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ABSTRACT

ESSAYS ON DYNAMIC GAMES AND CONTRACTS WITH LEARNING

Nishant Ravi

George J. Mailath

Steven A. Matthews

In the first chapter of the dissertation, “When and How to Reward Bad News”(joint

with Aditya Kuvalekar), we explore when and how to reward the bearer of bad news in a

dynamic principal-agent relationship with experimentation. The agent receives flow rents

from experimentation, and divides his time between searching for conclusive good news and

conclusive bad news about project quality. The principal commits in advance to rewards

conditional on the type of news. At each instant, the principal makes a firing decision.

We explore two environments: when the principal observes the agent’s allocation and when

she does not. We show that, in both the environments, the principal’s optimal equilibrium

features a stark reward structure—either the principal does not reward the bearer of bad

news at all or rewards the bearer of either news equally.

In the second chapter of the dissertation “Supervising to Motivate”, I study a dynamic

principal-agent relationship in which the principal invests costly resources in a project of

uncertain quality to induce costly effort from an agent. The principal observes the output

from the project privately and can be either informed (has learned that project quality

is high) or uninformed. The agent learns about project quality through the investments

made by the principal. The principal wants to invest less when pessimistic about project

quality; however, the agent demands higher investment when pessimistic to exert effort. The

principal faces the trade-off between investing optimally and transmitting information about

project quality to the agent. The principal’s optimal equilibrium features full information

transmission when the uninformed principal has high beliefs (probability that project quality

is high) and no information transmission at low beliefs. The informed principal may invest

at sub-optimally high levels early in the relationship, but eventually, optimality is restored.

That is, the principal’s optimal equilibrium may exhibit distortions in the short run but

not in the long run.
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Chapter 1

When and How to Reward Bad News

Joint with Aditya Kuvalekar

1.1 Introduction

When faced with projects of uncertain feasibility, individuals or organizations engage in

experimentation to acquire information about the prospects of such projects. Typically,

there are multiple ways to acquire information. For example, a researcher with a conjec-

ture in hand may attempt to develop a constructive proof or search for a counterexample

disproving the conjecture. A scientist in a tech firm may look for information that confirms

that a prototype satisfies all requirements to be put to production, or may look for a fatal

flaw in the prototype. That is, different strategies of acquiring information about a project

may produce different types of news, such as “good news” establishing that the project

is successful or “bad news” establishing that the project will fail. Timely bad news helps

organizations save future costs and better allocate resources to other activities. However,

when the entity performing experimentation is different from the one bearing the costs of

experimentation, as is often the case, the incentives of the two parties may differ. For exam-

ple, an R&D department tasked with the development of a new product may not want to

provide bad news to management fearing closure of projects, funding cuts etc. An obvious

remedy—one that is advocated in the literature from economics (Levitt and Snyder (1997))

and finance (Manso (2011)) to organizational behavior ( Stefflre (1985))—is to reward the

bearer of bad news.
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Accepting the idea behind rewarding employees for bearing bad news, the goal of this

paper is to explore when and how much to reward the bearer of bad news in principal-agent

relationships with experimentation.

There are two important issues we need to address in this regard. First, rewarding the

bearer of bad news is costly to the firm. Second, such rewards could, in principle, also

create perverse incentives leading to employees spending an inefficiently large proportion of

their time searching for bad news.1

We develop a simple dynamic principal-agent model to pursue these issues. An agent

performs experimentation to assess the quality of a project while an investor (the principal)

bears the costs of experimentation and can terminate the relationship at will. The agent

allocates his resources across two different sources of information—a good news source that

can produce a signal only if the project is of high quality and a bad news source that can

produce a signal only if the project is of low quality. The principal commits to a news

contingent reward but cannot commit to a termination policy. The model delivers three

main insights. First, we find that the principal should do one of two things—terminate

the relationship with no severance payment upon producing bad news, or reward the agent

the same amount for producing bad news or for producing good news. Second, it may be

optimal to reward the agent for producing bad news if the initial assessment about the

project quality is sufficiently high but not if the initial assessment is low. Moreover, it

will never be optimal to reward the agent for producing bad news if the initial assessment

is low while rewarding him if the initial assessment is high. The intuition behind this,

seemingly counterintuitive, observation is that rewarding for bad news is costly for the

principal and, when the initial assessment about the project quality is low, the costs may

not offset the benefits. The third insight is that, while the above two observations hold

regardless of whether the agent’s action is observable to the principal or not, the principal

may do strictly better if she does not observe the agent’s action.

More specifically, we study a continuous time principal-agent relationship where the

players seek to learn about a project of unknown quality (state), either high or low. Both

1There is also the possibility of agent fabricating bad news or sabotaging the project. While these
aspects are important in certain circumstances, they are not the focus of this work.
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players are equally informed about the quality of the project. In the beginning of the game,

the principal commits to a reward structure, specifying rewards for the agent upon revealing

the project quality. After accepting the reward structure, the agent experiments. At each

instant, the principal chooses whether to continue or terminate the relationship by firing

the agent. Conditional on the principal continuing the relationship, the agent chooses how

to allocate his one unit of effort across two arms—a good news arm and a bad news arm.

The agent’s choice is observable to the principal but is not verifiable in an outside court.

Therefore, the parties cannot write contracts contingent on agent’s actions. The good (bad)

news arm produces a conclusive signal—”good (bad) news”—at an arrival rate proportional

to the effort allocated to it if and only if the project quality is high (low). Hence, a signal

on either arm fully resolves all the uncertainty. Good news also provides the knowledge

needed to implement the project which results in a lump-sum payoff to the principal while

bad news is costless in and of itself. Experimentation is costly and the costs are borne by

the principal. The agent earns flow rents while experimenting.

The initial reward structure has two restrictions: First, limited liability, i.e., the agent

cannot be forced to pay the principal under any circumstance. Second, the agent’s reward

upon obtaining good news is bounded from below by the flow rent of the agent. The moti-

vation behind this assumption arises from our interpretation of good news as the principal

adopting the project and employing the agent to work on it to implement the project. After

having produced good news, the agent continues to receive the flow rent he receives during

experimentation implying that the reward to the agent on producing good news cannot be

less than the flow rent.

Both parties have the same discounting rate and have outside options that are normal-

ized to zero. We study the Markov Perfect Equilibria, henceforth equilibria, of this game

using the natural state variable—the posterior probability that the project quality is high.

An important feature of our model is that the agent’s allocation is perfectly observable

but not verifiable in an outside court. We make two points in this regard. First, in Section

1.5.1, we show that our main results continue to hold even if the agent’s allocation is

not observed by the principal. Second, this is a realistic assumption in relationships of

experimentation such as startups financed by venture capitalists. A wide body of evidence
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suggests that venture capitalists closely monitor the firms they invest in by having more

board seats (Lerner and T̊ag (2013)) and this leads to an increase in innovation (Bernstein,

Giroud, and Townsend (2016)).

Should the principal offer a reward upon producing bad news? If yes, how much should

it be relative to the reward upon producing good news? Notice that the absence of a signal

when searching for bad news makes the players more optimistic. Hence, if the principal

chooses to keep the agent employed when her belief is above a cutoff belief—as will be the

case in our principal-optimal equilibrium—then the agent has an incentive to look for bad

news closer to this belief to ensure that the beliefs do not drift below the cutoff. However,

for this very reason, it may be the case that the agent searches for bad news only to avoid

termination and nothing more.

Lemma 1 shows that this is indeed the case when the reward upon producing bad news

is less than the agent’s flow rent. When the principal does not fire the agent when the

posterior belief is above a cutoff belief, say p, the agent searches for good news everywhere

except at p, where he combines the search for good and bad news in a way that the beliefs

remain at p in the absence of a signal. This choice is called “freezing beliefs”. The intuition

behind this agent behavior is as follows. If project quality is high, bad news can never arrive

and delaying the search for bad news increases the probability of producing good news and

earning a reward. On the other hand, if the project quality is bad, he remains employed

for a longer time as it takes longer for bad news to arrive. When employed, he collects the

flow rent which is larger than the reward for producing bad news. In summary, regardless

of the project quality, it is optimal to delay the search for bad news when the reward for

producing bad news is lower than his flow rent.

When the reward upon producing bad news is higher than the flow rent, the agent may

search for bad news when sufficiently pessimistic because the likelihood of obtaining bad

news, and thereby its associated reward, may be higher than obtaining good news at low

beliefs. As a result, there is a cutoff belief pf such that, the agent searches for bad news

below it and searches for good news above.

With the agent’s behavior fully understood, we turn our attention to the principal’s

value to ask: is it ever optimal to reward bad news? If yes, when, and how? Toward this
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answer, we make the following simple, but important, observation. Whenever the rewards

for producing good and bad news are larger than the flow rent, the resulting agent’s best

response can be supported by choosing strictly lower rewards so long as they are larger than

the flow rent. As consequence, we obtain that the optimal reward structure is stark—either

do not reward the agent for producing bad news or reward him equally for producing good

or bad news. In fact, both rewards should be equal to the flow rent.

When the principal rewards the agent for producing both types of news by setting the

rewards equal to the flow rent, the agent’s best response is not unique. In fact, any behavior

of the agent that results in a non-negative drift of beliefs at the cutoff belief below which the

principal fires, is a best response for the agent. Therefore, the principal’s problem reduces

to finding an optimal allocation policy within the set of best responses of the agent. The

resulting optimal policy for the principal is characterized by a switching belief ps such that

the agent looks for bad news below ps, and good news above.

Finally, we find the optimal reward structure by comparing the two values to the princi-

pal at the initial prior about project quality: one by not rewarding the agent for bad news,

and the other where the reward for bad news is equal to the flow rent. Depending on the

primitives of the model, the optimal reward structure can fall into one of three cases. In the

first case, the agent is rewarded for bad news regardless of the initial prior. Second case is

when the agent is not rewarded for bad news regardless of the initial prior. Unlike the first

two cases, the optimal reward structure is sensitive to the initial prior in the third case.

Here the agent is rewarded for bad news when the initial prior is sufficiently high, and not

rewarded otherwise. The intuition behind this seemingly counterintuitive reward structure

of rewarding for bad news if starting at high priors is related to the observation we made

earlier—rewarding for bad news is costly to the principal. However, when the initial prior

is high, the principal is willing to incur the costs of rewarding bad news, for he expects that

to be a less likely outcome.

In proposition 3, we provide sufficient conditions for the reward structure to be of the

first or the second type. In particular, we show that when the bad news technology is

sufficiently informative and the cost of experimentation is high enough, it is optimal to

reward bad news for all initial priors. In contrast, when the good news technology is
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sufficiently informative, it is optimal to not reward bad news for all initial priors.

Lastly, we explore the robustness of our findings. Of particular interest is the case

when the agent’s allocation choice is private—not observed by the principal. Dynamic

games where actions affect learning about the underlying state are often intractable due

to the possibility of the deviating player (agent in this case) possessing persistent private

information, and thereby private beliefs. However, we find that the main forces that drive

the results when allocation choice is observed continue to apply when allocation choice is

private. We compute the principal’s optimal policy in this case, and show constructively

that it can be supported in equilibrium by either having the rewards for both good news

and bad news to be equal to the flow rent, or by not rewarding the agent for producing

bad news at all. Interestingly, the principal may strictly benefit when the agent’s action

is not observable to her. The reason is that when there are no rewards for bad news, the

agent will exclusively search for good news until getting fired, a policy that the principal

prefers over one in which the agent searches for a good news until a cutoff belief, where he

freezes. We also prove that the main insights of our model remain unchanged even if the

bad news technology was not fully revealing, i.e., one bad news would not mean that the

project quality is necessarily low.

The paper is organized as follows. We next comment on our connection with the liter-

ature. In Section 2.4 we present the model and then present results in Section 1.3. Lastly

we discuss extensions in Section 2.6. All proofs are relegated to the appendix.

Related Literature: On the problem of rewarding the agent for bad news, the literature

has focused on incentivizing the agent to reveal bad news that he observes privately. For

example, Levitt and Snyder (1997) show that rewarding for bad news may be optimal when

the agent receives a private signal about the project quality. Hidir (2017) and Chade and

Kovrijnykh (2016)) are examples of dynamic contracting problems where the agent has

the freedom to disclose bad news. We complement this literature by showing that, even

though both actions and signals are public, the inability of the parties to write contracts

contingent on actions can deter the agent from searching for bad news. Note that the choice

of specifically searching for bad news is absent in the above mentioned papers. Manso (2011)
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shows in a two period setting with full commitment, that motivating an agent to innovate

may require tolerating or even rewarding early bad news. Like the ones mentioned above,

this model also does not allow for a technology to search for bad news.

Our model builds on the exponential bandit models of Keller, Rady, and Cripps (2005)

and Keller and Rady (2015), which study good and bad news arms resepectively. Techni-

cally, the paper closest to ours is Che and Mierendorff (2016). They study a single agent

decision problem (as opposed to a two player game we have) of experimentation where the

agent has the choice to look for good news and bad news. In a related single agent decision

problem, Damiano, Li, and Suen (2017) introduce an auxiliary learning process that allows

for looking for both good and bad news while experimenting on a one arm bandit in lines

of Keller et al. (2005).

Garfagnini (2011) and Guo (2016) also study a delegation game between a principal and

an agent where the agent carries out experimentation. While the contracting and payoff

environment differs, the key distinction is our focus on how the agent’s incentives shape

the dynamics when the choice of both good and bad news is available. This tradeoff is

absent in both Garfagnini (2011) and Guo (2016). As an agency problem of collective

experimentation, this paper also relates to Kuvalekar and Lipnowski (2018). However, the

efforts there are ranked in the sense of Blackwell (1953) making the agent’s choice, when

not getting fired, straightforward—choose the least informative action. Since the good news

and bad news sources are not ranked in the sense of Blackwell (1953), the dynamics are

richer in our environment. Halac, Kartik, and Liu (2016), Bergemann and Hege (2005) and

Hörner and Samuelson (2013) are other instances of contracting problems with delegated

expeirmentation with moral hazard and (or) adverse selection.

Recently, the question of information acquisition in the presence of multiple information

sources has been pursued among others by Che and Mierendorff (2016), Liang, Mu, and

Syrgkanis (2017), Liang and Mu (2018), Fudenberg, Strack, and Strzalecki (2017), and

Mayskaya (2017). In contrast, in this paper we explore information acquisition from multiple

sources of information in a principal-agent setting where the incentives of the two parties

differ.
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1.2 Model

Players: There are two players, a principal (she) and an agent (he). Time t is continuous

with an infinite horizon. The principal hires the agent to work on a project of unknown

quality. The quality of the project is high, θ = 1, or low, θ = 0. At time 0 both players

have a common prior on the underlying project quality: E0θ = p0 ∈ (0, 1).

Actions: At each instant, the principal chooses whether to fire, s = 0 or not to fire the

agent, s = 1. Firing is irreversible and ends the game.2 Conditional on not firing, the

agent divides a unit of effort between a good news technology and a bad news technology.

The agent’s allocation to the good news technology at time t is at ∈ [0, 1], and (1 − at) is

the effort devoted to the bad news technology. The agent’s allocation is observable to the

principal but not contractible.

Information: The agent’s allocation affects the arrival rate of two exponentially distributed

signals (news). A realized good (bad) signal is denoted by G(B). The arrival rate of a G

signal is λgatθ, and that of a B signal is λb(1−at)(1−θ). Both signals are publicly observed.

Since actions and outcomes are public, there is no private information: players have the

same posterior belief about θ on or off-path. Also, notice that either signal, G or B, resolves

all the uncertainty: the realization of G(B) gives both players the belief p = 1(p = 0). A G

signal, apart from confirming that the project is of high quality, also provides the knowledge

needed to implement the project. We denote by yt ∈ {φ,G,B} the news at time t, where φ

denotes no news.

Payoffs: At the beginning of the relationship, the principal commits to a reward structure

which specifies a payment of R to the agent if a G signal arrives and F if a B signal arrives.

When employed, the agent receives an exogenously specified fixed wage w > 0 from the

principal.3 The principal incurs a flow cost of c > w which we interpret as the cost of

carrying out experimentation and the wage paid to the agent. If G arrives, the game ends

with the principal receiving Γ . If B arrives, the game ends with the principal receiving 0.

2Irreversible firing is not restrictive because in our equilibria, once the principal fires he will never hire
again.

3This is w.l.o.g. in that we can allow the principal to choose any fixed wage as long as it is at least equal
to w.
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Both players discount future payoffs at rate r normalized to equal 1.4

The terminal payoffs are:

1. If principal fires the agent, both players receive 0.

2. If G obtains, the principal receives Γ −R and the agent receives R.

3. If B obtains, the principal receives −F and the agent receives F .

Letting τ denote the stochastic time at which either the agent is fired or conclusive news

arrives, the agent’s payoff is given by

u(p0) = Ea,s
[∫ τ

0
e−uwdu+ e−τ [1yτ=GR+ 1yτ=BF ]

]
,

and the principal’s payoff is given by

v(p0) = Ea,s
[∫ τ

0
e−u(−c)du+ e−τ [1yτ=G(Γ −R) + 1yτ=B(−F )]

]
.

By dividing both players’ payoffs by w, we can set, without loss of generality, w = 1.5 Lastly,

we assume R ≥ 1. That is, the amount the principal pays to the agent upon obtaining a G

signal, is no less than the discounted value of the agent’s wage. We interpret good news as

the principal adopting the project and employing the agent to work on it. The agent should

thus continue to receive at least the flow rents he receives during the experimentation stage.

1.2.1 Strategies and equilibrium

Let Pt be the posterior probability that θ = 1 at time t conditional on the agent’s allocation

history and signal realizations. We restrict attention to Markov Perfect Equilibria (equilibria

or MPE henceforth) using Pt as state variable.

A Markov strategy for the principal is a reward structure (R,F ) ∈ [1,∞] × [0,∞] and

a function s : [0, 1] → {0, 1} that specifies hiring (s = 1) and firing (s = 0) at each belief.

4This normalization amounts to merely calculating time in different units.
5By doing so, the agent’s wage becomes 1, while his terminal payoff becomes S/w and F/w depending

on the signal. For the principal, the flow cost is c/w and the terminal payoffs are Γ/w − S/w and −F/w
depending on the signal.

9



A Markov strategy for the agent is a function a : [0, 1] → [0, 1] specifying an allocation at

each belief.

The posterior belief Pt is a stochastic process that takes a value 1(0) for all t > τ such

that yτ = G(B). In the absence of a conclusive signal and when a(·) is continuous, Pt

follows the law of motion given by, 6

dPt
dt

= [(1− a(Pt))λb − a(Pt)λg]Pt(1− Pt). (1.1)

We make the following assumptions on a : [0, 1] → [0, 1] to ensure that there exists a

unique continuous function P : [0,∞)→ [0, 1] that satisfies (1.1) whenever a(·) is continu-

ous.

Assumption 1. 1. The function a(·) is piecewise continuous.7

2. Define

af =
λb

λb + λg
. (1.2)

For any p̂ where a(·) is discontinuous, if limq↑p̂ a(q) ≤ af and limq↓p̂ a(q) ≥ af , then

a(p̂) = af .

Note that using (1.1) we can show that

dPt
dt

= 0,

when a(Pt) = af . That is, beliefs do not move in the absence of a conclusive signal if the

agent allocates af to the good news technology. We call af as the freezing allocation and

when agent chooses af at some belief p, we say that “the agent freezes beliefs at p”.

Denote the space of Markov strategies for the agent by A and the space of hiring/firing

Markov strategies of the principal by S. Given P0 = p0 and (a, s) ∈ A × S, define the

induced stochastic process {Pt, At, St} by setting At = a(Pt), st = s(Pt) and letting {Pt}t
6Since beliefs are a martingale, we have that λga(Pt)Ptdt+(1−[λga(Pt)Pt+λb(1−a(Pt))(1−Pt)]dt)(Pt+

Ṗtdt) = Pt. Dividing by dt we obtain (1.1).
7A piecewise continuous function is continuous except at a finite number of points in its domain.
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follow (1.1).

The value function for the agent is

u(p|a, s,R, F ) := Ea,s
[∫ τ

0
e−uwdu+ e−τ [1yτ=GR+ 1yτ=BF ]

∣∣P0 = p

]
,

and for the principal is

v(p|a, s,R, F ) := Ea,s
[∫ τ

0
e−u(−c)du+ e−τ [1yτ=G(Γ −R) + 1yτ=B(−F )]

∣∣∣P0 = p

]
.

Finally, we define the notion of equilibrium in our setting.

Definition 1. An equilibrium is a collection (a, s,R, F ) ∈ A×S× [1,∞]× [0,∞] such that:

1. Agent optimality. For each p ∈ (0, 1),

a ∈ argmaxâ∈A u(p|â, s, R, F ).

2. Principal optimality.

(a) Firing strategy s is optimal at all beliefs p ∈ (0, 1) given (R,F ).

Given any (R,F ), for each p ∈ (0, 1),

s ∈ argmaxŝ∈S v(p|a, ŝ, R, F ).

(b) Define, E(R,F ) := {(a, s) : (a, s) satisfies 1 and 2a for the given (R,F ).}, and

v∗(p|R,F ) := sup(a,s)∈E(R,F ) v(p|a, s,R, F ).

The initial choice of (R,F ) must be optimal.

(R,F ) ∈ argmaxR̂,F̂∈[1,∞]×[0,∞] v∗(p0|R̂, F̂ ).

We assume that the value the principal receives when a G signal arrives is sufficiently

high relative to the cost of experimentation:
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Assumption 2.
λbλg
λb + λg

(Γ − 1)− c > 0.

1.3 Results

Given a reward structure, we characterize the principal-optimal equilibrium as follows.

First, we fix a stopping strategy for the principal and find the agent’s best response. There-

after, given the agent’s best response we find the principal’s optimal stopping strategy. For

any reward structure, there is a unique principal-optimal equilibrium. Therefore, we com-

pare the principal-optimal equilibria across various reward structures to obtain the optimal

reward structure given the initial belief p0.

1.3.1 Agent’s best response

Suppose the principal hires on an interval [p, p̄] ⊆ [0, 1], that is,

s(p) =


1 if p ∈ [p, p̄],

0 if p /∈ [p, p̄].

What would the agent do at each belief? He has two choices: look for good news or look

for bad news. If he looks for bad news, the game ends with him receiving F if a B signal

arrives, while the beliefs move up in the absence of news. If he looks for good news, the game

ends with him receiving R if a G signal arrives, while the beliefs move down in the absence

of news. The agent strictly prefers being employed over getting fired, while the principal

wishes to hire the agent when sufficiently optimistic about project quality. If F is large

enough (say F = 1) looking for bad news—even though costly to the principal, imposes no

hazard for the agent. But what about when F is small, say F = 0 e.g.? In that case, looking

for bad news imposes a hazard as a B signal would end the game with the agent receiving

nothing. Alternatively, the agent can look for good news which entails a possibility of a

reward R if a G signal is obtained, however, beliefs move down to the firing cutoff p in case

no signal arrives. As Lemma 1 clarifies, the agent is heavily predisposed against looking

for bad news when F is smaller than 1, the agent’s wage. However, he makes use of the
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bad news technology by combining it with the good news technology to freeze beliefs at p.

The observability of the agent’s allocation plays a critical role here. It allows the agent to

continue employment by preventing the principal’s beliefs from falling any further in the

absence of a signal. Above p, he only looks for good news. That is, the agent delays looking

for bad news as much as possible. The remedy, should the principal want the agent to look

for bad news, is to have F ≥ 1. In that case, the agent looks for bad news below a cutoff

belief pf (defined below) and looks for good news above. As a consequence, if the beliefs

reach pf , they remain frozen there until the uncertainty is resolved. We discuss the intuition

behind how pf is calculated in the discussion following Lemma 1 which characterizes the

best response of the agent. All the proofs are presented in the appendix.

pf :=
λb(F − 1)

λb(F − 1) + λg(R− 1)
. (1.3)

Lemma 1. Suppose the principal hires the agent when p ∈ [p, p̄] ⊂ [0, 1] and fires otherwise.

The best response of the agent, for any p ∈ [p, p̄], is the following:8

If (R,F ) 6= (1, 1), and

1. if F < 1, then

a(p) =


af if p = p,

1 if p ∈ (p, p̄];

2. if F ≥ 1 and pf ≥ p̄, then

a(p) =


af if p = p̄,

0 if p ∈ [p, p̄);

8Outside the hiring region [p, p̄], the agent is indifferent across any allocation.
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3. if F ≥ 1 and pf ≤ p, then

a(p) =


af if p = p,

1 if p ∈ (p, p̄];

4. if F ≥ 1 and pf ∈ (p, p̄)

a(p) =


0 if p ∈ (p, pf ),

af if p = pf ,

1 if p ∈ (pf , p̄].

If (R,F ) = (1, 1), the agent’s best response is any a ∈ A such that a(p) ≤ af and a(p̄) ≥ af .

To gain some intuition assume the agent has only three choices at any belief: look for

good news alone, bad news alone or freeze beliefs, and that the hiring interval is of the form

[p, 1]. Qualitatively, the agent’s best response has two forms: one when F < 1 and another

when F ≥ 1.

We first consider F < 1. Suppose R ≥ 1 and F < 1, and the hiring interval is of the

form [p, 1]. Notice that the agent can choose to freeze beliefs at any p ∈ [p, 1], giving us

a lower bound on his value function. Starting at some p0 ≥ p, consider the following two

Markovian strategies:

1. Look for good news until beliefs reach q ∈ (p, p0) in the absence of signal and freeze

at q.

2. Look for good news until beliefs reach q − ε ∈ (p, p0) in the absence of signal and

freeze at q − ε, for a small ε > 0.

It is easy to see that (2) performs strictly better than (1). If θ = 0, a B signal will arrive

after the agent switches to freezing and the agent receives 0 eventually with either policy.

However, in (2), a B signal is delayed because the agent freezes beliefs later. If θ = 1, the

agent will receive 1 until a G signal arrives, in which case the agent receives R ≥ 1. In (2),

the agent spends strictly larger time looking for a G signal and therefore, is expected to

receive R earlier. Therefore, regardless of the state, the agent does better.
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The above argument suggests that if the agent switches from good news to freezing at

some point, he would postpone it as much as possible. Therefore, freezing at any belief

except at p cannot be optimal. At p, the agent will not choose an allocation a(p) > af as,

in the absence of a signal, the beliefs drift downward yielding a continuation payoff of 0.

Therefore, the agent must either freeze beliefs at p, or look for bad news at p, which has

an identical effect of freezing beliefs at p, since the agent switches back to using the good

news arm once beliefs are higher than p. Also, It is easy to see that looking for bad news

forever is worse than freezing beliefs for analogous reasoning as in the previous discussion.

Therefore, if the agent does in fact use a = 0 (look for bad news) then, he must eventually

shift to looking for good news at some belief p ∈ (p, 1). However, at such a switching belief

p—a belief such that to its left the agent looks for bad news and to its right the agent

looks for good news—the beliefs remain frozen conditional on reaching there. As argued

previously, freezing at p ∈ (p, 1) is strictly suboptimal. Therefore, we have a candidate for

the optimal policy when R ≥ 1 and F < 1—Look for good news on (p, 1) and freeze at p.

Its optimality is then established using the usual verification arguments, more importantly,

by not imposing the restriction that a(p) ∈ {0, af , 1}.

The only way to incentivize the agent to look for bad news is by offering a reward F ≥ 1.

To this end, suppose (R,F ) 6= (1, 1) and F ≥ 1. Notice that the agent can guarantee himself

a payoff of at least 1 by freezing beliefs. Therefore, we could focus on the excess payoff the

agent receives over 1. If G obtains, the excess payoff is R− 1 and for B it is F − 1. At some

belief p, by looking for good news for a small time dt, the agent’s expected myopic payoff is

λgp(R− 1)dt, which is increasing in p. Similarly, the expected myopic payoff by looking for

bad news is λb(1 − p)(F − 1)dt, which is decreasing in p. At pf , the switching belief such

that the agent looks for bad news to its left and good news to its right, the two expected

myopic payoffs are equal. We would like to emphasize though, that reasoning based on the

myopic payoff comparison for the two kind of news is illustrative but incomplete. Dynamic

considerations should play a role in deciding what news to look for. By looking for bad

news, the beliefs move upwards and good news drives them downwards, and in amounts

proportional to λb and λg. Therefore, the agent’s choice is an outcome of both the myopic

payoff comparisons and the curvature of the optimal value function that determines the
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spread of continuation values.

1.3.2 Principal’s problem

In light of Lemma 1, we first argue that we have two cases to consider insofar as the

principal’s optimal choice of reward structure is concerned: F = 0 and F ≥ 1. To see this,

note that for any F ∈ [0, 1), the agent’s behavior is unchanged while the costs increase in

F for the principal. Therefore, the principal would either set F ≥ 1 to induce the agent

to look for bad news on an interval or would set F = 0. Also, it is easy to see that in the

principal’s optimal equilibrium, the higher endpoint of the hiring interval p̄, is equal to 1.

Therefore, in the principal’s optimal equilibrium, the principal’s strategy is simple: fire if

p < p, and hire otherwise.

Suppose, in the principal’s optimal equilibrium R > 1 and F > 1. Lemma 11 in the

appendix shows that we could then lower R and F to keep the agent behavior unchanged

while increasing the principal’s payoffs. The logic is straightforward. If (R,F ) >> (1, 1),

the agent looks for bad news when beliefs are below pf and good news when the beliefs

are above pf , where pf is given by (1.3). It is clear that for any (R,F ) >> (1, 1), we

can choose (R′, F ′) such that 1 < R′ < R, 1 < F ′ < F to obtain the same pf . Therefore

(R,F ) > (1, 1) cannot be optimal for the principal. Lastly, it is easy to see that R = 1, F > 1

or R > 1, F = 1 is suboptimal for similar reasons: lowering F or R (whichever is larger

than 1) keeps pf the same (0 or 1) and so keeps the agent’s behavior unchanged. Therefore,

we have either R = F = 1 or R = 1 and F = 0. As a result, we can reduce the principal’s

problem of finding the optimal reward structure to simply choosing between F = 1 or F = 0.

That is, the principal either does not reward bad news at all or rewards it the same as the

good news. The above discussion motivates the following proposition whose detailed proof

can be found in the appendix.

Proposition 1. Reduction of the Principal’s Problem. In a principal-optimal equi-

librium, R = 1 and F ∈ {0, 1}.

Finally we compare the principal’s optimal values for two cases: (R,F ) = (1, 0) and

(R,F ) = (1, 1). Notice that in case (R,F ) = (1, 1), the agent’s best response is not unique.
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In fact, any allocation policy of the agent that results in a non-negative drift of beliefs at

the cutoff belief below which the principal fires i.e. a(p) ≤ af , is a best response for the

agent. Therefore, we are left with the following questions:

1. Given the agent’s indifference when (R,F ) = (1, 1), what is the principal’s preferred

behavior for the agent?

2. What is the optimal p when (R,F ) = (1, 0) and when (R,F ) = (1, 1)?

3. What is the optimal reward structure for the principal? In particular, is it ever optimal

to have F = 1? Conversely, is it ever optimal to have F = 0?

We answer (1) in the appendix, Section A.7. For an exogenously specified firing cutoff p,

we show that the principal’s preferred behavior for the agent under the constraint that

a(p) ≤ af is simple: if p < ps (defined in (1.4) below), look for bad news when p < ps, look

for good news when p > ps and freeze beliefs at ps. If p ≥ ps, look for good news when

p > p, and freeze beliefs at p.

ps =
λb(c− F )

λg(Γ −R+ c) + λb(c− F )
=

λb(c− 1)

λg(Γ − 1 + c) + λb(c− 1)
. (1.4)

In light of the reduction of the principal’s problem, we are left with the following two

candidate agent strategies for the principal hiring region of the form [p, 1]. a∗0 is the strategy

when F = 0 while a∗1 is the strategy when F = 1.

a∗0(p) =


1 if p > p,

af if p = p,

0 if p < p.

(1.5)
a∗1(p) =


1 if p > max{ps, p},

af if p = max{ps, p},

0 if p < max{ps, p}.

(1.6)

Now we turn to answer (2). For a given reward structure and the agent behavior, the

principal chooses an optimal stopping belief p. Let the optimal stopping beliefs for F = 0

and F = 1 be p∗0 and p∗1 respectively.9 A natural candidate for p∗0 is the belief at which

the principal’s value is 0, given that the agent freezes beliefs at that belief. Lemma 14 in

9More details about these beliefs can be found in the appendix, (A.12) and (A.23).
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Section A.6 shows that indeed such a belief is the optimal stopping belief. In the case when

when F = 1 and p ≥ ps, note that the agent’s behavior is identical to the case when F = 0

for a given stopping belief. Hence, in this case p∗1 is calculated in an identical way as above.

In the case when F = 1 and p < ps, the optimal stopping belief p∗1 is set to the belief at

which the principal’s value is 0, given that the agent is following the strategy given by (1.5).

We finally answer (3). Let the associated optimal value functions for the principal be

given by vF=0
∗ (·) and vF=1

∗ (·) for the case F = 0 and F = 1 respectively. The explicit

expressions are given in the appendix, (A.14) and (A.24) respectively.

Insofar as the principal’s optimal reward structure is concerned, what remains now is

to compare vF=0
∗ (p0) and vF=1

∗ (p0), where p0 is the prior at time 0. We formally state this

comparison in the proposition below. Let the principal’s optimal value function in the game

with P0 = p0 (recall that Pt is the belief at time t) be denoted by vp0(·).

Proposition 2. For any initial prior p0, the principal’s optimal value function, vp0(p) is

the following:

vp0(·) =


vF=0
∗ (·) if vF=0

∗ (p0) ≥ vF=1
∗ (p0),

vF=1
∗ (·) if vF=1

∗ (p0) > vF=0
∗ (p0).

Proposition 2 answers when to reward bad news by setting F = 1. The principal

compares the two value function for F = 0 and F = 1 at time 0 and chooses the maximum.

However, it does not answer the question of whether F = 1 ever obtains and, conversely, is

F = 0 ever optimal? The following proposition answers these question. Before we state the

proposition, define, Λ :=
λbλg
λb+λg

.

Proposition 3. Suppose

c > (1 + λg). (1.7)

There exists λb such that for all initial beliefs, λb > λb implies that F = 1 is optimal, and
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in particular, strictly optimal when vF=1
∗ (·) > 0. On the other hand, if

c+ Λ

ΛΓ
>

λb(c− 1)

λg(Γ − 1 + c) + λb(c− 1)
, (1.8)

then F = 0 is optimal for all initial beliefs, and in particular, strictly optimal when vF=0
∗ (·) >

0.

The sufficient condition for optimality of F = 1 is derived by simply asking, when is it

the case that p∗1 < p∗0? In that case, since the stopping cutoff with F = 1 is strictly lower

than the cutoff for F = 0, it is at least optimal to have F = 1 when p ∈ (p∗1, p
∗
0). However,

it turns out that whenever p∗1 < p∗0, vF=1
∗ (p) > vF=0

∗ (p) for all p > p∗1. That is, it is optimal

to set F = 0 for all prior beliefs when the principal does not fire the agent right away.

The sufficient condition for optimality of F = 0 is straightforward. Consider the case

when F = 1 and set p < ps. Look at the principal’s value function when the agent looks

for bad news below ps and good news above it. If this value is negative at ps, then it will

not be optimal for the principal to hire at ps. In that case, we will have p∗1 > ps, and the

agent behavior (on path) would be to look for good news at all beliefs above p∗1, and freeze

beliefs at p∗1. This behavior, qualitatively, is identical to the agent behavior with F = 0.

Therefore, since the principal’s costs are higher when F = 1, we will have p∗1 > p∗0, and

vF=0
∗ (p) > vF=1

∗ (p) for all p > p∗0.

While our sufficient conditions establish that we can have either F = 0 or F = 1 as the

optimal reward for all initial priors, what happens when the two conditions are violated? It

will still be the case that optimally F ∈ {0, 1}, but the answer will depend on the prior belief

p0 as well. As Figure 1.1 shows, it is possible to have p∗1 > p∗0 and yet, vF=0
∗ (·) and vF=1

∗ (·)

not being globally ranked. In fact, vF=0
∗ (·) and vF=1

∗ (·) cross at most once. Moreover, if

they cross, they cross in a way that vF=1
∗ (·) dominates vF=0

∗ (·) above a certain p̂, and the

other way below it. That is, whenever it is optimal for the principal to reward bad news

for some prior p0, it is optimal to reward bad news for all priors larger than p0. On the

other hand, whenever it is optimal to not reward bad news for some prior p0, it is optimal

to do so for all the lower priors. This observation is summarized in Proposition 4 below.

The proofs can be found in Lemma 31 and the lemmata before it in the appendix.
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Proposition 4. If vF=0
∗ (p∗1) > 0 and vF=0

∗ (ps) < vF=1
∗ (ps) then ∃ p̂ such that, vF=1

∗ (p) >

vF=0
∗ (p) whenever p ∈ (p̂, 1) and vF=1

∗ (p) < vF=0
∗ (p) whenever p ∈ (p∗0, p̂).

The intuition behind this, perhaps counter-intuitive reward structure relates to the

observation we made earlier: rewarding the agent for producing bad news is costly. If

initial prior is high, then the expected revenue from the project is also high which implies

that the principal is willing to bear the cost of rewarding for producing bad news, for she

expects that to be a less likely outcome.

Figure 1.1. The case when value functions cross.
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1.3.3 When and how to reward bad news

Observations from Propositions 2, 3, and 4, lead to two important takeaways. First, it

may indeed be optimal to reward the bearer of bad news. But always rewarding for bad

news is not necessarily optimal. Second, the answer can also depend on the initial prior.

If the bad news technolgy is sufficiently informative (λb > λb) and if experimentation is
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sufficiently costly (1.7), then it is optimal to reward bad news. This may explain why,

in the technology sector, there is a growing push towards rewarding reporting bad news,

since it is relatively easier to find bugs in softwares.10 At the same time, if the good

news technology is extremely informative (λg → ∞ e.g.) then it is not optimal to provide

incentives to look for bad news (Inequality (1.8) holds). Some explanations suggest that

the employees fear the negative consequences of being the bearer of bad news. Hence, bad

news is not transmitted efficiently to the management.11 We view our explanation as an

alternate one—it is perhaps not fear but rather the reward structure that disincentivizes

the employees from acquiring such information. That is, it is not that the employees hide

negative information, but rather that they choose not to acquire it. In a software company,

this would mean that employees do not look for bugs in their products in the absence of

adequate incentives. Widely adopted use of the “bug bounty programs” in the recent times

is consistent with this explanation.

1.4 Beyond Markov Perfect Equilibria

The following strategy profile (σ∗) is an MPE: The agent always looks for bad news and the

principal always fires. In σ∗, both players are simultaneously min-maxed, and therefore, σ∗

is the worst threat to both players. Using σ∗ as punishment, intuitively, we can implement

any behavior from either players in a non-MPE, in particular the first best.12 To see this,

suppose the principal wants to implement any allocation ã(t) starting at time 0. The grim-

trigger strategy profile where the principal hires as long as the agent follows the allocation

policy ã(t) and reverts to σ∗ following any deviation from the agent is an equilibrium. The

agent is willing to follow ã(t) because it guarantees him wages and any deviation leads to

firing.

This grim-trigger equilibrium relies heavily on the presence of a severe threat. We

10For example, Keil and Mähring (2010) and Tan, Smith, Keil, and Montealegre (2003) document the
importance of rewarding bad news in project management in the technology sector.

11As documented by Smith and Keil (2003), and to quote Barry M. Staw and Jerry Ross, ”Be-
cause no one wants to be the conveyor of bad news, information is filtered as it goes up the hierarchy.”
https://hbr.org/1987/03/knowing-when-to-pull-the-plug

12Formalizing this discussion involves handling the well known issues in continuous time games described
in Simon and Stinchcombe (1989) and Bergin and MacLeod (1993). For our purposes, an illustration suffices.
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impose a simple requirement of weak renegotiation-proofness due to Farrell and Maskin

(1989), adapted to dynamic games by Bergemann and Hege (2005).13

Definition 2. In the subgame after choosing a reward structure (R,F ), a subgame perfect

equilibrium {a, s} is weakly renegotiation-proof if there do not exist continuation equilibria

at some ht and ht′ with P (ht) = P (ht′) and ht 6= ht′ such that u(ht) ≥ u(ht′) and v(ht) ≥

v(ht′) with at least one strict inequality.

The above definition, viewed as an internal consistency requirement, requires that after

any two histories such that the beliefs are the same after the two histories, the continuation

play must not be Pareto ranked. It is easy to see that the grim-trigger equilibrium is not

weakly renegotiation-proof. On the other hand, any MPE is weakly renegotiation-proof

because, the continuation play is the same after any two histories such that the beliefs are

the same. This straightforward observation is summarized below.

Proposition 5. All MPEs are weakly renegotiation proof.

Since we are interested in the principal-optimal equilibria, the question remaining is

whether there are weakly renegotiation-proof equilibria that deliver higher payoff to the

principal compared to the principal-optimal MPE. We are not aware of any such equilibrium

and leave this issue to be resolved in future research.

1.5 Extensions

1.5.1 Unobservable allocation choice

A key feature of our model is that the agent’s allocation is observable to the principal.

However, it is natural to explore what would happen if the agent’s actions were not observ-

able to the principal. We show that main insights of our model remain unchanged in this

environment.

We modify the model presented in Section 2.4 by assuming that the allocation choice of

the agent is not observed by the principal, however any signal (good news or bad news) is

13Formal details on defining strategies and histories in our setting can be provided if needed.
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observed by both parties. Because allocation choice is privately observed by the agent, the

principal’s strategy cannot depend on the belief about the state which is known only to the

agent once the game commences. Hence the notion of MPE in beliefs is not applicable in

this setting. The solution concept in this case is Perfect Bayesian Equilibrium.

Given a reward structure (R.F ), a pure strategy for the principal is a stopping time

T ∈ [0,∞] such that the principal hires the agent when t < T and fires the agent when

t ≥ T , in the absence of a conclusive signal. The agent’s history at any point where no

conclusive news has arrived is ht := (at)t where at is the allocation at time t. Any private

history maps into a belief P̃t for the agent which evolves according to the law of motion given

by (1.1). The set strategies for the agent is the set of functions a : [0, 1] × [0,∞) → [0, 1]

which specifies an allocation at time t when belief is P̃t. Given a reward structure (R,F ),

an equilibrium is a tuple (T, a), such that each player best responds to the other.

We first consider the case when R = 1 and F = 0. In this case, the agent has no incentive

to look for bad news. This is because a bad news leads to termination without any reward

to the agent. Given that the agent looks for good news exclusively, the principal’s optimal

behavior is simply to fire the agent when beliefs drift down sufficiently in the absence of a

signal. Suppose that the initial belief is p0, and define

p̂0 =
c

λg(Γ − 1)
, (1.9)

then the principal-optimal equilibrium is established by the following lemma.

Lemma 2. When R = 1, F = 0, the principal-optimal equilibrium is given by (τ∗, a∗) such

that

1. Agent’s allocation: a∗(p, t) = 1 for all t ≤ τ∗

2. If p0 ≤ p̂0, then τ∗ = 0.

3. If p0 > p̂0, then τ∗ = inf{t : P at = p̂0}, where P at denotes the Principal’s posterior

probability that θ = 1 calculated assuming au = 1 for all u ≤ t.
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When F < 1, given any stopping time T of the principal, the agent prefers to delay

the search for bad news as much as he can. The intuition is the following. Suppose the

principal hires follows a finite stopping time policy, i.e. fires the agent if no signal arrives

by time T . Take a strategy (at)t such that the agent devotes Tg :=
∫ T

0 atdt time to look

for good news and the remaining for bad news. Now, define another strategy (ât)t where,

the agent searches sets ât = 1 when t ≤ Tg and sets ât = 0 thereafter. Note that if θ = 1,

the payoff of the agent is the same under both strategies since a B signal never arrives.

However, if θ = 0, bad news arrives earlier in expectation under a compared to â. Since,

F < 1, the agent prefers â to a since he can collect a flow wage of 1 for longer in expectation.

Therefore, in any best response, the agent will search for good news up to some time T1

and may search for bad news thereafter. Note that the principal has a profitable deviation

in case the agent searches for bad news. She can simply lower her stopping time to T1 and

be better off since she knows that after T1, the agent can only produce a B signal that

leads to the abandonment of the project and she can save the cost of experimentation by

abandoning the project herself. Notice that given this equilibrium behavior of the agent,

the principal is might as well set R = 1 and F = 0. Hence R = 1 and F ∈ (0, 1) does not

improve upon R = 1 and F ∈ (0, 1). The above discussion is summarized the lemma below.

Lemma 3. In the principal-optimal equilibrium, either F = 0 or F ≥ 1.

Next, we look at the case when R = F = 1. We ask the following question: If the

principal could choose a policy for the agent ignoring the incentive constraints of the agent,

what policy would she choose? Lemma 33 shows us that there are three possibilities.

1. G policy: Search for good news when p ∈ [p̂0, 1].

2. G−B −G policy: There exists a cutoff p̃ with p̂0 < p̃ < ps such that

� Search for good news when p ∈ [p̂0, p̃] ∪ [ps, 1].

� Search for bad news when p ∈ (p̃, ps).

3. B −G policy:

� Search for good news when p ∈ [ps, 1].
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� Search for bad news when p ∈ [p∗1, p
s).

Note that desired behavior of the agent in case (1) can be implemented by setting R =

1, F = 0 as we have shown in preceding discussion. In case (2), when initial prior p0 < p̂

the desired agent behavior can be implemented similarly. When in case (2) with p0 > p̂ and

case(3), the principal can implement the desired agent behavior as follows. Set the stopping

time T =∞, i.e. never fire the agent. The agent now is indifferent between any policy and

in particular is willing to follow the policy desired by the principal. We have shown that we

can implement principal’s optimal policy when R = F = 1, which implies that the principal

cannot do any better by setting higher rewards. The above discussion is summarized in the

proposition below.

Proposition 6. When allocation is unobservable, the optimal reward structure is either

R = F = 1 or R = 1, F = 0.

The question on when to reward bad news also carries over from the case when allocation

is observable. In particular, the sufficient conditions shown in proposition 3 hold in the case

of unobserved allocation as well. When the principal does not reward bad news, observe

that the (implied) belief at which the principal fires the agent is p̂0, which is strictly lower

than p∗0, the firing belief in the optimal MPE when F = 0. A lower cutoff belief also results

in the principal attaining a strictly higher value when the agent’s actions are not observed.

When the principal optimally chooses F = 1, the value of the principal is identical under

both unobserved actions and MPE, since the behavior of the agent is identical on-path. We

summarize this in the proposition below, letting vobs∗ (·) (vunobs∗ (·)) stand for the principal-

optimal value function when the agent’s action is observable (not observable).

Proposition 7. vuobs∗ (p) ≥ vobs∗ (p) for all p. Moreover, the inequality is strict whenever

vunobs∗ (p) > 0 if F = 0 is optimal for the principal when the agent’s action is observable to

her.

1.5.2 Signals not fully revealing

Throughout the paper, we have assumed that both the good news and the bad news arm

are fully revealing. We now argue that even without fully revealing arms, our main result—
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either do not reward the bad news at all or reward it as much as the good news—is preserved.

We continue to maintain that the good news arm is fully revealing, i.e. the rate of arrival

conditional on a = 1, are λgθ. This is in line with our interpretation that good news

apart from revealing that the state is high, results in a direct payoff i.e. the project can be

implemented. However, we now assume that the bad news arm is not fully revealing. In

particular, the rate of arrival of a B signal when θ = 1 is λ1
b < λ0

b , the rate of arrival for the

bad signal when θ = 0. As before, starting at a prior p, a G signal takes the posterior to 1,

while a B signal takes the posterior to p′ ∈ (0, p). In particular, the law of motion is:

dPt = [(λ0
b − λ1

b)(1− at)− λgat]Pt(1− Pt)dt.

A natural analog of our (R,F ) in this environment would be an amount R upon a

conclusive G signal, while an amount F upon a B signal after which the principal terminates

the relationship. An important observation is the following: Even in this environment, the

agent can ensure that he does not get fired without a B signal. The idea is very intuitive.

Suppose there is a cutoff belief p below which the principal fires the agent. As before, the

agent can set a =
λ0b−λ

1
b

λg+λ0b−λ
1
b

in order to ensure that the beliefs do not move from p in the

absence of a signal. Therefore, for any F ∈ [0, 1), the agent faces the same problem: delay

the time at which the beliefs move below p as much as possible. This is because the agent

receives his flow wage while employed, and can receive more if a G signal arrives, while his

outside option is strictly inferior. Therefore, if the principal wishes to set F ∈ (0, 1), she

might as well set F = 0.

To see why, if F ≥ 1, it is optimal to have R,F = 1, notice that the agent’s payoff is

the following.

v(p) = sup
a∈A

Ea
[
(1− e−τ )1 + e−τ [1yτ=GR+ 1yτ=BF ]

]
,

where τ is the smallest time such that either G obtains or where the posterior belief upon

a B signal goes into the firing region. Subtracting 1 from either side, and dividing by

F − 1, the agent’s problem now, depends only on the ratio R−1
F−1 , and its comparison to 1.

26



Therefore, for any (R,F ) >> (1, 1), we can choose a lower (R′, F ′) as in Proposition 1,

to keep the agent behavior unchanged while improving the principal profits. Therefore, if

F ≥ 1, it must be optimal to have R = F = 1.

1.6 Conclusion

In this paper, we studied a simple model of a principal-agent relationship with experimen-

tation and limits to contractibility. The main focus of the paper was to determine whether

and when the principal should reward the agent for bearing bad news, and how the optimal

reward scheme should be structured. Our main takeaway is that either the principal should

offer no reward to the agent for bearing bad news, or she should offer the same reward re-

gardless of the type of news, good or bad. Given that rewarding bad news is costly, the sole

reason for offering such a reward is to incentivize the agent to search for bad news, thereby

potentially saving future experimentation costs. Prior to this paper, most research that

prescribed rewarding bad news has focused on providing incentives to the agent to disclose

bad news. In contrast, we show that even when such concerns are absent, i.e. the news is

public, a fundamental source of conflict arises due to the agent’s aversion to searching for

bad news because its arrival triggers his termination. In addition, we also show that despite

the simplicity of our framework, the above message also holds if the agent’s action is not

observed by the principal.

A key feature of our model—viewing experimentation as acquiring information from

multiple sources—brings out novel dynamics. Our model predicts that rewarding for bad

news may be more common in experimentation environments where the informativeness of

the bad news source is high. Our results may also provide an alternative explanation to

why bad news is not transmitted efficiently to management in organizations—it is not that

the employees hide negative information, but rather that they choose not to acquire it when

there is no reward for finding negative information.
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Chapter 2

Supervising to Motivate

2.1 Introduction

In most organizations, supervisors have a role beyond the passive job of writing contracts

with employees and disseminating the terms of the contract. They also play an active role in

production, investing resources to augment the quality or quantity of the output produced.

When working jointly with an employee on a project of uncertain quality, if a supervisor has

private information (such as past output from the project), her investments in the project

may transmit her private information to the employee.1 This may not be desirable — it

may be costly to induce effort from an employee who learns that the project is unlikely

to produce output. In such situations, a supervisor faces the trade-off between investing

optimally in the project based on her private information and transmitting information

about quality of the project to the employee.2 How should the supervisor manage this

trade-off over time? In particular, should the supervisor’s investment be sensitive to her

private information? If yes, when and how?

I pursue these questions in a dynamic principal-agent model in which the principal

learns privately about a project of uncertain quality (good or bad) over time. The principal

invests costly resources into the project. The agent learns about the quality of the project

through the investments made by the principal and exerts costly effort. The agent’s mo-

1Models that allow private information with superviosrs have been studied in the literature on subjective
and private evaluations, for example, MacLeod (2003) and Fuchs (2007).

2Here, optimal investment is the investment that maximizes the supervisor’s value in the absence of
information transmission concerns.
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tivation (willingness to exert effort) increases in the principal’s investment and the agent’s

belief (probability that project quality is good). The principal’s willingness to invest in-

creases with her belief. I solve for the principal’s optimal equilibrium and find three main

insights. First, if the relationship is in a optimistic stage (both players have high beliefs),

the principal ignores information transmission concerns and invests optimally, i.e. the prin-

cipal’s investment is sensitive to her private information. Second, if the relationship moves

to a pessimistic stage, or starts at a pessimistic stage, the principal ignores her private

information when investing — to prevent any further information transmission and thereby

preserving the motivation of the agent to exert effort. Third, if the relationship starts at

a pessimistic stage, a principal who learns that the project is good, may still be forced to

invest sub-optimally. However, such distortions are transient and disappear eventually.

More specifically, I study a continuous time principal-agent relationship where the prin-

cipal seeks to induce effort from the agent on a project of unknown quality, either good or

bad. Initially, both players have a common prior µ0 about the quality of the project being

good. At each instant, the principal chooses how much to invest (xt) in the project at a

cost that is convex in investment. In the same instant, but after observing the principal’s

investment, the agent chooses whether to exert effort at a cost or not. Not exerting effort is

costless. The agent’s effort is observable, but not contractible. Conditional on the quality

of the project being good and the agent exerting effort, lump-sum output worth 1 + xt

arrives at the exponential rate of λ. Output is privately observed by the principal. The

principal’s investment does not affect the arrival rate of output, however it affects the value

of the output if output arrives. That is, the principal can augment the output by investing,

but cannot produce an output in the absence of effort from the agent. There is no output

if either the project quality is bad or the agent does not exert effort. At the beginning of

the relationship, both players agree to a non-negotiable sharing rule of output where the

principal receives a share γ and the agent receives a share 1−γ of the output. Both players

discount future payoffs at the rate r.3 The outside option of both players are normalized

to zero. There are no transfers.

3Since the agent does not observe output during the course of the relationship, I interpret the rate of
discounting r as the exogenous rate at which the game ends resulting in the agent realizing his share of the
accumulated output.
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At any point in the relationship the principal is one of two types. The “high” type, or

type H principal is one who has observed an output and knows that the project is of good

quality. The “low” type, or type L principal is one who has not observed an output. Since

the investment cost of the principal is convex, in the absence of information transmission

concerns, the principal’s optimal investment is increasing in her belief that the project is

of good quality. I study Markov Perfect Bayesian Equilibria, henceforth equilibria, of this

game. The relevant state variable is the pair of beliefs (µ, µa) where µ is the belief of the

type L principal that the project is of good quality and µa is the belief of the agent that

she faces the type H principal.

The key question I ask is the following: How does the principal manage the trade-off

between her current value and future value by controlling the information transmitted to

the agent? I find that the answer to this question is critically dependent on the cost of

effort of the agent, which captures the severity of misalignment of incentives of the players.

When the cost of effort is low (below some c∗), I show that the principal optimal equi-

librium is fully separating at every belief of the type L principal (Proposition 9). That is,

there is full information transmission to the agent. The type H principal always chooses

her optimal investment and the type L principal chooses an investment strictly lower than

the type H principal’s optimal investment. At intermediate beliefs type L principal invests

above her optimal level to induce effort from the agent and when beliefs are sufficiently low

she quits the relationship. The misalignment in the incentives of players results in the type

L principal investing above her optimal investment to motivate the agent to exert effort at

intermediate beliefs. However, the misalignment is not sufficiently high for it to be optimal

to stop the transmission of information about project quality to the agent in equilibrium.

When the cost of effort for the agent is high (above c∗), the misalignment in incentives

of the players is enough that in the principal optimal equilibrium, in addition to investing

above her optimal investment, the type L principal also stops the flow of information to the

agent when her beliefs are sufficiently low. In this case, the nature of the principal optimal

equilibrium is sensitive to the initial prior µ0. When µ0 is high (above some µ̄), the principal

optimal equilibrium has three regions of interest in the space of type L principal’s beliefs

(Proposition 11). When beliefs are high, there is separation and transmission of information
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to the agent. However, once beliefs reach a cut-off (µ̄), the pooling phase begins. Both types

of principal pool on the type H principal’s optimal investment until beliefs reach another

cutoff µ at which point the type L principal quits the relationship. By stopping the flow of

information to the agent at µ̄, the type L principal exploits the agent’s uncertainty in the

pooling phase and is able to reduce her investment while inducing effort from the agent.

When µ0 is intermediate (µ0 ∈ [µg, µ̄]), the separation region does not exist (Proposition

12). Both type of principals start with pooling until beliefs reach µ at which point type L

principal quits. Although qualitatively similar to the case with high initial prior, the nature

of investment during pooling is different in this case. When starting with high initial prior,

the type L principal optimally chooses when to start pooling (µ̄). However, when initial

belief is lower than µ̄, such a luxury does not exist. Since the relationship begins with the

agent being more pessimistic (µ0 < µ̄) the average investment needed during the pooling

phase to induce effort from the agent is strictly higher compared to the case when µ0 > µ̄.

This implies in this case the average pooling investment is strictly higher than type H

principal’s optimal investment. When µ0 < µg, the average pooling investment needed is

high enough that the relationship does not even start.

This leads to an important observation. When the cost of effort is high and the rela-

tionship starts at intermediate beliefs, type H principal invests sub-optimally during the

pooling phase. This results from the inability of the type H principal to separate herself

from type L principal. The sub-optimality of type H principal’s investment is not perpet-

ual. Once the type L principal quits the relationship, type H principal is revealed to the

agent and continues to invest optimally thereafter. That is to say, the type H principal’s

investment may be sub-optimal in the short run, but in the long run, optimality is restored.

The above insights can be useful in understanding the optimal behavior of managers.

In organizations, workers are given feedback through periodic evaluations and appraisals.

These represent the costless (cheap talk) channel through which managers provide infor-

mation to workers to motivate them to exert effort. However, how workers learn about

the relevant aspects of the production environment (project’s quality/ agent’s ability) is

not limited to these periodic chunks of information. The day to day actions of a manager,

how much interest they show in a workers activities by investing their resources credibly
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transmits the private information of the manager to the workers affecting their motivation

to work. Accounting for this channel of credible information transmission may enhance how

managers motivate their workers and better achieve organizational goals.

The paper is organized as follows. I review the connection of this paper with literature

in Section 2.2, followed by a one period example in Section 2.3. In Section 2.4, I present

the model and then present results in Section 2.5. Extensions are discussed in Section 2.6.

All proofs are relegated to the appendix.

2.2 Literature Review

Motivating agents to exert effort through costly signalling has been previously studied in

static settings by Hermalin (1998) and Komai, Stegeman, and Hermalin (2007) who analyze

models of moral hazard in teams where a leader endowed with private information about a

project spends costly resources to signal the quality of the project to her followers in order

to induce effort. In contrast, this paper analyzes a dynamic environment where the principal

learns about the quality of a project over time and balances between investing optimally

and transmitting information to the agent. Dong (2018) studies a similar problem where

two players simultaneously, but separately experiment to learn about the state of the world,

with one player possessing superior information from the outset, as opposed to my model of

joint experimentation where players start the relationship with symmetric information. My

results are qualitatively different in that at high beliefs about project quality, our model

predicts full information transmission. Halac (2012) studies a game with transfers where a

principal with persistent private information induces effort from the agent. She shows that

a separating equilibrium does not exist, and in equilibrium, the principal discloses her type

gradually. In contrast, my model is without transfers and the principal acquires private

information over time which result in very different dynamics.

This paper is related to the literature on private learning. In particular, Bonatti and

Hörner (2011) study a model of moral hazards in teams in an exponential bandit frame-

work and show that the incentive to free-ride on other players’ leads to reduction of effort.

Augmenting the setting of Bonatti and Hörner (2011), Guo and Roesler (2016) analyze a
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model of collaboration and private learning with publicly observable exit decisions. How-

ever, in their setting players have access to a fully revealing bad signal and communicate

their private information by exiting or the lack of it. Bimpikis, Drakopoulos, Ehsani, et al.

(2018) study a strategic experimentation model of private learning where information can

be credibly disclosed without a cost through commitment. Akcigit and Liu (2016) examine

an innovation competition between two firms which decide whether to pursue a risky or a

safe project. Since a firm benefits when its competitor works in a less rewarding direction,

it never reveals dead-end finding.

More broadly, this paper is related to the literature on experimentation (See, for instance

Bolton and Harris (1999), Keller et al. (2005), Keller and Rady (2015)), particularly in

principal-agent settings with conflicting interests studied by Guo (2016), Garfagnini (2011)

and Kuvalekar and Lipnowski (2018) among others.

2.3 A one period example

In this section I present a one period example that highlights the main forces I study in

this paper. Both the principal (she) and the agent (he) share common prior µ ∈ [0, 1] that

the quality of a project is good. The principal moves first and invests x ∈ [0, x̄] at a cost

of 1
2ax

2. After observing the principal’s investment, the agent can exert effort (e = 1) at a

cost of c or not (e = 0). Not exerting effort is costless. If the project is of good quality and

the agent exerts effort then an output 1 + x is produced with probability p. No output is

produced if project quality is bad or the agent does not exert effort. The principal gets a

share γ and the agent gets a share 1− γ of the output.

Supposing that the agent exerts effort when the belief that project quality is good is µ,

the principal’s payoff when she invests x is given by:

γµp(1 + x)− 1

2
ax2.

This gives the principal’s optimal choice of investment as a function of her belief

x∗(µ) =
γµp

a
,
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resulting in a value of

γµp+
(γµp)2

2a
.

The agent’s problem is to exert effort or not. Given a belief µ and the choice of invest-

ment x of the principal, the agent exerts effort if

(1− γ)µp(1 + x)− c ≥ 0.

This gives the minimum the principal needs to invest xa(µ) at belief µ in order to induce

effort from the agent,

xa(µ) =
c

(1− γ)µp
− 1.

Note that xa(µ) is decreasing in µ. As the assessment about the quality of the project

decreases, the agent demands higher investment from the principal to be willing to exert

effort. That is, the more pessimistic the agent is about the prospect of the project, the

more costly it is for the principal to induce effort from the agent.

At any belief µ, there is an upper bound to what the principal is willing to invest to

induce effort. This upper bound xu(µ) solves

γµp(1 + xu)− 1

2
ax2

u = 0.

Note that xu(µ) is increasing in µ. Define µl as the belief at which xa(·) and xu(·) intersect.

Also, define µk as the belief at which xa(·) and x∗(·) intersect.

Note from Figure 2.2 that when beliefs are sufficiently high, i.e. in the region [µk, 1],

there is no conflict between the principal and the agent. The principal’s optimal investment

is at least as much what the agent requires to exert effort. For intermediate beliefs, i.e.

in the region [µl, µk), the agent’s participation constraint binds (xa(·) > x∗(·)). In this

region, the principal invests higher than her optimal level in order to appease the agent into

exerting effort. For sufficiently low beliefs, i.e. in the region [0, µl), the cost of appeasing

the agent is too high for the principal and the principal prefers to not induce effort from

the agent. This observation is summarized in the proposition below.

34



Figure 2.1. One shot game

0 1

Belief (µ)

µl µk

xa(·)

xu(·)

x
∗(·)

Proposition 8. When belief is µ, the unique Subgame Perfect Nash Equilibrium of the one

shot game is given by

x =


max

{
c

(1−γ)µp − 1, γµpa

}
if µ ≥ µl,

0 if µ < µl.

e(x) =


1 if x ≥ c

(1−γ)µp − 1,

0 otherwise .

The one shot game highlights the difficulty in motivating an agent to exert effort when

he is pessimistic about the project quality. In a dynamic environment where the principal

learns about the project quality privately over time and makes investments into the project,

the investment of the principal today not only affects the output today, but also affects how

much the agent learns about project quality which in turn affects the continuation value of

the principal. In the rest of the paper, I study how the principal optimally manages the

trade-off between current value and her continuation value by influencing how the agent
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learns about project quality.

2.4 Model

Players: Time t is continuous and runs from 0 to ∞. A principal hires an agent to work

on a project of unknown quality. The quality of the project is good (θ = 1), or bad (θ = 0).

At time 0, both players have common prior µ0 that project quality is good.

Actions: At each instant, the principal invest an amount x ∈ [0, x̄] of resource into the

project at a cost of
ax2

2
where a is a constant. In the same instant, but after having

observed the investment of the principal, the agent chooses either to exert effort (e = 1) in

the project or not (e = 0). The agent incurs a cost of c if she exerts (e = 1) effort. Not

exerting effort is costless. The agent’s effort choice is observed by the principal but is not

contractible.

Payoffs The agent’s effort and the quality of the project affects the arrival rate of lump sum

output which is exponentially distributed. The arrival rate of output is λθe where λ is the

sensitivity of the production technology. Output is only produced if the project is of good

quality and the agent exerts effort. Output is privately observed by the principal. Note that

the first arrival of output resolves all the uncertainty for the principal: the realization of the

first output results in the posterior of the principal taking the value µ = 1. The output at

time t, if it arrives is given by 1 + xt, where xt is the principal’s investment at time t. The

principal’s investment does not affect the arrival rate of output, however it affects the value

of the output if output arrives. That is, the the principal can only augment the output by

investing. I denote by yt ∈ {φ, (1 + xt)} the output at time t, where φ denotes no output.

At the beginning of the relationship, both players commit to a non-negotiable sharing

rule of output where the principal receives a share γ and the agent receives a share 1− γ of

the output. Both players discount future payoffs at the rate r. Notice that the agent does

not observe output during the course of the relationship.4 I interpret the rate of discounting

r as the exogenous rate at which the game ends resulting in the agent realizing his share

4This is an important feature since otherwise there is no information asymmetry between the players
and the main tension in the model is absent.
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of the accumulated output. There are no transfers. Letting T denote the set of stochastic

times at which an output arrives, the principal’s payoff is given by

U(µ0) = Ee,x
[
γ
∑
s∈T

e−rsys −
∫ ∞
t=0

re−rt
1

2
ax2

tdt

]
,

and the agent’s payoff is given by

V (µ0) = Ee,x
[

(1− γ)
∑
s∈T

e−rsys −
∫ ∞
t=0

re−rtcedt

]
.

2.4.1 Strategies and Equilibrium

Since the principal observes the history of outputs privately, she has private information

about project quality. Given the fully revealing nature of the production technology, the

relevant private information of the principal at time t can be categorized into two classes:

either the principal has observed an output or has not observed an output before t. Denote

the private history of the principal at time t as hpt defined as hpt = {ys}ts=0. hpt contains

all information about realized outputs up to time t. Denote the set of all feasible private

histories for the principal by Hp
t . The principal can one of two types at time t depending

on her private history Hp
t . Type L is a principal who has not observed any output. Type H

is a principal who has observed output at some point. I denote the belief (probability that

project quality is good) of type T ∈ {L,H} principal by µT . Given that the agent exerts

effort (e = 1) at every instant before t, the belief of the type L principal at time t is given

by

µL =
µ0

µ0 + (1− µ0) exp(λt)
.

The belief of a type H principal at any time is µH = 1. At the start of the game, by

definition, the principal is type L. Also note that type H is an absorbing type.

The agent learns about project quality through the investment of the principal. In

particular, the information available to the agent about project quality depends on the

strategies of both types of principal. There are two relevant beliefs of the agent that we

need to track throughout the game
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1. µa: The agent’s belief (probability) that the principal is type H.

2. µ̄a: The agent’s belief (probability) that the project quality is good.

Note that the agent’s beliefs are known to the principal since the agent does not possess any

private information. At the start of the game µa = 0 and µ̄a = µ0 since at the beginning

of the game the principal is type L and there is no information asymmetry. At any time in

the game, µa and µ̄a are related as follows

µ̄a =µaµH + (1− µa)µL

=µa[1] + (1− µa)
[

µ0

µ0 + (1− µ0) expλt

]
.

Solution Concept: The solution concept used in this paper is Markov Perfect Bayesian

Equilibrium. Strategies are Markov if they depend only on payoff-relevant past events that

includes a player’s own payoff-relevant private information. The payoff-relevant information

for a principal at any point where she makes her investment decision, is her own private

type T ∈ {L,H}, the belief of the type L principal µL and the public belief of the agent

µa. The payoff-relevant information for the agent at any point where he makes his effort

decision is his belief about the type of principal before investment µa, the belief of the type

L principal µL and the investment of the principal. The state variable for this problem is

the pair S = (µL, µa) ∈ [0, 1]2 which is observed by both players. At the beginning of the

game, the principal is of type L and the agent knows he is facing type L principal. Hence

the game starts with the state S0 = (µ0, 0).

The principal’s strategy depends on her type and the state S. A pure strategy for type

T principal is a function

xT : [0, 1]2 → [0, x̄].

Two histories for the principal that lead to the same posterior for the principal and the agent,

result in an identical investment choice by the principal. The agent’s strategy depends on

the state S and the observed investment x ∈ [0, x̄]. A pure strategy for the agent is a
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function

e : [0, 1]2 × [0, x̄]→ {0, 1}.

With slight abuse of notation, I denote the strategy of type T principal as xT (µL, µa) and

the strategy of the agent as e(µL, µa+, x), where µa+ is the updated belief of the agent after

having observed investment x.

Figure 2.2. Timeline within an instant
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Updating of beliefs off-path: An important part of the description of a Perfect Bayesian

Equilibrium is the updating of beliefs after players observe off-path actions. I maintain

consistency in the rule the agent uses to update his belief after observing investments that

are off-path, across equilibria presented in this paper. I describe the rule below and refer

to it when specifying an equilibrium.

Definition 3. (Updating of beliefs off-path) Suppose Xσ is the set of all possible on

path investments at state S = (µ, µa) under a strategy profile σ. Set x1 = maxXσ and

x2 = minXσ. The updated belief of the agent after observing an investment x /∈ Xσ is

given by

µa+(S, x) =


µa+(S, x1) if x > x1,

µa+(S, x2) if x ∈ (x2, x1),

0 if x < x2,

where µa+(S, x1) and µa+(S, x2) are calculated using Bayes’ rule.

Note that this definition applies even if µa = 1. That is, even if the agent assigns

probability 1 that he is facing type H principal before investment (and thereby |Xσ| = 1),
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the agent can update her belief if he observes off-path investment. This updating rule

specifies that after observing an off-path investment, the probability the agent assigns to

be facing the type H principal is equal to what he would have assigned after observing the

highest on-path investment lower than the investment observed. If the off-path investment

is lower than all on-path investments, the agent believes that he is facing type L. Note

that if type H principal invests higher than type L principal (which will be the case in

any equilibrium), this belief updating rule is monotonic in investment. This updating rule

specifies the worst beliefs for the agent (µa+ = 0) following any downward deviation of the

principal, which results in the strongest incentives for the principal to not deviate from the

path of play.

I make an assumption on parameters so that there are no distortions in a relationship

where it is common knowledge that the principal is type H. The following suffices.

Assumption 3. (1− γ)λ− c > 0.

Since I am interested in equilibria that maximize the principal’s ex-ante payoff, the

following definition is useful.

Definition 4. (Principal Optimal Equilibrium) For any initial state S0 = (µ0, 0),

denote by ΣS0 the set of all equilibria at S0.5 For any σ ∈ ΣS0 denote the value to the type

L principal at S0 as UσL(S0). I call σ̂ ∈ ΣS0 a principal optimal equilibrium if,

U σ̂L(S0) = max
σ′∈ΣS0

Uσ
′

L (S0).

2.5 Results

I first describe the equilibrium in the game where it is common knowledge among both

players that project is of good quality (θ = 1). Since the principal has no private informa-

tion, and hence no concern for information transmission, in this case the principal chooses

5The set of all equilibria is the set of Markov Perfect Equilibria satisfying the belief updating rule given
in Definition 3.
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her optimal investment at every instant by maximizing her expected flow payoff given by

γλ(1 + x)− ax2

2
.

Her optimal investment is
λγ

a
. The agent exerts effort at every instant and his payoff from

the relationship is denoted as za given by

za = (1− γ)λ(1 +
γλ

a
)− c, (2.1)

which is strictly positive since Assumption 3 guarantees that the agent’s payoff is strictly

positive regardless of the investment of the principal. I denote the value to the principal in

this relationship as zp given by

zp = γλ(1 +
γλ

2a
). (2.2)

The above discussion is summarized by the following lemma whose proof I omit.

Lemma 4. Suppose both players know that project is of good quality. The unique equilibrium

is given by

x∗ =
λγ

a
; e∗ = 1.

I next describe an autarkic equilibrium which is used as punishment off the path of play

in the equilibria I construct.

Lemma 5. Suppose µ ≤ c

λ(1− γ)
. The strategy profile σn = (xnH , x

n
L, e

n) described below

is an equilibrium at state (µ, 0).

xnH(·, ·) =xnL(·, ·) = 0;

en(·, ·, ·) = 0.

Agent updates beliefs after observing off-path investment using the rule described in Defini-

tion 3.

The proof can be found in the appendix. Note that the autarkic equilibrium shown
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above exists at the state when type L principal’s belief µ is less than
c

λ(1− γ)
and the

agent believes he is facing the type L principal. When the type L principal’s belief is above

c

λ(1− γ)
, the agent’s value is strictly positive from exerting effort even if the principal does

not invest, hence autarky is not an equilibrium when µ >
c

λ(1− γ)
. When players revert

to autarky, we say that players have quit the relationship.

I begin the characterization of the principal’s optimal equilibria by stating a necessary

condition that must be satisfied in any equilibrium that specifies pooling at some point.

Lemma 6. Fix an equilibrium that specifies pooling at some interval (p1, p2) of type L

principal’s beliefs and the agent exerts effort in this interval.6 Denote by xP (p) the pooling

investment function in the interval (p1, p2). Let D ⊆ (p1, p2) be a Lebesgue measurable set

of beliefs where xP (p) <
γλ

a
when p ∈ D. Then, D has Lebesgue measure zero.

Note that
γλ

a
is the type H type principal’s optimal investment. The result above states

that in any equilibrium which specifies pooling in an interval (p1, p2) of type L principal’s

beliefs, the pooling investment must be at least equal to
γλ

a
except at a measure zero subset

of (p1, p2). The idea behind the result is as follows. The agent’s belief updating rule given

by Definition 3 specifies that during pooling, the agent’s updated belief after observing an

investment higher than the equilibrium investment is identical to the updated belief after

observing equilibrium investment. If there is a subset of (p1, p2) of positive measure where

the equilibrium investment function specifies an investment smaller than
γλ

a
, the type H

principal can simply deviate to
γλ

a
for all beliefs in this subset and improve her payoff since

she will then invest optimally. Note that the agent’s belief updating will be unchanged by

this deviation which implies that continuation equilibrium when type L principal’s belief

reaches p1 will be unchanged following the deviation.

Since the principal’s behavior on a measure zero set of beliefs during pooling has no

payoff consequence to either player, going forward, I will assume that in any equilibrium,

the investment specified during pooling (if there is pooling) must be atleast equal to
γλ

a
.

The above result leads to the following important observation. The amount type L

principal is willing to invest in order to induce effort from the agent increases in her belief

6The dependence of the principal’s strategy on the agent’s belief has been suppressed for the ease of
notation.
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since her value of the relationship is lower at smaller beliefs. If her beliefs are sufficiently

low, she will not invest
γλ

a
to induce effort. This implies that at sufficiently low beliefs of

type L principal, there cannot be pooling in equilibrium. I define µ as the cut-off belief at

which type L principal is indifferent between quitting and inducing effort from the agent

by investing
γλ

a
.

Definition 5. Define

µ =
rλγ2

2[rλγ2 + a(rγ + zp)]
.

Interpretation of µ: Suppose type L principal has a choice of investing
γλ

a
and inducing

effort from the agent or quit the relationship. If the belief of the type L principal µ > µ,

she strictly prefers to induce effort. If µ < µ, she strictly prefers to quit. If µ = µ, she is

indifferent between inducing effort and quitting.

In light of the above discussion, a natural question arises: Is the agent willing to exert

effort at µ following an investment of
γλ

a
if he knows he is facing the type L principal? The

answer to this condition depends on whether condition C1 (defined below) is satisfied or

not. If C1 is satisfied then the agent does not exert effort, and if C1 is violated, then the

agent exerts effort.

Condition 1 (C1):

r

[
µλ(1− γ)

(
1 +

λγ

a

)
− c
]

+ µλza < 0.

I provide a heuristic intuition behind C1. Note that r
[
µλ(1− γ)

(
1 + λγ

a

)
− c
]

dt is the

expected flow value of the agent and µλzadt is the expected continuation value which is

the product of the probability (µλdt) that an output is produced (implying that the type L

principal transitions to type H) and the value to the agent from continuing the relationship

with the type H principal going forward (za). The sum of these two values gives the overall

value to the agent from exerting effort at µ. Also note that fixing other parameters of the

model, C1 is satisfied when the cost of effort of the agent is high and is violated otherwise.

In other words, C1 can also be stated in terms of a cut-off on the cost of effort of the agent
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i.e. C1 is equivalent to

c > µλ(1− γ)

(
1 +

λγ

a

)
−
µλza

r
= c∗.

The nature of principal’s optimal equilibrium critically depends on whether C1 is sat-

isfied or not i.e. whether the agent’s cost of effort is high or low. I present the principal

optimal equilibrium for both cases in the following sections.

2.5.1 Low cost of effort

In this section I present the principal optimal equilibrium when C1 is violated i.e. agent’s

cost of effort is low in Proposition 9 presented below. Before we go to the proposition, I

define some useful objects.

Definition 6. Define µc as the unique value of µ that solves

µγλ

a
= f(µ),

and µs as the unique value of µ that solves

r

[
µλγ(1 + f(µ))− a(f(µ))2

2

]
+ µλzp = 0,

where

f(µ) =
c

µλ(1− γ)
− za

r(1− γ)
− 1. (2.3)

Also define type L principal’s optimal investment as a function of her belief as

g(µ) =
µγλ

a
.

Proposition 9. Suppose C1 does not hold, then, µs ≤ µ < µc, and the principal optimal

equilibrium is a fully separating equilibrium σ∗ given by,
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x∗H(µ, µa) =
γλ

a
; x∗L(µ, µa) =



µγλ

a
if µ ∈ [µc, 1],

f(µ) if µ ∈ [µs, µc),

0 if µ < µs;

e∗(µ, µa+ = 1, x) = 1;

e∗(µ, µa+ = 0, x) =


1 if µ < µc and x ≥ f(µ),

1 if µ ≥ µc,

0 otherwise.

Agent updates beliefs using Bayes’ rule on path and using the rule described in Definition 3

after observing off-path investment.

Figure 2.3. Equilibrium when cost of effort is low.
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The principal’s optimal equilibrium when C1 does not hold is a fully separating equi-

librium, i.e. separation is specified for every belief of the type L principal. There is full
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information transmission, through the investments of the principal, the agent learns per-

fectly the type of principal she is facing. Type H principal invests optimally at every point in

the relationship. Type L principal invests optimally when her beliefs are high (µ ∈ [µc, 1]),

invests higher than her optimal (g(µ)) at intermediate beliefs (µ ∈ [µs, µc)) and quits the

relationship at low beliefs (µ < µs). Note that this implies that if the initial prior µ0 is

less than µs, the principal never invests and the agent never exerts effort, i.e. there is no

production.

Whenever the type L principal invests higher than her optimal investment, note that

the value of the agent facing her must be zero, otherwise she can reduce her investment by

a little and still induce effort and consequently be better off. This is indeed the case when

µ < µc. Type L principal simply chooses the minimum investment needed to induce effort

from the agent using the equation below,

r [µλ(1− γ) (1 + x∗L(µ, µa))− c] dt︸ ︷︷ ︸
expected flow value

+ µλzadt︸ ︷︷ ︸
expected continuation value

= 0.

Note that the expected continuation value to the agent comes only from facing the type

H principal in the next instant. This is because, if the agent faces the type L principal at

the next instant, as argued above, the value of the agent is zero.

Type L principal’s investment is always weakly less than the optimal investment of type

H principal. To see this observe that since since C1 is violated,

r

[
µλ(1− γ)

(
1 +

λγ

a

)
− c
]

dt+ µλzadt ≥ 0,

which implies type L principal can induce effort from the agent at µ by investing weakly

lower than
λγ

a
, and strictly so if the above inequality is strict. Also note that type L

principal’s investment can never be greater than
λγ

a
when µ < µ by the definition of µ.

Since type L principal’s equilibrium investment is strictly decreasing in µ when µ ∈ [µs, µc],

her investment is always weakly less than
λγ

a
.

When the agent’s cost of effort is low, the misalignment in the incentives of the players

results in the type L principal investing above her optimal investment to motivate the agent
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to exert effort at intermediate beliefs. However, the misalignment is not sufficiently high

to stop the flow of information about the project quality to the agent. As we will see in

the next section, if the cost of effort for the agent is high enough, in the principal optimal

equilibrium, in addition to investing above her optimal investment, the type L principal

behavior results in the stoppage of the flow of information to the agent when her beliefs are

sufficiently low.

2.5.2 High cost of effort

When the agent’s cost of effort is high, i.e. condition C1 holds, the principal’s optimal

equilibrium is sensitive to the initial prior µ0 about the project quality. Before we proceed,

I define a belief µ̄ which will be useful in our analysis.

Definition 7. Suppose starting at state (µ, 0) with µ > µ, type H principal invests
λγ

a

in perpetuity and type L principal invests
λγ

a
until beliefs drift down to µ and then quits.

Denote by V (µ) the value of the agent if he exerts effort following investment. Define µ̄ as

the unique belief at which V (µ̄) = 0.

As in the case with low cost of effort, if the initial prior is sufficiently low, the only

equilibrium is autarky, i.e. the principal invests zero and the agent never exerts effort. I

state this in the following proposition.

Proposition 10. Suppose C1 holds. There exists µg ∈ (µ, µ̄) such that if µ0 < µg, the

only equilibrium is autarky, i.e. players quit right away. If µ0 ≥ µg an equilibrium with

production exists.

The proof is delivered by Lemma 43 which can be found in the appendix. The principal’s

optimal equilibrium is qualitatively different depending on whether the initial prior µ0 is

greater than µ̄ or not. I first consider the case when µ0 > µ̄. Recalling the definition of µc

and f(µ) given in Definition 6 before Proposition 9, the principal’s optimal equilibrium is

given in the proposition below.

Proposition 11. Suppose C1 holds. If µ0 > µ̄, the principal’s optimal equilibrium σ∗ is a

three phase equilibrium given by,
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� Separating Phase: µ > µ̄:

x∗H(µ, µa) =
γλ

a
; x∗L(µ, µa) =


µγλ

a
if µ ∈ (max{µ̄, µc}, 1],

f(µ) if µ ∈ (µ̄,max{µ̄, µc}];7

e∗(µ, µa+ = 1, x) = 1;

e∗(µ, µa+ = 0, x) =


1 if µ > max{µ̄, µc},

1 if µ ∈ (µ̄,max{µ̄, µc}) and x ≥ f(µ),

0 if µ ∈ (µ̄,max{µ̄, µc}) and x < f(µ);

� Pooling Phase: µ ∈ [µ, µ̄]:

x∗H(µ, µa) =x∗L(µ, µa) =
γλ

a
;

e∗(µ, µa+, x) = 1 if µa+ 6= 0;

Players revert to autarky if at any point in this phase the agent assigns µa+ = 0.

� Quitting Phase: µ < µ:

x∗H(µ, µa) =
γλ

a
; x∗L(µ, µa) = 0;

e∗(µ, µa+ = 1, x) = 1;

e∗(µ, µa+ = 0, x) = 0;

Agent updates beliefs using Bayes’ rule on path and using the rule described in Definition 3

after observing off-path investment.

The principal optimal equilibrium exhibits three phases when initial prior µ0 > µ̄. When

beliefs of the type L principal are high, separation occurs. Type L principal invests less

than type H principal who invests optimally. In this region, the behavior of the principal is

qualitatively similar to the fully separating equilibrium presented in Proposition 9. Within

7Intervals of the form (a, a], (a, a) and [a, a) are considered as empty sets.
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Figure 2.4. Equilibrium when cost of effort is high and prior is high.
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the separating region the type L principal invests optimally when µ > max{µ̄, µc}. If

µc > µ̄, there can be a region (µ̄, µc) within the separating phase where type L principal

invests above her optimal level since the agent’s participation constraint begins to bind at

beliefs lower than µc. Once beliefs reach µ̄, the pooling phase begins where both players

pool on the type H principal’s optimal investment until belief reach µ, at which point type

L principal quits the relationship.

Even when cost of effort is high, if the relationship begins with a high belief that the

project is of good quality, it is optimal for both types of principals to invest optimally and

allow full information transmission to the agent, at least until beliefs drift down enough

where the conflict between the type L principal and the agent begins. Anticipating the

high costs (investment) of motivating an agent who is pessimistic (low belief that project

is of good quality) to exert effort in future, type L principal has incentives to stop the flow

of information to the agent, which leads to pooling at intermediate beliefs in equilibrium.

A natural question arises then — When does pooling begin? By Definition 7, if pooling

begins at µ̄ and both types of principal invest type H principal’s optimal investment (
γλ

a
)

then the agent gets a value of zero at µ̄. If pooling is delayed, i.e. pooling begins at µ′ < µ̄,
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the average investment in the pooling phase must be strictly higher than (
γλ

a
) to induce

effort from the agent since the agent is pessimistic at µ′ compared to µ̄. However note that

in this case type L principal can deviate at belief µ′ + ε < µ̄. By choosing the type H

principal’s separating investment at µ′+ ε, type L principal can guarantee she doesn’t have

to invest any more than
γλ

a
in future to induce effort. If pooling begins earlier at µ′ > µ̄,

note that the agent’s value at µ′ is strictly positive since the minimum possible investment

during pooling is
γλ

a
. By decreasing the pooling cutoff, the type L principal can separate

and invest less than
γλ

a
for a little longer and hence is better off. Therefore in an ex-ante

principal optimal equilibrium pooling must begin at µ̄. Note that during the pooling phase,

after observing investment, the agent’s belief that he faces the type H principal given by

µa+ is strictly positive (and increases as µ goes down over time) since there is a positive

probability that the principal has observed output since the end of the separating phase.

Any downward deviation by the principal in this phase leads to the agent updating µa+ to

0 and players continue with autarky (quitting the relationship).

By stopping the flow of information to the agent at µ̄, the type L principal exploits the

agent’s uncertainty (µa+ is increasing as µ goes down) in the pooling phase and is able to

reduce her investment while inducing effort from the agent. In particular, she is able to

induce effort from the agent when her belief µ ∈ [µ, µg) which would not have been possible

if the agent was aware that he is facing her.

Next, we turn to the principal’s optimal equilibrium when the initial prior µ0 ∈ [µg, µ̄].

Before I present it, the following definition will be useful.

Definition 8. Denote by X (µ0) as set of pooling investment function defined from [µ, µ0] to

[
λγ

a
, x̄] that give both the type L principal and the agent, a non negative value in the pooling

region [µ, µ0] when the relationship begins at the state (µ0, 0). Define xP (·;µ0) ∈ X (µ0) as

the function that maximizes the ex-ante value of the type L principal at the state (µ0, 0).

I state the proposition characterizing the principal’s optimal equilibrium when µ0 ∈

[µg, µ̄] below.

Proposition 12. Suppose C1 holds. If µ0 ∈ [µg, µ̄], the principal’s optimal equilibrium σ∗

is a two phase equilibrium given by,
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� Pooling Phase: µ ∈ [µ, µ̄]:

x∗H(µ, µa) =x∗L(µ, µa) = xP (µ;µ0);

e∗(µ, µa+, x) = 1 if µa+ 6= 0, or µ = µ0;

Players revert to autarky if at any point in this phase the agent assigns µa+ = 0, except

when µ = µ0.

� Quitting Phase: µ < µ:

x∗H(µ, µa) =
γλ

a
; x∗L(µ, µa) = 0;

e∗(µ, µa+ = 1, x) = 1;

e∗(µ, µa+ = 0, x) = 0;

Agent updates beliefs using Bayes’ rule on path and using the rule described in Definition 3

after observing off-path investment.

Figure 2.5. Equilibrium when cost of effort is high and prior is low
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The principal’s optimal equilibrium in this case is qualitatively similar to when µ0 > µ̄
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except that the separation region does not exist and pooling starts at the outset. When

µ0 ∈ [µg, µ̄] the agent is already pessimistic and demands to be appeased to exert effort.

For the reasons argued in the preceding discussion, it is optimal to pool from the start

of the relationship. However, the nature of pooling investment is different now. When

pooling begins at a belief µ0 < µ̄, for the reasons pointed out in the preceding discussion,

the average investment in the pooling phase must be higher than
γλ

a
in order to induce

effort from the agent.8 In particular, as µ0 decreases, the average investment needed during

pooling starting at µ0 increases. Figure 2.5 shows that for lower initial prior µ′0 < µ0, the

average investment is higher in the pooling phase. Eventually at beliefs lower than µg > µ,

the investment required to induce effort is too high and the type L principal prefers not

induce effort if µ0 < µg. The principal’s optimal pooling equilibrium investment function

xP (µ;µ0) is the pooling investment function that satisfies the participation constraint of

both the type L principal and agent in the pooling region and maximizes the value of the

type L principal at µ0, the initial prior. As in the case with high µ0, in the pooling phase,

equilibrium is supported using the threat of autarky following a downward deviation of the

principal.

2.5.3 Equilibrium distortions

Since the agent’s cost of effort is strictly positive in this model, the conflict between the

agent and the type L principal is inevitable. Once the belief of type L principal is low

enough, the agent will demand investment higher than the optimal investment of type L in

order to exert effort. As one would expect, this results in distortion i.e. sub-optimally high

levels of investment of type L principal to appease the agent at low beliefs.

Perhaps interestingly, the type H principal’s investment may also be distorted in equi-

librium. As Proposition 12 shows, if the cost of effort is high enough and initial beliefs are

in the intermediate range, in the pooling region, the type H principal invests strictly above

her optimal investment on average. This results from the inability of the type H principal to

separate herself from type L principal in any equilibrium. To see why, suppose that type H

8For any pooling investment function staring at the state (µ0, 0), the average investment is the constant
pooling investment that delivers the same value to the agent at state (µ0, 0).
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could separate herself at some belief in the pooling region, then, post separation she would

invest at her optimal level and induce effort from the agent who knows that he is facing

type H principal. But then, type L principal could simply mimic type H’s investment,

convince the agent that she is type H and induce effort by investing type H principal’s

optimal investment which on average is lower than the equilibrium pooling investment.

The sub-optimality of type H principal’s investment during pooling is not perpetual.

Once the type L principal’s beliefs reach µ and she quits the relationship, type H principal

is revealed to the agent and continues to invest optimally thereafter. That is to say, the

type H principal’s investment may be sub-optimal in the short run, but in the long run,

optimality is restored. This discussion is summarized in the proposition below.

Proposition 13. If µ0 ∈ [µg, µ̄] and c > c̄, then the type L principal invests sub-optimally

in the pooling phase. However, once type L principal quits, type L principal invests optimally

in perpetuity.

Note that when cost of effort c ≤ c̄ or initial prior µ0 > µ̄, there is no distortion in type

H principal’s investment. When c ≤ c̄ the type L principal can induce effort by investing

lower than type H principal’s optimal investment whenever she wants which is why there

is no distortion. When c > c̄, and µ0 > µ̄, the intuition is as follows. Note that during the

relationship, type L principal transitions to become type H if she observes output. That is,

distortion in type H principal’s investment also hurts the type L principal who anticipates

that she could transition to become type H in future. In particular, this is indeed a concern

for the type L principal at the initial belief µ0. This concern for the type L principal at µ0

results in no distortions for type H principal in the principal optimal equilibrium.

2.5.4 Discussion

In this model, the conflict between the principal and the agent has two sources: the cost

of effort for the agent and the beliefs of the players about the quality of the project being

good. Propositions 9, 11 and 12 highlight how these sources of conflict interact and shape

the principal’s optimal behavior in equilibrium. In particular, note that if the cost of effort

for the agent is zero, there is no conflict: the agent does not need to be appeased to exert
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effort, and hence there is no distortion in the investment of both types of principal. When

the cost of effort is low (c < c̄), there is conflict when players are sufficiently pessimistic

which results in type L principal investing sub-optimally and appeasing the agent to exert

effort. However, the conflict is not enough to warrant stopping information transmission

to the agent, and hence, the equilibrium is fully separating at every belief. When the

cost of effort is high (c > c̄), the conflict between players is high enough that equilibrium

exhibits stoppage of information transmission at low beliefs. In this case the equilibrium

exhibits information transmission at high beliefs if players are optimistic to begin with, but

eventually, as the beliefs of players fall, the flow of information to the agent is stopped to

preserve his motivation, anticipating the high investment costs of motivating the agent to

exert effort if he becomes more pessimistic. Proposition 13 shows that if the cost of effort

is high and relationship starts with low priors, even the type H principal’s investment is

distorted owing to her inability to credibly convince the agent of her type. However, such

distortions are transient and go away in the long run.

In the model presented, the uncertainty in the environment is about the project quality.

One can also interpret the uncertainty to be about the agent’s ability, that is, it is the

agent’s ability that affects whether output is produced or not and, the principal, who is

experienced and better skilled, learns about the agent’s ability privately.

In organizations, workers are given feedback through periodic evaluations and appraisals.

These represent a costless (cheap talk) channel through which managers provide information

to workers to motivate them to exert effort. However, how workers learn about the relevant

aspects of the production environment (project’s quality/ agent’s ability) is not limited to

these periodic chunks of information. The day to day actions of a manager, how much

interest they show in a workers activities by investing their resources credibly transmits the

private information of the manager to the workers affecting their motivation to work. This

novel channel of credible information transmission, which, if accounted for, may enhance

how managers motivate their workers and better achieve organizational goals.
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2.6 Extensions

2.6.1 Continuous effort choice

In this paper I assumed that the agent’s effort choice is binary, either she exerts effort at

a cost c or does not exert effort. I now show that if we allow the agent chose effort with

a constant marginal cost, the results of this paper are unaffected. Suppose the agent can

choose e ∈ [0, 1] at a cost of ce. As before e = 0 is costless and e = 1 costs c. First note

that effort has two effects, first it affects probability of arrival of output, and second it

affects the speed of learning. In particular, with continuous choice of e, the rate of arrival

of output λeθ can be controlled more precisely by the agent. However, note that since

marginal cost of effort is constant, and the decision problem of the agent at any instant is

linear (due to exponential arrival rates), the optimal effort choice must be bang-bang. In

other words, allowing for continuous effort with constant marginal cost has no effect on our

results. However, if the marginal cost of effort is not constant, i.e. optimal effort allocation

may be strictly interior, the results in this paper may not hold.

2.6.2 Breakdowns

In this paper, the observation of an output reveals to the principal that project is of good

quality. That is, this is a model of fully revealing good news. Suppose instead of observing

a fully revealing output, the principal privately observes breakdowns, i.e. fully revealing

signals that confirm that project quality is bad. Output is hidden from both the principal

and the agent. In this case note that the type L principal (the one who knows project is

bad quality for sure) has no incentive to mimic the optimal investment of type H principal

(the one who is optimistic since the start of the game on account of not seen a breakdown

yet). Hence any equilibrium where the principal invests and the agent exerts effort must

be fully separating at all beliefs of type H principal and both types invest their optimal

investment. That is, there is no distortion in equilibrium.
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2.7 Conclusion

This paper studies a simple principal-agent relationship with private learning where the

principal faces a trade-off between optimally choosing her actions and transmitting infor-

mation to the agent. There are three main takeaways. First, if the relationship is in a

optimistic stage, i.e. both parties believe the relationship is likely to bear fruits in future,

the principal should ignore information transmission concerns and invest optimally, i.e. the

principal’s actions should be sensitive to her private information. Second, if relationship

moves to a pessimistic stage, or starts at a pessimistic stage, the principal should ignore

her private information in choosing her actions, to prevent any information transmission

and hence preserving the motivation of the agent to work. Third, if the relationship starts

at a pessimistic stage, a principal who learns that the project is good, may still be forced

to choose her actions sub-optimally in the short run, however, in the long run, she chooses

her optimal actions.

The insights of this paper can be useful in understanding the optimal behavior of man-

agers in organizations. In particular, feedback on project quality/agent’s ability that affects

the motivation of a worker is not limited to appraisals (periodic and costless information

transmission), but also regularly through how much a manager actively invests in the em-

ployee (or the project he is working on) as the relationship progresses. This novel channel

of credible information transmission, if accounted for, may enhance how managers motivate

their workers and better achieve the objectives of their organization.
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Appendix A

Appendix: When and How to Reward Bad News

A.1 Notation

Notation 1. Let u(·|s, a) be the agent’s value function given s and a. And u(·|s) be the

optimal value function. Similarly, v(·|s, a) be the principal’s value function and v(·|a) be his

optimal value function given a. Lastly, let v(·) be the principal’s optimal value function.

Definition 9. Let A denote the space of piecewise continuous functions from [0, 1] to [0, 1]

A is our space of admissible strategies for the agent.

Remark 1. The optimal control a, for a fixed Markovian s is Markovian in p, since the

evolution of state is Markovian.

There are two Hamilton-Bellman-Jacobi (HJB) equations that underlie most of our

analysis, one for the agent and one for the principal.

A.2 Agent’s HJB equation and its solutions

The Agent’s HJB equation is given by

u(p) =1− λb(1− p)u(p) + λbp(1− p)u′(p) + λb(1− p)F

+ max
a∈[0,1]

a
{
λb(1− p)

[
u(p)− pu′(p)

]
+ λgp

[
R− u(p)− (1− p)u′(p)

]
− λb(1− p)F

}
.

(A.1)
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Define:

∆(p) :=λb(1− p)
[
u− pu′

]
+ λgp

[
R− u− (1− p)u′

]
− λb(1− p)F. (A.2)

If the agent uses a = 1, the equation becomes,

u(p) = 1− λgpu+ λgpR− λgp(1− p)u′.

Its solution is,

u1(p) = 1 +
λgp(R− 1)

1 + λg
+ c1(1− p)

(
1− p
p

) 1
λg

. (A.3)

If the agent uses a = 0, the equation becomes,

u(p) = 1− λb(1− p)u+ λbp(1− p)u′ + λb(1− p)F.

Its solution is,

u0(p) =
1 + λbp+ Fλb(1− p)

1 + λb
+ c0p

(
p

1− p

) 1
λb
. (A.4)

A.3 Principal’s HJB equation and its solutions

The principal’s HJB equation is given by

v(p) =− c− λb(1− p)F + λbp(1− p)v′(p)− λb(1− p)v(p)

+ max
a∈[0,1]

a
[
λgp(Γ −R) + λb(1− p)F − (λb + λg)p(1− p)v′(p)− (λgp+ λb(1− p))v(p)

]
.

(A.5)

When a = 1, the solution is given by

v1(p) =
pλg(Γ −R+ c)

1 + λg
− c+ C1(1− p)

[
1− p
p

] 1
λg

, (A.6)
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where C1 is the constant of integration.

When a = 0,the solution is given by,

v0(p) = −pλbc+ c+ λbF (1− p)
λb + 1

+ C0p

[
p

1− p

] 1
λb
, (A.7)

where C0 is the constant of integration.

Notation 2. We denote by u0(·;C) the solution to the agent HJB with a = 0 given by(A.4)

with C0 = C. Similar, notations apply for u1, v0 and v1.

Two other value functions that will prove to be useful is the value that the players

receive (vf for the principal and uf for the agent) if the agent chooses a = af (defined

below) everywhere. When the agent chooses af , the beliefs do not move in the absence of

news. We define

af =
λb

λb + λg
, (A.8)

vf (p) =
−c+ Λp(Γ −R)− Λ(1− p)F

1 + Λ
, and (A.9)

uf (p) =
λg + λb + λbλg[pR+ (1− p)F ]

λg + λb + λbλg
, (A.10)

where Λ :=
λbλg
λb+λg

. Also, the following beliefs will turn out to be useful for later analysis.

We define

pRm =
c

λg(Γ −R)
, (A.11)

p∗0 =
c

Λ(Γ −R)
, and (A.12)

p∗f =
c+ ΛF

Λ[Γ −R+ F ]
. (A.13)

pRm is the myopic experimentation cutoff, i.e., if the agent used a = 1 then the flow profit

to the principal is 0 at pRm. p∗0 and p∗f are the beliefs where vf (p) is zero with F = 0 and 1

respectively.
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A.4 Agent’s best response

Definition 10. For any reward structure (R,F ) 6= (1, 1), define the following sets of beliefs:

P̄ = {p : λgp(R− 1) > λb(1− p)(F − 1)} , and

P = {p : λgp(R− 1) < λb(1− p)(F − 1)} .

Using P̄ and P we then define

pf =


inf P̄ = supP if P̄ 6= ∅ and P 6= ∅,

1 if P̄ = ∅ and P 6= ∅,

0 if P = ∅ and P̄ 6= ∅.

Notice that if p ∈ P̄ ⇒ [p, 1] ⊂ P̄ and, if p ∈ P ⇒ [0, p] ⊂ P .

Proof of Lemma 1: When (R,F ) 6= (1, 1), we show case by case.

1. If pf ≤ p: By Lemma 7, for any value larger than the freezing value given by (A.10)

at p, the agent’s best response is to use the good arm on the interior. So, the only

question is can the agent receive a value strictly higher than the freezing value at p.

The drift of beliefs, conditional on no news must be non-negative at p. But, since

the agent is using the good arm to the right of p, the only admissible policy with a

non-negative drift is to use the freezing policy. Therefore, his value at p is uf (p) and

his optimal policy at p is a(p) = λb
λb+λb

.

2. If pf ≥ p̄: By Lemma 9, for any value larger than the freezing value given by (A.10) at

p̄, the agent’s best response is to use the bad arm on the interior. So, the only question

is can the agent receive a value strictly higher than the freezing value at p̄. The drift

of beliefs, conditional on no news must be non-positive at p̄. But, since the agent is

using the bad arm to the left of p̄, the only admissible policy with a non-positive drift

is to use the freezing policy. Therefore, his value at p̄ is uf (p̄) and his optimal policy

at p̄ is a(p̄) = λb
λb+λb

.
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3. If pf ∈ (p, p̄): This case is a combination of the above two cases. We set p = pf in

case (1) and set p̄ = pf in case (2).

When (R,F ) = (1, 1), consider the class of policies for the agent where he has the

following allocation

a(p) =


[0, λb

λb+λg
] if p = p,

[ λb
λb+λg

, 1] if p = p̄.

Note that under any policy in this class, the drift of belief in the absence of a signal is

non-negative when p = p and non-positive when p = p̄. This implies that if the agent

follows a policy in this class, she is never fired in the absence of a signal. (R,F ) = (1, 1)

implies that the value of the agent under a policy in this class at any belief p ∈ [p, p̄] is

equal to 1, since the flow payoff is equal to the continuation payoff in case of a signal. Also

observe that when hired, the value of the agent can never exceed 1, which implies that the

agent cannot do better than any policy in this class. This establishes the best response

when (R,F ) = (1, 1).

Definition 11. Suppose pf ≤ p and the agent is guaranteed to not be fired for [p, p̄]. And,

at p he receives an exogenously specified value u∗ ≥ uf (p). We call the agent’s problem as

the auxiliary problem (a) and denote his best response as ã.

Lemma 7. In the auxiliary problem (a), ã(p) = 1 ∀p ∈ (p, p̄).

Proof. For any fixed p ≥ pf , let up̄ denote the value function for the agent for the auxiliary

problem (a) [p, p̄]. It is obvious that up̄2 ≥ up̄1 pointwise if p̄2 ≥ p̄1.1 Therefore, we will

first solve the auxiliary problem (a) [p, 1]. Then, it is straightforward to see that for any

auxiliary problem (a) [p, p̄], up̄ = u1 on [p, p̄].

To this end, consider the auxiliary problem (a) [p, 1]. The HJB equation for the agent

1This is trivially true for any p ∈ (p̄1, p̄2). For other beliefs, a candidate policy for the agent is to use
the good arm for any such belief until the beliefs hit p̄1, and thereafter follow the policy in the auxiliary
problem (a) [p, p̄1).
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is,

u(p) =1− λb(1− p)u(p) + λbp(1− p)u′(p)

+ max
a∈[0,1]

a
[
(λb(1− p)− λgp)u(p)− u′(p)p(1− p)[λb + λg] + λgpR− λb(1− p)F

]
.

Our candidate value function is obtained by using a = 1 on the interval (p, 1]. So, the value

function is,

u1(p) = 1 +
λgp(R− 1)

1 + λg
+ c1(1− p)

(
1− p
p

) 1
λg

,

where the constant is determined by the boundary condition u(p) = u∗.

To prove that this is indeed the optimal value function, we need to prove that the above

function satisfies the HJB equation. The key object that determines whether a = 1 or 0 is,

∆(p) =(λb(1− p)− λgp)u(p)− u′(p)p(1− p)[λb + λg] + λgpR− λb(1− p)F.

Lemma 8 establishes that if ∆(p) ≥ 0 for some p ≥ pf , for our candidate value function,

then it is strictly positive for all higher beliefs. Therefore, we only need to prove that

∆(p) ≥ 0. By our boundary condition,

u∗ = u(p) = 1 +
λgp(R− 1)

1 + λg
+ c1(1− p)

(
1− p
p

) 1
λg

⇒ c1(1− p)
(

1− p
p

)1/λg

= u∗ − 1−
λgp(R− 1)

1 + λg
.

∆(p) = λb(1− p)(1− F ) + c1(1− p)
(

1− p
p

) 1
λg
[
λb + λg + λbλg

λg

]
+
λgp(R− 1)

1 + λg
.

∆(p) = λb(1− p)(1− F ) +

[
u∗ − 1−

λgp(R− 1)

1 + λg

] [
λb + λg + λbλg

λg

]
+
λgp(R− 1)

1 + λg

= 0 if u∗ = uf (p).

Therefore, for any terminal u∗ ≥ uf (p), ∆ ≥ 0, and therefore, it is strictly positive on
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(p, 1). That is, our candidate value function satisfies the HJB equation and the boundary

condition and, therefore, is the optimal value function for the problem [p, p̄]. Moreover,

the constructed value function does not depend on p̄, and therefore, is the optimal value

function for all p̄ > p.

Define,

∆1(p) := λb(1− p)
[
u1 − pu′1

]
+ λgp

[
R− u1 − (1− p)u′1

]
− λb(1− p)F,

where u1 is defined in (A.3).

Lemma 8. If p̂ ∈ P̄ and ∆(p̂) = ∆1(p̂) = 0 then ∆(p) > 0 ∀p > p̂.

Proof. Plugging in u1 and u′1 we get

∆1(p) =λb(1− p)

[
1 +

λgp(R− 1)

1 + λg
+ c1(1− p)

(
1− p
p

) 1
λg

− λgp(R− 1)

1 + λg

]

+λb(1− p)c1

(
1− p
p

) 1
λg 1 + λgp

λg

+ λgp

[
R− 1− λgp(R− 1)

1 + λg
− c1(1− p)

(
1− p
p

) 1
λg

]

− λgp(1− p)

[
λg(R− 1)

1 + λg
− c1

[(
1− p
p

) 1
λg 1 + λgp

λgp

]]
− λb(1− p)F

=λb(1− p)(1− F ) + c1(1− p)
(

1− p
p

) 1
λg
[
λb + λg + λbλg

λg

]
+
λgp(R− 1)

1 + λg
.

Therefore,

∆′1(p) = −λb(1− F )− c1

(
1− p
p

) 1
λg
[
λb + λg + λbλg

λg

] [
1 + λgp

λgp

]
+
λg(R− 1)

1 + λg
.

Consider a p1 ∈ P̄ such that ∆1(p1) = 0, Then we have

∆1(p1) = 0 =λb(1− p1)(1− F ) + c1(1− p1)

(
1− p1

p1

) 1
λg
[
λb + λg + λbλg

λg

]
+
λgp1(R− 1)

1 + λg

⇒c1

(
1− p1

p1

) 1
λg
[
λb + λg + λbλg

λg

]
= −λb(1− F )− λgp1(R− 1)

(1 + λg)(1− p1)
.
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Therefore,

∆′1(p1) = −λb(1− F ) +

[
λb(1− F ) +

λgp1(R− 1)

(1 + λg)(1− p1)

] [
1 + λgp1

λgp1

]
+
λg(R− 1)

1 + λg

=
λb(1− F )

λgp1
+
R− 1

1− p1
> 0 since p1 ∈ P̄ .

This shows that ∆1(p) is strictly increasing at p1. By continuity of ∆′1(p), we have that

∆1(p) is strictly increasing in some ε neighborhood of p1. Note that for all p > p1, p ∈ P̄ ,

which concludes the proof.

Definition 12. Suppose pf ≥ p̄ and the agent is guaranteed to not be fired for [p, p̄]. And,

at p̄ he receives an exogenously specified value u∗ ≥ uf (p̄). We call the agent’s problem as

the auxiliary problem (b) and denote his best response as ã.

Lemma 9. In the auxiliary problem (b), ã(p) = 0 ∀p ∈ (p, p̄).

Proof. For any fixed p̄ ≤ pf , let up denote the value function for the agent for the auxiliary

problem (b) [p, p̄]. It is obvious that up1 ≥ up2 pointwise if p̄1 ≤ p̄2.2 Therefore, we will

first solve the auxiliary problem (b)[0, p̄]. Then, it is straightforward to see that for any

auxiliary problem (b)[p, p̄], up = u0 on [p, p̄].

To this end, consider the auxiliary problem (a) [0, p̄]. The HJB equation for the agent

is,

u(p) =1− λb(1− p)u(p) + λbp(1− p)u′(p)

+ max
a∈[0,1]

a
[
(λb(1− p)− λgp)u(p)− u′(p)p(1− p)[λb + λg] + λgpR− λb(1− p)F

]
.

Our candidate value function is obtained by using a = 0 on the interval [0, p̄). So, the

value function is,

u0(p) =
1 + λbp+ Fλb(1− p)

1 + λb
+ c0p

(
p

1− p

) 1
λb
,

2This is trivially true for any p ∈ (p
1
, p

2
). For other beliefs, a candidate policy for the agent is to use the

bad arm for any such belief until the beliefs hit p
2
, and thereafter follow the policy in the auxiliary problem

(b) (p
2
, p̄].
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where the constant is determined by the boundary condition u(p̄) = u∗.

To prove that this is indeed the optimal value function, we need to prove that the above

function satisfies the HJB equation. The key object that determines whether a = 1 or 0 is,

∆(p) =(λb(1− p)− λgp)u(p)− u′(p)p(1− p)[λb + λg] + λgpR− λb(1− p)F.

Lemma 10 establishes that if ∆(p) ≤ 0 for some p ≤ pf , for our candidate value function,

then it is strictly negative for all lower beliefs. Therefore, we only need to prove that

∆(p̄) ≤ 0. By our boundary condition,

u∗ = u(p̄) =
1 + λbp̄+ Fλb(1− p̄)

1 + λb
+ c0p

(
p̄

1− p̄

) 1
λb

⇒ c0p

(
p̄

1− p̄

) 1
λb

= u∗ − 1 + λbp̄+ Fλb(1− p̄)
1 + λb

.

∆(p) =
λb(1− p)(1− F )

1 + λb
+ λgp(R− 1)− c0p

(
p

1− p

) 1
λb

[
λg + λb + λgλb

λb

]
.

∆(p̄) =
λb(1− p̄)(1− F )

1 + λb
+ λgp(R− 1)−

[
u∗ − 1 + λbp̄+ Fλb(1− p̄)

1 + λb

] [
λb + λg + λbλg

λg

]
= 0 if u∗ = uf (p̄).

Therefore, for any terminal u∗ ≥ uf (p̄), ∆ ≤ 0, and therefore, it is strictly negative on

(0, p̄).

That is, our candidate value function satisfies the HJB equation and the boundary

condition and, therefore, is the optimal value function for the problem [p, p̄]. Moreover,

the constructed value function does not depend on p, and therefore, is the optimal value

function for all p < p̄.

Define:

∆0(p) := λb(1− p)
[
u0 − pu′0

]
+ λgp

[
R− u0 − (1− p)u′0

]
− λb(1− p)F,
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where u0 is defined in (A.4).

Lemma 10. If p̂ ∈ P and ∆(p̂) = ∆0(p̂) = 0 then ∆(p) < 0 ∀p < p̂.

Proof. Plugging in u0 and u′0 we get

∆0(p) =λb(1− p)

[
1 + λbp+ Fλb(1− p)

1 + λb
+ c0p

(
p

1− p

) 1
λb

]

− λb(1− p)p

[
λb(1− F )

1 + λb
− c0

(
p

1− p

) 1
λb

[
1 + λb(1− p)
λb(1− p)

]]

+ λgp

[
R− 1 + λbp+ Fλb(1− p)

1 + λb
− c0p

(
p

1− p

) 1
λb

]

− λgp(1− p)

[
λb(1− F )

1 + λb
+ c0

(
p

1− p

) 1
λb

[
1 + λb(1− p)
λb(1− p)

]]
− λb(1− p)F.

This can be simplified to

∆0(p) =
λb(1− p)(1− F )

1 + λb
+ λgp(R− 1)− c0p

(
p

1− p

) 1
λb

[
λg + λb + λgλb

λb

]
.

And we differentiate ∆0(p) to obtain

∆′0(p) = −λb(1− F )

1 + λb
+ λg(R− 1)− c0

(
p

1− p

) 1
λb

[
λb + λg + λbλg

λb

] [
1 + λb(1− p)
λb(1− p)

]
.

Consider p0 ∈ P such that ∆0(p0) = 0, Then we have

∆0(p0) = 0 =
λb(1− p0)(1− F )

1 + λb
+ λgp0(R− 1)− c0p0

(
p0

1− p0

) 1
λb

[
λg + λb + λgλb

λb

]
,

which gives

c0

(
p0

1− p0

) 1
λb

[
λg + λb + λgλb

λb

]
= λg(R− 1) +

λb(1− p0)(1− F )

p0(1 + λb)
.
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Now we evaluate ∆′0(p0) by plugging in the above expression

∆′0(p0) = −λb(1− F )

1 + λb
+ λg(R− 1)−

[
λg(R− 1) +

λb(1− p0)(1− F )

p0(1 + λb)

] [
1 + λb(1− p0)

λb(1− p0)

]
= −λg

λb

[
λb(1− F )

λgp
+
R− 1

1− p

]
> 0 since p0 ∈ P .

This shows that ∆0(p) is strictly increasing at p0 which then by continuity of ∆′0(p) implies

that ∆0(p) is strictly increasing in some ε neighborhood of p0. Note that for all p < p0,

p ∈ P , which concludes the proof.

A.5 Reduction of principal’s problem

Now, we focus on the case where the agent receives a reward R ≥ 1 upon producing a success

and F ≥ 0 upon producing a failure. For most of this part, we will describe the principal’s

policies by a triple (p̂, R, F ) where p̂ denotes the firing cutoff.3 Let v(·|R,F ) denote the

principal’s optimal value function for a fixed R,F . Lemma 1 provided the agent’s best

response in this case. Notice that, for any R,F > 1, qualitatively, the best response for the

agent takes the following form: Bad news arm below a certain cutoff and good news arm

above it. Recall (Definition 10) that the switching belief, pf , was determined by the objects

below.

P̄ := {p : λgp(R− 1) > λb(1− p)(F − 1)} .

P := {p : λgp(R− 1) < λb(1− p)(F − 1)} .

pf :=


inf P̄ = supP if P̄ 6= ∅ and P 6= ∅,

1 if P̄ = ∅ and P 6= ∅,

0 if P = ∅ and P̄ 6= ∅.

3We can also consider more general hiring policies as in the previous section but we focus on the principal-
optimal policies for the sake of exposition. It is straightforward to extended results like the connectedness
of the hiring interval to this setting.

67



Notice that since R ≥ 1, P̄ is always non-empty. Moreover, if F < 1, then P is always

empty. Therefore, the switching belief is given by,

pf :=


0 if F < 1,

λb(F−1)
λg(R−1)+λb(F−1) if λb(F−1)

λg(R−1)+λb(F−1) ∈ (0, 1).

A key observation from the agent’s best response, therefore, is the following: For any

R,F such that (R,F > 1), we can choose an 1 < R′ < R, 1 < F ′ < R while keeping the

agent’s behavior unchanged. Obviously, this increases the principal’s profits for any belief

p. This observation is summarized below.

Lemma 11. For any principal policy (p̂, R, F ) with (R,F ) > (1, 1), we can choose (R′, F ′)

such that

(i) (R,F ) > (R′, F ′) > (1, 1),

(ii) The agent’s behavior is unchanged,

(iii) v(p|R′F ′) > v(p|R,F ) whenever v(·|R,F ) > 0. Moreover,

{p : v(p|R,F ) > 0} ⊂ {p : v(p|R′, F ′) > 0}.

Proof. It is obvious that we can choose (R′, F ′) such that (R,F ) > (R′, F ′) > (1, 1) such

that

λb(F − 1)

λg(R− 1) + λb(F − 1)
=

λb(F
′ − 1)

λg(R′ − 1) + λb(F ′ − 1)
.

Therefore, preserving the agent’s behavior by choosing a lower value of R and F is

straightforward. Obviously, this unambiguously helps the principal (since both are costs for

the principal) in increasing his profits and (iii) follows.

The only remaining case is when F < 1. Here, the agent’s best response, by Lemma

1, is to use the good news arm at all beliefs except p̂, where the agent uses af . By the
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exact same arguments as above, we can reduce F to 0 in particular, to keep the agent

behavior unchanged while strictly improving upon the principal’s profits. This observation

is summarized in Lemma 12, whose proof we omit.

Lemma 12. For any principal policy (p̂, R, F ) such that R ≥ 1, F ∈ (0, 1), we can choose

an (R′, F ′) such that,

(i) R′ ≤ R, 0 = F ′ < F,

(ii) The agent’s behavior is unchanged.

(iii) v(p|R′F ′) > v(p|R,F ) whenever v(·|R,F ) > 0. Moreover,

{p : v(p|R,F ) > 0} ⊂ {p : v(p|R′, F ′) > 0}.

Proof of Proposition 1: Lemma 11 and lemma 12 together imply that in any principal-

optimal equilibrium, we must have R = 1 and F ∈ {0, 1}.

A.6 Principal’s problem when R=1, F=0

If R = 1, F = 0, then pf = 0. We obtain the agent’s best response as a corollary of Lemma

1.

Proposition 14. Suppose the principal hires the agent when p ∈ [p, p̄] ⊂ [0, 1] and fires

otherwise. Then the best response of the agent is given as:

a(p) =


[0, 1] if p /∈ [p, p̄],

λb
λb+λg

if p = p,

1 if p ∈ (p, p̄].

A.6.1 Characterization of equilibrium when R=1,F=0

Definition 13. Given a strategy for the principal s, define H as the set of beliefs at which

the principal hires, i.e. H = {p : s(p) = 0}.

69



Lemma 13. In any equilibrium, H is a connected set.

Proof. Suppose H = [p
1
, p̄1] ∪ [p

2
, p̄2] with p

2
> p̄1. Suppose that the best response of the

agent is a. We know that

a(p) =


λb

λb+λg
if p ∈ {p

1
, p

2
},

1 if p ∈ (p
1
, p̄1] ∪ (p

2
, p̄2].

However the best response of the agent in the interval (p̄1, p2
) can be any function satisfying

Assumption 1. Also, note that the value of the principal from this strategy profile at p̄1

is V (p̄1) > Vf (p̄1) > 0, and the value of the principal from this strategy profile at p
2

is

V (p
2
) = Vf (p

2
) > 0.

We now show that for any behavior of the agent in the interval (p̄1, p2
), satisfying

Assumption 1, the principal has an incentive to deviate. Notice that V f (p) > 0 for all

p > p
1
, where V f is the value to the principal if the agent were to freeze beliefs everywhere.

Therefore, for us to have an equilibrium where the principal hires on two disjoint intervals,

ia(p) 6= af for any p ∈ (p̄1, p2
). We will consider three cases regarding the limit of the

strategy on the firing interval at p̄1 and p
2
.4

1. limp↓p̄1 a(p) < af and limp↑p
2
a(p) > af . In this case, the drift of beliefs is positive

on (p̄1, p) for some p > p̄1 and is negative (p, p
2
) for some p < p

2
. Therefore, it must

be 0 for some p̃ ∈ (p̄1, p2
), i.e. a(p̃) = af . Since p̃ > p

1
where the principal obtains

a non-negative value with agent using af , therefore, the principal obtains a strictly

positive value at p̃ if he were to deviate not fire. A contradiction.

2. limp↓p̄1 a(p) > af or limp↑p
2
a(p) < af . We will argue only for the case â := limp↓p̄1 a(p) >

af , as the argument for the other case is similar. Notice that â > af ⇒ p[λga(p) −

λb(1 − a(p))] > ε for some ε > 0 for p ∈ (p̄1, p̄1 + δ] for some δ > 0. That is, the

drift of beliefs, in the absence of news, is strictly negative and bounded from above

by −ε. Define, τ(p) := inf{t > 0 : Pt ∈ {0, p̄1, 1}}. Since the drift is bounded away

from 0, limp↓p̄1 τ(p) = 0 a.s and P(Pτ(p) = p̄1|P0 = p) = 1. If the principal deviates to

4Since a is piecewie continuous, these limits exist.

70



continue until the beliefs hit either 0, 1 or p̄1, where he collects V (p̄1), then his payoff

from such a policy is,

V (p) = E
[
(1− e−τ(p))(−c) + e−τ(p)

(
P(Pτ(p) = 1)V (1) + P(Pτ(p) = p̄1)V (p̄1)

)]
.

As p ↓ p̄1, V (p)→ V (p̄1) > 0. Therefore, the principal would strictly prefer continuing

and not firing just above p̄1, a contradiction.

3. limp↓p̄1 a(p) = af or limp↑p
2
a(p) = af We will argue for the case limp↑p

2
a(p) = af ,

as the other case is straightforward. First of all, if a(p) = af for any p ∈ (p̄1, p2
),

we are done. So, assume wlog that a(p) < af for all p(p̄1, p2
) with limp↑p

2
a(p) = af .

Therefore, for any ε > 0, ∃δ > 0 such that, af > a(p) > af − ε for all p ∈ (p
2
− δ, p).

For any such p, if the principal were to deviate and not fire until the belief hits 0, 1

or p
2

where he receives V f (p̄2) > 0, his payoff is,

V (p) = E
[
(1− e−τ )(−c) + e−τV (Pτ )

]
,

where τ := inf{t : Pt ∈ {0, 1, p2
}}. Notice that, in the absence of a signal, the law of

motion for beliefs is,

dPt = Pt(1− Pt)[λb(1− at)− λgat]dt

⇒ log

(
Pt

1− Pt

)
− log

(
P0

1− P0

)
=

∫ t

0
[λb(1− at)− λgat]dt.

Notice that [λb(1 − at) − λgat] > 0. for all t ≤ τ . Therefore, there is a unique time

t∗ where the beliefs will reach p
2

conditional on no signal. Moreover, τ ≤ t∗ almost

surely. Therefore,

Ee−τV (Pτ ) =

∫ t∗

0
P(τ = t ∩ Pτ = 1)e−tV (1)dt+ P(τ = t∗)e−t

∗
V (p

2
).
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P(τ = t ∩ Pτ = 1) = pλgat exp

(
−
∫ t

0
λgaudu

)
if τ < t∗.

P(τ = t∗) = p exp

(
−
∫ t∗

0
λgaudu

)
+ (1− p) exp

(
−
∫ t∗

0
λb(1− au)du

)
.

Since |au − af | < ε for all u ≤ τ , and since all the integrals are bounded, it is

easy to see that all the quantities above are at most Kε away, for some positive

constant K, (ignoring the higher order terms) from using au = af for all u. Therefore,

|V (p) − V f (p)| < Mε for some constant M . For a small enough ε, this implies that

V (p) > 0 since V f (p) > 0 for all p ∈ (p
1
, 1]. Therefore, the principal would strictly

prefer hiring for some p ∈ (p
2
− δ, p

2
), a contradiction.

Now, we prove that p∗0 ( defined in (A.12)) is the unique candidate for the lower cutoff

in equilibrium.

Lemma 14. In any equilibrium, p = p∗0.

Proof. Suppose the principal hires on [p, p̄] and the agent’s best response to this hiring

strategy is a. The agent chooses a = af at p. Therefore, p ≥ p∗0. If not, the principal receives

a strictly negative value at p, a contradiction. Suppose p > p∗0. ⇒ v(p|a) > 0. If a(p) = af

for any p ∈ (p∗0, p), the principal would strictly prefer hiring at such a p, contradicting that

the hiring region is [p, p̄]. Since a(·) is piecewise continuous, it is continuous on (p − ε, p)

for some ε > 0. Suppose a(p) < af when p ∈ (p− ε, p). By an argument analogous to Case

2 and 3 in Lemma 13, the principal would strictly benefit by lowering the firing cutoff from

p. Therefore, it cannot be an equilibrium. On the other hand, suppose a(p) > af when

p ∈ (p − ε, p). Choose a p ∈ (p − ε, p) such that, a(q) > af + δ for some δ > 0 for all q in

the neighborhood of p. Suppose the principal deviates to hire on a small interval (p− η, p].

Given the agent’s strategy, the principal’s payoff is,

v(p|a) = −c(1− exp(−τ)) + exp(−τ))p(1− exp

(
−
∫ τ

0
λga(Pt)dt

)
(Γ −R),
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where τ = inf{t : P pt /∈ (p− η, p)} where P pt denotes the stochastic process with the initial

state as p. As η → 0, τ → 0 a.s. and, we have,

v(p|a) ≈ −cτ + λgpa(p)(Γ −R)τ > 0 when p > p∗0 and a(p) > af .

Therefore, the principal would prefer hiring on (p− η, p), a contradiction.

Lemma 15. All equilibria where the agent uses a = 0 in the firing region are characterized

by a belief p̄, p̄ ∈ [p∗0, 1]. The players’ strategies are given by:

a(p) =


0 if p ∈ [0, p∗0) ∪ (p̄, 1],

af if p = p∗0,

1, if p ∈ (p∗0, p̄].

s(p) =


1, if p ∈ [0, p∗0) ∪ (p̄, 1],

0, if p ∈ [p∗0, p̄].

When λb < λ̂b there does not exist an equilibrium where the agent is hired at any interior

belief.

Proof. In any equilibrium the hiring region is of the form [p, p̄] by Lemma 13. Agent’s best

response is given by Proposition 14. For the lower firing cutoff, p ≥ p∗0 because otherwise the

principal receives a strictly negative value at p. Strict inequality is not possible because the

agent uses the bad arm below p, and therefore, the principal would like to lower the cutoff

if p > p∗0. That the principal would continue hiring above p∗0 is immediate from Lemma 16

and that v(p) is increasing.

Proposition 15. The principal-optimal equilibrium, which features the same on path be-

havior, is the following:

a(p) =


[0, af ] if p ∈ [0, p∗0),

af if p = p∗0,

1 if p ∈ (p∗0, 1].

s(p) =


1 if p ∈ [0, p∗0),

0 if p ∈ [p∗0, 1].

Proof. By Lemma 14, the lower cutoff is uniquely pinned down. Therefore, the principal-
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optimal equilibrium, and also the unique Pareto optimal equilibrium, would be one with

the largest hiring region, i.e. p̄ = 1. Therefore, all we need to prove is that the above

strategy is in fact an equilibrium. Proposition 14 shows that the agent’s strategy in the

candidate equilibrium is indeed the best response to the principal’s strategy. We need to

show that principal’s strategy is the best response to the agent’s strategy in the candidate

equilibrium. We split the proof in two cases:

Suppose, p ∈ (p∗0, 1]: In this region the agent uses the good news arm exclusively. The

principal’s value function is given by:

v(p) = λgγp− c+ C1(1− p)
[

1− p
p

] 1
λg

.

Where C1 is the constant of integration that is determined using v(p∗0) = 0.

λgγp
∗
0 − c+ C1(1− p∗0)

[
1− p∗0
p∗0

] 1
λg

= 0.

Lemma 16 tells us that v′+(p∗0) > 0 and v′(p) > 0 when p ∈ (p∗0, 1]. This implies that

v(p) > 0 for all p > p∗0. This establishes that s(p) = 0 is the best response for all p > p∗0.

Lemma 16. Denote by v′+(p∗0) the right hand derivative of v(p) at p∗0. Then v′+(p∗0) > 0

and v′(p) > 0 when p ∈ (p∗0, p̄].

Proof. When the good news arm is used (a = 1), the differential equation governing the

value of the principal is given by

v1(p) = λgp(Γ − 1)− c− λgpv1(p)− λgp(1− p)v′1(p).

Since the boundary condition at p∗0 dictates that v(p∗0) = 0, we have v(p) = v1(p;C∗1 ) when

p ∈ [p∗0, 1] where C∗1 is determined by setting v1(p∗0) = 0.5 Next, note that the right hand

derivative v′+(p∗0) is given by

5The function v1(p;C) denotes the value function v1 with C1 = C, as defined in Notation 2.
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v′+(p∗0) = v′1(p∗0) =
λgp
∗
0(Γ − 1)− c

λgp∗0(1− p∗0)
.

Note that

λgp
∗
0(Γ − 1)− c =

λgc(Γ − 1)

Λ(Γ − 1)
− c = c

[
λg
Λ
− 1

]
> 0,

which implies that v′+(p∗0) > 0. The principal’s value function when p ∈ [p∗0, p̄] is given by

(A.6) is as follows

v(p) = v1(p) =
pλg(Γ −R+ c)

1 + λg
− c+ C∗1 (1− p)

[
1− p
p

] 1
λg

.

We differentiate once to get

v′1(p) =
λg(Γ − 1 + c)

1 + λg
− C∗1

[
1− p
p

] 1
λg

[
1
λg

+ p

p

]
,

and twice to get

v′′1(p) = C∗1

[
1 + λg

λ2
gp

2(1− p)

(
1− p
p

) 1
λg

]
.

Now suppose C∗1 ≤ 0, clearly this means that v′1(p) > 0 since Γ−1+c > 0. On the contrary,

if C∗1 > 0, we know that v′′1(p) > 0, and since v′1(p∗0) > 0, v′1(p) > 0 for p ∈ (p∗0, 1]. Since

v(p) = v1(p) for p ∈ (p∗0, p̄], we have v′(p) > 0 when p ∈ (p∗0, p̄] and v′+(p∗0) > 0.

Going forward, to keep track of the principal value function for the case of F = 0, we

will denote it by vF=0
∗ (·). That is,

vF=0
∗ (p) = λgγp− c+ C1(1− p)

[
1− p
p

] 1
λg

, (A.14)

where C1 is the constant of integration that is determined using vF=0
∗ (p∗0) = 0.

A.7 Principal’s problem when R=F=1

When R = F = 1, the agent is indifferent across all policies with the only restriction

being that at the left (right) endpoint of the hiring interval the drift of beliefs must be
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non-negative (non-positive). So, supposing that the hiring interval is of the form [p̂, 1], we

want to find the optimal firing cutoff and the agent policy for the principal satisfying the

following two:

1. a(p) is piecewise continuous.

2. a(p̂) ≤ af .

Principal’s problem is,

v∗(p) = sup
{a,p̂}

Ea
[
(1− e−τ )(−c) + e−τv(Pτ )|P0 = p

]
,

subject to a(p̂) ≤ af and a is piecewise continuous,

such that, τ := inf{t : Pt /∈ [p̂, 1)}, v(0) = −F = −1, v(1) = Γ −R = Γ − 1 and v(p̂) = 0.

Let the optimal stopping belief be p̂∗ and the associated optimal policy in the continue

region be denoted by a∗. We will first conjecture that the optimal policy is to use the bad

news arm on [p̂∗, p
s]6 and good news arm for higher beliefs.

To this end, let us suppose that the firing cutoff is exogenously specified to be some p̂

and the associated optimal policy be denoted by ap̂ and the associated value function be vp̂.

We conjecture that the optimal policy is to use the bad news arm below some ps and good

news arm above it. We will find the optimal ps within such policies and then argue that it

is indeed optimal across all the policies. The optimal ps for the principal is calculated using

the value matching and smoothpasting conditions for vf and v1 (or equivalently vf and v0).

So, the conjectured value function is (where R = F = 1),

v(p) =


v0(p) = −pλbc+c+λbF (1−p)

λb+1 + Cs0p
[

p
1−p

] 1
λb if p ∈ [p̂, ps],

vf (p) = −c−ΛF+pλ[Γ−R+F ]
1+Λ if p = ps,

v1(p) =
pλg(Γ−R+c)

1+λg
− c+ Cs1(1− p)

[
1−p
p

] 1
λg if p > ps,

where v0(p), vf (p) and v1(p) are obtained from (A.7), (A.9) and (A.3) respectively.

6 We deal with the case when p̂∗ > ps in the proof of proposition 3 given in section A.8.
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Conjecturing, continuity and smooth pasting, we have the following equations: v0(ps) =

vf (ps) = v1(ps) and v′0(ps) = v′f (ps) = v′1(ps). We pin down Cs0 , C
s
1 and ps given by,

ps =
λb(c− F )

λg(Γ −R+ c) + λb(c− F )
, (A.15)

Cs0 =

[
λg(Γ −R+ c)

λb(c− F )

] 1
λb

[
λb

1 + λb

] [
Λ

1 + Λ

]
(Γ −R+ c), (A.16)

Cs1 =

[
λb(c− F )

λg(Γ −R+ c)

] 1
λg
[

λg
1 + λg

] [
Λ

1 + Λ

]
(c− F ). (A.17)

Note that we need c ≥ F for ps to be interior and well defined. This is also the interesting

case since if c < F , the principal would rather incur the costs of experimentation forever

than give out a reward for bringing in bad news. Hence we assume c ≥ F for this section.

Let us denote the value functions obtained by using the above constants as v0(ps;Cs0) and

v1(p;Cs1). Our conjectured optimal policy for any exogenusly specified firing cutoff p̂ ≤ ps7

and the conjectured optimal value function of the principal are,

a∗(p) =


0 if p ∈ [p̂, ps),

af if p = ps,

1 if p > ps,

and,

vp̂∗(p) =


v0(p;Cs0) if p ∈ [p̂, ps),

vf (ps) = v0(ps;Cs0) = v1(ps;Cs1) if p = ps,

v1(p;Cs1) if p > ps.

(A.18)

We now prove the optimality of the above policy in steps. In Lemma 17 we prove that

for any piecewise continuous control, the principal value function is differentiable. Lemma

18, 19 and 20 combine to reduce the candidate policies a′ � a∗ to those where we can have

7As we will see, the only situation when p̂ > ps would be optimal is when v(ps) < 0, in which case it is
optimal to use F = 0.
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at most one switch from the bad news arm to the good news arm. Optimality of a∗ is

proved in Lemma 22.

Definition 14. Given a, a′ ∈ A, we say that a′ � a iff v(p|a′) ≥ v(p|a) ∀p with the inequality

being strict for some p.

Definition 15. Define,

η(a) := λb(1− a)− λga.

Lemma 17. If a(p) is continuous on [p1, p2] such that η(a(p)) 6= 0 on [p1, p2], then v(·|a),

denoted by v(·) in this lemma, is C1 on (p1, p2), right differentiable at p1 and left continuous

at p2. Moreover, on (p1, p2),

v′(p) =
c+ [1 + pλga(p) + (1− p)λb(1− a(p))]v(p)− pλga(p)(Γ − 1) + (1− p)λb(1− a(p))

η(a(p))p(1− p)
.

(A.19)

Proof. There are two cases: η(a(p)) > 0 on [p1, p2] and η(a(p)) < 0 on [p1, p2]. We will

assume that η(a(p)) > 0 on [p1, p2] and leave the other case to the reader.

For any p ∈ (p1, p2), notice that, for any δ > 0,

v(p) = E(1− e−τ )(−c) + e−τv(pτ ),

where τ := inf{t : Pt /∈ (p, p + δ)}. Since (1 − p)λb(1 − a(p)) − pλga(p) > 0, τ → 0 a.s. as

δ → 0 and pτ → p a.s. Therefore, for any sequence pn ↓ p,

v(p)− v(pn) = E(1− e−τn)(−c) + e−τnv(pτn)− v(pn)→ 0

as n→∞. For pn ↑ p, define τn := inf{t : Pt /∈ (pn, p)} and repeat the argument above.

Therefore, v is continuous on (p1, p2), right(left) continuous at p1(p2). For right differ-

entiability, we need to show,

lim
h↓0

v(p+ h)− v(p)

h
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exists. For a small h, define τ as before and recall, due to the continuity of a(·),

∫ p+h

p

1

η(a(p))p(1− p)
dp = ∆.

By mean value theorem and continuity of a, we have,

h ≈ η(a(p))p(1− p)∆

for a small ∆. ignoring the second order terms. Therefore, τ ≤ t̂ := h
η(a(p))p(1−p) . We know

that,

v(p) = E(1− e−τ )(−c) + e−τv(Pτ ).

Ee−τ =

∫ t̂

0
[pλga(Pt)e

−
∫ t
o λga(Pu)du + (1− p)λb(1− a(Pt))e

−
∫ t
o λb(1−a(Pu))du]e−tdt

+ [pe−
∫ t̂
0 λga(Pu)du + (1− p)e−

∫ t̂
0 λb(1−a(Pu))du]e−t̂.

For a sufficiently small h, using continuity of a and first order approximations, we get,

Ee−τ = 1− t̂.

Similar calculations show that,

Ee−τv(Pτ ) = (1− t̂)(1− [pλga(p) + (1− p)λb(1− a(p)]t̂)v(p+ h)

+ pλga(p)t̂(Γ − 1) + (1− p)λb(1− a(p)t̂(−1).

Therefore,

v(p+ h)− v(p)

h
=
ct̂+ (1 + pλga(p) + (1− p)λb(1− p)v(p+ h)t̂

h

+
−pλga(p)(Γ − 1)t̂+ (1− p)λb(1− a(p))t̂

h
.
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Therefore, it is easy to see that limh↓0
v(p+h)−v(p)

h exists and is equal to

c+ [1 + pλga(p) + (1− p)λb(1− a(p))]v(p)− pλga(p)(Γ − 1) + (1− p)λb(1− a(p))

η(a(p))p(1− p)
.

Therefore, v is right differentiable on (p1, p2), and its right derivative is continuous, and

bounded for any interval [p1, p2]. Standard results in analysis show that if a continuous

function has continuous right derivatives at each point in an interval, and the right deriva-

tives are continuous, then the function is differentiable on the interval.8 Therefore, v is

differentiable on (p1, p2) with the derivative given by (A.19).

First, for any continuous a such that a 6= af on the interval, we also have η(a, p) > 0.

By Lemma 17, we know that v(·|a) is differentiable and satisfies the following differential

equation:

v(p) = λgpa(p)(Γ − 1) + λb(1− p)(1− a(p))(−1)− c

+ [λb(1− a(p))− λga(p)]p(1− p)v′(p)− [λgpa(p) + λb(1− p)(1− a(p))]v(p),

where, with some abuse of notation, we denote v(·|a) by v(·). Rearranging the above,

v(p) = −λb(1− p)− c+ λbp(1− p)v′(p)− λb(1− p)v(p) + a(p)H(p, v(p), v′(p)), (A.20)

where H(x, y, z) :=λgx(Γ − 1) + λb(1− x)− (λb + λg)x(1− x)z − (λgx− λb(1− x)y).

(A.21)

Notice that H is continuous in each of its argument.

Lemma 18. Suppose, a ∈ A is continuous on [p1, p2] ⊂ (p̂, 1). Suppose, for some p ∈

(p1, p2), a(p) /∈ {0, af , 1} and H(p, v(p), v′(p) 6= 0. Then, there is an a′ ∈ A and an ε > 0

such that, either, a′(q) ∈ {0, 1} for all q ∈ [p−ε, p] or for all q ∈ [p, p+ε] and v(·|a′) ≥ v(·|a).

Proof. There are two possible cases:

8For example, https://math.stackexchange.com/questions/418737/continuous-right-derivative-implies-
differentiability
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1. H(p, v, v′) > 0,

2. H(p, v, v′) < 0.

1. Suppose, H(p, v(p), v′(p)) > 0.

By continuity of a and H, a(q) /∈ {0, 1} and H(q, v(q), v′(q) > 0 for all q ∈ Bε(p) for

some ε > 0. Consider an alternative control a′ such that a′(q) = 1 for q ∈ (p, p + ε].

Moreover, we assume that as soon as the beliefs hit either p, we switch to a, i.e., the

control is non-markovian. However, due the markovian structure of the underlying

problem, if a′ outperforms a, then there is a Markovian control that also outperforms

a. Therefore, for any q ∈ (p, p+ε), the value function v(·|a′) (denoted by ṽ henceforth)

satisfies the following differential equation:

ṽ(q) =− λb(1− q)− c+ λbq(1− q)ṽ′(q)− λb(1− q)ṽ(q) +H(q, ṽ(q), ṽ′(q))

and v(q) =− λb(1− q)− c+ λbq(1− q)v′(q)− λb(1− q)v(q) +H(q, v(q), v′(q)).

Moreover, ṽ(p) = v(p). Therefore,

ṽ(q)− v(q) =λbq(1− q)(ṽ′(q)− v′(q))− λb(1− q)(ṽ(q)− v(q)

+H(q, ṽ(q), ṽ′(q))− a(q)H(q, v(q), v′(q)),

which implies

ṽ(q)− v(q)− (1− a)H(q, v(q), v′(q)) =λbq(1− q)(ṽ′(q)− v′(q))

+ [H(q, ṽ(q), ṽ′(q))−H(q, v(q), v′(q))]

− λb(1− q)(ṽ(q)− v(q)),

=− λgq(1− q)[ṽ′(q)− v′(q)]− λgq(ṽ(q)− v(q)).

where the last equality uses the expression for H defined in (A.21). Notice that as

q ↓ p, ṽ(q)− v(q)→ 0. However, H(q, v(q), v′(q)) > 0. Therefore, −λgq(1− q)[ṽ′(q)−

v′(q)] < 0 as q ↓ p. Therefore, in the neighborhood of p, ṽ′(q) > v′(p), i.e. ṽ(q) > v(q)
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for all q ∈ (p, p+ ε1) for some ε1 > 0.

2. Suppose, H(p, v(p), v′(p)) < 0. The argument is exactly as above with a′ = 0 on

some interval (p − ε, p) and following the policy at p thereafter. Similar calculations

as before yield, for any q ∈ (p− ε, p),

ṽ(q)− v(q) + aH(q, v(q), v′(q)) = λbq(1− q)[ṽ′(q)− v′(q)] + λb(1− q)(ṽ(q)− v(q)).

Again, taking limits as q ↑ p, and since H(q, v(q), v′(q)) < 0, we must have ṽ′(q) <

v′(q). Therefore, some ε1 ṽ(q) > v(q) for all q ∈ (p− ε1, p).

Notice that even though a′ maybe non-Markovian, due the Markovian structure of the

problem, if a non-Markovian control does strictly better than a, there exists a Markovian

control that does strictly better than a. Therefore, in general, there exists a Markovian

control a′ � a and, has a′(q) = 1(0) for all q ∈ (p, p+ ε1) if H(p, v(p), v′(p)) > (<)0.

Lemma 19. Suppose, a ∈ A is continuous on [p1, p2] ⊂ (p̂, 1). Suppose, for some p ∈

(p1, p2), a(p) /∈ {0, af , 1} and H(p, v(p), v′(p)) = 0. Then, at least one of the following hold:

1. There is an a′ ∈ A and an ε > 0 such that, either, a′(q) ∈ {0, 1} for all q ∈ [p− ε, p]

or for all q ∈ [p, p+ ε] and v(·|a′) ≥ v(·|a).

2. ∃q such that v(q|a∗) > v(q|a).

Proof. There are four cases:

1. For some ε > 0, H(q, v(q), v′(q)) = 0 for all q ∈ [p − ε, p] or [p, p + ε]. Notice that v

must satisfy (A.20) and (A.21) where we set H(q, v(q)v′(q)) = 0. It is easy to check

that the two imply that v must be linear. However, It is straightforward to see that

there is no v of the form K1p+K2 for some constants K1 and K2 that satisfies both

the equations.

2. ∃ε > 0 such that. {q : H(q, v(q), v′(q) = 0, q ∈ Bε(p)} = {p}. By Lemma 18, since

H is signed on (p, p + ε), we can find a control a′ that is valued in {0, 1} that does

strictly better than a. Moreover, setting a′(p) = 1 if a(p) > af and 0 otherwise leaves

the value at p unchanged.
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3. ∃ε > 0 such that both of the following hold:

(a) H(q, v(q), v′(q)) ≥ 0 or H(q, v(q), v′(q)) ≤ 0 for all q ∈ (p, p+ ε).

(b) H(q, v(q), v′(q)) ≥ 0 or H(q, v(q), v′(q)) ≤ 0 for all q ∈ (p− ε, p).

That is, H(q, v(q), v′(q)) does not change sign on either side of p for some open interval.

Here, again, we can set a′(q) = 1 or 0 depending on whether H ≥ 0 or ≤ 0, for any

q ∈ Bε(p)\p. At p, we can set a′(p) = 1 if a(p) > af and 0 otherwise as before.

4. At least one of the following holds:

(a) For any ε > 0, ∃q1, q2 ∈ (p − ε, p) such that H(q1, v(q1), v′(q1)) > 0 and

H(q2, v(q2), v′(q2)) < 0.

(b) For any ε > 0, ∃q1, q2 ∈ (p − ε, p) such that H(q1, v(q1), v′(q1)) > 0 and

H(q2, v(q2), v′(q2)) < 0.

We will argue only for case 4a. For any ε > 0, ∃q ∈ (p, p+ε) such thatH(q, v(q), v′(q)) >

0. Define,

e := sup{w ∈ (p, q) : H(w, v(w), v′(w)) < 0}

= inf{w ∈ (p, q) : H(x, v(x), v′(x)) ≥ 0∀x ∈ (w, q)}.

The equality is obvious and, it is also easy to see, due to continuity, that e ∈ (p, q).

Therefore, we can define a control, a′′ that takes the value 1 on (e, q) such that

a′′ � a by Lemma 18. Moreover, by definition of e, ∃ a sequence qn ↑ e such that

H(qn, v(qn), v′(qn)) < 0. By continuity, for every such qn, ∃ an interval (pn, qn) such

that H < 0 on the entire interval. Therefore, we can define a control a′ modifying a′′

by setting a(w) = −1 on (pn, qn) such that a′ � a′′ � a.9 Lastly, notice that a(qn) = 0

and qn → e and a(w) = 1 for w ∈ (e, q). Therefore, v(e|a′) = vf (e), value by freezing

at e. We can repeat this construction to obtain another point, say e′ in (p, e) where

the value obtained is the value by freezing. By Lemma 21, v(·|a∗) > vf (·) for all p

except ps. Therefore, ∃ a w ∈ {e, e′} such that v(w|a∗) > v(w|a).

9Notice that this control may not be piecewise is continuous but, the argument goes through by choosing
a finite number of intervals (pn, qn) close to e.
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Definition 16. We say, H is signed on an interval (x, y) if, for all z ∈ (x, y) either

H(z, v(z), v′(z) ≥ 0 or ≤ 0. If H(z, v(z), v′(z) ≥ 0 we say H is + and if H(z, v(z), v′(z) ≤ 0

we say H is −. If for some point z, H(z, v(z), v′(z) has different signs on either side of z,

we say that H changes sign at z.

Lemma 20. If a ∈ A such that a � a∗, then H changes sign at most once.

Proof. By Lemma 19, we know that if a � a∗, for every p such that H(p, v(p|a), v′(p|a)) = 0,

we are in Case 2 or 3 in Lemma 19. That is, for every p such that H is 0, ∃ε(p) such that

H is signed on for q ∈ [p, p + ε(p)] and on [p − ε(p), p]. Let I be the set of points where

H changes sign. If |I| > 1, we must have at least one point, say p, where the sign changes

from − to +. Replacing a by 0 to the left of p and 1 to its right, we know that we achieve

a strictly higher payoff. Moreover, at p, the value is equal to vf (p). Therefore, if p 6= ps,

a � a∗ is not possible, as v(p|a∗) > vf (p).

Therefore, if there is a p > ps where H changes sign, it must be from + to −, and,

more importantly, H stays negative on (p, 1). In that case, we can set a′(q) = 0 on (p, 1) so

that a′ � a � a∗. It is straightforward to see that using the bad news arm on (1 − ε, 1) is

strictly dominated by using the good news arm on (1 − ε, 1) for a sufficiently small ε > 0.

Therefore, a′ � a∗ is not possible.

Hence, H cannot change its sign at p > ps, must be + on (ps, 1) and a sign change from

− to +, if present, must occur only at ps. Therefore, the only possibilities are, H stays +

throughout or changes from − to + at ps.

Lemma 21. v(ps|a∗) = vf (ps) and v(p|a∗) > vf (p) for all p 6= ps.

Proof. Recall, by definition of a∗, v(ps|a∗) = vf (ps) and v′(ps|a∗) = vf ′(ps). It is easy to see

that v′(p|a∗) is increasing. Since vf (·) is linear and v′(p|a∗) is increasing, v(p|a∗) > vf (p)

for all p 6= ps.

Lemma 22. Suppose the principal hires in the interval [p̂, 1] such that p̂ ≤ ps, then the

policy a∗ described in equation A.18 is optimal for the principal.
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Proof. Lemma 20 tells us that there can be at most one switch from bad news arm to good

news arm in [p̂, 1]. Suppose the belief at which switching occurs is p̃ > ps. Then in this

case, the value function of the principal is given by

ṽp̂(p) :=


v0(p; C̃0) if p ∈ [p̂, p̃),

vf (p̃) = v0(p̃; C̃0) = v1(p̃; Ĉ1) if p = p̃,

v1(p; Ĉ1) if p ∈ (p̃, 1],

(A.22)

where C̃0 and C̃1 are computed by invoking continuity at p̃. Note that since v1(p;Cs1) is

convex, tangent to vf (·) at ps, and v1(p;Cs1) ≥ vf (p), it must be the case that v1(p̃;Cs1) >

vf (p̃) = v1(p̃; C̃1). This implies that Cs1 > C̃1 and consequently v1(p;Cs1) > v1(p; C̃1) for all

p ∈ [p̃, 1]. This results in vp̂∗(p) > ṽp̂(p) for all p ∈ [p̃, 1].

We now claim that C̃0 > 0. To see this note that vf (p̃) = v0(p̃; C̃0) > 0. Equation

A.7 implies that v0(p̃; C̃0) > 0 =⇒ C̃0 > 0, which implies that v0(p; C̃0) is convex. Next

note that since v0(p;Cs0) is convex, tangent to vf (·) at ps and v0(p;Cs0) ≥ vf (p), it must

be the case that v0(p̃;Cs1) > vf (p̃) = v0(p̃; C̃0). The fact that v0(p;Cs0) and v0(p; C̃0) do

not intersect, together with the convexity of v0(p; C̃0) implies that v0(p1; C̃0) = vf (p1) for

some p1 < ps. This implies that it must be the case that v0(p; C̃0) < vf (p) for p ∈ (p1, p̃),

implying that vp̂∗(p) > ṽp̂(p) for all p ∈ (p1, p̃). Next note that since v0(p;Cs1) > v0(p; C̃0)

we have vp̂∗(p) > ṽp̂(p) for all p ∈ [p̂, p1] This shows that vp̂∗(p) > ṽp̂(p) for all p ∈ [p̂, 1].

With a mirror argument as above (left to the reader) we can show that we have the same

result as above when p̃ < ps. This implies that ps is the optimal switching belief. Hence a∗

is the optimal policy for the principal.

Since a∗ is optimal for any exogenously specified stopping cutoff p̂, the optimal stopping

cutoff is the following:

Definition 17. The optimal stopping cutoff is given by

p∗1 := {p : v(p|a∗) = 0}. (A.23)

Here, we have extended a∗ on [0, 1] by assuming that a∗(p) = 0 ∀p < ps.
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Notation 3. As before, to keep track of the principal value function for the case of F = 1,

we will denote it by vF=1
∗ (·).

Define,

vF=1
∗ (p) :=


0 if p ≤ p∗1,

v
p∗1
∗ (p) otherwise,

(A.24)

where v
p∗1
∗ (p) is defined in Equation A.18.

A.8 Comparison between F=1 and F=0 cases

Proof of Proposition 3: Lemma 26 establishes that if c > F (1 + λg) then there exists λb

such that when λb > λb we have p∗1(λb) < p∗0(λb). Lemma 27 shows that if p∗1 < p∗0 then

R = 1, F = 1 dominates R = 1, F = 0 for all prior belief p0 ∈ (0, 1) which concludes the

proof of the first part.

Lemma 23 shows that in the case when R = 1, F = 1,

p∗f > ps ⇐⇒ c+ Λ

Λ(Γ −R+ 1)
>

λb(c− 1)

λg(Γ −R+ c) + λb(c− 1)
,

where p∗f is the belief at which the value of the principal equals 0 when the agent uses the

policy a = af . This implies that when R = 1, F = 1 and p∗f > ps the principal’s value at ps

is negative under the policy a∗ as defined in (A.18). We claim that in this case the optimal

hiring region of the principal is [p∗f , 1] and the principal-optimal policy of the agent is given

by

ã(p) =


1 if p ∈ [p∗f , 1],

af if p = p∗f .

To see this, recall that the principal-optimal policy of the agent features at most one

switch from the bad news arm to the good news arm (Lemma 20). Fixing the lower end

of the hiring interval at p∗f , in the candidate policy ã the agent uses the good news arm
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everywhere above p∗f and freezes the belief at p∗f . It is easy to see that ã dominates the policy

where the agent uses a = 0 for all p ≥ p∗f since the value of the principal is strictly negative

under such a policy. All we need to show is that ã dominates any other policy where there

is a switch from the bad news arm to the good news arm at a belief p̃ > p∗f . From lemma

22 we know that since p̃ > ps, lowering the belief at which switching occurs, improves the

value of the principal. This implies that in the optimal policy given the lowering firing

cutoff p∗f , switching must occur at p∗f , which implies that in the optimal policy, the agent

must be freezing belief at p∗f . To see that p∗f is an optimal choice of lower end of hiring

interval, simply note that vf (p∗f ) = 0. If the principal chooses a cutoff p̂ strictly lower than

p∗f , principal’s value at p̂ is strictly negative and hence cannot be an equilibrium. If the

principal chooses a cutoff p̂ strictly higher than p∗f , principal’s value is strictly lower at all

beliefs in (p∗f , 1] compared to ã. Hence p∗f is the optimal choice of lower end of the hiring

interval.

Note that in this case the principal can achieve an identical behavior from the agent

by setting F = 0 instead. Additionally, this improves the payoff of the principal since the

agent does not have to be paid anything if a bad news is obtained. Hence, in this case the

optimal reward structure is to set R = 1, F = 0.

In comparing the optimality of F = 1 vs F = 0, an obvious case when F = 0 would

dominate F = 1 is one when p∗1 > ps (or equivalently p∗f > ps). The following lemma gives

the condition when that can happen.

Lemma 23.

p∗f > ps ⇐⇒ c+ ΛF

Λ(Γ −R+ F )
>

λb(c− F )

λg(Γ −R+ c) + λb(c− F )
.

Proof. Proof follows from the definitions of p∗f and ps defined in (A.13) and (A.15) respec-

tively.

Similarly, a natural case where F = 1 would dominate F = 0 (at least for some prior

beliefs) is one where p∗1 < p∗0 where p∗0 is defined in (A.12).
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Lemma 24. p∗1 is decreasing in λb
10.

Proof. Suppose the agent uses the bad news arm in the interval [p0, p1] with p0 6= p1 and

at p1, the principal gets specified value V̄ (p1) ≥ 0 at p1 . We calculate the value of the

principal under the given experimentation strategy of the agent for a given value of λb. We

call this value as V̄ (p0;λb). To calculate this value we first define t̄ as the time it takes for

beliefs to drift from p0 to p1 in the absence of a signal. Note that

t̄ =
1

λb

∫ p1

p0

dp

p(1− p)
=

1

λb
ln

[
p1

1− p1

1− p0

p0

]
.

We can write

V̄ (p0;λb) = (1− p0)

∫ t̄

0
λbe
−λbs

[
−c(1− e−s)− Fe−s

]︸ ︷︷ ︸
Value when signal arrives at s

ds

+
[
p0 + (1− p0)e−λb t̄

]
︸ ︷︷ ︸
Prob. of no signal until t̄

[
e−t̄V̄ (p1)− c[1− e−t̄]

]
.

The integral can be evaluated to give:

V̄ (p0;λb) = (1− p0)

[
−c(1−K) + (c− F )

λb
1 + λb

(1−K
1+λb
λb )

]
+ [p0 + (1− p0)K]

[
K

1
λb (V̄ (p1) + c)− c

]
.

where K is given by

K =

[
p0

1− p0

1− p1

p1

]
< 1.

We then claim that V̄ (p0;λb) is strictly increasing in λb. To see this first note that the

second term term [p0 + (1− p0)K]
[
K

1
λb (V̄ (p1) + c)− c

]
is strictly increasing in λb since

K < 1. We just need to check for the first term. Taking the derivative we get

d

dλb

[
λb

1 + λb
(1−K

1+λb
λb )

]
=

1

(1 + λb)2

[
1 +K

1+λb
λb

[
1 + λb
λb

lnK − 1

]]
.

10 p∗1 is a function on several variables including λb. Here we study the behavior of p∗1 as a function of λb
ceterus paribus.

88



Define the function f(m) = 1+Km(m lnK−1), where m = 1+λb
λb

. Note that m is decreasing

in λb and when λb = 0,m =∞ and when λb =∞,m = 1. Note that

f ′(m) = mKm(lnK)2 > 0 for all K > 0,

and

f(1) = 1−K +K lnK ≥ 0 for all K > 0.

This implies that V̄ (p0;λb) is strictly increasing in λb.

Now, assume λ′b > λ′′b and consider V0(p;λ′′b ). Call p† the optimal belief at which switch

from bad arm to good arm happens. Note that we must have V0(p†;λ′′b ) ≥ 0. Suppose the

principal chooses the same cut off p† to switch from bad arm to good arm when the arrival

rate of the bad news arm is λ′b. Let’s call the value function under this policy to the left of

p† as Ṽ0(p;λ′b). Consider a belief p1 ≤ p†. We now show that Ṽ0(p1;λ′b) > V0(p1;λ′′b ). First

we observe that Ṽ0(p†;λ′b) > V0(p†;λ′′b ). This is because

Ṽ0(p†;λ′b) = V f (p†;λ′b) > V f (p†;λ′′b ) = V0(p†;λ′′b ),

since V f (p;λb) is increasing in λb. Now, we can write

V0(p1;λ′′b ) = (1− p1)

[
−c(1−K) + (c− F )

λ′′b
1 + λ′′b

(1−K
1+λ′′b
λ′′
b )

]

+ [p1 + (1− p1)K]

[
K

1
λ′′
b (V0(p†;λ′′b ) + c)− c

]
and

Ṽ0(p1;λ′b) = (1− p1)

[
−c(1−K) + (c− F )

λ′b
1 + λ′b

(1−K
1+λ′b
λ′
b )

]

+ [p1 + (1− p1)K]

[
K

1
λ′
b (V̄0(p†;λ′′b ) + c)− c

]
,

where K =
[

p1
1−p1

1−p†
p†

]
< 1. Since we have shown above that V̄ (p0;λb) is strictly increasing

in λb, we have Ṽ0(pf ;λ′b) > V0(p;λ′′b ). Next note that p† may or may not be the optimal

cutoff choice when the arrival rate is λ′b. Hence we must have V0(p;λ′b) > V0(p;λb) when

p < p† which in turn implies that p∗1(λ′b) < p∗1(λ′′b ) since V ′0(p, λb) > 0 when p ≥ p∗1(λb).
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Lemma 25. limλb→∞ p
∗
1(λb) =

F (1 + λg)

F (1 + λg) + λg(Γ −R)− c
and limλb→∞ p

∗
0(λb) =

c

λg(Γ −R)
.

Proof. Taking limit of A.16 as λb →∞ gives us

Cf0 =
λg

1 + λg
(Γ −R+ c).

This gives us

lim
λb→∞

V0(p;λb) = −pc− (1− p)F +
λg

1 + λg
(Γ −R+ c)p

= −F + p

[
F (1 + λg) + λg(Γ −R)− c

1 + λg

]
.

which yields

lim
λb→∞

p∗1(λb) =
F (1 + λg)

F (1 + λg) + λg(Γ −R)− c
.

Also note that

lim
λb→∞

p∗0(λb) = lim
λb→∞

c

Λ(Γ −R)
=

c

λg(Γ −R)
.

Lemma 26. If c > F (1 +λg) then there exists λb such that when λb > λb we have p∗1(λb) <

p∗0(λb).

Proof. First we note that

c > F (1 + λg) ⇐⇒
F (1 + λg)

F (1 + λg) + λg(Γ −R)− c
<

c

λg(Γ −R)
.

Next, note that p∗1(λb) is continuous in λb. Lemma 24 establishes that p∗1(λb) is decreasing

in λb. Also lemma 25 establishes that limλb→∞ p
∗
1(λb) =

F (1 + λg)

F (1 + λg) + λg(Γ −R)− c
and

limλb→∞ p
∗
0(λb) =

c

λg(Γ −R)
. Therefore, since

lim
λb→∞

p∗1(λb) =
F (1 + λg)

F (1 + λg) + λg(Γ −R)− c
<

c

λg(Γ −R)
= lim

λb→∞
p∗0(λb),
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there must exist λb such that p∗1(λb) <
c

λg(Γ −R)
when λb > λb. Note that p∗0 ≥

c

λg(Γ −R)

for all λb, which implies that p∗1(λb) < p∗0(λb) when λb > λb.

Lemma 27. If p∗1 < p∗0 then R = 1, F = 1 dominates R = 1, F = 0 for all prior belief

p0 ∈ (0, 1).

Proof. Recall the principal’s value function when R = F = 1 given by (A.18)

vF=1
∗ (p) :=



0 if p ∈ [0, p∗1),

v0(p;Cs0) if p ∈ [p∗1, p
s),

vf (ps) = v0(pf ;Cs0) = v1(pf ;Cs1) if p = ps,

v1(p;Cs1) if p > ps,

and when R = 1, F = 0 is given by

vF=0
∗ (p) :=


0 if p ∈ [0, p∗0),

v0(p;C∗0 ) if p ∈ [p∗0, 1].

From lemma 29, we know that if p∗1 < p∗0 then v1(p;Cs1) > v1(p;C∗1 ) for all p ∈ [ps, 1]

which implies that vF=1
∗ (p) > vF=0

∗ (p) for all p ∈ [ps, 1]. We are left to show that vF=1
∗ (p) >

vF=0
∗ (p) for all p ∈ [p∗0, p

s]. To that end, first note that vF=1
∗ (p∗0) = v0(p∗0;Cs0) > v1(p∗0;C∗1 ) =

0. From lemma 30 we know that v′1(p;C∗1 ) − v′0(p;Cs0) is single peaked and v′1(ps;C∗1 ) −

v′0(ps;Cs0) > 0, which implies that v1(p;C∗1 ) − v0(p;Cs0) attains it’s maximum value in

[p∗0, p
s] at either p∗0 or ps. Note that v0(ps;Cs0) = v1(ps;Cs1) > v1(ps;C∗1 ). Hence v1(p;C∗1 )−

v0(p;Cs0) < 0 when p ∈ [p∗0, p
s] and we are done.

Lemma 28. v0(p;Cs0) < v1(p;Cs1) if p ∈ [0, ps) and v0(p;Cs0) > v1(p;Cs1) if p ∈ (ps, 1].

Proof. We note that Cs1 and Cs0 are both positive. We evaluate v′′1(p;Cs1)− v′′0(p;Cs0) which

is given by
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Cs1

[
1 + λg

λ2
gp

2(1− p)

(
1− p
p

) 1
λg

]
− Cs0

[
1 + λb

λ2
bp(1− p)2

(
p

1− p

) 1
λb

]

=
1

p(1− p)

[
Cf1 (1 + λg)

λ2
gp

(
1− p
p

) 1
λg

− Cf0 (1 + λb)

λ2
b(1− p)

(
p

1− p

) 1
λb

]
︸ ︷︷ ︸

=Φ(p)

.

Since Cs1 and Cs0 are both positive, Φ(p) is strictly decreasing. Also note that limp↓0 Φ(p) =

∞ = − limp↑1 Φ(p) which implies that there exists a unique pd such that Φ(pd) = 0. We

next show that v′′1(ps;Cs1) − v′′0(ps;Cs0) = 0 by plugging in ps as defined in (A.15) (al-

gebra left to the reader) implying that pd = ps. Therefore v′′1(p;Cs1) − v′′0(p;Cs0) > 0

when p < ps and v′′1(p;Cs1) − v′′0(p;Cs0) < 0 when p > ps. Now we know that at ps,

v1(ps;Cs1) = v0(ps;Cs0) and v′1(ps;Cs1) = v′0(ps;Cs0). Hence we get v0(p;Cs0) < v1(p;Cs1) if

p ∈ [0, ps) and v0(p;Cs0) > v1(p;Cs1) if p ∈ (ps, 1].

Lemma 29. If p∗1 < p∗0, then v1(p;Cs1) > v1(p;C∗1 ) for all p.

Proof. Recall that v1(p;C∗1 ) is the value function of the principal when p ∈ [p∗0, 1] in the

case when F = 0. Since p∗1 < p∗0, we have vF=1
∗ (p∗0) > vF=0

∗ (p∗0) = 0. If p∗0 < ps, then

v0(p∗0;Cs0) > v1(p∗0;C∗1 ) = 0. We know from lemma 28 that v1(p∗0;Cs1) > v0(p∗0;Cs0) which

implies that v1(p∗0;Cs1) > v1(p∗0;C∗1 ). If p∗0 ≥ pf , then v1(p∗0;Cs0) > v1(p∗0;C∗1 ) = 0, since

ps > p∗1.

This implies that v1(p;Cs1) > v1(p;C∗1 ) for all p, since if C 6= C ′ then v1(p;C) 6= v1(p;C ′)

for any p.

Lemma 30. v′1(p;C∗1 )−v′0(p;Cs0) is single peaked and moreover if Cf1 > C∗1 then v′1(ps;C∗1 )−

v′0(ps;Cs0) > 0.

Proof. To see that v′1(p;C∗1 )− v′0(p;Cs0) is single peaked, following identical steps in lemma

28 we can show that v′′1(p;C∗1 )−v′′0(p;Cs0) is strictly decreasing and is positive below a cutoff

and negative above it, establishing that v′1(p;C∗1 )− v′0(p;Cs0) is single peaked.

Note that v′0(ps;Cs0) = v′1(ps;Cs1) by the definition of ps. Also note from lemma 29 that

Cs1 > C∗1 . v′1(ps;C∗1 )− v′0(ps;Cs0)is given by
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[
λg(Γ −R+ c)

1 + λg
− C∗1

[
1− ps

ps

] 1
λg

[
1
λg

+ ps

ps

]]
−

[
−λb(c− F )

λb + 1
+ Cs0

[
ps

1− ps

] 1
λb

[
1
λb

+ 1− ps

1− ps

]]
.

Since Cs1 > C∗1 we must have v′0(ps;Cs0)− v′1(ps;C∗1 ) > 0.

Lemma 31. Suppose p∗1 ≥ p∗0.

1. If vF=0
∗ (ps) > vF=1

∗ (ps), then vF=0
∗ (p) > vF=1

∗ (p) for all p ∈ [p∗0, 1].

2. If vF=0
∗ (ps) < vF=1

∗ (ps), then there exists p̂ ∈ [p∗1, p
s] such that vF=1

∗ (p) > vF=0
∗ (p)

when p > p̂, vF=1
∗ (p) < vF=0

∗ (p) when p ∈ (p∗0, p̂), and vF=1
∗ (p̂) = vF=0

∗ (p̂).

3. If vF=0
∗ (ps) = vF=1

∗ (ps), then vF=1
∗ (p) = vF=0

∗ (p) when p ≥ ps, and vF=1
∗ (p) < vF=0

∗ (p)

when p ∈ (p∗0, p
s).

In particular, if vF=0
∗ (·) and vF=1

∗ (·) cross, they cross exactly once.

Proof. We prove case by case.

1. vF=0
∗ (ps) > vF=1

∗ (ps): In this case C∗1 > Cs1 . This implies that vF=0
∗ (p) > vF=1

∗ (p)

when p ≥ ps. Also know from lemma 28 that vF=1
∗ (p) = v0(p;Cs0) < v1(p;Cs1) =

vF=0
∗ (p) when p < ps. This implies that vF=1

∗ (·) and vF=0
∗ (·) never cross.

2. vF=0
∗ (ps) < vF=1

∗ (ps): In this case we have C∗1 < Cs1 . We know from lemma 30 that

v′1(ps;C∗1 )− v′0(ps;Cs0) > 0 and v′1(p;C∗1 )− v′0(p;Cs0) is single peaked. It is easy to see

that limp↓0 v
′
1(p;C∗1 ) − v′0(p;Cs0) = −∞. Also note that v1(ps;C∗1 ) − v0(ps;Cs0) < 0

and v1(p∗1;C∗1 ) − v0(p∗1;Cs0) > 0. This implies that v1(p;C∗1 ) − v0(p;Cs0) must be

decreasing in some subset of [p∗1, p
s]. Since v′1(p;C∗1 ) − v′0(p;Cs0) is single peaked,

limp↓0 v
′
1(p;C∗1 )− v′0(p;Cs0) = −∞ and v′1(ps;C∗1 )− v′0(ps;Cs0) > 0, it must be the case

that v1(p;C∗1 ) − v0(p;Cs0) is decreasing in [p∗1, p
†] where p† < ps. This implies that

v1(p;C∗1 ) and v0(p;Cs0) cross exactly once at p̂ ∈ [p∗1, p
s] implying that vF=0

∗ (·) and

vF=1
∗ (·) cross exactly once in [p∗1, p

s]. It is easy to see that vF=0
∗ (·) and vF=1

∗ (·) do not

cross in [ps, 1].
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3. vF=0
∗ (ps) = vF=1

∗ (ps): In this case we have C∗1 = Cs1 , hence vF=1
∗ (p) = vF=0

∗ (p) when

p ≥ ps. Also from we know from lemma 28 that vF=1
∗ (p) = v0(p;Cs0) < v1(p;Cs1) =

vF=0
∗ (p) when p < ps. Hence vF=1

∗ (p) < vF=0
∗ (p) when p ∈ (p∗0, p

s).

The following corollary to the above lemma is useful.

Corollary 1. If p∗1 ≥ p∗0 and vF=0
∗ (ps) < vF=1

∗ (ps), then vF=0
∗ (·) and vF=1

∗ (·) cross exactly

once.

A.9 Unobserved allocation

Proof of lemma 2: Since R = 1 and F = 0, the agent has no incentives to look for bad news

on and off path and hence, a(p, t) = 1 is optimal.

Given that a(p, t) = 1, note that the principal’s belief drifts down in the absence of a

signal. The principal’s value function at any belief p is given by (A.6) restated below.

v(p) =
pλg(Γ − 1 + c)

1 + λg
− c+ C1(1− p)

[
1− p
p

] 1
λg

,

C1 and the stopping belief p̂0 (belief at which principal’s value is zero) are jointly determined

by imposing smooth-pasting and value matching with the function f(p) = 0 at p̂0. After

some algebra we find that p̂0 = c
λg(Γ−1) . The principal’s optimal stopping time is simply

the time t at which belief reach p̂0. If initial prior is less than or equal to p̂0, then it is

optimal to choose T ∗ = 0.

Proof of lemma 3: Suppose R = 1 and F ∈ (0, 1) and fix a stopping time for the principal

T . We know from lemma 32 that if the agent searches for bad news at some time t̄ < T ,

he must be looking exclusively for bad news when t ∈ [t̄, T ]. Note that in this case the

principal has a profitable deviation. She can simply lower her stopping time to t̄ and be

better off since she knows that after t̄, the agent can only bring her bad news that leads to
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the abandonment of the project and she can save the cost of experimentation by abandoning

the project herself at t̄. Therefore in any equilibrium when R = 1 and F ∈ (0, 1), it must be

the case that the agent using the good news arm solely before the stopping time is reached.

Notice that given this equilibrium behavior of the agent, the principal is equally better off

by setting R = 1 and F = 0. Hence R = 1 and F ∈ (0, 1) does not improve upon R = 1

and F ∈ (0, 1).

Lemma 32. Suppose R = 1 and F ∈ (0, 1). Fix a stopping time for the principal T . Fix a

strategy of the agent a such that T0 =
∫ T

0 (1− a(p, t))dt > 0. Consider another strategy for

the agent ā such that ā(p, t) = 1 when t ∈ [0, T − T0] and ā(p, t) = 0 when t ∈ (T0, T ]. The

agent strictly prefers ā to a.

Proof. When θ = 1. B signal never arrives under both strategies. The ex ante probability

of arrival of G signal by T is the same under both strategies since the amount of time

allocated to search for good news is T − T0 under both strategies. If G signal arrives, the

value of the agent is 1 under either strategy. If no signal arrives by T , then the value of the

agent is equal to 1− e−T under both strategies. Hence when θ = 1, both policies yield the

same ex ante payoff to the agent.

When θ = 0. G signal never arrives under both strategies. If no signal arrives by T , then

the value of the agent is equal to 1 − e−T under both strategies. The ex ante probability

of arrival of a B signal by T is the same under both strategies since the amount of time

allocated to search for bad news is T0 under both strategies. However, note that B signal

arrives later in expectation in strategy ā compared to a since the agent has delayed the use

of bad news arm in ā. Since F < 1, the agent strictly prefers ā to a, since the agent can

collect a flow wage of 1 for longer in expectation under ā.

Lemma 33. Suppose R = F = 1, then the principals optimal policy is one of the following

1. G policy: Search for good news when p ∈ [p̂0, 1].

2. G−B −G policy: There exists cutoff p̃ with p̂0 < p̃ < ps such that

� Search for good news when p ∈ [p̂0, p̃] ∪ [ps, 1].
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� Search for bad news when p ∈ (p̃, ps).

3. B −G policy:

� Search for good news when p ∈ [ps, 1].

� Search for bad news when p ∈ [p∗1, p
s).

Proof. Lemma 20 establishes that in the optimal policy there can be at most one switch

from bad new arm to good news arm in any experimentation region [p†, 1]. Suppose there

is no switch, then it is easy to see that the optimal policy must be to use the good news

arm in the hiring region and thereby, the optimal lower cutoff of experimentation must be

p̂0 as defined in lemma 2. If there is a switch then we have cases (2) and (3) as possibilities.

Using a similar argument as in lemma 22 we can show that if there is a switch from bad

news arm it must be at ps defined in (1.4). In the B−G policy, the optimal stopping belief

is equal to p∗1 as in the case of observed allocation. In the G − B − G policy, the optimal

stopping belief is p̂0 by the same argument as in lemma 2. If p∗1 < p̂0 then the optimal policy

is the B −G policy. The proof is delivered by by following identical steps as in lemma 27.

If p∗1 < p̂0 then the optimal policy must be G−B −G since there is switch from bad news

arm to good news arm at ps. We denote the belief at which optimal policy switches from

good news arm to bad news arm in the G−B −G policy as p̃.
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Appendix B

Appendix: Supervising to Motivate

B.1 Preliminaries

Definition 18. I define two classes of strategy profiles as follows.

1. Three phase strategy profile: A three phase strategy profile σ = (xσH , x
σ
L, e

σ) is a

strategy profile that satisfies the following on path. Given cutoffs µ̄ and µ, with µ > µ̄

� Separating Phase: When µL > µ̄: xσH(µL, µa) 6= xσL(µL, µa).

� Pooling Phase: When µL ∈ [µ, µ̄]: xσH(µL, µa) = xσL(µL, µa) = xp(µL).

� Quitting Phase: When µL < µ: xσH(µL, µa) =
γλ

a
; xσL(µL, µa) = 0.

2. Two phase strategy profile: A two phase strategy profile σ = (xσH , x
σ
L, e

σ) is a

strategy profile that satisfies the following on path.

� Pooling Phase: When µL ≥ µ: xσH(µL, µa) = xσL(µL, µa) = xp(µL).

� Quitting Phase: When µL < µ: xσH(µL, µa) =
γλ

a
; xσL(µL, µa) = 0.

Proof of Lemma 5: Note that starting at a state (µ, 0), the strategy profile prescribes that

the agent never exerts effort and the principal invests 0. Suppose the agent deviates and
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exerts effort for a small time interval ∆, then the agent’s payoff is given by

µλ∆r(1− γ)− rc∆,

=∆[µλr(1− γ)− rc].

For any positive ∆, the payoff to the agent from this deviation is negative if λr(1−γ)−rc < 0

or µ ≤ c

λ(1− γ)
. Hence the agent has no incentive to deviate. Given the agent’s behavior,

it is easy to see that the behavior of both types of principal are optimal.

Proof of Lemma 6 : Suppose L(D) > 0. Consider the deviation of type H principal to an

investment level of
γλ

a
for all p ∈ D. By Definition 3, everywhere in the interval (p1, p2)

the agent’s belief is equal to what it would have been in the absence of deviation. Hence,

the continuation equilibrium at p1 is unchanged given the agent exerts effort everywhere in

(p1, p2). The agent’s flow utility is higher when the principal invests
γλ

a
compared to the

on-path investment level xP (p) when p ∈ D, hence, given that continuation play is identical

at p1, the agent continues to exert effort in-spite of the deviation. Since continuation play

does not change at p1, and L(D) > 0, the utility of types H is strictly higher by deviating

to
γλ

a
for p ∈ D, since type H is now choosing her optimal level of investment.

B.2 Low cost of effort

In this section, I provide the proofs of the case when C1 is violated, i.e. cost of effort is low.

Proof of Proposition 9: We first show that the strategy profile is an equilibrium, we then

argue that it is indeed the principal’s optimal equilibrium

First we observe that since the strategy profile is fully separating, on equilibrium path

the agent knows perfectly the type of principal he is facing when making his effort decision.

I now show that no player has any incentive to deviate from the candidate equilibrium

strategy profile.

� Type H principal: Under our candidate equilibrium strategy profile, type H principal

chooses her flow optimal investment
λγ

a
after any history while inducing effort from
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the agent. Clearly, type H principal cannot achieve a higher payoff by deviating to

any other strategy.

� Type L principal: First we observe that the optimal level of investment of type L

with belief µ is equal to
µλγ

a
since it maximizes the flow value of the type L principal

given by

µλγ(1 + x)− ax
2

2
.

Note that
µγλ

a
is linear and increasing in µ. Also,

c

µλ(1− γ)
− za

r(1− γ)
− 1 is de-

creasing in µ, taking a value of ∞ as µ goes to 0 and is less than
γλ

a
when µ = 1

since za = λ(1 − γ)(1 +
γλ

a
) − c > 0 by definition. Hence, there must exist a unique

µc such that

µcγλ

a
=

c

µcλ(1− γ)
− za

r(1− γ)
− 1.

Next, define µ1 such that

f(µ1) =
c

µ1λ(1− γ)
− za

r(1− γ)
− 1 =

λγ

a
.

Note that since C1 does not hold, µ1 ≤ µ. Also f(µ) >
λγ

a
for all µ < µ1. Recalling

the definition of µ, we can say that there exists a µs ∈ (µ1, µ] such that if µ < µs

the type L principal strictly prefers to quit the relationship, if µ > µs the type L

principal strictly prefers to induce effort by investing f(µ), and is indifferent when

µ = µs. Also, it is easy to see that if µ1 < µ then f(µs) <
λγ

a
. Since the principal is

indifferent between hiring and firing at µs, the value of the type L principal at µs is

given by

U∗L(µs, µa = 0, x∗L(µs)) = 0 = dt

[
r

(
µsλγ(1 + x∗L(µs))− a

(x∗L(µs)2)

2

)
+ µsλzp

]
,

which implies that

r

(
µsλγ(1 + x∗L(µs))− a

(x∗L(µs)2)

2

)
+ µsλzp = 0.
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Now observe that r
(
µλγ(1 + x∗L(µ))− a (x∗L(µ)2)

2

)
+ µλzp is increasing in µ, which

implies that the value of the principal is strictly positive when µ ∈ (µs, µc]. Therefore,

the type L has no incentive to deviate when µL ∈ [µs, µc] since by deviating to a lower

investment than x∗L(µL) type L principal only pauses the relationship (since the agent

does not exert effort) and by deviating to a higher investment the principal does no

better because x∗L(µ) < x∗H(µ) for all µ ∈ [µs, µc]. Note that when µ ∈ [µc, 1), type L

principal is investing at her myopic optimal level and cannot do better by deviating to

any other investment level. Hence I have shown that type L principal has no incentive

to deviate from her candidate equilibrium strategy.

� Agent: I first show that if µL ≤ µc, then the value to the agent facing a type L

principal is 0 in the candidate equilibrium. The value of an agent facing type L

principal can be written as

V ∗(µL, µa+ = 0, x∗L) = rdt[µLλ(1− γ)(1 + x∗L)− c]

+ (1− rdt)[µLλdtza + (1− µLλdt)V ∗(µL + dµL, µa+ = 0, x∗L)],

where

dµL = −λµL(1− µL)dt.

The above expression can be rearranged to give

V ∗(µL, µa+ = 0, x∗L) = dt[r(µLλ(1− γ)(1 + x∗L)− c) + µLλza]︸ ︷︷ ︸
A(µL)

+ (1− rdt)(1− µLλdt)V ∗(µL + dµL, µa+ = 0, x∗L)︸ ︷︷ ︸
B

.

The value of the agent facing a type L principal can be decomposed into an pseudo

flow term A and a continuation value B adjusted for discounting and the probability

that agent will face a type L principal after dt. Plugging in for x∗L, it is straightforward

to see that A(µL) = 0. Also note that we can decompose the continuation value after

B in a similar manner. Note that for any belief of type L principal µ ≤ µc, we have
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A(µ) = 0. V ∗(µL, µa+ = 0, x∗L) is just a weighted aggregate of A(µ) for µ ∈ [µs, µL]

and hence must be equal to 0. Therefore, the agent has no incentive to deviate and

terminate the relationship when µL ∈ (µs, µc].

Next, I show that the value of the agent is strictly positive when µL ∈ (µc, 1). To

see this, simply note that r(µLλ(1− γ)(1 + x∗L)− c) + µLλza > 0 when µL ∈ (µc, 1).

Therefore, the agent has no incentive to deviate and terminate the relationship when

µL ∈ (µc, 1).

This establishes that the strategy profile is indeed an equilibrium. I now show that this

is also the principal optimal equilibrium. First we observe that the type L principal always

invests strictly lower than type H principal’s investment who invests optimally. Hence, from

Lemma 6 we know that any equilibrium with pooling can be improved upon. This implies

that the principal optimal equilibrium must be a fully separating equilibrium. Note that in

our candidate equilibrium, the type L principal invests above her optimal investment only

when the value of the agent is 0, i.e. the agent’s participation constraint binds. Hence, the

type L principal cannot decrease her investment when the agent’s IR binds and be better

off. This establishes that the equilibrium is indeed optimal for the principal.

Lemma 34. Consider any equilibrium σ with separation at (µL, µa) and the agent facing

type L principal exerts effort following investment xL(µL, µa) >
µLλγ

a
. Define V σ(µL, µa+ =

0, xL(µL, µa)) as the value of the agent facing type L principal under σ. Then V σ(µL, µa+ =

0, xL(µL, µa)) = 0

Proof. We start by observing that
µLγλ

a
is the flow optimal level of investment of type L

principal at (µL, µa). Suppose V σ(µL, µa+ = 0, xL(µL, µa)) > 0, then consider the deviation

of type L at (µL, µa) to x′ =
µLγλ

a
. We observe that any downward deviation of the type L

principal does not change the continuation play as long as the agent continues to exert effort

at (µL, µa). This is because after a downward deviation the agent continues to believe that

he is facing the type L principal and the principal’s deviation at (µL, µa) does not affect her

belief going forward given that the agent continues to exert effort. There are two possible

cases
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1. The value of the agent after the deviation, V σ(µL, µa+ = 0, x′) > 0. In this case

the agent continues to exert effort and the type L principal is better off because she

improves her instantaneous payoff while keeping the continuation unchanged.

2. The value of the agent after the deviation, V σ(µL, µa+ = 0, x′) ≤ 0. In this case

consider an alternate deviation from type L principal x′′ = xL(µL, µa) − ε > µLγλ

a

where ε is chosen such that V σ(µL, µa+ = 0, x′′) > 0. Under this alternate deviation

the agent continues to exert effort and the type L principal is better off because she

improves her instantaneous payoff while keeping the continuation unchanged.

Hence V σ(µL, µa+ = 0, xL(µL, µa)) = 0.

B.3 High cost of effort

In this section, I provide the proofs of the case when C1 is satisfied , i.e. cost of effort is

high.

Definition 19. Suppose µ0 ≤ µ̄. Consider a two phase strategy profile σ̄ such that

x̄H(µL, µa) = x̄L(µL, µa) = x̄(µL), such that x̄(µL) ∈ [
λγ

a
, x̄] if µL ∈ [µ, µ0];

x̄H(µL, µa) =
γλ

a
if µL < µ;

x̄L(µL, µa) = 0 if µL < µ;

ē(µL, µa+, x) =


0 if µa+ = 0 and µL < µ0,

1 otherwise .

We call σ̄ feasible if it satisfies the individual rationality (IR) constraints of type L prin-

cipal (see lemma 35) and the agent (see lemma 36) for all µL ∈ [µ, µ0]. Note that if σ̄ is

IR for the type L principal then it is IR for type H principal.

Lemma 35. The IR constraint of type L principal under σ̄ when µL = µ ∈ [µ, µ0] is given

by
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∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µλγ(1 + x̄(φ))− 1

2
ax̄2(φ)]

dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ µ− µ

1− µ
zp ≥ 0.

(ICLµ )

Proof. Starting at µL = µ ∈ [µ, µ0], the probability that a type L principal observes a

output and transitions to become a type H principal by the time µL = µ is given by

µ(1− e−λ(t(µ)−t(µ))) where t(µ)− t(µ) is the time it takes for µL to drift down from µ to µ.

Recall that in the absence of observing a output

dµL

dt
= −µL(1− µL)λ.

Rearranging and integrating both sides I get

∫ µ

µ

dφ

φ(1− φ)
= −λ

∫ t(µ)

t(µ)
dt,

which gives us

e−λ(t(µ)−t(µ)) =
µ

1− µ
1− µ
µ

,

leading to

µ(1− e−λ(t(µ)−t(µ))) =
µ− µ
1− µ

.

Note that if the principal is type H at µL = µ, then under σ̄ her value is zp. The value of

type L principal under σ̄ when µL = µ is then given by

U σ̄L(µ) =

∫ t(µ)

t(µ)
re−r(s−t(µ))[µ(s)λγ(1 + x̄(µ(s)))− 1

2
ax̄2(µ(s))]ds+ e−r(t(µ)−t(µ))

µ− µ
1− µ

zp.

Changing the variable of integration from time to type L principal’s belief we get

U σ̄L(µ) =

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µλγ(1+x̄(φ))−1

2
ax̄2(φ)]

dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ µ− µ

1− µ
zp.

103



Lemma 36. The IR constraint of the agent under σ̄ when µL = µ ∈ [µ, µ0] is given by

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µ0λ(1− γ)(1 + x̄(φ))− c] dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ µ0 − µ

1− µ
za ≥ 0.

(ICAµ )

Proof. Starting at µL = µ0, the probability that the agent will face type H principal is

given by µ0(1− e−λ(t(µ)−t(µ0))) where t(µ)− t(µ0) is the time it takes for µL to drift down

from µ0 to µ. Following the steps in the proof of lemma 35, we get

µ0(1− e−λ(t(µ)−t(µ0))) =
µ0 − µ
1− µ

.

Note that if the principal is type H at µL = µ, then under σ̄ the value to the agent at

µL = µ is za. The value of the agent under σ̄ when µL = µ is then given by

V σ̄(µ) =

∫ t(µ)

t(µ)
re−r(s−t(µ))[µ0λ(1− γ)(1 + x̄(µ(s)))− c]ds+ e−r(t(µ)−t(µ))

µ0 − µ
1− µ

za.

Changing the variable of integration from time to type L principal’s belief we get

V σ̄(µ) =

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µ0λ(1−γ)(1+x̄(φ))−c] dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ µ0 − µ

1− µ
za.

Definition 20. We call the two phase strategy profile σ̄ defined in 19 just feasible if under

σ̄ the IR constraint for type L principal binds for all µ ∈ [µ, µ0]. I denote a just feasible

strategy profile by σ̂ and the corresponding pooling investment function by x̂ : [µ, µ0] →

[λγa , x̄].

Lemma 37. Suppose σ̂ is a just feasible strategy profile. The just feasible pooling investment
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function x̂ is the unique solution to the first order non linear differential equation given by:

x̂′(µ) =
µλγ(1 + x̂(µ))(1 + r

λ)− ax̂(µ)2

2 ( rλ + 2µ− 1)

µ(1− µ)[ax̂(µ)− µλγ]
.

Proof. Denote by U σ̂T (µ), the value of a type T ∈ {L,H} principal under σ̂ at µL = µ ≤ µ0.

Then by definition of σ̂, we must have U σ̂L(µ) = 0 for all µ ∈ [µ, µ0]. This means

U σ̂L(µ) = rdt

[
µλγ(1 + x̂(µ))− ax̂2(µ)

2

]
+ (1− rdt)[µλdtU σ̂H(µ+ dµ) + (1− µλdt)U σ̂L(µ+ dµ)] = 0.

Since by definition of σ̂, U σ̂L(µ+ dµ) = 0 we get

U σ̂L(µ) = rdt

[
µλγ(1 + x̂(µ))− ax̂2(µ)

2

]
+ (1− rdt)µλdtU σ̂H(µ+ dµ) = 0.

Since x̂(µ) ∈ [λγa , x̄] and 0 ≤ U σ̂H(µ) ≤ zp for all µ ∈ [µ, µ0], U σ̂H(µ) is continuous on [µ, µ0]

(Perhaps a lemma for this). This implies that lim∆µ→0 U
σ̂
H(µ + ∆µ) = U σ̂H(µ). Which

implies that we can write

U σ̂L(µ) = dt

[
r

[
µλγ(1 + x̂(µ))− ax̂2(µ)

2

]
+ µλU σ̂H(µ)

]
= 0.

Since by definition of σ̂, U σ̂L(µ) = 0, which implies that

r

[
µλγ(1 + x̂(µ))− ax̂2(µ)

2

]
+ µλU σ̂H(µ) = 0. (B.1)

for all µ ∈ [µ, µ0] except for any set D ⊂ [µ, µ0] of measure zero. Further simplification of

equation B.1 yields

x̂(µ) =
rµλγ +

√
r2µ2λ2γ2 + 2arµλ(rγ + U σ̂H(µ))

ar
.
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Observe that U σ̂H(µ) = zp which implies that

x̂(µ) =
rµλγ +

√
r2µ2λ2γ2 + 2arµλ(rγ + zp)

ar
=
λγ

a
. (B.2)

Recall from lemma 35 that U σ̂L(µ) is given by

U σ̂L(µ) =

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µλγ(1+x̂(φ))−1

2
ax̂2(φ)]

dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ µ− µ

1− µ
zp.

Similarly U σ̂H(µ) is given by

U σ̂H(µ) =

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[λγ(1 + x̂(φ))− 1

2
ax̂2(φ)]

dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ

zp.

Evaluating U σ̂H(µ)− U σ̂L(µ) we get:

U σ̂H(µ)−U σ̂L(µ) = (1−µ)

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[γ(1+x̂(φ))]
dφ

φ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ 1− µ

1− µ
zp.

Under σ̂, U σ̂L(µ) = 0, hence we get

U σ̂H(µ) = (1− µ)

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[γ(1 + x̂(φ))]
dφ

φ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ 1− µ

1− µ
zp,

= (1− µ)

[∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[γ(1 + x̂(φ))]
dφ

φ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ zp

1− µ

]
,

= (1− µ)

[
1− µ
µ

] r
λ

[∫ µ

µ

[
φ

1− φ

] r
λ

r[γ(1 + x̂(φ))]
dφ

φ(1− φ)
+

[
µ

1− µ

] r
λ zp

1− µ

]
.

Plugging in U σ̂H(µ) in equation B.1 we get

0 = r[µλγ(1 + x̂(µ))− 1

2
ax̂(µ)2]

+ µλ(1− µ)

[
1− µ
µ

] r
λ

[∫ µ

µ

[
φ

1− φ

] r
λ

r[γ(1 + x̂(φ))]
dφ

φ(1− φ)
+

[
µ

1− µ

] r
λ zp

1− µ

]
,
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which on rearrangement yields

r[
1

2
ax̂(µ)2 − µλγ(1 + x̂(µ))]

1

µλ(1− µ)

[
µ

1− µ

] r
λ

=

∫ µ

µ

[
φ

1− φ

] r
λ

r[γ(1 + x̂(φ))]
dφ

φ(1− φ)
+

[
µ

1− µ

] r
λ zp

1− µ
.

Differentiating the LHS above equation with respect to µ we get

dLHS

dµ
= r

[
x̂′(µ)(ax(µ)− µλγ)− λγ(1 + x̂(µ))

] 1

µλ(1− µ)

[
µ

1− µ

] r
λ

+ r[
1

2
ax̂(µ)2 − µλγ(1 + x̂(µ))]

r
λ + 2µ− 1

λµ2(1− µ)2

[
µ

1− µ

] r
λ

.

Differentiating the RHS above equation with respect to µ we get

dRHS

dµ
=

[
µ

1− µ

] r
λ r[γ(1 + x̂(µ))]

µ(1− µ)
.

On equating dLHS
dµ to dRHS

dµ and and simplifying we get

x̂′(µ) =
µλγ(1 + x̂(µ))(1 + r

λ)− ax̂(µ)2

2 ( rλ + 2µ− 1)

µ(1− µ)[ax̂(µ)− µλγ]
.

Note that the above expression is a first order non linear differential equation and standard

results in the theory of differential equation guarantee existence and uniqueness of the

solution. The precise solution x̂(µ) is pinned down by using the boundary condition given

by equation B.2.

Definition 21. For any pooling investment function x(·) defined for µ ∈ [µ, µ0]. Define the

principal average investment under x(·) at µ1, A(x, µ1) as the unique solution of

∫ t(µ)

t(µ1)
re−r(s−t(µ1))x(µ(s))ds =

∫ t(µ)

t(µ1)
re−r(s−t(µ1))A(x, µ1)ds.

Note that A(x, µ1) is a constant for a given pooling investment function x and belief µ1.
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Lemma 38. A(x̂, µ) is increasing in µ.

Proof. Recall from lemma 37 that

x̂′(µ) =
µλγ(1 + x̂(µ))(1 + r

λ)− ax̂(µ)2

2 ( rλ + 2µ− 1)

µ(1− µ)[ax̂(µ)− µλγ]
.

It is easy to see that the denominator µ(1 − µ)[ax̂(µ) − µλγ] is always positive. We focus

on the numerator. In particular I define x̃(µ) such that the numerator is equal to 0. That

is

µλγ(1 + x̃(µ))(1 +
r

λ
)− ax̃(µ)2

2
(
r

λ
+ 2µ− 1) = 0.

On solving the quadratic equation we have

x̃(µ) = β(µ) +
√
β(µ)2 + 2β(µ),

where

β(µ) =
µλγ(1 + r

λ)

a( rλ + 2µ− 1)
.

It can be shown that

β′(µ) is


≥ 0 if r

λ ≥ 1,

< 0 if r
λ < 1.

This implies that

x̃′(µ) is


≥ 0 if r

λ ≥ 1,

< 0 if r
λ < 1.

Note that

x̂′(µ) > 0 if x̂(µ) < x̃(µ),

x̂′(µ) = 0 if x̂(µ) = x̃(µ),

x̂′(µ) < 0 if x̂(µ) > x̃(µ).
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It can be shown that

lim
µ↑1

x̃(µ) = lim
µ↑1

x̂(µ) =
λγ +

√
λ2γ2 + 2aλγ

a
.

and x̂′(µ) > 0, implying that x̂(µ) < x̃(µ).

Claim 1. If r
λ ≥ 1 then x̂(µ) is increasing in [µ, 1].

Proof. We have x̂(µ) < x̃(µ) and limµ↑1 x̃(µ) = limµ↑1 x̂(µ). Suppose x̂(µ) and x̃(µ) intersect

in [µ, 1) . In particular, suppose that the smallest belief at which they intersect is µ1 ∈ [µ, 1).

That is x̂(µ1) = x̃(µ1). Then we know that x̂′(µ1) = 0. We also know that x̃′(µ1) ≥ 0 since

r
λ ≥ 1. This implies that x̂(µ1 − ε) ≥ x̃(µ1 − ε) for some ε > 0, which contradicts that µ1 is

the smallest belief at which x̂(µ) = x̃(µ). Therefore I have shown that x̂(µ) and x̃(µ) never

intersect when µ < 1. This implies that x̂(µ) is increasing in [µ, 1].

Claim 2. If r
λ < 1 then x̂(µ) is either increasing or single peaked in [µ, 1].

Proof. I first show that if x̂(µ) and x̃(µ) intersect, then they intersect exactly once. To

that end suppose that x̂(µ2) = x̃(µ2). Note that since r
λ < 1, x̃′(µ2) < 0. Also x̂′(µ2) = 0,

which implies that x̂(µ) > x̃(µ) when µ ∈ (µ2, µ2 + ε) for some ε > 0. Using an argument

identical to claim 1 we can say that x̂(µ) and x̃(µ) never intersect in (µ2, 1). This implies

that if x̂(µ) and x̃(µ) intersect, then they intersect exactly once. Note that when x̂(µ) and

x̃(µ) intersect, x̂(µ) is single peaked (increasing before intersection and decreasing after).

If x̂(µ) and x̃(µ) never intersect then x̂(µ) is increasing in [µ, 1] because x̂(µ) ¡ x̃(µ) when

µ ∈ [µ, 1].

From Claim 1 and Claim 2 there are two possible cases.

1. x̂(µ) is increasing in [µ, 1]: In this case it is easy to see that A(x̂, µ) is increasing in µ.

2. x̂(µ) is single peaked in [µ, 1]: First we observe that A(x̂, 1) =
λγ+
√
λ2γ2+2aλγ
a because

when µ = 1, the the principal is essentially of type H and the investment of a type L

principal such that her value is equal to 0 is given by
λγ+
√
λ2γ2+2aλγ
a . Next, A(x̂, µ) <

A(x̂, 1) when µ < 1 since the type L principal’s average investment under x̂ is always
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less than that of the type H principal. Suppose x̂(µ) is increasing in [µ, µ1) and

decreasing in (µ1, 1). As shown in case(1), A(x̂, µ) is increasing when µ ∈ [µ, µ1).

Since x̂(µ) is decreasing in (µ1, 1), it must be the case that x̂(µ) > limµ↑1 x̂(µ) =

λγ+
√
λ2γ2+2aλγ
a when µ ∈ [µ1, 1). In particular note that x̂(µ) >

λγ+
√
λ2γ2+2aλγ
a >

A(x̂, µ) when µ ∈ [µ1, 1). This implies that A(x̂, µ) is increasing when µ ∈ [µ1, 1).

Hence A(x̂, µ) is increasing in µ.

Definition 22. Define the agent minimum average investment at µ† > µ, B(µ†) as the

unique solution of

∫ t(µ)

t(µ†)
re−r(s−t(µ

†))
[
µ†λ(1− γ)(1 +B(µ†))− c

]
ds+ e−r(t(µ)−t(µ†))µ

† − µ
1− µ

za = 0.

Lemma 39. B(µ†) is decreasing in µ†.

Proof. I integrate the expression

∫ t(µ)

t(µ†)
re−r(s−t(µ

†))
[
µ†λ(1− γ)(1 +B(µ†))− c

]
ds+ e−r(t(µ)−t(µ†))µ

† − µ
1− µ

za = 0.

to get

[
1−

[
µ

1− µ
1− µ†

µ†

] r
λ

] [
µ†λ(1− γ)(1 +B(µ†))− c

]
+

[
µ

1− µ
1− µ†

µ†

] r
λ µ† − µ

1− µ
za = 0.

Which can be rewritten as

0 =

[
1−

[
µ

1− µ
1− µ†

µ†

] r
λ

] [
µ†λ(1− γ)(1 +

λγ

a
)− c

]

+

[
µ

1− µ
1− µ†

µ†

] r
λ µ† − µ

1− µ
za +

[
1−

[
µ

1− µ
1− µ†

µ†

] r
λ

] [
µ†λ(1− γ)

(
B(µ†)− λγ

a

)]
.
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I define V̄ (µ; B̄) as

V̄ (µ; B̄) =

[
1−

[
µ

1− µ
1− µ
µ

] r
λ

] [
µλ(1− γ)(1 +

λγ

a
)− c

]

+

[
µ

1− µ
1− µ
µ

] r
λ µ− µ

1− µ
za +

[
1−

[
µ

1− µ
1− µ
µ

] r
λ

] [
µλ(1− γ)

(
B̄ − λγ

a

)]
.

It is easy to see that if B̄1 > B̄2 then V̄ (µ; B̄1) > V̄ (µ; B̄2) for all µ. Therefore, if V̄ (µ; B̄) =

0, then B̄ must be unique, which in turn implies that as B̄ goes up the belief µ that solves

V̄ (µ; B̄) = 0, decreases.

Definition 23. Define µ̄ as the belief at which

B(µ̄) =
λγ

a
.

Lemma 40. Autarkic equilibrium exists at state (µ, 0) when µ ∈ [µ, µ̄].

Proof. Consider a strategy profile σm, where

xmH(µ, µa) =
λγ

a
; xmL (µ, µa) =


λγ
a if µ ≥ µ

0 if µ < µ

em(µ, µa+, x) =


0 if µa+ = 0,

1 if µa+ = 1.

At the state (µ̄, 0), note that by the definition of µ̄, the value of the agent V m(µ̄) under

σm is equal to 0. Note that the autarkic strategy profile (defined in the proof of Lemma

5) starting at state (µ̄, 0) specifies s strictly lower level of investment for type L principal

in when µL ∈ [µ, µ̄] compared to σm. Hence, the value of the agent under the autarkic

strategy profile is strictly negative if the agent chooses to deviate and exert effort at any

point. Hence, an autarkic equilibrium exists at state (µ̄, 0). It is easy to see that the above

argument holds for all states (µ, 0) such that µ ∈ [µ, µ̄] and hence , an autarkic equilibrium
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exists at state (µ, 0) such that µ ∈ [µ, µ̄].

Lemma 41. Suppose there exists a feasible two phase strategy profile σ at state S = (µ1, 0)

with µ1 < µ̄ and V σ(S) > 0. Then, there exists another feasible two phase strategy profile

σ0 at S such that V σ0(S) = 0.

Proof. Suppose xσ is the pooling investment function in the pooling region [µ, µ1] under σ.

First observe that the agent’s value at any µL = µ ∈ [µ, µ1] under σ is given by

V σ(µ) =

∫ µ

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µ1λ(1−γ)(1+xσ(φ))−c] dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ
µ

] r
λ µ1 − µ

1− µ
za.

Note that V σ(µ) is continuous in [µ, µ1]. Since V σ(µ1) > 0, we have two cases.

Case 1: V σ(µ) > 0 for all µ ∈ [µ, µ1]: Consider an alternate two phase strategy profile σ′ with

the following investment function in the pooling phase:

xσ
′
(µ) =


xσ(µ) if µ ∈ [µ, µ̂],

λγ
a if µ ∈ (µ̂, µ1].

where µ̂ ∈ [µ, µ1]. The value of the agent at µL = µ1 under σ′ is given by

V σ′(µ1; µ̂) =

∫ µ̂

µ

[
1− µ
µ

φ

1− φ

] r
λ

r[µ1λ(1− γ)(1 + xσ(φ))− c] dφ

λφ(1− φ)

+

∫ µ1

µ̂

[
1− µ
µ

φ

1− φ

] r
λ

r[µ1λ(1− γ)(1 +
λγ

a
)− c] dφ

λφ(1− φ)

+

[
µ

1− µ
1− µ
µ

] r
λ µ1 − µ

1− µ
za.

Next, note that V σ′(µ1; µ̂ = µ) < 0. To see this note that from lemma 39 we know

that B(µ1) > λγ
a since B(µ̄) = λγ

a and µ1 < µ̄. Since B(µ1) > λγ
a , we must have
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∫ µ1

µ

[
1− µ1

µ1

φ

1− φ

] r
λ

r[µ1λ(1−γ)(1+
λγ

a
)−c] dφ

λφ(1− φ)
+

[
µ

1− µ
1− µ1

µ1

] r
λ µ1 − µ

1− µ
za < 0.

Also note that V σ′(µ1; µ̂ = µ1) = V σ(µ1) > 0 by assumption. It is easy to see

that V σ′(µ1; µ̂) is continuous in µ̂ which implies that there must exist a µ̃ such that

V σ′(µ1; µ̂ = µ̃) = 0. I now show that the strategy profile σ′ with µ̂ = µ̃ is feasible. I

first show that σ′ satisfies the IR constraints of the type L principal for all µ ∈ [µ, µ1].

Since σ is feasible, the IR constraints of the the type L principal for all µ ∈ [µ, µ̃] are

satisfied. Note that xσ(µ) ≥ xσ
′
(µ) = λγ

a for all µ ∈ (µ̃, µ̄] which implies that the IR

constraints of the the type L principal for all µ ∈ (µ̃, µ̄] are satisfied.

Next I show that σ′ satisfies the IR constraints of the agent for all µ ∈ [µ, µ1]. On

the lines argued above, it is easy to see that the IR constraints of the the agent for

all µ ∈ [µ, µ̃] are satisfied. Next note that

µ1λ(1− γ)(1 +
λγ

a
)− c < 0,

which implies that the value of the agent under σ′ at µL = µ, V σ′(µ) is increasing in

µ when µ ∈ (µ̃, µ1]. Since V σ′(µ1) = 0, it must be the case that V σ′(µ1) > 0 for all

µ ∈ (µ̃, µ1], which establishes that which implies that the IR constraints of the the

agent for all µ ∈ (µ̃, µ̄] are satisfied.

Since σ′ with µ̂ = µ̃ satisfies the IR constraints of both type L principal and the

agent when µ ∈ [µ, µ1], σ′ with µ̂ = µ̃ is feasible and V σ′(µ1) = 0 and hence proof is

complete.

Case 2: There exists a setMσ ⊂ [µ, µ1] such that V σ(µ) = 0 for µ ∈Mσ: In this case, define

µ̃ = supMσ. Consider an alternate two phase strategy profile σ′ with the following

investment function in the pooling phase:
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xσ
′
(µ) =


xσ(µ) if µ ∈ [µ, µ̃],

c
µ1λ(1−γ) − 1 if µ ∈ (µ̃, µ1].

Note that µ1λ(1− γ)(1 + xσ
′
(µ))− c = 0 when µ ∈ (µ̃, µ1], this implies that V σ′(µ) = 0

when µ ∈ (µ̃, µ1]. This implies that the agent’s IR constraint’s are satisfied for µ ∈ [µ, µ1]

under σ′. Next observe that V σ(µ) > V σ′(µ) = 0 when µ ∈ (µ̃, µ1]. This implies that if σ′

is IR for type L principal, since σ′ specifies a weakly lower level of investment compared to

σ when µ ∈ (µ̃, µ1]. Since σ′ satisfies the IR constraints of both type L principal and the

agent when µ ∈ [µ, µ1], σ′ is feasible and V σ′(µ1) = 0 and hence proof is complete.

Lemma 42. Suppose there exists a feasible two phase strategy profile at state S = (µ1, 0)

where µ1 < µ̄. Then, there exists a feasible two phase strategy profile at state S ′ = (µ′1, 0)

where µ1 < µ′1 ≤ µ̄.

Proof. Recall from Lemma 39 that the agent’s minimum average investment at µ′1 is smaller

than the agent’s minimum average investment at µ1. Also note from lemma 38 we know

that the type L principal’s average maximum investment is increasing in µ. Note that since

a feasible two phase strategy profile exists at state (µ1, 0) and the minimum average invest-

ment demanded by the agent is smaller at (µ′1, 0) and the maximum average investment

that type L is willing to invest is higher at (µ′1, 0), it must be the case that a feasible two

phase exists at (µ1, 0).

Lemma 43. There exists a belief µg ∈ (µ, µ̄) such that,

1. if µ ≥ µg, then there exist a two feasible two phase strategy profile at state (µ, 0);

2. if µ < µg, then there does not exist a feasible two phase strategy profile at state (µ, 0).

Proof. By definition of µ, the type L principal does not invest any higher than γλ
a at µ.

From lemma 39 we know that B(µ) is decreasing in µ. We also know that B(µ̄) = γλ
a .

Since µ̄ > µ, we know that B(µ) > γλ
a . Hence there does not exist a two feasible two phase
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strategy profile at state (µ, 0). By continuity, there exists an ε > 0 such that there does not

exist a two feasible two phase strategy profile at state (µ, 0) when µ ∈ [µ, µ + ε). Suppose

µg is the smallest belief such that a feasible two phase strategy profile exists at state (µg, 0),

then we know from lemma 42 that a feasible two phase strategy profile exists at all states

(µ, 0) such that µ ≥ µg.

Lemma 44. Suppose µ1 ∈ [µg, µ̄]. Then, there exists a two phase equilibrium at state

(µ1, 0).

Proof. We know from Lemma 43 that there exists a feasible two phase strategy profile at

(µ1, 0). Let us denote a feasible two phase strategy profile by σ̂ = (x̂H , x̂L, ê) given by

x̂H(µ, µa) = x̂L(µ, µa) = x̂(µ) such that x̂(µ) ∈ [
λγ

a
, x̄] for µ ∈ [µ, µ1];

x̂H(µ, µa) =
γλ

a
; x̂(µL, µa) = 0 for µ < µ;

ê(µ, µa+, x) =


1 if µa+ = 0 and µ = µ1;

0 if µa+ = 0 and µ 6= µ1,

1 otherwise .

I now show that the above two phase strategy profile can be supported as an equilibrium

using the threat of autarky following any downward deviation by the principal when µL ∈

[µ, µ1]. Lemma 40 tells us that an autarkic equilibrium exists at state (µ, 0) when µ ∈ [µ, µ̄]

which implies that an autarkic equilibrium exists at state (µ, 0) when µ ∈ [µ, µ1]. I fist show

that both types of principal have no incentive to deviate in the pooling region (µL ∈ [µ, µ̄]).

Note that the value of both types of principal is non negative at any point of the relationship

starting at state (µ1, 0) since σ̂ is feasible. Any upward deviation principal during the

pooling phase is unprofitable because it only reduces the principal’s value without affecting

the agent’s behavior. Any downward deviation by the principal during the pooling phase

leads to autarky that yields 0 to the principal and hence is unprofitable. In the firing phase,

by deviating to atleast γλ
a , the type L principal can induce effort from the agent, but this

deviation leaves the type L principal strictly worse off. Type H principal has no incentive
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to deviate in the firing phase since she is investing her optimal level of investment and agent

is exerting effort.

The agent has no incentive to deviate in the pooling phase since σ̂ is feasible and

any deviation leads to autarky which cannot improve the agent’s payoff. Hence σ̂ can be

supported as an equilibrium by using the threat of autarky.

Lemma 45. Suppose µ ∈ (µ, µ̄]. There does not exist an equilibrium at state (µ, 0) that

specifies separation at µL ∈ (µ, µ].

Proof. Suppose there exists an equilibrium σ at the state (µ, 0) that specifies separation at

µL = µ1 ∈ (µ, µ]. Note that post separation, type H principal invests λγ
a going forward

since the agent now knows the he is facing the type H principal and hence willing to exert

effort. Note that for σ to be feasible, it must specify average investments are higher than λγ
a

starting at state (µ1, 0). This is because from lemma 39 we know that the agent minimum

average investment at state (µ, 0) given by B(µ) is decreasing in µ and B(µ̄) = λγ
a . Note that

this means that the type L principal has a deviation. She can mimic type H principal when

µL = µ1 and induce effort from the agent by investing λγ
a until beliefs reach µ at which

point she quits. Note that by mimicking type H, she can guarantee herself an average

investment that is strictly lower. Also note that her investment does not vary with time

post her deviation. Since the principal’s investment cost is convex, this guarantees that

type L principal improves her payoff by deviating. Hence there cannot be separation before

µL = µ in any equilibrium starting at state (µ, 0) if µ ∈ (µ, µ̄].

Proof of Proposition 12. We know from lemma 44 that a two phase equilibrium exist at

state (µ, 0) where µ ∈ [µg, µ̄]. Moreover, Lemma 45 tells us that any equilibrium where

the agent exerts effort at state (µ0, 0) with µ0 ∈ [µ, µ̄] cannot exhibit separation at any

point. This implies that a principal optimal equilibrium, if it exists must be a two phase

equilibrium. I now argue that a principal optimal equilibrium, does in fact exist. To that

end, note that every two phase equilibrium at (µ0, 0) is characterized by the corresponding

pooling investment function that maps [µ, µ0] to [λγa , x̄]. Denote by by X (µ0) the set of all
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equilibrium pooling investment functions at state (µ0, 0). Note that each of these equilib-

rium pooling functions is bounded an satisfies the type L principal’s IR (ICLµ ) and agent’s

IR (ICAµ ) at every µ ∈ [µ, µ0]. I show that the set X (µ0) is compact which implies that

there exists a pooling equilibrium function that maximizes the principal’s value over X (µ0).

Proof of Proposition 11 . I first show that the strategy profile is an equilibrium. I then

show that it is indeed the principal’s optimal equilibrium.

We first observe that the type H principal has no incentive to deviate at any stage since

she is investing at her optimal level (λγa ) and inducing effort from the agent. Next I consider

type L principal’s behavior. We start with the quitting phase. Note that in this phase, the

agent will exert effort if the type L principal invests (λγa ) from the beginning of the phase.

But note that by the definition of µ, the type L principal strictly prefers to not induce effort

by investing (λγa ) when her belief about project quality is strictly smaller than µ, which

implies that the type L principal is behaving optimally by not investing.

In the pooling phase, I first show that under this strategy profile, the value of the type

L principal is strictly positive when µ ∈ (µ, µ̄]. To see this consider a specific pooling

investment function x̂ defined when µ ∈ [µ, µ̄] with the property that the value of type

L principal is 0 in the pooling phase, i.e. the individual rationality constraint of type L

principal binds at all beliefs in the pooling phase. Lemma 37 and lemma 38 together show

that x̂(µ) > λγ
a for all µ ∈ (µ, µ̄]. Note that in our candidate equilibrium, the investment

during pooling phase is λγ
a , i.e. strictly lower than x̂. This implies that the value of type

L principal is strictly positive in the pooling phase when µ ∈ (µ, µ̄]. Note that any upward

deviation by type L principal in the pooling phase does not alter the agent’s behavior but

decreases the payoff of the type L principal. Hence there is no incentive to deviate and

invest higher. However, any downward deviation leads to the commencement of autarky

which yields 0 to type L principal. Hence there is no incentive to deviate downward in the

pooling region. This establishes the optimality of type L principal’s behavior in the pooling

region.

Now we turn to the separating region. First note that when µ ≥ max{µ̄, µc}, the
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type L principal invests her optimal investment µλγ
a and induces effort from the agent and

hence has no incentive to deviate. When µ ∈ (µ̄,max{µ̄, µc}), the type L’s investment

c
µλ(1−γ) −

za

r(1−γ) − 1 is strictly smaller than λγ
a . Since the agent exerts effort following this

investment, the type L principal has no incentive to deviate and invest higher. If type L

principal invests lower, then the continuation equilibrium is autarky which yields 0 to type

L principal and hence there is no inventive to deviate and invest lower than the specified

investment. This completes the argument to show that type L principal has no incentive

to deviate.

Lastly, I show that the agent’s behavior is a best response. We start with the firing

region. In the firing region, it is optimal for the agent to exert effort if he knows if she

is facing a type L principal only if the investment of type L principal is atleast c
µλ(1−γ) −

za

r(1−γ) − 1. This is because the agent’s flow value is equal to 0 when the type L principal

invests c
µλ(1−γ) −

za

r(1−γ) − 1. When the agent knows he is facing type H principal, he is

willing to exert effort regardless of the investment since his value is strictly positive even if

the type H principal does not invest.

In the pooling region, by Definition 23 we know that the agent’s value at the beginning

of pooling (when type L principal’s belief is µ̄), the agent’s value is 0. Note that the agent’s

value in the pooling region is strictly positive, except at µ̄. This is because the agent’s value

at µ̄ in the the pooling region is given by

[
1−

[
µ

1− µ
1− µ̄
µ̄

] r
λ

] [
µ̄λ(1− γ)(1 +

λγ

a
)− c

]
+

[
µ

1− µ
1− µ̄
µ̄

] r
λ µ̄− µ

1− µ
za = 0.

This implies that

µ̄λ(1− γ)(1 +
λγ

a
)− c < 0.

Note that the agent’s value at µ < µ̄ in the the pooling region is given by

[
1−

[
µ

1− µ
1− µ
µ

] r
λ

] [
µ̄λ(1− γ)(1 +

λγ

a
)− c

]
+

[
µ

1− µ
1− µ
µ

] r
λ µ̄− µ

1− µ
za.
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The agent value at any belief µ in the pooling region is a linear combination of µ̄λ(1 −

γ)(1 + λγ
a ) − c and

µ̄− µ
1− µ

za. Note that the weight on µ̄λ(1 − γ)(1 + λγ
a ) − c is decreasing

in µ. Since µ̄λ(1 − γ)(1 + λγ
a ) − c < 0, the agent’s value must be strictly decreasing in µ

in the pooling region. Since value at µ̄ is 0, the value of the agent must be strictly positive

when µ ∈ [µ, µ̄). This implies that the agent has no incentive to deviate and not exert effort

in the pooling region since not exerting effort leads to autarky which we know exists when

µ ≤ µ̄.

In the separating region, when µ ∈ (µ̄,max{µc, µ̄}), the agent’s value is 0. To see this

note that the type L principal’s investment in this region is c
µλ(1−γ)−

za

r(1−γ)−1 which implies

that the flow value of the agent is 0 in this region. Note that eventually beliefs reach µ̄ at

which point pooling begins. We know from the previous paragraph that the agent’s value

is equal to 0 at µ̄, hence the value of the agent is equal to zero when µ ∈ (µ̄,max{µc, µ̄}).

Hence the agent cannot do any better by deviating since any deviation leads to autarky

and a value of 0 for the agent.

Lastly, in the region where µ > max{µc, µ̄}, the agent’s flow is strictly positive since the

type L principal invests µλγ
a which is strictly above c

µλ(1−γ)−
za

r(1−γ)−1 in this region. Hence

the agent gets a strictly positive value in this region. Note that by deviating the agent only

delays the value that he will get and hence it is suboptimal for the agent to deviate. This

completes the proof that the specified strategy profile is indeed an equilibrium.

Now I show that σ∗ is indeed the principal optimal equilibrium. We know from Lemma

6 that in the pooling phase the pooling investment level must be atleast λγ
a . We also know

from Lemma 45 that the continuation equilibrium at µ̄ must specify pooling when µ ∈ [µ, µ̄].

Note that in the pooling phase under σ∗, the investment is the least admissible for pooling.

Hence no other pooling continuation equilibrium at µ̄ can improve the principal’s payoff.

Next, given that pooling begins at µ̄, I show that the behavior in the separating phase is

optimal. I will show this through two cases.

Case 1: µc ≤ µ̄. In this case both types of principal invest their optimal investment in the

separating phase. Hence no other separating behavior in this phase can improve the

ex ante payoff of the principal.
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Case 1: µc > µ̄. In this case the the type L principal invests optimally when µ ≥ µc and

above her optimal investment when µ ∈ (µ̄, µc). Note that in any principal optimal

equilibrium it must be the case that type L principal invests optimally when µ ∈

(µ̄, µc), otherwise the principal’s payoff can be improved. Note that when µ ∈ (µ̄, µc),

type L principal’s investment is above her optimal and the agent’s value is equal to

0, which implies that type L principal cannot reduce her investment and improve her

payoff since that will result to the violation of the agent’s IR constraint and the agent

will stop exerting effort.

The only question remaining to be answered is that can the cutoff at which pooling

begins µ̄ be increased while improving the ex ante payoff of the principal? I show that it is

not the case. Suppose the pooling phase begins at µ1 > µ̄. From Lemma 39 we know that

B(µ1) < B(µ̄) = λγ
a . We know that in the pooling phase the optimal investment must be

λγ
a , this implies that the value of the agent at the beginning of pooling (µ̄) must be strictly

positive. Consider a belief µ1 − ε > µ̄ for some ε > 0. Suppose the pooling phase begins at

µ1− ε with the same pooling investment level. Note that now the type L can invest strictly

lower than λγ
a and induce effort from the agent. Note that ex ante, the principal is better

off in this case because the type L principal invests strictly lower in the region (µ1 − ε, µ1)

and still induces effort from the agent. This establishes that the optimal belief at which

pooling phase begins must be µ̄. Therefore σ∗ is the principal optimal equilibrium.
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