
MULTISCALE MODELS OF INTERFACIAL MECHANICS IN LOW 

DIMENSIONAL SYSTEMS 

Christopher C. Price 

 

A DISSERTATION 

in 

Materials Science and Engineering 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2022 

 

Supervisor of Dissertation       

Vivek B. Shenoy        

Eduardo D. Glandt President’s Distinguished Professor, Materials Science and 

Engineering, University of Pennsylvania 

 
Graduate Group Chairperson 

 
I-Wei Chen 

Skirkanich Professor of Materials Innovation, Materials Science and Engineering, 

University of Pennsylvania 

Dissertation Committee 

Eric Detsi 

Assistant Professor, Materials Science and Engineering, University of Pennsylvania 

 

Yury Gogotsi 

Distinguished University and Charles T. and Ruth M. Bach Professor, Materials Science 

and Engineering, Drexel University 

 

Liang Feng 

Associate Professor, Materials Science and Engineering, University of Pennsylvania 



MULTISCALE MODELS OF INTERFACIAL MECHANICS IN LOW DIMENSIONAL 

SYSTEMS 

 

COPYRIGHT 

 

2022 

Christopher Carr Price 

 

This work is licensed under the  

Creative Commons Attribution- 

NonCommercial-ShareAlike 4.0 

License 

 

To view a copy of this license, visit 

https://creativecommons.org/licenses/by-nc-sa/4.0/us/  

https://creativecommons.org/licenses/by-nc-sa/4.0/us/


iii 

To my parents and Caitlin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 

 

Acknowledgements 

“What I want to talk about is the problem of manipulating and controlling things on a 

small scale … It is a staggeringly small world that is below.” 

        Richard Feynman 

 

 

“People think focus means saying yes to the thing you've got to focus on. But that's not 

what it means at all. It means saying no to the hundred other good ideas that there are. 

You have to pick carefully. I'm actually as proud of the things we haven't done as the 

things I have done. Innovation is saying no to 1,000 things.” 

        Steve Jobs 

Completing my PhD would not have been possible without the mentorship, support, 

and encouragement from the amazing people in my life. I am extremely grateful for the 

training and mentorship imparted by my advisor, Prof. Vivek Shenoy, who has shaped my 

development as a scientist with an unwavering focus on isolating the fundamental physics 

in any problem. I owe my uniquely wide-ranging PhD experience to his expertise and 

interests across math, physics, materials science, chemistry, and biology. I also want to 

especially thank my thesis committee members: Prof. Yury Gogotsi, Prof. Eric Detsi, and 

Prof. Liang Feng. They have been generous with their time and feedback during critical 

points of my PhD and my work has benefitted from their physics and materials science 

expertise. 

 Modern science is more collaborative than ever, and I have appreciated the 

opportunity to work with many great additional collaborators throughout my PhD: Han Ye, 



v 

 

Deep Jariwala, Aditya Mohite, Amit Pathak, Joel Boerckel, John Lowengrub, and Nathan 

Frey. I have learned a great deal from our discussions and work together across various 

projects, often in cases where I knew very little about a particular research field at the 

outset. I would also like to thank all of my colleagues in the Shenoy lab who have always 

been willing to lend a hand across different projects, especially Liang Dong, Hemant 

Kumar, Dequan Er, Ze Gong, Farid Alisafei, Ehsan Ban, Alireza Ostadhossein, Eoin 

McEvoy, Xuan Cao, Xingyu Chen, James Glazar, Gabriel Vega-Bellido, and Akash Singh. 

 I would like to thank all my teachers and advisors across my career thus far who 

laid the foundation for me to pursue my PhD. Special thanks to my undergraduate advisor 

Prof. Jane Lipson and Ron White, who introduced me to computational science in 

chemistry in physics and guided me through my first encounter with academic research.  

 A PhD is a long, arduous, and potentially isolating process, so I am very grateful 

for having gone through it with a great cohort and group of friends – especially Nathan 

Frey, Shawn Maguire, Harsh Jog, and Mike Boyle – let’s continue to ensure no one takes 

themselves too seriously. I am also very grateful to have many fantastic friends living near 

and far who have been a part of this half-decade experience by helping me stay balanced 

throughout this process. 

 Finally, I owe this accomplishment to my parents and my partner Caitlin, whose 

love, encouragement, and unwavering belief in me are my greatest assets. To my parents – 

thank you for motivating me to pursue this degree in the first place, giving me every 



vi 

 

opportunity I could ask for, and for teaching me to always pursue my best self. To Caitlin 

– your everlasting support means the world and I can’t wait for the next chapter of our life 

together. 

  



vii 

 

ABSTRACT 

 

MULTISCALE MODELS OF INTERFACIAL MECHANICS IN LOW 

DIMENSIONAL SYSTEMS 

Christopher C. Price 

Vivek B. Shenoy 

Crucial thrusts in modern technology from electronic information processing to 

engineering cellular systems require manipulation and control of materials on smaller and 

smaller scales to succeed. A simple and successful way to break conventional material 

property limitations or design multifunctional devices is to interface two different materials 

together. At small length scales, the surface to bulk ratio of each component material 

increases, to the point that the interfacial physics can dominate the properties of the 

engineered system. Simultaneously, the combinatorial space of possible interfaces between 

materials and/or molecules is far too vast to explore by trial-and-error experimentation 

alone. Intuitive theoretical models can greatly improve our ability to navigate such large 

search spaces by providing insight on how two materials are likely to interact. The goal of 

this thesis is to develop predictive physical models which explain emergent phenomena at 

material interfaces across multiple length and time scales. A variety of state-of-the-art tools 

were applied to realize this goal, including analytical mathematics, quantum mechanical 

simulations, finite element methods, and deep neural networks. At the electron scale, a 
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continuum model parametrized by first-principles simulations was employed to develop 

design criteria for confined quantum states in lateral heterostructures of two-dimensional 

materials. At the atomic scale, a chemo-mechanical model incorporating long-range 

electrostatics was developed to explain synthesizability trends in composite 

heterostructures of inorganic perovskites and organic molecules. A machine learning graph 

neural network model was developed and applied to predict the impact of general surface 

strains on the adsorption energy of small molecule intermediates on catalyst surfaces. 

Finally, at the microscale, a nonlinear kinetic model was developed to explain how cells 

acquire and retain memory of the mechanical properties of their surroundings across 

multiple timescales, which can lead to irreversible adaptation and differentiation. The 

methods and results presented in this thesis can improve our understanding of physical 

phenomena arising at interfaces and provide a blueprint for future applications of 

multiscale computational modeling to science and engineering problems. 
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first priming pulse, yet permanent memory is not established as in c) since some priming 
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Figure 5.6 Adding noise to nonlinear 𝛼 dynamics. a) Global energy minima of 𝑥 vs. 𝛼 and 

𝑚 overlaid with priming programs. b,c) Cumulative distribution (CDF) of memory times 

from simulations with slow, gaussian noise incorporated onto 𝑑𝛼𝑑𝑡 for priming of 7 days 

(b) and 10 days c)), matching experimental conditions from Yang et al. Black dashed line 

shows the CDF of a normal distribution with the same mean and standard deviation as the 

model distribution for reference...................................................................................... 126 

Figure 5.7 Summary of dynamic mechanical memory. a) At short priming times, 

mechanical signaling leads to cellular adaptation but does not persist for sufficient time to 

increase reinforcement, leading to no memory. b) At intermediate priming times, 

reinforcement increases with persisting mechanical signal. The transcriptional 

environment shifts enough to build temporary memory, but this reinforcement will slowly 

decay to erase memory once the mechanical signal is removed. c) At long priming times, 

reinforcement strength continues to grow with input mechanical signal and an adapting 

transcriptional environment. Reinforcement sustains without any mechanical signal, and 

the new phenotype persists if the substrate is changed (permanent memory). ............... 132 

Figure 5.8 Analogous phase diagram of the model for soft-activated genes. In the model, 

the mechanoactivation profile / mechanical signaling is reversed by flipping 𝑚𝑚0 to 𝑚0𝑚, 

so that 𝑑𝑥𝑑𝑡 increases when stiffness is reduce. In this case, high 𝑥 corresponds to activity 

of soft-correlated phenotypic genes and transcription factors. 𝛼 now represents positive 

reinforcement for gene expression correlating with a soft phenotype. ........................... 135 

Figure 6.1 a) Simulation representations of materials and conditions are idealized 

compared to experiments. Looking forward, multiscale modeling and machine learning can 

synthesize many different simulation results to bridge simulation-experimental gaps. b) 

Images of MXene structure at multiple length scales highlight complexity introduced by 

hierarchical changes in structure at each scale. Reproduced from [295]. c) Transmission 
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with the environment requires inherently multiscale models. Reproduced from BBC. . 143 
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Chapter 1 Introduction  

1.1 Demand for Material Heterostructures 

Major advances in technology are always underpinned by improvements in 

capabilities to engineer matter, from iron and bronze to steel, silicon, and the increasingly 

complex array of today’s electronic materials. Addressing environmental, healthcare, and 

infrastructure challenges in the 21st century necessitates continued innovation of material 

platforms with outstanding physical properties. Material heterostructures created by 

bringing two different materials together can give rise to new functionalities from the 

interface, or simply combine existing functionality into smaller areas which are less 

Figure 1.1 a) Examples of nanomaterial heterostructure assembly, through post-synthetic 

stacking (top) or targeted materials synthesis routes (bottom). Reproduced from [3]. b) 

Alterations in atomic structure due to the presence of a surface; the reconstruction depends 

on the angle of the surface and penetrates several atomic layers into the material. 

Reproduced from [294]. 
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resource-intensive to produce. The combinatoric possibilities of single materials design are 

enormous and this only grows when considering multiple materials together (Figure 1.1a). 

Efficient tools to evaluate and predict heterostructure properties a priori are critical to 

navigating this design space. Expanding knowledge of materials heterostructures and their 

interactions has substantial potential impact in applications such as (but not limited to) 

energy storage [1], catalysis [2], optoelectronics [3], and cell culture. [4,5] 

1.2 Interfaces in Low Dimensions 

Heterostructures derive most of their unique properties due to changes in the 

chemical bonding at surfaces or interfaces (Figure 1.1b). This makes heterostructuring an 

especially powerful tool for materials engineering at nano- and micro- length scales, where 

the surface and interface to volume ratio is inherently large. The abrupt changes in atomic 

bonding at material surfaces and interfaces can change the atomic structure and lead to 

unpredictable properties. Broken crystal symmetry creates imbalances in charges and 

mechanical forces, leading to accumulated stresses and polarizations that differ from 

interior bulk properties (Figure 1.2a). Changes in electronic properties between the two 

materials amplify these effects and can lead to charge transfer between the two materials. 

Defects will migrate towards surfaces and interfaces to relax interior bulk stresses. These 

atomic scale effects cause changes at larger length scales by introducing new degrees of 

freedom and accumulation of the local strain and electric fields (Figure 1.2b). [6,7] 

Finally, interfaces are active sites for interconverting forms of potential energy; for 
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example, converting mechanical stress into localization of a quantum state (Figure 1.2c). 

This can allow manipulation of interior nanoscale physics using external parameters which 

are much simpler to control at the macroscale. Due to the dominance of interfacial 

properties on the nanoscale, successful nanomaterials engineering relies on understanding 

the structure-property relationships across many different interfacial configurations. 

Figure 1.2 a) Interfaces between materials 

with similar atomic arrangements but 

different compositions cause symmetry 

breaking on the atomic scale, inducing 

stress 𝜎, strain 𝜀, and electric fields 𝐸. b) 

Over longer length scales, interfaces can 

create new degrees of freedom and increase 

the length scale of symmetry, such as in this 

Moiré pattern with superlattice parameter 𝜆 

formed from stacking the materials in a) 

with angle 𝜃. c) Effect on localization of 

quantum states caused by the long-range 

potential from different stacking angles in 

b). Color scale is probability density of the 

bound state wave function. 
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1.3 Multiscale Modeling and Overview of Computational Methods 

Physical intuition and materials optimization has long been developed through 

empirical observation and experimental trial-and-error. Advances in condensed matter 

physics over the last few centuries and rapidly increasing computational capabilities over 

the last few decades have enabled fundamental understanding of materials structure-

property relationships through simulation, which can be conducted more quickly and 

cheaply than experiments. However, individual theoretical or simulation frameworks are 

limited by approximations and assumptions which are necessary to maintain computability 

in the scope of the target problem. This makes it difficult to accomplish deterministic 

materials design requiring concurrent control of different physical phenomena from 

simulations alone. [8] Multiscale modeling aims to improve realistic predictions of 

materials systems by combining multiple theoretical approaches together, identifying the 

necessary atomic scale information which can lead to emergent, collective changes at 

micro- or macroscopic scales. [9] This modeling strategy is particularly apt for studies of 

materials interfaces because interfacial properties depend on both the individual 

characteristics of the component materials and their specific interactions. [10] Examples of 

physical phenomena examined in this thesis that transit multiple length or time scales 

include geometric effects on electrons and holes, strain fields, electric fields, and positive 

reinforcement mechanisms. Here we will give a high-level overview of the different 

computational techniques used in this thesis; additional details on combining these 
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simulation frameworks into multiscale models are given in the Methods section of each 

chapter. 

1.3.1 Density Functional Theory 

 Density functional theory (DFT) is the primary method we use to model the ground-

state configuration of electrons in a crystalline material in a vacuum. The mathematical 

foundations of the theory are covered extensively in the literature, and modern 

implementations are based on several decades of method development. [11–18] The core 

goal of DFT is to approximate a solution to the many-body time independent Schrodinger 

equation by solving the non-interacting Schrodinger equation in an effective potential 

specified by the total electron density. In an iterative process, this can be combined with 

the Born-Oppenheimer approximation and gradient descent algorithms to simultaneously 

find the minimum energy configuration for both the electron density and the ionic 

positions. [19] From a multiscale modeling perspective, DFT is extremely useful to 

generate accurate, ab initio atomic scale structures and electronic properties which can be 

input to other methods, but it is also severely limited in the systems it can be applied to. 

Depending on the desired accuracy, DFT implementations can generally consider 

structures with hundreds to thousands of atoms, corresponding to 10-100 Angstroms in unit 

cell dimensions. They rely heavily on taking advantage of structural symmetries for 

efficiency, and therefore low symmetry structures such as surfaces or interfaces are 

additionally computationally demanding. We primarily use the Vienna ab initio simulation 
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package (VASP) implementation of DFT [20,21] to calculate fundamental electronic 

properties, electron distributions, formation energies, and the responses of these quantities 

to structural perturbations. We also use the atomic simulation environment and pymatgen 

open-source packages to help manage high-throughput calculations of many atomistic 

structures. [22,23] 

1.3.2 Supervised Machine Learning 

Supervised machine learning encompasses a set of methods which attempt to 

approximate a function that maps the relationship between input data and a pre-determined 

label or value for each datapoint. Applied to materials property prediction, the input data 

is typically structural and compositional data and the output is a target property that is 

expensive to calculate or measure experimentally. [24] The labels ‘supervise’ the training 

process, which proceeds by gradient descent of the model weights through a fitness 

landscape constructed by calculation of the error between the model predictions and the 

ground truth labels. Successfully trained models can be used to make predictions on denser 

samplings of the training space, which is especially important for materials and molecular 

systems with many degrees of freedom that are difficult to explore using direct simulation 

alone. The success of model training and performance depends on many factors including 

dataset size, dataset representation, model selection and architecture, training procedure, 

and task definition, and ideal strategies for each are chosen using common heuristics or 

empirical trial and error. [25] In this thesis, we use machine learning models as a 
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component of the multiscale modeling toolbox, combining them with high throughput 

DFT-generated datasets to evaluate structures at scales that would be computationally 

intractable using atomistic simulations alone. We focus on graph neural networks, which 

are designed to operate directly on atomic structures [26]; graph representations of 

atomistic materials structures are generated using the NetworkX package [27] and 

implement our model training in PyTorch. [28] 

1.3.3 Finite Element Analysis and Continuum Models 

The last primary computational technique in our multiscale methods toolbox is 

finite element analysis (FEA). This is a general numerical method for solving systems 

partial differential equations in several dimensions over complex geometries by 

subdividing the geometry into small local components that are solved under 

constraints. [29] The accuracy and usefulness of the results depends entirely on the system 

of equations and the parameterization, but they offer a unique way to study unique and 

perturbed geometries. We use FEA in this thesis to implement physically derived 

continuum models, which can be solved to an arbitrary degree of precision using denser 

numerical discretizations of the domain. By parametrizing the differential equations with 

data from DFT calculations, the accuracy of DFT is translated to a new length scale. FEA 

and continuum simulations are implemented using the COMSOL Multiphysics ® software 

package and open-source custom software written in Python. 
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1.4 Goals of this Thesis 

This thesis’ primary goal is to develop new models of physical phenomena 

occurring at the interface between two different materials or material phases. To achieve 

this, different theoretical frameworks are applied and considered together to cover multiple 

relevant length and time scales, with the aim of identifying the important physical 

information created at the interface that changes the expected material properties.  

Developing these multiscale physical models is necessary to bridge the gap between 

current computational representations and experimentally synthesized materials, since all 

materials are affected by their interfaces during synthesis, characterization, and device 

assembly. We aim to minimize model complexity while retaining the necessary 

interactions to make new predictions within the scope of the problem, and we verify these 

predictions with experimental data or first-principles calculations wherever possible. This 

thesis is divided into four major sections, arranged in order from smallest to largest physical 

scale for the interfaces involved. 

1.4.1 Interfacing Finite-Size 2D Materials to Engineer Quantum Confinement 

of Charge Carriers 

In Chapter 2, we present a continuum quantum mechanics framework to predict 

the emergence of localized quantum states in 2D materials. Achieving these states is 

desirable for optoelectronics and quantum information yet challenging due to the 

difficulties in confining Dirac fermions. These challenges arise due to the fundamental 
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differences in the electronic structure of 2D hexagonal materials as compared to 

conventional semiconductor quantum dots. Our integrated multiscale approach translates 

first-principles electronic structure to higher length scales, where we apply a continuum 

model to consider arbitrary 2D quantum dot geometries and sizes. Focusing on a common 

and synthesizable model system of a finite MoS2 triangular region embedded in a WS2 

matrix (MoS2/WS2), we find discrete bound states for region sizes up to 20 nm. We propose 

figures of merit that can be used to engineer maximally isolated bound states at room 

temperature. These design principles apply to the entire family of semiconducting TMD 

materials, which has seen immense recent progress in control of experimental synthesis 

and characterization. 

1.4.2 Interfacial Phenomena in Synthesis of Layered Materials 

In Chapter 3, we develop a thermodynamic framework to generate the phase 

diagrams of quasi-2D hybrid halide perovskites (A’2AN-1MNX3N+1; A’ = large organic 

molecule with cationic group, A = [Cs+, CH3NH3
+, HC(NH2)2

+], M = [Pb, Sn, Ge], X = [I-

, Br-, Cl-]), which consist of large organic molecules interspersing an inorganic perovskite 

lattice and can form ordered, layered phases with desirable semiconducting properties. We 

incorporate the mechanics and electrostatics of the interface between the large organic 

cations and the metal halide octahedral network. We find that the apparent difficulty in 

synthesizing phase-pure samples with a stoichiometric index N > 5 can be attributed to the 

energetic competition between repulsion of opposing interfacial dipole layers and 
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mechanical relaxation induced by interfacial stress. Our model shows quantitative 

agreement with experimental observations of the maximum phase-pure stoichiometric 

index and explains the non-monotonic evolution of the lattice parameters with changing 

stoichiometry. This model is generalizable to the entire family of quasi-2D perovskites and 

can guide the design of new composite materials. 

1.4.3 Predicting Surface Strain Effects on Adsorption Energy with Graph 

Neural Networks 

In Chapter 4, we expand our study of the mechanics occurring at the interface 

between crystalline materials and molecules and develop a high-throughput DFT and 

machine learning framework to predict the impact of surface strain on adsorption energy. 

Surface strain can increase or decrease the adsorption energy depending on the surface 

composition, adsorbate composition, surface facet, and adsorbate site, breaking traditional 

scaling relationships which inhibit energy barrier alteration in conventional catalyst design. 

We aim to generate a model that maps the adsorption energy response to a given input 

strain for strained copper binary alloy catalyst + adsorbate complexes from the Open 

Catalyst Project. [16] After developing a custom first-principles dataset, we train a graph 

neural network that successfully predicts the class of the adsorption energy response for 

85% of surface strains and outperforms simpler model baselines. Our model identifies Cu-

S alloy catalysts as promising candidates for strain engineering since the majority of 

surface strain patterns raise the adsorption energy of the *NH intermediate, which is 
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important in ammonia synthesis. Our presented machine learning approach can be used to 

identify target strain patterns that can reduce energy barriers in heterogeneous catalysis. 

 

1.4.4 Dynamics of Interfacial Mechanics Leads to Continuously Variable 

Cellular Memory 

In Chapter 5, we shift to studying how the mechanical properties of an interface 

can dynamically affect gene expression in cells, giving rise to memory that the cell retains 

about the mechanics of the interface. This long-term mechanical memory occurs when cells 

cultured on stiff substrates for sufficient time (priming phase) maintain altered phenotype 

compared to unprimed control groups after switching back to soft substrates (dissipation 

phase). The timescale of memory acquisition and retention is orders of magnitude larger 

than the timescale of mechanosensitive cellular signaling, and memory retention time 

changes continuously with priming time. We develop a model that captures these features 

by accounting for positive reinforcement in mechanical signaling. The sensitivity of 

reinforcement represents the dynamic transcriptional state of the cell composed of protein 

lifetimes and 3D chromatin organization. Our model provides a single framework 

connecting microenvironment mechanical history to cellular outcomes ranging from no 

memory to terminal differentiation. Predicting cellular memory of environmental changes 

can help engineer cellular dynamics through changes in culture environments, which has 

important implications for designing and testing cell-based therapeutics. 
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Chapter 2 Interfacing Finite-Size 2D Materials to Engineer Quantum 

Confinement of Charge Carriers 

Reprinted (adapted) with permission from  

Price, C. C.*, Frey, N.*, Jariwala, D. & Shenoy, V. Engineering Zero-Dimensional 

Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures. ACS Nano 

13, 8303–8311 (2019). 

* Denotes equal contribution. 

2.1 Background 

Initialization and manipulation of individual quantum states is a critical 

requirement to achieving high performance optoelectronic devices and quantum 

information platforms. Thus far, engineering these states has primarily relied on generating 

deep level color centers/defects as quantum cavities in bulk materials [31] or physically 

reducing the semiconductor in all three dimensions to make nanocrystals. [32]  The 

energetic tunability of these 3D cavity states is well documented, [33] yet precise electrical 

or optical control of single quantum states remains elusive. [34,35] Two-dimensional (2D) 

materials are an attractive platform for quantum confinement due to their electronically 
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stable surfaces and atomic-scale thickness, which provides perfect confinement in the out-

of-plane dimension. [36] Graphene, the most extensively studied 2D material, hosts 

massless Dirac fermions, which cannot be localized because of carrier transmission 

regardless of the height or width of the potential barrier (Klein tunneling). [37–40] Several 

theoretical works have studied forced quantum confinement arising in idealized, isolated 

graphene disks and triangles with infinite mass gradients at the edges, which have not been 

experimentally realized. [41–43] Inducing quasi-confinement of relativistic Dirac fermions 

in graphene can be achieved by introducing a spatially varying bandgap via substrate 

effects (doping or spin-orbit coupling), strong magnetic or electric fields, or adding a 

second graphene layer. [39,44–47] However, this type of confinement is not a robust 

intrinsic property of the graphene system, the induced gaps are small (~0.1 eV), and the 

extreme conditions required to accomplish quasi-confinement are impractical for 

technological applications. [48] 

Continued expansion of the 2D materials library has led to materials with properties 

distinct from graphene. The family of transition metal dichalcogenide (TMD) monolayers 

contains many direct bandgap semiconductors with variable composition and tunable 

bandgaps which have been characterized using density functional theory (DFT) and tight-

binding models. [49–53] In stark contrast to graphene, these systems host charge carriers 

that behave as massive Dirac fermions because the bandgap gives rise to an effective carrier 

mass that reduces the probability of Klein tunneling. Because these systems are 



14 

 

isostructural with small variations in lattice constant, we can envision structurally coherent 

in-plane quantum confinement engineered via van der Waals (vdW) heterostructuring [54] 

or lateral epitaxy. [55–57] The band offsets between different TMDs in a heterostructure 

can be exploited to construct a confining potential step due to the sharp change in the 

absolute band energies at a clean interface between the two materials. These Dirac carriers 

are physically distinct from the Schrodinger fermions encountered in epitaxial bulk 

semiconductor quantum dots [58] due to the symmetric degeneracies of the honeycomb 

lattice and the occurrence of the direct band gap at non-zero momentum (K-point). [59]  

2.2 Objective 

In this chapter, we develop a multiscale workflow to study the existence and 

evolution of the bound state spectra of planar quantum dots engineered from TMD 

heterostructures as a function of their shape and size. The band structures are characterized 

by first-principles calculations, while tight binding and continuum models are used to 

describe realistic nanoscale device geometries that are inaccessible to DFT calculations. 

We explicitly show the bound state energy scaling behavior for massive Dirac fermions in 

finite potential wells corresponding to an experimentally realizable vdW heterostructure. 

We find that the critical well size and well depth needed to support robust, isolated bound 

states are achievable in an MoS2/WS2 (quantum dot/matrix) heterostructure. Based on these 

results, we provide simple design rules for atomically thin TMD heterostructure quantum 

dots to achieve ideal quantum confinement. 
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2.3 Methods 

The computational workflow used to model quantum confinement in TMD 

heterostructures is represented schematically in Figure 2.1a. For any two TMDs, MX2 and 

M’X2, with direct band gaps at the high symmetry K point, the band structures are 

calculated via DFT. The chalcogen X atom is chosen to be the same in both TMDs to 

minimize lattice mismatch and ensure that the band gaps remain direct. [60,61] The valence 

and conduction bands are fit around the K point to obtain the parameters (Table 2.1) for a  

Table 2.1 Absolute band energy parameters for MoS2 and WS2 at the PBE level from 

Ref. [49], 𝒌 ⋅ 𝒑 parameters from band structure fitting of MoS2 in Ref. [62], and computed 

𝒌 ⋅ 𝒑 parameters for WS2 from band structure fitting around the K high symmetry point. 

PBE values are used for simplicity because the PBE underestimation tends to correspond 

to the exciton binding energy for monolayer TMDs. [63] 

Model Parameter   MoS2 Value WS2 Value 

𝚫 (Band gap, eV) 1.59  1.54 

a (lattice constant, Å) 3.19 3.19 

t (hopping parameter, eV) 1.059 1.075 

Ev (valence band max, eV) -5.86 -5.50 

Ec (conduction band min, eV) -4.27 -3.93 

𝜸𝟏 (eV) 0.055 -0.288 

𝜸𝟐 (eV) 0.196 -0.639 

𝜸𝟑 (eV) -0.123 0.105 

 

two-band 𝒌 ⋅ 𝒑 model, which captures the relevant physics of the conduction and valence 

bands in the K valley. [62]  
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Figure 2.1b shows an atomistic model of the physical realization of a laterally 

confined TMD quantum dot system. A TMD with the formula unit MX2 forms a nanoscale 

regular triangle or hexagon [64] within an M’X2 matrix. The spatial extent of a quantum 

dot is defined by 𝑅▲ and 𝑅⬢, which gives the corner-to-corner distance of the minority 

material region. The band offsets between the two TMDs create the quantum confinement 

Figure 2.1 Schematic of the continuum approach to describing planar quantum dot 

electronic structure. a) Parameters from density functional theory are used as inputs to a 

𝒌 ⋅ 𝒑 model that is solved for device geometries with the finite element method. b) 

Triangular and hexagonal regions of MX2 in an M’X2 matrix form 2D quantum dots. c) 

The band offsets between MX2 and M’X2 create quantum wells for confining electrons and 

holes. 
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depicted in Figure 2.1c. To describe the spatially dependent band gap variation, we 

introduce an external finite potential term 𝑉(𝒙) given by 

 
𝑉(𝒙) = [

𝑉𝑒(𝒙) 0

0 𝑉ℎ(𝒙)
] 

(2.1) 

where 𝑉𝑒 is the conduction band offset and 𝑉ℎ is the valence band offset. 𝑉(𝒙) is zero inside 

the quantum dot and nonzero in the M’X2 matrix. The magnitudes |𝑉𝑒| and |𝑉ℎ| control the 

strength of the confining potentials. If 𝑉𝑒 is positive, there is a confining electron potential 

well in the quantum dot. Likewise, if 𝑉ℎ is negative, there is a confining hole potential well 

in the dot.  

The two-band 𝒌 ⋅ 𝒑 model to first order in 𝒌 corresponds to a massive Dirac 

Hamiltonian, 𝐻, which captures the salient structure of the K valley in MoS2, [51] while 

the second order contribution describes the anisotropic dispersion and electron-hole 

asymmetry, and including the third order contribution completely recovers the DFT band 

structure. [53,62,65] We ignore the spin degree of freedom (reducing 𝐻 to a 2 x 2 matrix) 

and spin-orbit coupling and include contributions up to second order in 𝒌, such that the 

model is given by [62]: 

 

𝐻𝑘𝑝
1 (𝒌) = [

Δ

2
𝑎𝑡(𝑘𝑥 − 𝑖𝑘𝑦)

𝑎𝑡(𝑘𝑥 + 𝑖𝑘𝑦) −
Δ

2

] 

(2.2) 

 
𝐻𝑘𝑝
2 (𝒌) = 𝑎2 [

𝛾1𝑘
2 𝛾3(𝑘𝑥 + 𝑖𝑘𝑦)

2

𝛾3(𝑘𝑥 − 𝑖𝑘𝑦)
2

𝛾2𝑘
2

] 
(2.3) 
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where Δ is the direct band gap, a is the lattice constant, t is the hopping parameter, 𝛾1 − 𝛾3 

are energy parameters, and 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2. With the Fermi level in the middle of the gap 

set to zero, the valence band maximum and conduction band minimum of MX2 are −Δ/2 

and Δ/2, respectively, where the band gap of the MX2 quantum dot is Δ. The top (or 

bottom) of the potential well is then Δ/2 + Ve or −Δ/2 − Vh for electrons or holes, 

respectively. 

We consider two model systems for lateral quantum confinement: an MoS2 dot in 

a WS2 matrix (MoS2/WS2), and a WS2 dot in an MoS2 matrix (WS2/MoS2). The band 

offsets between these TMDs result in type II band alignment; [66] for MoS2/WS2, 𝑉𝑒 =

0.31 eV, and for WS2/MoS2, 𝑉ℎ = −0.36 eV. [49] Thus, the first configuration yields an 

electron potential well, while the second forms a hole potential well. The model 

𝐻𝑘𝑝(𝒌, 𝒙) = 𝐻𝑘𝑝
1 (𝒌) + 𝐻𝑘𝑝

2 (𝒌) + 𝑉(𝒙) can then be numerically solved in the COMSOL 

MULTIPHYSICS ® package for any device geometry or material combination, given the 

appropriate parameters. [41] The computed eigenvalues and eigenvectors correspond to the 

bound state energies and wavefunctions of the quantum dot system. 

 Finally, a tight-binding model was constructed by considering nearest-neighbor 

hopping between Mo 𝑑𝑧
2, 𝑑𝑥𝑦, and 𝑑𝑥2−𝑦2 orbitals to compare with the results of the 𝒌 ∙ 𝒑 

model. [62] The tight-binding Hamiltonian for the finite triangular quantum dot includes 

diagonal submatrices that account for the on-site energies, spin-orbit coupling, and an 

external scalar potential 𝑉(𝒙), and off-diagonal submatrices that describe the directional 
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hopping between Mo d orbitals. [67] The external potential was adjusted on the outermost 

edge of atoms to model the band offset between Mo and W. 

2.4 Results 

2.4.1 Toy Model: 2D Massive Dirac Hamiltonian in a Radial Finite Potential 

Well  

 Our investigation into the existence of bound states in the MoS2/WS2 

heterostructure begins with a simple toy model that emphasizes the unusual behavior of 

the massive Dirac fermions. It is well known that for a particle in a finite potential well 

described by the Schrodinger equation, the ground state is bound for any arbitrarily shallow 

or narrow well in one or two dimensions. [68] On the contrary, due to particle-antiparticle 

conversion, bound state existence is not guaranteed for Dirac fermions and depends 

explicitly on the form of the potential and the effective fermion mass. There is evidence 

that the existence of a bound ground state in 2D is uncertain even for simple radially 

symmetric potential wells. [69,70]  

We construct a toy model of the MoS2/WS2 system by approximating the MoS2 

quantum dot as a circular region in a radially symmetric finite potential. Following 

DiVincenzo and Mele, [71] we solve the massive Dirac Hamiltonian for a finite potential 

to develop straightforward existence criteria for bound states in the MoS2/WS2 quantum 

disk system. For simplicity, we consider the simplified Hamiltonian 𝐻(𝒌, 𝒓) = 𝐻𝑘𝑝
1 (𝒌) +
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(𝒓) and set the finite band offset 𝑉𝑒 = 𝑉ℎ = 𝑉0, such that 𝑉(𝑟 < 𝑟0) = 0 and 𝑉(𝑟 > 𝑟0) =

𝑉0, where 𝑟0 is the radius of the MoS2 dot and 𝑟 is the radial coordinate. Since we are 

interested in potential well dimensions that support at least one bound state, we restrict the 

solution space to the ground state, where the angular quantum number 𝑚 = 0. We apply 

continuity boundary conditions to the wavefunction at the well edge 𝑟 = 𝑟0 and look for 

bound state solutions with energy 𝐸 in the range 
Δ

2
< 𝐸 <

Δ

2
+ 𝑉0. To exclude quasi-bound 

states, we only allow terms in the wavefunction which exponentially decay as 𝑟 →  ∞. [47] 

This leads to a transcendental equation for the bound state which must satisfy: 

 
𝑅𝑒[𝑌0(−𝑟0𝛼𝑉)]

𝐽0(𝑟0𝛼𝑊)
=
𝑖𝛼𝑉
𝛼𝑊

𝐸 +
Δ
2

𝑉0 − 𝐸 −
Δ
2

𝐼𝑚[𝑌1(−𝑟0𝛼𝑉)]

𝐽1(𝑟0𝛼𝑊)
 

(2.4) 

where  

𝛼𝑊 =
√𝐸2−(

Δ

2
)
2

𝑎𝑡
, 𝛼𝑉 =

√𝐸2−(
Δ

2
)
2
−2𝐸𝑉0+𝑉0

2

𝑎𝑡
. 

Here 𝐽𝑛 and 𝑌𝑛 are the Bessel functions of the first and second kind, and Δ, 𝑎, and 𝑡 are 

material parameters corresponding to the bandgap, lattice constant, and hopping energy 

taken from 𝐻𝑘𝑝
1 (𝒌). The limiting behavior and details of obtaining Eq. 2.4 are discussed in 

the Appendix S2.1. We numerically solve for the roots of Eq. 2.4 and plot (Figure 2.2a) 

the lowest bound state energy as a function of the dimensionless quantities 
𝑉0

Δ
 and 

𝑎𝑡

Δ𝑟0
. The 

phase map provides a completely general estimate of the ground state energy for any 
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material parameters, with darker contours representing ground states closer to the bottom 

of the potential well and lighter contours approaching the top of the well.  

 

Figure 2.2 a) Phase diagram for bound state existence as a function of heterostructure 

parameters Δ (band gap), 𝑉0 (confining potential magnitude), 𝑎 (lattice constant), 𝑡 (k.p 

hopping energy), and 𝑟0 (dot radius), for the toy model circular finite well. The inset shows 

comparison with bound state existence boundary taken from numerical solutions for 

triangular wells. b) Evolution of the ground state probability density showing decreasing 

localization with increased number of vertices for dots with equivalent corner-to-corner 

length. c) Ground state energy relative to the continuum band edge corresponding to the 

dot geometries in b). 

 



22 

 

In our model system of an MoS2 dot in a WS2 matrix, we find that minimum values 

of 𝑟0 and 𝑉0 define a phase boundary beyond which no bound states are supported. This 

behavior is particular to massive Dirac fermions in 2D. In contrast with a 2D Schrodinger 

quantum dot where confinement effectively disappears beyond some maximum diameter, 

in the Dirac quantum disk there is additionally a minimum critical size beyond which there 

is no confinement due to the Klein effect. This condition can also be achieved by taking Δ 

to 0 at finite 𝑉0 and fixed size 𝑟0, which recovers the massless graphene case. For the toy 

model MoS2/WS2 system with a conduction band offset 𝑉0 = 𝑉𝑒 = 0.31 eV, we find that 

the circular well has a critical radius of 2.6 Å, which is less than one unit cell. However, 

for more realistic quantum dot geometries that are not radially symmetric, the critical radius 

will be larger. In the limit of small 𝑟0, breaking the radial symmetry of the quantum disk 

and introducing a three-fold rotational symmetry shifts the critical bound state phase 

boundary in a non-trivial way, increasing the minimum critical size for the MoS2/WS2 

system from 0.5 nm to 1.5 nm (Figure 2.2a, inset). These critical sizes are highly dependent 

on the band offset, and the criteria are more restrictive for confining wells with smaller 

band offsets. Having shown the existence of bound states for massive fermions in TMD 

heterostructures, we next turn to exploring the effects of realistic quantum dot geometries 

on confinement.  
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2.4.2 Bound State Spectra in Triangular and Hexagonal Dots – Continuum 

Approach 

Several different quantum dot geometries are accessible based on the crystal symmetry of 

the component TMD materials and synthesis conditions. [64] We compute the ground state 

using the continuum method for a circular quantum dot, finding quantitative agreement 

with the toy model results (𝐸𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝐸𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = 0.5 meV, which equals the 𝐸(𝐻𝑘𝑝
2 ) 

correction absent from the toy model), and then repeat the process for hexagonal, square, 

and triangular geometries. Figure 2.2b shows the evolution of the ground state 

wavefunction as the number of vertices in the dot geometry increases from three (triangle) 

to infinity (circle), with the vertex-vertex distance fixed at 10 nm (significantly above the 

bound state existence boundary). At this size, at least one bound state is present for the 

MoS2/WS2 system in all geometries, but as shown in Figure 2.2c, the energy of this state 

relative to the band offset varies considerably. This is primarily explained by the fact that 

the dot area is minimized for a given vertex-vertex length in the triangle, and this reduction 

in area manifests as an effective geometric confinement. The sensitivity of the ground state 

energy to this geometrical effect is an important consideration for device design, as the 

transition from a hexagonal dot to a triangular dot (two common geometries in TMD flake 

systems) [58,59] in the model system increases the ground state energy by a factor of 

almost three (30 meV vs 80 meV). Therefore, the triangular system is better for engineering 

confinement at larger dot sizes, which may be advantageous for experimental observations.  
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Since triangular and hexagonal shapes are frequently observed for TMD monolayers due 

to the hexagonal unit cell, we focus on these geometries to investigate the evolution of the 

electron and hole ground states with system size. To engineer quantum confinement, we 

determine the maximum and optimal dot sizes for hosting bound states. We systematically 

vary 𝑅▲ and 𝑅⬢ and compute the ground state energies for each geometry. The electron 

(Figure 2.3a) and hole (Figure 2.3b) ground state energies are plotted versus inverse side 

length for triangular (green points) and hexagonal (blue points) geometries to show the 

characteristic scaling. The corresponding 𝑅▲ and 𝑅⬢ values are given on the upper x-axis 

for convenience. Rescaling the energies such that 
Δ

2
 (the bottom of the well) corresponds to 

0, we see a monotonic decrease in the electron ground state with increasing dot size. For 

small dots (𝑅▲ < 5 nm), the ground state energy is close to the top of the electron well. 

The quantum confinement persists for large dots (𝑅▲ > 20 nm), as the ground state 

approaches the bottom of the potential well. This confinement predicted for large nanoscale 

geometries is a consequence of the ideal confinement in the out-of-plane direction in these 
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2D structures, despite the finite nature of the potential barrier and relativistic properties of 

the carriers. 

The ground state energy dependence on quantum dot size follows the simple 

relation 

 𝐸𝑔𝑠(𝑅) = 𝛼𝑅−2 + 𝛽𝑅−1 + 𝑐 (2.5) 

where 𝑅 is length, 𝛼 and 𝛽 are materials-dependent constants, and 𝑐 is a constant specified 

to set the bottom of the potential well equal to zero. This scaling with inverse length and 

inverse length squared follows immediately from the expansion in 𝒌 (which has units of 

inverse length) in the 𝒌 ⋅ 𝒑 model. The ground state energy for any geometry is then totally 

Figure 2.3 Scaling of the electron and hole ground states with inverse side length. a) 

Electron and b) hole ground state energies for triangular (green) and hexagonal (blue) 

quantum dots show a characteristic dependence on quantum dot size. c) Electron and 

d) hole ground state wavefunctions delocalize with increasing quantum dot size. 
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specified by the 𝛼 and 𝛽 coefficients for a given MX2/M’X2 pair. The same characteristic 

scaling behavior is seen for holes in WS2/MoS2 (Figure 2.3b). 

 Visualizing the ground state wavefunctions provides a qualitative picture of the 

extent of quantum confinement. Figure 2.3c shows the electron ground state wavefunction 

in hexagonal MoS2 quantum dots with 𝑅⬢ = 10, 20, and 30 nm. At 𝑅⬢= 10 nm, the 

wavefunction is strongly localized. The amplitude is large at the center of the dot and 

radially decays, as expected. As the area of the hexagon increases, the wavefunction 

becomes increasingly delocalized until confinement is no longer apparent. At this point, 

the ground state of the system is indistinguishable from the infinite periodic band structure, 

and the finite dot region is no longer discretely quantized. The same wavefunction 

delocalization is observed for hole ground states in triangular WS2 dots with increasing 

area (Figure 2.3d). Finally, to verify the validity (and limitations) of the continuum 

approach, we repeat the analysis at small dot sizes using both a three-band tight-bonding 

model [62] and a higher-order 𝒌 ⋅ 𝒑 model shown in Appendix S2.2.  

Having considered the ground state energy-size scaling for electrons and holes, we 

reduce the model MoS2/WS2 system to just triangular dots and consider the complete bound 

state spectrum as a function of dot size. To compute all the bound states, we iteratively 

solve the eigenvalue problem over the entire range of energies in the potential well and 

extract the smooth eigenstates. Figure 2.4a shows some representative bound state spectra 

with energies referenced to the bottom of the well (M’X2 band edge). At 5 nm side length 

(Figure 2.4a, top), the MoS2 well effectively supports only one bound state, with an 
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additional bound state appearing at the very top of the potential well. As the MoS2 well 

region is enlarged, the number of bound states increases, and the energy of the ground state 

reduces towards the energy of the pristine monolayer band edge. Figure 2.4a also shows 
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the probability density of the electron wavefunctions, |Ψe|
2, corresponding to the first 4 

eigenstates of the confined system. The closely spaced states visible near eigenstate 2 and  

 

 

Figure 2.4 a) Bound state spectra for MoS2 / WS2 triangular quantum dots as a function of 

dot size. A sample of wavefunctions is shown for the 10nm well; wavefunctions possess 

3-fold rotational symmetry of the confining geometry. b) Bound state energy spacing and 

effective density of states vs. size of the dots in a). The average state spacing rapidly drops 

below 𝑘𝐵𝑇 @ 300 K as the confinement decreases. 

 

 

 

Figure 2. (a) Design workflow for forming confining TMD heterostructures. (b) Figures 

of merit for evaluating the performance of an MX2 quantum dot in isolating a single 

quantum state. 
Δ𝐸𝐺𝑆

𝑉
− 0.5 measures the percent deviation from the center of the well, and 

Δ𝐸𝐸𝑆−𝐺𝑆 gives the energy separation between the ground state and the first excited state. 

(c, d) Design optimization diagrams for the figures of merit in (b), with results for different 

TMD heterostructures in several dot configurations overlaid.Figure 2. (a) Bound state 

spectra for MoS2 / WS2 triangular quantum dots as a function of dot size. A sample of 

wavefunctions is shown for the 10nm well; wavefunctions possess 3-fold rotational 

symmetry of the confining geometry. (b) Bound state energy spacing and effective density 

of states vs. size of the dots in (a). The average state spacing rapidly drops below 𝑘𝐵𝑇 @ 
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3 are due to differing contributions from the valence band wavefunction with different 

angular momentum quantum numbers; this occurs at all higher energy eigenstates, but the 

energy splitting is small. Due to the inclusion of 𝐻𝑘𝑝
2 (𝒌), we avoid the common fermion 

doubling problem that arises in discretizing Dirac Hamiltonians by introducing an effective 

Wilson mass. [74] As expected, the symmetry of the excited eigenstates matches the 

confining geometry of the finite potential well. Examples for hole wavefunctions in 

hexagonal confined WS2 dots are given in the Supporting Information. At 20 nm (Figure 

2.4a, bottom), the eigenstates are collapsing into a continuum description. At this size, the 

high area to depth ratio of the well means that the potential step at the well edges is no 

longer impacting the wavefunction in the center of the well.  

Figure 2.4b gives a quantitative description of the bound state spectrum evolution 

with increasing dot size from 5 to 25 nm. The blue columns show the average energy 

spacing between eigenstates for a particular dot size, including the energy separation 

between the ground state and the well bottom.  For a fixed well depth, the average energy 

spacing between states decreases rapidly with increasing side length, crossing 𝑘𝐵𝑇 ≅ 25 

meV at 15 nm, which means that the average state is no longer thermally isolated at room 

temperature. The red columns give the number of bound states in the well as the side length 

increases up to 25 nm, when the ground state is within 𝑘𝐵𝑇 of the continuum band edge 

and effectively merges with the continuum. In the design and synthesis of solid-state 

quantum dots for optoelectronic applications, this threshold should be kept in mind as a 

heuristic to minimize thermally induced decoherence due to increasing density of states 
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near the desired excitation. Akin to the determination of the critical maximum size for 

confinement, this threshold arising from neighboring excited bound states places a 

restrictive practical constraint on feasible quantum dot configurations. 

2.4.3 Design Rules for Optimized Realization of Quantum States 

Synthesizing the results presented above, we outline a general design scheme in 

Figure 2.5 to optimize quantum confinement in 2D semiconductor heterostructures. For 

any combination of layered TMD semiconductors, absolute band energies and 𝒌 ⋅ 𝒑  

parameters can be obtained from first principles calculations on pristine periodic systems 

(Figure 2.5a). From these parameters, finite size effects can be explored at length scales 

that are experimentally accessible but beyond the scope of DFT calculations or tight-

binding models. From the phase diagram in Figure 2.2, bound state existence can be 

determined based on the DFT parameters for the pristine monolayers. If bound states exist, 

we can assess the robustness of the planar quantum dot confinement using two basic figures 

of merit: 𝐹1 = |
Δ𝐸𝐺𝑆

𝑉𝑤𝑒𝑙𝑙
− 0.5|, the percent deviation of the ground state from the center of 

the well, and 𝐹2 = Δ𝐸𝐸𝑆−𝐺𝑆, the energy spacing between the ground state and the first 

excited state (Figure 2.5b). These metrics characterize the degree of isolation for a 

quantum state that is energetically centered between the band edges of the component 

materials. An optimal, isolated state has the best chance of withstanding perturbations 

caused by edge states or atomic defects, without knowing a priori where the dominant 

defect levels exist for a given semiconductor heterostructure. To achieve such a state, we 
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need to simultaneously minimize 𝐹1 and maximize 𝐹2. Figure 2.5c and Figure 2.5d plot 

𝐹1 and 𝐹2 as a function of the dimensionless scaling variables 𝑎𝑡/Δ𝑟0 and 𝑉/Δ, where V is 

the band offset in the confining well, along with examples of TMD heterostructures based 

on their band structure parameters. Since the band offsets are not identical for TMD 

heterostructures as they were in our toy model (Figure 2.2), and there is some mixing 
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between the two bands, this parametrization lacks a dependence on the difference between 

Figure 2.5 a) Design workflow for forming 

confining TMD heterostructures. b) Figures of 

merit for evaluating the performance of an MX2 

quantum dot in isolating a single quantum state. 

Δ𝐸𝐺𝑆

𝑉
− 0.5 measures the percent deviation from 

the center of the well, and Δ𝐸𝐸𝑆−𝐺𝑆 gives the 

energy separation between the ground state and 

the first excited state. c, d) Design optimization 

diagrams for the figures of merit in b), with 

results for different TMD heterostructures in 

several dot configurations overlaid.  
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𝑉ℎ and 𝑉𝑒. We take 𝑉0 ≈ 𝑉𝑒(ℎ) for confined electrons (holes) to preserve simplicity, because 

the 𝑉𝑒 − 𝑉ℎ coupling correction to the ground state energy is small.  

For type II band alignment, the optimization shows that deeper wells 

(corresponding to a larger band misalignment between the two semiconductors) lead to 

greater energy separation between the ground and first excited state at a fixed dot area. The 

same is true for the ground state energy spacing from the well bottom. In the MoS2/WS2 

system, there is an optimum triangular side length of ~6.5 nm that corresponds to the 

maximally centered ground state in the middle of the well, whereas for MoSe2/WSe2, this 

optimum size is closer to 4.5nm. TMD monolayer flakes with spatial extent < 10 nm have 

been synthesized, making these systems both practical and ideal for nanoscale quantum 

confinement. [75–80] Recently, both bottom-up [55,81] and top-down [82,83] approaches 

have demonstrated high control over 2D heterostructure features on this length scale, 

within the bounds of the 𝑘𝑇 threshold identified in Figure 2.4b.  

The optimal size asymmetry between confined electrons and holes in the selenide 

system arises from a change in the hopping energy between the molybdenum and tungsten 

compounds. In the sulfide system, a similar hopping energy difference is counterbalanced 

by a change in the band gap which does not occur in the selenide system. In smaller dots 

at constant band offset, the ground state approaches the top of the well, eventually leading 

to the phase boundary for bound state existence seen in Figure 2.2. Furthermore, increasing 

the lattice constant or hopping energy at a fixed offset also increases the confinement for a 
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fixed geometry. For shallow wells, larger dot sizes are preferable to realize bound states 

far from the background band edges, which may have relevance for Moiré superlattice 

engineering.  Overall, these findings lead to the surprising and important conclusion that, 

rather than naively minimizing the dot area, optimal confinement is achieved by tuning the 

quantum dot spatial extent to a precise value that depends sensitively on the material 

parameters.  

2.5 Conclusion 

In this chapter we have presented and analyzed a lateral TMD heterostructure 

architecture for ideal quantum confinement. In doing so, we demonstrated a multiscale 

computational approach for optimizing realistic material and device parameters to achieve 

robust, coherent single quantum states in ambient conditions. By considering a toy model 

of a 2D quantum well, we established the criteria for supporting bound states in a TMD 

heterostructure and clearly emphasized the advantage of intrinsic confinement of massive 

Dirac fermions, compared to graphene which supports only quasi-bound states under 

applied fields. With a continuum method for solving a two-band 𝒌 ⋅ 𝒑 model, geometric 

effects were shown to play an important role in engineering robust confinement, with 

triangular 2D quantum dots exhibiting maximal geometric confinement. The ground state 

energies scale with the system size as 𝛼𝑅−2 + 𝛽𝑅−1, such that the lowest bound state 

energy can be predicted for any size and shape of quantum dot simply by computing the 

material dependent coefficients 𝛼 and 𝛽 via fitting to continuum results. Performance 
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metrics for confinement were proposed in terms of the energetic isolation of the ground 

state from both bulk band edges and neighboring excited states. Optimizing for these 

metrics in an MoS2 triangular quantum dot in a WS2 matrix results in a prediction of ~6.5 

nm side length for optimal confinement. Moreover, we predict optimal geometries for 

arbitrary heterostructures of TMDs, and our formalism can easily be applied to any 2D 

semiconductor heterostructure. Our findings establish straightforward design principles for 

engineering optimal 2D quantum confinement at room temperature that should be of 

immediate use in the experimental realization of coherent quantum states. 
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Chapter 3 Interfacial Phenomena in Synthesis of Layered Materials 

Reprinted (adapted) with permission from  

Price, C. C., Blancon, J.-C., Mohite, A. & Shenoy, V. Interfacial Electromechanics 

Predicts Phase Behavior of 2D Hybrid Halide Perovskites. ACS Nano 14, 3353–3364. 

3.1 Background 

Hybrid organic-inorganic lead halide perovskites (AMX3; A = small organic or 

large alkali cation, M = Pb, Sn, Ge, X = I, Br, Cl) have been extensively studied as ideal 

solution-processable semiconductors with excellent visible-range optical properties, but 

they have been crippled by their thermodynamic instability to water erosion in ambient 

conditions. [84–88] Replacing a portion of the A cations with hydrophobic large organic 

molecules (A’) can lead to layered perovskite structures where the intercalated large 

molecules interrupt the MX3 octahedral network, resulting in a self-assembled organic – 

inorganic lamellar composite material which resists moisture degradation. [89–93] 

Synthetic advances such as hot-casting have led to increased control over the growth 

orientation and stoichiometric ratio of these A’2AN-1MNX3N+1 compounds (A’ = large 

organic molecule), where the stoichiometric index N corresponds to the ratio of 

hydrophobic cations to perovskite semiconductor. [91,94–99] In single-phase materials, 

manipulation of the chemical composition (N) controls the thickness of the perovskite layer 

and thus the magnitude of quantum and dielectric confinement effects on the electronic and 
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optical properties. [100–106] This makes these materials an ideal optoelectronics platform 

even beyond their enhanced stability. [107] 

The compositional phase space of these materials is vast due to the chemical 

degrees of freedom at each site in the structure, particularly at the organic A and A’ sites. 

Most studies have focused on the A’ = n-butylammonium (BA; CH3(CH2)3NH3
+), A = 

methylammonium (MA; CH3NH3
+), M = Pb, X = I system; this was one of the first 2D 

perovskites synthesized [90] and its 3D analogue MAPbI3 is the most widely studied 

member of the 3D hybrid perovskites. In pure phases, this material has been frequently 

reported and studied in the low-N phases (N < 5), [89,91,95,96,99,108–115] and reported 

only twice for N > 5. [116,117] In these recent studies, Soe et. al. found it more difficult 

to isolate single crystals of the higher N phases, finding impurity phases in the XRD spectra 

at stoichiometric ratios corresponding to N = 6, 7, and 9 with the amount of multi-phase 

mixing increasing with N. Mao et. al. reported similar results for their Ruddlesden-Popper 

N = 7 synthesis and suggested that the growth environment is kinetically constrained. 

Recently expanding synthetic efforts have focused primarily on varying the A’ cation; 

examples include guanidinium (GA), [118] phenylethylammonium (PEA), [119–122] 

fluoro-PEA (f-PEA), [123] N,N-dimethylphenylene-p-diammonium (DPDA), [124] n-

propylammonium (PrA), [125] n-pentylammonium (PA), [126] n-hexylammonium 

(HA), [126] and 3(4)-(aminomethyl)piperidinium (3-(4-)AMP) [117,127] (full chemical 

formulae can be found in Table S1 of  [128]). These compounds have all been synthesized 
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exclusively in the low-N phase regime (N < 5) except for PEA and 4-AMP. PEA has been 

reported as synthesized with an average stoichiometry <N> = (10, 20, 40, 60) phases 

consisting of a mix of competing phases, and 4-AMP has been synthesized in the N = 7 

pure phase. [98,117] The gap in the single-phase behavior at the critical N value of 5 for 

BA and other linear-chain A’ cations is surprising since both the low N < 5 and very high 

N = ∞ (bulk) phases are readily synthesized. Single phase intermediate N compounds 

would improve carrier transport by reducing exciton binding energies while retaining the 

highly ordered layered structure and creating opportunities for favorable band alignment 

in heterostructures. However, it is difficult to draw general physical insights about this 

phase behavior from the synthetic efforts discussed above due to the multitude of 

thermodynamic and kinetic factors varying between studies. 

3.2 Objective 

In this chapter, we develop a continuum thermodynamic model parametrized by 

atomistic first-principles density functional theory (DFT) calculations to map the phase 

space and study the critical phase behavior of the quasi-2D layered perovskites (q-2DPKs). 

Focusing on the A’ = BA system as a representative example, we find that the critical N 

value of 5 arises from electromechanical competition between the interfacial stress of the 

MX3 octahedral network and the interfacial dipole interactions across the inorganic layer. 

We show that this competition also drives non-monotonic evolution of the lattice 

parameters with N, which is relevant to the electronic properties of each phase. We find 
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that the N critical value can be tuned through the interfacial dipole moment, which can be 

constructed as a sum of the surface dipole moment of the bulk perovskite and the intrinsic 

dipole moment of the A’ cation. This means that the choice of A’ cation can have an equal 

or greater impact on the structural phase space than the choice of the specific perovskite 

network. These results will enable engineering of phase pure q-2DPKs in intermediate 

composition ranges with long term thermodynamic stability for enhanced electronic and 

optical properties. 

3.3 Methods 

3.3.1 Atomistic Overview and Model Approach 

We first map the family of q-2DPK to a two-component mixture of A’ cations and 

bulk 3D perovskite (PK) that forms a composite system of layers (Figure 3.1a, Figure 

3.1c), focusing on the system where A’ = BA and PK = MAPbI3. At 300 K, MAPbI3 forms 

in a tetragonal phase with nearly isotropic rotational disorder of the MA cations. [129] The 

Pb2+ and MA+ cations are caged in an electron accepting iodine network which forms 

corner-sharing octahedra around the lead ions. To replicate this, we fix the lattice 

parameters in the tetragonal configuration and use green spheres to represent the MA+ 

cations; the orientation of the MA cations has been shown to negligibly impact the 

electronic properties. [94,130] Further details can be found in the Methods and Supporting 

Information.  The BA A’ cation is comprised of a four-carbon backbone with an NH3
+ 

ammonium group at one end. When substituted for MA in the bulk perovskite, the long 
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carbon chains interrupt the halide network, leading to alternating layers of A’ cation 

(BA2)
2+ and perovskite (AN-1PbNI3N+1)

2- with a thickness corresponding to the A/A’ 

stoichiometric ratio. The quasi-unit cells of these structures are shown in Figure 3.1c. The 

full unit cell includes two A' cation layers and two perovskite layers due to the Ruddlesden-

Popper stacking, with experimentally characterized space groups of C2cb for odd-N phases 

and Cc2m for even-N phases. [89,116,131]. With such a large number of atoms in the unit 

cell for N > 1 structures, it is practically impossible to perform wide-ranging ab initio 

calculations on the family of q-2DPKs, and the few existing modelling reports are based 

on semi-empirical approaches. [94,105] This greatly emphasizes the need for a continuum 

model to describe the thermodynamics of these materials. The layered structures undergo 

a small (< 2%) orthorhombic distortion from the tetragonal MAPbI3 parent phase at 300 K, 

which we ignore in the model for simplicity. [94] 
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Figure 3.1 a) Atomistic overview of the parent perovskite phase (MAPbI3) in low and 

room temperature structures; replacing some MA with an A’ cation (n-butylammonium) 

leads to the layered structures in b). b) Quasi- unit cells of the 2D layered perovskites. N 

counts the number of PbI3 octahedra between large organic layers; phases with N > 5 (Ncrit) 

are not synthesized in phase pure form. c) Macroscopic thermodynamic outcomes of the 

two component A’ (cyan) + bulk (gray) perovskite composite material. For uniform 

electronic properties, a single N-phase (red box) morphology is ideal. 
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The stoichiometric index N corresponds to the amount of BA cation incorporated 

into the structure and can be visualized as the number of PbI3 octahedra spanning the 

inorganic layer in the b lattice direction. We also define the perovskite atom fraction 𝑥𝑝𝑣𝑠𝑘 

as the fraction of atoms in the sample which do not belong to the BA cation. Figure 3.1b 

outlines how 𝑥𝑝𝑣𝑠𝑘, N, and the critical N value (Ncrit) are related; for a composition 𝑥𝑝𝑣𝑠𝑘 

of bulk perovskite and BA cations corresponding to a single phase N value <= Ncrit, single 

phase crystals are observed. For 𝑥𝑝𝑣𝑠𝑘 compositions corresponding to N > Ncrit, two-phase 

or multi-phase mixtures of low-N (N < Ncrit) phases and bulk perovskite (𝑁 = ∞) are 

observed. The homogeneous morphologies highlighted in red are desirable for well-

defined optical and electronic properties. Recent results have indicated that Ncrit is 

dependent on the A’ cation chosen in the system, [117] and different choices of A and A’ 

cations may prevent layered composite formation altogether. In our model, we propose that 

Ncrit is not a spurious kinetic effect but emerges as a result of thermodynamic competition 

between the mechanics of the composite interface and the electrostatic repulsion of 

adjacent interfaces across the perovskite layer. 

3.3.2 Computational Details 

First-principles DFT simulations were carried out using the Vienna ab initio 

simulation package (VASP). [20,21] Projector-augmented wave pseudopotentials [132] 

are used with a cutoff energy of 520 eV for plane-wave expansions. [16] The exchange-

correlation is treated using the Perdew-Burke-Ernzerhof (PBE) generalized gradient 
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approximations. The atomistic structures of isolated, symmetric perovskite slabs were 

relaxed using Γ-centered k-point meshes of 7x1x7, while fully periodic structures were 

sampled at 7x3x7. Bulk structures are relaxed using similar meshes of 7x5x7. For structural 

relaxations, the atomic positions of all unit and supercells are optimized until the force 

components on each atom are less than 0.005 eV/ Å, and the electronic energy is converged 

within 10-8 eV. Tight convergence criteria are required due to the shallow nature of the 

perovskite potential energy surface. A vacuum spacing of 20 Å was added to slab 

calculations to prevent interactions between periodic images, as well as dipole corrections 

to the energy and potential in the case of isolated molecules or asymmetric slabs. Long 

range van der Waals dispersion interactions between organic and inorganic components 

were treated using the DFT-D3 method developed by Grimme et. al. [133,134] Following 

previous studies, [94] the lattice parameters were fixed in a tetragonal configuration for 

atomic relaxations to simulate the room temperature phase of MAPbI3, and Cs atoms were 

used instead of MA cations to increase the rotational symmetry of the A cation site and 

reduce computational cost (Figure 3.1a). All calculated properties were verified to be 

minimally affected by the cation switch. 

3.4 Results 

3.4.1 Strain-Dependent Free Energy of the Composite A’ / Perovskite System 

 To develop general insights about the composite layered organic-inorganic system, 

we map the atomistic structure into a continuum model of interacting slabs with two BA-
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adsorbed interfaces, as shown by the black dashed box in Figure 3.2a. As in Figure 3.1, 

we color-code the ‘bulk’ perovskite regions gray and the all-organic BA regions cyan and 

identify the critical chemical and mechanical variables contributing to the thermodynamics 

of the mixture. The overall chemical reaction forming the layered structure is: 

 2𝐵𝐴𝐼(𝑠) + 𝑃𝑏𝐼2 (𝑠) + (𝑁 − 1)𝑀𝐴𝑃𝑏𝐼3 (𝑠) → 𝐵𝐴2𝑀𝐴𝑁−1𝑃𝑏𝑁𝐼3𝑁+1 (𝑠) (3.1) 

We begin by writing the total free energy of the system as 𝐺𝑡𝑜𝑡 = 𝐺0 + Δ𝐺𝑚𝑖𝑥, where 𝐺0 =

𝑥𝐵𝐴𝐼𝐺0
𝐵𝐴𝐼 + 𝑥𝑀𝐴𝑃𝑏𝐼3𝐺0

𝑀𝐴𝑃𝑏𝐼3 + 𝑥𝑃𝑏𝐼2𝐺0
𝑃𝑏𝐼2 gives the composition-weighted free energy of 

formation of the q-2DPK components and Δ𝐺𝑚𝑖𝑥 captures the free energy of mixing the 

constituents. 𝐺0
𝑃𝑏𝐼2 is necessary to describe the N = 1 compound where the A’ cation has 

replaced all of the A cation, but since this is the lower limit of the stoichiometric range we 

are interested in, it can be added into 𝐺0
𝑀𝐴𝑃𝑏𝐼3 as a constant, which is done from here on. 

Since the layered phases are all highly ordered and the entropy of crystallization for BAI 

is small, [135] we take 𝑆0 ≈ 0 and Δ𝑆𝑚𝑖𝑥 ≈ 0.  With these simplifications, we can use the 
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composition fraction 𝑥𝑝𝑣𝑠𝑘 introduced earlier so that 𝐺0 = (1 − 𝑥𝑝𝑣𝑠𝑘)𝐻0
𝐵𝐴𝐼 +

𝑥𝑝𝑣𝑠𝑘𝐻0
𝑀𝐴𝑃𝑏𝐼3 and Δ𝐺𝑚𝑖𝑥 = Δ𝐻𝑚𝑖𝑥. As an atom fraction, 𝑥𝑝𝑣𝑠𝑘 =

𝑛𝑝𝑣𝑠𝑘

𝑛𝑡𝑜𝑡
, where 𝑛𝑝𝑣𝑠𝑘 is the 

number of atoms belonging to the perovskite layer and 𝑛𝑡𝑜𝑡 is the total number of atoms in 

Figure 3.2. a) Zoomed view of the periodic layered perovskite structure. The dashed line 

shows the slab unit cell used to parametrize the continuum model.  b) Schematic for the 

basis of the continuum model. The interfaces are denoted by the undercoordinated iodine 

atoms (red outline) where the BA cation has broken the Pb-I bond. The key interactions 

are shown in green (interfacial energy: surface energy + adsorption energy), pink 

(interfacial stress of the perovskite), orange (interdigitation energy of the BA molecules), 

and gray (perovskite layer with bulk elastic energy). The elastic degrees of freedom are the 

in-plane strain 𝜀𝑖𝑝 and out-of-plane strain 𝜀𝑜𝑝. 



46 

 

one formula unit of BA2MAN-1PbNI3N+1. Based on the atom counts in each component, 

𝑥𝑝𝑣𝑠𝑘 and N are related through 𝑁 =
27+7𝑥𝑝𝑣𝑠𝑘

12(1−𝑥𝑝𝑣𝑠𝑘)
. The formation energies of the bulk 

components are calculated from atomic reference states using DFT according to the 

following reactions: 

𝐻0
𝐵𝐴𝐼 = Δ𝐻𝑓:  4𝐶(𝑠) +

1

2
𝑁2 +

1

2
𝐼2 + 6𝐻2 → 𝐶𝐻3(𝐶𝐻2)3𝑁𝐻3𝐼 

(3.2) 

𝐻0
𝑀𝐴𝑃𝑏𝐼3

= Δ𝐻𝑓: {

𝑃𝑏(𝑠) + 𝐼2 → 𝑃𝑏𝐼2                                                         𝑁 = 1

2𝑃𝑏(𝑠) +
5

2
𝐼2 +

1

2
𝑁2 + 𝐶(𝑠) + 3𝐻2 → 𝑀𝐴𝑃𝑏𝐼3 + 𝑃𝑏𝐼2            𝑁 > 1

 

(3.3) 

where 𝑀𝐴 = 𝐶𝐻3𝑁𝐻3. 

Next, we develop the mixing enthalpy Δ𝐻𝑚𝑖𝑥 of the BA cations and bulk 

perovskite, which describes the 2D interfaces formed on each side of the perovskite slab 

(Figure 3.2b). The interfacial energy (green) is a combination of the energy cost of 

cleaving the perovskite by breaking the Pb-I bonds 𝛾0, and the adsorption energy 𝛾𝑎𝑑𝑠 of 

the large organic cations onto the cleaved perovskite surface. The sum of 𝛾0 and 𝛾𝑎𝑑𝑠 gives 

the mechanically uncoupled interfacial energy; these and other material parameters 

described below are calculated using DFT, as detailed in Ref.  [128]. Based on 

experimental evidence, [89,116] the lattice parameters of the layered structure evolve with 

N, so we introduce two elastic degrees of freedom within the gray perovskite domain only: 
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the in-plane strain parallel to the interface 𝜀𝑖𝑝 and the out-of-plane strain perpendicular to 

the interface 𝜀𝑜𝑝, which are taken relative to the PK experimental lattice constants at room 

temperature measured by Whitfield et al. [129] These strain degrees of freedom contribute 

through the interfacial stress 𝑓𝑠𝑠 =
𝜕𝛾0

𝜕𝜀𝑖𝑝
𝜀𝑖𝑝 (Figure 3.2b, pink) and the bulk elastic energy 

for a tetragonal unit cell 𝐸𝐵 =
1

2
(2𝐶11𝜀𝑖𝑝

2 + 𝐶22𝜀𝑜𝑝
2 + 4𝐶12𝜀𝑜𝑝𝜀𝑖𝑝 + 2𝐶13𝜀𝑖𝑝

2 ), where 𝐶𝑖𝑗 

are the elastic stiffness constants in Voigt notation. These two terms compete due to the 

different bonding environments at the organic-inorganic interface and the interior of the 

perovskite slab. [136,137] 𝑓𝑠𝑠 is parametrized by calculating the linear change of the free 

perovskite surface energy 𝛾0 with in-plane strain 𝜀𝑖𝑝, while 𝐸𝐵 is calculated using the 

elastic constants of bulk MAPbI3. [138,139] The corresponding elastic energy of the soft 

organic layer and organic contributions to 𝑓𝑠𝑠 are verified to be small in comparison and 

ignored, but the van der Waals (vdW) interactions between the BA molecules belonging to 

adjacent interfaces are captured by 𝑈𝑖𝑛𝑡𝑒𝑟𝑑𝑖𝑔𝑖𝑡 (Figure 3.2b, orange). This is calculated as 

the energetic difference between isolated symmetric BA-adsorbed perovskite slabs and the 

fully periodic layered structure. [128] Normalized to energy per atom, the strain-dependent 

energy of forming the individual A’ / perovskite interfaces is: 

 
𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =

𝐴0
𝑛𝑡𝑜𝑡

(𝛾0 + 𝛾𝑎𝑑𝑠 +𝑈𝑖𝑛𝑡𝑒𝑟𝑑𝑖𝑔𝑖𝑡 +
𝜕𝛾0
𝜕𝜀𝑖𝑝

𝜀𝑖𝑝)

+ 𝑉0𝑥𝑝𝑣𝑠𝑘𝐸𝐵(𝜀𝑖𝑝, 𝜀𝑜𝑝) 

(3.4) 
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where 𝐴0 is the unstrained surface area, 𝑉0 is the unstrained volume of the bulk perovskite 

unit cell, and 𝑛𝑡𝑜𝑡 is the total number of atoms in one composite formula unit. After 

parametrization by DFT calculations, we find that the interface formation governed by the 

above expression is thermodynamically favorable (𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 < 0) at all reasonable strain 

and compositions due to the strongly negative 𝛾𝑎𝑑𝑠. This is not surprising since the low-N 

layered compounds with high interfacial area are readily synthesized, but it does not 

explain the critical N behavior. 

3.4.2 Electrostatic Interactions of Adjacent Interfacial Dipole Layers  

Since we are interested in the relative energies between phases with varying 

perovskite thickness N, this picture of the enthalpy of mixing is incomplete. Along with 

the overall composition and frequency of interfaces, the main structural feature that varies 

with N is the distance between two interfaces across the perovskite layer. The formation of 

surface dipole layers has been studied extensively in ionic perovskites, but less so in hybrid 

halide perovskites due to the mixed ionic/covalent nature of the bonds and variable 

stoichiometry at free surfaces. [140–143] Due to the broken Pb-I bonds and the change in 

the organic cation at the interface, interfacial dipole layers can form and provide a 

mechanism for the interfaces to interact electrostatically across the perovskite slab. Figure 

3.3a gives a schematic view of how the combination of the NH3
+ cation and the 

undercoordinated I atoms at the organic-inorganic interface can be mapped to a 2D lattice 

of effective interfacial dipoles with the in-plane periodicity of the BA cations. Figure 3.3b 
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shows the bonding charge density, defined as the difference between the electronic density 

of the interface and the isolated neutral component atoms, projected along the (001) 

direction. Red regions indicating localization of electronic density (negative charge) and 
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blue regions indicating absence of electron density relative to isolated neutral atoms 

provide a first-principles justification of the out-of-plane polarization localized around the 

BA molecule. We focus on the interfacial interaction across the perovskite layer since this 

Figure 3.3 a) Atomistic schematic for the formation and alignment of interfacial dipoles. 

The dipole moment of the BA cation aligns with the I-terminated surface dipole of the 

perovskite surface (left), which we sum to an effective interfacial dipole (green) 

perpendicular to the interface. b) Bonding electronic charge density of the BA-perovskite 

adsorbed surface projected along the (001) direction showing significant out-of-plane 

polarization; units in e/Å3. c) Schematic of the dipole lattice model and the N-dependent 

electrostatic interaction. The cross-interface distance and the dipole planar lattice constant 

are coupled to 𝜀𝑜𝑝 and 𝜀𝑖𝑝, respectively. 



51 

 

distance is N-dependent; while adjacent interfaces are closer together across the organic 

layer, this interaction length is essentially invariant with N. Furthermore, this interfacial 

interaction across the organic layer is already incorporated into the vdW interaction energy 

𝑈𝑖𝑛𝑡𝑒𝑟𝑑𝑖𝑔𝑖𝑡 discussed above. 

While the electric potential between equally and uniformly charged sheets is zero 

by superposition, inhomogeneities in the charge density due to the ionic nature of the BA 

cation groups and the I- atoms leads to corrugations in the potential and a finite contribution 

to the electrostatic energy. [144,145] To capture the point charge lattice physics, we 

construct two opposing dipole arrays consisting of 2D square lattices of charged gaussian 

disks (Figure 3.3c) and map the relevant parameters (N,  𝜀𝑖𝑝, 𝜀𝑜𝑝) from the A’ cation / 

perovskite mixture model in Figure 3.2. We also introduce two parameters, 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 and 

𝐷𝑑𝑖𝑝𝑜𝑙𝑒, which represent the magnitude and distance of the charge separation for each 

dipole in the lattice; the dipole moment is equal to 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 ∗ 𝐷𝑑𝑖𝑝𝑜𝑙𝑒. The electrostatic 

energy 𝑈𝐸 of a stack of 2D point charge lattices with equal periodicity and overall charge 

neutrality is given by: 

 
𝑈𝐸 =

𝐴

2𝜀𝑟
∑ ∑

𝜎𝑖̃(𝑘𝑥, 𝑘𝑧)
∗𝜎𝑗̃(𝑘𝑥, 𝑘𝑧)

|𝑘⃗ |𝑖<𝑗𝑘𝑥𝑧≠0

exp (− |𝑦
𝑖
− 𝑦

𝑗
| |𝑘⃗ |) 

(3.5) 

where the area of each 2D unit cell 𝐴 and the in-plane reciprocal lattice vectors 𝑘⃗  depend 

on 𝜀𝑖𝑝 and the perpendicular distance between sheets |𝑦𝑖 − 𝑦𝑗| depends on 𝜀𝑜𝑝 (relationship 
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shown in Figure 3.3c; parameter values and details of the derivation in Appendix S3.1). 

𝜀𝑟 is the static permittivity of the medium, [104,146] 𝜎̃ are the Fourier coefficients of the 

real-space charge distribution, and 𝑖, 𝑗 are the integer indexes of the sheets in the stack 

(Figure S3.1). The static dielectric constant 𝜀𝑟 in MAPbI3 is difficult to measure or 

calculate but depends on the presence of surfaces and the slab thickness; for simplicity, we 

choose a global average value of 12 between N = 1 and bulk and ignore any thickness (𝑦) 

dependence. [146] Explicitly, for the 3 interactions we consider between the dipole sheets 

𝑖, 𝑗 ∈ {1,2,3,4}: 

|𝑦1 − 𝑦3| = 𝑁𝑏0(1 + 𝜀𝑜𝑝) + 𝐷𝑑𝑖𝑝𝑜𝑙𝑒 

|𝑦2 − 𝑦3| = 𝑁𝑏0(1 + 𝜀𝑜𝑝) 

|𝑦1 − 𝑦4| = 𝑁𝑏0(1 + 𝜀𝑜𝑝) + 2𝐷𝑑𝑖𝑝𝑜𝑙𝑒 

where 𝑏0 is the unstrained lattice constant of the bulk perovskite perpendicular to the (010) 

surface. Eq. 3.5 shows that the electrostatic energy decays exponentially with the distance 

between the charge sheets with a characteristic length that depends on the in-plane lattice 

constant through the reciprocal vector 𝑘. The asymptotic behavior interpolates between the 

limiting cases of uniformly charged sheets (𝑈𝐸 = 0) and a single dipole-dipole interaction 

at long range (𝑈𝐸~1/𝑟
3 ), consistent with the construction of an infinite series of screened 

dipole-dipole interactions. The appearance of 𝜀𝑖𝑝 and 𝜀𝑜𝑝 in the exponential couples the 

energy of electrostatic interfacial interactions with the energy of mechanical interface 
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relaxation described in Figure 3.2b. The relative strain dependence of the electrostatic 

energy is shown in Figure 3.4a over several different reference |𝑦𝑖 − 𝑦𝑗| corresponding to 

different N-phases from N = 1 to N = 5. A crucial point that emerges is that the direction 

of the strain dependence opposes that of the interfacial stress relaxation 𝑓𝑠𝑠; while the 

electrostatic cross-interface interaction energy 𝑈𝐸 is minimized with compressive in-plane 

strain and tensile out-of-plane strain, the individual interfacial energy 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is lowered 

through tensile in-plane strain and an elastically induced compressive out-of-plane strain.  

Figure 3.4 a) Strain dependence of the electrostatic dipole energy as a function of N, 

normalized in terms of the max dipole energy value over the strain window. A 10% strain 

window corresponds to a ~20% energy change at N = 1 and a ~35% change at N = 5. b) 

Experimental versus model strain as a function of N. The model qualitatively captures the 

non-monotonic behavior of the strain and the switch from N = 1 to 2 from out-of-plane 

positive (in-plane negative) to out-of-plane negative (in-plane positive) strain. 
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3.4.3 Minimization of the Free Energy and Determination of Ncrit 

The value and strain dependence of the electrostatic term suggests that it will 

compete with the interfacial mechanical relaxation but quantifying this competition 

requires minimizing the free energy. Combining all the energetic contributions to the 

formation of 2D perovskites listed above, we can write down the complete expression for 

Δ𝐻𝑚𝑖𝑥 and the total free energy (using the atom fraction conversion 𝑁 =
27+7𝑥𝑝𝑣𝑠𝑘

12(1−𝑥𝑝𝑣𝑠𝑘)
): 

𝐺𝑡𝑜𝑡(𝑥𝑝𝑣𝑠𝑘 , 𝜀𝑖𝑝, 𝜀𝑜𝑝)

=  𝑥𝑝𝑣𝑠𝑘𝐻0
𝑀𝐴𝑃𝑏𝐼3 + (1 − 𝑥𝑝𝑣𝑠𝑘)𝐻0

𝐵𝐴𝐼 + Δ𝐻𝑚𝑖𝑥(𝑥𝑝𝑣𝑠𝑘, 𝜀𝑖𝑝, 𝜀𝑜𝑝) 

(3.6) 

Δ𝐻𝑚𝑖𝑥 =
𝐴0
𝑛𝑡𝑜𝑡

(𝛾0 + 𝛾𝑎𝑑𝑠 + 𝑈𝑖𝑛𝑡𝑒𝑟𝑑𝑖𝑔𝑖𝑡 +
𝜕𝛾0
𝜕𝜀𝑖𝑝

𝜀𝑖𝑝) + 𝑉0𝑥𝑝𝑣𝑠𝑘𝐸𝐵(𝜀𝑖𝑝, 𝜀𝑜𝑝)

+
𝑈𝐸(𝜀𝑖𝑝, 𝜀𝑜𝑝, 𝑁)

𝑛𝑡𝑜𝑡
 

(3.7) 

At each composition 𝑥𝑝𝑣𝑠𝑘, 𝐺𝑡𝑜𝑡 can be minimized with respect to the internal degrees of 

freedom 𝜀𝑖𝑝 and 𝜀𝑜𝑝 to find the minimum free energy at each composition 𝐺𝑚𝑖𝑛(𝑁) and 

construct the phase diagram. Due to the discrete sums in 𝑈𝐸, we minimize this expression 

numerically, but we note that the primary scaling of the free energy at the minimum strain 

occurs with composition, as each term of Δ𝐻𝑚𝑖𝑥 in Eq. (3.7) scales as 
1

𝑁
, 𝑥𝑝𝑣𝑠𝑘, and 

exp(−𝑁) 

𝑁
, 

respectively. In Figure 3.4b, we use the strain values which minimize the free energy at 

each composition to compare the equilibrium structures predicted by our model with 
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experimental lattice constants measured at room temperature. [89,90,116,147] Both the 

experimental and model strains are calculated as deviations from the bulk tetragonal 

MAPbI3 structure determined by Whitfield et al. [129] We find that the model semi-

quantitatively captures the non-monotonic trend of the lattice parameters from N = 1 to N 

= 5. The in-plane strain is determined as the change in area of the (010) plane of the layered 

structure from the equivalent (101) plane in the bulk reference structure. At N = 1, the 

interfacial electrostatic interaction dominates the single-interface mechanics and the 

perovskite lattice experiences in-plane compression and out-of-plane tension. Increasing 

to N = 2 reverses this effect and the increased distance between the interfaces allows the 

interfacial mechanics to dictate the structure. The disagreement in the magnitude of the 

structural distortion for the N = 1 phase stems from an increase of the elastic moduli of the 

perovskite layer (nanoscale hardening) at N = 1 and a breakdown of the continuum 

approximation that the single octahedral layer of the N = 1 structure can be accurately 

modeled by two independent interfaces. This raises the point that while the leading order 

contributions of the interface elastic energy are captured by 
𝜕𝛾0

𝜕𝜀𝑖𝑝
, a higher order strain term 

of the form 
1

2
𝐴𝐸𝑆𝜀

2 could also be included, where 𝐴 is the area, 𝐸𝑆 are the surface elastic 

constants, and 𝜀 is the strain tensor. [148] This term is second order in strain and therefore 

small relative to the energy differences between ordered phases at small N, we have 

dropped this term from the model to simplify the parameter space. Despite this, the 

dielectric approximation, and the tetragonal symmetry approximation, the salient features 
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of the structural evolution are captured. This has important effects on the trends of band 

gap evolution in these materials. [149]  

Figure 3.5 a) Component curves for the free energy minimized with respect to strain. The 

independent bulk formation energy 𝐺0 (black), interfacial energy 𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 (blue), and 
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electrostatic energy 𝑈𝐸  (red) combined to give the minimized energy of the ordered phases 𝐺𝑚𝑖𝑛 

(green). b) Determination of Ncrit using tie lines with the bulk formation energy. Blue region 

indicates compositions where single ordered phases (green dots) are stable with respect to phase 

mixing, red region indicates compositions where two-phase separation is thermodynamically 

preferred. 

Having benchmarked the mechanical results of the model with experiment, we now 

plot the minimum free energy curve as a function of composition to examine the 

thermodynamic competition between ordered phases at different compositions. Figure 3.5a 

shows how the different components of 𝐺𝑚𝑖𝑛 (green) scale with composition 𝑥𝑝𝑣𝑠𝑘 and N, 

up to N = 10. Immediately, we see that the repulsive electrostatic energy (red) between the 

interfaces competes with the energetically favorable surface relaxation (blue) of low-N 

structures. The nature of this competition is determined by the magnitude of the surface 

energy and interfacial stress, the elasticity of the octahedral network, and the magnitude of 

the interfacial dipoles. At low N compositions, the proximity of the interfaces increases the 

energy of the system, while at high N compositions, the electrostatic interaction decays to 

zero and the reduction of the interfacial energy through mechanical relaxation takes over. 

Without the electrostatic terms, the two-phase mixture of highly strained thin (N = 1) phase 

and non-strained excess bulk (N = ∞) is preferred at all compositions (Figure S3.2) since 

this two-phase configuration maximizes the number of thermodynamically favorable 

interfaces while reducing the total bulk elastic energy of the perovskite. The electrostatic 

repulsion of the interfaces incurs an energy penalty at low N and leads to an inflection point 
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in 𝐺𝑚𝑖𝑛that corresponds to Ncrit.  The strain coupling of these competing mechanisms is 

necessary to accurately locate this inflection point, which is quite sensitive to the relative 

magnitudes of the two effects. In Figure 3.5b, we zoom in on the total energy curve (green) 

to extract Ncrit, which is the ordered phase nearest the inflection point of Δ𝐻𝑚𝑖𝑥. 

Specifically, the Ncrit point is the minimum N composition corresponding to an ordered N 

phase which is not thermodynamically stable with respect to a two-phase mixture satisfying 

the composition constraint: 

 𝐺𝑚𝑖𝑛(𝑁𝑐𝑟𝑖𝑡 + 1) > 𝑋1𝐺𝑚𝑖𝑛(𝑁 < 𝑁𝑐𝑟𝑖𝑡) + 𝑋2𝐺𝑚𝑖𝑛(𝑁 > 𝑁𝑐𝑟𝑖𝑡); 𝑥𝑡𝑜𝑡

= 𝑥𝑝𝑣𝑠𝑘
𝑁𝑐𝑟𝑖𝑡 

(8) 

where 𝑋1 and 𝑋2 are phase fractions which satisfy the total composition constraint 𝑥𝑡𝑜𝑡. 

Graphically, this is visualized by drawing tie lines between different phases on the 

minimum free energy composition curve; the highest single-phase composition which is 

not superseded by a tie line between other phases corresponds to Ncrit. This superseding tie 

line is drawn in red and originates at N = 5 in Figure 3.5b, indicating that the model predicts 

an Ncrit of 5 in BA2MAN-1PbNI3N+1 in agreement with general experimental observations 

(see Table S2 of Ref.  [128]). While the energy differences are small between the different 

ordered phases on a per-atom basis, over several formula units the thermodynamic driving 

force becomes significant. The shallow curvature of 𝐺𝑚𝑖𝑛 in the region of the inflection 

point means that the N = 4 and N = 6 phases are close in energy over a range of 

compositions. This is supported by the synthesis trend in the literature, as observing N = 5 
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and N > 5 phases is less frequent and less phase pure over N = 4 compounds (see Table S2 

of Ref.  [128]). This indicates that kinetic freedom (such as hot-casting) during synthesis 

also plays a significant role in differentiating these compounds. [147] 

3.4.4 Interfacial Dipoles Enable Synthetic Control of Ncrit 

The energetic competition between interface formation and cross-interface 

interaction can lead to critical phase behavior, but we seek to develop a deeper connection 

between the schematic dipole lattice in Figure 3.3, which is constructed of equal and 

opposite point charges and parametrized by 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 and 𝐷𝑑𝑖𝑝𝑜𝑙𝑒, and the continuous charge 

distribution of the atomistic interface. Dipole moments of continuous charge distributions 

are only well-defined in the presence of a finite surface. [150] The dipole moment of a 

charge distribution perpendicular to an (010) surface can be calculated as 𝑃010 =

∫ (𝑦 − 𝑦0) ∙ 𝜌(𝑦 − 𝑦0) 𝑑𝑦
𝑏0
𝑦0

, where 𝑦0 is a coordinate reference point inside the charge 

distribution and 𝑏0 is the length of the supercell perpendicular to the surface. [151] Figure 

3.6a plots this surface dipole value as a function of the reference point 𝑦0 for the bulk 

perovskite surface that corresponds crystallographically to the interface that forms in the 

q-2DPK compounds. The local maxima correspond to the points where 𝑦0 divides 𝜌(𝑦) 

into two charge neutral halves, so that the dipole value at these reference points is both 

physically meaningful and far enough from the surface that it is converged. From this 

analysis, we find that the surface dipole moment for the perovskite is 1.0 eÅ. Since the BA 

cation is an overall neutral single molecule with a finite charge distribution in all 
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dimensions, the dipole moment can be easily found by 𝑃 =  ∫ 𝑟 ∙ 𝜌(𝑟)𝑑𝑟, which we 

calculate to be 0.75 eÅ.  

The wide array of possible A’ cationic molecules indicates that an ideal strategy to 

tune the phase behavior of the q-2DPK is through the induced interfacial dipole moment 

as opposed to the perovskite elasticity. Figure 3.6b shows the evolution of Ncrit as a 

function of the electrostatic lattice parameters 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 and 𝐷𝑑𝑖𝑝𝑜𝑙𝑒 (Figure 3.3c), with the 

iso-moment contours 𝑃 = 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 ∗ 𝐷𝑑𝑖𝑝𝑜𝑙𝑒 shown in black. All other model parameters, 

such as the interfacial energy and interfacial stress, are held constant. First, we find that 

Ncrit evolves along the iso-moment contours over independent variations of 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 and 

𝐷𝑑𝑖𝑝𝑜𝑙𝑒, which presents a qualitative affirmation that the dipolar interactions can modify 

the critical phase behavior. Second, we note that by taking the interfacial dipole moment 

as a sum of the perovskite surface dipole and the dipole moment of an isolated n-BA cation, 

we match the dipole moment of ~1.75 eÅ required in the model to observe Ncrit = 5. This 

simple relation allows for prediction of the Ncrit value based on the properties of the 

individual A’ cation molecules, which is otherwise difficult to calculate using first-

principles calculations due to the numerous degrees of freedom and the difficulty of 

describing long-range electrostatic interactions using pseudo-potential DFT. The ability to 

obtain the interfacial dipole as a sum of the independent components can be attributed to 

the hydrogenic bonding between the organic cations and the lead halide network; if the A’ 

molecule forms covalent bonds with the iodine-rich perovskite surface and significant 
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charge transfer occurs at the interface, this simple design rule may not hold. However, since 

the interfacial dipole moment is notoriously difficult to calculate or measure directly, this 

decomposition into readily calculable dipole moments has significant predictive power. 

The sensitivity of the Ncrit value to the interfacial dipole moment shows that tuning 

the interfacial composition can have a substantial impact on the thermodynamically 

accessible synthesis space of quasi-2D hybrid perovskites.  Recently, successful synthesis 

of an N = 7 q-2DPK with greater phase purity than BA was achieved using 4-AMP (see 

Table S1 of Ref.  [128]) as the A’ cation, an organic molecule with two different cationic 

Figure 3.6 a) Determination of the surface dipole moment of MAPbI3 and BA. The local 

maxima in the dipole moment indicates that the symmetric slab is divided into charge 

neutral portions, leading to a physically meaningful dipole value. We take the converged 

value from the interior of the slab. b) Ncrit (green) mapped over the interfacial dipole lattice 

parameters 𝑄𝑑𝑖𝑝𝑜𝑙𝑒 and 𝐷𝑑𝑖𝑝𝑜𝑙𝑒, all other parameters held equal. The sum of the surface 

moment and cation moment fall in the Ncrit = 5 range for BA2MAN-1PbNI3N+1. The Ncrit 

changes follow the iso-moment Q*D contours in black, and sensitive changes in the 

moment induce changes in the Ncrit value. 
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groups on each end. [117] Returning to the derivation of 𝑈𝐸, we note that the non-lattice 

average charge density contributions to the interior electric field from each interface caused 

a cancellation in the contributions of the electric field scaling as 
1

𝑦0
 with interfacial 

separation. As characterized, the 4-AMP compound aligns with its neighbors to maximize 

conjugate ring interactions, breaking the symmetry between the perovskite interfaces and 

introducing another contribution to the interior electric field. Since our model predicts that 

increasing the electrostatic energy will shift the critical point to higher N, these molecules 

with asymmetric cationic groups are highly promising for tunably expanding the q-2DPK 

into the quasi-bulk, non-excitonic regime. Altering the small A cation may also enable 

engineering of the critical phase boundary. For example, formamidinium (FA) in place of 

MA increases the lattice constant of the lead iodide octahedra, [152] increasing the dipole 

lattice spacing and the internal electrostatic energy. Competing changes may occur to other 

parameters such as the dielectric constant, so a complete parameter study using our model 

is warranted to predict the outcome of these chemical substitutions. 

3.5 Conclusion 

Surveying the synthetic efforts in the fast-growing field of 2D and quasi-2D 

organic-inorganic halide perovskites, we set out to identify the governing thermodynamic 

mechanisms of the compositional phase space by considering the free energy of formation 

of the composite structures. We found that thermodynamically favorable adsorption of 

large organic molecules onto the I-terminated perovskite surface and interfacial mechanical 
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relaxation drive the formation of internal interfaces to maximize the interfacial area while 

minimizing the elastic energy penalty. This effect competes with the unfavorable 

electrostatic interaction between the two opposing perovskite interfacial dipole lattices 

associated with the adsorbed large organic molecules. The interfacial mechanical 

relaxation and the electrostatic energy are coupled through the in-plane and out-of-plane 

strain, which is found to evolve non-monotonically from low-N to high-N phases matching 

experimental trends. Together, these effects lead to a finite Ncrit, which corresponds to the 

minimum loading of A’ cations in the A’2AN-1MNX3N+1 compositional formula to obtain 

thermodynamically stable single-phases. At N > Ncrit, the system will preferentially phase 

separate into a mixture of bulk perovskite (N = ∞) and N <= Ncrit. We find that Ncrit can be 

tuned by reasonable modifications of the interfacial dipole value, and that this complicated 

quantity can be sufficiently approximated by the sum of the perovskite surface dipole and 

the dipole moment of the isolated A’ cation. Our multiscale, first-principles informed 

continuum model provides mechanistic understanding and synthetic guidance in the large 

compositional phase space of quasi-2D perovskites. 
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Chapter 4 Predicting Surface Strain Effects on Adsorption Energy 

with Graph Neural Networks 

4.1 Background 

Structure-property relationships form the core of materials science and rational 

materials design; understanding how changes in atomic structure change the emergent 

material properties is a primary goal of computational materials modeling. [153,154] The 

symmetric elastic strain tensor 𝜀 quantifies the change of the material’s periodic unit cell 

of a material from the initial reference state - the bulk ground state crystal structure which 

minimizes the free energy of formation at zero stress. At a material surface, the disruption 

of the bulk bonding changes the electron distribution at the surface and induces surface 

stress, which can be alleviated through shifts in the atomic positions corresponding to a 

surface strain. [136,137,155] These concepts extend to the rearrangement of surface atoms 

under a general mechanical force. Surface structural changes can dominate the overall 

structure-property relationships at the nanoscale, where a significant portion of the atoms 

in a material are located at or near the surface, and mechanical force can originate from 

epitaxial mismatch, bending, or other mechanically coupled effects such as 

piezoelectricity. [156,157] Of the six dimensions used to specify bulk strain (using Voigt 

notation, 𝜀1−6), surface strains are described by the three deformations in the periodic plane 

of the surface, but the surface atoms will also relax in the out-of-plane direction where 

periodicity is broken. Analysis of this continuous 3D surface strain space is typically 
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limited to single-element structures with low-index surfaces in high-symmetry deformation 

directions (uniaxial or biaxial) because the search space is vast and low-index surfaces 

typically form spontaneously under bulk cleavage or epitaxial growth. [158–162] 

In small molecule reactions such as ammonia synthesis, carbon dioxide reduction, 

or nitrogen dioxide reduction, an effective heterogeneous catalyst reduces the energy of 

transition states in bond-breaking or bond-building reactions, lowering the activation 

energy barrier and increasing the likelihood that the reaction proceeds in the desired 

direction.  [163] While these energy barriers are often difficult to characterize or predict, 

the adsorption energy of a molecular structure on a surface describes the interaction 

strength and has been successfully used as a proxy to describe catalyst activity and assist 

in catalyst design. [164] Linear scaling relationships identified for adsorption energies of 

different molecules and across different surfaces reflect the similar bonding configurations 

of many small molecules on valence d-band materials. [165,166] However, these 

relationships imply that it is difficult to meaningfully improve catalytic activity by simply 

changing the catalyst material since the relative adsorption energies of molecular 

intermediates will not change. [167,168] Strain has been suggested as a promising strategy 

to break these scaling relationships by changing the surface bonding 

environment, [169,170] and there have been multiple experimental observations indicating 

that strain can effectively manipulate catalyst-adsorbate interactions and modify catalyst 

activity across different reactions. [159,161,171–176]  This is especially promising given 
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recent advances in core-shell nanoparticle synthesis and nano-heterostructure synthesis 

through deposition, allowing for strain control to be achieved in high surface area materials 

systems which are ideal for catalytic applications. [177–180] By breaking these scaling 

relations, including strain as a degree of freedom in catalyst design significantly increases 

the complexity of an already high dimensional space that intrinsically already covers the 

catalyst structure and composition, the surface facet, the adsorption site, and the adsorbate 

composition. Nanoparticles frequently contain high-index surfaces which hold significant 

activity potential but are relatively under-studied compared to conventional metal epitaxial 

surfaces. [181] 

Supervised machine learning (ML) models can learn nonlinear functions in high-

dimensional spaces from a relatively small subset of representative training data. The 

success of ML approaches significantly depends on the combination of the selected model 

and the featurization of the data, which is the process of preparing and filtering data before 

it passes into the model. Recently, neural networks using strain tensors as inputs were 

applied to predict the strain response of the electronic structures of diamond and silicon 

using a training set of density functional theory (DFT) calculations; equivalent results using 

DFT alone would have required over 100 million additional calculations, which is  several 

orders of magnitude more than what is achievable with current computational 

capability. [182,183] These models enable deep elastic strain engineering by learning the 

relationship between the target property (either band gap or full band structure) and the 
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strain tensor from a small amount of randomly dispersed training data, covering a region 

far outside the conventional small-strain linear elastic approximation. However, since the 

training data concerns only one material, extending these predictions to a new material 

requires additional training data and a new model. Generating large, accurate, and 

statistically representative training datasets is a significant bottleneck in applying ML to 

crystalline materials; [184] recently, the Open Catalyst Project (OCP) released a dataset of 

over 1.2 million DFT-relaxed catalyst-adsorbate complex structures to model training for 

adsorption energy prediction with the goal of catalyst discovery and optimization. [30] The 

dataset spans the critical contributing factors to adsorption energy of bulk composition and 

structure, surface facet, adsorbate site, and adsorbate composition. Modeling the adsorption 

energy requires ingesting fine-grained featurizations which contain information about the 

specific atomic relaxations around the coordination site in an ML model. Graph neural 

networks (GNNs) are a candidate model class for this problem since they operate on atomic 

structures-as-graphs, which preserve distance and neighbor information for all the atoms 

in a structure. Several GNN architectures have been developed and applied to predict 

molecular and crystalline properties, including the adsorption energy of a handful of 

molecules on bulk structure bimetallic alloy surfaces. [185–190] While using these models 

in the physical sciences remains an active research area, the possibility of generalizing over 

composition and structure degrees of freedom is promising for materials applications. 
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4.2 Objective 

In this work, we synthesize these approaches to investigate the effect of general 

surface strain engineering on adsorption energies of 27 important small molecule 

adsorbates over a range of Cu-binary alloy surfaces taken from the OCP dataset. Cu alloys 

have generated recent broad interest in catalysis due to recent success in identifying high 

activity Cu-based catalysts for carbon dioxide reduction using a combination of machine-

learning and experiments. [191] High-throughput DFT calculations generate a strained 

training set by randomly applying strains to Cu-alloy catalyst-adsorbate complexes. We 

find that a DimeNet++ GNN architecture combined with an additional neural network to 

include strain information succeeds on classification and regression tasks to determine the 

adsorption energy response to strain. Extrapolating the model to predict the strain response 

of brand-new surface and adsorbate combinations is more difficult, but our results enable 

surface strain to be efficiently considered as a continuous engineering parameter in catalyst 

design. 

4.3 Methods 

4.3.1 High throughput DFT calculations  

First-principles DFT simulations were carried out using the Vienna ab initio 

simulation package (VASP). [20,21] Projector-augmented wave pseudopotentials [132] 

are used with a cutoff energy of 400 eV for plane-wave expansions. [16] The exchange-

correlation is treated using the Perdew-Burke-Ernzerhof (PBE) generalized gradient 
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approximations. The atomistic structures of catalyst and catalyst + adsorbate slabs were 

relaxed using Γ-centered k-point meshes of 40/𝑎 x 40/𝑏 x 1 rounded to the nearest integer, 

where 𝑎 and 𝑏 are the lattice constants of the slab supercell. For structural relaxations, the 

atomic positions of all unit and supercells are optimized until the force components on each 

atom are less than 0.03 eV/ Å, and the electronic energy is converged within 10-4 eV. A 

vacuum spacing of 20 Å was added to slab calculations to prevent interactions between 

periodic images. Following the Open Catalyst Project dataset generation, atoms further 

than 2 Å from the surface are fixed in their relaxed bulk positions during slab relaxation to 

simulate the bulk lattice structure, while surface and adsorbate atoms are free to relax. [30] 

Long range van der Waals dispersion interactions were treated using the DFT-D3 method 

developed by Grimme et. al. [133,134]; these corrections are not part of the original Open 

Catalyst calculation parameters but we found that including them changed the distribution 

of adsorption energies. Individual molecules are relaxed in a 12 Å cubic unit cell using the 

same calculation parameters.  

4.3.2 Dataset Preparation and Curation 

Zero-strain structures are converted to graphs for model input using the same graph 

generation procedure as the Open Catalyst Project. Atoms are nodes, edges are labeled with 

the distance between two atoms, and the neighbor distances are calculated taking periodic 

boundary conditions into account. The number of neighbors for each atom is capped at 60 

and the cutoff radius for a neighbor interaction is 7Å. [30] Subsurface, surface, and 
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adsorbate atom tags are included in the dataset to be used for node-level regularization. For 

data normalization, the input strain tensors and all energies are normalized to zero-mean, 

unit standard deviation before model training; the normalization parameters are calculated 

independently for 𝜀1, 𝜀2, 𝜀6, and Δ𝐸𝑎𝑑𝑠.  

4.3.3 Model Training and Hyperparameter Optimization  

Schnet, CGCNN, and DimeNet++ architectures were all tested for the classification 

and regression tasks; DimeNet++ significantly outperformed the other model architectures. 

All models are implemented using the PyTorch framework. Hyperparameter optimization 

was performed for all model parameters and training procedures on the classification task 

using an Async Successive Halving Algorithm (ASHA) implemented in the Ray software 

package. The final model hyperparameters are included in Table S4.4. To prevent 

overfitting, the model size was reduced until the training loss and the validation loss were 

similar. Train, validation, and test splits were randomly generated using 80%, 10%, and 

10% of the total dataset. All model training and dataset generation code is publicly 

available here. 

4.4 Results 

4.4.1 Dataset Generation and Machine Learning Workflow 

For a particular catalyst-adsorbate complex structure (Figure 4.1a Cat + Ads), we 

will specify the compositions of the catalyst and the adsorbate as well as the surface face 

https://github.com/chris-price19/ocp/tree/strain-task
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with the shorthand 𝑋(ℎ𝑘𝑙): 𝑌∗ , where 𝑋 is the surface composition, ℎ𝑘𝑙 are the Miller 

indices of the surface facet, and 𝑌∗  is the adsorbate with * specifying the initial adsorbing 

atom. 𝑋(ℎ𝑘𝑙)𝜀 will be used to denote a strained catalyst. The adsorption energy 𝐸𝑎𝑑𝑠 is 

defined as the difference between the energy of the catalyst-adsorbate complex and the 

individual, separated catalyst (Cat) and adsorbate (Ads, Figure 4.1a). In a vacuum, 𝐸𝑎𝑑𝑠 

depends on the structure and composition of the surface, the structure and composition of 

the molecule, and the coordination site (location on the surface where the molecule 

interacts). The strained adsorption energy 𝐸𝑎𝑑𝑠
𝜀  is similarly defined as the difference 

between the adsorbate-strained surface complex 𝑋(ℎ𝑘𝑙)𝜀: 𝑌∗  and the individual strained 

surface 𝑋(ℎ𝑘𝑙)𝜀 and adsorbate. We seek to predict the change in adsorption energy 

Δ𝐸𝑎𝑑𝑠(𝜀) = 𝐸𝑎𝑑𝑠
𝜀 − 𝐸𝑎𝑑𝑠 of an adsorbate on a surface due to a rotation-free applied strain 

in the plane of the surface described by the strain tensor 𝜀, with uniaxial components 𝜀11 

(𝜀1) and 𝜀22 (𝜀2) and shear component 𝜀12 (𝜀6). The sign and magnitude of Δ𝐸𝑎𝑑𝑠 has been 
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shown to depend on the surface composition, facet, molecule, and nature of the 

Figure 4.1 a) Atomistic overview of the structures used to calculate the change in 

adsorption energy with surface strain. b) Workflow for dataset curation, assembly, and 

model training. Random strains are generated for each alloy catalyst and Δ𝐸𝑎𝑑𝑠 is 

calculated to form the targets for the training set. c) After successful model training, 

inference is performed over strain space and surface-adsorbate combinations. The 

adsorption energy of initial states (IS), transition states (TS), and final states (FS) can shift 

in opposite directions, fundamentally changing reaction energy barriers. 
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deformation even in relatively simple systems such as 𝑃𝑡(111)𝜀: 𝑁. [169,192]  

The dataset development and model training workflow are summarized in Figure 

4.1b. To develop a model to approximate Δ𝐸𝑎𝑑𝑠(𝜀), we assemble a training dataset of 

strained Cat + Ads complexes using first-principles density functional theory (DFT) 

calculations, using the public OCP dataset as a starting point (Figure 4.1b). [30] Recently, 

a number of copper alloy surfaces were identified to be high activity catalysts in CO2 

reduction based on their combined adsorption energies for *H and *CO.  [191,193] 

Building on these results, we extract a compositional subset of the OCP dataset consisting 

of binary copper alloy catalysts (CuxM1-x, where M is an alloying element) and 27 

adsorbates to be the sandbox for our strain investigation. A list of catalyst alloy elements 

and adsorbates in the training dataset is given in Table S4.1 in Appendix S4.1. For each 

Cat + Ads complex in the filtered dataset, 6 strain tensors were generated by selecting 

uniform random values for 𝜀1, 𝜀2, and 2𝜀6 between -3% and 3%. The bulk lattice structure 

(no strain applied) was also included for each Cat + Ads complex to provide 𝐸𝑎𝑑𝑠. Each 

random strain tensor was applied to both the Cat structure and the Cat + Ads complex, 

generating a pair of structures which were relaxed to enable calculation of 𝐸𝑎𝑑𝑠
𝜀 . Taking 

the difference between 𝐸𝑎𝑑𝑠
𝜀  and 𝐸𝑎𝑑𝑠 gives the final training labels Δ𝐸𝑎𝑑𝑠. The original 

OCP catalyst-adsorbate supercells are large enough to minimize multi-adsorbate 

interactions across the periodic boundary conditions of the unit cell. [30] 6 strains were 

chosen to keep the energy calculations computationally tractable while including a diverse 
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set of surfaces and molecules; random sampling was selected to generate a uniform 

distribution of strain orientations relative to the randomly distributed orientations of the 

adsorbate coordinate environments. The inputs to the machine learning model training are 

the relaxed zero-strain Cat + Ads structure represented as a graph and the strain tensor, and 

the output is the change in adsorption energy after strain and relaxation. Therefore, only 

one Cat + Ads structure relaxed at the bulk lattice parameters is required to make 

predictions about the adsorption energy response across three-dimensional surface strain 

space. Further discussion of the model architecture choices is presented in Section 4.4.3. 

With a successfully trained model, this strain space can be efficiently explored across 

different catalyst-adsorbate systems to engineer reaction energy diagrams (Figure 4.1c). 

For comparison, evaluating the adsorption energy with 0.5% resolution in the 3D strain 

space of -3% to 3% over 𝜀1, 𝜀2, and 𝜀6 would require 2200 grid points in strain space for 

each catalyst-adsorbate complex and over 6.5 million total structures. Using our calculation 

cost for training data generation of ~18 hours per pair of Cat and Cat + Ads structures, this 

effort would consume 72,000 cpu-years of DFT calculations vs. 120 combined cpu/gpu-

hours required to train our model. 

4.4.2 Distribution of Adsorption Strain Response over Composition 

 After the high-throughput DFT dataset generation, we inspect the resulting 

distribution of Δ𝐸𝑎𝑑𝑠 to evaluate whether machine learning is required. The distribution of 

|Δ𝐸𝑎𝑑𝑠| values in the training set, excluding the zero-strain state, is plotted against several 
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degrees of freedom in Figure 4.2. Figure 4.2a plots the magnitude of Δ𝐸𝑎𝑑𝑠 as a function 

of total areal strain magnitude 
𝐴−𝐴0

𝐴0
 and the ratio of the shear to uniaxial components 

2|𝜀6|

|𝜀1+𝜀2|
 

(color scale). Figure 4.2b plots the magnitude of Δ𝐸𝑎𝑑𝑠 as a function of the directional 

strain anisotropy 
|𝜀1+𝜀6|

|𝜀2+𝜀6|
 and the Cu-content of the catalyst composition (color scale). The 

red line on each plot illustrates the energy of 𝑘𝑇 at 300K (25 meV) for reference on the log 

scale. Just over half of the applied strains result in essentially no change to the adsorption 

energy, falling below 25 meV. However, the rest of the applied strains cause an appreciable 

change in the adsorption energy, including a significant band between 20 and 150 meV. 

Across the dataset, there is no discernible trend for Δ𝐸𝑎𝑑𝑠 over the strain magnitude, strain 

character, or catalyst alloy composition. Figure 4.2c and Figure 4.2d zoom into the 

compositional representation in the dataset, plotting the value of Δ𝐸𝑎𝑑𝑠 against the alloying 

element in Figure 4.2c and the adsorbate in Figure 4.2d. The color scale indicates the 

relative representation of each composition in the dataset; for example, Cu-Al is the most 

common composition in the dataset, and NH is the most common molecule. The 

composition imbalances are a function of the random distribution of surfaces and 

molecules in the original OCP dataset used as the starting point for generating the strained 

dataset. When plotting Δ𝐸𝑎𝑑𝑠 at this finer compositional resolution, there are no standout 

compositions or adsorbates which are especially sensitive to strain over the others. 
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Altogether, the distribution of the training dataset supports the hypothesis that machine 

learning could be useful since there is no obvious trend in Δ𝐸𝑎𝑑𝑠 generally across several 

catalyst and adsorbate degrees of freedom that a simpler physics-based model can capture. 

Figure 4.2 a) Log magnitude of adsorption energy change (log |Δ𝐸𝑎𝑑𝑠|) as a function of 

the total areal strain (x-axis) and the shear magnitude / uniaxial magnitude ratio (color 

scale). b) log |Δ𝐸𝑎𝑑𝑠| as a function of directional strain anisotropy |𝜀1 + 𝜀6|/|𝜀2 + 𝜀6| (x-

axis) and the Cu content of the catalyst (color scale). c) Δ𝐸𝑎𝑑𝑠 grouped by non-Cu catalyst 

alloy element (Cu indicates pure Cu catalyst). Darker points indicate greater relative 

representation; CuxAl1-x is the most represented catalyst alloy while CuxAg1-x is the least. 

d) Δ𝐸𝑎𝑑𝑠 grouped by adsorbate; * indicates initial adsorbing atoms. Darker points indicate 

greater relative representation; *NH is the most represented while *CH is least represented. 
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Next, we evaluate the data distribution to construct classification and regression 

tasks for our model. The target Δ𝐸𝑎𝑑𝑠 distribution first shown in Figure 4.2 is plotted 

altogether as a histogram in Figure 4.3a and Figure 4.3b, where Figure 4.3b zooms into 

the central histogram bar in Figure 4.3a. Overall, the data distribution contains two long 

tails on both the positive and negative side which span several orders of magnitude, and 

there is a high concentration of values near zero corresponding to essentially no strain 

effect. For catalyst design by strain engineering, we are primarily interested in determining 

if a strain will significantly increase, decrease, or have no effect on the adsorption energy 

of a particular adsorbate. Therefore, we bin the dataset into 3 categories: Δ𝐸𝑎𝑑𝑠 < −25 

meV (class −Δ, blue), |Δ𝐸𝑎𝑑𝑠| < 25 meV (class Z, gray), and Δ𝐸𝑎𝑑𝑠 > 25 meV (class +Δ, 

pink) to define a classification task for our model; 25 meV (𝑘𝐵𝑇 evaluated at T = 300K) is 

chosen as the threshold to classify a significant strain response, and class Z is short for zero 

effect. We verify that each of these classes contains a representative distribution of the 

different Cat + Ads structures; Figure 4.3c shows the histogram of the fraction of member 

training examples which originate from a particular Cat + Ads complex in each class. For 

example, consider the Cu3Sb (210):*CHOH complex shown in Figure 4.1a. If we apply 

four random surface strains (Figure 4.3d) to this structure, and two of them result in 

Δ𝐸𝑎𝑑𝑠 < −25 meV (Figure 4.3e), they will contribute to the 0.4 bar of the −Δ histogram 

in Figure 3c. Likewise, strains with Δ𝐸𝑎𝑑𝑠 > 25 meV contribute to the +Δ histogram, and 

|Δ𝐸𝑎𝑑𝑠| < 25 meV strains (including all ground state structures and identity matrix strains 

by definition) contribute to Z. From these histograms, we conclude that most Cat + Ads 
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complexes appear in multiple classes; therefore, accurate classification cannot be achieved 

on structural or compositional information alone. Only Z contains some complexes with 

100% membership, and this is reasonable since we expect that certain Cat + Ads complexes 

will be relatively immune to surface strain. The total class splits in the training set are given 

in Table S4.2. The class distribution analysis confirms that classifying the strain response 

into broad buckets still requires both the structure and the specific strain pattern to 

successfully predict. For the regression task, we simply normalize the target Δ𝐸𝑎𝑑𝑠 

distribution to zero mean and unit standard deviation and calculate the mean absolute error 

(MAE) of the predicted values against the true values. 

To establish a performance baseline and further justify additional model 

complexity, we test an ensemble linear baseline model by fitting a separate linear 

regression to each unique group of catalyst alloy-element and adsorbate in the training data 

(80% of the dataset) and used to predict the class of any matching alloy-element + 

adsorbate structures in the test data (10% withheld). We ask the baseline model to do some 

generalization over the specific catalyst composition structure since this is potential feature 

of the GNN which can add significant predictive capability. Figure 4.3e gives the 

normalized confusion matrix for this baseline classifier, which shows the fraction of true 

samples predicted to fall in each class by the model; each row sums to 1 and the correct 

model predictions appear along the matrix diagonal. This model performs better than 

random guessing but still misidentifies the class of ~45% of the test data, with an F1 score 
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of 0.58 for the classification task. The average MAE across each ensemble linear model 

for the regression task is 0.17 eV, above the typical threshold in catalysis of 0.1 eV. 

Additional classification and regression metrics for the ensemble linear baseline are given 

Figure 4.3  a) Total histogram and b) zoomed histogram of Δ𝐸𝑎𝑑𝑠 in the training dataset 

and assigned classes. Class −Δ (Δ𝐸𝑎𝑑𝑠 < -25 meV) is blue, class Z (|Δ𝐸𝑎𝑑𝑠| < 25 meV) is 

gray, class +Δ (Δ𝐸𝑎𝑑𝑠 > 25 meV) is pink. c) Histograms of fractional class membership 

grouped by Cat + Ads structure show even distribution of Cat + Ads structures across the 

three assigned classes. d) Example of histogram generation; of 5 hypothetical strains for 

Cu3Sb:*CHOH, 2 fall in −Δ, 1 falls in Z, and 2 fall in +Δ (highlighted histogram bars in 

c). e)  Confusion matrix for the ensemble linear regression baseline model on test data.  
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in Table S4.3. Since neither the classification nor regression performance from the baseline 

is sufficient to be practically useful, we proceed to training and testing graph neural 

network hypothesis. 

 

4.4.3 Model Architecture, Training, and Performance 

 From the training set analysis, we recognize that we need a model which can 

generalize over both structural and compositional degrees of freedom. GNNs are a 

promising candidate for this application since differentiating the strain response across 

different surfaces and molecules requires incorporating detailed structural information into 

the input. We adapted and modified the DimeNet++ model architecture, first introduced 

by Klicpera et. al and used in the Open Catalyst challenge to predict adsorption energies 

from initial structure. [30,187,188] The model architecture is shown in Figure 4.4a. The 

graph represents atoms as nodes and the interactions between atomic pairs as edges within 

a cutoff radius, chosen to be 7 Å with a maximum of 60 nearest neighbors (based on 

original hyperparameters in the Open Catalyst Dataset). [30] The network embeds each 

node (atom) of the graph as a set of directional pair-wise interactions, and the edges are 

embedded using a set of spherical basis functions which incorporate bond angle 

information. The basis set choice and embedding strategy provides rotational invariance to 

the model; more details are available in Refs. [187,188]. After the graph representation of 

the Cat + Ads complex is passed through the standard DimeNet++ model, we pad the node 
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level output with zeros to the size of the largest structure in the dataset and append the 

normalized strain tensor, injecting the second component of the input data. This 

combination of the DimeNet++ output and the strain tensor is finally passed through a 

small fully connected neural network before the output is summed to give the final 

prediction.  

The strain architecture design is physically motivated by a perturbation approach; 

first, the graph model develops an internal representation of the relaxed Cat + Ads structure 

at the bulk lattice parameters across compositional and structural degrees of freedom. This 

output is then passed through a perturbation filter (StrainBlock) which ingests the strain 

tensor and aims to update the Cat + Ads structure output to match the target Δ𝐸𝑎𝑑𝑠 

corresponding to the Strained Cat + Ads structure (Figure 4.1a). The perturbation approach 

builds prior physical knowledge into the machine learning model and helps circumvent 

several practical constraints. First, we enforce that the graph weights only operate on 

information originating from the bulk lattice Cat + Ads structure with zero strain, which 

incorporates our assumption that the surface and adsorbate composition and structure are 

dominant variables in determining Δ𝐸𝑎𝑑𝑠. This makes the network more physically 

interpretable since the intermediate output of the GNN before the StrainBlock will be 

identical for any particular Strained Cat + Ads complex. Second, physical intuition 

indicates that a significant portion of the nonlinear Δ𝐸𝑎𝑑𝑠 response is due to structural 

change within the adsorbate. We expect that the overall strained surface structure is 
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relatively similar before and after straining. Had we instead used the strained, unrelaxed 

structure as the inputs to DimeNet++, we would be introducing large amounts of variance 

in regions of the input data which we don’t anticipate being physically significant, while 

the adsorbate structure would be largely unaffected by an applied strain without relaxation. 

In addition, a strained but unrelaxed graph would introduce significant variation to portions 

of the bulk graph far from the adsorbate, which is unlikely to affect the target adsorption 

energy change since it is mirrored in the strained Cat-only structure; when Δ𝐸𝑎𝑑𝑠 is 

calculated, these bulk contributions to the adsorption energy are subtracted out. 

 Despite these hypothesized benefits, using the strain tensor directly introduce some 

complications around the choice of coordinate system. Rotation and inversion invariance 

of DimeNet++ is a key feature in its successful property prediction for atomistic 

systems. [187,188] The model is periodicity aware by the graph construction, which 

considers atoms in neighboring periodic unit cells as neighbors, but the graph does not 

contain any information about the unit cell itself. Meanwhile, the strain tensor is in the 

lattice coordinate system, so appending the strain data to the DimeNet++ output and 

passing it through the StrainBlock assumes a particular choice about the unit cell. For 

example, the same deformation leading to a particular Δ𝐸𝑎𝑑𝑠 will be represented as a 

different strain tensor in a hexagonal coordinate system and an orthorhombic coordinate 

system, but the graph structures in DimeNet++ will only differ by the size of the graph / # 

of atoms in the unit cell. Given that our Cat + Ads complexes are large supercells which 
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contain very few symmetries, we think it is unlikely that alternate supercells coordinates 

with different symmetries would be practically used, but we standardize our structure 

dataset by ensuring that the primitive supercell is used and the c-axis is concurrent with the 

normal to the periodic a-b surface plane. To recover coordinate symmetry and remove bias 

for a particular choice of coordination system, we pursue a data augmentation strategy and 

duplicate each entry in the dataset by swapping the a- and b-coordinates in both the 

structure and the strain tensor. This removes any bias in the model for a left-handed or 

right-handed coordinate system, effectively embedding additional physical knowledge into 

the model and doubling the size of the training set. This method was simpler to implement 
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than constraining the model weights in the first layer of the StrainBlock to respect the 

coordinate symmetry and/or transforming the strain tensor into an equivariant 

representation; furthermore, data augmentation has been shown to be a highly effective 

strategy for improving classification accuracy in other deep learning contexts. [194] 

Development of a unique deformation basis for graph structures, or incorporating explicit 

periodic boundary conditions into graph representations to embed information about the 

coordinate system, is reserved for future work. 

 Choosing how to incorporate the strain input data into the model highlights a 

challenge of working with low symmetry catalyst-adsorbate or defect structures in machine 

learning. While the graph representation affords a general capability to represent structural 

information that cannot be achieved in discrete featurization, it becomes difficult to capture 

effects in local regions of the graph such as strain fields caused by dilute defect or adsorbate 

concentrations. [195] For example, an average Cat + Ads complex in the dataset contains 

73 atoms. Of these, on average 20 atoms are within a few Angstroms of the surface and 

Figure 4.4 a) Model architecture used for classification and regression tasks. The relaxed 

zero-strain Cat + Ads structure is input to DimeNet++. The strain tensor is appended to the 

padded DimeNet++ output and passed through a fully connected neural network 

(StrainBlock). Regularization is performed on node-level output by classifying nodes as 

adsorbate, surface, or bulk. Δ𝐸𝑎𝑑𝑠 classification and regression are graph-level tasks. b)  

Normalized confusion matrix for the GNN + strain model on test data. Significant 

improvement is observed across all categories compared to the linear baseline in Figure 

4.3. c) Results from the GNN regression task, zoomed in bottom. Graph background colors 

give the true class while point colors give the predicted class based on the regression. 
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allowed to relax in the DFT calculations away from the bulk structure, and only ~3 will be 

part of the adsorbate itself. This means that while the whole structure provides necessary 

information about broad physical context (composition, symmetry, surface relaxation), the 

region of the graph containing the perturbation (in our case, the adsorbate) that we expect 

to dominate the target response can be drowned out. We pursued two strategies to mitigate 

this challenge, which is an active area of GNN research. [195,196] The first strategy is to 

simply reduce the input data by cutting out bulk-like atoms from the graph representation. 

We found that this reduced model performance, likely due to the absence of broader 

contextual information about the material structure. The second strategy is to implement 

regularization in the loss function which incentivizes the model to differentiate between 

bulk, surface, and adsorbate atoms, which was implemented by introducing a node 

classification task to the model in addition to the primary Δ𝐸𝑎𝑑𝑠 prediction task. This 

regularization allows incorporation of additional physical prior knowledge about regions 

of the graph in between node-level and graph-level and is conceptually similar to node-

level property predictions [196], but to our knowledge has not been implemented for 

surface adsorbate complexes. DimeNet++ output blocks were modified to give additional 

outputs for node classification, and the cross-entropy loss was calculated after node 

classification as bulk, surface, or adsorbate. This loss was added to the primary Δ𝐸𝑎𝑑𝑠 target 

loss, incentivizing the same model weights to give correct node classification and 

adsorption energy prediction. We found that this slightly improved model performance 

predicting Δ𝐸𝑎𝑑𝑠 over non-regularized, single task training, and that the model was 
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extremely successful at identifying the correct atom identifications (>98%) in testing. A 

caveat to this result is that the filtered OCP dataset we selected happened to contain no 

overlap between elements in the slab and elements in the adsorbates; only oxygen appears 

as both a slab element and an adsorbate element. Therefore, identifying the adsorbate atoms 

can be achieved with the element label. The regularization still successfully separates 

surface atoms from bulk atoms, and we believe that this regularization strategy could 

provide greater benefit in a larger and more compositionally diverse datasets with 

elemental overlap between adsorbates and surfaces (such as oxides). Another strategy to 

consider would be a hierarchical ensemble model strategy, where a different GNN is 

trained on each subset class of atoms in the structure (full structure, surface atoms + 

adsorbate, adsorbate + nearest neighbor) and the outputs are considered together to form 

the final Δ𝐸𝑎𝑑𝑠 prediction. 

The performance metrics for the GNN classifier and the GNN regressor on withheld 

test data after training are summarized in Figure 4.4b and Figure 4.4c. As in Figure 4.3e, 

the normalized confusion matrix in Figure 4.4b gives the fraction of true samples in the 

test data which were predicted to fall in each class by the classifier; each row sums to 1 

and the correct model predictions appear along the matrix diagonal. On the same set of 

training and testing data as the linear baseline, the GNN+Strain classifier outperforms the 

ensemble linear baseline by at least 20% in every category. Additionally, the error rate 

misidentifying −Δ and +Δ classes (thereby confusing a large positive (negative) Δ𝐸𝑎𝑑𝑠 



87 

 

with a large negative (positive) Δ𝐸𝑎𝑑𝑠) is on average one-third of the same linear baseline 

error, and this is the costliest error to make when evaluating the impact of strain on a 

reaction diagram. The regression results are shown over the full test dataset in Figure 4.4c 

top (zoomed in Figure 4.4c bottom); the mean absolute error for the regression model is 

0.08 eV, which is within the target range for machine learning approximators in 

catalysis. [30] The points are colored according to the class predicted by the regressor, such 

that any points in a shaded region of a different color indicate a misclassification by the 

regression model, while matching points indicate a success. Not surprisingly, this model 

has more difficulty distinguishing positive and negative Δ𝐸𝑎𝑑𝑠 near the MAE, which is 

where many of the samples lie. Overall, the regularized model architecture (detailed in 

Table S4.4) performs well on both the classification and regression tasks. Supplied with a 

larger training dataset, performance may further improve if these tasks are combined, for 

example training a separate regressor model within each predicted class. Model 

performance decreased when the test data was constructed of new Cat + Ads compositions 

completely unseen in the training data; this type of extrapolation is a goal for the field of 

physical GNNs but requires larger datasets than the one generated in this work. 

4.4.4 Model Inference Identifies Alloy Compositions Suitable for Surface 

Strain Engineering 

 Recall that the dataset used for training and testing the model contained 6 random 

strains for each Cat + Ads structure plus an additional zero-strain structure matching the 
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bulk lattice constants. Considering the inclusive 3D strain space between -3% to 3% at 

0.5% resolution requires 13 grid points in each direction, or 2197 total DFT calculations 

per Cat + Ads structure), this training set covers 0.3% of the total strain space for each Cat 

+ Ads structure. For inference, we generate 500 random strains in this 3D strain space (22% 

of the total space at the same grid resolution) for each Cat + Ads structure in the dataset 

(445,000 total strain + structure combinations) and use the trained classifier model to 

predict the category for Δ𝐸𝑎𝑑𝑠 for each strain. Inference across all points in the dataset 

takes ~6 hours on 1 GPU; comparable DFT calculations would require over 18,000 cpu-

years of computational effort. 

 The ammonia synthesis reaction 𝑁2 + 3𝐻2 → 2𝑁𝐻3 is one of the most important 

industrial chemical reactions in the world and one of the most highly studied in 

catalysis. [197] The overall reaction is exergonic but on many catalysts the overall reaction 

pathway begins as exergonic and ends as endergonic due to the presence of stable adsorbed 

intermediates. [198,199] The rate determining step of the most-studied dissociative 

pathway in Haber-Bosch conditions can be one of several intermediate steps including 

dissociation of 𝑁2 and various 𝐻 + 𝑁𝐻𝑥 → 𝑁𝐻𝑥+1 steps depending on the catalyst and the 

catalytic environment. A general guiding principle towards improving ammonia synthesis 

catalyst performance is reducing the cumulative magnitude of the endergonic steps within 

the reaction pathway. [199–201] Cu-based catalysts have been a recent focus of 

electrocatalytic nitrogen and nitrate reduction studies, which introduces the additional 
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complexity of competing reactions such as hydrogen evolution. [202–204] While many 

features of the reaction conditions ultimately contribute to the ammonia synthesis rate, the 

adsorption energy describes the foundational interaction between the catalyst and relevant 

intermediates from which further microkinetic analysis can be conducted. We choose the 

intermediate reaction 𝐻∗ + 𝑁∗ → 𝑁∗ 𝐻 as an illustrative example for identifying catalyst 

candidates with high strain engineering potential. Figure 4.5a plots an average of the 

ground state energy of the reactants *H + *N (black lines) and product *NH (red lines) 

grouped by catalyst alloy composition. This gives an indication of the relative adsorption 

energies between surface compositions in the strain free case. All the intermediate energies 

are exergonic relative to the formation energies of both N2 and NH3, so raising the 

adsorption energy of these three intermediates will reduce the gross endergonic energy of 

the dissociative mechanism. [205] 
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Figure 4.5b-d plots summary 

inference results for all the Strained Cat + Ads 

structures containing *H (Figure 4.5b), *N 

(Figure 4.5c), and *NH (Figure 4.5d) in the 

inference dataset. For each adsorbate, we plot a histogram of the inference results over 

strain space, grouped by the alloy composition of each catalyst surface (x-axis) and the 

predicted class (bar color). We group by alloy element because it is practically one of the 

first decisions made in catalyst selection and it has a relatively high correlation coefficient 

Figure 4.5 Inference results grouped across 

different catalysts and adsorbates identify 

Cu-S alloy surfaces as ideal strain 

engineering candidates for an ammonia 

synthesis intermediate step. a) Reaction 

enthalpies averaged over zero-strain Cat + 

Ads structures for *H + *N → *NH. Black 

lines represent reactant energies, red lines 

represent product energies; the formation 

energy of NH is included in the product 

enthalpy. b) Histogram of inferred strain 

response classes for each Cat + Ads 

structure containing *H, grouped by 

catalyst alloy element. c) Same as b) but for 

*N as the adsorbate; d) same as b) for *NH 

as the adsorbate. 
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compared to other independent variables such as Cu composition and surface plane (Figure 

S4.1). As an example, Figure 4.5b indicates that the adsorption energy of *H on Cu-Pd 

surfaces is relatively unresponsive to strain since nearly all strains in the inference set fall 

in the gray class Z. On Cu-Sb surfaces, strain tends to increase the *H adsorption energy 

(less favorable interaction), with a strong bias towards pink class +Δ over class Z and class 

−Δ. For *N in Figure 4.5c and *NH in Figure 4.5d, the distributions differ significantly 

from the *H graph, reflecting the fundamental change in the adsorbate coordination from 

*H to *N; for example, Cu-Sb alloys bias towards −Δ for *N and *NH, indicating that 

strain tends to decrease the adsorption energy (more favorable interaction). Cu-S alloys 

exhibit a significant number of strains that raise the adsorption energy of both *N and *NH, 

and Figure 4.5a shows that the ground state adsorption energy is also more positive for 

Cu-S alloys relative to the other compositions. Raising the adsorption energy of *NH with 

strain is particularly desirable since the average zero-strain reaction enthalpy on Cu-S 

surfaces is -1.29 eV. This indicates that the Cu-S alloys are suitable targets for our goal of 

raising the adsorption energy of the 𝐻∗ + 𝑁∗ → 𝑁∗ 𝐻 intermediates to reduce the 

magnitude of endergonic steps in the ammonia synthesis reaction. 

4.4.5 Phase Diagrams of Surface Strain - Adsorption Energy Response 

High-level analysis of the inference results in aggregate identified Cu-S alloys as 

candidates to increase the adsorption energy of *NH. Copper sulfide catalysts of varying 

compositions have been recently studied for ammonia synthesis via the electrochemical 
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nitrogen reduction reaction (NRR), which has been suggested to occur at least partially 

through a dissociative mechanism. [206,207] To further examine the nature of *NH strain 

response, Figure 4.6 plots phase diagrams of the inference results as a function of strain 

for two different catalyst compositions and surface planes in the Cu-S family. The uniaxial 

norm√𝜀1
2 + 𝜀2

2 and the shear component 𝜀6 are chosen as the pseudo-order parameters 

since they capture most of the variation within strain space while retaining convenient 2D 

visualization. Empirically, despite combining 𝜀1 and 𝜀2 together, we find that these 

quantities generally give well defined regions in strain space corresponding to one class of 

predictions. The color scale gives the classifier model prediction for each point in the 

inference dataset.  
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Figure 4.6 Inferred strain phase diagram reflects changes in surface structure 

response to strain. a) Surface strain phase diagram resulting from model inference 

for Cu8S4(201):*NH. Color scale indicates the predicted class of adsorption energy 

response corresponding to the classes in Figure 4.3. b) Same as a) for 

Cu4S2(110):*NH; there are two distinct regions of inferred strain responses, but the 

majority of surface strain patterns are predicted to increase the adsorption energy of 

*NH. c) The Cat + Ads zero-strain atomistic structure corresponding to a); the three-

fold coordination site (orange circles) includes 2 Cu atoms and 1 S atom in the plane 

of the surface. d) The Cat + Ads zero-strain atomistic structure corresponding to b); 

the coordination site (orange circles) is similar but the surface structure is much 

denser than that in a). 



94 

 

Figure 4.6a shows 500 inference points for Cu8S4(201):*NH; as indicated by the 

histograms in Figure 4.5, most strains are labeled as class +Δ and predicted to induce a 

positive change in the adsorption energy greater than 25 meV. The *NH adsorbate has a 3-

fold coordination site of surface atoms (orange circles) which lie nearly parallel to the 

surface plane consisting of 2 Cu atoms and 1 S atom (Figure 4.6a bottom). At low shear 

strains, compressive uniaxial strain is predicted to reduce the adsorption energy and tensile 

uniaxial strain is predicted to increase the adsorption energy. This reflects that expanding 

the coordination environment lengthens the bonds between the surface atoms and the 

adsorbate, and compressing the coordination environment reduces the bond length, 

favoring increased covalent interaction. At small uniaxial strains, positive shear strain is 

predicted to have little impact on adsorption energy, but negative shear strain is generally 

predicted to increase the adsorption energy. The qualitative difference in the shear 

predictions reflects the asymmetry of the surface structure, as different directions of strain 

are interpreted by the model to result in different adsorption energy changes given the same 

input graph of the zero-strain structure. Figure 4.6b shows the inferred strain phase 

diagram for Cu4S2(110):*NH; this surface originates from a different bulk crystal structure 

with a similar calculated formation energy than that in Figure 4.6a but contains the same 

elemental composition. The coordination environment for *NH appears qualitatively 

similar to that in Figure 4.6a, a 3-fold site with 2 Cu atoms and 1 S atom which centers 

the adsorbing nitrogen. However, the predicted strain response is quite different; nearly all 

uniaxial strains increase the adsorption energy, and only a combination of compressive 
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shear and uniaxial strain leads to no effect on the adsorption energy. We attribute this to 

subtle differences in the ground state coordination environment which reflect the different 

surface structures; in Figure 4.6b, both the ground state coordinating Cu-N bond (2.07 

Angstroms) and the N-S bond (1.68 Angstroms) are nearly identical to their bulk ground-

state counterparts in Cu2N (2.06 Angstroms) and molecular S3N (1.6 Angstroms). 

Therefore, any strains which disrupt the ability of the surface to preferentially relax into 

this same coordinating geometry will destabilize the adsorbate relative to the ground state. 

Since the zero-strain structures are included in the training data, this relative bond length 

information from the surface can be taken up by the model during training. 

4.4.6 Strain Response of the Surface Structure is Altered by Different 

Adsorbates 

In catalysis applications, the surface is often considered as a secondary structural 

participant in a reaction, since the primary change of interest is bond-making or bond-

breaking in the adsorbate. For single-atom adsorbates this is generally a valid assumption, 

but multi-atom adsorbates can interact with and significantly modify the surface structure. 

Figure 4.7 plots inferred Δ𝐸𝑎𝑑𝑠 strain response phase diagrams for the same surface 

HfCu3(100) with two different adsorbates, *N and *NO2, located at the same adsorption 

site. The predicted strain response is nearly the exact inverse for the two complexes; for 

nearly all strain configurations, the adsorption energy is predicted to increase for *N and 

decrease for *NO2. To investigate the origin of this difference, we select a strain profile 
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that falls within a region of the strain diagram exhibiting different strain response for the 

two adsorbates (black circle) and verify the predictions using DFT calculations. The zero-

strain Cat, zero-strain Cat + Ads, and strained Cat + Ads complexes are shown from top to 

bottom in Figure 4.7c for *N and Figure 4.7d for *NO2. The DFT results confirm the 

model inference predictions - under the same applied strain, the adsorption energy of 

HfCu3(100):*N increases by 30 meV, while for HfCu3(100):*NO2 the adsorption energy 

decreases by 180 meV. At the bulk lattice constant for HfCu3, the adsorption of N shifts 

the Hf surface atom position by a very small amount to coordinate tightly with N, 

increasing the Hf-Cu surface bond length by 0.02 Angstroms. The same adsorption process 

for NO2 leads to a substantial surface reconstruction, increasing the Hf-Cu surface bond 

length by 0.61 Angstroms and nearly decomposing *NO2 into *NO and *O. This change 

in both the coordination environment of the adsorbate and the surface structure leads to 

opposing responses to the same applied strain. When the surface is strained away from the 

bulk lattice constant, the adsorption becomes less favorable for *N, as the Hf-Cu bond is 

further stretched by 0.02 Angstroms from the equilibrium value of the zero-strain surface. 

*NO2 adsorption causes relaxation to the same coordination environment as on the zero-

strain surface without distorting the Hf-Cu surface bonds as much, leading to the 180 meV 

decrease in the adsorption energy. This illustrative example shows how under the same 

surface strain, different adsorbates can induce local reconstruction that raises or reduces 

their interaction with the surface relative to the bulk surface. The model makes predictions 

verifiable by first-principles calculations which enable identification of candidate catalyst-
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adsorbate combinations exhibiting different adsorption phenomena, providing guidance for 

practical strain engineering of heterogeneous catalytic reactions. 

  



98 

 

4.5 Conclusion 

A key challenge in rational catalyst design is bridging the significant gap between 

pristine in silico structures and experimentally realized structures in nanoparticles or 

surfaces. Nanomaterial catalysts are especially desirable due to the extremely high ratio of 

potentially active surface area to material volume, yet this is also where strain introduces 

the largest deviations in expected structure and function from the bulk. Unfortunately, 

accounting for so many structural degrees of freedom results in a search space that is 

computationally intractable with physics-based modeling alone. Machine learning models 

can work in tandem with conventional simulation to interpolate structure property 

relationships from a relatively small training set across these vast search spaces within 

computationally practical timescales. GNNs are early in their application to physical 

systems and do not yet regularly outperform simpler models such as linear baselines. 

However, they offer a high potential performance ceiling since they can directly ingest 

structural information at a high level of detail, which otherwise must be interpreted, 

Figure 4.7 a) Strain phase diagram for HfCu3(100):*N shows the majority of strains 

predicted to increase the adsorption energy. b) Strain phase diagram for HfCu3(100):*NO2 

shows the majority of strains predicted to decrease the adsorption energy. Black circles in 

a) and b) correspond to the strain studied in c). c) Atomistic structure of (top to bottom) 

zero-strain Cat, zero-strain Cat + Ads, and strained Cat + Ads structures corresponding to 

the deformation shown. a). Strain increases the Hf-Cu surface bond length from the zero-

strain case, increasing the adsorption energy. d) Same as c) for HfCu3(100):*NO2; strain 

decreases the Hf-Cu bond length towards the zero-strain surface value with no adsorbate, 

enabling surface relaxation and making adsorption more energetically favorable. 
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reduced, and converted to features manually. These GNNs have the potential to generalize 

more effectively across composition and structure with larger training datasets. 

Additionally, they may be able to generalize to defect structures much more easily than 

conventional machine learning models since the representation changes with dilute 

structural modifications. Defect sites are especially interesting for catalyst design since 

defects are charge active and sensitive to strain. [208]  

In this work, we focused on the relationship between the strain applied to the 

surface and the subsequent change in the adsorbate-surface interaction since this is the 

primary design criteria in catalyst selection and design. To our knowledge, this is the first 

application of GNNs to surface strain engineering of catalyst-adsorbate complexes and 

synthesizes prior efforts to using machine learning for elastic strain engineering and 

adsorption energy prediction. We introduce a regularization scheme which incorporates 

prior physical knowledge across subsections of the graph. From our successful 

classification and regression task training, we identify Cu-S alloys as promising platforms 

for strain engineering of amino-type adsorption and generate phase diagrams of predicted 

strain response for several catalyst-adsorbate complexes. We validate several inference 

predictions with independent DFT calculations and identify structural surface changes 

corresponding to different effects of strain on adsorption energy. The model is sensitive 

enough to distinguish the strain response of the same adsorbate on compositionally 

identical but structurally different surfaces, and different adsorbates on the same exact 
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surface. Applying these predictions in catalyst synthesis requires further analysis of 

reasonably achievable strain patterns in a synthesized material or core-shell nanoparticle. 

Some strain patterns occur spontaneously if they reduce the penalizing surface energy term, 

while others would require applied stress through epitaxial engineering to be 

observed. [136] A natural follow-on to this work would be training a similar GNN to 

predict the change in the surface energy of a slab under a particular strain without the 

adsorbate. With the two models together, strains which optimize the adsorption energies 

for a particular reaction can be filtered by their predicted effect on the surface energy; 

strains which reduce the surface energy would be more likely to spontaneously form in a 

nanoparticle or ultrathin epitaxially grown surface. Improvements in the precision of 

epitaxial material growth and core-shell nanoparticle synthesis by bottom-up and top-down 

approaches has enabled finer control over material structure for a given composition. [209] 

Using experimentally measured structural data as can help distinguish different reaction 

mechanisms by enabling relative comparisons of different intermediates and reaction 

pathways on a particular surface using one model. We anticipate that flexible model 

architectures such as GNNs will improve catalyst design by bridging the gap between 

accurate but expensive first-principles simulations and experimentally relevant high-

dimensional spaces such as strain. 
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Chapter 5 Dynamics of Interfacial Mechanics Leads to Continuously 

Variable Cellular Memory 

Reprinted (adapted) with permission from  

Price, C. C.*, Mathur, J.*, Boerckel, J. D., Pathak, A. & Shenoy, V. B. Dynamic Self-

Reinforcement of Gene Expression Determines Acquisition of Cellular Mechanical 

Memory. Biophysical Journal 120, 22, 11 (2021). 

* Denotes equal contribution. 

5.1 Background 

Cellular mechanical memory describes how cells acquire and retain information 

about the mechanical properties of their microenvironment. These extracellular matrix 

(ECM) properties impact cellular structure, function, and identity, [210–212] and recent 

experiments suggest that this linkage depends on not just the present microenvironment 

but the accumulated mechanical history experienced by the cell. [213–219] The 

mechanism by which this memory is developed, maintained, and lost is not yet understood 

and exhibits several unusual features. First, the timescale at which the cell responds to 

mechanical changes through signaling (minutes to hours) is an order of magnitude faster 

than the timescale of memory development and dissipation (days to weeks). This implies 

that microenvironmental information is rapidly acquired and used by the cell but stored 

and released much more slowly. Second, the persistence time of the developed mechanical 
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memory ranges continuously from no memory all the way to permanent memory (cell 

differentiation), simply by varying the microenvironmental history that the cell is exposed 

to (Figure 5.1a). This strong coupling between the dynamics of memory retention and the 

dynamics of the stimulus being remembered is not found in common physical systems such 

as magnetic or shape memory materials. Understanding these unique dynamical 

phenomena is critical to engineering cell behavior and fate through temporal control of the 

cell’s physical environment. 

Cellular adaptation to changes in the mechanical environment occurs in both the 

cytoskeletal and nuclear domains. [220,221] On stiff substrates, examples of cytoskeletal 

phenotype changes include increased clustering of focal adhesions, actomyosin 

contractility, cell spreading area, and migration speed. [222–224] On soft substrates, 

contractility is reduced and the mechanical properties of the cell adjust to match that of the 

surrounding environment by depolymerization of F-actin. [225–227] In the nucleus, the 

population of transcriptionally active proteins changes with ECM stiffness as certain 

transcription factors relocate in response to mechanical signals. [228,229] The chromatin 

structure experiences epigenetic modifications and physical deformation of the nuclear 

envelope from contractile forces, leading to alterations in gene expression. [230,231] The 

dynamic nature of mechanical memory development and depletion indicates that 

information about microenvironmental mechanics is continuously consumed by the cell, 
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allowing stem cell differentiation to proceed from different time series of mechanical 

microenvironments. [210,213,215,232] 

A hallmark of mathematical models of memory is bistability, which is a property 

of a system to have more than one steady state, and this concept forms the basis for 

Waddington’s famous landscape of cell differentiation. Bistability alone does not contain 

any information about dynamics of memory development or retention, only that it can 

occur. [233,234] Several mechanistic models have been put forward to explain the 

relationship between mechanics and cell differentiation, [214,235–237] but these models 

do not simultaneously capture 1) the timescale disparity between mechanical signaling / 

cell adaptation and memory development and 2) the continuous range of memory 

outcomes. More generally, regulatory gene network models with different topologies can 

give rise to memory using network motifs such as positive and negative 

reinforcement. [238–243] However, explicit molecular network models for 

mechanotransduction are difficult to develop because there is not enough data available to 

determine the many model parameters or assert which components of the regulatory 

network are rate-limiting. This leads to rigid models which are difficult to interpret and 

cannot generalize across variations in priming time and priming stiffness, limiting their 

predictive power.  
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5.2 Objective 

In this work, we propose a model to describe the dynamics of mechanotransductive 

memory acquisition and persistence. The model starts from a general molecular 

framework, incorporating both fast and slow mechanosensitive pathways. We simplify this 

model to two ordinary differential equations, representing cytoskeletal and nuclear 

dynamics, respectively. First, we show that simple positive reinforcement between 

signaling and transcription is sufficient for mechanical memory acquisition. Second, we 

show that dynamic coupling between the cellular phenotype and the sensitivity of this 

reinforcement leads to a continuous range of memory persistence time. Biologically, the 

sensitivity of positive reinforcement corresponds to the epigenetic state and transcriptional 

environment of the cell, which govern the steady-state balance between synthesis and 

degradation of proteins correlated with either a stiff-ECM or soft-ECM phenotype. The 

rate at which signaling induces changes in the positive reinforcement sensitivity 

(transcriptional environment) determines memory by shifting the phenotype (protein 

composition) from requiring external mechanical signal to a self-sustaining state. 

Simulating priming programs that match experimentally tested configurations, we observe 

emergent cases of no memory, temporary memory, and quasi-permanent memory 

(differentiation) by varying only the priming time and keeping other model parameters 

fixed. In designing future experiments or therapeutics, this simple but robust framework 

could help decouple the importance of positive reinforcement of mechanosensitive gene 
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expression and their sensitivity to mechanical cues, thus optimizing the role of mechanical 

memory in optimizing biological outcomes. 

5.3 Methods 

5.3.1 Model for Dynamic Mechanosensitivity in the Cytoskeleton and the 

Nucleus 

We begin our model of mechanotransduction and mechanosensitive gene 

expression by introducing a variable 𝑥 which represents the average functional 

concentration of all the stiff-activated proteins and transcription factors in the cell. 

Examples of cytoskeletal protein components contributing to 𝑥 include F-actin (or α-

SMA), vinculin, and integrins. Transcription factors contribute to 𝑥 through their 

transcriptionally eligible concentrations, which incorporates nuclear localization as well as 

cell concentration. Examples of transcription factors with well-known stiff-correlated 

nuclear localization include YAP [244,245], MKL-1 [229,246], and RUNX2. [247,248] 

Finally, we include epigenetically modifying enzymes such as HDAC and HAT as 

contributing components to 𝑥, which influence chromatin organization and demonstrate 

mechanosensitive activity patterns. [217] While these contributing components to 𝑥 have 

independent dynamics, we pursue an approximate approach since limited data is available 

to characterize all the individual interactions between mechanosensitive components. As 

an average, 𝑥 measures the net mechanoactivation of the cell induced by increased ECM 

stiffness. The linear dynamics of 𝑥 can be written as: 
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 𝑑𝑥

𝑑𝑡
= 𝑘𝑥↑(𝑚)(𝑥𝑟𝑒𝑓 − 𝑥) − 𝑘𝑥↓(𝑚)𝑥 

(5.1) 

where 𝑚 is the matrix stiffness, 𝑘𝑥↑(𝑚) gives the mechanosensitive rate of cytoskeletal 

protein synthesis and/or transcription factor nuclear import, 𝑘𝑥↓(𝑚) gives the rate of the 

reverse processes (degradation and nuclear export), and 𝑥𝑟𝑒𝑓 is a reference level of 

mechanoactivation at a characteristic stiffness 𝑚0. Processes described by 𝑘𝑥↑(𝑚) are 

shown with blue arrows in Figure 5.1b, while processes described by 𝑘𝑥↓(𝑚) are shown 

with red arrows. We choose 𝑘𝑥↑(𝑚) to be a monotonically increasing but saturating 

function of stiffness, 𝑘𝑥↑ = 𝜏𝑥↑ − exp(−
𝑚

𝑚0
), to capture the mechanosensitivity of stiff 

activation, and for simplicity we choose the degradation and export rate 𝑘𝑥↓(𝑚) to be a 

constant 𝜏𝑥↓ over stiffness. [245] This is motivated by experimental evidence that nuclear 

import of transcription factors is more mechanosensitive than nuclear export [245] and that 

cellular response saturates at very high stiffness. [249] While specific functional choices 

are arbitrary, the results we present are general to different functional forms which maintain 

positive correlation of 𝑘𝑥↑ with stiffness.  
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5.3.2 Transcription Creates Positive 

Reinforcement Loop for Mechanical Signaling 

 Next, we consider that the transcriptional activity of the many individual 

components of 𝑥 creates a positive reinforcement loop by enhancing adaptations to 

Figure 5.1 a) Cells alter their 

phenotype on stiff substrates 

(priming) within hours. The 

phenotype retention time 

when the cell moves back to 

soft substrates depends on the 

priming time length on the 

scale of days. b) Integrated 

cellular picture of 

mechanosensitive signaling 

and positive reinforcement 

enabled by transcription and 

translation. Stiff phenotype 

changes are associated with 

blue arrows, soft phenotype 

changes with red arrows. c) 

The chromatin state changes 

slowly in response to nuclear 

tension, epigenetic changes, 

and shifts in the post-

transcriptional regulation 

environment, affecting the 

efficiency of reinforcement. 
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increased stiffness of the ECM. For example, YAP and MKL-1 activate transcription of 

genes which lead to increased stability of focal adhesions, F-actin, and contractility through 

Rho-Rock pathways and support of G-actin polymerization. [250–252] This stabilization 

releases additional bound cytoplasmic transcription factors to translocate to the nucleus, 

further increasing 𝑥. The transcriptional positive reinforcement is depicted in Figure 5.1b 

by the purple arrows; we incorporate this positive reinforcement mechanism into Eq. 5.1 

by adding a nonlinear Hill relation: 

 𝑑𝑥

𝑑𝑡
= 𝑘𝑥↑(𝑚)(𝑥𝑟𝑒𝑓 − 𝑥) − 𝑘𝑥↓(𝑚)𝑥 + 𝛼

𝑥𝛽

𝑥𝛽 + 1
 

(5.2) 

Here 𝛼 is the sensitivity of the positive reinforcement and 𝛽 determines the sharpness of 

the Hill function, which transitions from a low value to a high value like a smoothed step 

function. Positive reinforcement loops in cells have been extensively modeled using Hill 

relations and are a known source of bistability in dynamical systems. [253–255] Bistability 

indicates at least two steady-state solutions to a dynamical system and underpins hysteresis 

and memory in many physical systems. Biologically, the sensitivity parameter 𝛼 contains 

all the information about the efficiency of the mechanosensitive self-reinforcement, which 

directly corresponds to the transcription landscape. Like 𝑥, we consider 𝛼 to be an average 

measure over many components involved in regulating the transcription-translation 

pipeline, including proteins, mRNA, non-coding miRNA, and the fraction of 

heterochromatin to euchromatin in the nucleus. Implicitly, a subset of these 𝛼 components 
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depend on mechanosensitive components of 𝑥 and therefore 𝑚, coupling cytoskeletal 

mechanosensing to nuclear activity in our model. Figure 5.1c illustrates how changing 𝛼 

reflects changes in both 3D chromatin architecture and post-transcriptional regulation, 

altering the efficiency of mechanosensitive transcription. In the heterochromatic state, 

fewer chromatin sites are available for transcription. In the more active euchromatic state, 

a complex and modifiable regulatory environment (including miRNAs) exists in between 

the chromatin and downstream protein expression. These transcriptional machinery and 

regulatory components interact with significant complexity and co-dependency, and there 

is insufficient data to parametrize a full microscopic description of these interactions. A 

generalized derivation for 𝛼 is given in the Appendix S5.1 which considers these nonlinear 

interactions by expanding 𝛼 as a series expansion of terms weighted to account for 

cooperativity between regulatory components. 

5.3.3 Fast and Slow Dynamics of Transcriptional Reinforcement Sensitivity 

Since 𝑥 and 𝑚  have time dependence, we know that 𝛼 must also have a dynamic 

evolution 
𝑑𝛼

𝑑𝑡
 which is bounded on the fast end by 

𝑑𝑥

𝑑𝑡
 and 

𝑑𝑚

𝑑𝑡
 because of the underlying 

dependence of 𝛼 components on mechanosensitive 𝑥 components. On the slow end, the 

dynamics of 𝛼 can be severely limited by complex rate-limiting or anti-cooperative 

relationships between the transcription-translation regulatory components.  Evidence of 

these time-dependent relationships between reinforcement and transcription has been 

collected on some individual mechanosensitive mechanisms. [256,257] Although we lack 
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the data and explicit mechanistic understanding to specify all the contributing mechanisms 

to 𝛼, we can capture the essential nature of this time dependence by rewriting 𝛼 as the sum 

of a fast-changing component (on the scale of 
𝑑𝑚

𝑑𝑡
 or 

𝑑𝑥

𝑑𝑡
) and a slow changing component 

which is effectively constant on the timescale of 𝑥 and 𝑚. Complete details of the 

derivation beginning from the series expansion of 𝛼 are included in Appendix S5.2; the 

result for 𝛼(𝑡) is: 

 
𝛼(𝑡) = 𝛼(𝑡𝑠𝑙𝑜𝑤) + 𝑐

𝑚𝜁

𝑚𝜁 + 1
 

(5.3) 

We use another Hill relation in stiffness 𝑚 with degree 𝜁 and sensitivity 𝑐 to model the fast 

portion of 𝛼, which captures the fact that the positive reinforcement sensitivity is explicitly 

mechanosensitive and that stiff reinforcement requires the presence of mechanosensitive 

transcription factors such as YAP and MKL-1 to occur. [250,251,258–260] Recent 

evidence indicates that the nuclear structure and chromatin conformation physically 

responds to environmental stiffness via forces transmitted through the LINC complex and 

not merely through chemical signals, and these direct processes are captured by this fast 

component of 𝛼(𝑡). [221,261,262] For the remaining term 𝛼(𝑡𝑠𝑙𝑜𝑤), we choose a form 

which generally depends on 𝑥 and 𝑚 such that 
𝜕𝛼

𝜕𝑡𝑠𝑙𝑜𝑤
(𝑥,𝑚) represents a weighted average 

of the slow, nonlinear dynamics present in transcription-translation reinforcement. 
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 Plugging Eq. 5.3 back into Eq. 5.2, our time-dependent equation for cellular 

mechanoactivation is now: 

 𝑑𝑥

𝑑𝑡
= 𝑘𝑥↑(𝑚)(𝑥𝑟𝑒𝑓 − 𝑥) − 𝑘𝑥↓(𝑚)𝑥 + (𝛼(𝑡𝑠𝑙𝑜𝑤, 𝑥,𝑚)

+ 𝑐
𝑚𝜁

𝑚𝜁 + 1
)

𝑥𝛽

𝑥𝛽 + 1
 

(5.4) 

In this ordinary differential equation (ODE), we established mechanosensitivity of 

synthesis and nuclear import of 𝑥 (first term), mechanosensitivity of degradation and 

nuclear export of 𝑥 (second term), and positive reinforcement of cellular 

mechanoactivation (third term) with a time-dependent sensitivity that evolves slowly with 

respect to changes in 𝑥. Eq. 5.4 is the key ODE which underpins the results. We can 

interpret this equation as the negative gradient of a “Waddington-like” energy landscape 

with respect to 𝑥; 
𝑑𝑥

𝑑𝑡
= −

𝜕𝑈

𝜕𝑥
. Since 𝛼(𝑡𝑠𝑙𝑜𝑤, 𝑥,𝑚) evolves on a much slower timescale 

than 
𝑑𝑥

𝑑𝑡
, we treat 𝛼 as a constant when finding the steady state solutions of 𝑥. Integrating 

Eq. 5.4 we arrive at 

𝑈(𝑥,𝑚, 𝛼) =  −𝑘𝑥↑(𝑚)𝑥𝑟𝑒𝑓𝑥 +
𝑥2

2
(𝑘𝑥↑(𝑚) + 𝑘𝑥↓(𝑚))

+ 𝑥 (𝛼 + 𝑐
𝑚𝜁

𝑚𝜁 + 1
) ( 2𝐹1 [1,

1

𝛽
, 1 +

1

𝛽
,−𝑥𝛽] − 1) 

(5.5) 

where 2𝐹1 is the special hypergeometric function. 
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The model was implemented using a standard ODE solver (fsolve) in the open 

source SciPy package (Python). Parameter selection for numerical simulations was 

performed using latin hypercube sampling over the following parameter space: 𝛼0 (initial 

value for positive reinforcement), 𝑚0 (stiffness normalization constant), 𝑥𝑟𝑒𝑓 (reference 

level of mechanoactivation), 𝜏𝑠 (timescale for 
𝑑𝛼

𝑑𝑡
), 𝜏𝑥↓ (timescale for 𝑥 decrease), 𝜏𝑥↑ 

(timescale for 𝑥 increase), 𝜁, c (degree of Hill relations), 𝜎 (standard deviation of noise), 

and 𝐴 (amplitude of noise).  Each parameter combination was run for priming times of 3, 

7, and 10 days, with 250 noisy trials run for each priming time. Parameter combinations 

were scored against the experimental data from Yang et al.  [215] using a Kolmogorov-

Smirnov test, a least-squares test, and manual inspection. We note that these parameter 

combinations do not represent global best-fits to the data but were sufficient to show 

qualitative agreement and differentiate the two different dynamics approaches. 
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5.4 Results 

By taking 𝑥 and 𝛼 as average quantities over many interacting mechanosensitive 

components, our implemented model framework sacrifices some mechanistic detail. 

However, we successfully identify that nonlinear dependence of the positive reinforcement 

strength on the level of mechanosensation can lead to all the features of mechanical 

memory observed in experiments. A mechanistic example of this type of positive 

Figure 5.2 Example microscopic mechanosensitive positive reinforcement loop. 

Relationships assembled from the literature illustrate one example of a positive 

reinforcement loop in mechanotransduction mediated by transcription factors. In the 

model, the stiff mechanoresponse corresponds to larger 𝑥, while the soft mechanoresponse 

corresponds to smaller 𝑥. The degree of positive reinforcement is controlled by the 

intensity and magnitude of the activation, inhibition, and transcription arrows, which is 

captured by 𝛼 in the model and exhibits both fast and slow dynamics. 
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reinforcement is given in Figure 5.2 with connections to the model components illustrated 

in Figure 5.1. Under a stiff mechanoresponse, focal adhesion, integrin, and stress fiber 

density all increase [263] from increased F-actin polymerization, freeing transcription 

factors such as MKL-1, YAP, and HDAC to translocate to the nucleus. [217,264] These 

processes correspond to the mechanosensitive linear dynamics introduced in Eq. 5.1. 

Significant crosstalk has been observed for these transcription factors, which can lead to 

nonlinear dynamics [265] such as those introduced in Eq. 5.3. MKL-1 acts as a 

transcription factor for the production of miR-21 [214], which was found to regulate 

mechanical memory. miR-21 has also been shown to affect YAP via RUNX1 and RUNX2, 

which are also mechanosensitive transcription factors. [266] Finally, YAP has been shown 

to regulate actin dynamics, stabilizing F-actin through the Rho pathway [267], closing the 

positive reinforcement loop. These processes are examples of fast-acting positive 

reinforcement; meanwhile, epigenetic modifiers can lead to slow dynamics of chromatin 

conformational change. [268,269] While this is not a complete account of 

mechanotransductive pathways by any means, this illustrates one example of mechanically 

initiated positive reinforcement which couples the cytoskeleton and nucleus and can lead 

to memory. 

5.4.1 Phase Diagram of Cellular Mechanoactivation Shows Selective Bistability 

We can visualize the steady-state solution space of 𝑥 through the lens of the energy 

landscape defined by Eq. 5.5. Figure 5.3a gives a phase diagram with three distinct regions 
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of the solutions of 𝑥 (identified as local minima in the free energy landscape) as a function 

of the dimensionless ECM stiffness 
𝑚

𝑚0
 (y-axis) and the reinforcement sensitivity 𝛼 (x-

axis). The insets on the phase diagram show representative slices of the energy landscape 

for a point (𝛼,𝑚) within each region of the landscape.  

In orange region I (low reinforcement sensitivity and stiffness), the energy 

minimum and single corresponding steady state is found at small 𝑥. In this monostable 

region, there is low mechanical signal from the soft ECM, and low 𝛼 corresponds to a small 

influence of the positive reinforcement process on 𝑥. In light blue region II, the system is 

still monostable, but the increased ECM stiffness induces mechanical signaling and shifts 

the steady-state value of 𝑥 to a much higher value than in region I. Biologically, this 

corresponds to mechanotransductive responses which occur on a timescale of hours, such 

as polymerization of G-actin to F-actin and increased density of focal adhesions, stress 

fibers, and integrins. Compared to region I, a cell in region II exhibits greater nuclear 

localization of transcription factors such as YAP, RUNX2, and MKL-1, and increased focal 

adhesions, contractility, and areal spreading (Figure 5.1b). When 𝑚 ≫ 𝑚0, this 

mechanically induced phenotype shift occurs for all values of reinforcement 𝛼. In dark blue 

region III (low stiffness and large reinforcement sensitivity), the system is bistable; there 

are two steady states for 𝑥, one corresponding to a soft phenotype (expected due to the 

ECM stiffness) and one corresponding to a stiff phenotype (stabilized by the positive 
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reinforcement even without direct mechanical signal). For a given value of ECM stiffness 

Figure 5.3 Phase diagram of the stiff-correlated phenotype. a) Phase diagram of steady-

state stiff phenotype expression over ECM stiffness and transcriptional reinforcement 

sensitivity. Insets show a slice of the energy surface vs. 𝑥 for a typical point in each region; 

the dots mark the minima and the steady state values of 𝑥. b,c) Transitioning from I to II 

(gray arrows) leads to a significant increase in the steady-state value of 𝑥. Green line 

indicates the phase boundary between regions. d,e) Transitioning from I to III (pink arrows) 

at constant stiffness traps the system in a low-𝑥 steady state. The transition from II to III 

by softening stiffness at large 𝛼 (gold arrows) keeps the system in a high-𝑥 minima. 
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and reinforcement sensitivity in region III, the cell will exhibit either low or high 

mechanoactivation contingent on the prior mechanical history and the gene expression 

environment. This hysteresis forms the basis in this framework for cellular mechanical 

memory. 

Dynamically, region boundaries (green lines) in the phase diagram can be crossed 

by altering either the ECM stiffness or the reinforcement feedback sensitivity, inducing 

transitions in the steady-state mechanoactivation. Considering the soft phenotype region I 

as the initial condition, there are two possible transition pathways. Traversing to region II 

by increasing 𝛼 above a critical stiffness (gray arrow) leads to a continuous and reversible 

increase in the observed value of 𝑥 (Figure 5.3b,c). If the mechanical signal is then 

removed (region II to region III, gold arrow), 𝑥 will remain elevated as the minimum from 

region II smoothly transitions to the large 𝑥 minima in region III (Figure 5.3c,e).  

Traversing from region I to region III below the critical stiffness value (pink arrow, Figure 

5.3d) will not observably change 𝑥 from the low region I value, since the region I minimum 

smoothly transitions to the small 𝑥 local minimum in region III (Figure 5.3e). Further 

increasing the positive reinforcement sensitivity within region III eventually leads back to 

region II, with a single ‘stiff’ steady state at large 𝑥 for all values of ECM stiffness. The 

hysteresis loop created by the path dependence in the stiffness-reinforcement phase 

diagram provides a mechanism for dynamic mechanosensitive memory. A key feature of 

the phase diagram which corresponds to experimental observations is that increasing 
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mechanical stiffness alone can increase 𝑥, allowing the cell to begin adapting to the 

environment on short timescales by expressing stiff-correlated proteins and localizing stiff-

correlated transcription factors to the nucleus. [210] However, these changes are fully 

reversible (exhibit no memory) unless the sensitivity of the positive reinforcement is 

sufficiently large. In the next section, we explore how evolving 𝛼 on a slow timescale can 

lead to different expressions of mechanical memory depending on the time program of 

external mechanical stimulus.  

5.4.2 Nonlinear Dynamics of Positive Reinforcement Sensitivity Capture Full 

Range of Memory Retention Outcomes 

Having shown that the trajectory of 𝛼 can determine if memory is observed for a 

particular ECM mechanical history, we return to 𝛼(𝑡𝑠𝑙𝑜𝑤) in Eq. 5.3 and consider an 

explicit form for the slow evolution of the reinforcement sensitivity. Given sufficient data 

on low-level biological dynamics, 𝛼(𝑡𝑠𝑙𝑜𝑤) can be rigorously derived from Eq. S5.3 

(Appendix S5.2), but in lieu of this data, we choose the following form to maximize 

simplicity while capturing key phenomenological features from experiment: 

𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
= 

{
  
 

  
 −

𝛼 − 𝛼0
𝜏𝑓

,                         𝐼 

𝛼

𝜏𝑠

𝑚

𝑚0
exp−

𝑥

𝑥𝑟𝑒𝑓
,             𝐼𝐼

−
𝛼

𝜏𝑠

𝑚0

𝑚
exp−

𝑥

𝑥𝑟𝑒𝑓
,       𝐼𝐼𝐼

 

(5.6) 
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where 𝜏𝑓 and 𝜏𝑠 are time constants on the scale of hours and days, respectively, and can be 

directly related to 
𝑑𝑦𝑖

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 in Eq. S5.4. Figure 5.4 overlays the biological interpretations 

Figure 5.4 Dynamics of the transcriptional environment. In region I, the cell receives little 

mechanical signal and has limited positive reinforcement, so there is no driving force for 

the transcriptional environment to shift. In region II, signaling is sufficient to drive 

chromatin reorganization and changes to the post-transcriptional regulatory environment, 

such as miRNA synthesis. In region III, the mechanical signal is lost and there is net 

degradation / reversal of the stiff-correlated phenotype. As self-reinforcement 𝛼 increases, 

less external mechanical signal is required to maintain the stiff phenotype cultivated in 

region II. 
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of the different piecewise components of Eq. 6 on top of the phase diagram from Figure 

5.3a. The y-axis remains the rescaled ECM stiffness 𝑚/𝑚0 and the x-axis the strength of 

positive mechanosensitive reinforcement 𝛼. 

 In region I (low stiffness and cytoskeletal reinforcement) we simply set 
𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
 to 

quickly converge to a reference value 𝛼0. At low levels of mechanical signaling and 

without prior mechanical activation, there is no driving force to spur phenotypic change. 

While soft ECMs promote cell differentiation and memory, in our example we are only 

considering stiff-correlated genes for 𝑥, and there is no evidence for undifferentiated cells 

to develop memory which resists stiff priming. In Figure 5.4, this corresponds to no change 

in the chromatin state or transcriptional activity over time. Memory develops at high 

stiffness and is lost at low stiffness unless the cell differentiates, so we choose 𝛼 to increase 

in region II and decrease in region III to complete our piecewise description. By our 

definition, increasing 𝛼(𝑡𝑠𝑙𝑜𝑤) in region II accounts for slow, nonlinear processes (shifts 

in the 3D chromatin and transcriptional regulation environment) which increase 

reinforcement of a stiff cellular phenotype (Figure 5.4). Decreasing 𝛼(𝑡𝑠𝑙𝑜𝑤) in region III 

models net decay of these stiff phenotype features (which can have lifetimes on the scale 

of days to weeks [270]) and reversal of the transcriptional environment in the absence of 

sufficient mechanical signal.  
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Table 5.1 Parameters for simulations in Figure 5.5a-d. 

In the priming region II, 

multiplying by 
𝑚

𝑚0
 ensures that the 

priming time required to achieve a 

given level of memory decreases 

when increasing the priming 

stiffness. Including a dependence 

on 𝑥 ensures that the persistence 

time of mechanical memory 

increases nonlinearly with priming time for a specified priming stiffness. [215] 

Mechanistically, our definition of 𝑥 includes mechanosensitive epigenetic modifiers such 

as HDAC and HAT [217,271,272], and while the activity of these enzymes to flip 

epigenetic marks occurs on shorter timescales relative to memory [271], chromatin 

structural organization and downstream effects on transcription can be much slower due to 

glassy dynamics of actual chromatin conformational change [269,273,274]. This couples 

the slow dynamics of the reinforcement sensitivity to the steady-state value of 𝑥, which 

changes depending on the specific location within each region of the phase diagram. This 

coupling of reinforcement sensitivity to the signal itself is a new feature of our model which 

has not been studied in other models of cellular positive reinforcement loops. For simplicity 

and to limit free parameters, we choose the 𝛼 degradation dynamics in region III to be the 

reverse of the priming dynamics. Net degradation of the reinforcement and dissipation of 

Parameters (Fig. 5.5) Values Units 

Phase Diagram 

𝑚0 6.5 kPa 

𝑥𝑟𝑒𝑓 2. Arb. 

𝛽 6 n/a 

𝜁 35 n/a 

𝑐 1. Hours-1 

𝜏𝑥↓ 1.5 Hours 

𝜏𝑥↑ 1.5 Hours 

Dynamics    

𝜏𝑓 12. Hours 

𝜏𝑠 150. Hours 

𝛼0 1. Arb.  

Priming 

𝑚𝑠𝑡𝑖𝑓𝑓 10 kPa 

𝑚𝑠𝑜𝑓𝑡 2 kPa 
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memory will be faster at smaller 𝑚 and will smoothly change from the value of 𝛼 in region 

II. 

Each of the three arrows (grey, red, and blue) in Figure 5.4 correspond to a different 

hypothetical stiff priming program which leads to a different class of memory outcome. 

The initial conditions, priming stiffness, and model parameters (Table 1) are fixed across 

the three programs. The corresponding time evolution of 𝑥 and 𝛼 for each mechanical 
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priming program is plotted in Figure 5.5a-c.  Between each of the three priming program 

results shown in Figure 5.5a-c, only the length of time that the simulated cell is exposed 

to stiff substrate (10 kPa) is changed; the soft substrate is modeled at 2 kPa. 

5.4.3 Priming Programs and Memory Formation 

The grey program does not exhibit any memory – the time that the cell is exposed 

to the stiff environment is short, and when the cell is returned to a soft ECM, the system 

returns to region I. While the phenotype quickly shifts to respond to the stiffening substrate 

at the beginning of the priming program (crossing the dashed green line corresponding to 

the boundary between regions I and II), the mechanical signal is not maintained long 

enough to alter the transcriptional environment to the point where it can sustain memory. 

The stiff phenotype is lost just as rapidly as it was gained (timescale of hours) since the 

Figure 5.5 Applying different mechanical priming programs. Dot-dash lines 𝑥𝑟𝑒𝑓 indicate 

the value of 𝑥 without 𝛼 dynamics (𝛼 = 𝛼0). Trajectory colors match those in Figure 5.3. 

a) Short priming time of a few days does not result in memory. b) Medium priming time 

results in memory on the timescale of priming; eventually this memory decays and the 

system resets. c) Longer priming time prevents the system from entering the memory 

dissipation region when the substrate stiffness is decreased, leading to permanent memory. 

All model parameters in a), b), and c) are fixed except for the length of priming time in the 

mechanical program (top plots). d) Two-phase mechanical priming program illustrates 

cumulative priming. The first priming phase is identical to b), and the total priming is 

equivalent to c). The second priming pulse generates significantly more memory than the 

first priming pulse, yet permanent memory is not established as in c) since some priming 

decays between the two pulses. 
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dynamic trajectory returns directly to region I when the stiffness is relaxed. In the case of 

a stem cell, this corresponds to an insufficient mechanical signal to sustain differentiation.  

The red program in Figure 5.4 exhibits temporary memory – by holding the cell in 

priming region II for longer than the gray program, 𝛼 increases sufficiently such that when 

the cell is returned to a soft environment, it enters the bistable region III. The positive 

reinforcement loop traps the system in a steady state of large 𝑥 despite the absence of 

persisting stiff mechanical signaling (Figure 5.5b). The dot-dash line 𝑥𝑟𝑒𝑓 shows the 

phenotype expression of 𝑥 in the absence of 𝛼 dynamics (𝛼 is fixed at 𝛼0) under the same 

priming program. The significant deviation of 𝑥 from 𝑥𝑟𝑒𝑓 represents the ‘phenotypic 

distance’ of the cell from the low reinforcement case; the length of time that this difference 

is maintained (while the cell is in region III) gives the length of time of observed memory. 

Since the dynamic evolution of 𝛼 fundamentally changes the energy surface, the 

persistence time of memory is decoupled from the relaxation rate of 𝑥, as is observed 

experimentally. Depending on the specific length of priming time and priming stiffness, 

the model predicts a continuous range of memory persistence times from much shorter than 

the priming time to much longer than the priming time using the same parameter set. Over 

time, 𝛼 slowly decreases (driving 𝑥 to decrease) due to the absence of continued signaling 

promoting epigenetic change and natural degradation of stiff phenotype proteins, 

dissipating memory and eventually returning the system to region I. The model also 

predicts that as substrate stiffness decreases after priming, the window of reversible 
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memory (range of 𝛼 which corresponds to region III) grows significantly. This means that 

the phenotype of the cell is more likely to be reversible if the dissipative mechanical signal 

is stronger. 

Finally, the blue program corresponds to permanent memory, which in the case of 

MSCs indicates lineage specification to a stiff phenotype (osteocyte). As the sensitivity of 

the positive reinforcement 𝛼 continues to increase, it requires a stronger reversing signal 

(softer ECM) to enter the bistable, temporary memory regime. At a certain point (beyond 

the axis break in Figure 5.4), it becomes practically impossible to sufficiently reverse the 

mechanical signaling and the cell will permanently exhibit a phenotype correlated with 

large 𝑥 and saturated large 𝛼. In vitro experiments confirm that differentiated osteocytes 

exhibit sustained higher nuclear activation of YAP/TAZ and other stiff-correlated proteins, 

qualitatively agreeing with our picture of a phenotype which retains features of high 

𝑥. [259] Figure 5.5c shows how simply increasing the priming time using the same ECM 

stiffnesses of the mechanical programs in Figure 5.5a and Figure 5.5b prevents the system 

from leaving region II of the phase diagram after the priming phase. Physically, this means 

that the transcriptional and epigenetic state of the cell has absorbed enough mechanical 

signal during the priming phase to self-sustain the stiff phenotype once that signal is 
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removed. Even after reducing the ECM stiffness, 𝛼 and 𝑥 will continue to slowly increase 

until they reach a saturation value which corresponds to lineage specification. [275] The 

model predicts that this transition to a ‘permanent’ phenotype is a result of the net 

Figure 5.6 Adding noise to nonlinear 𝛼 

dynamics. a) Global energy minima of 𝑥 

vs. 𝛼 and 𝑚 overlaid with priming 

programs. b,c) Cumulative distribution 

(CDF) of memory times from simulations 

with slow, gaussian noise incorporated 

onto 
𝑑𝛼

𝑑𝑡
 for priming of 7 days (b) and 10 

days c)), matching experimental 

conditions from Yang et al. Black dashed 

line shows the CDF of a normal 

distribution with the same mean and 

standard deviation as the model 

distribution for reference. 
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cumulative mechanical signal absorbed by the cell; for example, consecutive short priming 

programs will have an additive effect due to the dynamics of 𝛼 in regions II and III (Figure 

5.5d). In this trajectory, the initial priming period is the same as that in Figure 5.5b, but 

the short second prime ends up building significantly longer memory than in Figure 5.5b 

due to the accumulated ‘environmental knowledge’ which is not dissipated in the short 

intermediate soft period. This agrees with experimental evidence that cyclical stretching 

and stress stiffening of cellular substrates induces stiff differentiation (a ‘pumping’ 

effect). [276–278] The model also predicts that if the epigenetic / transcriptional state 

labeled by 𝛼 is manipulated by a drug or other mechanism, the cell can lose its permanent 

mechanical memory and be ‘reprogrammed’, which corresponds physically to reversible 

lineage specification enabled by so-called Yamanaka factors. [279] 

5.4.4 Noisy 𝜶 Dynamics Qualitatively Captures Experimental Memory 

Distributions  

 We have so far identified and predicted a wide range of phenomenological features 

of cellular mechanical memory with our simple, dynamic positive reinforcement model at 

the single cell level. However, biological systems are inherently noisy and experimental 

measurements of cellular phenotype and mechanical memory are most often taken over a 

population of cells. We categorize possible random fluctuations in our model into two 

categories – noise which affects mechanosensation and signaling (‘fast’ noise) and noise 

which affects the slower dynamics of reinforcement (‘slow’ noise). ‘Fast’ noise contains 
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all the fluctuations which might cause the phenotype of a cell to not occur at the local 

minimum of the energy landscape on fast timescales (deviations away from steady state). 

This is particularly relevant in the bistable region III, where fluctuations could cause cells 

to jump between different local minima, corresponding to changes in phenotype and 

changing observations of memory. In a bistable energy landscape, a normal distribution of 

fluctuations away from steady state values of 𝑥 will bias a population towards the global 

minimum over the local minimum since the jump rate will be higher if the energy barrier 

height between wells is lower. [275] Figure 5.6a shows the global minimum steady state 

value of 𝑥 over the stiffness-reinforcement phase diagram from Figure 5.3a (region 

boundaries in green). In the  

 Table 5.2 Parameters for simulations in Figure 5.6b,c 

majority of region III, the high-𝑥 

minimum is lower in energy. For 

our purposes of stiff  

priming programs which enter 

region III from a single-minima, 

high-𝑥 state in region II, this means 

that fluctuations from steady state 

will tend to reinforce a noisy 

Parameters (Fig. 5.6) Values Units 

Phase Diagram 

𝑚0 6.1 kPa 

𝑥𝑟𝑒𝑓 1.2 Arb. 

𝛽 4.9 n/a 

𝜁 35 n/a 

𝑐 1 Hours-1 

𝜏𝑥↓ 1.1 Hours 

𝜏𝑥↑ 1.5 Hours 

Dynamics    

𝜏𝑓 12. Hours 

𝜏𝑠 160. Hours 

𝛼0 1. Arb.  

Noise 

𝜎 0.7 Arb. 

𝐴 0.01 Arb. 

Priming   

𝑚𝑠𝑡𝑖𝑓𝑓 10 kPa 

𝑚𝑠𝑜𝑓𝑡 2 kPa 
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population to remain in the high-𝑥 state, preserving memory and having little qualitative 

effect on the model results.  

 ‘Slow’ noise captures fluctuations in the dynamic evolution of 𝛼, and this is more 

interesting to consider due to the nonlinearity of 𝛼(𝑡). The fact that 
𝑑𝛼

𝑑𝑡
 depends on the 

current steady state of 𝑥 (and therefore the prior history of 
𝑑𝛼

𝑑𝑡
) means that a normal 

distribution of noise in the dynamics of 𝛼 could lead to a non-normal distribution of 

memory results. We investigated the impact of including noise on 
𝑑𝛼

𝑑𝑡
 by introducing a 

normal distribution of noise with 0 mean, unit standard deviation, and magnitude 𝐴=0.01 

at each time step of the simulations conducted in Figure 5.5a-c and generating a 

distribution of results over N = 256 simulations. The distribution of memory times 

observed from the noisy simulations is shown in blue in Figure 5.6b,c. This data contains 

all simulation runs including those without memory, so the difference between the first bin 

and second bar shows the percentage of trials (cells) which did not exhibit any mechanical 

memory. The thin black line gives the cumulative distribution function of a normal 

distribution with the same mean and standard deviation as our generated dataset. This 

confirms that applying normally distributed noise to the dynamic evolution of 𝛼 results in 

a non-normal distribution of observed memory persistence times due to the non-linearity 

of the 𝛼 dynamics. 
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Experimental data on persistence time of YAP and RUNX2 nuclear localization as 

a function of priming time on stiff substrates (10 kPa) taken from [215] is overlaid on 

Figure 5.6b,c. We averaged their results from YAP and RUNX2 to get a general sense of 

how the mechanoactivated cell population changes over time (green bars) after the 

substrate is switched from stiff to soft (2 kPa). The purple control lines indicate the 

experimental baseline of mechanoactivation in nuclear localized YAP and RUNX2 without 

any substrate switching. With added noise, our model captures the qualitative changes in 

the phenotype distribution over time as priming time is changed, with longer-primed cells 

being more resistant to return to the soft control phenotype. As in Figure 5.5, all parameters 

aside from priming time are held constant between the Figure 5.6b and Figure 5.6c to best 

replicate the experimental conditions (Table 5.2). In both the experimental data and the 

model, 10 days of priming leads to significantly higher retention of the stiff phenotype in 

the cell population than 7 days of priming.  

To isolate the effect of the nonlinear coupling between mechanical signaling (𝑥) 

and transcriptional environment dynamics 𝛼(𝑡) on the population statistics, we attempted 

the same noisy simulations using a linear form for 
𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
 without 𝑥 or 𝑚 dependence and 

did not find the same agreement. [275] This emphasizes that the nonlinear coupling 

between mechanical signaling and the dynamic evolution of the transcriptional 

environment is a fundamental conceptual ingredient which can explain both the disparate 

timescales of cellular adaptation and memory and captures non-normal population 
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statistics. The linear noise simulations can still result in zero, temporary, or permanent 

memory. However, the population statistics reflect the normal distribution of the noise 

applied, as seen by the agreement between the red model results and the black normal 

distribution CDF. While the available experimental data is limited, the same set of 

parameters using linear dynamics cannot qualitatively capture the experimental population 

distribution change with priming time nearly as well as the nonlinear dynamics, despite the 

same number of free parameters. The selection procedure for choosing the free parameters 

is discussed in Section 5.3.3. 
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5.4.5 Model Feature Comparison with General Experimental Observations 

We selected the data from the Yang et al. study on mesenchymal stem cells for 

direct comparison with our model since this is one of the few experimental studies to 

Figure 5.7 Summary of dynamic mechanical memory. a) At short priming times, 

mechanical signaling leads to cellular adaptation but does not persist for sufficient time to 

increase reinforcement, leading to no memory. b) At intermediate priming times, 

reinforcement increases with persisting mechanical signal. The transcriptional 

environment shifts enough to build temporary memory, but this reinforcement will slowly 

decay to erase memory once the mechanical signal is removed. c) At long priming times, 

reinforcement strength continues to grow with input mechanical signal and an adapting 

transcriptional environment. Reinforcement sustains without any mechanical signal, and 

the new phenotype persists if the substrate is changed (permanent memory). 
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explicitly track components of cellular mechanotransduction as a function of mechanical 

priming time. [215] While drawing quantitative comparisons across different experimental 

studies is difficult due to confounding variables such as cell lineage and growth media, we 

highlight several features of our model which appear in other studies (results summarized 

in Table S1 in Ref. [275] ). In our model, increasing ECM stiffness enough will always 

lead to cellular expression of a stiff phenotype on the scale of 𝜏𝑥↓ and 𝜏𝑥↑ irrespective of 

memory formation; our chosen values for these parameters are based on the adaptation 

time observed experimentally of ~1 hour. [226] The characteristic stiffness value 𝑚0which 

we use in Figure 5.5 and Figure 5.6 is consistent with the priming and memory stiffnesses 

used in other experiments in Ref. [275] Table S1. Short priming of ~1 day does not lead 

to appreciable memory in both our model and experiments [216], and temporary memory 

retention time is generally greater than or equal to the priming time across different 

experiments. In our phase diagram, reduction of 𝛼 from region II to region III or region I 

erases permanent memory; experimentally, knockdown of miR-21 (a component of 

𝛼(𝑡𝑠𝑙𝑜𝑤)) also erased permanent memory even after long priming. [214] Temporary 

memory development correlated with RUNX2 nuclear localization using stiff and soft 

substrates of 8 and 0.5 kPa after 7 days of priming was recently observed by Watson et al. 

in epithelial cells [218]; these values are similar to the data from Yang et al., indicating 

that similar parameters in our model are translatable to a different cell type. Finally, in our 

model the reinforcement strength and acquired memory is cumulative; this agrees 

qualitatively with experiments which have investigated dynamic cyclical stretching as a 
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way to observe mechanical memory. [277,278] Figure 5.7a-c gives a schematic overview 

of the progression from external mechanical signal to self-sustaining mechanical memory 

with increased priming time by way of increased transcriptional reinforcement, spurred by 

mechanotransduction.  

5.4.6 Simple Generalization for Analogous Soft-ECM Correlated Mechanical 

Memory 

In this work, we focused on stiff-priming and stiff-correlated mechanical memory 

since these conditions are the most widely studied due to applicability in stem cell therapies 

for fibrosis and osteogenesis. However, cells can also develop analogous soft-correlated 

mechanical memory which can eventually lead to soft tissue generation such as 

neurogenesis with sufficient priming. [210] Our model is instantly generalizable to this 

case by reconstructing 𝑥 as an averaged quantity of soft-activated phenotype components 

(𝑥 →  𝑥 𝑠𝑡𝑖𝑓𝑓 , 𝑥 𝑠𝑜𝑓𝑡) and inverting the scaled stiffness from 
𝑚

𝑚0
 to 

𝑚0

𝑚
 (Figure 5.7a-c). The 

phase diagram for soft-correlated memory and phenotypic activation is shown in Figure 

5.8 in and retains the three distinct regions which allow for no memory, temporary memory, 

and permanent memory depending on priming time. Recent experiments which primed 

adipose stem cells on 1 kPa substrates for two weeks found that temporary soft memory 

develops with similar persistence times (between one and two weeks) to stiff 

memory. [219] In contrast with stiff priming, nuclear YAP localization was not found to 

be a marker of soft-priming. This observation agrees well with our definition of the 
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mechanically correlated phenotype fingerprint vector 𝑥 ; nuclear YAP is an element of the 

stiff-correlated 𝑥  but not the soft-correlated 𝑥 . Using this simple, modular model 

framework, more complex models can be assembled which simultaneously consider soft 

and stiff memory and downstream consequences for differentiation. 

 

Figure 5.8 Analogous phase diagram of the model for soft-activated genes. In the model, 

the mechanoactivation profile / mechanical signaling is reversed by flipping 
𝑚

𝑚0
 to 

𝑚0

𝑚
, so 

that 
𝑑𝑥

𝑑𝑡
 increases when stiffness is reduce. In this case, high 𝑥 corresponds to activity of 

soft-correlated phenotypic genes and transcription factors. 𝛼 now represents positive 

reinforcement for gene expression correlating with a soft phenotype. 
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5.5 Conclusion 

The acquisition and maintenance of mechanical memory is a general phenomenon 

across different cell types and culture environments. [213–219,280] Balestrini et. al. 

cultured lung fibroblasts for two weeks on stiff (100 kPa, priming phase) substrates and 

found that they continued to express elevated fibrotic activity after being transferred to soft 

substrates (5 kPa, dissipative phase) for at least two weeks. A follow-up study by Li et al. 

under similar conditions identified miR-21 as a necessary molecule for long-time memory 

maintenance, indicating the role of transcriptional efficiency in memory regulation186. 

Some miRNAs can have half-lives on the scale of multiple days, which motivated our 

formulation of 𝛼(𝑡𝑠𝑙𝑜𝑤) to conceptually include these non-coding RNA molecules. More 

recent experiments have focused on detailed changes of chromatin organization within the 

nucleus, confirming that epigenetic changes occur in response to mechanical 

signaling [217] and highlighting the role of the LINC complex as a direct, physical 

mechanosensory. [221,261,281] Additionally, we have recently shown that epithelial cell 

sheets primed on a stiff matrix for 3 days also store mechanical memory through nuclear 

YAP localization, which continues to enhance cell migration through enhanced pMLC 

expression and focal adhesion formation on soft matrix for 2-3 days. [216] 

In developing our model, we sought to synthesize and distill the phenomenological 

observations from these experiments and related studies covering the impact of mechanics 

on lineage specification, which has not been accomplished by existing models to our 
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knowledge. Li et. al. proposed a reservoir model along with their identification of miR-21 

as a memory regulator, where priming leads to production of memory keepers which 

slowly dissipate after priming halts. This model alone does not explain the timescale 

disparity between mechanical adaptation and development of memory. Mousavi et al. and 

Peng et al. proposed two different mechanically activated differentiation models based on 

population dynamics and gene regulatory networks, but these models do not capture the 

variable rates of memory dissipation observed in experiments. These models rely on ~20 

and ~40 free kinetic parameters, respectively, yet do not account for key qualitative 

features of the memory phenomena. Our model uses 8 unique free parameters, which 

sacrifices resolution on specific biological mechanisms but allows us to identify that a 

simple nonlinear coupling between signaling and transcriptional evolution is sufficient to 

capture the phenomenological features of cellular plasticity.  

 The continuous range of cellular plasticity persistence time from zero (no memory, 

Figure 5.7a) to permanent (lineage specification, Figure 5.7c) is unique when compared 

to other physical memory systems, which often either exhibit permanent memory or no 

memory. Although early studies of lineage specification viewed this process as 

unidirectional (such as the traditional Waddington landscape), the targeted reversibility of 

plasticity under the right conditions is also a unique physical feature. The traditional 

Waddington landscape identifies specific branch points which split cells into separate wells 

representing stable phenotypes. [233] Our model generalizes this picture by showing that 
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both the Waddington landscape surface and the rate at which the cell progresses down each 

well can be altered by external stimuli such as stiffness. This ‘graduated reversibility’ may 

function biologically to make the cell more resilient to local short-term fluctuations in 

environment, while still allowing for long term, correlated population shifts in response to 

persistent environmental cues. 

 Predicting the memory response of cells to their mechanical environment has 

significant implications for designing cell-based therapy and studying other cellular 

mechanisms in vitro. Based on our model, we predict that small changes in priming 

stiffness or priming time can have large consequences on the retention time of developed 

phenotypes due to the nonlinearity of slow-evolving components. Our phase diagram 

indicates that recovery of stem-like, soft phenotypes can be enhanced after priming by 

reducing the stiffness of the recovery substrate, extending the range of region III which 

allows for memory dissipation. However, beyond a certain point, mechanical signal alone 

will not lead to phenotype reversal due to formation of permanent memory. Measuring the 

extent of priming may require nuclear information and not just data on signal activity, since 

the timescale of signaling is independent of the timescale of memory development. 

External methods to change 𝛼, such as Yamanaka factors or changes in growth media, can 

overwrite the natural permanent persistence of the stiff phenotype in these situations. In 

future work, we anticipate that this model framework for mechanical memory can be 

extended to include a chemical axis, which can be used to consider more general cases of 
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cell differentiation and coupling between chemical and mechanical contributions to 

memory acquisition and retention. 

Chapter 6 Conclusions and Future Directions 

6.1 Summary 

In this thesis, our main goal was to develop new multiscale frameworks to predict 

physical phenomena spanning multiple length and time scales. This goal was achieved 

across a wide range of materials systems using physics-based, first-principles theoretical 

frameworks to inform custom continuum and machine learning models, which were 

derived and solved on geometries relevant to the largest length or time scale. We validated 

each model approach by recovering results from multiple sets of experimental data or ab 

initio calculations, which demonstrate the predictive capability of our approach.  

In Chapter 2, we explore how lattice-matched interfaces can lead to localized 

quantum states in a 2D host material with different scaling behavior than conventional 

quantum dots. The linear scaling of the confinement energy with the dot size arises from 

the planar hexagonal symmetry and corresponding band structure of the monolayer 

materials, which contain significant linear contributions to the direct-gap low energy 

dispersion around the K point. The existence of confined quantum bound states is not 

guaranteed as it would be in conventional semiconductor quantum dot which does not 

contain these linear dispersion contributions, and we analytically develop a phase diagram 



140 

 

relating calculable band structure quantities and the existence of bound states. For more 

complex but realistic dot geometries such as triangles and hexagons, our numerical 

approach provides experimental guidance for synthesis to realize observable bound states 

across a range of materials. These bound states can theoretically emit single photons with 

a precise energy and phase for applications in quantum computing and photonics. 

Moving to non-lattice-matched crystal-molecule interfaces in Chapter 3, we 

investigate how surface strain and interfacial dipole moments can give rise to an energetic 

competition that affects the stability of ordered phases at different compositions. At large 

scales, interfacial dipole layers arising in devices such as p-n junctions are often modeled 

as uniform charge sheets, since this is how they appear electrostatically at large distances. 

However, for modern applications such as quantum wells and nanoscale semiconductor 

devices, the corrugations of the interfacial dipole layer can give rise to non-zero electric 

fields away from the interface which depend on the length scale of the dipole lattice. This 

can affect the stability of nanoscale composite structures as we illustrate via a competition 

with interfacial strain, and it can also couple to electrically sensitive properties at the 

interface. The continuum model that we propose can also be used to investigate the 

intercalation limits of ions in layered materials under mechanical strain, since these ions 

often pack into lattices with significant charge transfer. 

In Chapter 4, we expand to considering many surface-adsorbate complexes with 

machine learning models to predict the impact of strain on the interaction between the 
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surface and the adsorbate. Surface-adsorbate complexes are difficult to study using 

conventional atomistic methods due to abrupt symmetry breaking, but these structures 

contain the fundamental interactions underpinning the synthesis of industrially valuable 

chemicals. Machine learning can help accelerate evaluation of these complexes, but 

requires a sufficiently expressive representation to distinguish subtle structural differences 

such as surface facet, adsorption site, and surface composition. Our graph neural network 

approach can simultaneously distinguish the strain response for two different adsorbates 

on the same surface and the same adsorbate on two different surfaces. We identify CuxS1-

x alloy catalysts as a promising strain engineerable platform in the context of ammonia 

synthesis. With community-based efforts to extend these datasets and model sizes, our 

approach can be used repeatedly to enable catalyst discovery considering both desired and 

undesired reaction pathways together. 

Finally in Chapter 5, we develop a continuum model that covers multiple time 

scales to explain unique features of the long-term memory that stem cells can acquire about 

the substrates that they interface with. Predicting the impact of culture conditions on 

acquired cellular memory is critical to developing stem cell therapies, which require cells 

to plastically change at the therapeutic destination. Successful stem cell therapies will 

circumvent many challenges of integrating foreign materials as therapeutics, since a 

person’s own cells can be engineered to address a specific problem. Using our minimal 

model with one set of parameters corresponding to real experimental conditions, we are 
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able to capture two distinct trajectories of mechanical memory retention in a cell 

population; one temporary and one permanent. The model framework allows for improved 

accuracy through incorporation of molecular detail using mechanosensitive kinetic 

relationships, which require additional data to inform but are an area of recent intense 

research focus. 

We believe that these studies have introduced new concepts, predictions, and 

software to the scientific community, assisting in bridging the gap between traditional 

simulations and experiments. 

6.2 Outlook  

There is plenty of untapped potential for multiscale modeling to have increasing 

impact on innovation and optimization of materials platforms going forward. While 

individual simulation methods have been exhaustively pursued over all but the most exotic 

materials, in multiscale modeling the synthesis of methods and physical concepts can lead 

to emergent phenomena that extend our observations and understanding of low energy 

physics. This is especially true for bridging the gap between the idealities in silico world 

and the complexities in vita, where interfaces between different materials plays a major 

role (Figure 6.1). As the demand for new materials with high performance criteria 

accelerates to solve dire technological challenges such as climate change, multiscale 
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models will become increasingly important to navigate the high dimensional spaces of 

materials design many orders of magnitude faster and cheaper than experimental trial and 

error. 

Despite the theoretical potential of computational materials science, these 

predictions mean little if they cannot be realized experimentally. We anticipate that 

Figure 6.1 a) Simulation representations of materials and conditions are idealized 

compared to experiments. Looking forward, multiscale modeling and machine learning can 

synthesize many different simulation results to bridge simulation-experimental gaps. b) 

Images of MXene structure at multiple length scales highlight complexity introduced by 

hierarchical changes in structure at each scale. Reproduced from [295]. c) Transmission 

electron microscope of a white blood cell; the complexity of living cells and their interfaces 

with the environment requires inherently multiscale models. Reproduced from BBC. 
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upcoming work will demonstrate the realization of Dirac fermion bound states in transition 

metal dichalcogenides as predicted in Chapter 2, and we believe that this offers a great 

opportunity to analyze the differences between the model predictions and experimental 

measurements. This model made several simplifying assumptions (perfectly sharp 

interfaces and neglecting excitonic effects) that are likely to break down in a real system; 

building on these results moving forward could be a major step towards controlling 

individual quantum states in 2D materials. 

 Translating computational predictions to experimental conditions is challenging 

especially when considering heterostructure materials, as making physics-derived models 

more accurate often incurs exponentially larger computational cost. We are optimistic 

about the application of machine learning to address this problem, as data driven models 

can take advantage of the rapidly growing repository of computed materials data to form a 

mapping function between the simulation and experiment worlds (Figure 6.1). While 

significant hype exists around developing autonomous black-box artificial intelligence 

systems, we find it more likely that models built on top of curated first-principles and other 

physically generated data can succeed by internalizing correlations from physical priors 

and attempting to fill in the missing gaps. Incorporating these physical constraints can 

reduce the data requirements for successful models as we showed in Chapter 4. 

Accomplishing this requires a field-wide effort to generate, document, and collate datasets 

in transferable formats, and significant progress is being made on this front for both 
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computational and experimental data. [282,283] Although not presented here, we also 

studied materials growth using similar multiscale models to those in this thesis, and we 

believe that this a promising area for machine learning assisted translation between 

computational predictions and experimental observations. [284–287] 

 Finally, we see the nano-bio interface as a major frontier for multiscale modeling 

and materials interface engineering (Figure 6.1). Tremendous progress has been made in 

rapid, efficient data collection characterizing cellular genomes and phenotypes at both 

single-cell and population levels. However, the causal relationships between the cellular 

nano-/micro- environment and cellular behavior/outcomes are very poorly understood. 

These relationships are complicated by noisy processes over multiple length and time 

scales, as we demonstrate in Chapter 5. There is strong evidence that cell function 

significantly depends on the mechanical and electrical properties of the solid or gel phase 

cell surroundings, whereas previous work has focused heavily only on the chemistry of 

cellular media. Developing predictive models and phase diagrams of cell phenotype based 

on engineerable external parameters would accelerate therapeutic design and 

bioengineering for synthetic biology applications. Given the physical complexity of these 

systems, multiscale modeling at the nano-bio interface is sure to play a vital role in 

achieving these goals. 
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APPENDIX 

S2.1: Derivation of Equation 2.4 

Following the derivations for massless [71] and massive [288] Dirac fermions in 

graphene for a radially symmetric potential, 𝑉(𝑟), in two dimensions, we start with the 

massive Dirac equation given by 

 𝐻Ψ = (𝐸 − 𝑉(𝑟))Ψ (S2.1) 

where 𝐻 = −𝑖ℏ𝑣𝐷(𝜎𝑥𝜕𝑥 + 𝜎𝑦𝜕𝑦) + 𝜎𝑧𝑚𝑣𝐷
2 , Ψ is a bispinor, 𝜎𝑥 and 𝜎𝑦 are 2 x 2 Pauli 

matrices, 𝑣𝐷 is the Dirac velocity, and 𝑚 is the effective mass. The band gap, Δ, the lattice 

parameter, 𝑎, and the hopping parameter, 𝑡, are related to the quantities in 𝐻 via Δ = 2𝑚𝑣𝐷
2  

and 𝑎𝑡 = ℏ𝑣𝐷. It is important to note that for the transition metal dichalcogenide systems 

we are describing, Δ > 0 and therefore 𝑚 > 0, in contrast to graphene. 

 Rewriting 𝐻 in polar coordinates and representing it as a 2 x 2 matrix gives the 

massive Dirac Hamiltonian 

 

𝐻 = [

Δ

2
−𝑖𝑎𝑡𝑒−𝑖𝜃 (𝜕𝑟 −

𝑖

𝑟
𝜕𝜃)

−𝑖𝑎𝑡𝑒𝑖𝜃 (𝜕𝑟 +
𝑖

𝑟
𝜕𝜃) −

Δ

2

] 

(S2.2) 

Assuming a separable solution to (1), we write the bispinor as 

 

Ψ =
1

√𝑟
(
𝑓𝑙−1(𝑟)𝑒

𝑖(𝑙−
1
2
)θ

𝑔𝑙−1(𝑟)𝑒
𝑖(𝑙+

1
2
)θ
) 

(S2.3) 
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 for the angular quantum number 𝑙 = 0, ±1,±2,… and two radial components, 𝑓𝑙−1(𝑟) and 

𝑔𝑙−1(𝑟). 

 Evaluating the radial parts of (S2.1) and (S2.2) gives the coupled differential 

equations 

 𝑑𝑓𝑙−1(𝑟)

𝑑𝑟
−
𝑙

𝑟
𝑓𝑙−1(𝑟) −

𝑖

𝑎𝑡
(𝐸 − 𝑉(𝑟) +

Δ

2
)𝑔𝑙−1(𝑟) = 0 , 

(S2.4) 

 𝑑𝑔𝑙−1(𝑟)

𝑑𝑟
+
𝑙

𝑟
𝑔𝑙−1(𝑟) −

𝑖

𝑎𝑡
(𝐸 − 𝑉(𝑟) −

Δ

2
) 𝑓𝑙−1(𝑟)

= 0 

(S2.5) 

 

Solving (S2.4) for 𝑔𝑙−1(𝑟) gives 

 
𝑔𝑙−1(𝑟) = −

𝑖𝑎𝑡

𝐸 − 𝑉(𝑟) +
Δ
2

(
𝑑𝑓𝑙−1(𝑟)

𝑑𝑟
−
𝑙

𝑟
𝑓𝑙−1(𝑟)) 

(S2.6) 

We define the finite potential well 

 
𝑉(𝑟) = {

𝑉0, 𝑟 > 𝑟0
0, 𝑟 ≤ 𝑟0 ,

 
(S2.7) 

such that inside the well, we obtain a second-order differential equation for 𝑓𝑙(𝑟) from 

plugging (S2.6) into (S2.5): 
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𝑑2𝑓𝑙(𝑟)

𝑑𝑟2
+ (

(𝐸 −
Δ
2) (𝐸 +

Δ
2)

(𝑎𝑡)2
−
𝑙(𝑙 + 1)

𝑟2
)𝑓𝑙(𝑟)

= 0 

(S2.8) 

This is simply the Bessel differential equation, which for the region containing the point 

𝑟 = 0 has the solution 

 𝑓𝑙(𝑟) = 𝐴(𝐽𝑙(𝛼𝑊𝑟)) (S2.9) 

for an arbitrary constant, 𝐴, the Bessel function of the first kind, 𝐽𝑙, and 

 

𝛼𝑊 =
√𝐸2 − (

Δ
2)

2

𝑎𝑡
  

(S2.10) 

Likewise 𝑔𝑙(𝑟) inside the well is given by 

 
𝑔𝑙(𝑟) = −

𝑎𝑡𝛼𝑊

𝐸 +
Δ
2

(𝑓𝑙+1(𝑟)) . 
(S2.11) 

 Outside the well, where 𝑉(𝑟) = 𝑉0, (S2.8) is modified so that 𝐸 → 𝐸 − 𝑉0 and the 

physical solutions (where the wave function is normalizable at infinity) are  

 𝑓𝑙(𝑟) = 𝐵(𝑌𝑙(𝛼𝑉𝑟))  , (S2.12) 
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𝑔𝑙(𝑟) =

𝑎𝑡𝛼𝑉

𝑉0 − 𝐸 −
Δ
2

(𝑓𝑙+1(−𝑟)) , 
(S2.13) 

where 𝐵 is a constant, 𝑌𝑙 is the Bessel function of the second kind, and 𝛼𝑉 =

√𝐸2−(
Δ

2
)
2
−2𝐸𝑉0+𝑉0

2

𝑎𝑡
.  

We consider 𝑙 = 0 states because we are interested in only the ground state. 

Imposing the boundary condition that Ψ is continuous at 𝑟 = 𝑟0 then gives the 

transcendental equation  

 
𝑅𝑒[𝑌0(−𝑟0𝛼𝑉)]

𝐽0(𝑟0𝛼𝑊)
=
𝑖𝛼𝑉
𝛼𝑊

𝐸 +
Δ
2

𝑉0 − 𝐸 −
Δ
2

𝐼𝑚[𝑌1(−𝑟0𝛼𝑉)]

𝐽1(𝑟0𝛼𝑊)
 , 

(S2.14) 

which is Equation (2.4) in the manuscript. Solutions of 𝐸 to this equation correspond to the 

minimum angular momentum states which are localized in the well. The real part of 𝑌1 and 

imaginary part of 𝑌0 are neglected because they do not decay to 0 as 𝑟 →  ∞; these 

correspond to the Klein tunneling solutions. 

 If Δ is finite, as 𝑉0 goes to infinity for a fixed 𝑟0, the expected solutions for the 

infinite potential well are recovered. If Δ is taken to zero at small 𝑉0, the massless Dirac 

fermion solution in graphene is recovered and there are no bound states; [71] taking 𝑉0 to 

infinity at Δ = 0 corresponds to the infinite mass boundary condition. [41] Finally, as 𝑟0 

goes to infinity at fixed 𝑉0  and Δ, the bound state energy asymptotically approaches the 

bottom of the potential well, in agreement with the traditional Schrodinger behavior. 
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 We can simplify Eq. S2.14 by setting 𝐸 = 0 and recasting the transcendental in 

terms of the dimensionless variables 𝑥 =
Δ𝑟0

𝑎𝑡
 and 𝑦 =

𝑉0

Δ
. We further define 𝑦′ =

−√𝑦2 − (
1

2
)
2

 for convenience. Making the substitution and doing some simple algebra 

leads to the dimensionless form 

 𝑅𝑒[𝑌0(𝑥𝑦′)]

𝐽0 (
𝑖𝑥
2 )

=
−𝑦′

𝑦 −
1
2

𝐼𝑚[𝑌1(𝑥𝑦′)]

𝐽1 (
𝑖𝑥
2 )

 
(S2.15) 

S2.2: Tight-binding model and expanded 𝒌 ∙ 𝒑 model for comparison. 

 

 

Figure S2.1. Tight-binding model results for finite size scaling of electron and hole ground 

state energies in a triangular quantum dot. a) Schematic of workflow for obtaining 

electronic structure of quantum dot from tight-binding. b) Electron (top) and hole (bottom) 
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ground state energy in a triangular quantum dot as a function of side length. c) Ground and 

excited state wave functions from tight-binding model. 

We repeat the analysis in Chapter 2.4.2 using a three-band tight-bonding 

model [62] of a triangular MoS2 quantum dot [67] with an outer edge of WS2 atoms that 

forms the finite electron confining well. We recover the same characteristic ground state 

energy scaling described by Eq. 2.5 in the tight binding model results (Figure S2.1b). The 

computed wavefunctions (Figure S2.1c) agree with those from the continuum model, 

although the inclusion of an additional d band and spin-orbit coupling in the tight-binding 

model leads to degeneracy breaking in the excited states. Importantly, while 𝒌 ⋅ 𝒑 is a long 

wavelength theory that is expected to break down at small length scales, the tight-binding 

approach describes the quantum dot system at these length scales. The continuum approach 

is well-suited for device-relevant length scales, so there are no apparent gaps in our 

multiscale approach. Independently, we verify the validity of the truncation of the 𝒌 

expansion to second order by measuring the magnitude of the correction introduced by 

𝐻𝑘𝑝
2 (𝒌) as a function of dot size (Figure S2.2). As expected, the higher order terms are 

more important for smaller dot sizes, and for a 4 nm MoS2/WS2 triangular dot, the second 

order correction reaches a maximum of 8.5 meV, which is well within the perturbative 

regime. At small dot sizes in the tight-binding regime, the higher order terms in the 

continuum model will affect the quantitative energy values, but overall trends such as the 

geometry-critical size relationships are minimally impacted. 
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Figure S2.2. Magnitude of 𝐻𝑘𝑝
2 (𝒌) corrections to the ground state energy as a function of 

dot size for triangular geometries. The perturbative regime of 𝐻𝑘𝑝
2 (𝒌) overlaps with the 

accessible length scales for the tight-binding description. 

S3.1: Derivation of the Electrostatic Energy Term 

 

Figure S3.1. Schematic opposing lattices of point charges arranged to simulate interacting 

interfacial dipoles. The interactions counted in the model are shown using the black 

connectors; the 𝑖 = 2 : 𝑖 = 4 interaction is multiplied by 2 by symmetry. 

Following previous works, we show the calculation of the electrostatic energy of 

two opposing dipole lattices. [289,290] The electrostatic energy between two parallel 

uniformly charged sheets which are infinitely periodic in their parallel dimensions is zero, 

while the energetic interactions between two individual dipoles at long distances falls off 
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as ~
1

𝑟3
, where  𝑟 is the distance between the dipoles. For two infinite, parallel, and 

oppositely oriented point-charge dipole lattices, we expect that the electrostatic energy will 

fall between these limits. We start by solving the Poisson equation  

 
∇2𝜙(𝑥, 𝑦, 𝑧) =  −

𝜌(𝑥, 𝑦, 𝑧)

𝜀𝑟
 

(S3.1) 

where 𝜙 is the electric potential, 𝜌 is the charge density, and 𝜀𝑟 is the static permittivity of 

the medium.  Focusing on the N-dependent interaction, we break the dipole arrays into 4 

parallel sheets of point charge square lattices with periodicity 𝑎𝑑𝑖𝑝, 2 with positive charges 

and 2 with negative charges, such that the total system is charge neutral. We set the 𝑦 

dimension to be perpendicular to the sheet, consistent with the atomistic convention, so 

that the total charge density 𝜌(𝑥, 𝑦, 𝑧) =  ∑ 𝜎𝑖(𝑥, 𝑧)𝛿(𝑦 − 𝑦𝑖)
4
𝑖=1 , where the index 

𝑖 enumerates each individual sheet at position 𝑦𝑖 and 𝜎(𝑥, 𝑧) is the in-plane charge density. 

Due to the principle of superposition, we can add the sum over sheets back in later and 

focus on a single sheet for now.  

𝜎(𝑥, 𝑧) is composed of a charge motif which is periodic on the 2D lattice; to account 

for the periodicity, we will express the in-plane charge density as a Fourier series over the 

reciprocal lattice vectors 𝑘⃑⃗ and solve the Poisson equation in Fourier space: 

 𝜎(𝑥, 𝑧) =  ∑ 𝜎̃(𝑘𝑥, 𝑘𝑧) exp(𝑖𝑘𝑥𝑧 ∙ 𝑟𝑥𝑧)
𝑘𝑥𝑧

 
(S3.2) 

 

𝜎̃(𝑘𝑥, 𝑘𝑧) =
1

𝐴
∬ 𝑑𝑥 𝑑𝑧 𝜎(𝑥, 𝑧) exp(−𝑖𝑘𝑥𝑧 ∙ 𝑟𝑥𝑧)

𝑎𝑑𝑖𝑝
2

−𝑎𝑑𝑖𝑝
2

 

(S3.3) 

 
𝜙̃(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) =

𝜌̃(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)

(𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)𝜀0

=
𝜎̃(𝑘𝑥, 𝑘𝑧) exp(−𝑖𝑘𝑦𝑦𝑖)

(𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)𝜀0

 
(S3.4) 
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Since we want to know the potential in terms of the inter-sheet distance, we transform 𝑘𝑦 

back to 𝑦 using the Cauchy integral formula for a Lorentzian to get the mixed expression 

 
𝜙̃(𝑘𝑥, 𝑦, 𝑘𝑧) =

𝜎̃(𝑘𝑥, 𝑘𝑧) exp(−|𝑦||𝑘⃑⃗|)

2|𝑘⃑⃗|𝜀0
 

(S3.5) 

This equation diverges at 𝑘 = 0, i.e. the long wavelength contribution which corresponds 

to the average charge density of the sheet 𝜎0. Since we know that the potential due to a 

uniform charge sheet is linear with distance and proportional to the average charge, we can 

separate the 𝑘 = 0 component when substituting for 𝜎̃(𝑘𝑥, 𝑘𝑧). Adding back in the sum 

over 4 parallel sheets: 

 
𝜙(𝑥, 𝑦, 𝑧) = 𝜙0 −

1

2𝜀0
∑ 𝜎0|𝑦 − 𝑦𝑖|

4

𝑖=1

+∑
exp(𝑖𝑘𝑥𝑧 ∙ 𝑟𝑥𝑧)

2|𝑘⃑⃗|𝜀0𝑘𝑥𝑧≠0

∑ 𝜎𝑖̃(𝑘𝑥, 𝑘𝑧)exp (−|𝑦
4

𝑖=1

− 𝑦𝑖||𝑘⃑⃗|) 

 

(S3.6) 

With an expression for the potential, we can then calculate the electrostatic potential energy 

per unit cell of the infinite sheets using the relation 𝑈𝐸 =
1

2
∫ 𝜌𝜙𝑑𝑉
𝑉

=

1

2
∬ 𝑑𝑥 𝑑𝑧 ∫ 𝑑𝑦 𝜌𝜙

𝑎

2

−
𝑎

2

. Writing out each term from (6) in this integral: 

1

2
𝜙0∬𝑑𝐴 𝑑𝑦 𝜎(𝑥, 𝑧)𝛿(𝑦 − 𝑦𝑖) =

𝐴

2
𝜙0∑𝜎0(𝑖)

𝑖
 

−1

4𝜀0
∑ ∬𝑑𝐴 𝑑𝑦 

𝑖,𝑗
𝜎𝑖(𝑥, 𝑧) 𝛿(𝑦 − 𝑦𝑖) 𝜎0(𝑗) |𝑦 − 𝑦𝑗| =  −

𝐴

4𝜀0
∑ 𝜎0(𝑖)

𝑖,𝑗
𝜎0(𝑗)|𝑦𝑖 − 𝑦𝑗| 

1

2
∬𝑑𝐴 𝑑𝑦∑ 𝜎𝑖(𝑥, 𝑧)𝛿(𝑦 − 𝑦𝑖)

𝑖
[∑

exp(𝑖𝑘𝑥𝑧 ∙ 𝑟𝑥𝑧)

2|𝑘⃑⃗|𝜀0
∑ 𝜎𝑗̃(𝑘𝑥 , 𝑘𝑧) exp(−|𝑦 − 𝑦𝑗||𝑘⃑⃗|)

𝑗𝑘𝑥𝑧≠0

] 
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=
1

4𝜀0
∬𝑑𝐴 𝑑𝑦 ∑ ∑

𝜎𝑖(𝑥, 𝑧) exp(𝑖𝑘𝑥𝑧 ∙ 𝑟𝑥𝑧)

|𝑘⃑⃗|𝑖𝑘𝑥𝑧≠0

 ∑ 𝜎(𝑘𝑥, 𝑘𝑧)𝛿(𝑦 − 𝑦𝑖) exp(−|𝑦
𝑗

− 𝑦𝑗||𝑘⃑⃗|) 

= 
1

4𝜀0
∬𝑑𝐴 𝑑𝑦 ∑ ∑ 𝜎𝑖̃(𝑘𝑥, 𝑘𝑧)

∗𝜎𝑗̃(𝑘𝑥 , 𝑘𝑧)
𝑖,𝑗𝑘𝑥𝑧≠0

 𝛿(𝑦 − 𝑦𝑖)
exp(−|𝑦 − 𝑦𝑗||𝑘⃑⃗|)

|𝑘⃑⃗|
 

=
𝐴

4𝜀0
∑ ∑ 𝜎𝑖̃(𝑘𝑥, 𝑘𝑧)

∗𝜎𝑗̃(𝑘𝑥 , 𝑘𝑧)
𝑖,𝑗𝑘𝑥𝑧≠0

exp(−|𝑦𝑖 − 𝑦𝑗||𝑘⃗ |)

|𝑘⃑⃗|
 

Adding the final right hand side terms together gives the total electrostatic energy 

expression: 

 
𝑈𝐸 =

𝐴

2
[𝜙0∑ 𝜎0(𝑖)

𝑖
−

1

2𝜀0
∑ 𝜎0(𝑖)

𝑖,𝑗
𝜎0(𝑗) |𝑦𝑖 − 𝑦𝑗|

+
1

2𝜀0
∑ ∑ 𝜎𝑖̃(𝑘𝑥, 𝑘𝑧)

∗𝜎𝑗̃(𝑘𝑥, 𝑘𝑧)
𝑖,𝑗𝑘𝑥𝑧≠0

exp (− |𝑦
𝑖
− 𝑦

𝑗
| |𝑘⃑⃗|)

|𝑘⃑⃗|
] 

 

(S3.7) 

This expression rapidly simplifies for the desired case of opposing dipole sheets. 

The first term related to the potential integration is zero since the system is overall charge 

neutral (sum of the sheet averages = 0). The second term (linear term due to the average 

density) also drops out because the dipole sheets are oriented opposite and parallel to each 

other, with equal charge – this is the same result of zero potential for uniform and equally 

charged sheets. In the last term, we select only some of the summations over sheet indexes 

𝑖 and 𝑗. When 𝑖 = 𝑗, the energetic contribution corresponds to the self-energy of assembling 

that charge sheet; in our model, this is captured by the surface energy. Since we are only 

interested in cross-surface interactions, we neglect terms with 𝑖 = 𝑗. We also neglect terms 

with neighboring 𝑖, 𝑗, since the formation of the surface dipole is also accounted for by the 

surface energy. We neglect other periodic interactions in the 𝑦 direction because these are 

accounted for in the interdigitation energy. Next, since the sum is symmetric about 
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interchange of 𝑖, 𝑗, we can extract a factor of 2 such that the total interacting sheet energy 

is: 

 
𝑈𝐸 =

𝐴

2𝜀𝑟
∑ ∑

𝜎𝑖̃(𝑘𝑥, 𝑘𝑧)
∗𝜎𝑗̃(𝑘𝑥, 𝑘𝑧)

|𝑘⃑⃗|𝑖<𝑗𝑘𝑥𝑧≠0

exp (− |𝑦
𝑖
− 𝑦

𝑗
| |𝑘⃑⃗|) 

(S3.8) 

In order to evaluate 𝜎̃, we must choose a charge motif for the sheet. To avoid divergences 

associated with infinitesimal point charges and ensure the periodic component is separable 

from the perpendicular dimension, we choose a normalized 2D Gaussian disk 𝜎(𝑥, 𝑧) =

𝑄

2𝜋𝑑2
exp (−

𝑥2+𝑧2

2𝜌0
2 ) containing total charge 𝑄 and extent 𝜌0, 𝜌0 ≪ 𝑎𝑑𝑖𝑝. Then, 

𝜎̃(𝑘𝑥, 𝑘𝑧) =
𝑄

𝐴
exp (−

(𝑘𝑥
2 + 𝑘𝑧

2)𝜌0
2

2
) 

Finally, the energy 𝑈𝐸 is converted from the fictitious dipole unit cell to eV/atom by 

dividing by the volume of the dipole unit cell 𝐴|𝑦𝑖 − 𝑦𝑗| and then the atomic density of the 

atomic unit cell corresponding to one dipole unit cell. In practice, the expressions for 𝜎̃ and 

𝑈𝐸 are evaluated numerically using the discrete fast fourier transform (FFT) functions 

available in SciPy and converged to appropriate grid resolutions. 
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Figure S3.2 a) Component curves for 𝐺𝑚𝑖𝑛 without 𝑈𝐸 included in Δ𝐻𝑚𝑖𝑥. The 

independent bulk formation energy (black) and interfacial energy (blue) combine to give 

the energy of the ordered phases (green). b) Determination of Ncrit without interfacial 

electrostatic interactions. The N = 1 + N = ∞ two-phase mixture is preferred across all 

compositions. This is determined by drawing tie lines between the bulk perovskite phase 

and all ordered phases, finding the two-phase mixture thermodynamically favored over 

other single-phase compounds.  

S4.1: Dataset Characterization and Model Metrics 

Table S4.1: List of M elements for CuxM1-x alloys and all adsorbates in the strain-generated 

training set. 

Adsorbate 

(* indicates 

adsorbing 

atom) 

Alloy 

Elements 

*H Al 

*O S 

*C Y 

*N Hf 

*OH Pd 

*CH Si 

*NH Zr 

*NO Sc 

*NH2 Au 

*CHOH Cl 

*N2 Ru 

*CN Zn 

*OH2 Sb 

*NHNH Ca 

*ONNH2 Ag 

*NONH Te 

*ONH Ge 

*N*NH Cu 

*CH2  
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*OCH3  

*NO2  

*NH3  

*CH2*O  

*CH2OH  

*NO3  

*CH3  

*CH4  

 

Table S4.2: Dataset splits for classification task.  

Class Dataset % 

−Δ (Δ𝐸𝑎𝑑𝑠 < −25 meV) 24.5 

Z (|Δ𝐸𝑎𝑑𝑠| < 25 meV) 54.1 

+Δ (Δ𝐸𝑎𝑑𝑠 > 25 meV) 21.4 

 

Table S4.3: Model metrics on test data. All models are trained on the same dataset; for the 

ensemble linear model, the training set is grouped by adsorbate and alloy composition (for 

example, Cu3Al and CuAl catalysts with *NH adsorbate are grouped together) and a linear 

regression is fit for the target Δ𝐸𝑎𝑑𝑠 vs. the area strain 
𝐴−𝐴0

𝐴0
 within the group. 

Model Task Metric Value 

Ensemble linear Regression Mean absolute error 0.17 eV 

Ensemble linear Regression Mean R2 -45.03 

GNN Regression Mean absolute error 0.08 eV 

GNN Regression R2 0.31 

Ensemble linear Classification F1 score 0.58 

Ensemble linear Classification Accuracy 0.58 

GNN Classification F1 score 0.86 

GNN Classification Accuracy 0.85 

 

Table S4.4: GNN hyperparameters. 
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Parameter Name Value Notes 

Hidden_channels 24 DimeNet++ 

Out_emb_channels 12 DimeNet++ 

Num_blocks 3 DimeNet++ 

Num_radial 5 DimeNet++ 

Num_spherical 4 DimeNet++ 

Num_before_skip 1 DimeNet++ 

Num_after_skip 2 DimeNet++ 

Num_output_layers 3 DimeNet++ 

Strain_projection_channels 16 StrainBlock 

Num_strain_layers 2 StrainBlock 

Strain_final_dimension 16 StrainBlock 

Batch_size 8 Training parameter 

Lr_initial 0.001 Training parameter 

Lr_gamma 0.1 Training parameter 

Lr_milestones 60,000; 120,000 Training parameter 

Warmup_steps 1,000 Training parameter 

Warmup_factor 0.2 Training parameter 
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Figure S4.1. Pairwise Pearson correlation coefficients of different manually generated 

features across strain and composition with the change in adsorption energy for a particular 

strain Δ𝐸𝑎𝑑𝑠. 

S5.1 Generalized Model for Dynamic Self-Reinforcing Mechanosensitivity 

Consider a vector variable 𝑥  where elements 𝑥𝑖=1..𝑛 represent functionally active 

concentrations of stiff-activated proteins and transcription factors. For a cytoskeletal 

protein, 𝑥𝑖 corresponds to the steady-state concentration which emerges from synthesis and 

degradation. Examples of stiff-correlated cytoskeletal proteins include F-actin (or α-SMA), 

vinculin, and integrins. For transcription factors, 𝑥𝑖 refers to a transcriptionally eligible 

concentration, which includes the steady-state level of nuclear localization. Examples of 

transcription factors with well-known stiff-correlated nuclear localization include 
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YAP [244,245], MKL-1 [229,246], and RUNX2 [247,248]; nuclear localization is 

necessary for transcription factor activity due to the possibility of co-activation 

requirements. Enzymes which modify the epigenome such as HDAC and HAT are also 

included as elements of  𝑥 ,  as epigenetic changes demonstrate mechanosensitive activity 

patterns and alter chromatin organization [217]. 𝑥  is a fingerprint state vector for the 

mechanical phenotype of the cell. For each element of 𝑥 , we can write a linear steady-state 

rate equation  

 𝑥𝑖̇ =  𝑘↑𝑖(𝑚)(𝑥𝑖
𝑟𝑒𝑓

− 𝑥𝑖) − 𝑘↓𝑖(𝑚)𝑥𝑖 + ∑𝑐𝑖𝑗(𝑚)𝑥𝑖𝑥𝑗
𝑗

 
(S5.1) 

where 𝑥𝑖̇ =
𝑑𝑥𝑖

𝑑𝑡
 , 𝑚 is the ECM stiffness, 𝑘↑𝑖(𝑚) is the stiffness-dependent rate of nuclear 

import or protein synthesis for component 𝑖, and 𝑘↓𝑖(𝑚) is the stiffness-dependent rate of 

nuclear export or protein degradation for component 𝑖. 𝑥𝑟𝑒𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  with elements 𝑥𝑖=1..𝑛
𝑟𝑒𝑓

 is a 

vector of arbitrary reference concentrations such that the steady-state concentration 𝑥𝑖 =

𝑥𝑖
𝑟𝑒𝑓

 when stiffness 𝑚 = 𝑚0. 𝑐𝑖𝑗 are elements of the cooperativity matrix 𝐶 which we 

define to be the matrix of activity coefficients which describe the degree of cooperation or 

anti-cooperation between different elements of 𝑥 . Additional cooperativity matrices 

corresponding to more complex interactions between elements of 𝑥  can be defined and 

added to Eq. S5.1. This defines a coupled set of rate equations for each mechanosensitive 

phenotype marker of the cell which has a unique steady state depending on the value of 𝑚. 
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 Next, we consider contributions from positive feedback loops to the dynamics of 

each element of 𝑥 . Positive feedback loops arise from active transcription which assists 

phenotypic shifts that promote further transcription. We add a Hill relation with coefficient 

𝛽 to each equation for 𝑥𝑖̇ 

 𝑥𝑖̇ =  𝑘↑𝑖(𝑚)(𝑥𝑖
𝑟𝑒𝑓

− 𝑥𝑖) − 𝑘↓𝑖(𝑚)𝑥𝑖 + ∑𝑐𝑖𝑗(𝑚)𝑥𝑖𝑥𝑗
𝑗

+ 𝛼𝑖(𝑦𝑘⃗⃗⃗⃗ , 𝑧)
𝑥𝑖
𝛽

𝑥𝑖
𝛽
+ 1

 

(S5.2) 

scaled by sensitivity 𝛼𝑖(𝑦𝑘⃗⃗⃗⃗ , 𝑧), which are components of the sensitivity vector 𝛼 . 𝑦𝑘⃗⃗⃗⃗  is a 

vector of concentrations of global transcriptional participants, which may or may not all be 

explicitly mechanosensitive; 𝑦𝑘⃗⃗⃗⃗  contains all the components of 𝑥 , and therefore has 

dependence on ECM stiffness 𝑚. 𝑧 is a label of the chromatin conformational state, which 

can be thought of as the single-cell Hi-C map of chromatin contacts; 𝑧 also depends on 

𝑚 via physical changes to the nucleus initiated by the LINC complex [262,291]. 

Altogether, the chromatin state 𝑧 and the global transcriptional cofactors 𝑦𝑘⃗⃗⃗⃗  determine how 

effectively the mechanosensitive components of 𝑥  can self-reinforce.  

S5.2 Derivation of Nonlinearly Dynamic Reinforcement Sensitivity 

Each element 𝛼𝑖(𝑦𝑘⃗⃗⃗⃗ , 𝑧) can be written as a sum expansion of reinforcement 

matrices 𝐴(𝑛) multiplying 𝑦𝑘⃗⃗⃗⃗   and 𝑧: 
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 𝛼𝑖 =  ∑𝑎𝑖𝑘
(1)
𝑦𝑘

𝑘

+ 𝑎𝑖𝑧
(1)
𝑧 +∑𝑎𝑖𝑘𝑧

(2)
𝑦𝑘𝑧

𝑘

+∑𝑎𝑖𝑘𝑙
(2)
𝑦𝑘𝑦𝑙

𝑘,𝑙

+ ∑𝑎𝑖𝑘𝑙𝑧
(3)
𝑦𝑘𝑦𝑙

𝑘,𝑙

𝑧 … 

(S5.3) 

where 𝑎𝑛 are elements of reinforcement matrices 𝐴𝑛 with dimension 𝑛 + 1. These matrix 

elements are weights which represent the degree to which each component of the global 

transcriptional environment or the global chromatin conformational state influences the 

self-reinforcing capability of mechanosensitive component 𝑥𝑖. The weights are analogous 

to activity coefficients in regular solution theory, where cooperativity between different 

species in solution can cause nonlinear thermodynamics of mixing far from the dilute limit. 

This cooperativity arises from favorable binding interactions between solute species and 

long-range forces in polar media. These same features are prominent in the nucleoplasm, 

particularly the catalysis of transcription by formation of multi-component binding 

complexes [292,293].  

We are interested in how this self-reinforcing capability evolves over time, and 

using the chain rule we can write the time derivative of 𝛼𝑖 as  

 𝑑𝛼𝑖
𝑑𝑡

=∑
𝜕𝛼𝑖
𝜕𝑦𝑘

𝜕𝑦𝑘
𝑑𝑡

 
𝑘

+
𝜕𝛼𝑖
𝜕𝑧

𝜕𝑧

𝑑𝑡
 

(S5.4) 

Plugging Eq. S5.3 into Eq. S5.4, we arrive at  
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 𝑑𝛼𝑖
𝑑𝑡

=∑ (𝑎𝑖𝑘
(1)
+ 𝑎𝑖𝑘𝑧

(2)
𝑧 + 𝑎𝑖𝑘𝑙

(2)
𝑦𝑙 + 𝑎𝑖𝑘𝑙𝑧

(3)
𝑦𝑙𝑧 + . . . )

𝜕𝑦𝑘
𝑑𝑡

 
𝑘,𝑙…

+ (𝑎𝑖𝑧
(1)

+ 𝑎𝑖𝑘𝑧
(2)
𝑦𝑘+ . . . )

𝜕𝑧

𝑑𝑡
 

(S5.5) 

Here, we see that the dynamics of self-reinforcement sensitivity depend on dynamics of 

the transcription regulatory environment and the chromatin conformation, weighted by the 

matrix elements of the reinforcement matrices 𝐴𝑖
(𝑛)

. 
𝑑𝑦𝑘

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 are equivalent to timescales 

𝜏 for each transcriptionally active component and the chromatin conformation, 

respectively, and generally can depend on 𝑥𝑖 and 𝑚. The coefficients 𝑎𝑖𝑘
𝑛  are generally non-

linear functions of 𝑦𝑘, analogously for 𝑎𝑧𝑘
(𝑛)

 depending on 𝑧.  Given sufficient data to 

populate the partial derivative relations and reinforcement matrices in Eq. S5.5, the steady-

state dynamics of cellular plasticity can be completely specified through this framework. 

However, this relies on highly detailed, time-dependent mechanistic knowledge which is 

far beyond the scope of current experimental or simulation techniques. Rather than estimate 

all these individual relationships with placeholder coefficients or linear rate equations, we 

separate the components of Eq. S5.5 into two timescales and perform an averaging to distill 

out complexity while preserving phenomenological features. Since the vector 𝑦𝑘 contains 

transcriptionally active components of 𝑥 and therefore depends on the mechanical priming 

program 𝑚(𝑡), we know that some terms in Eq. S5.5 will change on the same timescale as 

𝑥𝑖 and that this timescale is an upper bound for 
𝑑𝛼𝑖

𝑑𝑡
. We make an arbitrary but 
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phenomenologically justified choice of 𝑐𝑖⃗⃗ 
𝑚𝜁

𝑚𝜁+1
 to represent these fast non-linear processes, 

where the time dependence originates from 𝑚(𝑡), and gather the slower terms into a 

separate term 𝛼𝑖(𝑡𝑠𝑙𝑜𝑤). This term still retains 𝑥𝑖 dependence and 𝑚 dependence from 

components of 
𝑑𝑦𝑘

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 but contains all the slower processes in these vectors (introduced 

as 𝜏𝑠
𝑚

𝑚0
 and 𝜏𝑓) as well as the nonlinear scaling originating from the coefficients of 𝐴𝑖

(𝑛)
 

(introduced as 𝛼 exp (−
𝑥

𝑥𝑟𝑒𝑓
)). Splitting 𝛼𝑖(𝑡𝑠𝑙𝑜𝑤) into a piecewise function by region is a 

phenomenological choice but reflects the fact that different terms favoring an increase, 

decrease, or equilibration of the sensitivity will dominate depending on the magnitude of 

the external mechanical signal. Finally, when we perform an averaging over the 

components 𝑥𝑖 in the main text, the system of equations described in Eq. S5.5 collapse into 

a single equation below with two terms in each region describing both fast and slow 

dynamics of mechanosensitive self-reinforcement.  

 

𝑑𝛼

𝑑𝑡
=  

{
 
 
 

 
 
 −

𝛼 − 𝛼0
𝜏𝑓

+ 𝑐
𝑚𝜁

𝑚𝜁 + 1
,                         𝐼 

𝛼

𝜏𝑠

𝑚

𝑚0
exp−

𝑥

𝑥𝑟𝑒𝑓
+ 𝑐

𝑚𝜁

𝑚𝜁 + 1
,             𝐼𝐼

−
𝛼

𝜏𝑠

𝑚

𝑚0
exp−

𝑥

𝑥𝑟𝑒𝑓
+ 𝑐

𝑚𝜁

𝑚𝜁 + 1
,       𝐼𝐼𝐼

 

 

(S5.6) 
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