
A GENERAL DEVICE DRIVER
FOR ULTRIX OR LEAVE THE

DRIVER TO IDEVIBUS
Gaylord Holder

MS-CIS-89-10
GRASP LAB 174

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

February 1989

Acknowledgements: This research was supported in part by NSF grants DMC-8512838,
MCS-8219196-CER, IR184-10413-A02, INT85-14199, DMC85-17315, NIH NS-10939-11 Air
Force AFOSR F49620-85-K-0018, U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027,
NO01 4-85-K-0807, as part of the Cerebro Vascular Research Center, NIH 1 -R01-
NS-23636-01, NATO grant 0224185, NASA NAG5-1045, ONR 88-35923-0, DARPA grant
N00014-85-K-0018, and by DEC Corporation, IBM Corporation and LORD Corporation.

A General Device Driver for Ultrix
or

Leave the Driver to /dev/busl

Gaylord Holder
General Robotics and Active Sensory Perception Laboratory

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19 104-6389
(holder@grasp.cis.upenn.edu)

Abstract

New hardware is the bane and the boon of the research laboratory: the boon
because it brings new power, new capabilities, and new solutions; the bane
because it means someone has to sit down and write the interface code for
the board. Idevlbus attempts to simplify the process on the MicroVAX 11s
running Ultrix 2.0 by allowing user processes direct access to the board's
control status registers and Q-Bus memory. Unlike similar drivers for
Suns, RTs and Masscomp, /dev/bus provides a means of establishing a user
function as an interrupt handler. The delays and variability of the interrupt
delivery are analyzed. Problems with the implementation are also described.

Introduction

Inspired by device drivers for the IBM RT and Sun which allowed user processes direct
access to the bus, /dev/bus brings this capability to Ultrix 2.0 on the MicroVAX. After
opening /dev/bus, a process can request access to both the Q-Bus 110 space and the Q-Bus
memory.2 In addition, the driver can signal a process when an interrupt comes in on a
vector.

The General Robotics and Active Sensory Perception Laboratory (GRASP) at the
University of Pennsylvania has been using /dev/bus for the past two years to provide user
processes with access to:

frame buffers.
parallel 40.
analog to digital data acquisition.
real-time clock for timing analysis.

/dev/bus has proved to be reliable, easy to use and versatile.

This work was funded in part by National Science Foundation grant number DMC-8512838. Any
opinions, findings, conclusions or recommendations expressed in this publication are those of the author
and do not necessarily reflect the views of the National Science Foundation. The author wishes to thank
Robcrt King and Filip Fuma for their hclp and support in this work.

The MicroVAX I1 uses a private bus for system memory which /dev/bus doesn't touch. Memory on the
Q-Bus is usually provided by hardware such as frame buffers. This is the Q-Bus memory that /dev/bus
provides access to.

The rest of this paper describes the user interface and implementation of /dev/bus.

User interface

After the user process opens /dev/bus, it may request a pointer to the Q-Bus YO space,
Q-Bus memory, or install an interrupt handler by calling the functions: bus-get i o () ,
bus - getqmem () , and bus - sethand () respectively.

bus - getio ()

The function bus' g e t i o () is used to obtain a pointer the Q-Bus 110 space. The bus
address of a deviccis added to the pointer to reference the device's CSRs (Control Status
Registers). NULL is returned on error.

caddr - t bus - g e t i o (fd) ;
i n t fd;

The CSRs for the DRV-1 1C 16-bit parallel communications board from Digital Equipment
Corporation consist of a control word, output buffer, and and input buffer. A structure
similar to the following may be used to interface with the DRV-1 1C:

typedef s t r u c t {
u shor t csr; / * Configuration word * /
u-short obuf; / * Output buf fe r * /
u-short ibuf ; / * Input buffer * /

1 drv - TIC;

If the DRV-11C lives at DRV - ADDR on the Q-Bus, it may be accessed by:

drv - l l c *drv - p; / * Pointer t o D R V - l l C 1 s CSRs * /

drv-p = bus g e t i o (f d) ;
drv - p = (d rv - l l c *) ((u i n t) (d r v p) + DRV ADDR) ; - -

where f d is file descriptor returned from a call to open "/dev/bus". If bus - g e t i o ()
should fail, it returns NULL.

bus - getqmem ()

The function bus ge tqmem () is used to reference memory on the MicroVAX's Q-Bus
such a memory in; frame-buffer. A pointer to the Q-Bus memory is obtained by passing
the /dev/bus file descriptor, the beginning address of the desired Q-Bus memory, and the
size of the memory in bytes to bus - getqmem () .

caddr - t bus getqmem (fd , qbus - addr, nbytes) ;
i n t fd;
caddr - t qbus addr;
i n t nbytZs ;

The argument, nbyt e s, must be a multiple of 5 12. NULL is returned on error.

The Data Translation 265 1 is a frame-grabber with two 5 12 by 5 12 by 8 bit frame buffers.

t y p e d e f s t r u c t {
u c h a r f b a [5 1 2] [5 1 2] ; / * Frame b u f f e r A * /
u-c h a r f b b [512] [512] ; / * Frame b u f f e r B * /

1 dt-£5;

Given that it is at DTQMEMADDR, the following code can be used to access the DT2651's
memory.

d t - f b *fbp; / * P t r t o DT2651 frame b u f f e r memory * /

f b p = busge tqmem (f d , DTQMEMADDR, s i z e o f (d t - f b)) ;

Again, f d is the /dev/bus file descriptor.

bus - se thand ()

A user process may attach a function to an interrupt vector with b u s s e t h a n d () . The
/dev/bus descriptor, pointer to the function, and interrupt vector are all passed to
bus - s e t h a n d 0 .

i n t bus - s e t h a n d (f d , f n , v e c) .
i n t f d ;
i n t (* f n) () ;
i n t vec ;

bus se t hand () returns - 1 on error.

After a interrupt hander has been installed with b u s s e t hand () , /dev/bus will send a
S I G I N T signal to the user process whenever an interrupt is asserted. b u s s e t h a n d ()
takes care of calling s i g n a l () so (* f n) () will be executed with the driver delivers the
signal.

The DRV-11C can be configured to interrupt the CPU whenever a word is sent andlor
received. A simple(-minded) scheme to count the number of times a device at the vector
VEC - ADDR interrupts is shown below.

i n t i n t e r r u p t - c o u n t e r = 0 ;

i n t e r r u p t - h a n d l e r ()
{

+ + i n t e r r u p t - c o u n t e r ;
1

main ()
i

bus-sethand(fd,interrupt-handler,VEC - ADDR);

/ * Don' t e x i t u n t i l w e ' r e f i n i s h e d * /
f o r (; ;)

s i g p a u s e () ;
1

Because of the time required to process signals, this is not a highly reliable scheme if the
device can interrupt more frequently than 500 times a second.

Implementation

This section provides a brief outline of the /dev/bus driver.

Initialization

The first thing the driver does when /dev/bus is opened is to lock the process in mem.ory.
This keeps the kernel from trying to do something stupid like swap frame buffer memory a
process is accessing out to disk. In addition, open () allocates a data structure the driver
will use to keep track of Q-Bus memory the process is accessing, the process id, and
interrupt vectors the process is handling, so the process's state can be restored when it exits
or closes /dev/bus.

Q-Bus Access

b u s g e t i o () and bus g e t qmem () work in pretty much the same way. The major
difference is that bus get i o () returns a pointer to the Q-Bus 110 space, addresses
0x2 0 000000 to 0x2 000 ~FFF, while bus g e t qmem () works with the address from
0x30000000 to O X ~ O ~ F F F F F . ~ A ~ i n ~ l ~ c ~ m m ~ n d r i v e r r o u t i n e , bus qmem() , i s
called by both b u s g e t i o () and b u s getqmem () . It takes a pointer 6 the process
structure, the beginn7ng address of the theQ-Bus memory to be mapped in, and the number
of bytes to be mapped.

bus qmem () calls expand () to add PTEs (Page Table Entries) to the user process. The
original value of the PTEs are saved so they can be restored later. The new PTEs are
changed to reference the appropriate Q-Bus page frames and the pointer to the Q-Bus
memory is returned to the user process. The only funny business about this whole thing is
that it requires the swap space associated with the process also be expanded, otherwise, the
operating system panics, thinking it somehow grew a process without remembering to
adjust the swap space.

Interrupt Handling

When a user process establishes a signal handler, the /dev/bus driver records the vector in
the data structure that it allocated the process when /dev/bus was opened. A small change
to the assembler routine - st r a y in l o c o r e . s allows /dev/bus to pass device interrupts
to interested processes.

When a device for which the operating system is not configured interrupts, s t r a y picks
off the interrupt vector and interrupt priority. -s t ray was changed to caa the /dev/bus

MicroVAX Handbook, pp 5-34 to 5-36, Digital Equipment Corporation, Nauhua, N.H.

-4-

function, bus s i g i n t r () with the interrupt vector as an argument. This function runs
though the /dey/bus data structures looking for a process which wants to handle it. If none
is found, the bus s i g i n t r () returns and -st r a y logs the stray interrupt. If a process
has established an"mterrupt handler for the vector, bus-s i g i n t r () calls p s i g n a l () to
deliver a S I G I N T signal to the process.

Interrupt Latency

One of the original uses planned for /dev/bus was to provide a real time capability for user
programs. The idea was that a device could interrupt the user process which would do its
thing. This would be great for robot control since all the code would be running in user
space on a single machine. Standard debuggers could be used to make sure the code
worked and life would be just peachy. The big question was how long it took the interrupt
to wend its way through Ultrix and kick in the user's interrupt handler and how variable the
times where. An experiment was set up to learn how long it took until the kernel got a-hold
of the interrupt, and then how long it took to pass to the user process.

A KWV-11 real time clock board was set to run at 2 MHz. It was then set to wait 2
milliseconds and then interrupt. The time between the interrupt and resetting the KWV-11
was recorded. The interrupt routine would set the KWV-11 to interrupt in 2 milliseconds
to give the interrupt handler to return and restores the process's normal context. A total of
10 trials of 10,000 samples were run with the interrupt handler in the kernel and from the
user process. The trials were run on a MicroVAX I1 with 5 Mb of memory, a quiet
network, standard user priority and a version of Ultrix 2.0 modified for /dev/bus.

As figure 1 shows, the interrupt latency for the user process averages to about 0.7
milliseconds while the kernel latency, as shown in figure 2, is about 0.12 milliseconds.
The MicroVAX's 10 millisecond clock shows up in figure 2 quiet clearly.

(a) Interrupt Latency (b) Expanded Intem~pt Latency

The kernel interrupt is being called lowest hardware priority. However, the only thing that
it do to bring in the user process and still clear the interrupt stack (remember, there isn't a
clean way to get back from the user process context to the kernel interrupt stack) is to set up
an AST (Asynchronous System Trap), which is essentially what Ultrix's signaling
mechanism does, or call p s i g n a l () as /dev/bus already was.

1600
1400
1200
1000
800
600
400
200

16000
14000
12000
10000
8000
6000
4000
2000

-
.-
- -
- -
- -
.-
.-
.-

0
*a-lI1 huuLhhu 0

0 100 200 300 400 500 600 700 800 900 500 510 520 530 540 550 560 570 580 590
Figure 1: Interrupt to User Process Latency

(a) Kernel Intcrmpt
Latency 800

(b) Sorted Kernel
Intermpt Latency

600 1
985 Of the samples are

400
less than the average of

0.122 milliseconds

Figure 2: Intermpt to Kernel Latency

From these, and other, experiments clearly showed that the variability of the interrupt
latency is coming after the setting up the AST. Other hardware, kernel housekeeping,
network traffic and what not was being handled at the expense of the interrupt handler's
reliability and responsiveness.

Although the latency from interrupt to user process was less than 7 milliseconds 90% of the
time, see figure 3, the enormous variability destroyed any hope of using /dev/bus for real
time work.

Sorted Interrupt Latency

930 Of the samples are
less than the average of

0.702 milliseconds

Figure 3: Sorted Interrupt to User Latency

Clean Up

The user interface doesn't provide any means of removing an interrupt handler or restoring
the process's original memory map, but the kernel must. When a process closes /dev/bus,
or it exits, the kernel function bus clear u i n f o () is called to restore any PTEs that
/dev/bus used. Any interrupt handlers the process had installed are also removed.

Other Issues

So far, with the exception of the modification of s t r ay , the implementation of /dev/bus
has been completely in the driver module. Unforttnately, there are a few more patches that
must be made to get everything working.

More Cleaning Up

The biggest problem /dev/bus has been getting the operating system to call
b u s c lear u i n f o () at the right time. During the initial design of the driver, it had
beenassumeif- that driver's close function would be called before any of the process's
memory was de-allocated -- or at least there was a single procedure where processes were
dismantled. It was a great surprise to find not only is the process's memory returned to the
system's memory pool long before the devices are closed, but also that it is done from
several routines.

In the current implementation, b u s - c lear - u i n f o () is called from vmemfree () in
. / sys /vm - m e m . c.

Protecting the User from HimIHerself

One of the other modules which had to be modified was machdep . c. Without this
change, a user process could request memory that wasn't really there, for example the
memory address to b u s getqmem () could be wrong. When the process went to use the
pointer, it would reference non-existent memory, and the system would panic. A check
was added to see if the current process was using /dev/bus. If so, it was assumed to be
responsible for problem. This way, a process making an invalid reference exited with
SIGBUS rather than taking the whole system with it.

Memory Allocation

One of the bigger surprises was that the s b r k () keeps a local copy of the size of the
process in the global assembler variable cu rb rk . When a process called b u s g e t i o ()
or b u s g e t qmem () the size of a process changed without s b r k updating c u r b r k .
Thus, th7: next time the process decided to print something with p r i n t f () (which calls
m a 1 l o c () which can in turn call s b r k ()) s b r k () decides to set the process size based
on the value in c u r b r k which is usually a good deal smaller than the real size of the
process. The kernel then tries to free the newly allocated PTEs which point to the Q-Bus
and panics when it realizes that someone has been tampering with its processes.

To fix this problem, b u s -g e t i o () and b u s -g e t qme m () call a routine
f i x c u r b r k () with the number of bytes to add to c u r b r k . This way s b r k () ' s
notion of the process's size matches reality.

Problems

There are still some problems.

/dev/bus should provide some support for multi-user access. At the moment, no checking
is done to see if the Q-Bus memory or interrupt vector requested by one process is already
being used by another.

/dev/bus also ignores problems that might crop up if a process using /dev/bus decides to
spawn a child. Since both the interrupt and illegal memory reference features look up a
process based on the recorded process id, f o r k () can be a nasty problem. An associated
problem has to do with debugging. While a process using /dev/bus can still be run under
any of the standard debuggers, care must be exercised when looking a variable values. If
the /dev/bus process has a pointer out to Q-Bus memory, it is fine to look at the value of the
pointer -- but looking at the contents of what the pointer references sends the whole system
into an uproar. This is because the process being run under the debugger had its PTEs
mangled by /dev/bus, while the debugger didn't.

The only board with DMA used on the GRASP laboratory's MicroVAXen is the Ethernet
Interface. This is not one to use to debug the DMA facilities of /dev/bus, so the DMA
support isn't.

Finally, /dev/bus still occasionally will crash the machine. For the most part, the machines
are as stable as any other Unix box. But once and a while, especially if there is a system is
to be demonstrated, the system will panic in vrelvm () or something and away it goes.
Sigh.

Conclusion

/dev/bus was originally designed so that user processes could interface with new hardware
without the operating system overhead or writing a new device driver. On the whole, that
goal has been met. New devices can be installed and a rough set of interface libraries
written in only a few days. The best part is that usually, the system only has to be rebooted
for the physical installation of the device.

While /dev/bus doesn't make device drivers redundant, it does give the system's
programmer a chance to work with the device before having to plunge into the kernel. This
pulls more of the development work out of the kernel and shortens the time need to write
the device driver. Best of all, it gives knowledgeable users the tools needed to write their
own interface software.

