for our pre-planning on approach to parking lots and
our concurrent planning to both current and future goals, and it
enabled us to produce high quality solutions without needing
to wait for these solutions to be generated.

Finally, although simplicity was central to our high-level
system development and significant effort was put into making
the interfacing between processes as lightweight as possible,
we found that in regards to motion planning, although simple,
approximate planning algorithms can work well in most cases,
generality and completeness when needed are priceless. Using

a high-fidelity, high-dimensional lattice planner for unstruc-
tured planning problems proved time and time again to be the
right choice for our system.

IX. PRIOR WORK

Existing research on motion planning for autonomous out-
door vehicles can be roughly broken into two classes: motion
planning for autonomous vehicles following roads and motion
planning for autonomous vehicles navigating unstructured
environments including off-road areas and parking lots. A key
difference between road following and navigating unstructured
environments is that in the former case a global plan is already
encoded by the road (lane) itself, and therefore the planner
only needs to generate short-term motion trajectories that
follow the road, while in the latter case no such global plan
is provided.

A. On-road Planning

A vast amount of research has been conducted in the
area of road following. Some of the best known and fully-
operational systems include the CMU NavLab project [7], the
INRIA autonomous car project [8] in France, the VaMoRs
[9] and VITA projects [10] in Germany, and the Personal
Vehicle System (PVS) project [11] in Japan. Approaches to
road following in these and other systems vary drastically. For
example, one of the road following algorithms used by NavLab
vehicles is ALVINN [12] which learns the mapping from
road images onto control commands using Neural Network by
observing how the car is driven manually for several minutes.
In the VITA project, on the other hand, the planner was used
to track the lane while regulating the velocity of the vehicle
in response to the curvature of the road and the distance
to nearby vehicles and obstacles. Stanford University’s entry
in the second DARPA Grand Challenge also exhibited lane
following behavior through evaluating a set of candidate tra-
jectories that tracked the desired path [13]. Our lane planning
approach is closely related to theirs, however to generate their
candidate trajectories they sample the control space around a
base trajectory (e.g. the trajectory leading down the center of
the lane), while we sample the state space along the road lane.
Some significant advantages of using a state space approach
include the ability to finely control position and heading at the

1075

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

terminal state of each trajectory (which we can align with the
road shape), the ability to impose the requirement that each
trajectory terminates at exactly the same distance along the
path, allowing for fairer evaluation of candidate actions, and
the simplification of generating complex maneuvers such as
U-turns and lane changes.

However, several of these existing approaches have been
shown to be very effective in road following in normal
conditions. A major strength of our approach, on the other
hand, is that it can handle difficult scenarios, such as when a
road is partially blocked (e.g., by an obstacle, a stalled car, a
slow-moving car or a car driving in an opposite direction but
moving out of the bounds of its own lane). Our system can
handle these scenarios robustly and at high speeds.

B. Unstructured Planning

Roboticists have concentrated on the problem of mobile
robot navigation in unstructured environments for several
decades. Early approaches concentrated on performing local
planning, where very short term reasoning is performed to
generate the next action for the vehicle [14], [15]. A major
limitation of these purely local approaches was their capacity
to get the vehicle stuck in local minima en route to the goal
(for instance, cul-de-sacs). To improve upon this limitation,
algorithms were developed that incorporated global as well
as local information [16], [17]. Subsequent approaches have
focused on improving the local planning component of these
approaches by using more sophisticated local action sets that
better follow the global value function [13], [18], and by gen-
erating sequences of actions to perform more complex local
maneuvers [19]. In parallel, researchers have concentrated on
improving the quality of global planning, so that a global path
can be easily tracked by the vehicle [20], [1], [21], [3]. How-
ever, the computational expense of generating complex global
plans over large distances has remained very challenging, and
the approaches to date have been restricted to either small
distances, fairly simple environments, or highly suboptimal
solutions. Our lattice-based global planner is able to efficiently
generate feasible global paths over much larger distances than
previously possible, while providing suboptimality bounds on
the quality of the solutions and anytime improvement of the
solutions generated.

X. CONCLUSIONS

We have presented the motion planning framework for an
autonomous vehicle navigating through urban environments.
Our approach combines a model-predictive trajectory gener-
ation algorithm for computing dynamically-feasible actions
with an efficient lane-based planner, for on-road planning,
and a 4D lattice planner, for planning in unstructured envi-
ronments. It has been implemented on an autonomous vehicle
that has traveled over 3000 autonomous kilometers and we
have presented sample illustrations and results from the Urban
Challenge, which it won in November 2007.

XI. ACKNOWLEDGEMENTS

This work would not have been possible without the ded-
icated efforts of the Tartan Racing team and the generous
support of our sponsors including General Motors, Caterpillar,
and Continental. This work was further supported by DARPA
under contract HR0011-06-C-0142.

REFERENCES

[1] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-
time Dynamic A*: An Anytime, Replanning Algorithm,” in Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), 2005.

[2] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[3] R. Knepper and A. Kelly, “High performance state lattice planning
using heuristic look-up tables,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS), 2006.

[4] M. Likhachev and D. Ferguson, “Planning Dynamically Feasible
Long Range Maneuvers for Autonomous Vehicles,” in Proceedings of
Robotics: Science and Systems (RSS), 2008.

[5] C. Baker, D. Ferguson, and J. Dolan, “Robust Mission Execution for Au-
tonomous Urban Driving,” 2008, submitted to International Conference
on Intelligent Autonomous Systems (IAS).

[6] DARPA, “DARPA Urban Challenge Official Results,” 2008, posted at
http://www.darpa.mil/GRANDCHALLENGE/mediafaq.asp.

[7] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Vision and navigation
for the Carnegie-Mellon Navlab,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 10, no. 3, pp. 362–373, 1988.

[8] J. Baber, J. Kolodko, T. Noel, M. Parent, and L. Vlacic, “Cooperative
autonomous driving: intelligent vehicles sharing city roads,” IEEE
Robotics and Automation Magazine, vol. 12, no. 1, pp. 44–49, 2005.

[9] E. Dickmanns, R. Behringer, C. Brudigam, D. Dickmanns, F. Thomanek,
and V. Holt, “All-transputer visual autobahn-autopilot/copilot,” in Pro-
ceedings of the 4th Int. Conference on Computer Vision ICCV, 1993,
pp. 608–615.

[10] B. Ulmer, “VITA - an autonomous road vehicle (arv) for collision
avoidance in traffic,” in Proceedings of Intelligent Vehicle Symposium,
1992, pp. 36–41.

[11] A. Hattori, A. Hosaka, M. Taniguchi, and E. Nakano, “Driving con-
trol system for an autonomous vehicle using multiple observed point
information,” in Proceedings of Intelligent Vehicle Symposium, 1992.

[12] D. Pomerleau, “Efficient training of artificial neural networks for au-
tonomous navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97,
1991.

[13] S. Thrun et al., “Stanley: The robot that won the DARPA Grand
Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692,
August 2006.

[14] R. Simmons, “The curvature velocity method for local obstacle avoid-
ance,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 1996.

[15] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance.” IEEE Robotics and Automation, vol. 4, no. 1,
1997.

[16] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 1999.

[17] A. Kelly, “An intelligent predictive control approach to the high speed
cross country autonomous navigation problem,” Ph.D. dissertation,
Carnegie Mellon University, 1995.

[18] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” International Journal of Robotics Research,
vol. 26, no. 2, pp. 141–166, 2007.

[19] C. Stachniss and W. Burgard, “An integrated approach to goal-directed
obstacle avoidance under dynamic constraints for dynamic environ-
ments,” in Proceedings of the IEEE International Conference on In-
telligent Robots and Systems (IROS), 2002.

[20] G. Song and N. Amato, “Randomized motion planning for car-like
robots with C-PRM,” in Proceedings of the IEEE International Con-
ference on Intelligent Robots and Systems (IROS), 2001.

[21] M. Pivtoraiko and A. Kelly, “Constrained motion planning in discrete
state spaces,” in Proceedings of the International Conference on Ad-
vanced Robotics (FSR), 2005.

1076

Authorized licensed use limited to: University of Pennsylvania. Downloaded on October 1, 2009 at 11:23 from IEEE Xplore. Restrictions apply.

