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Some Applications of Natural
Motion Controll
This paper offers two engineering applications of the theoretical ideas presented in
[13]. Each case concerns a generalized setpoint problem for a mechanical system
whose configuration space does not permit globally asymptotically stable closed
loops. By presenting a navigation function for each case, the paper shows how
"natural control" may provide a degree of autonomy of execution without the
appeal to a higher level planning system.

1 Introduction

This paper presents two setpoint regulation problems that
may be distinguished from the traditional purview of feedback
design by the a priori impossibility of building a smooth
bounded controller whose closed loop yields asymptotic sta­
bility while preserving configuration constraints. An appeal to
the theoretical ideas introduced in [13] yields a solution to each
of these problems in the form of a navigation function that
serves as an instance of the natural control philosophy. That
is to say, the intrinsic dynamics of the mechanical system,
when properly "programmed" are capable of "solving" what
have often been cast as planning problems. The resulting closed
loop behavior demonstrates a kind of autonomy in that the
goal is achieved with probability one and with no further in­
tervention on the part of a "higher level planner."

1.1 Satellite Attitude Control. The control of large angle
maneuvers for rigid spacecraft has been studied extensively by
numerous authors. Crouch [5] in an interesting and relatively
recent contribution, considers the controllability properties of
a rigid satellite both locally and globally, in cases where there
are less than three degrees of actuator freedom. Dwyer [8], in
a paper appearing at the same time, considers the problem of
large motion control with full actuation and linearizes exactly
the equations of motion (expressed in the quaternions) by
appealing to the geometric methodology of Hunt, Su, and
Meyer [7]. Of course, the spatial rotations, SO(3), cannot be
globally identified with a Euclidean vector space. 2 In a very
nice series of reports issued more than a decade ago, Meyer
[15] attempted to generalize PD techniques to the global control
of spacecraft attitude. His point of view is very close to the
spirit of this paper, and, in some sense, the application pre­
sented here might be seen as a continuation and extension of
that earlier work.

The problem of global satellite attitude tracking can be cast

'This work was supported in part by the National Science Foundation under
grant no. DMC-8505160.

'Dwyer prohibits the purely imaginary quaternions (all symmetric rotations
besides the identity) and works in the open three-disk (i.e., the upper hemisphere
of the unit sphere in JR') - a homeomorph of JRJ (a tutorial sketch of the geometry
of the spatial rotations is presented in the Appendix).
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as a setpoint regulation problem by introduction of the ap­
propriate error coordinates. The results of [13] are used to
produce the first (to the best ofthe author's knowledge) smooth
feedback controller for a fully actuated satellite which is well
defined on the entirety of the rotations and which achieves
asymptotically exact attitude tracking around an arbitrary ref­
erence trajectory with probability one. 3

1.2 Artificial Potential Fields. The idea of using "po­
tential functions" for the specification of robot tasks was
pioneered by Khatib [9] in the context of obstacle avoidance,
and further advanced by fundamental work of Hogan [6] in
the context of force control. The methodology was developed
independently by Arimoto in Japan [16], and by Soviet in­
vestigators as well [18]. Of course, the possibility of solving
complex problems by resort to analog (or iterated discrete
approximations of analog) methods of computation has a much
older history, and may be found in many engineering papers.
All of these applications have historically been plagued by the
appearance of spurious minima.

It is this problem that the methods presented in Section 3
solve. In contrast to the previous case, the configuration space
is embedded in a Euclidean vector space, however, the com­
plicated constraints introduced by the obstacles give rise to
boundaries demarcating forbidden regions. Here, the construc­
tion of a navigation function results in a robot which is guar­
anteed to approach a desired destination point in a cluttered
space without hitting any of the clutter (from every zero ve­
locity initial condition excepting a set of zero measure). This
represents the first (to the best of the author's knowledge)
smooth bounded feedback controller which solves the global
robot obstacle avoidance problem on nontrivial spaces of ar­
bitary dimension. 4

'Wen and Kreutz [22J have independently introduced similar ideas, however
their solution cannot be smooth since it is claimed to have global convergence
properties.

'An impartant contribution to the construction of bounded controllers for
obstacle avoidance has been made by Newman and Hogan [17] who use logical
com binations of CO potentials that result in bang-bang controllers which guar­
antee safety from collisions. In simple settings they may be shown to guarantee
convergence to the desired destination, and in very special environments they
have time optimal properties as well. The methods here yield smooth (in fact,
analytic) rather than discontinuous controllers which always guarantee both
safety and global convergence with probability one (stronger results are precluded
by the topology of the problem). They result in "satisficing" trajectories that
are unlikely to meet any criterion of optimality.
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2 Satellite Attitude Tracking
We now pose a classical control problem-asymptotically

exact tracking-in a nonclassical setting-the group of spatial
rotations, SO(3). Although the controller will necessarily in­
volve a feedforward forcing term in this case, the application
nevertheless highlights the utility of the natural control phi­
losophy because the design of the closed loop error equations
involves a navigation function on the configuration space. This
section is abstracted from a more extended (and rigorous)
treatment [11].

Suppose there is a single rigid body actuated by three in­
dependent gas jets operating outside ofthe earth's gravitational
field: the only forces on the body are the controlled inputs
from the actuators which are capable of delivering any desired
force in the "wrench space" of the body. Both the position
and the velocity of the body are available from sensors. It is
desired to force the body to track an arbitrary but entirely
known reference trajectory. Since the system is completely
actuated, there is perfect state information, and all derivatives
of the reference trajectory are known, the velocity tracking
problem is trivial. Namely, all nonlinearities due to the kinetic
energy may be exactly cancelled, leaving a completely decou­
pled linear time invariant system. This procedure may be rec­
ognized as a trivial implementation of the global exact
linearization techniques which have become so popular in the
nonlinear control literature.

Consider, instead, the problem of attitude tracking. Namely,
given a desired motion, D E C 2[1R, SO(3)], construct a time
invariant memoryless controller which causes the actual atti­
tude to asymptotically approach D(t) from any initial config­
uration, A E SO(3). So different is this from the trivial linear
problem to which velocity tracking reduces that it is unsolvable
as posed in that context. For, consider the particular case that
D(t) = D* is some constant configuration. We seek a controller
which makes that point (at zero angular velocity) a global
attractor of the closed loop dynamics. Now the domain of
attraction of an attracting point is homeomorphic to some
Euclidean vector space [3]. But the state space of our me­
chanical system-the tangent bundle over the rotation group­
is clearly not homeomorphic to any Euclidean vector space.
Thus, it would be impossible for our closed loop system to
bring all initial conditions to the desired attitude. Evidently,
the control system arising from a single rigid body is not glob­
ally Iinearizable by any technique since its state space is not a
vector space. Our problem statement must be refined.

2.1 Inverse Dynamics Controllers Obtain from Error Dy­
namics. Arriving at a refinement will be easier if we first
review classical tracking theory. In the linear time invariant
setting, inverse dynamics amounts to the use of a precompen­
sator to make the errors between the feedback stabilized plant
state and reference derivatives satisfy an asymptotically stable
linear time invariant dynamical system. Not surprisingly, when
the linear plant is also a mechanical control system, the asymp­
totically stable error dynamics may be interpreted as a partic­
ular dissipative mechanical system expressed in the error
coordinates.

For example, consider the mechanical control system, Ep ,

introduced in Example 2.1.1 of [13]. After stabilizing with
u = - K,q - K2q+ v, we may cause the plant to track an ar­
bi~~ary qesired reference signal, d, by pre-filtering, v =
Md +K 2d +Kjd, since this results in the globally asymptotically
stable error dynamics, I1HR reviewed in Example 2.3.1 of [13].
Lord Kelvin's results apply, and we are guaranteed of asymp­
totically exact tracking.

Suppose, instead of the Hook's Law rule, 'PH [13, Example
2.2.1], we were to choose a different navigation function for
the zero configuration, 'PT' We might now employ the con­
troller
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v=Md+K2d,

resulting in closed-loop error dynamics

e, =e2

e2 = - grad'PT(el) - M-1K2e2,

specified by the dissipative mechanical system, I1 TR =

(IR
n
,M,'PT,K2), also guaranteeing asymptotically exact tracking

according to [13, Theorem 2]
Barring any further tracking criteria-for example, con­

straints on computational complexity; constraints on transient
as well as limiting error behavior; and so on-there is no reason
to prefer the familiar error system, I1HR , and its associated
tracking controller over the new one, I1TR • In fact, in the present
application, no Hook's Law spring can be defined over the
configuration space SO(3) for exactly the same sort of topol­
ogical reasons encountered in [13, Example 2.1.2]. Thus, if
we seek to mimic classical tracking approaches on SO(3), there
will be no choice but to find an alternative navigation function,
'PT'

2.2 Configuration Space, Phase Space, and Error Coor­
dinates. As developed in the Appendix, the fully actuated
rigid body gives rise to a mechanical control system, ER =
(SO(3),M), whose internal dynamics fr.

R
may be expressed in

body coordinates as

R=RJ(r)

r = M-'[u - J(r)Mr].

For the present application, we have assumed the a priori
designation of a desired "reference trajectory," petJ) E CP which
i~ "second order." That is to say, if petJ) = (D,d)(t) , then
D=DJ(d). Now if p = (R,r) denotes the actual trajectory of
the rigid body, we will find it useful to consider the "error
coordinate system" obtained via left translation by Pd,

Pe= (E,e) ~(DTR,r-RTDd) ,

preserving the second order property, i(t) = EJ(e(t».
2.3 A Navigation Function on SO(3). Meyer [15] chose

for his potential law on SO(3) the distance from a reference
point measured by the "natural distance function" based upon
the trace of the rotation error, E = DTR. Unfortunately, the
trace function cannot offer navigation properties on SO(3)
since its gradient vanishes at every symmetric rotation matrix­
formally, it is not a Morse function. Instead, we will use a
"modified trace" function according to the following result
of Marsden and collaborators.

Lemma 1 (Chillingworth, Marsden, Wan[4]). IfP is a sym­
metric 3 x 3 matrix with distinct eigenvalues, 'lTr.'lT2,'lTJ' and

('IT, + 'lT2)('lTj + 'lTJ)('lTJ + 'lT2) ~O,

then there are exactly four rotations, R E SO(3) at which PR
is also symmetric. These are exactly the critical points of the
"modified trace function,"

tr{PR },

whose Hessian matrix at each critical point has no zero eigen­
values.

We are thus led to define as a navigation function on SO(3)

1
'PT (R) ~ ----; tr (P(I - R) 1 (l)

'IT

where the quotient involving 'IT' ~ 'lT2 + 'lTJ - 'IT, is added to keep

the image in the interval [0, 1] (assuming that 'lT1 < 'lT2 < 'lTJ). If
P, is chosen to be a positive definite symmetric matrix, which
we now further assume, then the eigenvalue assumptions of
the previous Lemma are assured. The Lemma says that the
modified trace function has only four extrema, and its Hessian
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matrix is nonsingular-it is a Morse function. Since D<PT is a
scalar multiple of Marsden's modified trace, <PTis also a Morse
function with four critical points specified in the same fashion.
Moreover, <PT takes its values on IR + , vanishing only at R =
I. Finally, since SO(3) has no boundary, <PTis admissible. Thus,
according to the criteria of [13], <P is indeed a navigation func­
tion. An algebraic function, its gradient may be readily com­
puted as

grad<pT(R) = 2M- 1r I(PR - RTp).

via the isomorphism, J, [11] between skew symmetric matrices
and vectors reviewed in the appendix of this paper.

According to the results of [13] together with Lemma I the
negative flow of r = (SO(3),M,<PT) takes all points of SO(3)
to one of four symmetric rotations-the identity, and the three
orientations which are "180 deg away" along the x, y, Z axes­
and all points excepting a nowhere dense set to the identity.

2.4 Inverse Dynamics. We may now achieve f:1 TR =
(SO(3),M,<PT(E),K2e) closed loop error dynamics by building
a controller according to the logic of Section 2.1. Namely, we
will let

u = grad<PT(E) + c(p, Pd) -K2r+ v

v= -M(e-;)+K2d.

The additional term, c, in the feedback portion denotes a
portion of the Coriolis and centripetal forces arising from the
configuration dependent kinetic energy K,

c(P,Pd)~J(r)M/d+J(eTd)Me.

Similarly, expressing the feedforward reference acceleration
term as the difference e- ; allows for proper cancellation of
the remaining coriolis and centripetal forces,

e =; -ETd- [EJ(r-ETd)fd

=; -ETd+J(r)ETd.

The resulting dynamics in the error coordinate system of CP
are given TSO(3) = SO(3) x 1R3

,

E=EJ(e)

e = - M-I[J(e)Me +K2e+ grad",(E)]. (2)

Equation (2) is exactly the desired dissipative mechanical sys­
tem, f:1 TR based upon the navigation function (1). The global
version of Lord Kelvin's energy argument, [13, Theorem 2],
applies directly. Since the configuration space has no bound­
ary, there is no speed limit imposed upon the initial conditions.
We immediately conclude:

Theorem 1. All trajectories of (2) tend toward one of the
four critical points of <p. A dense open set of initial conditions
has its limit set at the desired point, (E, e) = (I, 0).

The satellite asymptotically attains the desired attitude tra­
jectory, D(t), except from a set of initial conditions of zero
measure in the phase space. An adaptive variant of this al­
gorithm has been presented in [11] in the case that M is not
know in advance.

3 Robot Navigation
Consider the following problem in robotics. A kinematic

chain-a sequence of mutually constrained actuated rigid bod­
ies-is allowed to move in a cluttered workspace. Contained
within the joint space-an analytic manifold which forms the
configuration space of the kinematic chain-is the free space,
5'-the set of all configurations which do not involve inter­
section with any of the "obstacles" cluttering the workspace.

Given any interior "destination point," qd E5: to which it is
desired to move the robot, find a curve in 5' from an arbitrary
initial point to the desired destination.
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The purely geometric problem of constructing a path be­
tween two points in a space obstructed by sets with arbitrary
polynomial boundary (given perfect information) has already
been completely solved [21]. The present formulation is mo­
tivated by the desire to incorporate explicitly aspects of the
control problem-the construction of feedback compensators
for a well characterized class of dynamical systems in the pres­
ence of well characterized constraints-in the planning phase of
robot navigation problems.

3.1 Navigation Functions on Euclidean Sphere Worlds. A
"Euclidean sphere world" is a compact connected subset of
E' whose boundary is the disjoint union of a finite number,
say M + I, of spheres. We suppose that perfect information
about this space has been furnished in the form of M + 1
center points {qil~o and radii {pil ~o for each of the bounding
spheres. In our previous work [14], we have shown how to use
this information to build a navigation function on the partic­
ular sphere work, :m, considered as a simple freespace. Namely,
letting oy denote the Euclidean distance to the destination, and
(3 = rr~o (3; denote the product of implicit representations, (3;,
for each obstacle, it can be shown that

Theorem 2 ([14]). If the free space, :m, is a Euclidean
sphere world then there exists a positive integer N such that
for every k?:.N, for any finite number of obstacles, and for
any destination point in the interior of:m,

=(-.-:L) 1/K

'" oyk + (3 , (3)

is a navigation function on :m.
In the proof of this theorem (which comprises the central

contribution of [14]) a constructive formula for N is given.

3.2 Navigation Functions Induced by Diffeomorph­
ism. The Euclidean sphere world, of course, corresponds to
a rather simplistic view of freespace. This section will describe
how to extend the use of navigation functions to increasingly
more realistic settings by recourse to a key attribute-their
invariance under smooth change of coordinates. Simply put,
suppose a geometrically simple environment, :m can be iden­
tified with a much more complicated obstacle course, Q, via
a smooth one-to-one and onto function, h: Q-:m, whose
inverse is also smooth-a diffeomorphism in mathematical
parlance. Then, as the following result shows, once a navi­
gation function has been constructed in the simple "model"
case, an extension is automatically available to the realistic
problem at hand. 5

Proposition 2([14]). If <P is a navigation function on :m
and h: 5'-:m is a diffeomorphism then

rp(q) ~ <p(h(q»

is a navigation function on 5'.
In linear control problems, the appropriate change of co­

ordinates is simply the familiar linear change of basis. In the
present context it is not so easy to see how to identify a "to­
pologically equivalent" but geometrically complicated" con­
figuration space with a simple model in a constructive fashion.
As an example of how this might be done, consider the fol­
lowing class of geometrically complex obstacle courses for
which the Euclidean Sphere worlds, above constitute a suitable
model.

A star shaped set is a deformed ball possessed of a distin­
guished interior center point from which all rays intersect its

'One begins to see in the robotics literature a growing awareness of the utility
of coordinate changes in the obstacle avoidance problem [I, 10]. The work
reported here provides a unified framework within which to prescribe the prop­
erties required of the transformations in order to guarantee correctness.
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3.3 A Navigation Function Induced by the Kinematic
Transformation. The previous examples have been con­
cerned with encoding tasks via navigation functions over the
configuration space. It frequently occurs in robotics that we
have a task expressed in terms of the workspace of the gripper,
even though the robot must ultimately be controlled via the
generation of torques acting on the jointspace. The workspace
gripper frame may be expressed as the image of the robot's
joints under the forward kinematics, g: Q-W. Consider now
the possibility of inducing a navigation function on Q through
an expression of the task in terms of a navigation function on
the workspace, W 6

•

Unfortunately, the forward kinematic map is almost never
a diffeomorphism: there are often more degrees of freedom
in the joint space than in the workspace; even if the number
of degrees of freedom is the same, there are almost always
kinematic singularities. Thus, Proposition 2 cannot be invoked
to guarantee that the navigation properties 'P are preserved.
As a concrete example consider a planar revolute-revolute kin­
ematic chain. For convenience, suppose that there are no joint
limits so that Q is the torus with empty boundary.? Similarly,
for ease of exposition, suppose that all the mass, mt. of the
first link is concentrated at position

~ [/ICOS(qj)]
kM)= I' ( ) ,Ism ql

and all the mass, m2, of the second, at position

k2(q) ~ kl(q) + [/2C~S(ql + q2)] ,
- 12sm(ql + q2)

which we take, as well, to be the origin of the gripper frame
of reference. Ignoring the orientation of the gripper, we con­
sider the workspace, W to be the entire plane. Thus, the for­
ward kinematic map, g: Q-W, is exactly g=kz•

Now suppose that an end-point regulation task has been
specified as reaching a desired cartesian point, Wd within the
annular region of the plane comprising the reachable portion
of workspace. The Hook's Law potential

~ 1 2
'PH=2:lIw-Wdll

on a much larger class than the original sphere worlds, thus
advancing our program of research toward the goal of devel­
oping "geometric expressiveness" rich enough for navigation
amidst real world obstacles. Progress in this area has advanced
to the point that we can now construct navigation functions
for arbitrarily close approximations of any topological sphere
world [19].

is an obvious navigation function (up to a scaling constant to
(6) adjust the height) on a bounded disk in IR2 which encodes the

task at hand. Its composition with g,

(4)Ti (q) ~ (Pi' [q - qil) +Pi'

M

h},.(q)~u~q,A)T~q)+ ~ Ui(q,A)Ti(q).
i~O

denote the "destination switch." A "linear combination of
translated scalings," is the one-parameter family of transfor­
mations defined by

lIi(q)~ [I + (3i (q)] 1/2 IIq~qill' (5)

note that the composition of the model ball obstacle function,
~i(P) = lip - Pill2 - p2, with Ti yields

(~i 0 Ti)(q) = 1I11i' [q - qil +Pi-PY - p
Z= 1+ (3i(q) - I =(3i(q) ,

indicating that Ti maps the boundary of the star into the bound­
ary of disk, its interior into the disc's interior, and its outside
part into the disc's outside part as required.

A transformation, h: ~-5', may now be constructed in
terms of the given star world and the derived model sphere
world geometrical parameters as follows. Denote the "jth
omitted product," IIJ'!,o {3j as {3j. The "jth analytic switch,"
ujECW [5' ,IR],

. ~~ 0 'Yd{3j 'Yd{3jb
uiq,A)=X+A {3j 'Yd{3jb+A{3/

(where A is a positive constant) attains the value one on the
jth boundary and the value zero on every other boundary
component of 5'. For the sake of notational consistency, denote
the identity map on E' as T~q) = q, and let

M

u~q,A)~ 1-~ 0i
i~O

This transformation first scales each ray passing through qi by
the amount Pi and then translates along the vector Pi (the center
of the target ball). Taking scaling factor lIi to be

boundary in a unique point. A star world is a compact con­
nected subset of E' whose boundary is the disjoint union of
a finite number of star shaped set boundaries. Now suppose
the availability of an implicit representation for each boundary
component, {3j, as well as knowledge of the obstacle center
points, qj' Further geometric information required in the con­
struction to follow is detailed in the chief reference for this
work [20]. A suitable Euclidean sphere world model, ~, is
explicitly constructed from this data. That is, we determine
(Pj, Pj), the center and radius of a modellh sphere, according
to the center and minimum "radius" (the minimal distance
from qj to the jth obstacle) of the jth star shaped obstacle.
This is turn determines the model space "obstacle functions,"
~j, as well as the navigation function on ~, 'P, as described
above.

A transformation that identifies a star shape with a ball may
be defined as

The "switches," make h look like the jth deforming factor in
the vicinity of thejth obstacle, and like the identity map away
from all the obstacle boundaries. With some further geometric
computation we are able to prove the following.

Theorem 3 ([20]). For any valid star world, 5', there exists
a suitable model sphere world ~, and a positive constant A,
such that if A~A, then

h},.:5'-~,

in (6) is an analytic diffeomorphism.
Thus, if 'P is a navigation function on ~, the construction

of h},. automatically induces a navigation function on 5' via
composition, (jJ ~ 'P 0 h},., according to Propostion 2.

This family of transformations, mapping any star world onto
the corresponding sphere world, induces navigation functions

0H~'PFAg(q»~~lIg(q)-wy,

however, might not be, since one does not yet know how many
minima 0H may have.

The set of extrema of 0H in Q consists of those points in
jointspace at which the gradient vector of 'PH is in the null
space of GT ~ [Dgf-the transposed jacobian matrix of the

kinematic map. Note that the jacobian is given by

G=Dg = [Jk2,](k2 - k1)] =J[k2,k2- kJl

6 While inverse kinematic problems are often solved numerically. the results
here seem to represent the first unambiguous demonstration that the intrinsic
motion of the robot's links can solve such problems with probability one.

'Otherwise, the techniques for handling holonomic constraints developed above
could be added here.
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Proposition 3. Let q. be an extremum of 'PH,

[D'PH](q·) = O.

If q. is a critical point of g,

IG· I = 0; G· ~ [[Dg](q·)f,

= -/]w(K2 -/1)(K2 - w)

Assume first that W is positive. We must have K2>0 as well
for the first principal minor to be positive. This implies that
either K2 = 11 + 12 or that II> 12 and K2 = II - 12, In both
cases, (K2 - 11)(K2 - w) is positive, so that the second principal
minor is negative. Alternatively, assume that W is negative (if
it is zero then the matrix cannot be positive definite). We must
have K2 < 0 and this implies that both II < 12 and K2 = II - 12,
so that (W)(K2 - II) is positive. Thus, the second minor cannot
be positive unless - K2> - W in contradiction to the assumption
that Iwl>IlI -/2 1.

Since <PH is a navigation function on W it now follows that
'PH is a navigation function on Q. Thus, the feedback law [13,
Eq. (5)] may be used to achieve end-point tasks for a SCARA
arm with no computation of inverse kinematics.
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where J is the unit skew symmetric matrix on IR2
• It follows

that the critical values of g-the workspace image of the kin­
ematic singularities-occur when the two masses lie on the
same ray through the origin of W 8

, and the gripper lies on
either the outer or inner boundary of the reachable workspace.
In such a situation, it is clear that the nullspace of GT must
lie along the same ray as well. Thus, in addition to the extre­
mum at g-I(Wd)' it may also occur that GT grad <PH = 0 when
grad <PH ~ O. Expressed intuitively, the cartesian force vector
corresponding to an instantaneous error might resolve into a
joint space generalized torque vector which points along a
direction of "lost freedom."

'Here and in the sequel, I· I denotes the determinant of the enclosed array.
The mathematical name for S' with antipodal points identified is !RIP'­

projective three space. A suitable multiplication law on S' can be shown to
preserve the composition properties of rotations: this representation of the ro­
tations is then called the "quaternion" representation.

"The superscript, ' denotes the vector formed by "stacking" stacking each
of the columns of an array vertically; ® denotes the Kronecker product [2].
See [12] for a more detailed exposition of the stack-Kronecker notation in matrix
calculus.

and g(q.) is not an extremum of <PH,

D<p~·(q·» ~O

then q. is not a local minimum of 'PH'

Proof:

The differential of 'PH ~ [g(q) - Wdf [g(q) - WdJ is Dq'PH =

vTG, where v denotes the gradient vector field. It suffices to
show that the Hessian,

d'PH= GTDv + (/®v)Dd,

could never be a positive definite matrix when evaluated at q•.
9Differentiating, we have Dv = GT and

DGS=D[ Jk
2

]
J(krkl)

[
W~k2 W~(k2 - k l ) ]

= W~(k2-kl) (Wrkll (k2-kj ) •

Since IG·I = 0 we know that k2(q·) and kl(q·) are linearly
dependent: since k l = Ilu for some unit vector, u, it follows
that k2 = K2U where K2 = II ± 12 (recall that Ii isthe length of
link i). Moreover, since the kernel of GT is always along this
same unit vector, and v = g - Wd is in this kernel by as­
sumption, we have Wd = wU as well, where III - 121 :s: Iw I :s: II
+ 12, We may now write
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APPENDIX
Rigid Body Kinematies

We will use the symbol J(w) throughout the paper to denote
the skew symmetric matrix corresponding to the vector, w

J:IR?_IR
3x3:[:~] _[~3 -ow

3

:~I]'
W2 -W2 WI 0

We may identify the configuration space, J = SO(3), with
a subset of IR9

,

SO(3)~(REIR3x3:RTR=Iand IRI=ll.

in analogy to [13, Ex. 2.1.2.]. This set may also be put into
correspondence with a sphere-S3

, the unit sphere of IR4-but
now there are two antipodal unit vectors, u, - uES3 associated
with each rotation matrix. Specifically, letting v denote the
first component, and u denote the three vector comprising the
remaining components of u = (v,U)ES 3

, we have

R(u) =uuT+ [vI - J(U)]2.

Let R: !I-SO(3) be a parametrized curve. Since RTR =1 for
all tE!I according to the definition of SO(3), we have

0= d RTR
dt

=RTR+RTR,

from which it follows that RTRE skew(3), hence, for all t there
exists an wEIR3 such that

R=RJ(w).

The vector w is called the "angular velocity." We take the
phase space to be the set of pairs

CP =SO(3) X IR3 = (R,r): RESO(3) and rEIR3 l.

as justified above. Physically speaking, ifM, a positive definite
symmetric 3 X 3 matrix, is the moment of inertia of the rigid
body then the kinetic energy at a phase, p = (R,r)ECP is

1 1
K(P)="2 tr[J(r)R][J(r)RMf ="2 rTMr. (7)
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