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ABSTRACT 

STATISTICAL METHODS FOR MULTI-OMICS INFERENCE FROM SINGLE CELL 

TRANSCRIPTOME 

Zilu Zhou 

Nancy R. Zhang 

This thesis comprises three sections of research in statistical genomics and computational biology. 

Chapter 1 and Chapter 2 describe two statistical methods for multi-omics inference from single cell 

transcriptome, representing the theme of this thesis. Chapter 3 describes a side-project on copy 

number variation detection in large biobank data base. 

Part 1: Although scRNA-seq is now ubiquitously adopted in studies of intratumor heterogeneity, 

detection of somatic mutations and inference of clonal membership from scRNA-seq is currently 

unreliable. We propose DENDRO, an analysis method for scRNA-seq data that detects genetically 

distinct subclones, assigns each single cell to a subclone, and reconstructs the phylogenetic tree 

describing the tumor’s evolutionary history. DENDRO utilizes information from single nucleotide 

mutations in transcribed regions and accounts for technical noise and expression stochasticity at 

the single cell level. The accuracy of DENDRO was benchmarked on spike-in datasets and on 

scRNA-seq data with known subpopulation structure. We applied DENDRO to delineate subclonal 

expansion in a mouse melanoma model in response to immunotherapy, highlighting the role of 

neoantigens in treatment response. We also applied DENDRO to primary and lymph-node 

metastasis samples in breast cancer, where the new approach allowed us to better understand the 

relationship between genetic and transcriptomic intratumor variation.   

Part 2: Recent technological advances allow the simultaneous profiling, across many cells in 

parallel, of multiple omics features in the same cell. In particular, high throughput quantification of 

the transcriptome and a selected panel of cell surface proteins in the same cell is now feasible 

through the REAP-seq and CITE-seq protocols. Yet, due to technological barriers and cost 

considerations, most single cell studies, including Human Cell Atlas (HCA) project, quantify the 
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transcriptome only and do not have cell-matched measurements of relevant surface proteins that 

can serve as integral markers of cellular function and targets for therapeutic intervention. Here we 

propose cTP-net (single cell Transcriptome to Protein prediction with deep neural network), a 

transfer learning approach based on deep neural networks, that imputes surface protein 

abundances for scRNA-seq data. Through comprehensive benchmark evaluations and 

applications to HCA and AML data sets, we show that cTP-net outperform existing methods and 

can transfer information from training data to accurately impute 24 immunophenotype markers, 

which achieve a more detailed characterization of cellular state and cellular phenotypes than 

transcriptome measurements alone. cTP-net relies, for model training, on accumulating public data 

of cells with paired transcriptome and surface protein measurements. 

Part 3: Copy number variations (CNVs) are gains and losses of DNA segments that are highly 

associated with multiple diseases. The Penn Medicine BioBank stores SNP-array and NGS data 

for more than 10000 individuals across ethnicity and conditions, providing a rich resource for  

CNV discovery and analysis. This type of experiment design fits perfectly for CNV detection tool - 

Integrated Copy Number Variation caller (iCNV), which I developed as my master thesis. The 

distinguishing feature of iCNV includes adaptation of platform specific normalization, utilization of 

allele specific reads from sequencing and integration of matched NGS and SNP-array data by a 

Hidden Markov Model (HMM). We applied iCNV on Penn Medicine BioBank data set, calling CNV 

over more than 10000 individuals (~2000 AFR, ~8000 EUR) with different phenotypes. iCNV 

detected on average 34.1 deletions and 11.3 duplications per EUR sample, and 38 deletions and 

10.6 duplications per AFR sample. iCNV calling results show great improvement in detection 

sensitivity and specificity comparing to single platform detection method. Penn Medicine BioBank 

CNV sets by iCNV provide a rich database for researchers to study the relationship between 

diseases phenotypes and CNV across ethnicity and conditions. 
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CHAPTER 1  DENDRO: GENETIC HETEROGENEITY PROFILING AND SUBCLONE 

DETECTION BY SINGLE-CELL RNA SEQUENCING 

 Introduction 

DNA alterations, especially single nucleotide alteration (SNA) and epigenetic modulation both 

contribute to intratumor heterogeneity [1], which mediates tumor initiation, progression, 

metastasis and relapse [2, 3]. Intratumor genetic and transcriptomic variation underlie patients’ 

response to treatment, as natural selection can lead to the emergence of subclones that are drug 

resistant [4]. Thus, identifying subclonal DNA alterations and assessing their impact on intratumor 

transcriptional dynamics can elucidate the mechanisms of tumor evolution and, further, uncover 

potential targets for therapy. To characterize intratumor genetic heterogeneity, most prior studies 

have used bulk tumor DNA sequencing [5-12], but these approaches have limited resolution and 

power [13]. 

Breakthroughs in single-cell genomics promise to reshape cancer research by allowing 

comprehensive cell type classification and rare subclone identification. For example, in breast 

cancer, single-cell DNA sequencing (scDNA-seq) was used to distinguish normal cells from 

malignant cells, the latter of which were further classified into subclones [14-16].  For the profiling 

of intra-tumor transcriptional heterogeneity, single cell RNA-sequencing (scRNA-seq), such as 

Smart-seq2 [17], Drop-seq [18], and 10X Genomics ChromiumTM,  is now ubiquitously adopted in 

ongoing and planned cancer studies. ScRNA-seq studies have already led to novel insights into 

cancer progression and metastasis, as well as into tumor prognosis and treatment response, 

especially response variability in immune checkpoint blockade (ICB) [19-26].  Characterization of 

intratumor genetic heterogeneity and identification of subclones using scRNA-seq is challenging, 

as SNAs derived from scRNA-seq reads are extremely noisy and most studies have relied on the 

detection of chromosome-level copy number aberrations through smoothed gene expression 
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profiles.  Yet, as intratumor transcriptomic variation is partially driven by intratumor genetic 

variation, the classification of cells into subclones and the characterization of each subclone’s 

genetic alterations should ideally be an integral step in any scRNA-seq analysis.  

The appeal of subclone identification in scRNA-seq data is compounded by the shortage 

of technology for sequencing the DNA and RNA molecules in the same cell with acceptable 

accuracy, throughput, and cost [27-30]. Although one can apply both scDNA-seq and scRNA-seq 

to a given cell population, the mutation analysis and RNA quantification cannot be conducted in 

the same set of cells.  Although there are now technologies for deep targeted sequencing of 

select transcripts matched with same-cell whole transcriptome sequencing [31, 32], these 

methods are still, in effect, profiling DNA-level variation by sequencing expressed transcripts, and 

are thus subject to the technical issues, especially dropout due to transcriptional stochasticity.  

Subclone detection using scRNA-seq is difficult mainly because only a small portion of 

the SNAs of each cell is expected to be seen in the read output of scRNA-seq. This is because to 

be sequenced, an SNA needs to fall in a transcribed region of the genome, at a location within 

the transcript that will eventually be read by the chosen sequencing protocol.  Even for SNAs that 

satisfy these requirements, the mutated allele are often missing in the read output due to dropout, 

especially in the heterozygous case. This is due, in part, to the bursty nature of gene transcription 

in single cells [33-35], where in any given cell, a substantial fraction of the genes are only 

expressed from one of the alleles. Thus, an SNA residing in a gene that is expressed at the bulk 

tissue level may not be observed in a particular cell, simply because the mutated allele, by 

chance, is not expressed in the given cell. We refer to alleles that are not captured due to 

expression stochasticity as biological dropouts. Even for a mutated allele that is expressed, it has 

to be successfully converted to cDNA and then sequenced to be represented in the final read 

output; we refer to alleles lost due to technical reasons as technical dropouts. In addition to 

dropout events, post-transcriptional modification, such as RNA editing, and sequencing errors 
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impede both the sensitivity and the specificity of SNA discovery. As a result, methods developed 

for single cell SNA detection using scDNA-seq, such as Monovar [36], as well as methods 

designed for SNA detection in bulk DNA or RNA sequencing data do not yield accurate results in 

the scRNA-seq setting [37-42].  

Here we present a new statistical and computational framework – DNA based 

EvolutionNary tree preDiction by scRNA-seq technOlogy (DENDRO) - that reconstructs the 

phylogenetic tree for cells sequenced by scRNA-seq based on genetic divergence calculated 

from DNA-level mutations. DENDRO assigns each cell to a leaf in the tree representing a 

subclone, and, for each subclone, infers its mutation profile. DENDRO can detect genetically 

divergent subclones by addressing challenges unique to scRNA-seq, including transcriptional 

variation and technical noise. A DENDRO clustering of scRNA-seq data allows joint genetic and 

transcriptomic analysis on the same set of cells.  

We evaluate DENDRO against existing approaches, through simulation data sets and a 

metastasized renal cell carcinoma dataset with known subpopulation labels, and show that 

DENDRO improved the accuracy of subclone detection.  We then demonstrate the DENDRO to 

biological discovery through two applications. The first application profiles the treatment response 

in a melanoma model to immune checkpoint blockade therapy.  DENDRO identified a subclone 

that contracted consistently in response to ICB therapy, and revealed that the contraction was 

driven by the high mutation burden and increased availability of predicted neoantigens.  

Transcriptional divergence between the subclones in this model was very weak, and thus the 

neoantigen-driven sub-clonal dynamics would not have been detected without extracting DNA-

level information. In the second application to a breast tumor dataset, DENDRO detected 

subclones and allowed for the joint characterization of transcriptomic and genetic divergence 

between cells in lymph-node metastasis and cells in primary resections.  
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The DENDRO package, implemented in R, is available at 

https://github.com/zhouzilu/DENDRO, where we also provide a power calculation toolkit, 

DENDROplan, to aid in the design of scRNA-seq experiments for subclonal mutation analysis 

using DENDRO.  

 Results 

1.2.1 Method overview 

1.2.1.1 Overview of DENDRO model and pipeline 

Fig. 1.1a shows an overview of DENDRO’s analysis pipeline. Per cell counts of total read 

coverage (𝑁 matrix) and mutation allele read coverage (𝑋 matrix) at SNA locations are extracted 

after read alignment and SNA detection (details in Methods, Fig. 1.2). Based on these matrices, 

DENDRO then computes a cell-to-cell genetic divergence matrix, where entry (𝑐, 𝑐’) of the matrix 

is a measure of the genetic divergence between cells 𝑐 and 𝑐’. Details of this genetic divergence 

evaluation will be given in the next section. DENDRO then clusters the cells into genetically 

distinct subclones based on this pairwise divergence matrix, and selects the number of subclones 

based on inspection of the intra-cluster divergence curve. Reads from the same subclone are 

then pooled together, and the SNA profile for each subclone is re-estimated based on the pooled 

reads, which improves upon the previous SNA profiles computed at the single cell level. Finally, 

DENDRO generates a parsimony tree using the subclone-level mutation profiles to more 

accurately reflect the evolutionary relationship between the subclones.   

1.2.1.2 Genetic divergence evaluation 

Due to the high rates of biological and technical dropout, SNA detection within each individual cell 

lacks sensitivity. We also expect low specificity due to the high base error rate in scRNA-seq 

protocols. Thus, simple distance measures such as the Hamming or Euclidean distances 
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evaluated on the raw SNA genotype matrix or the raw allele frequency matrix do not accurately 

reflect the genetic divergence between cells.  

To more accurately estimate the cell-to-cell genetic divergence, we have developed a 

statistical model that accounts for technical dropout, sequencing error and expression 

stochasticity. Consider two cells, 𝑐 and 𝑐’, and let 𝐼𝑐 and 𝐼𝑐′ index the clonal group to which the 

cells belong. That is, 𝐼𝑐 =  𝐼𝑐′ if cells 𝑐 and 𝑐’ come from the same subclone and thus share the 

same SNA profile. Let 𝑋𝑐 = (𝑋𝑐1, … , 𝑋𝑐𝑚) be the mutation allele read counts for this cell at the 𝑚 

SNA sites profiled, and 𝑁𝑐 = (𝑁𝑐1, … , 𝑁𝑐𝑚) be the total read counts at these sites. We define the 

genetic divergence between the two cells as 

𝑑𝑐𝑐′ = −log
𝑃(𝑋𝑐 , 𝑋𝑐′|𝑁𝑐 , 𝑁𝑐′ , 𝐼𝑐 = 𝐼𝑐′)

𝑃(𝑋𝑐 , 𝑋𝑐′|𝑁𝑐 , 𝑁𝑐′)
= ∑ 𝑑𝑐𝑐′

𝑔

𝑚

𝑔=1

 

where 𝑑
𝑐𝑐′
𝑔 = −log

𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 = 𝐼𝑐′)

𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔)
. 

In other words, 𝑑𝑐𝑐′ is the negative log likelihood of the mutation allele counts of cells 𝑐 and 𝑐′, 

given the total read counts and the event that the two cells belong to the same subclone. If 𝑐 and 

𝑐′ have mutations in mismatched positions, this likelihood for 𝑋𝑐, 𝑋𝑐′ conditioned on 𝐼𝑐 = 𝐼𝑐′  would 

be small, giving a large value for 𝑑𝑐𝑐′. By the assumption of independence between sites, 𝑑𝑐𝑐′  is 

the sum of 𝑑
𝑐𝑐′
𝑔

, where 𝑑
𝑐𝑐′
𝑔

 is the contribution of mutation site 𝑔 to the divergence measure. In 

characterizing the conditional distribution for 𝑋𝑐𝑔 and 𝑋𝑐′𝑔, we use a Beta-Binomial distribution to 

model expression stochasticity and a Binomial model to capture sequencing errors and rare RNA-

editing events.  Referring to Fig. 1.1b, mutations residing in bursty genes, such as gene 𝑔, would 

tend to have U-shaped allele frequency distributions and are more likely to be “dropped” due to 

low or zero expression.  In contrary, mutations residing in constitutive (non-bursty) genes, such 

as gene 𝑔′  in Fig. 1.1b, would have bell-shaped allele frequency distributions and can be 
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genotyped more reliably.  Thus, even if the read counts    for the mutation loci residing in genes  

𝑔 and 𝑔′ are identical across two cells (𝑐1 and 𝑐2 in Fig. 1.1c), the locus in 𝑔′  would contribute a 

higher value, compared to the locus in 𝑔, to the divergence between cells 𝑐1 and 𝑐2.   Please see 

Methods for details. 

1.2.2 Accuracy assessment 

1.2.2.1 Accuracy assessment by simulation experiment 

First, we designed a simulation procedure to assess the accuracy of DENDRO versus existing 

approaches and to make realistic power projections for subclone detection (Fig. 1.3a).  Since 

DENDRO is currently the only method for SNA-based subclone detection using scRNA-seq data 

alone, we benchmarked against more straightforward approaches such as hierarchical clustering 

based on mutation allele frequencies and genotypes respectively.  The simulation procedure 

starts with an assumed evolutionary tree, where the leaves are subclones and mutations can be 

placed on the branches. In the absence of prior information, a simple tree structure is used, such 

as the one shown in Fig. 1.3a. Parameters of simulation are (1) total number of mutations, (2) 

total number of cells, (3) the proportion of cells in each clade, (4) the proportion of mutations 

along each branch, and (5) mean read coverage across loci. Some of these parameters can be 

determined using bulk DNA-seq and/or bulk RNA-seq data if available (Methods). Parameters (1-

4) determine the mutation profile matrix (Fig. 1.3a). To get the matrix of alternative allele (𝑋𝑐𝑔) 

and total read counts (𝑁𝑐𝑔) for each mutation loci in each cell, we overlay a reference scRNA-seq 

data with allele-specific read counts onto a designed mutation matrix, which is generated from the 

simulated tree (See Methods for details). This allows the simulated datasets to retain the 

expression stochasticity and sequencing error of real scRNA-seq data. DENDRO is then applied 

to the read count matrices to obtain the subclone clusters, which is then compared with the 

known labels. Accuracy is evaluated by three metrics: adjusted Rand index, capture rate and 

purity (See DENDROplan evaluation metrics in Methods). Such simulation procedure can also 
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facilitate experiment design, as it predicts the expected clustering accuracy by DENDRO given 

sequencing parameters and available bulk data for the tumor (See DENDROplan in Methods). 

Using the above framework, we conducted a systematic evaluation of DENDRO’s 

subclone detection accuracy on an example scRNA-seq dataset with allelic information [43]. The 

results, compiled in Fig. 1.3b shows that DENDRO has better performance than simply clustering 

on mutation allele frequencies or the directly estimated mutation profiles from scRNA-seq data. 

Due to high burstness of the scRNA-seq dataset and limited sequencing depth, we found that Z-

matrix, on average, underperformed in all scenario, indicating the necessity of the DENDRO 

framework. We also quantified how accuracy depends on the mutation burden, mutation read 

depth, mutation distribution, subclone cell proportion, and cell populations (Fig. 1.4 and See 

Methods). Even when there are only 100 mutations with relatively low average coverage (read 

depth equals to 1), DENDRO can still extract meaningful clustering results (average ARI ≈ 0.8). 

More importantly, variation in total expression of genes does not influence DENDRO’s divergence 

measure. DENDRO shows consistent results in simulation analysis between populations of single 

cell type and multiple cell types (Fig. 1.4). This is due to DENDRO’s reliance only on the 

distribution of the mutation allele frequency conditioned on the total read coverage, as illustrated 

by the simulation study (Fig. 1.5). The divergence evaluation reflects solely genetic distance not 

transcriptomic difference, allowing for easy interpretation.  

1.2.2.2 Accuracy assessment on a renal cell carcinoma and its metastasis 

We also benchmarked DENDRO against existing methods on the renal cell carcinoma dataset 

from Kim et al [21] (Fig. 1.3). This dataset contained 116 cells sequenced using the Smart-seq 

technology [17], obtained from three tumors derived from one patient: a patient-derived xenograft 

(PDX) from the primary renal cell carcinoma (PDX_pRCC), a biopsy of the metastasis to the lung 

1 year after treatment of primary site (Pt_mRCC), and a PDX of the lung metastasis renal cell 

carcinoma (PDX_mRCC) (Fig. 1.6a). The cells should share common early driver mutations due 
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to their shared origin from the same patient, but the metastasis and the cultivation of each tumor 

in separate medium (human or mouse) should have allowed for the accumulation of new 

mutations. Thus, we expect the three tumors to be clonally distinct. This knowledge allows us to 

use this dataset to benchmark accuracy and to illustrate how DENDRO enables joint analysis of 

the genetic and transcriptomic heterogeneity at single cell resolution.  

GATK detected 2,867,029 mutation sites across all cells [1]. Mutations that are detected 

in less than 5% (too rare) or more than 95% (too common) of the cells were removed, which 

leaves 72,206 mutations. On average, 10801 mutations are detected in each cell and 17.35 cells 

possess the same mutation for each loci (Fig. 1.6b, c). For majority sites, only few cells have 

nonzero read coverage, highlighting the fact that many mutations are missed due to technical and 

biological dropout (Fig. 1.6d) [2-6]. 

We compared 4 different clustering methods: (1) DENDRO, (2) hierarchical clustering 

based on the primary genotype matrix 𝑍 generated by GATK ( 𝑍𝑐𝑔 = 1 when a mutation 𝑔 is 

detected for cell 𝑐, 𝑍𝑐𝑔 = 0 otherwise), (3) hierarchical clustering based on the 
𝑋

𝑁
 matrix that 

preserve the variant allele frequency information and (4) hierarchical clustering based on gene 

expression (log 𝑇𝑃𝑀). DENDRO gives the cleanest separation between the three populations with 

adjusted Rand Index of 0.932 (1.0 indicates perfect clustering, Fig. 1.3c panel 1), as compared to 

0.754 for Z matrix (Fig. 1.3c panel 2), 0.519 for 
𝑋

𝑁
 matrix (Fig. 1.3c panel 3) and 0.489 for 

expression (Fig. 1.3c panel 4). Inspection of the tree shows that, as expected, divergence 

between primary tumor and metastasis exceeds divergence between patient sample and PDX 

sample, as PDX_mRCC clusters with Pt_mRCC rather than PDX_pRCC. All of the other three 

methods successfully separated the primary sample from the metastatic samples, but could not 

differentiate between the two metastasis samples.  
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For DENDRO, the intra-cluster divergence curve flattened at 3, and thus we stopped 

splitting at 3 clusters (Fig. 1.6e and Methods). We annotated the clusters as PDX_mRCC, 

PDX_pRCC and Pt_mRCC by their cell compositions (Table 1.1a). DENDRO found minimal 

sharing of subclones among the tumors derived from three sources, and low genetic 

heterogeneity within each tumor. This is unsurprising since relapsed metastasis consists of cells 

that have already undergone selection, and since the PDX tumors are each seeded by a small 

subsample of cells from the original tumor, each tumor consists of unique subclones not detected 

in other sites [44-46].  

DENDRO enables simultaneous clonal assignment and transcriptomic profiling of the 

same set of cells. Plot of smoothed expression ordered by DENDRO shows unique expression 

patterns within each subclone (Fig. 1.7). We focused on the comparison of the two metastasized 

cell populations (metastasis to lung and patient derived mouse xenograph). Even though 

PDX_mRCC was derived from Pt_mRCC, the DENDRO analysis found substantial genetic 

divergence between the two cell populations. To investigate further, we performed a differential 

expression analysis between PDX_mRCC and Pt_mRCC with scDD and MAST, detecting 74 

significant differentially expressed genes (Methods, Fig. 1.8e, Table 1.2) [44-46]. Gene ontology 

analysis classified these 74 genes into two subgroups: immune-related genes and cancer-related 

genes (Table 1.3) [47]. Immune-related differentially expressed genes are enriched for the terms 

TNF-α signaling, complement system and allograft rejection. On the other hand, cancer related 

differentially expressed genes overlap with the pathways including hypoxia, KRAS signaling, 

mTORC1 signaling and epithelial mesenchymal transition.  

Simultaneously, we compare the mutation profiles of these two subclones. 9521 locus 

have different mutated allele counts between these two populations and were further annotated 

by ANNOVAR [48]. After filtering, the preserved variants associated with 24 out of 74 differential 

expressed genes (Table 1.2). Next, we performed a similar GSEA on variants associated genes 
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to identify mutation-related pathway [47]. Interestingly, variant annotated genes are enriched in 

cancer-related pathways, including mitotic spindle, mTORC1 signaling, EMT and hypoxia, 

overlapping substantially with the cancer-related pathways identified by differential expression 

analysis; in comparison, none of the differentially expressed genes from immune pathways 

showed up in this mutated gene analysis (Table 1.4). In another word, cancer-related 

transcriptomic divergence between PDX_mRCC and Pt_mRCC is driven directly by genetic 

alterations in the same genes, but immune-related differential expression is influenced by non-

DNA factors. This makes sense, since implantation of tumor cells from human to mice alters their 

immune microenvironment [49-51], and thus is expected to alter immune-related signaling within 

the implanted tumor cells. This illustrates how DENDRO extricates DNA variation from RNAs 

allowing their joint analysis. Differential expression and differential mutation analysis for the other 

subclone pairs can be found in Fig. 1.8. 

1.2.3 DENDRO analysis of melanoma model in response to immune checkpoint 

blockade highlights the role of neoantigens 

Immune checkpoint blockade (ICB) of the inhibitory receptors CTLA4 and PD1 can result in 

durable responses in multiple cancer types [47]. Features intrinsic to cancer cells that can impact 

ICB treatment outcome include their repertoire of neoantigens [48], tumor mutational burden 

(TMB) [49], and expression of PDL1 [50].  DENDRO analysis of scRNA-seq data allows joint 

DNA-RNA analysis of single cells, thus enabling the simultaneous quantification of tumor 

mutational burden, the prediction of neoantigen repertoire, and the characterization of gene 

expression profile at subclonal resolution. Thus, to demonstrate the power of DENDRO and to 

better understand the relationship between ICB response and intratumor heterogeneity, we 

profiled the single cell transcriptomes across three conditions derived from 2 melanoma cell lines 

(Fig. 1.9a): B16 melanoma cell line, which has shown modest initial response to ICB treatment 

but eventually grows out, and Res 499 melanoma cell line (R499), which was derived from a 
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relapsed B16 tumor after combined treatment of radiation and anti-CTLA4 and is fully resistant to 

ICB [51].  B16 was evaluated with and without anti-PD1 treatment, as we wanted a tumor model 

that captures a transient ICB response. A total of 600 tumor cells were sequenced with Smart-seq 

technology from six mice across three conditions: two mice with B16 without treatment (B16), two 

mice with B16 after anti-PD1 treatment (B16PD1) and two mice with R499 without treatment 

(R499) (Fig. 1.9a and Methods). The existence of multiple subclones in B16 and R499 was 

suggested by bulk WES analysis [51, 52]. Our goal here is to determine whether the subclones 

differ in anti-PD1 response, and if so, what are the subclonal differences.  

A DENDRO analysis of 4059 putative mutation sites across 460 cells retained after QC 

(see Methods and Fig. 1.10a, b, c) yields the clustering displayed in Fig. 1.9b, with four subclones 

suggested by the intra-cluster divergence curve (Fig. 1.10d).  All subclones are shared among the 

three conditions, which is not unexpected given that all tumor cells were derived from the same 

parental cell line.  However, the sub-clonal proportions vary significantly between conditions (Fig. 

1.9b).  The subclonal proportions of B16PD1 are approximately intermediate between that of B16 

and R499 (Fig. 1.9c). This is expected as R499 had gone through immune editing whereas 

B16PD1, at the time of harvest, was still undergoing immune editing and was at the transient 

response state. Furthermore, the selective pressure of radiation plus anti-CTLA4 is likely more 

than that of anti-PD1 treatment, as the former but not the latter results in complete responses in 

our B16 model [51]. The frequency of Clone 2 is lower in B16PD1 and R499, indicating sensitivity 

to anti-PD1 treatment, while the frequencies of Clone 3 and Clone 4 increase after treatment and 

are the highest in R499, indicating resistance to therapy (Fig. 1.9c, 1.11a).  

To explore why subclones vary in sensitivity to anti-PD1 treatment, we compared the 

mutation profile of Clone 2 to the other subclones. We pooled cells in each of the four subclones 

and re-estimated their mutation profiles, which were then used to construct a phylogenetic tree 

(Fig. 1.9d). The phylogeny suggests that Clone 3 and Clone 4 are genetically closer to each other 
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than to Clone 2, and thus, their similarity in treatment response may be in part due to similarity in 

their mutation profiles. The re-estimated mutation profiles show that Clone 2 has the highest 

tumor mutation burden, which has been associated with increased likelihood of ICB response [53, 

54]. We then predicted the quantity of high-affinity (≤ 100 nm) neoantigens in each subclone 

given its mutation profile [52]. As shown in Fig. 1.9e, Clone 2 has twice as many high-affinity 

neoantigens as the other three subclones. The high level of neoantigens can lead to better T cell 

recognition, resulting in increased efficacy of anti-PD1 treatment [55].  

Analysis of gene expression, on the other hand, did not yield detectable known 

signatures associated with anti-PD1 treatment sensitivity. Projections based on the expression of 

highly variable genes, as shown in PCA and t-SNE plots (Fig. 1.12), did not yield meaningful 

clusters. Differential expression analysis between each subclone and the other subclones found 

few genes with adjusted P-value < 0.05, indicating similar expression across sub-clones that is 

concordant with the lack of structure in the expression PCA and tSNE plots. Expressions of Pdl1 

(aka. Cd274) showed no differences between subclones (KS-test: P-value > 0.42, Fig. 1.11b). In 

addition, there were no detectable chromosome-level differences in smoothed gene expression, 

indicating that there are no large CNV events that distinguish the subclones (Fig. 1.13). 

DENDRO, detecting exonic mutations from scRNA-seq data, enabled the finding of subclones in 

this data, the prediction of neoantigen load of each subclone, and the analysis of subclonal 

dynamics due to treatment. Our analysis suggests that the genetic heterogeneity, rather than 

transcriptomic heterogeneity, contributes to treatment efficacy in this tumor model.  

1.2.4 Simultaneous analysis of genetic and transcriptomic variation in single cell breast 

cancer 

We next applied DENDRO to the analysis of data from a study of primary and metastasized 

breast cancer [20]. We focused on tumors from two patients (BC03 and BC09) that had the most 

cells sequenced (Fig. 1.14 and Table 1.5). Patient BC03 had cells sequenced from the primary 
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tumor (here after BC03P) as well as cells from regional metastatic lymph nodes (here after 

BC03LN), whereas patient BC09 had cells sequenced only from the primary resection. 132 single 

cell transcriptomes were profiled by Smart-seq protocol [17]. We first assess whether DENDRO 

separated BC03 cells from BC09 cells, since inter-individual genetic distances should far exceed 

intra-individual genetic distances owning to the randomness of passenger mutations [19, 22, 56] . 

Then, we examine the transcriptomic and genetic heterogeneity within each tumor.  

GATK [57] detected a total of 2,364,823 mutation sites across the 132 cells, 353,647 

passed QC (Methods) and were retained for downstream analysis (Fig. 1.14a, b, c). Fig. 1.15 

shows the clustering determined by DENDRO. DENDRO separates BC09 cells from BC03 cells 

with 100% accuracy (Fig. 1.15a). The intra-cluster divergence curve flattened at five subclones: 

three subclones for BC03 and two for BC09 (Fig. 1.15a, Fig. 1.14d and Table 1.1b). Within BC03, 

Clone Mix_1 and Clone Mix_2 contained a mixture of cells from the primary tumor and lymph 

nodes, and Clone LN_1 contained mostly cells from the lymph nodes. This suggests that tumor 

cells that have metastasized to the lymph nodes belong to an intermediate stage and are 

genetically heterogeneous, with some cells remaining genetically similar to the primary population 

and others acquiring new genetic mutations, coherent with previous studies [58, 59]. In 

comparison, hierarchical clustering based on expression (using log transcripts-per-million values) 

did not separate BC03 from BC09, and gave a negative adjusted Rand index within BC03, 

indicating effectively random assignment of cells to the two patients (Fig. 1.15b). 

We then pooled cells within each of the 5 clusters and re-estimated their mutation profiles 

with DENDRO. We defined a variant as subclonal if it was not present in all of the subclones 

within a tumor. Based on detection marginal likelihood, we picked the top 10,000 most confident 

variants to construct a phylogenetic tree (Fig. 1.15c). As expected, the two BC09 clusters are far 

from the three BC03 clusters. Within BC03, the length of the branches shows that the subclone 

containing mostly cells from lymph nodes (labeled BC03LN_1) is genetically more similar to 
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Clone Mix_2 compared to Clone Mix_1 (Fig. 1.15c). In addition, window-smoothed expression 

plot with cells grouped by DENDRO clustering shows broad chromosome-level shifts in 

expression patterns between subclones, most likely due to copy number aberrations that are 

consistent with SNAs (Fig. 1.16) [22]. 

A comparison of the transcriptomes of the subclones revealed substantial differences in 

the expression of PAM50 genes, which are prognostic markers for breast cancer (Fig. 1.15d) [60]. 

DENDRO detected one rare subclone, BC09_2, with only six cells (<5% of the total number of 

cells) which had a strong basal-like signature. Interestingly, in BC03, Clone LN_1 has the 

TNBC/basal-like subtype with an invasive gene signature, while Clone Mix_2 has the ESR1+ 

subtype. Thus, the genetic divergence of Clone LN_1 from Clone Mix_2 is accompanied by its 

acquisition of an invasive metastatic expression signature. In a direct comparison between cells 

from the primary site and cells from the lymph node without distinguishing subclones, these 

expression differences would be much weaker since the subclones do not cleanly separate by 

site. Compared with the original analysis that assigned each tumor to one specific breast cancer 

subtype, this analysis identifies subclones with different expression phenotypes, potentially 

allowing for better therapy design that targets all subclone phenotypes to reduce the risk of tumor 

relapse. 

Existing scRNA-seq studies of cancer tissue cluster cells based on total gene expression 

or copy number profiles derived from smoothed total expression, making it difficult to separate the 

effects of sub-clonal copy number aberrations from transcriptomic variation [19, 22, 24].  

Differential expression analysis based on clusters derived from total expression is prone to self-

fulfilling prophecy, as there would indeed be differentially expressed genes because this is the 

clustering criteria. Because DENDRO’s subclone identification is based solely on genetic 

divergence, and not on expression profile, the downstream differential gene expression analysis 

can be precisely attributed to transcriptional divergence between subclones. 
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Hence, we conducted a transcriptome-wide search for pathways that have differential 

expression between subclones (Methods and Table 1.6), and assessed their overlap with 

pathways that are differentially mutated between subclones. Focusing on tumor BC03, pathways 

for G2M checkpoint and KRAS signaling are up-regulated in lymph node metastasis Clone 

BC03LN_1, while pathways for estrogen response and apoptosis are down-regulated, indicating 

a more invasive phenotype. In addition, GAPDH is up-regulated in the metastatic subclone 

(BC03LN_1) and down-regulated in the two mix-cell subclones, consistent with previous findings 

[61, 62] (Fig. 1.17d). Differentially expressed genes between other subclone pairs in BC03 are 

also enriched in estrogen response, apoptosis, and DNA repair. In parallel, subclone-specific 

mutated genes are highly enriched in cancer-related pathways including MYC target, G2M 

checkpoints and mitotic spindle, and immune related pathways such as, interferon response, 

TNF-a signaling and inflammatory response (Table 1.6). Interestingly, few of the differentially 

mutated genes are associated with estrogen and androgen responses, suggesting that the 

differential expression of hormone related genes is not mediated directly by genetic mutations in 

these pathways. This is consistent with the recent studies that epigenetic alteration, such as 

histone acetylation and methylation, regulate hormones receptor signaling in breast cancer [63-

66]. DNA-RNA joint analysis between other subclones are included in Fig. 1.17. Overall, this 

example illustrates how DENDRO enables the joint assessment of genetic and transcriptomic 

contributions to clonal diversity at single-cell resolution. 

 Discussion 

We have described DENDRO, a statistical framework to reconstruct intratumor DNA-level 

heterogeneity using scRNA-seq data. DENDRO starts with mutations detected directly from the 

scRNA-seq reads, which are very noisy due to a combination of factors: (1) errors are introduced 

in reverse-transcription, sequencing and mapping, (2) low sequencing depth and low molecule 

conversion efficiency leading to technical dropouts, and (3) expression burstiness at the single 

cell level leading to biological dropouts. DENDRO overcomes these obstacles through the 
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statistical modeling of each component. Given noisy mutation profiles and allele-specific read 

counts, DENDRO computes a distance between each pair of cells that quantifies their genetic 

divergence after accounting for transcriptional bursting, dropout and sequencing error. Then, 

DENDRO clusters the cells based on this distance as subclone and re-estimates a more robust 

subclone-specific mutation profile by pooling reads across cells within the same cluster. These re-

estimated mutations profiles are then passed to downstream mutation analysis and phylogenetic 

tree reconstruction. 

Importantly, the genetic divergence used by DENDRO for cell clustering is based solely 

on allelic expression ratios and do not reflect the difference in total expression between cells at 

mutation sites. Thus, DENDRO differs from, and complements, existing tools that cluster cells 

based on total expression. In fact, as shown by simulation analysis, DENDRO clusters the cells 

based on true underlining mutation profiles, and is robust to changes in total gene expression. As 

expected, the numbers of cells, the depth of sequencing, the actual number of subclonal 

mutations and the phylogenetic tree structure all influence the power of DENDRO. To aid 

researchers in experiment design, we developed DENDROplan, which predicts DENDRO’s 

clustering accuracy given basic experimental parameters and the expected informative mutation 

count, which can be obtained from bulk DNA sequencing.  

Ideally, joint sequencing of the DNA and RNA on the same cells would allow us to relate 

genomic profiles to transcriptomic variations. Currently, there is yet no scalable technology for 

doing this. Separately performing scDNA-seq and scRNA-seq on different batches of cells within 

the same tumor would meet the nontrivial challenge of matching the subclones between the two 

data sets. DENDRO takes advantage of the central dogma and utilizes computational methods to 

extract genetic divergence information from noisy mutation calls in coding regions. Through two 

case studies, we illustrate the insights gained from the subclonal mutation and expression joint 

analysis that DENDRO enables.  
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We have demonstrated that proper computational modeling can excavate the DNA-level 

heterogeneity in scRNA-seq data. Yet, there are always limitations in working with RNA. While 

rare RNA editing events are absorbed by the parameter 𝜖, DENDRO cannot distinguish subclone-

specific constituent RNA editing events from subclone-specific DNA mutations. In the extreme 

and unlikely scenario where RNA editing events are common and pervasive, DENDRO’s cluster 

would reflect RNA editing. In such cases, we recommend using matched bulk DNA-seq of the 

same tumor to filter the loci detected in the first step of DENDRO, keeping only those that are 

supported by at least one read in the bulk DNA-seq data. In addition, DENDRO’s analysis is 

restricted to transcribed regions, as variants are detected using transcriptomic data, and thus 

ignores non-coding mutations which can sometimes be informative for tumor evolution [67-70].  

Tag-based scRNA-seq (10X, Drop-seq, etc.) is now commonly adopted for cancer 

sequencing, but we do not recommend applying DENDRO to this sequencing design because of 

two reasons: (1) limited number of variants can be detected with tag-based methods as they only 

profile a small fraction of the transcript (3-prime or 5-prime end); and (2) the sequencing depth of 

tag-based methods are critically low (<0.1X), resulting in unreliable variant calling.  However, we 

do anticipate that emerging technologies, such as long-read full-transcript scRNA-seq 

technologies [71] and transcriptome-based deep targeted sequencing [31, 32] will overcome 

these limitations of tag-based scRNA-seq. Given proper experimental design, we expect that 

these emerging technologies will be ideally suited for the joint analysis of exonic somatic 

mutations and gene expression. 

 Methods 

1.4.1 scRNA-seq alignment and SNA calling pipeline 

Fig. 1.2 illustrates the SNA calling pipeline. Raw scRNA-seq data is aligned by STAR 2-

pass method (default parameters), which accounts for splicing junctions and achieve higher 
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mapping quality [72]. Transcripts per million (TPM) was quantified using RSEM (default 

parameters) [73]. In the next step, raw variants calling is made using the Haplotype Caller (GATK 

tool) on the BAM files after sorting, joining read groups, removing duplicated reads, removing 

overhangs into intronic regions, realigning and recalibration [74]. Conventionally, there are two 

methods from GATK tools for mutation detection: haplotype caller and mutect2. Haplotype caller 

has a RNA-seq setting which handle splice junctions correctly, but assumes VAF around 50%, 

while mutect2 can detect mutations with low VAF but does not account for splice junction. The 

reason we select haplotype caller instead of mutect2 is that we extract allele read counts for all 

cells as long as one of the cells is listed as carrying the mutation. Thus, as long as one cell has 

VAF reaching 50%, this mutation would be detected. Calls with stand_call_conf greater than 20 

and population frequency greater than 5% but less than 95% were preserved for further analysis. 

Admittedly, such lenient filtering typically introduces false positive sites. However, our priority at 

this step is to minimize false negative rate, while the genetic divergence matrix in the following 

step robustly estimates cell population substructure. Both the coverage of the alternative allele 

and the total read coverage are extracted for each site for further analysis.  

1.4.2 Data preprocessing and quality control 

To ensure robustness of downstream analysis, we filtered out low quality cells, variants and 

genes. We retained: Cells with (1) >10000 reads mapped, (2) <10% mitochondria gene 

expression and (3) >1000 gene detected; genes with > 5 cells detected (TPM>0 as detected); 

and variants with > 2 cells detected by GATK.  Original TPM values as defined by RSEM were 

added a value of 1 (to avoid zeros) and then log-transformed for downstream transcriptomic 

analysis. 
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1.4.3 Genetic Divergence and Beta-Binomial framework 

Consider two cells: 𝑐 and 𝑐’. Let 𝐼𝑐 and 𝐼𝑐′ denote the clonal group to which the cells belong, i.e. 

𝐼𝑐 =  𝐼𝑐′ if and only if cells 𝑐 and 𝑐’ come from the same subclone. We define the genetic 

divergence at loci 𝑔,  by 𝑑𝑐𝑐′
𝑔

: 

𝑑
𝑐𝑐′
𝑔

= log
P(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔, 𝑁𝑐′𝑔)

𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔, 𝑁𝑐′𝑔 , 𝐼𝑐 = 𝐼𝑐′)

= log
P(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 = 𝐼𝑐′) + P(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 ≠ 𝐼𝑐′)

𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 = 𝐼𝑐′)
)  

where 𝑋𝑐 = (𝑋𝑐1, 𝑋𝑐2, … 𝑋𝑐𝑔 , … 𝑋𝑐𝑚) are the mutation allele read counts for cell 𝑐 and 𝑁𝑐 =

(𝑁𝑐1, 𝑁𝑐2, … 𝑁𝑐𝑔 , … 𝑁𝑐𝑚) are the total read counts at these sites. More intuitively, if cells 𝑐 and 𝑐′ are 

not from the same clonal group, the probability of cell cells 𝑐 and 𝑐′ from the same cells given 

data (i.e. denominator) has smaller value. Thus 𝑑𝑐𝑐′
𝑔

 is large, indicating bigger divergence 

between the two cells.  

Given 𝑑
𝑐𝑐′
𝑔 = −log

P(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔, 𝐼𝑐 = 𝐼𝑐′)

P(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔)
, 

𝑑
𝑐𝑐′
𝑔 = log

P(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔)

𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔, 𝐼𝑐 = 𝐼𝑐′)

= log
P(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔, 𝑁𝑐′𝑔, 𝐼𝑐 = 𝐼𝑐′) + P(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔, 𝐼𝑐 ≠ 𝐼𝑐′)

𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔, 𝐼𝑐 = 𝐼𝑐′)
)

= log (
𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 ≠ 𝐼𝑐′)

𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔|𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 = 𝐼𝑐′)
+ 1) 

where 𝐷𝑐 = {(𝑁𝑐1, 𝑁𝑐2, … 𝑁𝑐𝑔, … 𝑁𝑐𝑚), (𝑋𝑐1, 𝑋𝑐2 , … 𝑋𝑐𝑔 , … 𝑋𝑐𝑚) are data for cell 𝑐. 

𝑃(𝑋𝑐𝑔,𝑋
𝑐′𝑔

|𝑁𝑐𝑔,𝑁
𝑐′𝑔

,𝐼𝑐≠𝐼
𝑐′)

𝑃(𝑋𝑐𝑔,𝑋𝑐′𝑔|𝑁𝑐𝑔,𝑁𝑐′𝑔,𝐼𝑐=𝐼𝑐′)
 could also be called a Bayes Factor. More intuitively, if cell 𝑐 and 𝑐′ are not 
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from the same clonal group, the numerator has larger value compared to denominator. Thus, 𝑑𝑐𝑐′
𝑔

 

is large, indicating bigger divergence between the two cells. 

To further expand the formula, let us focus on the denominator first: 

𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔 |𝑁𝑐𝑔, 𝑁𝑐′𝑔 , 𝐼𝑐 = 𝐼𝑐′)  

= 𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝑍𝑐𝑔 = 𝑍𝑐′𝑔 = 0 )𝑃(𝑍𝑐𝑔 = 𝑍𝑐′𝑔 = 0|𝐼𝑐𝑔 = 𝐼𝑐′𝑔)

+ 𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝑍𝑐𝑔 = 𝑍𝑐′𝑔 = 1 )𝑃(𝑍𝑐𝑔 = 𝑍𝑐′𝑔 = 1|𝐼𝑐𝑔 = 𝐼𝑐′𝑔) 

= 𝑃(𝑋𝑐𝑔 |𝑁𝑐𝑔 ,  𝑍𝑐𝑔 = 0)𝑃(𝑋𝑐′𝑔 |𝑁𝑐′𝑔 ,  𝑍𝑐′𝑔 = 0)(1 − 𝑃𝑔)

+ 𝑃(𝑋𝑐𝑔 |𝑁𝑐𝑔 ,  𝑍𝑐𝑔 = 1)𝑃(𝑋𝑐′𝑔 |𝑁𝑐′𝑔,  𝑍𝑐′𝑔 = 1)𝑃𝑔 

where 𝑃𝑔 = 𝑃(𝑍𝑔 = 1) indicates the population mutation frequency in the group of cells, estimated 

from GATK calling; and 𝑃(𝑍𝑔 = 0) = 1 − 𝑃(𝑍𝑔 = 1) = 1 − 𝑃𝑔 . 

Then the numerator: 

𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝐼𝑐 ≠ 𝐼𝑐′) 

= 𝑃(𝑋𝑐𝑔 , 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝑍𝑐𝑔 = 0,  𝑍𝑐′𝑔 = 0 )𝑃(𝑍𝑐𝑔 = 0, 𝑍𝑐′𝑔 = 0|𝐼𝑐𝑔 ≠ 𝐼𝑐′𝑔)

+ 𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝑍𝑐𝑔 = 1,  𝑍𝑐′𝑔 = 1 )𝑃(𝑍𝑐𝑔 = 1, 𝑍𝑐′𝑔 = 1|𝐼𝑐𝑔 ≠ 𝐼𝑐′𝑔)

+ 𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝑍𝑐𝑔 = 0,  𝑍𝑐′𝑔 = 1 )𝑃(𝑍𝑐𝑔 = 0, 𝑍𝑐′𝑔 = 1|𝐼𝑐𝑔 ≠ 𝐼𝑐′𝑔)

+ 𝑃(𝑋𝑐𝑔, 𝑋𝑐′𝑔 |𝑁𝑐𝑔 , 𝑁𝑐′𝑔 , 𝑍𝑐𝑔 = 1,  𝑍𝑐′𝑔 = 0 )𝑃(𝑍𝑐𝑔 = 1, 𝑍𝑐′𝑔 = 0|𝐼𝑐𝑔 ≠ 𝐼𝑐′𝑔) 

= 𝑃(𝑋𝑐𝑔 |𝑁𝑐𝑔 ,  𝑍𝑐𝑔 = 1)𝑃(𝑋𝑐′𝑔 |𝑁𝑐′𝑔 ,  𝑍𝑐′𝑔 = 0)(1 − 𝑃𝑔)𝑃𝑔

+ 𝑃(𝑋𝑐𝑔 |𝑁𝑐𝑔,  𝑍𝑐𝑔 = 0)𝑃(𝑋𝑐′𝑔 |𝑁𝑐′𝑔,  𝑍𝑐′𝑔 = 0)(1 − 𝑃𝑔)
2

+ 𝑃(𝑋𝑐𝑔 |𝑁𝑐𝑔,  𝑍𝑐𝑔 = 1)𝑃(𝑋𝑐′𝑔 |𝑁𝑐′𝑔,  𝑍𝑐′𝑔 = 1)𝑃𝑔
2

+ 𝑃(𝑋𝑐𝑔 |𝑁𝑐𝑔,  𝑍𝑐𝑔 = 0)𝑃(𝑋𝑐′𝑔 |𝑁𝑐′𝑔,  𝑍𝑐′𝑔 = 1)(1 − 𝑃𝑔)𝑃𝑔 
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As a result, 𝑑𝑐𝑐′
𝑔

 is a function of the five following probabilities:  

𝑑𝑐𝑐′
𝑔

= 𝑓 (𝑃𝑔; 𝑃(𝑋𝑐𝑔|𝑁𝑐𝑔, 𝑍𝑐𝑔 = 0); 𝑃(𝑋𝑐𝑔|𝑁𝑐𝑔 , 𝑍𝑐𝑔 = 1); 𝑃(𝑋𝑐′𝑔|𝑁𝑐′𝑔, 𝑍𝑐′𝑔 = 0); 𝑃(𝑋𝑐′𝑔|𝑁𝑐′𝑔 , 𝑍𝑐′𝑔 = 1)) 

where 𝑍𝑐𝑔 ∈ {0,1} is SNA indicator for cell 𝑐 at site 𝑔 and 𝑃𝑔 = 𝑃(𝑍𝑔 = 1) is mutation frequency 

across the cells estimated by GATK calls.  

In the above formula for 𝑑
𝑐𝑐′
𝑔

, 𝑃(𝑋𝑐𝑔|𝑁𝑐𝑔 , 𝑍𝑐𝑔 = 0) and 𝑃(𝑋𝑐′𝑔|𝑁𝑐′𝑔 , 𝑍𝑐′𝑔 = 0) reflect 

reverse-transcription/sequencing/mapping errors and rare RNA editing events, because when 

there is no mutation (i.e. 𝑍𝑐𝑔 = 0, 𝑍𝑐′𝑔 = 0), all mutation reads reflect such technical errors or RNA 

editing. Let 𝜖 denote the combined rate of technical error and RNA editing, we have 

𝑃(𝑋𝑐𝑔|𝑁𝑐𝑔 , 𝑍𝑐𝑔 = 0)~Binomial(𝑋𝑐𝑔|𝑁𝑐𝑔, 𝜖) 

where 𝜖 is set to 0.001 based on prior knowledge {Pfeiffer, 2018 #411}. 

For cases where there are mutations (i.e. 𝑍𝑐𝑔 = 1), the distribution of mutated read 

counts given total read counts is modeled with a Beta Binomial distribution, which is capable of 

modeling technical dropout and transcriptional bursting, and is supported by previous allele 

specific expression studies [34, 75] . 

𝑃(𝑋𝑐𝑔|𝑁𝑐𝑔 , 𝑍𝑐𝑔 = 1)~ ∫ Binomial(𝑋𝑐𝑔|𝑁𝑐𝑔 , 𝑄𝑐𝑔 = 𝑞)𝑑𝐹(𝑞)
1

0

, 

𝑞 ∼ Beta(𝛼𝑔, 𝛽𝑔) 

where 𝑄𝑐𝑔 indicates proportion of mutated alleles expressed in cell 𝑐 at site 𝑔, with Beta 

distribution as prior. Respectively, 𝛼𝑔 and 𝛽𝑔 represent gene activation and deactivation rate, 

which are estimated empirically across cells based on first and second moment estimator.  
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Through optimized vectorization, given a data set of 500 cells with 2500 variants, genetic 

divergence matrix can be computed under 2 mins in a normal desktop with 16GB of RAM (single 

thread). Analytically, the algorithm is of complexity 𝑂(𝑁2 ∗ 𝐺), where 𝑁 is number of cells and 𝐺 is 

number of variants. 

1.4.4 Kernel based clustering and optimal cluster assignment 

We cluster the cells using a kernel-based algorithm, such as hierarchical clustering. Given that 

there are multiple sorting schemes, we leave the user to choose it. For the default-sorting 

scheme, we recommend “ward.D” [76]. This is because 𝑑𝑐𝑐′ behaves like a log likelihood ratio, 

which should follow a 𝜒2 distribution when the two cells share the same subclone. The “ward.D” 

method has been shown to work well in Euclidian space. Empirically, among different hierarchical 

clustering algorithms on the renal cell carcinoma dataset (Fig. 1.18) “ward.D” based hierarchical 

clustering performs the best. 

To determine the number of clusters we use an intra-cluster divergence curve computed 

from the divergence matrix. Existing software rely on AIC, BIC, or another model selection metric 

[77, 78]. However, since we only have the “distance” matrix, these traditional methods cannot be 

applied. Let 𝑁𝑘 be the number of cell pairs in cluster 𝐶𝑘 and 𝑁 be the total number of pairs 

between cells for all clusters. Let 𝐾 be the number of clusters.  The weighted sum of intra-cluster 

distance 𝑊𝐾 is 

𝑊𝐾 = ∑ 𝑁𝑘 ∑
𝑑𝑖𝑗

𝑁
(𝑖,𝑗)∈𝐶𝑘

𝐾

𝑘=1

 

Note that small clusters are naturally down-weighted in the above metric.  DENDRO 

relies on visual examination of the intra-cluster divergence curve (𝑊𝐾 plotted against 𝐾) to find 

the “elbow point”, which can be taken as a reasonable clustering resolution. 
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1.4.5 Simulation analysis 

In our simulation analysis, we adopt a scRNA-seq dataset from Deng et al. as the reference, 

which, by crossing two mouse strains, obtained transcriptomic allele specific read counts for 

every SNPs in exonic regions in each cell [43]. In this case, the Deng et al. data maintained the 

expression stochasticity in scRNA-seq data. To overlay the read counts on simulated mutation 

profile, for every simulated locus, we sampled a SNP from this reference. For cells with mutation 

at this locus, we randomly assigned one allele of the sampled SNP as mutated allele. For cells 

without mutation, we set the mutated allele counts as 0 and the total read counts as sum of the 

two alleles from the reference. We further added binomial noise (𝑝𝜖 = 0.001, suggested by [79]) 

to mimic sequencing error. When analyzing DENDRO performance in terms of various number of 

mutation sites, number of cells, proportion of cells in each clade and proportion of mutations 

along each branch, we only take a subset of cells (cells in early blastocyst, mid blastocyst and 

late blastocyst stages) to ensure the expression homogeneity. On the other hand, we utilize a 

mixture cell population (cells in 16-cell stages and blastocyst stages) to test the robustness of 

DENDRO performance with regard to various expression profiles.  

1.4.6 Power analysis toolkit and experimental design 

Before conducting a single cell RNA-seq experiment on a tumor sample, it is important to project 

how subclone detection power depends on the number of cells sequenced and the coverage per 

cell. To facilitate experiment design, we have developed a tool, DENDROplan (Fig. 1.3a), that 

predicts the expected clustering accuracy by DENDRO given sequencing parameters and 

available bulk data for the tumor. Given an assumed tree structure and a target accuracy, 

DENDROplan computes the necessary read depth and number of cells needed.  

We evaluate DENDRO accuracy in DENDROplan with three different metrics: Adjusted 

Rand index, capture rate and purity. 
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1. Adjusted Rand index: Adjusted Rand index is a measure of the similarity between two 

data clusterings after adjusted for the chance grouping of elements. For details, see 

https://en.wikipedia.org/wiki/Rand_index 

2. Capture rate: Capture rate is a measure of “false negative rate” of a specific clade. Out of 

all the cells from the specific clade, how many of them is detected by the algorithm. 

3. Purity: Purity is a measure of “false positive rate” of a specific clade. Out of all the cells in 

the “specific cluster” you detected, how many are actually from the true specific clade. 

As shown in Fig. 1.3a, if bulk DNA sequencing and/or RNA sequencing data are available 

for the tumor being studied, these data can be harnessed to make more realistic power 

calculations. For example, if SNAs have been profiled using bulk DNA sequencing data, the set of 

mutations that lie in the exons of annotated genes can be retrieved and used directly in 

constructing the simulation data. Furthermore, phylogeny construction algorithms for bulk DNA-

seq data can be used to infer a putative tree structure that can be used as input to DENDROplan 

[5, 78]. If bulk RNA-seq data is available, the bulk expression level of the mutation-carrying genes 

can be used to predict the expression level of the mutation in the single cell data. In another 

word, variants in high-expressed genes in bulk will be sampled from high-expressed variant loci in 

scRNA reference and vice versa. The power analysis tool is also available at 

https://github.com/zhouzilu/DENDRO. 

1.4.7 SNA inference in “bulk” and phylogenetic tree construction 

As stated previously, DENDRO further inferred SNA after pooling the reads from all cells within 

each cluster. Because, with our choice of thresholds, we identify SNAs in single cells with high 

sensitivity, the “bulk” level SNAs should be a subset of the SNAs in single cells, and mutation 

allele counts and total allele counts should provide us with enough information for SNA detection 

using a maximum likelihood framework [80], which accounts for both sequencing error and rare 

https://github.com/zhouzilu/DENDRO
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RNA-editing events. Suppose 𝑠 is the genotype (number of reference allele) at a site and assume 

𝑚, the ploidy, equals to 2.  Then the likelihood is: 

ℒ(𝑠) =
1

𝑚𝑘 ∏[(𝑚 − 𝑠)𝜖 + 𝑠(1 − 𝜖)]

𝑙

𝑗=1

∏ [(𝑚 − 𝑠)(1 − 𝜖) + 𝑠𝜖]

𝑘

𝑗=𝑙+1

 

where 𝑘 is number of reads at a site and the first 𝑙 bases (𝑙 ≤ 𝑘) be the same to reference and the 

rests are same to alternative allele. 𝜖 is the sequencing error and rare RNA-editing combined 

rate. 𝑠∗ is the maximum likelihood estimator of the genotype: 

𝑠∗ = argmax
𝑠

−ℒ(𝑠) 

Given mutation profiles, DENDRO then constructs a phylogenetic tree with the neighbor-

joining method, which can more accurately capture the evolutionary relationship between different 

subclones [81] than the initial tree given by hierarchical clustering. 

1.4.8 Differential gene expression, mutation annotation and gene ontology analysis 

We use Seurat and scDD to identify differentially expressed genes between tumors and between 

tumor subclones [82-84]. For each comparison, we apply two different methods: MAST 

implemented by Seurat and scDD. Genes with adjusted p-value < 0.05 count as significant 

differentially expressed gene for each method. We further intersect these two sets of differentially 

expressed genes to increase robustness. Subclonal mutations are annotated by ANNOVAR with 

default parameters and variants associated with intergenic regions were discarded for 

downstream analysis [85]. For GO analysis, we apply Gene Set Enrichment Analysis tool [57]. 

Hallmark gene sets serve as fundamental database with FDR q-value < 0.05 as significant.  

1.4.9 Single cell RNA-seq of Tumor Model Derived from B16 

Six C57bl/6 mice were injected on both flanks with either B16 or R499: four with B16 and two with 

R499. Two of the mice implanted with B16 were treated with 200 ug of anti-PD1 per mouse on 
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Days 5, 8 and 11. On Day 15, all tumors were harvested and made into single cell suspension. 

100,000 CD45 negative tumor cells were sorted on Aria to enrich for live tumor cells and loaded 

on SMARTer ICELL8 cx Single-Cell System prior to full length single cell RNA-sequencing library 

preparation using Smart-seq following manufacturer’s recommendations. 460 cells and 11531 

genes passed standard QC and were retained for downstream analysis. 

1.4.10 Neoantigen prediction 

Based on gene expression from RNA-seq data, variants from unexpressed transcripts are 

removed. The MHC-I binding affinities of variants are then predicted using NetMHC version 4.0 

for H-2-Kb and H-2-Db using peptide lengths from 8 to 11 [86]. Given subclonal mutation profile, 

we further assign the neoantigens to each subclone. 

1.4.11 Quantitative function analysis on genetic divergence evaluation by simulation 

Better understanding of the genetic divergence evaluation function is essential to DENDRO. 

Especially, we need to make sure DENDRO is capturing DNA level information from mutation 

rather than RNA level information from relative expression. This function, however, is quite 

complicated and difficult to analyze directly. As a result, we design several simulation schemes 

and analyze the function performance given different variables. 

Let’s consider 2 cells: cell 𝑐 and 𝑐’. We design true mutation profile 𝑍 (an indicator 

function, 1 means mutation and 0 means no mutation) and relative read count 𝜃 (relative number 

by 
𝜃𝑖

∑𝜃𝑗
) at each position as Fig. 1.5.  

We further define true mutation distance 𝑑𝑧 as 

𝑑𝑧 =
|𝑍𝑐 − 𝑍𝑐′|1

𝑚
= 𝑝 
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where 𝑚 is the total number of mutations. In another word, 𝑑𝑧 = 𝑝, which is the true mutation rate 

in cell 𝑐.  

We also define Δ = |𝐻 − 𝑀| = |𝑀 − 𝐿|, representing relative expression differences. 

Here, H, M and L represent high expression, medium expression and low expression 

respectively. 

Then, the relative expression distance 𝑑𝜃 can be written as, 

𝑑𝜃 = ∑
|𝜃𝑖 − 𝜃𝑖′|1

𝑚
𝑖

= (1 − 𝑝)𝛥 

We further have genetic divergence, 𝑑𝐿, calculated by negative log likelihood in 

DENDRO. 

It is also interested in studying the relationship with 𝑁, the total number of read counts for 

each cell. 

In our simulation, we alter 𝛥, 𝑝 and 𝑁, assessing the responses in 𝑑𝐿 , 𝑑𝜃  and 𝑑𝑧. Results 

show that (1) our genetic divergence function is orthogonal to relative expression level (Fig. 1.5b). 

With fixed mutation rate 𝑝 and total read counts 𝑁, as relative expression differences 𝑑𝜃 

increases, 𝑑𝐿 stay constant; (2) When we keep relative expression differences 𝑑𝜃 and total read 

counts 𝑁 as constant, as number of true mutation (𝑑𝑧 or 𝑝) increases, genetic divergence 𝑑𝐿 also 

increases (Fig. 1.5c); and (3) genetic divergence 𝑑𝐿 monotonically increases with total expression 

level (𝑁) if we fix mutation distance 𝑑𝑧 (Fig. 1.5d). This can be interpreted that with more reads 

support, DENDRO is more confident that the two cells belong to different clusters. 

 Conclusions 

We have developed DENDRO, a statistical method for tumor phylogeny inference and clonal 

classification using scRNA-seq data. DENDRO accurately infers the phylogeny relating the cells 
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and assigns each single cell from the scRNA-seq data set to subclone. DENDRO allows us to (1) 

cluster cells based on genetic divergence while accounting for transcriptional bursting, technical 

dropout and sequencing error, as benchmarked by in silico mixture and a simulation analysis, (2) 

characterize the transcribed mutations for each subclone, and (3) perform single-cell multi-omics 

analysis by examining the relationship between transcriptomic variation and mutation profile with 

the same set of cells. We evaluate the performance of DENDRO through a simulation analysis 

and a data set with known subclonal structure. We further illustrate DENDRO through two case 

studies. In the first case study of relationship between intratumor heterogeneity and ICB 

treatment response, DENDRO estimates tumor mutation burden and predicts repertoire of high-

affinity neoantigens in each subclone from scRNA-seq. In the second case study on a primary 

breast tumor dataset, DENDRO brought forth new insights on the interplay between intratumor 
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transcriptomic variation and subclonal divergence. 

 

Figure 1.1 DENDRO analysis pipeline and genetic divergence evaluation. a DENDRO 

analysis pipeline overview. b, c Statistical model for genetic divergence evaluation function. b 

(top) Cell-level snapshots of the variant allele frequency (VAF) profiles for two genes with 

underlying differences in expression dynamics are shown. Gene 𝑔 is a bursty gene and 𝑔′ is a 

constitutive gene. (bottom) The stochasticity of gene expression is captured by the VAF 

distribution across all cells. c Although the observed read counts from two potential cells (𝑐1 and 

𝑐2) in the population are identical between the two loci, the genetic divergence computed from 

gene 𝑔 is less than that computed from gene 𝑔′ due to differences in transcriptional burstiness.  

DENDRO accounts for the full distribution of frequency profiles across cells when estimating the 

genetic divergence relationship between the two loci of these two cells. 
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Figure 1.2 An illustration of the SNA calling pipeline. Raw scRNA-seq data is aligned by 

STAR 2-pass. Further quality control and variants calling steps follow GATK tool best practice by 

Broad Institute 
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Figure 1.3 DENDRO accuracy assessment. a The overall simulation analysis pipeline. Mutation 

matrix (cell-by-loci) is generated according to a simulated evolutionary tree, where the leaves are 

subclones and mutations can be placed on the branches. Matrices of alternative allele (𝑋𝑐𝑔) and 

total read counts (𝑁𝑐𝑔) are sampled from a scRNA-seq dataset with known transcriptomic allele 

specific read counts. DENDRO cluster is further applied and its performance is assessed by 

adjusted Rand index (global accuracy), capture rate (subclone-specific sensitivity) and purity 

(subclone-specific precision). See Methods for detailed definition. Grey dashed line indicates 

optional input for DENDROplan, where bulk DNA-seq and bulk RNA-seq can guide the tree 
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simulation and read count sampling procedure. b Cluster accuracy via simulation studies. Various 

parameters show effects on cluster accuracy (measured by adjusted Rand index) based on tree 

structure on the most right. Left panel: effect of mutation burden on fixed read depth. Right panel: 

effect of read depth on fixed mutation burden. c Evaluation of DENDRO on a renal cell carcinoma 

and its metastasis. (Left to right) (1) DENDRO clustering result from primary and metastatic renal 

cell carcinoma dataset. Background colors represent DEDRO clustering result. (2) Clustering of 

the same dataset using 𝑍 matrix (indicator matrix, 𝑍𝑖𝑗 = 1 when detected a mutation for cell 𝑖 at 

locus 𝑗 by GATK tool). (3) Clustering of the same dataset using 
𝑋

𝑁
 matrix (mutation allele 

frequency matrix) (4) Clustering of the same dataset using expression (𝑙𝑜𝑔 (𝑇𝑃𝑀 + 1)). 
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Figure 1.4 DENDRO accuracy assessment by simulation analysis. a Statistics under different 

SNV load of interested clade (i.e. as fraction of total mutation counts) in a pure cell population vs. 

a mixture of two cell types (50% each). b Statistics under different cell proportion of interested 

clade in a pure cell population vs. a mixture of two cell types (50% each). (Mutation counts: 

number of mutation identified; Avg mutation read depth: average read depth of all the mutation 

sites.) Both plots show that mixture of cell population does not affect accuracy. c DENDRO 

accuracy assessment in mixture cell types. d Clustering accuracy assessment using DENDRO 

vs. hclust on variants allele frequencies. 
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Figure 1.5 Kernel function justification by simulation. a Illustration of simulation set up. b With 

fixed 𝑝 and 𝑁, as 𝑑𝜃 increases, 𝑑𝐿 stay constant. Thus, likelihood kernel is orthogonal to relative 

expression. c With fixed 𝑝 = 1, as 𝑁 approach infinite, 𝑑𝐿 increases monotonically. As there are 

higher expression, we are more confident that the two cells belong to different clusters. d When 

𝑑𝜃 and 𝑁 stay the same, as 𝑑𝑍 approaches 1, 𝑑𝐿 increases, because true mutation number 

increases.  
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Figure 1.6 RCC experiment design and its mutation statistics detected by GATK tool. a 

Experimental design for renal cell carcinoma dataset. Figure modified from Kim et al. b Mutation 

count across cells by GATK. Most of the genes have low mutation frequency. c Mutation count 

across genes by GATK tool. It shows mutation counts with a bell shape. d NA percentage in each 

cell across genes. When there is no read counts, it shows as NA. e Intra-cluster divergence curve 

to select optimal number of cluster by DENDRO. Here, optK =3. f Phylogenetic tree of three cell 

populations identified by DENDRO. 
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Figure 1.7 Expression of renal cell carcinoma. a DENDRO clustering of RCC. b Smoothed 

expression ordered by DENDRO clustering. Vertical line separate cluster identified by DENDRO. 

Horizontal line separate different chromosomes. 
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Figure 1.8 Most significant differential expressed genes between RCC pairs. a PDX_mRCC 

vs. others. b PDX_pRCC vs. others. c Pt_mRCC vs. others. d PDX_mRCC vs. PDX_pRCC. e 

PDX_mRCC vs. Pt_mRCC. f Pt_mRCC vs. PDX_pRCC. 
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Figure 1.9 Clonal composition alternations with anti-PD1 treatments and cell lines. a 

Experimental overview. For each condition at Day 15, we have two biological replicates. There 

are total 600 cells from 6 tumors sequenced. b DENDRO cluster result. No clone is exclusively 

associated with any tumor condition. c Frequencies of the subclonal populations in B16, B16PD1 

and R499. d Neighbor joining phylogenetic tree given detected subclones. e Number of high 

affinity neoantigens predicted for each clone. Clone 2 have the highest number of neoantigens. 
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Figure 1.10 Anti-PD1 treatment experiment mutation statistics detected by GATK tool and 

optimal clustering option. a NA percentage in each cell across genes. When there is no read 

counts, it shows as NA. b Mutation count across cells by GATK. Most of the genes have low 

mutation frequency. c Mutation count across genes by GATK tool. It shows mutation counts with 

a bell shape. d Intra-cluster divergence curve given different number of cluster (K). 4 is the elbow 

point. 
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Figure 1.11 Anti-PD1 treatment experiment. a Frequencies of the subclonal population in each 

of the 6 tumor samples. b Expression level of Pdl1 (Cd274) in each clone. 
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Figure 1.12 Transcriptome analysis on anti-PD1 treatment experiment. a PCA plot of the cells 

based on expression. b t-SNE plot of the cells based on expression. Color indicates treatment 

regime. 
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Figure 1.13 Expression of anti-PD1 treatment experiment. a DENDRO clustering. Color 

indicates various conditions. b Smoothed expression heatmap ordered by DENDRO clustering. 

Vertical line separate cluster identified by DENDRO. Horizontal line separate different 

chromosomes. 
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Figure 1.14 Breast cancer dataset mutation statistics detected by GATK tool and optimal 

clustering option. a NA percentage in each cell across genes. When there is no read counts, it 

shows as NA. b Mutation count across cells by GATK. Most of the genes have low mutation 

frequency. c Mutation count across genes by GATK tool. It shows mutation counts with a bell 

shape. d Intra-cluster divergence curve given different number of clusters (K). 5 is the elbow 

point. 
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Figure 1.15 Analysis of scRNA-seq dataset of primary breast cancer. a DENDRO cluster 

result for primary breast cancer dataset (Chung et al., 2017). b Hierarchical clustering result for 

the same dataset based on expression (logTPM). (dashlines indicate cluster boundaries). c 

Neighbor joining phylogenetic tree given detected subclones for breast cancer dataset. d PAM50 

gene panel expression shows breast cancer subtypes of each subclone. 
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Figure 1.16 Expression of primary breast cancer. a DENDRO clustering of breast cancer. b 

Smoothed expression ordered by DENDRO clustering. Vertical line separate cluster identified by 

DENDRO. Horizontal line separate different chromosomes. 
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Figure 1.17 Most significant differential expressed genes between different BC pairs. a 

BC03 vs. BC09. b BC03Mix1 vs. BC03 others. c BC03Mix2 vs. BC03 others. d BC03LN1 vs. 

BC03 others. e BC09_1 vs. BC09_2. 
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Figure 1.18 Hierarchical clustering algorithm comparison for renal cell carcinoma dataset. 

Genetic divergence matrix clustering by a Ward.D algorithm. b Complete algorithm. c Single 

algorithm. 
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Table 1.1 a RCC subclone cell composition and labels. b BC subclone cell composition and 

labels. 

 a Cluster 1 Cluster 2 Cluster 3 

PDX_mRCC 36 0 0 

PDX_pRCC 0 46 0 

Pt_mRCC 3 0 31 

Final label PDX_mRCC PDX_pRCC Pt_mRCC 

b  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

BC03 13 15 5 0 0 

BC03LN 7 9 32 0 0 

BC09 0 0 0 45 6 

Final label BC03Mix_1 BC03Mix_2 BC03LN_1 BC09_1 BC09_2 

 

Table 1.2 a Number of differential expressed gene between groups. b Number of differential 

expressed gene between groups overlapped with differential mutated genes (# of overlapped 

genes/# of differential expressed genes). 

a 

 PDX_mRCC PDX_pRCC Pt_mRCC Other 

PDX_mRCC  276 74 181 

PDX_pRCC 276  191 302 

Pt_mRCC 74 191  98 

Other 181 302 98  

b 
 PDX_mRCC PDX_pRCC Pt_mRCC Other 

PDX_mRCC  93/276 24/74 41/181 

PDX_pRCC 93/276  68/191 64/302 

Pt_mRCC 24/74 68/191  15/98 

Other 41/181 64/302 15/98  
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Table 1.3 GO analysis on Differential Expressed Genes between Pt_mRCC and PDX_mRCC 

Gene Set Name [# Genes (K)] 

p-value 
FDR q-
value Color 

key:  
Cancer-related 
pathway 

Immune-related pathway Othe
r 

HALLMARK_TNFA_SIGNALING_VIA_NFKB [200] 1.86 e-8 9.28 e-7 

HALLMARK_HYPOXIA [200]* 5.04 e-7 1.26 e-5 

HALLMARK_MTORC1_SIGNALING [200]* 1.15 e-5 1.92 e-4 

HALLMARK_COMPLEMENT [200] 2.15 e-4 1.79 e-3 

HALLMARK_GLYCOLYSIS [200]* 2.15 e-4 1.79 e-3 

HALLMARK_KRAS_SIGNALING_UP [200] 2.15 e-4 1.79 e-3 

HALLMARK_ALLOGRAFT_REJECTION [200] 3.17 e-3 1.58 e-2 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSINSITION [20
0]* 

3.17 e-3 1.58 e-2 

HALLMARK_ESTROGEN_RESPONSE_EARLY [200] 3.17 e-3 1.58 e-2 

HALLMARK_INFLAMMATORY_RESPONSE [200] 3.17 e-3 1.58 e-2 

 

Table 1.4 GO analysis on Differential Mutated Genes between Pt_mRCC and PDX_mRCC 

Gene Set Name [# Genes (K)] 

p-value 
FDR q-
value Color 

key:  
Cancer-related 
pathway 

Immune-related 
pathway 

Other 

HALLMARK_UV_RESPONSE_DN [144] 1.39 e-29 6.93 e-28 

HALLMARK_MYC_TARGETS_V1 [200] 2.75 e-27 6.87 e-26 

HALLMARK_MITOTIC_SPINDLE [200] 7.97 e-24 1.33 e-22 

HALLMARK_MTORC1_SIGNALING [200]* 9.49 e-20 1.19 e-18 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSINSITION [200]* 1.91 e-17 1.91 e-16 

HALLMARK_OXIDATIVE_PHOSPHORYLATION [200] 1.06 e-16 8.81 e-16 

HALLMARK_HYPOXIA [200]* 5.69 e-16 4.06 e-15 

HALLMARK_GLYCOLYSIS [200]* 2.97 e-15 1.86 e-14 

HALLMARK_ANDROGEN_RESPONSE [101] 1.07 e-14 5.96 e-14 

HALLMARK_HEME_METABOLISM [200] 7.4 e-14 3.7 e-13 
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Table 1.5 Mean expression correlation between samples: Chung et al. 2017 

  BC03 BC09 BC03LN 

BC03   0.595 0.826 

BC09     0.648 

BC03LN       

 

Table 1.6 a Number of differential expressed gene between groups. b Number of differential 

expressed gene between groups overlapped with differential mutated genes 

a  BC03 BC09 
BC03
Mix1 

BC03
Mix2 

BC03
LN1 

BC0
9_1 

BC0
9_2 

Other within 
same tumor 

BC03   178             

BC09 178               

BC03Mix1               110 

BC03Mix2               322 

BC03LN1               183 

BC09_1             34   

BC09_2           34     

Other within 
same tumor     110 322 183       

     
    

b  BC03 BC09 
BC03
Mix1 

BC03
Mix2 

BC03
LN1 

BC0
9_1 

BC0
9_2 

Other within 
same tumor 

BC03 
  

102/
178             

BC09 
102/
178               

BC03Mix1               71/110 

BC03Mix2               206/322 

BC03LN1               111/183 

BC09_1 
            

21/3
4   

BC09_2 
          

21/3
4     

Other within 
same tumor     

71/11
0 

206/3
22 

111/1
83       
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 SURFACE PROTEIN IMPUTATION FROM SINGLE CELL 

TRANSCRIPTOMES BY DEEP NEURAL NETWORK 

 Introduction 

Recent technological advances allow the simultaneous profiling, across many cells in parallel, of 

multiple omics features in the same cell [29, 87-90]. In particular, high throughput quantification of 

the transcriptome and a selected panel of cell surface proteins in the same cell is now feasible 

through the REAP-seq and CITE-seq protocols [88, 89].  Cell surface proteins can serve as 

integral markers of specific cellular functions and primary targets for therapeutic intervention. 

Immunophenotyping by cell surface proteins has been an indispensable tool in hematopoiesis, 

immunology and cancer research during the past 30 years. Yet, due to technological barriers and 

cost considerations, most single cell studies, including Human Cell Atlas project [91], quantify the 

transcriptome only and do not have cell-matched measurements of relevant surface proteins [22, 

92]. Sometimes, which cell types and corresponding surface proteins are essential become 

apparent only after exploration by scRNA-seq. This motivates our inquiry of whether protein 

abundances in individual cells can be accurately imputed by the cell’s transcriptome.  

We propose cTP-net (single cell Transcriptome to Protein prediction with deep neural 

network), a transfer learning approach based on deep neural networks that imputes surface 

protein abundances for scRNA-seq data. Through comprehensive benchmark evaluations and 

applications to Human Cell Atlas and acute myeloid leukemia data sets, we show that cTP-net 

outperform existing methods and can transfer information from training data to accurately impute 

24 immunophenotype markers, which achieve a more detailed characterization of cellular state 

and cellular phenotypes than transcriptome measurements alone. cTP-net relies, for model 

training, on accumulating public data of cells with paired transcriptome and surface protein 

measurements. 
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 Results 

2.2.1 Method overview 

An overview of cTP-net is shown in Figure 2.1a. Studies based on both CITE-seq and REAP-seq 

have shown that the relative abundance of most surface proteins, at the level of individual cells, is 

only weakly correlated with the relative abundance of the RNA of its corresponding gene [88, 89, 

93]. This is due to technical factors such as RNA and protein measurement error [94], as well as 

inherent stochasticity in RNA processing, translation and protein transport [95-99]. To accurately 

impute surface protein abundance from scRNA-seq data, cTP-net employs two steps: (1) 

denoising of the scRNA-seq count matrix and (2) imputation based on the denoised data through 

a transcriptome-protein mapping (Figure 2.1a). The initial denoising, by SAVER-X [100], 

produces more accurate estimates of the RNA transcript relative abundances for each cell. 

Compared to the raw counts, the denoised relative expression values have significantly improved 

correlation with their corresponding protein measurement (Figure 2.1b, 2.2a, 2.3ab). Yet, for 

some surface proteins, such as CD45RA, this correlation for denoised expression is still 

extremely low.  

The production of a surface protein from its corresponding RNA transcript is a 

complicated process involving post-transcriptional modifications and transport [95], translation 

[96], post-translational modifications [97] and protein trafficking [98]. These processes depend on 

the state of the cell and the activities of other genes [93, 99]. To learn the mapping from a cell’s 

transcriptome to the relative abundance of a given set of surface proteins, cTP-net employs a 

multiple branch deep neural network (MB-DNN, Figure 2.4). Deep neural networks have recently 

shown success in modeling complex biological systems [101, 102], and more importantly, allow 

good generalization across data sets[100, 103]. Generalization performance is an important 

aspect of cTP-net, as we would like to perform imputation on tissues that do not exactly match 
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the training data in cell type composition. Details of the cTP-net model and training procedure, as 

well as of alternative models and procedures that we have tried, are in Methods. 

2.2.2 Imputation accuracy evaluation via random holdout 

To examine imputation accuracy, we first consider the ideal case where imputation is conducted 

on cells of types that exactly match those in training data. For benchmarking, we used peripheral 

blood mononuclear cells (PBMCs) and cord blood mononuclear cells (CBMCs) processed by 

CITE-seq and REAP-seq [88, 89], described in Table 2.1. We employed holdout method, where 

the cells in each data set were randomly partitioned into two sets: a training set with 90% of the 

cells and a holdout set with the remaining 10% of the cells for validation (Methods, Figure 2.5a). 

Each cell type is well represented in both the training and validation sets. Figure 2.1b and S3a 

show that, for all proteins examined in the CITE-seq PBMC data, cTP-net imputed abundances 

have much higher correlation to the measured protein levels, as compared with the denoised and 

raw RNA counts of the corresponding genes. We obtained similar results for the CITE-seq CBMC 

and REAP-seq PBMC data sets (Figure 2.3ab).  

2.2.3 Generalization accuracy to unseen cell types 

Next, we considered the generalization accuracy of cTP-net, testing whether it produces accurate 

imputations for cell types that are not present in the training set. For each of the high-level cell 

types in each data set in Table 2.2, all cells of the given type are held out during training, and 

cTP-net, trained on the rest of the cells, was then used to impute protein abundances for the held 

out cells (Methods, Figure 2.5b). We did this for each cell type and generated an “out-of-cell-type” 

prediction for every cell.  

Across all benchmarking data sets and all cell types, these out-of-cell-type predictions 

still improve significantly upon the corresponding RNA counts while slightly inferior in accuracy to 

the traditional holdout validation predictions above (Figure 2.6a, 2.3a). This indicates that cTP-net 
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provides informative predictions on cell types not present during training, vastly improving upon 

using the corresponding mRNA transcript abundance as proxy for the protein level.  

2.2.4 Generalization accuracy across tissue and lab protocol 

To further examine the case where cell types in the training and test data are not perfectly 

aligned, we considered a scenario where the model is applied to perform imputation on a tissue 

that differs from the training data. We trained cTP-net on PBMCs and then applied it to perform 

imputation on CBMCs, and vice versa, using the data from Stoeckius et al. [89] (Methods). Cord 

blood is expected to be enriched for stem cells and cells undergoing differentiation, whereas 

peripheral blood contains well-differentiated cell types, and thus the two populations are 

composed of different but related cell types. Figure 2.6a and 2.2b shows the result on training on 

CBMC and then imputing on PBMC. Imputing across tissue markedly improves the correlation to 

the measured protein level, as compared to the denoised RNA of the corresponding gene, but is 

worse than imputation produced by model trained on the same population. For practical use, we 

have trained a network using all cell populations combined, which indeed achieves better 

accuracy than a network trained on each separately (Methods, Figure 2.2b, 2.3ac). The weights 

for this network are publicly available at https://github.com/zhouzilu/cTPnet.  

We then tested whether cTP-net’s predictions are sensitive to the laboratory protocol, 

and in particular, whether networks trained using CITE-seq data yields good predictions by 

REAP-seq’s standard, and vice versa. Using a benchmarking design similar to above, we found 

that, in general, cTP-net maintains good generalization power across these two protocols (Figure 

2.6a, 2.2b).  

2.2.5 Imputation accuracy comparison to Seurat v3 

Seurat v3 anchor transfer [104] is a recent approach that uses cell alignment between data sets 

to impute features for single cell data. For comparison, we applied Seurat v3 anchor transfer to 

the holdout validation and out-of-cell-type benchmarking scenarios above (Methods). In the 

https://github.com/zhouzilu/cTPnet
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validation scenario, we found the performance of cTP-net and Seurat v3 to be comparable, with 

cTP-net slightly better, as both methods can estimate protein abundance by utilizing marker 

genes to identify the cell types. cTP-net, however, vastly improves upon Seurat in the out-of-cell-

type scenario (Figure 2.6a, 2.7a). This is because cTP-net’s neural network, trained across a 

diversity of cell types, learns a direct transcriptome-protein mapping that can more flexibly 

generalize to unseen cell types, while Seurat v3 depends on a nearest neighbor method that can 

only sample from the training dataset. As shown by the cross-population and out-of-cell-type 

benchmarking above, cTP-net does not require direct congruence of cell types across training 

and test sets. 

In addition to predictions on unseen cell type, cTP-net also improves upon the existing 

state-of-the-art in capturing within cell-type variation in protein abundance. As expected, within 

cell-type variation is harder to predict, but cTP-net’s imputations nevertheless achieve high 

correlations with measured protein abundance for a subset of proteins and cell types (Figure 

2.2c, 2.3d). Compared to Seurat v3, cTP-net’s imputations align more accurately with measured 

protein levels when zoomed into cells of the same type (Figure 2.6b, 2.7b); see Figure 2.6c, for 

example, CD11c in CD14-CD16+ monocytes, CD2 in CD8 T cells, and CD16 in dendritic cells. All 

of these surface proteins have important biological function in the corresponding cell types, as 

CD11c helps trigger respiratory burst in monocyte [105], CD2 co-stimulates molecule on T cells 

[106] and CD16 differentiate DC subpopulation [107]. The learning of such within-type 

heterogeneity gives cTP-net the potential to attain higher resolution in the discovery and labeling 

of cell states. 

2.2.6 Network interpretation and feature importance 

What types of features are being used by cTP-net to form its imputation? To interpret the 

network, we conducted a permutation-based interpolation analysis, which calculates a 

permutation feature importance for each protein-gene pair (Methods, Figure 2.8a). Interpolation 



56 

 

can be done using all cells, or cells of a specific type, the latter allowing us to probe relationships 

that may be specific to a given cell type. Applying this analysis to cTP-net trained on PBMC, we 

found that, at the level of the general population that includes all cell types, the most important 

genes for the prediction of each protein are those that exhibit the highest cell-type specificity in 

expression (Table 2.3).  This is because most of these surface proteins are cell type markers, and 

thus when cells of all types are pooled together, “cell type” is the key latent variable that underlies 

their heterogeneity. In addition, as cell-type markers are usually redundant and predictable by 

other genes, the model still performs well after removing corresponding surface protein genes 

during training (Table 2.4, 2.5). Within cell type interpolation, on the other hand, reveals genes 

related to RNA processing, RNA binding, protein localization and biosynthetic processes, in 

addition to immune-related genes that differentiate the immune cell sub-types (Table 2.6). This 

analysis shows that cTP-net combines different types of features, both cell type markers and 

genes involved in RNA to protein conversion and transport, to achieve multiscale imputation 

accuracy. 

In addition, we analyzed the bottleneck layer with 128 nodes before the network 

branched out to the protein-specific layers. We performed dimension reduction (UMAP) directly 

on the bottleneck layer intermediate output of 7000 PBMCs from CITE-seq. Figure 2.8b shows 

that the cells are cleanly separated into different clusters, representing cell types as well as 

gradients in surface protein abundance. This confirms that the bottleneck layer captures the 

essential information on cell stages and transitions, and that each subsequent individual branch 

then predicts its corresponding protein’s abundance. 

2.2.7 Application to Human Cell Atlas 

Having benchmarked cTP-net’s generalization accuracy across immune cell types, tissues, and 

technologies, we then applied the network trained on the combined CITE-seq dataset of 

PBMCs,CBMCs and bone marrow mononuclear cells (BMMCs) [89, 104] to perform imputation 
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for the Human Cell Atlas CBMC and BMMC data sets (Table 2.1). Figure 2.9 shows the raw RNA 

count and predicted surface protein abundance for 24 markers across 6023 BMMCs from sample 

MantonBM1 and 4176 CBMCs from sample MantonCB1. (Similar plots for the other 7 BMMC and 

7 CBMC samples are shown in Figure 2.10, 2.11). Similar to what was observed for actual 

measured protein abundances in the CITE-seq and REAP-seq studies, the imputed protein levels 

differ markedly from the RNA expression of its corresponding gene, displaying higher contrast 

across cell types and higher uniformity within cell type. Thus, the imputed protein levels serve as 

interpretable intermediate features for the identification and labelling of cell states, defining cell 

subtypes more clearly than the RNA levels of the corresponding marker genes. For example, 

imputed CD4 and CD8 levels separate CD4+ T cells from CD8+ T cells with high confidence. 

Further separation of naïve T cells to memory T cells can be achieved through imputed 

CD45RA/CD45RO abundance, as CD45RA is a naïve antigen and CD45RO is a memory 

antigen. Consistent with flow cytometry data, the large majority of CB T cells are naïve, whereas 

the BM T cell population is more diverse [108]. Also, for BM B cells that have high imputed CD19 

levels, cTP-net allows us to confidently distinguish the Pre.B (CD38+, CD127+), immature B 

(CD38+, CD79b+), memory B (CD27+) and naïve B cells (CD27-), whose immunophenotypes 

have been well characterized [109].  

In addition, consider natural killer cells, in which the proteins CD56 and CD16 serve as 

indicators for immunostimulatory effector functions, including an efficient cytotoxic capacity [110, 

111]. We observe an opposing gradient of imputed CD56 and CD16 levels within 

transcriptomically derived natural killer (NK) cell clusters that reveal CD56bright and CD56dim 

subsets, coherent with previous studies[89] (Figure 2.6f, 2.12, F-test: p-value = 1.667e-15). This 

pattern is not found in RNA abundances due to low expression (F-test: p-value= 0.9377). 

Between CD56brignt and CD56dim subsets, 7 out of 10 of previously studied differentially expressed 

genes are significant in the single cell analysis (Fisher test: p-value = 1.07e-04) [89, 112, 113]. 
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This gradient in CD56 and CD16, where decrease in CD56 is accompanied by increase in CD16, 

is replicated across the 8 CBMC and 8 BMMC samples in HCA (Figure 2.10, 2.11, 2.12). 

Consider also the case of CD57, which is a marker for terminally differentiated 

“senescent” cells in the T and NK cell types. The imputed level of CD57 is lower in CBMCs 

(fetus’s blood), and rises in BMMCs (95% quantile: bootstrap p-value<1e-6). This is consistent 

with expectation since CD57+ NK cell and T cell populations grow after birth and with ageing 

[114-116] (Figure 2.10, 2.11).   

These results demonstrate how cTP-net, trained on a combination of PBMCs, CBMCs 

and BMMCs, can impute cell type, cell stage, and tissue-specific protein signatures in new data 

without explicitly being given the tissue of origin. 

2.2.8 Application to Acute Myeloid Leukemia 

We further apply cTP-net to an acute myeloid leukemia (AML) data set from Galen et al. [31]. 

AML is a heterogeneous disease where the diversity of malignant cell types partially recapitulates 

the stages of myeloid development. Mapping the malignant cells in AML to the differentiation 

stage of their cell of origin strongly impacts tumor prognosis and treatment, as malignant cells 

that originate from earlier stage progenitors have higher risk of relapse [117, 118]. In the original 

paper, the authors sequenced 7698 cells from 5 healthy donors to build a reference map of cell 

types during myeloid development, and then mapped 30712 cells from 16 AML patients across 

multiple time points to this reference to identify the differentiation stage of the malignant cells. 

Here, by imputing 24 immunophenotype markers with cTP-net, we can directly characterize the 

differentiation stage of cell-of-origin for the malignant cells.  

Figure 2.13a is a UMAP plot based on imputed surface protein abundance of 5 normal 

BMs and 12 Day 0 samples from AML patients. The majority of the malignant cells as identified in 

the original paper reside on the right half of the plot, which recapitulate the myeloid differentiation 
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trajectory as revealed by the imputed values of canonical protein markers (Figure 2.13b): From 

CD34+ progenitors to CD38+CD123+ cells in transition to CD11c+ and CD14+ mature 

monocytes [119].  All of the malignant cells have imputed protein values that place them along 

this monocyte lineage. Using the transcriptome for visualization, on the other hand, reveals large 

batch effects across samples, due to both technical batch and biological differences (Figure 

2.14).  Thus, unlike the imputed protein data, the transcriptomic data cannot be directly combined 

without alignment.    

Based on the trajectory revealed by the imputed protein levels, we can determine the 

differentiation cell stage(s) for the malignant cells of each tumor, according to which the 12 AML 

patients can be divided into three categories: (1) AMLs of single differentiation stage (AML420B, 

AML556, AML707B and AML916; Figure 2.13c), (2) AMLs of two differentiation stages 

(AML210A, AML328, AML419A and AML475; Figure 2.13e) and (3) AMLs of many differentiation 

stages (AML1012, AML329, AML870 and AML921A; Figure 2.13f). This stage assignment is 

consistent with the original study [31]. For example, AML419A harbors two malignant cell types at 

opposite ends of the monocyte differentiation axis, distinguished by imputed CD34 and CD11c 

levels as CD34+CD11c- indicates progenitor-like and CD34-CD11c+ indicates differentiated 

monocyte-like cells (Figure 2.13d, 4e). AML707B, which carries a RUNX1/RUNX1T1 fusion, 

consists of cells of a specific cell stage that is distinct from the normal myeloid trajectory (Figure 

2.13c). Such unique cell cluster was due to hyper CD38 level in surface protein prediction (Figure 

2.13d). Such hyper-CD38 levels have been reported in AMLs with RUNX1/RUNX1T1 fusion[120-

122] and recent studies have also shown that CD38 can be a potential target for adult AML[123, 

124].   

In this example, the imputed protein levels served as useful features for trajectory 

visualization.  This analysis also indicates that even though cTP-net is currently trained only on 
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normal immune cells, it can reveal disease-specific signatures in malignant cells and the imputed 

protein levels are useful for characterizing tumor phenotypes. 

 Discussion 

Taken together, our results demonstrate that cTP-net can leverage existing CITE-seq and REAP-

seq datasets to predict surface protein relative abundances for new scRNA-seq data sets, and 

that the predictions generalize to cell types that are absent from, but related to those in the 

training data. cTP-net was benchmarked on PBMC and CBMC immune cells, showing good 

generalization across tissues and technical protocols.  On Human Atlas Data, we show that the 

imputed surface protein levels allow easy assignment of cells to known cell types, as well as the 

revealing of intra-cell type gradients. We then demonstrate that, even though cTP-net used only 

immune cells from healthy individuals for training, it is able to impute immunophenotypes for 

malignant cells from acute myeloid leukemia, and that these immunophenotypes allow placement 

of the cells along the myeloid differentiation trajectory.  Furthermore, we show that cTP-net is 

able to impute protein signatures in the malignant cells that are disease specific and that are not 

easily detectable from the transcriptomic counts.     

SAVER-X serves an important role in the training procedure of cTP-net. As shown in 

Table 2.4, without SAVER-X denoising, the cTP-net prediction performance retracts by 0.02 in 

correlation, more significant than any other parameter tweaks. This discrepancy in performance is 

due to: (1) SAVER-X makes use of the noise model to obtain estimates of the true RNA counts. 

This helps cTP-net learn the underlining relationship between true RNA counts and protein level, 

rather than the noisy raw counts and protein levels, which varies more across data sets and thus 

does not generalize well. (2) By denoising the scRNA-seq, the input for learning the RNA-protein 

relationship is less sparse. Manifold learning on a more continuous input space usually works 

better[125, 126]. (3) Comparing to other autoencoder based denoising method, SAVER-X 
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performs Bayesian shrinkage on top of autoencoder framework to prevent over-imputation (over-

smoothing) [100, 127]. 

Despite these promising results, cTP-net has limitations. (1) cTP-net can only apply to 

count based expression input (UMI-based). CITE-seq data with TPM and RPKM expression 

metric is not available for testing. Thus, the prediction accuracy is unknown. (2) The 

generalization ability of cTP-net to unrelated cell types has limitations. Even though the final cTP-

net model, trained on immune cells, has good results on immune cells from diverse settings, we 

have not tried to perform imputation of these immune-related markers on cells that are not of the 

hematopoietic lineage. 

With the accumulation of publicly available CITE-seq and REAP-seq data across diverse 

proteins, cell types and conditions, cTP-net can be retrained to accommodate more protein 

targets and improve in generalization accuracy. The possibility of such cross-omic transfer 

learning underscores the need for more diverse multi-omic cell atlases, and demonstrate how 

such resources can be used to enhance future studies. The cTP-net package is available both in 

Python and R at https://github.com/zhouzilu/cTPnet.  

 Methods 

2.4.1 Data sets and pre-processing 

Table 2.1 summarizes the five data sets analyzed in this study: CITE-PBMC, CITE-CBMC, 

REAP-PBMC, HCA-CBMC and HCA-BMMC. Among these, CITE-PBMC, CITE-CBMC and 

REAP-PBMC have paired scRNA-seq and surface protein counts, while HCA-CBMC and HCA-

BMMC have only scRNA-seq counts. For all scRNA-seq data sets, low quality gene (< 10 counts 

across cells) and low-quality cells (less than 200 genes detected) are removed, and the count 

matrix (𝐶) for all remaining cells and genes is used as input for denoising. scRNA data denoising 

https://github.com/zhouzilu/cTPnet


62 

 

was performed with SAVER-X using default parameters. Denoised counts (Λ) were further 

transformed with Seurat default LogNormalize function, 

𝑋𝑖𝑗 = 𝑙𝑜𝑔 (
Λ𝑖𝑗 ∗ 10,000

𝑚𝑗
) (1) 

where Λ𝑖𝑗 is the denoised molecule count of gene 𝑖 in cell 𝑗, and 𝑚𝑗 is the sum of all molecule 

counts of cell 𝑗. The normalized denoised count matrix 𝑋 is the training input for the subsequent 

multiple branch neural network. For the surface protein counts, we adopted the relative 

abundance transformation from Stoeckius et al.[89]. For each cell 𝑐, 

𝑦𝑐 = [ln (
𝑝1𝑐

𝑔(𝐩𝑐)
) , ln (

𝑝2𝑐

𝑔(𝐩𝑐)
) … ln (

𝑝𝑑𝑐

𝑔(𝐩𝑐)
)]  (2) 

where 𝐩𝑐 is vector of antibody-derived tags (ADT) counts, and 𝑔(𝐩𝑐) is the geometric mean of 𝐩𝑐. 

The network trained using this transformed relative protein abundance as the response vector 

yields better prediction accuracy than the network trained using raw protein barcode counts. 

2.4.2 cTP-net neural network structure and training parameters 

Figure 2.4 shows the structure of cTP-net. Here, we have a normalized expression matrix 𝐗 of 𝑁 

cells and 𝐷 genes, and a normalized protein abundance matrix 𝐘 of the same 𝑁 cells and 𝑑 

surface proteins. Let’s denote cTP-net as a function 𝐹 that maps from ℝ𝐷 to ℝ𝑑. Starting from the 

input layer, with dimension equals to number of genes 𝐷, the first internal layer has dimension 

1000, followed by a second internal layer with dimension 128. These two layers are designed to 

learn and encode features that are shared across proteins, such as features that are informative 

for cell type, cell state and common processes such as cell cycle. The remaining layers are 

protein specific, with 64 nodes for each protein that feed into a one node output layer giving the 

imputed value. All layers except the last layer are fully connected (FC) with rectified linear unit 
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(ReLU) activation function [128], while the last layer is a fully connected layer with identity 

activation function for output. The objective function here is, 

argmin
𝐹

|𝐘 − 𝐹(𝐗)|1   (3) 

where the loss is L1 norm. The objective function was optimized stochastically with Adam [129] 

with learning rate set to 10e-5 for 139 epochs (cross-validation). Other variations of cTP-net, 

which we found to have inferior performance, are illustrated in more details in Table 2.4. The first 

column indicates the differences to the finalized models, while the second column shows the 

correlation of the predicted protein abundance to the true protein abundance in the holdout 

setting on CITE-seq CBMC data set. As shown by Table 2.4, missing any component of the final 

model will result in inferior performance.  

2.4.3 Benchmarking procedure 

Figure 2.5a shows the validation set testing procedure. Given limited amount of data, we keep 

only 10% of the cells as the testing set, and use the other 90% of the cells for training. The 

optimal model was selected based on the testing error.  

We perform the out-of-cell type prediction based on Figure 2.5b. This procedure mimics 

cross-validation, except that, instead of selecting the test set cells randomly, we partition the cells 

by their cell types. Iteratively, we designate all cells of a given cell type for testing and use the 

remaining cells for training. We then perform prediction on the hold-out cell type using the model 

trained on all other cell types. In the end, every cell has been tested once and has the 

corresponding predictions. In the benchmark against the validation set testing procedure, we limit 

comparisons to the same cells that were in the validation set in the holdout scheme to account for 

variations between subsets. 

To apply the models we trained in validation set testing procedure to different cell 

populations and technologies, the inputs have to be in the same feature space. Even though all 
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data sets considered are from human cells, the list of genes differs between experiments and 

technologies. Genes that are in the training data but not in the testing data are filled with zeros. 

Because cTP-net utilizes overrepresented number of genes to predict the surface proteins level, 

having a small number of genes missing has little effect on the performance. After prediction, we 

selected only the shared proteins between two data sets for comparison. 

2.4.4 cTP-net interpolation 

To better interpret the relationships that the neural network is learning, we developed a 

permutation-based interpolation scheme that can calculate an influence score 𝑒𝑝𝑖 for each gene 

in the imputation of each protein (Figure 2.8). The idea is to assess how much changing the 

expression value of certain genes in the training data affects the training errors for a given 

model 𝐹. In each epoch, we interpolate all of the genes in a stochastic manner. Let’s denote 𝐗 as 

the expression matrix (𝑁 by 𝐺 matrix, where 𝑁 is the number of cells and 𝐺 is number of genes), 

𝐘 as protein abundance matrix and 𝐿 as the loss function. The algorithm goes as follow (Figure 

2.8): 

(1) Estimate the original model error 𝜖𝑜𝑟𝑖𝑔 = 𝐿(𝐘, 𝐹(𝐗)). 

(2) Sampling batch of genes denote by  . Generate expression matrix 𝐗𝑝𝑒𝑟𝑚 by permuting 

genes in 𝑔𝑠 in the data 𝐗. This breaks the association between 𝑔𝑠 and protein 

abundance 𝐘, i.e. the cell order within 𝑔𝑠 does not coordinate with protein abundance 𝐘.  

(3) Estimate error 𝜖𝑝𝑒𝑟𝑚 = 𝐿(𝐘, 𝐹(𝐗𝑝𝑒𝑟𝑚)) based on the predictions of the permuted data. 

(4) Calculate permutation feature importance Δ𝑔𝑠 = |𝜖𝑜𝑟𝑖𝑔 − 𝜖𝑝𝑒𝑟𝑚| of gene set 𝑔𝑠 to this 

model 𝐹. 

We set batch size as 100 with 500 epochs. Furthermore, by picking different cells to 

interpolate, we could identify gene influence score in different cell types. For example, if matrix 𝐗 

belongs to a given cell type, the cell type specific genes are consistent across cells of the given 

cell type, and thus, the permutation will not influence these genes. Genes that influence the 
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surface protein abundance within the cell type, such as cell cycle genes and protein synthesis 

genes, tend to be rewarded with high influence scores in such a cell-type specific interpolation 

analysis.  

For the top 100 highest influence scored genes from the following scenarios in CITE-PBMC: 

(1) CD45RA in CD14-CD16+ monocytes, (2) CD11c in CD14-CD16+ monocytes, (3) CD45RA in 

CD8 T cells, (4) CD45RA in CD4 T cells, (5) CD11c in CD14+CD16+ monocytes, (6) CD45RA in 

dendritic cells, and (7) CD11c in dendritic cells, we employed a Gene Ontology analysis [57] 

which identify top 10 pathways based on GO gene sets with FDR q-value < 0.05 as significant 

(Table 2.6). 

2.4.5 Seurat anchor-transfer analysis 

We compared cTP-net with an anchor-based transfer learning method developed in Seurat v3 

[104]. For Seurat v3, RNA count data are normalized by LogNormalization method, while surface 

protein counts are normalized by centered log-ratio (CLR) method. In validation test setting, we 

used the same cells for training and testing as in cTP-net so as to be directly comparable to cTP-

net. For out-of-cell type prediction, default parameters did not work for several cell types in 

anchor-transfer step, because, for those cell types, there are few anchors shared between the 

training and testing sets. To overcome this, we reduced the number of anchors iteratively until the 

function ran successfully. 

2.4.6 HCA data analysis 

HCA RNA-seq data sets are pre-processed as discussed above, resulting in log-normalized 

denoised values. We applied default pipeline of Seurat and generated UMAP plot for both data 

sets (Figure 2.15). Cells are clearly clustered by individuals, indicating strong batch effects. As a 

result, the following analysis was performed on cells of each individual. Major cell types were 

determined by known markers. 
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From the log-normalized denoised expression value, we predict the surface protein 

abundance with cTP-net model trained jointly on CITE-seq PBMC, CBMC and BMMC data sets. 

We embedded 24 surface protein abundance across 16 individuals on t-SNE plot, showing 

consistent results with cell type information (Figure 2.10, 2.11).  

 Data availability 

Public datasets for training and evaluating cTP-net can be found at National Center for 

Biotechnology Information Gene Expression Omnibus (GEO) under accession number 

GSE100866, GSE100501 and GSE128639 respectively. 

 Code availability 

cTP-net package are publicly available as both an open-source R package at 

https://github.com/zhouzilu/cTPnet with license GPL-3.0 and an open-source python package at 

https://github.com/zhouzilu/ctpnetpy with license GPL-3.0. 
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Figure 2.1 cTP-net analysis pipeline and imputation of example proteins. (a) Overview of 

cTP-net analysis pipeline, which learns a mapping from the denoised scRNA-seq data to the 

relative abundance of surface proteins, capturing multi-gene features that reflect the cellular 

environment and related processes. (b) For three example proteins (CD3, CD4 and CD8), cross-

cell scatter and correlation (cor) of CITE-seq measured abundances vs. (1) raw RNA count 

(“CD3s” and “CD8s” are sum of all genes that compose protein CD3 and CD8, see Table 2.5), (2) 

SAVER-X denoised RNA level, and (3) cTP-net predicted protein abundance. 
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Figure 2.2 Benchmark evaluation of cTP-net on CITE-PBMC data set. (a) Benchmark 

correlation of true protein level vs. (1) Raw RNA count, (2) SAVER-X denoised RNA level, and (3) 

cTP-net predicted protein abundance in holdout method. (b) Benchmark correlation of truth 

protein level vs. (1) transfer learning from CITE-CBMC, (2) transfer learning from CITE-

PBMCCBMC, and (3) transfer learning from REAP-PBMC. (c) Benchmark correlation of true 

protein level vs. cTP-net prediction in holdout method for each cell type. 
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Figure 2.3 Benchmark evaluation of cTP-net on CITE-CBMC data set. (a) Benchmark 

evaluation heatmap of cTP-net and comparison with Seurat v3. The table on the left captures the 

detailed training scheme and model name of each test. (b) Benchmark correlation of true protein 

level vs. (1) Raw RNA count, (2) SAVER-X denoised RNA level, and (3) cTP-net predicted 

protein abundance in holdout method. (c) Benchmark correlation of truth protein level vs. (1) 

transfer learning from CITE-PBMC, and (2) transfer learning from CITE-PBMCCBMC. (d) Benchmark 

correlation of true protein level vs. cTP-net prediction in holdout method for each cell type. 

 

Figure 2.4 Neural network architecture of the cTP-net. 
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Figure 2.5 Benchmark procedure. (a) Holdout method validation scheme. (b) Out-of-cell-type 

benchmark scheme. 
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Figure 2.6 Benchmark evaluation on CITE-seq PBMC data. (a) Benchmark evaluation of cTP-

net on CITE-seq PBMC data, with comparisons to Seurat v3, in validation, across cell type, 

across tissue and across technology scenarios. The table on the left shows the training scheme 

of each test, the heatmap shows correlations with actual measured protein abundances. (b) 



75 

 

Within cell type correlations between imputed and measured protein abundance on the CITE-seq 

PBMC data, Seurat v3 versus cTP-net. Each point (color and shape pair) indicates a cell type and 

surface protein pair, where the x-axis is correlation between actual measured abundance and 

Seurat imputation and y-axis is the correlation between actual measured abundance and cTP-net 

imputation. (c) Scatter of imputed versus measured abundance for the three (surface protein, cell 

type) pairs marked by arrows in (b): CD11c in CD14-CD16+ monocytes, CD2 in CD8 T cells, and 

CD19 in dendritic cells.  
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Figure 2.7 Benchmark evaluation of Seurat v3 on CITE-PBMC data set. (a) Benchmark 

correlation of true protein level vs. (1) cTP-net predicted protein abundance in holdout method, 

(2) Seurat v3 predicted protein abundance in holdout method, (3) out-of-cell-type cTP-net 

predicted protein abundance, and (4) out-of-cell-type Seurat v3 predicted protein abundance. (b) 

Benchmark correlation of truth protein level vs. (1) transfer learning from CITE-PBMC, and (2) 

transfer learning from CITE-PBMCCBMC. (c) Benchmark correlation of true protein level vs. cTP-

net prediction in holdout method for each cell type. 
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Figure 2.8 Interpolation analysis. (a) Interpolation procedure in identify permutation based 

importance score for each gene in each protein prediction. (b) Dimension reduction analysis on 

the bottleneck layer on cTP-net trained on PBMCs from CITE-seq. 
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Figure 2.9 Imputation results analysis on Human Cell Atlas data sets. (a) Left panel: UMAP 

visualization of MantonBM1 BMMCs T cell subpopulation based on RNA expression, colored by 

cell type. CD4 T: mature CD4+ T cells; mature CD8 T: CD8+ T cells; naïve CD4 T: naïve CD4+ T 

cells; naïve CD8 T: naïve CD8+ T cells; CD8 senescent T: CD8+ senescent T cells. Right panel: 

Related imputed protein abundance and RNA expression of its corresponding gene. (b) UMAP 

visualization of MantonBM1 BMMCs based on RNA expression, colored by cell type. B: B cells; 

CD4 T: CD4+ T cells; CD8 T: CD8+ T cells; cMono: classical monocyte; ncMono: non-classical 



80 

 

monocyte; NK: natural killer cells; Pre.: precursors; Plasma: plasma cells. (c) Left panel: UMAP 

visualization of MantonBM1 BMMCs B cell subpopulation based on RNA expression, colored by 

cell type. Pre.B: B cell precursors; immature B: immature B cells; memory B: memory B cells; 

naïve B: naïve B cells. Right panel: Related imputed protein abundance and RNA expression of 

its corresponding gene. (d) UMAP visualization of MantonCB2 CBMCs based on RNA 

expression, colored by cell type. (e) cTP-net imputed protein abundance and RNA read count of 

its corresponding gene for 24 surface proteins. (f) UMAP visualization of MantonCB2 CBMCs NK 

cell subpopulation colored by CD56 and CD16 imputed protein abundance and RNA read count. 

Reverse gradient is observed in cTP-net prediction but not in the read count for its corresponding 

RNA. (g) Contour plot of cells based on imputed CD56 and CD16 abundance in NK cell 

populations. Strong negative correlation (Spearman correlation = -0.47) with two subpopulation 

observed. 
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Figure 2.10 cTP-net prediction on Human Cell Atlas CBMCs by individual. For each 

individual, we show (1) t-SNE visualization of HCA CBMCs based on expression. B: B cells; CD4 

T: CD4 T cells; CD8 T: CD8 T cells; cMono: classic Monocyte; NK: Natural killer cells; Pre.: 

Precursors. (2) cTP-net imputed protein abundance and RNA of its cognate gene across 24 

different surface proteins. 
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Figure 2.11 cTP-net prediction on Human Cell Atlas BMMCs by individual. For each 

individual, we show (1) t-SNE visualization of HCA BMMCs based on expression. B: B cells; CD4 

T: CD4 T cells; CD8 T: CD8 T cells; Mono: Monocyte; NK: Natural killer cells; Pre.: Precursors. 

(2) cTP-net imputed protein abundance and RNA of its cognate gene across 12 different surface 

proteins. 

 

Figure 2.12 Contour plot of cells based on imputed CD56 and CD16 abundance in NK cell 

populations. (a) NK cells across all samples from HCA CBMC. (b) NK cells across all samples 

from HCA BMMC. Strong negative correlation with two subpopulation observed. 
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Figure 2.13 Imputation results analysis on Acute Myeloid Leukemia data sets. (a) UMAP 

visualization of normal cells and malignant cells from 12 AML samples at Day0 based on imputed 

protein abundance (red: malignant cells; grey: normal cells). (b) UMAP visualization of the 

myeloid trajectory. cTP-net imputed protein abundance of markers that perfectly recapitulate the 

myeloid development. (c, e, f) UMAP visualization of the myeloid trajectory with corresponding 

malignant cells from AML sample highlighted. (d) Plot of normal cells (grey contour) and AML 

malignant cells (dots) based on imputed protein expression. 
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Figure 2.14 UMAP plots of AML data set, colored by samples. (a) Dimension reduction on 

transcriptome (RNAs). (b) Dimension reduction on imputed surface proteins. 
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Figure 2.15 Human Cell Atlas t-SNE plot based on normalized expression. (a) t-SNE plot on 

Human Cell Atlas CBMCs based on normalized expression. Color indicates sample IDs. (b) t-

SNE plot on Human Cell Atlas BMMCs based on normalized expression. Color indicates sample 

IDs. Strong batch effects observed in both data sets. 
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Table 2.1 Summary table of five data sets analyzed in this study 

Data Technology 
Cell 

population 

# of 

subjects 
# of cells 

# of 

genes 

# of 

proteins 

# of cell 

types 

CITE-PBMC CITE-seq PBMC 1 7667 13517 10 8 

CITE-CBMC CITE-seq CBMC 1 8005 14505 10 12 

REAP-PBMC REAP-seq PBMC 1 4326 10811 10 NA 

CITE-BMMC CITE-seq BMMC 1 33455 17009 25 NA 

HCA-CBMC 10x CBMC 8 260,000 12611 NA NA 

HCA-BMMC 10x BMMC 8 270,000 12611 NA NA 

 

Table 2.2 Cell type summary of CITE-seq data sets 

Data Cell types 

CITE-PBMC B, CD8 T-1, CD4 T, NK, DC, CD14+CD16+ Mono, 

CD14-CD16+ Mono, CD8 T 2 

CITE-CBMC B, CD8 T, CD4 T, NK, DC, CD14+ Mono, CD16+ 

Mono, pDC, CD34+, Eryth, Unknown 
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Table 2.3 Top 20 highest influence score genes for each protein in CITE-PBMC data set 

CD3 CD4 CD8 CD2 CD45RA CD57 CD16 CD14 CD11c CD19 

CD3D CD8B CD8B CCL5 KLRB1 NUDT6 CHL1 C1orf115 CFD CCL5 

IL7R CD8A CD8A IL7R CCL5 MZT2A 
RP11-
242C19.2 

PEAK1 MAL CD8B 

CD8B 
RP11-
291B21.2 

CCL5 
RP4-
539M6.22 

EIF1AX ATP2A2 GCSH ALDH7A1 ANKRD36C 
RN7SL600
P 

FCER1G CCL5 TRDC LTV1 CD7 IQCE NRL CYBB BLOC1S3 MYO1D 

TRDC NCR3 
RP11-
291B21.2 

RP11-
452L6.5 

TST PKNOX1 DBF4 ISYNA1 IGLL5 HSF2 

AKR7A2 KLRB1 CHMP7 FBXO10 MFSD7 FBXW8 SPHK2 LMAN1 
RP11-
159G9.5 

AC142528.
1 

HELLS DDIT3 ZAP70 LINC00384 ZFAS1 
CTA-
217C2.1 

CDKL1 FAM162A ARMCX1 DNAJA3 

ALG10 
CTD-
2547L16.1 

BMP8B ACAP2 TAPSAR1 CNOT11 TIMM21 SLC4A7 SLC6A16 GLB1L 

FGD5-AS1 C18orf25 FAH PPCDC PLEKHF1 HSD17B4 MRPS18C MIER3 LRRC16A LIMD2 

COMMD7 FPGT AC009299.3 ANKRD39 
CTBP1-
AS2 

CLEC4E C7orf43 SLC11A2 TRAF1 DTX3L 

CTA-
292E10.8 

NETO2 CMKLR1 AIM2 CYP27A1 FAM98C GORASP2 ZAP70 PABPN1 PTCD2 

ZC2HC1A GDAP1 ENTPD1 TTLL12 MAN1A2 PRMT1 
CTD-
2555C10.3 

MAP4 ADM LPAR1 

INADL CSTF1 PIK3CA GABBR1 FAM115C SLC25A11 LEPROT TTTY15 KIAA0319L ZNF649 

SHISA4 
RP11-
159H10.3 

WDR7 DCUN1D4 CST3 TCEANC2 RUSC1 HS1BP3 MRPL4 HLA-DRB5 

DCAF4 
RP11-
451M19.3 

HEG1 CPD NAIF1 LCTL POLR2L PRPSAP1 NDRG1 LIN54 

HPGDS 
ENTPD1-
AS1 

NPAT RAPGEFL1 
RP11-
83N9.5 

CAPN1 
RP11-
85A1.3 

ZBTB38 FAM63A USP32 

PACSIN1 SLC4A10 7-Sep U91328.20 FCGR3A VPS26A FKBP7 PIK3R1 RPL34 AIM2 

ARID4B FAAH2 CDT1 EIF4H 
CCDC163
P 

ECHS1 RNF24 PIGG FAM118B SLC12A7 

ATP11A AP5B1 QRICH1 AC073115.7 POLR1C 
FLVCR1-
AS1 

TBXAS1 DESI2 UBQLN4 ZNF671 

RN7SL521
P 

DHPS AP2M1 RP11-4O1.2 PRSS35 
RP11-
421L21.2 

WDR83 SIRT5 FKBP15 TNNI2 
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Table 2.4 Summary table of different cTP-net models 

Differences to the finalized model Correlation 

Without SAVER-X denoising, without MB structure 0.961±0.0004 

Without MB structure 0.968±0.0005 

Without SAVER-X denoising  0.959 ±0.0005 

L2 loss 0.969±0.0002 

Set bottle neck layer to 256 nodes (128 in final model) 0.968±0.0003 

Set bottle neck layer to 64 nodes (128 in final model) 0.968±0.0003 

With additional shared layers 0.969±0.0004 

With SeLU activation function 0.966±0.0002 

With Dropout layer between layer1 and layer2 0.966±0.001 

Exclude genes corresponding to targeted proteins 0.967±0.0001 

Final model 0.970±0.0003 
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Table 2.5 List of surface proteins and corresponding genes 

Surface protein  Corresponding gene 

CD3 CD3D,CD3E,CD3G,CD247 

CD4 CD4 

CD8 CD8A,CD8B 

CD45RA PTPRC 

CD56 NCAM1 

CD2 CD2 

CD16 FCGR3A 

CD11c ITGAX 

CD14 CD14 

CD19 CD19 

CD34 CD34 

CD57 B3GAT1 

CD11a ITGAL 

CD123 IL3RA 

CD127 IL7R 

CD161 KLRB1 

CD27 CD27 

CD278 ICOS 

CD28 CD28 

CD38 CD38 

CD45RO PTPRC 

CD69 CD69 

CD79b CD79B 

HLR.DR HLA-DRA,HLA-DRB1,HLA-DRB5 
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Table 2.6 Gene set enrichment analysis on cell-immunophenotype pairs that cTP-net predict well 

in CITE-PBMC data set 

Surface 
protein 

Cell type GO pathways 

CD45RA 
CD14-

CD16+Mono 

GO_CATABOLIC_PROCESS 

GO_PROTEIN_LOCALIZATION 

GO_REGULATION_OF_CELLULAR_COMPONENT_BIOGENESIS 

GO_CELLULAR_RESPONSE_TO_STRESS 

GO_CELLULAR_RESPONSE_TO_DNA_DAMAGE_STIMULUS 

GO_RNA_BINDING 

GO_ESTABLISHMENT_OF_LOCALIZATION_IN_CELL 

GO_CELL_CYCLE 

GO_SINGLE_ORGANISM_BIOSYNTHETIC_PROCESS 

GO_CELLULAR_MACROMOLECULE_LOCALIZATION 

CD11c 
CD14-

CD16+Mono 

GO_CELLULAR_RESPONSE_TO_STRESS 

GO_NEGATIVE_REGULATION_OF_GENE_EXPRESSION 

GO_POSITIVE_REGULATION_OF_BIOSYNTHETIC_PROCESS 

GO_POSITIVE_REGULATION_OF_GENE_EXPRESSION 

GO_CELL_CYCLE 

GO_POSITIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS 

GO_NEGATIVE_REGULATION_OF_NITROGEN_COMPOUND_METABOLI
C_PROCESS 

GO_CYTOSKELETON 

GO_CHROMOSOME 

GO_ENZYME_BINDING 

CD45RA CD8 T 2 

GO_ENZYME_BINDING 

GO_RNA_BINDING 

GO_RIBONUCLEOPROTEIN_COMPLEX 

GO_REGULATION_OF_TRANSCRIPTION_FROM_RNA_POLYMERASE_II
_PROMOTER 
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GO_CELL_CYCLE 

GO_RNA_PROCESSING 

GO_POSITIVE_REGULATION_OF_BIOSYNTHETIC_PROCESS 

GO_CYTOSKELETON 

GO_RIBONUCLEOTIDE_BINDING 

GO_POSITIVE_REGULATION_OF_GENE_EXPRESSION 

CD45RA CD4 T 

GO_REGULATION_OF_IMMUNE_SYSTEM_PROCESS 

GO_IMMUNE_SYSTEM_PROCESS 

GO_VACUOLE 

GO_SMALL_MOLECULE_METABOLIC_PROCESS 

GO_ORGANONITROGEN_COMPOUND_METABOLIC_PROCESS 

GO_ESTABLISHMENT_OF_LOCALIZATION_IN_CELL 

GO_POSITIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PR
OCESS 

GO_ENDOPLASMIC_RETICULUM 

GO_REGULATION_OF_TRANSCRIPTION_FROM_RNA_POLYMERASE_II
_PROMOTER 

GO_PROTEIN_LOCALIZATION 

CD11c 
CD14+CD16+ 

Mono 

GO_POSITIVE_REGULATION_OF_GENE_EXPRESSION 

GO_DNA_REPLICATION 

GO_POSITIVE_REGULATION_OF_MOLECULAR_FUNCTION 

GO_POSITIVE_REGULATION_OF_BIOSYNTHETIC_PROCESS 

GO_SINGLE_ORGANISM_BIOSYNTHETIC_PROCESS 

GO_DNA_DEPENDENT_DNA_REPLICATION 

GO_PHOSPHATE_CONTAINING_COMPOUND_METABOLIC_PROCESS 

GO_CELL_JUNCTION 

GO_CYTOKINE_RECEPTOR_BINDING 

GO_ORGANONITROGEN_COMPOUND_BIOSYNTHETIC_PROCESS 

CD45RA DC 
GO_NEGATIVE_REGULATION_OF_NITROGEN_COMPOUND_METABOLI

C_PROCESS 



100 

 

GO_POLY_A_RNA_BINDING 

GO_CHROMOSOME_ORGANIZATION 

GO_REGULATION_OF_DNA_METABOLIC_PROCESS 

GO_RNA_BINDING 

GO_MACROMOLECULAR_COMPLEX_BINDING 

GO_PHOSPHATE_CONTAINING_COMPOUND_METABOLIC_PROCESS 

GO_NEGATIVE_REGULATION_OF_GENE_EXPRESSION 

GO_ESTABLISHMENT_OF_LOCALIZATION_IN_CELL 

GO_DNA_METABOLIC_PROCESS 

CD11c DC 

GO_ENZYME_BINDING 

GO_RIBONUCLEOTIDE_BINDING 

GO_ESTABLISHMENT_OF_LOCALIZATION_IN_CELL 

GO_NEGATIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS 

GO_IMMUNE_SYSTEM_PROCESS 

GO_ORGANONITROGEN_COMPOUND_BIOSYNTHETIC_PROCESS 

GO_PHOSPHATE_CONTAINING_COMPOUND_METABOLIC_PROCESS 

GO_PHOSPHORYLATION 

GO_NEGATIVE_REGULATION_OF_PROTEIN_MODIFICATION_PROCES
S 

GO_TRANSFERASE_ACTIVITY_TRANSFERRING_PHOSPHORUS_CONT
AINING_GROUPS 

 

 

 

 

 

 



101 

 

 INTEGRATIVE DNA COPY NUMBER DETECTION AND GENOTYPING 

FROM SEQUENCING AND ARRAY-BASED PLATFORMS WITH PENN MEDICINE 

BIOBANK 

 Introduction 

Copy number variations (CNV) are large chunks of DNA that have been deleted or duplicated 

during evolution, leading to polymorphisms in their numbers of copies in the observed population. 

Studies have shown that CNV is an important type of variation in the human genome, some of 

which playing key roles in disease susceptibility [130-132]. Accurate identification and genotyping 

of CNV is important for population genetic and disease studies, and can lead to improved 

understanding of disease mechanisms and discovery of drug targets [133-135]. To profile CNV, 

earlier studies relied on array-based technologies such as array comparative genome 

hybridization (CGH) or single-nucleotide polymorphism (SNP) genotyping arrays, while in recent 

years, next generation sequencing (NGS) technologies have allowed for high resolution CNV 

profiling [136-143]. With the drop in sequencing cost, many large cohort profile both array data 

and NGS data from same sample. Such design allows better sensitivity and specificity of CNV 

detection. We recently developed a statistical framework, integrated Copy Number Variation 

caller (iCNV), that can be applied to study design of combination of SNP and sequencing data 

[144]. Compared to existing approaches, iCNV improves copy number detection accuracy in 

three ways: (1) utilization of B allele frequency information from sequencing data, (2) integration 

of sample matched SNP-array data, and (3) integration of improved platform-specific 

normalization for sequencing coverage. iCNV produces a cross-platform joint segmentation of 

each sample’s genome into deleted, duplicated, and normal regions, and further infers integer 

copy numbers in deletion and duplication regions.  

Recent years’ developments of large genomic biobank propose great opportunity for CNV 

studies across many phenotypes[145, 146]. The Penn Medicine BioBank (PMBB), a diverse 
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cohort, currently consists of paired SNP array and whole exome sequencing (WES) data from 

2219 African ancestry samples and 8078 European ancestry samples. A complete profile of 

CNVs of all PMBB samples in companion with detailed patient health information can provide a 

great resources for researchers to understand the relationship between germline CNVs and 

various phenotype. In order to adjust to large number of samples, we improve iCNV with an 

efficient Map-Reduce algorithm for CNV detection that reduce computation time and boost 

robustness [147].  

  Methods 

3.2.1 Penn Medicine BioBank 

PMBB recruits participants by enrolling at the time of appointment through the University of 

Pennsylvania Health System. Patients are asked to donate either blood or a tissue sample and 

allow researchers access to their electronic health record (EHR). This provides researchers with 

access to a large resources of genomic data with attached health information. PMBB currently 

consists of 8078 European ancestry samples and 2219 African ancestry samples with paired 

SNP array and WES data. 

3.2.2 Pipeline overview 

Fig. 3.1 shows an overview of iCNV analysis pipeline. Input data depends on experiment design: 

When both SNP array and NGS data are available, the input includes (i) SNP log R ratio (LRR) 

and (ii) B allele frequency (BAF), which quantify, respectively, relative probe intensity and allele 

proportion, and (iii) sequencing mapped reads (BAM file) [146, 148]. For sequencing data, iCNV 

also receives target positions (BED file) for read depth background normalization. In WES, the 

targets are exons, while for WGS, iCNV automatically bins the genome and treats each bin as a 

target (the default bin size is 1kb). iCNV first performs cross-sample bias correction for 

sequencing data using CODEX and computes a Poisson log-likelihood ratio (PLR) for each target 

[137]. As suggested, samples with different ethnicity needed to be separated for analysis. In 
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addition, the sequencing batch information of the samples is unavailable. In order to have an 

unbiased normalization method, we performed permutation-based test which will introduce in the 

next section (Fig. 3.2). Heterozygous SNPs are detected and BAFs are computed within target 

regions using SAMTOOLS [148]. Integrated CNV detection is then conducted through a hidden 

Markov model (HMM) that treats the array intensity, array BAF, sequencing PLR and sequencing 

BAF as observed emissions from a hidden copy number state. The HMM segments the genome 

of each sample into regions of homogeneous copy number and outputs an integrated Z-score for 

each position that summarizes the evidence for an abnormal copy number at that position. 

Integer-valued copy numbers are then estimated in regions of high absolute Z-score, utilizing 

information from all platforms.  Finally, we filters out small CNVs with size less than 10kb as well 

as untrustful regions, such as immunoglobulin regions. 

3.2.3 Map-Reduce framework for efficient and robust CNV detection 

Due to large number of samples and missing batch information, we design a map-reduce 

framework aiming to reduce computational time and improve CNV detection robustness. Analysis 

shows that the step of calculating Poisson log likelihood ratio is the bottleneck steps. This is due 

to large samples size, intractable RAM, multi-core inability as well as unavailable of batch 

information. As a result, we randomly partition the samples into batches of size around 100 and 

remove the biases at batch level illustrated in Fig 3.2. In this computational step, we map the data 

set into a number of workers in the computer cluster, where the normalization was performed per 

worker (i.e. the map step). We further combine the normalized data in individual batch into a full 

dataset and apply HMM algorithm for CNV detection (i.e. the reduce step). Owning to the fact that 

we do not have batch information, we permute the batch assignment 5 times and take a majority 

vote of the CNV calls to ensure detection robustness. Such framework reduces the computational 

time by 100 folds and allows higher confidence in CNV calls without prior batch information. 
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 Results 

3.3.1 CNV summary of samples  

Fig. 3.3 provides an example of heatmap of the CNV scores across 120 samples, with blue 

illustrates higher chance of duplication and red illustrates higher chance of deletion. Dark blue 

dots and dark red dots indicates CNV calls of duplication and deletion respectively. The CNV 

distribution of European ancestry (EUR) samples is illustrated in Fig. 3.4a. iCNV detects on 

average 34.1 deletions and 11.3 duplications per EUR sample. Fig. 3.4c shows the CNV 

distribution of African ancestry (AFR) samples. iCNV detects on average 38 deletions and 10.6 

duplications per AFR sample, with trend similar to EUR samples. However, as we noticed, there 

are clearly higher number and bigger size of homozygous deletions and duplications detected in 

AFR than EUR (Fig. 3.4b, d). This might be due to the fact that the WES data was mapped to a 

human genome reference with majority of reference samples from European ancestry. The high 

number of homozygous deletion and duplication in the AFR might just be gaps and diversities 

that was not captured in the reference genome. However, further investigation of the CNV burden 

differences between AFR samples and EUR samples are necessary. 

3.3.2 Comparison with CLAMMS 

The PMBB samples have been applied to a computational method called Copy number 

estimation using Lattice-Aligned Mixture Models (CLAMMS), which utilize only the WES read 

depth information for CNV detection [149]. On average, iCNV identified more and bigger CNV 

cases comparing the CLAMMS, which is contributed by integration of both allele frequency 

information and additional resources of SNP array. Fig. 3.5 shows an example of 1Mb regions of 

TG gene where iCNV detect CNVs but CLAMMS do not. Sample UPENN6848 and sample 

UPENN10001043 both show that the deletion regions are covered by only few exons but many 

SNPs, thus iCNV provides additional sensitivity as it adopts SNP information (Fig. 3.5bc). Another 

example is 800kb region of gene RIMS2 (Fig. 3.6). For sample UPENN4733, even though both 
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CLAMMS and iCNV detected this duplication, iCNV provides higher resolution in terms of the 

segmentation point with SNP array information (Fig. 3.6b). Sample UPENN10010167 is an 

another example of duplication regions that covered by only few exons but many SNPs (Fig. 

3.6c). Actually, as shown in the iCNV paper, we find that an integrated analysis yields more 

deletion and duplications than single platforms. More importantly, when comparing the integrated 

analysis with a simple intersection or union of results from a separate analysis of each individual 

platform, iCNV achieves specificity close to intersection and sensitivity of the union (Fig. 3.7). A 

signal that is moderate in both platforms would be present in the integrated call set but not in the 

union call set. A signal that is only present in one platform but absent in the other would be 

present in the union call set but not detected during integration. Compared to taking a simple 

union, combining the two platforms improves resolution, thus improving CNV detection power, 

and integration by the hidden Markov model allows one platform to “check” the calls of the other, 

thus improving robustness. 

 Conclusion 

We have detected the CNV profile across 10297 samples in the PMBB with both SNP-array and 

WES data using iCNV. Comparing with method that only utilizes WES read depth features, iCNV 

shows higher sensitivity and robustness. In addition, through a Map-Reduce framework with 

permutation, we reduce the total computation time by 100 folds and allow robust normalization 

step. This work provides an rich resources for understanding CNVs and pave the ways to many 

potential studies of PMBB such as CNV risk score [145], PheWAS analysis [150] and CNV 

variation between ethnicities. 

 

 

 

 



106 

 

 

 

 

Figure 3.1 iCNV analysis pipeline including data normalization, CNV calling and genotyping 

using NGS and array data. For NGS data, the first step is to normalize coverage using CODEX 

and calculate a Poisson log-likelihood ratio (PLR), further converted to a normalized LRR by a z-

transformation. The heterozygous single nucleotide positions are then found and BAF computed 

using SAMTools. For array data, we obtain log R ratios and BAF from raw SNP intensity data, 

then normalize the log R ratios. The integrated Hidden Markov Model takes these inputs and 

generate integrated CNV calls with quality scores. Finally, genotypes are inferred for each CNV 

region. 
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Figure 3.2 Map-reduce framework for CNV profiling of PMBB data set. Here, we select the 

pipeline for 8078 EUR samples for illustration. 
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Figure 3.3 CNV detection by iCNV (120 example individual chr22, CNV>10kb). Heat map 

indicates CNV scores (blue indicates more likely to be duplication and red indicates more likely to 

be deletion) and CNV calling (dark blue dots: duplication; dark red dots: deletion). Here, each row 

represent a sample and each column represent a hidden state. 
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Figure 3.4 Summary statistics of iCNV results. a Distribution of number CNVs per sample 

across 8087 EUR samples. b Distribution of size of CNVs across 8087 EUR samples. c 

Distribution of number CNVs per sample across 2219 AFR samples. d Distribution of size of 

CNVs across 2219 AFR samples. 



110 

 

 

Figure 3.5 iCNV vs. CLAMMS of 1Mb region around gene TG. a UCSC Genome Browser 

shows the CNV calling result at this regions of CLAMMS and iCNV. Here, red bar indicates 

tentative deletion and green bar indicating tentative duplication. Yellow arrow indicates regions of 

focus for b and c. b, c iCNV plot. First panel shows the iCNV score heatmap, with white dots 

indicating deletion detected. Second and third panel show normalized data distribution of 

sequencing and SNP. Grey dots indicate intensity, black dots indicate BAF and green line shows 

iCNV score. 
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Figure 3.6 iCNV vs. CLAMMS of 800kb region around gene RIMS2. a UCSC Genome Browser 

shows the CNV calling result at this regions of CLAMMS and iCNV. Here, red bar indicates 

tentative deletion and green bar indicating tentative duplication. b, c iCNV plot. First panel shows 

the iCNV score heatmap, with black dots indicating duplication detected. Second and third panel 

show normalized data distribution of sequencing and SNP. Grey dots indicate intensity, black 

dots indicate BAF and green line shows iCNV score. 
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Figure 3.7 Results comparison between intersection or union and iCNV. Precision and 

sensitivity analysis by in silico spike-in, comparing joint and intersection or union of two individual 

call set. Results show that joint calling has precision close to intersection and sensitivity close to 

union.  
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