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It is demonstrated experimentally and theoretically that through the use of a nonlinear 
feedback controller, one can render a subcritical Hopf bifurcation supercritical and 
thus dramatically modify the nature of the flow in a thermal convection loop heated 
from below and cooled from above. In particular, we show that the controller can 
replace the naturally occurring chaotic motion with a stable, periodic limit cycle. The 
control strategy consists of sensing the deviation of fluid temperatures from desired 
values at a number of locations inside the loop and then altering the wall heating to 
counteract such deviations. 

1. Introduction 
In many industrial processes and in propulsion it is often desirable to maintain flow 

conditions other than the naturally occurring ones. For example, if at high Reynolds 
numbers, one were able to maintain laminar flow instead of the naturally occurring 
turbulent flow, one would be able to reduce drag and fuel cost. Recently, Hu & Bau 
(1994) have demonstrated that through the use of a linear feedback controller, it is 
possible to significantly delay the linear loss of stability of planar Poiseuille flows. 
Unfortunately, the loss of stability of the planar Poiseuille flow occurs through a 
subcritical Hopf bifurcation (Chen & Joseph 1973). This bifurcation is likely to remain 
subcritical in the presence of a linear controller. As a result, both the controlled and 
uncontrolled laminar Poiseuille states may have a limited basin of attraction. In other 
words, in practice, the transition to turbulence occurs at much smaller Reynolds 
numbers than those predicted by linear stability theory. A similar situation exists in 
many other important flow systems. 

This early transition would be less likely to occur if the bifurcation at the point of 
linear loss of stability were supercritical. Abed & Fu (1986) proposed the use of 
nonlinear feedback control to invert the direction of the bifurcation. Until now, the 
feasibility of this idea has not been verified in experiments. Our objective is to 
demonstrate experimentally and theoretically that through the use of a nonlinear 
feedback controller it is possible to render a subcritical bifurcation supercritical and 
thereby potentially increase the domain of attraction of the stable subcritical state. 

We chose to study a relatively simple convective system, the thermal convection 
loop, because it exhibits rich dynamics ranging from no motion through steady motion 
to chaos and yet it can be analysed, at least qualitatively, using a low-dimensional 
dynamical model and the theoretical predictions can be readily tested by simple 
experiments. Moreover, even though this system is a relatively simple one, it is, 

t All correspondence should be directed to this author. 
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nonetheless, important since thermal convection loops provide a means for circulating 
fluid without the use of pumps. Such loops are of interest for solar heaters, emergency 
reactor-core cooling, and process industries. They also are of interest for understanding 
warm springs, sea water circulation in the oceanic crust, and formation of ore deposits. 
Singer, Wang & Bau (1991), Singer & Bau (1991), and Wang, Singer & Bau (1992, 
hereafter referred to as WSB) used a similar thermal convection loop to demonstrate 
that linear feedback control strategies can be effective in modifying the bifurcation 
structure of the flow in the loop and in delaying or advancing the transition to chaos. 
Many of the ideas which emerged from the aforementioned studies were later 
implemented in more complex flow systems such as Rayleigh-Bhard convection 
(Tang & Bau 1993a, b, 1994). 

2. Theoretical study 
In this section, we set forth a simple mathematical model for the flow in the loop, 

summarize briefly the solutions of the governing equations for the uncontrolled system, 
modify these equations to include a nonlinear feedback controller, and analyse the 
controlled system. 

2.1. The governing equations 
Consider a thermal convection loop constructed from a pipe bent into a torus and 
standing in the vertical plane as depicted in figure 1 .  The diameter of the pipe is d, and 
the diameter of the torus is D. 8 is the angular location of a point on the torus. The 
wall temperature of the pipe, Tw(8, t),  which may vary both with the angular location 
8 and time t ,  is symmetric with respect to the torus axis that is parallel to the gravity 
vector. Variations in the wall temperature may cause a spatial temperature distribution 
inside the fluid which, under appropriate conditions, may induce fluid motion in the 

We analyse the motion in the loop within the framework of Boussinesq’s 
approximation, using a one-dimensional model consisting of mass, momentum and 
energy balances (Bau & Torrance 1980; WSB): 

u = u(t), ( 1 )  

Tcos (0) do- Pu, (2) 

loop. 

7c 

and 
aT a2T 

T =  -u-+B-+[T,(O,t)-T]. ae a e 2  
(3) 

The fluid is assumed to be incompressible and Newtonian. In the above, all 
quantities are non-dimensional; Ra = gpAT?/(DP) is the loop’s Rayleigh number; /3 
is the thermal expansion coefficient; g is the gravitational acceleration; and A T  is the 
averaged wall temperature difference between the loop’s bottom and top. The timescale 
is 7 = po C,d/(4h), where po is the fluid’s average density, C, is the thermal capacity, 
and h (which we assume to be constant) is the heat transfer coefficient between the fluid 
and the pipe’s wall. P = 32v7/d2 = 8Pr/Nu is the loop’s Prandtl number, where v is the 
kinematic viscosity. Pr = v/a and Nu = hd/K are the conventional Prandtl and Nusselt 
numbers, respectively. a and K are, respectively, the fluids thermal diffusivity and 
conductivity; and B = (d /D)2/Nu is the Biot number. The lengthscale is the torus 
radius, D/2 .  The various approximations leading to equations (1)-(3) were detailed in 
WSB. 
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FIGURE 1. Schematic description of the experimental apparatus. 

The flow dynamics in the uncontrolled loop have been investigated by, among 
others, Gorman, Widmann & Robins (1984, 1986), Widmann, Gorman & Robins 
(1989), Hart (1984, 1985), Yorke, Yorke & Mallet-Paret (1987), and Ehrhard & Muller 
(1990). By expanding the fluid and wall temperatures into Fourier series, substituting 
the series into equations (1)-(3) and requiring the equations to be satisfied in the sense 
of weighted residuals, one obtains an infinite set of ordinary differential equations. 
Three of the equations decouple from the rest of the set (with exact closure) and can 
be solved independently of the other equations without the need of truncation (Malkus 
1972; WSB). These three equations describe the invariant manifold of the system. One 
can obtain a description of the flow dynamics by solving the equations 

zi = P(c - u), 

i. = - U S - C ,  

(4) 

(5) 

and s = uc-s++RaW,. (6)  

Roughly speaking, the variables c(t) and s(t) are proportional, respectively, to the 
fluid’s temperature differences between positions 3 and 9 o’clock and positions 12 and 
6 o’clock around the loop. These are the variables we will measure in our experiments. 
Below, we use P = 4 since this value approximates the loop’s Prandtl number in our 
experimental apparatus. In the absence of control, W= - 1 and equations (4E(6) are 
the celebrated Lorenz equations (1963). 

2.2. The uncontrolledjow - a summary 

Equations (4t(6)  with W, = - 1 have been investigated exhaustively in the literature 
(i.e. Robbins 1977; Sparrow 1982; Bau & Wang 1991). Here, we summarize very 
briefly some details relevant to our present study. Equations (4t(6)  with W, = - 1 
possess a number of equilibrium states, such as 

(i) a no-motion state (B,,: u = c = 0, s = - Ra) which is both globally and linearly 
stable for Ra < 1 and linearly non-stable for Ra > 1 ; 

(ii) time-independent motion either in the clockwise (B-) or counterclockwise (B,) 
direction (B ,  : u = c = + - C, s = - I), where C = (Ra- 1)lI2. B ,  are linearly stable 
for 1 < Ra -? Ra, = 16; and 

- 
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FIGURE 2. The experimentally measured temperature difference between positions 3 and 9 o’clock 

is depicted as a function of time for Q = 330 W = 3.3QC. 

(iii) chaotic motion (B,) for Ra > Ra, with occasional windows of periodic 
behaviour. In the chaotic regime, the motion in the loop consists of irregular 
oscillations with occasional reversals in the direction of the flow. For example, 
for Ra - 3.3RaH, figure 2 depicts the experimentally observed temperature 
difference, c - AT-9, between positions 3 and 9 o’clock as a function of time. 
The positive and negative values of c correspond to flow in the counterclockwise 
and clockwise directions, respectively. Qualitatively similar behaviour was 
obtained in numerical simulations. 

At Ra = Ra, = 16, the B,  states lose stability via a subcritical Hopf bifurcation. 
The resulting periodic orbit, Bp, is non-stable and its period increases as Ra decreases. 
At Ra = Ranom, B, becomes a homoclinic orbit and it passes through the no-motion 
state, B,. At Ra = Rahom, there is a bifurcation, the homoclinic explosion, which results 
in an assortment of non-stable periodic and non-periodic orbits, known collectively as 
the non-wandering set, which is initially non-attracting. As Ra increases above Rahom, 
at Ra = Ra, < Ra,, the non-wandering set becomes an attractor. The coexistence of 
a number of attractors in the interval between Ra, and Ra, gives rise to a hysteresis 
phenomenon. When one starts an experiment at Ra < Ra, and gradually increases Ra, 
the transition from B ,  to B, occurs at Ra = Ra,. When, however, one starts an 
experiment in which initially Ra > Ra, and gradually decreases Ra, the transition 
from B, to B,  occurs at Ra = Ra, < Ra,. Since in our loop (P = 4), Ra, - 15.984, 
the interval between Ra, and Rafi is very small and it may not be possible to detect the 
hysteresis phenomenon in experiments. 

2.3. Active control of theJEow 

WSB used linear feedback control to stabilize (increase Ra,) and destabilize (decrease 
Ra,) the time-independent state (B+). In other words, WSB obtained (i) steady, non- 
oscillatory flow under conditions in which the uncontrolled flow is nominally chaotic 
without significantly changing the operating conditions and the structure of the loop ; 
and (ii) chaotic flow under conditions for which the uncontrolled flow is nominally 
time-independent . 

In the uncontrolled system, the Hopf bifurcation occurring at Ra = Ra, is 
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subcritical and it remains subcritical when the linear controller is used to increase Ra,. 
Since the subcritical bifurcating periodic orbit is non-stable, it would never be observed 
in an experiment. When one conducts an experiment in which Ra is gradually 
increased, once Ra exceeds Ra, the bifurcation diagram undergoes an abrupt change 
from time-independent to chaotic flow. Our objective is to use nonlinear control to 
render the subcritical bifurcation supercritical. The objective of the nonlinear controller 
is to assure a smooth transition from B+ to B, at Ra,. The nonlinear controller itself 
does not affect the magnitude of Ra,. 

In our experiments, we measured the temperature differences c(t) and -s(t) between 
positions 3 and 9 o’clock and between positions 6 and 12 o’clock around the loop as 
functions of time and we controlled the heat input to the heater. In our mathematical 
model, we control the wall temperature which is proportional to the heat input. The 
nonlinear control law is 

k ,  kn w, = - 1 --[c(t)-q--flc(t)-F), 
Ra Ra (7) 

where k ,  and k ,  are, respectively, the linear (proportional) and nonlinear control gains. 
f i x )  is a nonlinear function withflO) =f’(O) = 0. In the discussion below, we used the 
controllerflx) = x3. 

The state we wish to stabilize, {B+: u = c = C, s = - l}, is an equilibrium state of both 
the controlled and uncontrolled systems. In other words, the controller (7) affects the 
system’s dynamics but does not alter the equilibrium state, B,. WSB shows that Ra, 
increases as k ,  decreases. The nonlinear controller has no effect on this linear stability 
of B,. 

Although the controller does not alter B,, it does alter the other equilibrium states 
of the system. The no-motion state in the controlled system is {Bo:  u = c = 0, 
s = - 1 + q k ,  + c(k, C- l)]}. The uncontrolled, clockwise-motion state is replaced in 
the controlled system with the two states 

1 { B? : u = c = F+- (1 
2kn 

The branches (BS)  exist only when Ra > 1 and (8k, C > 4k, k ,  - 1). Depending on 
the magnitude of the various parameters, B1 may represent either clockwise or 
counterclockwise flows. The stability characteristics of B, and B+ are discussed in 
Yuen (1997). For example, figure 3 depicts c as a function of Ra for k ,  = -2 and 
k ,  = -0.1. The solid and dashed lines in figure 3 correspond, respectively, to linearly 
stable and non-stable states. 

The nonlinear controller f lx)  = x3 has one unfortunate feature. While the 
uncontrolled system is bounded in the sense that no matter what the initial conditions 
are, trajectories will eventually enter an ellipsoid in phase space (Sparrow 1982), the 
same may not be true for the controlled system. In the latter case, the possibility that 
certain initial conditions may lead to trajectories diverging to infinity cannot be 
excluded. In practice, the actuator’s saturation will prevent such a divergence from 
occurring. Alternatively, in order to avoid potentially diverging behaviour, one can 
choose a bounded function such as f l x )  = - 3(tanh (x) - x) to effect the nonlinear 
control. This nonlinear controller leads to very similar results to the one presented 
below for the cubic controller. 
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FIGURE 3. The time-independent solutions of the controlled system. P = 4, k, = - 2 ,  k ,  = -0.1. 
The solid and dashed lines correspond, respectively, to linearly stable and nonstable solutions. 

2.4. Weakly nonlinear analysis 
In order to investigate the nature of the periodic solution which bifurcates from B, at 
Ra = Ra,, we carried out a weakly nonlinear analysis. x,, x,, and x, denote, 
respectively, the deviations of u, c, and s from B,. x = {x1,x2,x3}. Equations (4)-(7) 
rewritten in local form are 

-4 0 
L,(Ra) x = x + L,(Ra) x = 1 + 1 

- (Ra - l)lj2 k,  - (Ra - 1)lI2 1 

0 

X, X ,  - k ,  xi 
L, and L, are linear operators. Using a parametrization in terms of e, we expand x and 
Ra into the power series 

x = E X ,  + e2x2 + e3x3 + . ..c.c. = ea(T1, T,) {exp (iw, t )  + e2x2 + e3x3 + . . G.C. (9) 
and 

Ra = Ra,+s2R2+.-., (10) 
where T~ = e2jt are slow times and a is an amplitude function. x j  = {xj, 1, xj, 2, xj, ,). e is 
defined by 

[ae, 11 = [x, c* ei"ot]. (1 1) 
The eigensystem {iq,, r> satisfies the equation 

L, 6 = [iw, I+ L,(Ra,)] C = 0, (12) 
where Ra, = 1 + i((60 + k;)l/,  - k J 2  and wt  = Ra + 4 - k,(Ra, - l)l/'. Note that Ra, 
increases (decreases) as the linear gain -k, (k,) increases. Thus, the linear controller 
can be used to shift the Hopf bifurcation point at will. The feasibility of doing so has 
been confirmed experimentally in WSB. 

In the above, (c,c*) = 6.p = I and L,*c* = 0. The superscript * denotes the 
adjoint and the overbar denotes the complex conjugate. (v, w) = v . ~  and [v, w] = 
w,/27c J F J w o  ( u ,  w) dt are inner products. 

H 
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FIGURE 4. The magnitudes of the coefficients k,,, ,  c,, c1 c 3 / c z ,  c1 c4 Jc, 
are depicted as functions of k,. 

and c ,c ,  

Equation (12), the O(e) equation, is the linear stability problem. At O(e3) and O(e3), 

and 

0 I -x1,3 1 ax1 R, L,(Ra,) x3 = --+ 
a7, 2(Ra, - 1)’’’ 

Xl,  1 +x1,2 

0 

- x 2 ,  1 xl, 3-x1, 1 x 2 , 3  

X L 1  x2, 2 + XZ, 1 X l ,  a 

We solved equation (13) together with the normalization condition (1 1) to obtain x2. 
Subsequently, we imposed a solvability condition on the right-hand side of (14) to 
obtain the equation 

(1 5 )  
aa 
- = C1 ~ { [ C Z  bI2(k,, + k,) + R21+ i[ - b12(C, + Cq k,) 4- Cg &I}, 
871 

where the coefficients c j ( j  = 1, ... , 5 )  and k,,c are all functions of k,. The numerical 
values of these coefficients depend on the particular choice of normalization for 5. 
Here, we use 

4 + iw, ( O J ~  + 8) (Ra,  - 1)l” - k ,  w i  - 4k, 
c = { 1,77Al+iA,}, A, = 4 ( 4  + 1) , 

wO(3k, - ~ ( R u ,  - 1)1’2) 
A, = 

4 ( 4  + 1) 
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FIGURE 5.  The states B, and B,  are depicted as functions of Ra for k,  = 0 and k,  = - 1 and P = 4. 
(a )  k, = 0, (6)  k,  = - 1 .  The solid and dashed lines correspond, respectively, to linearly stable and 
nonstable numerical solutions. The dash-dot lines in (b) represent the analytic solutions. 

The coefficients ci were computed symbolically using Macsyma 417.125 (delta 2) 
(1993). Owing to their considerable length, they are not presented here. For further 
details, the interested reader is referred to Yuen (1997). 

From (1 5) ,  we obtain the amplitude equation 

a 
(16) -- - 2c, laI2 [c2 laI2(kn, c +  k,) + R,]. 

a71 

When (kn. + k,J $ e, the amplitude of the bifurcating periodic solution, Bp, is 
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FIGURE 6. The amplitude, lal, and the period r = 27c/w, are depicted as functions of Ra for k,  = - 1 
and k,  = 0. P = 4. The solid and dashed lines correspond, respectively, to numerical and analytical 
solutions. 

Equation (1 7) is not valid when kn,  + k ,  = O(c) since then a is no longer O( 1) and the 
series (9) is not uniformly valid. 

When we shift the Hopf bifurcation point upwards (k ,  < 0), c,, c, and k n , c  are 
always positive. For example, when k,  = 0, c, = 1/56, c2 = 27 2/15/4, and kn,c = 

248/(7832/15). The values of c2 and kn,c  as functions of k ,  are depicted in figure 4. 
When k,  > -kn ,c ,  the bifurcation is subcritical and the periodic orbit (17) is non- 
stable. By selecting a nonlinear controller gain, k ,  < -kn,c ,  one would render the 
subcritical bifurcation supercritical and the periodic orbit (1 7) stable. 

The frequency of the bifurcating solution, a = la/ eiWzT1, is o = where 

The values of c, c,/c,, c, c,/c, and c, c, as functions of k ,  are depicted in figure 4. 

2.5. Numerical solutions 
With the aid of the bifurcation software AUTO (Doedel 1986) we computed the periodic 
orbits (equations (4)-(7)) numerically. Figures 5 (a)  and 5 (b) depict the bifurcation 
diagrams for k ,  = 0 and k, = - 1, respectively. In each figure, results are shown for 
k ,  = 0 and - 1. Figure 5 (b) also depicts the analytical results of $2.4 for B, (dash-dot 
lines). Note the good agreement between the analytical and numerical results in the 
vicinity of the bifurcation point (Ra = Ra,). The solid and dashed lines represent, 
respectively, stable and non-stable solution branches. When k ,  = 0 (- I), the Hopf 
bifurcation is subcritical (supercritical). As k, decreases from zero (figure 5a) to - 1 
(figure 5b), the Hopf bifurcation is delayed from 16 to - 20.4. Figures 5(a) and 5(b) 
illustrate that the nonlinear controller can invert the direction of the bifurcation. 

The numerical (solid lines) and analytical (dashed lines) results are further compared 
in figure 6 for k ,  = 0 and k ,  = - 1. The figure depicts the amplitude, la[, and the period, 
r= 27c/w, as functions of (Ra- RU,)”~. For (Ru-Ru,)~‘~ < 2, there is excellent 
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agreement between the analytical and numerical results. As (Ra - RaH)liz increases, the 
amplitude of B, initially increases and then decreases. The period decreases 
monotonically as (Ra - Ra,)’” increases. 

The theoretical study illustrates that through the use of nonlinear control, one can 
render the subcritical bifurcation supercritical, replace a chaotic strange attractor with 
a periodic one, and eliminate the hysteresis phenomenon. In the next section, we will 
demonstrate that some of these theoretical predictions can be verified in an experiment. 

3. Experiments 

control strategy described in $2.3 can actually be used in practice. 
In this section, we first describe the experimental apparatus. Then, we show that the 

3.1. The experimental apparatus 
The apparatus we used here is somewhat different than the one we used in WSB, which 
was destroyed when it was used in our undergraduate laboratory. Therefore, some of 
the observations reported here may differ slightly from the ones described in WSB. 

The apparatus (figure 1) consists of a Pyrex pipe of diameter d (= 0.030 m) bent into 
a torus of diameter D (= 0.760 m). It stands in the vertical plane. The lower half of the 
apparatus is heated with a uniform-heat-flux resistance heater while the upper half is 
submerged in a jacket containing a flowing coolant. The flow dynamics depend 
sensitively on the coolant’s temperature. Hence, the coolant was supplied by a 
constant-temperature bath at a temperature of 25+ 1 “C, and it was circulated at a 
sufficiently high flow rate to approximate a uniform wall temperature. The heater 
consists of a metallic layer (instatherm) coated directly onto the glass tube. This 
arrangement assures low thermal resistance between the glass tube and the heater. The 
heater is well insulated to minimize heat losses to the ambient. The power supply to the 
heater is computer-controlled. During the experiments, the ambient temperature was 
2 4 i 2  “C. 

In our experiments, we measured the total heat input to the heater (Q), the coolant’s 
temperature, and the fluid (water) temperature differences between positions 3 and 9 
o’clock and between positions 6 and 12 o’clock around the loop which we denoted as 
AT,-9 and AT-l2, respectively. All quantities were continuously monitored as functions 
of time with the aid of a computer-controlled data acquisition system. The direction of 
the flow in the loop and, to some extent, the velocity profile could be directly observed 
due to the presence of small particles in the liquid. 

3.2. The uncontrolledflow in the loop 
Below, we briefly describe the various flow regimes observed in the loop as a function 
of the input heating rate in the absence of a controller. When heating and cooling were 
applied to the isothermal loop, depending on (stochastic) initial conditions and the 
loop imperfections, the fluid motion occurred either in the counterclockwise or 
clockwise direction. For relatively low heating rates, the flow inside the loop 
experienced low-amplitude oscillations and it was unidirectional. Figure 7 depicts 
c - AT,-, as a function of time, prior to the onset of chaos. Q = 90 W - 0.9QC, where 
Q, denotes the power setting at which chaotic behaviour was first observed. The 
temperature data were sampled at a rate of 0.2 Hz. 

The power spectrum of AT-9 (figure 7) is depicted in figure 8 (a). We quantified the 
magnitude of the temperature oscillations by computing the signal r.m.s., r.m.s. = 
(l/NCEl [ A T , - , ( t ) - G ] 2 ) 1 / 2 ,  where = (l/N)C,N_, lAT,-,(t)l and N = 1000. The 
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FIGURE 7. The experimentally measured temperature difference between positions 3 and 9 o’clock 
is depicted as a function of time for Q = 90 W = O.9Qc. 

r.m.s. of the oscillations was about 17% of the mean value of AG-9. Although 
the signal depicted in figure 7 has a time-dependent component, we assume that it 
describes the state B,. We speculate that the low-amplitude oscillations were caused 
by noise in the system, by the local instabilities induced, for example, when the hot 
fluid exited from the heated (cooled) section into the cooled (heated) one, and by the 
presence of the non-stable periodic orbit generated at the subcritical bifurcation. 
Although the periodic orbit is non-attracting, it can still influence the transient 
behaviour of the system. 

When the heating rate exceeded the critical value, Q,, the flow became 
oscillatory and time-dependent with occasional reversals in direction. The critical 
heating rate Q, depended on the coolant and room temperatures. When the coolant 
temperature was 25 “C, Q, = look5 W. Figure 2 depicts c - as a function of 
time in the chaotic regime. Q = 330 W - 3.3QC. Witness the irregular oscillations and 
the occasional changes in the sign of c. These changes in sign correspond to changes 
in the direction of the flow. The fluid spent roughly 63% of the time flowing in the 
counterclockwise direction and 37 % in the clockwise direction. The apparent bias in 
favour of the counterclockwise direction conceivably may be attributable to insufficient 
data and/or a small asymmetry in the apparatus. 

The power spectrum of the signal from figure 2 is depicted in figure 8(b). There are 
no dominating frequencies in the power spectrum. Figure 9 depicts a three-dimensional 
portrait of the attractor constructed from the AT-9 time series (figure 2) using the time 
delay technique and a three-dimensional embedding space. The time delay used in the 
construction was 10 s. The data were filtered using a Butterworth low-pass filter with 
cut-off and rejection frequencies of 0.015 and 0.02 Hz, respectively. The passband and 
stopband attenuations for the filter were, respectively, 3 and 15 dB. The experimental 
phase-space portrait in figure 9 resembles the well-known phase portrait (not shown 
here) of the Lorenz (1963) attractor which can be obtained by integrating equations 
(4)-(6) with W, = - 1. In the region Q > Q,, the flow closely resembles the chaotic 
motion, B,, predicted by the theoretical model ($2.2). 

We carried out a sequence of experiments to detect the presence of a hysteresis 
phenomenon. In one set of experiments, we started at a power setting Q < Q,, and we 
gradually increased Q until chaotic flow was observed. We marked the power at which 
the transition from unidirectional to chaotic flow occurred as Q;. Subsequently, we 
started the experiment in the chaotic regime and gradually decreased Q until 
unidirectional flow was observed. We marked the transition point from chaotic to 
unidirectional flow as Q:. Within our experimental precision, no significant differences 
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FIGURE 8. The power spectrum of the experimentally measured temperature difference between 
positions 3 and 9 o’clock: (a) as depicted in figure 7. Q = 90 W = O.9Qc; (b) as depicted in figure 2.  
Q = 330 W = 3.3QC. 

were detected between Q+, and Q;. This is consistent with the mathematical model 
which predicts a very narrow hysteresis region. Because of the lack of a significant size 
of hysteresis interval, we were not able to demonstrate the effect of the nonlinear 
controller on the hysteresis phenomenon. 
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FIGURE 9. The attractor is reconstructed, using the time delay technique (with a time delay of 10 s), 
in a three-dimensional embedding space from the time series depicted in figure 2. Q = 330 W = 3Q,. 

3.3. The controlled system 

The theoretical investigation presented in $ 2 suggests that the characteristics of the 
motion can be modified considerably with the use of a controller. In this section, we 
wish to demonstrate that these ideas can be used in practice. In WSB, we used linear 
control to make the flow approximately steady while operating at power levels which 
nominally yielded chaotic motion. In other words, we postponed the transition to 
chaos and increased the magnitude of Q,. Here, we wish to examine the effect of the 
nonlinear controller on the flow dynamics and demonstrate that we can replace the 
chaotic attractor (B,) with a periodic one (Bp).  

To accomplish this objective, we used two different control strategies. In one control 
strategy, we used A&-9 as the control input and in the other A&-12 was the control 
input. The first control strategy is the one analysed in $2.3 and it will be - discussed first. 
We denote the temperature difference which corresponds to state B, by A&-9. Next, we 
argue that the steady solution, albeit non-stable, still exists in the chaotic regime 
(Q > Q,), where A&-9 is now time-dependent. We - wish to modify the heat input to the 
loop in proportion to the deviations of A&-9 from AT-9. To this end, we set the control 
rule : 

Q(t-t,) = Q , + k , [ A T , ~ 9 ( t ) - ~ I + k , [ A T , ~ g ( t ) - ~ 1 3 .  (19) 
In the second instance, we replaced with Aq.12 in (19). Since the theory for this 

second control strategy is similar to the one presented in 82.3, we did not repeat the 
theoretical derivation for the second case. 

In (19), t ,  denotes the time delay associated with the heater’s response. By 
experimenting with various time delays, we identified t, - 15 s as providing the most 
satisfactory results. The application of the control at time t required a prediction of the 
signal at time t + t,. The predicted signals A&-9 (AT,-l2) used in (19) were obtained by 
extrapolating the measured data. This was done by storing in the memory A&-9 
(AT& at times t ,  t - 5 s, t - 10 s, t - 15 s and t -20 s. Least-squares regression was 
used to fit the data with a curve of the form A&-9 = a,+a, t+a2t2.  This quadratic 
expression was used to predict (A&& at time t+t,. Before activating 
the controller, the magnitude of A&-9 (AT,-l2) was estimated by time-averaging lA&-,I 
(A&-l2) over a time interval of 5000 s. After activating the controller, this average was 
continuously modified every 300 s during the course of the experiment. 



104 P. K. Yuen and H. H.  Bau 

I I I I I I I I I 

0 10 20 30 40 50 60 70 80 

Time (min.) 
FIGURE 10. The controlled, experimentally measured temperature difference between positions 3 and 
9 o'clock is depicted as a function of time for Q, = 330 W = 3.3QC, k, = 0,  k,  = - 1.2 W O C 3  and 
t ,  = 15 s. 
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FIGURE 11. The power spectrum of the controlled, experimentally measured temperature 
difference between positions 3 and 9 o'clock depicted in figure 10. 

3.3.1. AT,-, control 
The results of the control strategy (19) with A&-, as the observed signal are shown 

in figure 10. The figure depicts c - A&-, as a function of time for Q, = 330 W = 3.3QC 
and controller gains k, = 0 and k ,  = - 1.2 W O C 3 .  Figure 10 should be contrasted with 
figure 2. The controller replaced the chaotic attractor with occasional reversals in the 
flow direction (figure 2) with an almost periodic attractor and with unidirectional flow. 
The r.m.s. of the oscillations in figure 10 was about 15% of the averaged signal. 

The power spectrum of the signal of figure 10 is depicted in figure 11. The power 
spectrum exhibits a relatively strong periodic component at frequency - 0.015 Hz. 
Figure 11 should be contrasted with the power spectrum in the absence of the 
controller (figure 8(b)). In contrast to WSB, here we are stabilizing a periodic orbit. 
Therefore, when the nonlinear controller is active, the heating rate is a function of time. 
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FIGURE 12. The controlled, experimentally measured heating rate 
as a function of time for the case shown in figure 10. 

The power supplied to the heater as a function of time is depicted in figure 12. Most 
of the time, the fluctuations in the power were relatively small. Occasionally, however, 
the controller required high-amplitude power oscillations which sometimes exceeded 
the operational limits of the power supply. In other words, the controller occasionally 
saturated. 

Next, we examined the amplitude of the periodic limit cycle as a function of the 
power input. Using - open circles, figures 13(a) and 13(b) depict the experimentally 
measured r.m.s./A&-9 and T/TH as functions of the normalized power input Q/Qc for 
k ,  = 0 and k ,  = - 1.2 W 0C-3. The period r, corresponds to the dominant frequency 
when Q - Q,. The theoretical results lal/(Ra- 1)l'' and I'/I',(k, = 0, k ,  = - 1) are 
shown as solid curves in figure 13. In the theoretical model, as Ra increases above Ra,, 
the relative amplitude of the periodic orbit increases, - achieves a maximum, and then 
decreases. In contrast, as Q/Q,  increases, r.m.s./Aq-9 initially decreases, attains a 
minimum, and then slightly increases. Both the theoretically predicted and ex- 
perimentally measured periods decrease monotonically as Ra increases (figure 13 b). 
There is good agreement between the theoretically predicted period and the 
experimentally observed one. 

The discrepancies between the experimental observations and the theoretical 
predictions can be attributed to the mathematical model being too simple to provide 
an accurate quantitative description of the dynamics of our loop and to inaccurate 
estimation of various experimental variables ___ such as the loop's Prandtl number, the 
time delay, t,, and the magnitude of A&-9 corresponding to the non-stable B, branch. 
Moreover, as the power input varied, both P and t, changed as well. These variations 
in P and t, were not accounted for in either the experimental controller or the theory. 
Finally, in the experiment, the flow was subject to local instabilities resulting from the 
hot (cold) fluid entering the cold (hot) section of the loop at locations 3 and 9 o'clock. 
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FIGURE 14. The controlled, experimentally measured temperature difference between positions 3 and 
9 o'clock is depicted as a function of time for Q, = 250 W = 2.5Qc, k, = 0, k,  = - 1.2 W O C 3  and 
t, = 15 S. 

These local instabilities were not accounted for in the mathematical model. In addition 
to affecting the global dynamics, these instabilities caused relatively high-frequency 
oscillations in the signal A&-9. Since the temperature measurements at locations 6 and 
12 o'clock were less sensitive to these local instabilities, we decided to test the 
performance of the controller using the signal AT-12 as the control signal instead of 
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FIGURE 15. The controlled, experimentally measured heating rate as a function of time 
for the case shown in figure 14. 

3.3.2. AT,-lz control 
We used the same control strategy as described in equation (19) with AG-12 replacing 

A&-,. Since AT,-,, is the same for both B, and B-, a AT,-,,-based controller will not 
discriminate between these two solution branches. Depending on initial conditions, it 
will stabilize a periodic orbit with the time-averaged flow going either in the 
counterclockwise or the clockwise directions. 

Figures 14 and 15 depict c - A&-9 and the power input to the loop as functions of 
time for Q, = 250 W = 2.5QC and controller gains k ,  = 0 and k ,  = - 1.2 W O C 3 .  The 
r.m.s. of the oscillations in figure 14 was 10% of the averaged signal. Clearly, the 
nonlinear controller has successfully replaced the chaotic motion with an almost 
periodic one. Figure 15 illustrates that when the AT,_,, type control is used, the power 
oscillations are much smaller than when the A&-, type control is used (figure 12). This 
reduction in the power oscillations is a result of the AT,-,, signal being less noisy than 
the AT,, signal. 

4. Discussion and conclusions 
In this paper, we have demonstrated theoretically and experimentally that a 

nonlinear controller can be used to render a subcritical Hopf bifurcation supercritical. 
To illustrate how the controller operates, we briefly describe the mechanism responsible 
for the chaotic, oscillatory behaviour of the flow in the loop (Welander 1967). To this 
end, imagine that a small disturbance causes the flow to slow down to below the steady- 
state flow rate. As a result, the fluid spends more time in the heater (cooler) section, 
gains (loses) more heat than usual, and emerges from the heater (cooler) with a 
temperature higher (lower) than usual. This, in turn, causes an increase in the 
buoyancy force with a corresponding increase in the fluid velocity. Once the fluid 
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velocity increases, the process reverses itself. Under appropriate conditions, these 
oscillations amplify and, in the uncontrolled system, eventually lead to the chaotic 
behaviour depicted in figure 2. In contrast, when the controller is operating, it detects 
the appearance ~ of disturbances by monitoring deviations in the temperature difference 
A q - , - A T - ,  or A&-12-AG-12. Once a deviation is detected, the controller takes action 
to counteract its effect. For instance, if the deviation tends to accelerate (decelerate) the 
flow, the heating rate is increased (decreased) to counteract this effect. Thus, a linear 
controller succeeds in taming chaos and replacing the chaotic flow with a time- 
independent flow. The nonlinear controller’s effect is significant only when the 
disturbances grow to a considerable amplitude. As a result, the nonlinear controller 
cannot stabilize the B+ state, but rather replaces it with a periodic state. 

Both in experiment and theory, the nonlinear controller was successful in replacing 
the naturally occurring chaotic motion with a periodic one. The results of this work 
suggest that the nonlinear control can be used to render subcritical bifurcations 
supercritical and thus increase the domain of attraction of the stabilized state and 
perhaps eliminate early loss of stability through by-pass mechanisms. The challenge 
now is to apply control strategies to more complicated flow phenomena such as planar 
Poiseuille and boundary layer flows. 
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