
FIRST-PRINCIPLES EXPLORATION OF THE STRUCTURAL MOTIFS OF

CHALCOGENIDES AND THEIR RELATIONSHIP TO ELECTRONIC AND

PHOTOVOLTAIC PROPERTIES

John A. Brehm

A DISSERTATION

in

Chemistry

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2014

Supervisor of Dissertation

Andrew M. Rappe
Professor of Chemistry
Professor of Materials Science and
Engineering

Graduate Group Chairperson

Gary A. Molander
Hirschmann-Makineni Professor of
Chemistry
Chair, Chemistry Department

Dissertation Committee

Joseph E. Subotnik
Zahra Fakhraai
Marsha I. Lester

Associate Professor of Chemistry
Assistant Professor of Chemistry
Edmund J. Kahn Distinguished Professor of Chemistry



To Mom and Dad:

the heart and soul

ii



Acknowledgements

First and foremost, my deepest gratitude and thanks to Professor Andrew M. Rappe. An-

drew, thanks for rescuing me. You took a chance when you did not need to, and without

that chance, I would not have attained my Ph. D. Nor would I have had the opportunity to

learn from you and your deep body of knowledge of mathematics, physics, and chemistry.

I hope that I was able to return the favor somewhat by researching interesting new topics

that expanded the realm of scientific understanding.

I thank my compatriots in the Rappe Group, Steve Young, Diomedes Saldana-Greco,

Hiroyuki Takenaka, and Nathan Koocher, and my compatriots in the Subotnik Group, Brian

R. Landry and Ethan Alguire, for answering all of my questions – patiently, with detail and

insight, until your wisdom finally penetrated. And, for being my friends. It was fun doing

research with you. You made it fun. Just one more question....

I thank Judith Currano, librarian extraordinaire of the Department of Chemistry, without

whose help I could not have navigated the digital scientific record. It would have been just

a vast mishmash of interfaces without your assistance.

To Cathy McDonald, Requirements Project Manager of the Department of Defense

High Performance Computing Modernization Program, and Odessa Murray, S/AAA of the

Office of Naval Research, thank you for granting my research group, and thus me, with

the millions of computer hours I needed to run the calculations that produced the results

in this thesis. To David Dumas, Senior Scientific Systems Analyst at the USACE ERDC

iii



Scientific Computing Resource Center and Rick Roberts of the AFRL at WPAB, thank you

for solving those sticky super computer problems so that my programs actually ran.

iv



ABSTRACT

FIRST-PRINCIPLES EXPLORATION OF THE STRUCTURAL MOTIFS OF

CHALCOGENIDES AND THEIR RELATIONSHIP TO ELECTRONIC AND

PHOTOVOLTAIC PROPERTIES

John A. Brehm

Andrew M. Rappe

The bulk photovoltaic effect (BPVE) refers to the production of electric currents from the

valence band promotion of electrons to the conduction band in a pure, undoped, and insu-

lating material from the absorption of electromagnetic radiation. For a material to be able to

create a current in response to non-polarized solar irradiation, it must be a polar compound

with a band gap in the visible spectrum, 1.1 - 3.1 eV. The purpose of this work is to provide

computational evidence that the pursuit of materials other than pure oxides for use as bulk

photovoltaic materials is worthy. To convince the scientific community that compounds

containing isoelectronic elements of O, the chalcogens S and Se, should be synthesized

and, as importantly, are capable of being synthesized, three distinct subject areas will be

presented. The first demonstrates that it is possible to alloy sulfur with an oxide perovskite,

lead titanate (PTO), to create thermodynamically stable polar oxysulfides with band gaps

in the visible spectrum. In the second, it will be shown that non-oxide non-perovskite

materials can generate BPVE responses larger by an order of magnitude over the oxide

perovskites listed in the literature to date. The third area does not address solar energy use

directly. Instead, it alerts the scientist that creating ABS3 compounds by using temperature

and time profiles used to synthesize ABO3 compounds has probably led to an incomplete

characterization of these sulfides. As such, it provides first-principles based evidence that

synthesis experimentation involving chalcogens does not and should not simply mirror that

of pure oxide synthesis. The scientific community’s knowledge of chalcogenides is far

v



from complete, opening up exciting possibilities for new material discoveries.
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Chapter 1

Introduction

Solid state compounds form a rich tapestry of unit cell shapes that are often categorized by

their building blocks. A few of the most common building blocks are termed octahedron,

tetrahedron, and trigonal pyramid. These names are the result of an artificial conceptualiza-

tion that connects nearest neighbor anions that all surround the same cation. For the three

cases listed above, what is real, in a coordination chemistry sense, is that, respectively, six

anions surround one cation, four anions surround one cation, and three anions bond to a

cation in the manners depicted in Figure 1.1. These building blocks join to each other by

sharing anions at corners, and, for the first two shapes, edges and faces, resulting in an

increase in the variation of compounds containing them. As these motifs are very often

negatively charge unbalanced, other cations are necessarily found at the interstitial sites of

these motifs to create charge neutral compounds. Further increasing the variation within a

set of motifs are the elements that can be chosen to fill the roles of cations and anions as

certain choices can lead to distortions of the building blocks, with a building block having

differing cation-anion bond lengths. While compound shape is in and of itself an interesting

topic, it is in the realization that, for a given compound, different shapes lead to different

electronic properties that makes it an important topic, especially given the current quest for

1



alternative energy creation, storage, and efficiency.

The focus of this thesis is on how to use first-principles calculations in conjunction

with solid state concepts, and the solid state motifs discussed above, (especially the octahe-

dron and trigonal pyramid motifs), to design and/or predict which compounds containing

the chalcogens of sulfur and selenium will have stable phases that are useful for energy

creation when impinged by solar radiation via a process termed the Bulk Photovoltaic Ef-

fect (BPVE). The field is ripe for such a discussion, as only only a couple of chalcogenides

have been evaluated for the BPVE to date: in their seminal work listing the compounds that

have been evaluated for the BPVE, Sturman and Fridkin list only two, ZnS and SbSI.[1]

In the paragraphs below, both will be shown to have very limited usefulness for solar cell

applications.

The BPVE is a phenomenon usually described as one in which a current can be pro-

duced in a pure single-phase non-centrosymmetric material with an electronic band gap

when subjected to electromagnetic radiation. While the materials property that the com-

pound have a non-centrosymmetric unit cell is necessary, the constraints of purity and

single-phase are not needed in order for a material to have a BPVE, though. However,

the formulations describing this phenomena, as well as separating it from other effects in

current measurements, require it. Indeed, consider the silicon solar cell which is based on

the physics of a pn junction using electron and hole doped adjoined layers of materials

to separate photoexcited electrons from their holes via an electric field. If this material,

silicon, a centrosymmetric compound, were not doped, it would not yield a current.

2



Figure 1.1: Three common solid state motifs: a.) an octahedron, b.) a tetrahedron, and
c.) a trigonal pyramid. These images, and all other atomic and lattice depictions, are made
with Vesta.[2]
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The effect of visible light on the electrons in a system with a energy gap between filled

orbitals and unfilled orbitals has been described by two time dependent perturbation theory

models that are mathematically equivalent: one by Sipe and Shkrebtii,[3] and the other

by Young.[4] Both models invoke the long wave length approximation for light. The long

wavelength approximation for light is simply the approximation that the field the electrons

experience from electro-magnetic radiation does not vary in space with respect to the lat-

tice. Given that electro-magnetic radiation has wavelengths in the visible spectrum between

300 and 700 nanometers, which is much greater than the unit cell lattice lengths, which are

in the Angstrom range, this is a most reasonable assumption. In both of their formulations,

the term that arises that is quadratic in the field, which describes the interactions of photons

with each other, is very small and therefore omitted.[3]

Young describes the photo-current as arising from photon-electron interactions in the

following manner.[4] A first interaction with light causes an electron, originally in a ground

state valence orbital, to obtain energy and become an excited electron whose wavefunction

is now a combination of valence and conduction orbitals. The interaction with the oscil-

lating photon wave also imparts an oscillating force on the excited electron, causing it to

have a motion back and forth, and hence a velocity. A second interaction with a photon

whose wave is 180 degrees out of phase with the initial photon leads to a net force of zero.

However, for all other phases of the photon, depending on the position and velocity of

the electron at the time of the second interaction, the electron has then, in general, a net

velocity different from zero. But, if the lattice is centrosymmetric, i. e. it has inversion

symmetry, then the velocities of all electrons subjected to the light will lead to a net current

of zero as all velocities will will cancel. Moreover, a general requirement that the crystal

be non-centrosymmetric is not strong enough when one is considering materials for use

in non-polarized sunlight. A non-polar piezoelectric is non-centrosymmetric, but it will

only generate a BPVE photo-current when polarized light is used and said polarized light
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is not parallel to any of the crystal axes.[5] However, if the lattice is non-centrosymmetric

and polar, there will be always be a bias, whether or not polarized or non-polarized light

is used, and, while many electron pairs will have equal magnitude and opposite direction

velocities, many other pairs will not, and a net current will arise.

It is at this juncture that the physical interpretations of the two models diverge. Sipe

and Shkrebtii hypothesize the real-space center of charge for the valence bands differs from

that of the conduction bands, and that excited electrons promoted from the valence to the

conduction band lead to a motion of charge and a shift in the center of charge.[3] They

term this motion of electrons the shift vector. In their interpretation, the shift vector is

confined to the maximum dimensions of the unit cell. Young, through strict mathematical

formalism, though, describes the expression as one of continuous electron flux in which

the shift vector can have length units several times the size of a unit cell.[4]

Indeed, in Young’s interpretation, in the absence of any external circuit, negative charge

will build up on one edge of a physical piece of semiconductor matter, or at the very least,

on one side of a domain wall. This has been observed experimentally in bismuth ferrite,

BiFeO3.[6] On the other hand, a shift current localized to the unit cell, as defined by Sipe

and Shkrebtii would have led to no specimen or domain wall charge build up being ob-

served. Thus, Young’s formulation of the shift current is the one used in this thesis.

The compound mentioned in the paragraph above, BiFeO3, belongs to a class of com-

pounds called perovskites. Perovskites are compounds with the general chemical formula

ABX3. They form three dimensional networks of corner sharing BX6 octahedra with A

atoms located in the space between the joined octahedra. Figure 1.2 shows one unit cell of

a general non-polar perovskite. Several oxide perovskites, with X = O, have been found

useful in electronic applications such as actuators, capacitors, transducers, and in general,

dielectrics, as they possess unit cells with polar moments. These polar moments arise as

a consequence of the A and B atoms being off-center from the oxygen octahedral cage.
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Figure 1.3 shows the A and B offsets relative to a general X6 octahedral cage. In other

perovskites, atomic offsets can be combined with non-collinear octahedra into phases that

are termed tilt systems. Tilted perovskites systems are realized in which the perovskite’s

octahedra are no longer orthogonal to each other in all three Cartesian directions, but are

offset. Down a particular axis of connected octahedra, the octahedra can either rotate by

the same amount in the same aspect (clockwise), or alternate in aspect by the same amount

(one clockwise, one counter-clockwise, one clockwise, etc.). The first type is called an in-

phase tilt; the second type is called out-of-phase tilt. A representation of a tilt system with

one in-phase tilt and two out-of-phase tilts is shown in Figure 1.4. Those polar perovskites

that are susceptible to changing electric field directions in such a manner that the A and B

atoms move coherently, changing their directional offsets with respect to the oxygen cage

in response, are termed ferroelectrics.

Due to their polarization, polar perovskites are also being evaluated as BPVE materials.

If polarization was the only materials requirement, then ferroelectric perovskites would be

a naturally easy choice for use in this area of solar cells. The sticking point is that many

known ferroelectric perovskites have band gaps with energies in the ultraviolet range or

higher, and these energies only comprises a small portion of the solar spectrum. Indeed,

the visible range of the solar spectrum, from 1.1 - 3.1 eV, constitutes the strongest output

of the sun’s radiation.
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Figure 1.2: The typical ABX3 cubic perovskite. No octahedral distortions or A or B
offsets to X atoms. (Space group: Pm3m.)

Figure 1.3: ABX3 tetragonal perovskite. The octahedral distortion is clearly seen in the
bonding in the X atoms to B, as well as theA- and B- atom offsets to the X-atoms. (Space
group: P4mm.)
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Figure 1.4: ABX3 with corner-sharing motif and a a+b−b− tilt system. The view highlights
the out-of-phase tilt along the b axis. (Space group: Pnma.)
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Many popular perovskites with B = Ti, such as PbTiO3, PbZrxTi1−xO3, BaTiO3, SrTiO3

have band gaps tantalizingly just above the 3.1 eV limit of the visible range. Thusly, the

materials challenge would be to find a method to lower these oxide perovskites’ band gaps

while maintaining polarization.

Chemists attempt to do this by changing the composition of the parent material in vary-

ing degrees, either by changing A and B sites with isoelectronic elements, or using alio-

valent elements and introducing holes. This latter method has led to band gaps of 1-2 eV

being calculated for PbTiO3 alloyed with Ni[7] and realized experimentally for BaTiO3

alloyed with Ni and KNbO3.[8] Alloying the X site with aliovalent elements has proved to

be difficult, though, and the choices limited. For example, replacing oxygen with fluorine

would not suit the purposes sought as such a substitution would lead to an increased band

gap. Replacing oxygen with nitrogen has only been accomplished up to small (less than

x = 0.03) concentrations with B = Ti and only one non-La A site species, but also led to

higher band gaps.[9] Other experimenters have replaced nitrogen with oxygen in non-Ti

B-site compounds (ABO2N A = Ca, Ba, Sr, B = Ta, Nb) and achieved band gaps rang-

ing from 1.5 - 2.5 eV.[10] And in LaTiO2N, band gaps in the visible range also have been

observed.[11] However, in both of these cases, the compounds are found only in non-polar

structures, and thus unsuitable for bulk photovoltaic purposes. Absent from the literature

are results from tests involving the replacement of oxygen by sulfur for these Ti-based oxide

perovskites to formATiO2S orATiOS2. The absence of compounds of these forms is strik-

ingly noticeable, especially when one considers that in the field of photoluminescence, the

substitution of O for S in compounds is commonly used to tailor band gap reductions.[12-

14] It is therefore speculated that the reason for this hole in the literature is due to the nature

of sulfur itself: use of sulfur is problematic in modern materials synthesizing methods such

as sputtering and molecular beam epitaxy because it contaminates the walls of the vessels

it is placed in, leading to situations where no other non-sulfur containing compounds can
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be created within it. Other methods of replacing O with S involve the use of poisonous or

flammable gases, such as CS2 and H2S. Thus, in the absence of proof that such a substitu-

tion is possible and will lead to a material with desirable properties, experimentation along

this line is avoided.

In Chapter 3 of this thesis, “Density Functional Theory Study Of Hypothetical PbTiO3-

Based Oxysulfides,” provides this necessary proof. The elements of this system and the

parent compound, PbTiO3, were chosen for the particular reasons that titanium is a known

getter of oxygen, and lead is a getter of sulfur. Indeed, the natural compound, galena (PbS),

is one of the most abundant sulfide materials on earth, as compared to titanium disulfide,

TiS2, which is not. This also contrasts with BaS and SrS which are not naturally abundant.

As well, BaO and SrO rank within the top twenty oxides in the lithosphere, but PbO does

not.[15] Thus, it is expected that Ti will retain all O as it nearest neighbors in a PbTiO3−xSx

solid solution, and this expectation exceeds that of compounds ATiO3 with A = Ba and Sr.

It will be shown that PbTiO3−xSx compounds are thermodynamically stable, retain high

polarization, have PBE0 calculated band gaps between 1.77 and 2.25 eV, and have similar

a and b lattice parameters that permit minimal strain layering with each other.

The BPVE has been found in the non-pyroelectric piezoelectric GaAs when this com-

pound is subjected to polarized light.[1] However, as discussed above, the response is little

more than a novelty in the solar cell world where non-polarized light from the sun provides

the stimulus, leading to a netting out any BPVE effect for these compounds. One important

aspect of this compound though is that its band gap is in the neighborhood of 1.1 eV, at

the lower end of the visible light spectrum. This contrasts with the overwhelming majority

of materials that have been evaluated for the BPVE, both experimentally and theoretically:

polar perovskite oxides with band gaps larger than 3.1 eV. The only ternary compound with

a band gap lower than 3.1 eV that has been tested for BPVE is BiFeO3, but its response in

the visible range is limited from its band gap value of 2.67 eV to the visible edge of 3.1 eV.
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When one considers that the majority of visible light intensity received on the surface of

earth is between 1.1 and a little over 2 eV, then even this oxide perovskite has a limited use-

fulness as well. As mentioned earlier, two chalcogenides, ZnS and SbSI, have been shown

to have a BPVE response. However, ZnS is a non-polar piezoelectric and has a band gap

above 3.5 eV making it unuseful to capture unpolarized sunlight. SbSI has a band gap of

2 eV, but is only polar below 293 K. Above 293 K, it has been classified as a paraelectric,

centrosymmetric material.[1]

One proposition of this thesis, then, is that, given that non-oxide, non-perovskite polar

ternary compounds with band gaps closer to 1 eV than to BiFeO3’s 2.67 eV do exist, they

should be evaluated for BPVE responses. Many of these compounds do not exist in the

common tetragonal P4mm and rhombohedral R3c space groups of the perovskites, but

in monoclinic and triclinic phases which are distinguishable by their lack of symmetries.

Yet, they provide a richer variety of coordinations not present in perovskites locked into

BO6 octahedral sharing. For example, polar monoclinic phases of LiAsSe2, LiAsS2, and

NaAsSe2, with band gaps between 1.1 and 1.7 eV, have chains of As-Se or As-S.[16] That

these band gaps are lower than perovskite oxides is not surprising. The electronegativity

differences between the cation As and the anion S or Se in these three compounds is less

than 1, making for less ionic interactions and smaller gaps than oxide based solids. A

general periodic table trend is that for Groups 13-16, band gaps of compounds decrease

as elements higher in these particular groups are substituted out for those that are lower.

Indeed, no solar materials being used today are based on N, O, or F: band gaps with these

elements are simply too high for solar cell purposes. Further, most perovskites have transi-

tion metal B-sites with flat conduction band structure and, thus, low mobilities of excited

electrons. The conduction bands of B-sites of the non-metals or semi-metals of Groups

13-15 are highly disperse p-orbitals having much higher excited electron mobilities. In

the chapter titled “First-Principles Calculation of the Bulk Photovoltaic Effect in the Polar
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Compounds LiAsS2, LiAsSe2, and NaAsSe2,” the BPVE of these three compounds will be

calculated. It will be shown that scientists might consider moving away from a strict oxide

perovskite BPVE test space.

Even within the family ofABX3 compounds, the difference in the nature of oxygen and

sulfur is seen in the realized phases that have been synthesized with X = O as compared to

X = S. The ABO3 family of compounds mostly consists of perovskites (in the hundreds),

and ilmenites (in the dozens), and compounds distinguished by BO3 B = B, C, N, S, Cl,

Br, and I polyanionic complexes bonded to A-sites (in the dozens as well). A half unit

cell representation of an ABO3 with a polyanionic complex, calcite, is shown in Figure 1.5

and is illustrative of these classes. The ilmenites consist of layers of alternating planes of

AO6 octahedra and BO6 octahedra. Within a plane the octahedra are edge-connected. The

planes are connected by face- and corner- sharing AO6-BO6 octahedra. A typical ilmenite

representation is shown in Figure 1.6. Their elemental composition variations find that they

have mainly small A-site cations, and both A-site and B-site cations are close in size and

are transition metals. Perovskites, as described above, are not layered, and their A-sites

are usually non-transition metals while their B-sites are usually transition metals. Indeed,

the overwhelming majority of ABO3 compounds with non-transition metals A-sites and

transition metal B-sites are perovskites with a corner-connected octahedral motif. Exam-

ples of these have been shown earlier in Figures 1.2-1.4. The exceptions to these frequency

observations have proved to be few. They are mostly confined to ABO3 compounds with

large A-sites that form in a face-sharing octahedral motif (A = Ba, Cs, and Rb), one com-

pound with double rows of edge-sharing octahedra (RbNbO3), and a couple of vanadates

which form with either square-pyramidal VO5 motifs or in a pyroxene-like manner with

corner-connected tetrahedra VO4. A representative generic ternary pyroxene is shown in

Figure 1.7.

On the other hand, except for RbBS3 and TlBS3, ABS3 do not form with polyanionic
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complexes; nor areABS3 ilmenite, tetrahedral, or square-pyramidal sulfide analogs known.

As well, while corner-sharing and face-sharing ABS3 are common, so are edge-sharing

ABS3, in contrast to the lack of edge-sharing ABO3. Depictions of an edge-sharing ABX3

and a face-sharing ABX3 are shown in Figures 1.8 and 1.9.
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Figure 1.5: 1/2 unit cell of calcite, highlighting the [CO3]2− polyanions. (Space Group:
R3cH .) ANO3 and ASO3 compounds have this same motif.
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Figure 1.6: Ilmenite unit cell. Note the layered planes of AO6 and BO6 octahedra. (Space
group: R3H .)
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Figure 1.7: Pyroxene ABO3 with corner-sharing BO4 tetrahedra. (Space group: Pbcm.)
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Figure 1.8: ABX3 with edge-sharing motif. (Space group: Pnma.)
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Figure 1.9: ABX3 with face-sharing motif. (Space group: P63/mmc.)
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In Chapter 5, ”The Structural Diversity of ABS3 Compounds with d0 Electronic Con-

figuration for the B-cation,” this difference in realized motifs between oxide and sulfides

in ABX3 will be explored in depth. As well, a statistic used to assess a priori the phase of

ABO3 compounds, the Goldschmidt tolerance factor, will be applied to ABS3 compounds.

The Goldschmidt tolerance factor,[17] t, is defined as

t =
rA + rX√
2(rB + rX)

(1.1)

where the various r represent the ionic radii of the constituent species. Ranges of its values

have been found to demark the groups of phases of ABO3 found in nature and experiment.

It will be seen though, that the application of t to the realized phases of corner-, edge-,

and face-sharing ABS3 compounds, leads to overlapping regions of the statistic and poor

demarcation of the phases. This failure of the t factor will be addressed in the chapter

as well, and a new factor will be proposed, one that encompasses both oxide and sulfide

ABX3 compounds. This new factor will align with the calculated ground states of 20

ABS3 compounds. The study will demonstrate that several of the listed structures in the

literature are a result of experimental conditions: of applying oxide ABO3 synthesizing

temperatures and times to the synthesis of sulfides.
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Chapter 2

Methodology

2.1 Introduction.

Most pure solid matter are crystalline, consisting of repeatable periodic lattices defined at

the Angstrom level of size. In other words, solids are defined by the patterns they adopt

at the atomic level, not just those observed macroscopically, as for gemstones, quartz, or

salts for example. These statements have been confirmed by countless researchers perform-

ing experiments on countless solids using the methods originally discovered by Von Laue

and Bragg in the early 1910s and 1920s, called x-ray diffractometry. In these techniques,

synchronous x-rays are scattered off a substance at various angles, leading to diffraction

patterns consisting of nodes of various intensities, or the absence of nodes if the intensi-

ties cancel, depending on state of the superposition of the x-ray waves. These patterns,

accrued over an angular range of x-rays aimed at a material, are then used to determine

atomic species in a solid. As well, they are used to pinpoint atomic locations and then

characterize them based on a well known set of crystalline possibilities, that have been

defined by mathematical group theory, called space groups. Microscopy techniques of the

late 1900s, among them transmission electron microscopy for thin layers and surfaces, and
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atomic probe tomography for thicker solids, confirm the data derived from diffraction re-

sults: solids are built of repeatable atomic scale patterns of ions.

The realized periodicity of solids dovetails with the periodic constructs of electron

wavefunctions of Born and von Karman and the potentials of Bloch, both theorized in

the 1920s. Applying both Born-von Karman and Bloch ideas to density functional theory

(DFT) allows for theoretical calculations of lattice shapes and sizes and atomic locations of

solid compounds in a computationally reasonable and efficient space. Since the construct

of the DFT calculation method is built on finding energy minimums from single-particle

electron wavefunctions, it also can provide insights into the electronic structures of solids

as well, including polarization and band gap values.

Thus, in the ensuing sections of this chapter, the major aspects of both solid state char-

acterization from experimentation and theoretical constructs will be defined and explained.

The terminology of classification of solids, (of crystal classes, point groups, symmetry op-

erations, and space groups) will be discussed first. Then, it will be shown how DFT can be

used to model real systems and predict electronic properties. As DFT calculations consider

ground states of systems and are performed at 0 K, while x-ray diffraction experiments

are performed at all temperatures, but most often at room temperature (300 K), a section

on thermodynamics will describe how other terms, including pressure, volume, but most

especially lattice vibrations arising from temperature (termed phonons), add to the energy

of a solid, or for that matter, any system.

2.2 Bravais Lattices, Crystal Systems, Point Groups and

Space Groups.

The following paragraphs contain information describing concepts used to construct enu-

merations of the various ways to describe sets of unique three-dimensional lattices. The
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objective of this exercise is not to offer proofs of the number of possible lattices, but to

show how this information can be used for dual purposes: to reduce the number of possible

crystal structures that can be expected to have responses to fields (electric, magnetic, or

mechanical) and to define which elements of a response matrix or tensor exist (i. e. are

non-zero) depending on the crystal classification of the material.

In 1848, decades before the work of van Laue and Bragg, Auguste Bravais enumerated

the possible ways that units of a crystal, termed unit cells, could repeat in space and form

a continuum. His method did not require knowledge of actual composition of the crystals,

and thus, is a geometric construct of the periodic lattice with the specific arrangements of

ions, groups of atoms, or molecules reduced to a single point. More specifically, given this

construct, Bravais enumerated the number of ways a discrete set of points could be arranged

and oriented such that the crystal appears exactly the same, regardless from which vantage

point the crystal is viewed. He found that a set of fourteen distinct point lattices sufficiently

describes the number of ways that the points of a lattice have identical environments.

These fourteen lattices can be further grouped into seven crystal systems. The seven

crystal systems are the minimum representation set of point lattices that are categorized by

a set of actions that can be performed on a unit cell of a crystal that leaves it unchanged

visually. The set of permissible actions are called symmetry operations and each operation

has an associated symmetry element. The list of symmetry elements and their associated

operation is as follows:

1. center of symmetry: an operation which takes each point of the lattice at position (x,

y, z) to an existing lattice position (-x, -y, -z).

2. mirror plane: an operation in which each lattice point on one side of a plane that cuts

the lattice is moved to its mirror image on the other side of the plane.

3. n-fold rotation axis: a rotation through an angle of 2π/n, where n is a positive integer.
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4. n-fold inversion axis: a rotation through an angle of 2π/n followed by an inversion

of this rotated point to an existing point.

As a whole, the seven crystal systems contain all of the possible symmetry operations or

crystallographic point groups, of which there are 32. Table 2.1 lists the 32 point groups,

the 14 Bravais lattices, and the seven crystal systems into which they fall. For concise de-

pictions of Bravais lattices and point groups the reader is referred to Cullity and Stock[18]

and Nye[19] respectively.

The combination of Bravais Lattices and point groups per crystal class is termed a space

group. A simple multiplication of the 3rd and 4th columns of each row in Table 2.1 fol-

lowed by a summation of the products lead to 61 space groups.[20] Yet, it is well known

there are 230 possible space groups. The reason for such a discrepancy between the actual

number of space groups and this simple method of multiplying point group symmetry op-

erations by the number of Bravais lattices is that there are additional compound operations

involving translations followed by rotations (termed screw axes) and translations followed

by reflections (termed glide planes) in which the translations are fractions of a lattice vector.

These operations are termed “non-symmorphic,” and 157 of the 230 space groups contain

these complex operations. [The summation of 61 and 157 is 218. There are an additional

12 symmorphic space groups that arise from two conditions: five from placing a trigonal

point group into a hexagonal basis and seven from a few point groups that can be oriented

multiple ways in a given Bravais lattice.[20]] Care must be used when evaluating non-

symmorphic space groups: for example, the international naming community still labels

the point group of a glide plane with the same notation it labels a simple mirror plane.
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Table 2.1: Point groups and Bravais lattices, and the crystal systems into which they fall.
For the Bravais lattice terminology, “Simple” refers to points only on the corners of the unit
cell; Ba − C (base-centered) consists of a Simple lattice and two points centered in two
opposing faces; F − C (face-centered) consists of a Simple lattice and a point centered on
each of the six faces; and B − C (body-centered) consists of a Simple lattice and a point
centered in the lattice. For the point group terminology, “m” refers to a mirror plane, a
number refers to n of the rotation operation, and a number with a bar above it refers to a
rotation plus an inversion. (For a complete definition, including axis to which each symbol
refers, please consult the International Tables for Crystallography.[21] )

Crystal Unit Cell Lengths Bravais Point
System and Angles Lattice Groups
Cubic a = b = c Simple, B − C, F − C 23, m3, 432,

α = β = γ = 90◦ 43m, m3m
Tetragonal a = b 6= c Simple, B − C 4, 4, 4/m, 422,

α = β = γ = 90◦ 4mm, 42m, 4/mmm
Orthorhombic a 6= b 6= c Simple, B − C, 222, mm2, mmm

α = β = γ = 90◦ Ba− C, F − C
Trigonal a = b = c Simple 3, 3, 32

α = β = γ 6= 90◦ 3m, 3m
Hexagonal a = b 6= c Simple 6, 6,6/m, 622

α = β = 90◦; γ = 120◦ 6mm, 6m2, 6/mmm
Monoclinic a 6= b 6= c Simple, Ba− C 2, m, 2/m

α = γ =90◦ 6= β
Triclinic a 6= b 6= c Simple 1, 1

α 6= β 6= γ 6= 90◦
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Given a space group, there are an infinite ways of decorating the lattice with ions,

groups of ions, or molecules. But there is one constraint on the placement of points: the

decoration must adhere to at least one of the symmetry operations present for that particular

group. The particular points of the lattice at which atoms may be placed are called Wyckoff

positions. Wyckoff positions are defined as sets of points that are conjugate subgroups of

the space group.

Up to this point, the information on space groups and point groups provides little more

than a neat classification scheme for crystals. It is only in conjunction with Neumann’s

Principle, though, that the above classifications can be made useful to the chemist or physi-

cist seeking to evaluate compounds that respond to external stimuli such as stress, electric

fields, or magnetic fields. Neumann’s Principle is stated as follows: “The point group of a

crystal is a (not necessarily proper) subgroup of the symmetry group of any of its physical

properties. It follows that the symmetry group of any property of a crystal must include the

symmetry operations of the crystal point group.”[21] Inversely, it also follows that the lack

of a particular symmetry operation necessary for the physical property to have a non-zero

crystal response must also be lacking in the crystal. For example, a crystal with a center

of symmetry cannot be a piezoelectric. Further, if a crystal is to be pyroelectric, (or polar),

not only must it have no center of symmetry, but it must have a unique axis that is found in

no other directions of the crystal. There are ten point groups that meet the conditions for

pyroelectricity: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, and 6mm. This condition is termed nec-

essary as opposed to sufficient as, without experimentation or additional calculation, there

is no way to know a priori if the compound will produce a significant response. These ten

point groups are a subset of the 21 non-centrosymmetric point groups which contain the

property that they possess a necessary but not sufficient arrangement of ions or molecules

to permit a piezoelectric response. The other eleven non-centrosymmetric space groups

are: 222, 4, 422, 42m, 32, 6, 622, 6m2, 23, 43m, and 432. Thus, polar compounds are a

25



subset of piezoelectric compounds.

The manner in which a crystal responds to a stimulus such as heat, electricity, mag-

netism, stress, or strain can be deduced by the nature of the physical property considered

subject to Neumann’s Principle. Nye has tabulated many of these properties for each of

the 32 point groups.[19] In this thesis, a topic of interest is the BPVE, which is a third

rank tensor just like piezoelectricity, with the same non-centrosymmetric requirement. The

third rank tensors can be represented in two-dimensional form due to the symmetric na-

ture of the off-diagonal terms. For shift current responses, the matrices have the following

possibilities for moduli:

σ =


σxxX σyyX σzzX σyzX σxzX σxyX

σxxY σyyY σzzY σyzY σxzY σxyY

σxxZ σyyZ σzzZ σyzZ σxzZ σxyZ

 (2.1)

where σ represents the shift current response to electromagnetic radiation, σijI represents

a modulus, with the two small letters are indices representing the incoming direction of the

first and second phonons interacting with the electrons of the crystal, and the capital letter

represents the direction of the induced current.

Tables 2.2, 2.3, and 2.4 depict the relationships of the moduli per point group. From

such a representation it is easily seen which moduli are non-zero, and which are necessarily

equal to, opposite in sign and equal to, or opposite in sign and twice the size of, one

another. The difference between polar space group compounds (left columns in the tables)

and ones that are non-polar piezoelectrics (the right columns in the tables) can be seen

in the responses of the 21 non-centrosymmetric space groups listed in Tables 2.2-2.4. For

non-polar piezoelectrics, only the off-diagonal tensor elements of the third rank tensor have

non-zero moduli; while polar compounds have both non-zero diagonal and non-zero off-
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diagonal moduli. Young[4] has shown that the responses generated by the off-diagonal

moduli sum to zero for non-polarized light, and thus, their existence is not meaningful for

generating BPVE currents with sunlight. Therefore, while non-polar piezoelectrics might

serve a purpose for applications with polarized light, only polar compounds can be used to

effect a current with natural sunlight.
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Table 2.2: Piezoelectric moduli matrices for the triclinic, monoclinic, and orthorhombic
crystal systems. All • symbols represent non-zero moduli that are not required to be equal
to each other. When a symbol other than a • appears in a cell, symbols of the same type
are either equal, opposite in sign, or 2 times the opposite of the symbol.[19]

Polar Non-polar
Triclinic

1 • • • • • •• • • • • •
• • • • • •

 No Non-Polar Point Groups

Monoclinic
2 0 0 0 • 0 •

• • • 0 • 0
0 0 0 • 0 •

 No Non-Polar Point Groups

m • • • 0 • 0
0 0 0 • 0 •
• • • 0 • 0


Orthorhombic

mm2 222 0 0 0 0 • 0
0 0 0 • 0 0
• • • 0 0 0

  0 0 0 • 0 0
0 0 0 0 • 0
0 0 0 0 0 •


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Table 2.3: Piezoelectric moduli matrices for the tetragonal and cubic crystal systems.
Nomenclature as defined in Table 2.2.[19]

Polar Non-polar
Tetragonal

4 4 0 0 0 ◦ ? 0
0 0 0 ? −◦ 0
∗ ∗ • 0 0 0

  0 0 0 ◦ ? 0
0 0 0 −? ◦ 0
∗ −∗ 0 0 0 �


4mm 422 0 0 0 0 ∗ 0

0 0 0 ∗ 0 0
? ? • 0 0 0

  0 0 0 ∗ 0 0
0 0 0 0 −∗ 0
0 0 0 0 0 0


42m 0 0 0 ∗ 0 0

0 0 0 0 ∗ 0
0 0 0 0 0 •


Cubic

432

No Polar Point Groups.

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


43m and 23 0 0 0 ∗ 0 0

0 0 0 0 ∗ 0
0 0 0 0 0 ∗


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Table 2.4: Piezoelectric moduli matrices for the trigonal and hexagonal crystal systems.
Nomenclature as defined in Table 2.2.[19]

Polar Non-polar
Trigonal

3 32 ∗ −∗ 0 ? � −2◦
−◦ ◦ 0 � −? −2∗
† † • 0 0 0

  ∗ −∗ 0 ? 0 0
0 0 0 0 −? −2∗
0 0 0 0 0 0


3m 0 0 0 0 � −2◦

−◦ ◦ 0 � 0 0
† † • 0 0 0


Hexagonal

6 6 0 0 0 ? ∗ 0
0 0 0 ∗ −? 0
† † • 0 0 0

  ∗ −∗ 0 0 0 −2◦
−◦ ◦ 0 0 0 −2∗
0 0 0 0 0 0


6mm 6m2 0 0 0 0 ∗ 0

0 0 0 ∗ 0 0
† † • 0 0 0

  0 0 0 0 0 −2◦
−◦ ◦ 0 0 0 0
0 0 0 0 0 0


622 0 0 0 ? 0 0

0 0 0 0 −? 0
0 0 0 0 0 0


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2.3 A Computationally Accurate and Efficient Theoreti-

cal Framework for the Energy Assessment of Matter.

The previous section discussed the nomenclature for defining the number of ways com-

pounds that are crystalline can be arranged. While many compounds exist in only one

form, and others in just a few forms, there are a few compounds like titanium oxide with its

eleven polymorphs, that can be found in multiple forms. The challenge then, for a theorist,

is to assess the various forms a compound can reasonably be expected to exist in, and deter-

mine which of these forms is preferred energetically at various temperatures and pressures.

The remaining sections of this chapter will evaluate the framework that has been developed

to perform this task.

2.3.1 Density Functional Theory.

In their essence, all compounds at the chemical level of bonding consist of interacting

systems of nuclei and electrons. Each can be described by the hamiltonian:[22]

Ĥ = − ~2

2m

N∑
i

∇2
i +

N,K∑
i,I

ZIe
2

|ri −RI |
+

1

2

N∑
i 6=j

e2

|ri − rj|
−

K∑
I

~
2MI

∇2
I +

1

2

K∑
I 6=J

ZIZJe
2

|RI −RJ |

(2.2)

where N is the number of electrons, K is the number of nuclei, the lower case subscripts

indicate electrons and upper case subscripts nuclei,m andM denote the mass of an electron

and a nucleus, r and R denote electron and nuclei positions, and Z denotes the charge of a

nucleus.

The first and fourth terms represent the kinetic energies of the electrons and the nuclei

respectively. The second term represents the potential between the electrons and the nuclei.
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The third term accounts for electron - electron interactions. The fifth term represents the

interaction of nuclei with each other.

This hamiltonian, consisting of kinetic and potential energies, maps directly into the

time-independent Schrodinger equation

ĤΨ(r1, r2, ..., rN,R1,R2, ...,RK) = EΨ(r1, r2, ..., rN,R1,R2, ...,RK) (2.3)

where Ψ(r1, r2, ..., rN,R1,R2, ...,RK) represents the total wavefunction.

Solving this problem for the eigenvalue energies and wavefunctions of a multi-body

system of interacting particles is near impossible in its current form except for a simple

hydrogen atom, which is a two-body problem. Fortunately, simplifications grounded in

physics have been devised, including the Born-Oppenheimer approximation, the Hohenberg-

Kohn theorems, the Kohn-Sham ansatz, plane wave representations, and the pseudopoten-

tial method, that make the problem tractable. Each are discussed, briefly, in turn.

2.3.2 The Born-Oppenheimer Approximation

Since the MI are much more massive than m, the velocities of the nuclei relative to elec-

trons are much smaller. As such, after a change from one ionic configuration to another,

(in the neighborhood of the the ground state of the system, which is known as the adiabatic

condition), the electrons have already adjusted nearly instantaneously, and will remain in

their ground state. In essence, the nuclei and electron motions have been decoupled. This

decoupling is known as the Born-Oppenheimer approximation.[23] This approximation

implies that the total hamiltonian of the system as represented in equation (2.2) can be

separated along electronic and nucleonic terms, and that Ψ(r,R) can be approximated as

χ(R1,R2, ...,RK) φ(r1, r2, ..., rN;R1,R2, ...,RK) in which the wavefunction of the elec-

trons φ(r;R) depends only on the positions of the nuclei and the wavefunction of the nuclei
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χ(R1,R2, ...,RK) is independent of the electrons. Thus, the electronic hamiltonian of the

system is the first three terms of (2.2):

Ĥel = − ~2

2m

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
(2.4)

The last two terms of (2.2) involve only nucleonic species not dependent on electronic

contributions. They are treated in a classical sense, and require no further simplifications to

compute efficiently. This is not to say that nuclear motions are unimportant. But they can be

treated from a static viewpoint of charged points when calculating kinetic and Coulombic

energies in neighborhoods of perturbed nuclear positions.

Before proceeding, the notation for each of the terms in (2.4) is identified and con-

densed for readability. The first term in (2.4) is the kinetic energy operator T̂ , the second

term is the external potential V̂ , and termed “external” as the potential is not generated

self-consistently by electron interactions, but involves nuclei “external” to the all-electron

system, and the third term is the Coulombic interaction Û :

T̂ = − ~2

2m

∑
i

∇2
i (2.5)

V̂ =
∑
i,I

ZIe
2

|ri −RI |
(2.6)

Û =
1

2

∑
i 6=j

e2

|ri − rj|
(2.7)

2.3.3 Hohenberg-Kohn and Kohn-Sham.

Hohenberg and Kohn proved that for any system of interacting particles, V̂ can be deter-

mined by the ground state density n0[r] of the system.[24] As well, they showed that an
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energy functional E[n] in terms of the density n0[r] could be minimized to determine the

ground state energy of the system, and the corresponding density would be the ground state

density n0[r]. Thus, ignoring the classical terms involving only nuclei, the energy of the

system can be re-written in terms of a functional of the density:

E[n] = T [n] + U [n] + V [n] (2.8)

The Hohenberg-Kohn Theorems state that simply knowing the density implies complete

knowledge of the total wavefunction as well as complete knowledge of all other observ-

ables, including external potentials.

In and of itself, Hohenberg-Kohn still represents a many-body problem with no sugges-

tion on how to determine the functionals in (2.5) - (2.7). Later work by Kohn, in conjunc-

tion with Sham, provide a tractable method.[25] They claim, through an ansatz, that there

exists a density based on a non-interacting system of electrons that is equal to the ground

state density of the original interacting system. In effect, they claim that T [n] can be sep-

arated into sums of single-particle non-interacting electron terms and those that involve

correlation of electrons. The single-particle kinetic energy term is the summation of the

individual electron kinetic energies, Ts[n]. As well, the Coulombic-interaction term can be

represented as the sum of the well-known Hartree energy, UH , and correlation interactions.

Thus, the energy functional becomes:

E[n] = Ts[n] + UH [n] + Exc[n] + V [n] (2.9)

where Exc[n], known as the exchange-correlation energy, contains the differences T [n] -

Ts[n] and U [n] - UH [n], as well as accounting for the fermion nature of electrons, in which
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electrons of the same spin are kept apart by a repulsive interaction. Though Exc[n] is not

known with certainty, it is typically smaller in magnitude than Ts[n], UH [n], and V [n].[26]

Approximations of this quantity will be discussed in the next subsection.

MinimizingE[n] in (2.9) with respect to the density functional leads to the following:[26]

∂E[n]

∂n[r]
= 0 =

∂Ts[n]

∂n[r]
+
∂UH [n]

∂n[r]
+
∂Exc[n]

∂n[r]
+
∂V [n]

∂n[r]

=
∂Ts[n]

∂n[r]
+ vH(r) + vxc(r) + v(r) (2.10)

If the system is one of non-interacting particles, with a potential vs(r) and correspond-

ing density ns(r) , this equation becomes:

∂E[n]

∂n[r]
= 0 =

∂Ts[n]

∂ns[r]
+ vs(r) (2.11)

as, in the absence of interactions, the UH and Exc terms are 0. If the Kohn-Sham ansatz is

to hold, then ns(r) = n(r) and:

vs(r) = vH(r) + vxc(r) + v(r) (2.12)

This is the main result of the Kohn-Sham ansatz: a noninteracting-body potential can

be used to solve an interacting-body density, from which interacting wavefunctions are also

determined. The actual calculation used to make these determinations is iterative, with an

initial guess of the density field. From this field, the potential vs(r) is calculated. Then, the

Schrodinger equation of the non-interacting system,
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[
− ~2

2m
∇2
i + vs(r)

]
φN(r) = εNφN(r), (2.13)

is solved. The resulting wavefunctions, given the occupations of their respective orbitals,

fi, are then used to compute n(r):

n(r) = ns(r) =
N∑
i

fi|φN(r)|2 (2.14)

If the original guess of the density and the calculated density are within a determined limit,

the calculation is complete, and all the information concerning total energy, eigenenergies,

eigenfunctions, and auxiliary calculations are now computed. If not, then the process re-

peats, with the new calculated density serving as the input to calculate another potential.

2.3.4 Exchange-Correlation Energy Functionals.

The two most widely known methods for approximatingExc are the Local Density Approx-

imation (LDA) and the family of Generalized Gradient Approximations (GGA). In LDA,

the system is considered to have a uniform exchange-correlation energy per volume. This

energy per volume is a combination of exchange energy, ex(n), which is known exactly

to scale as n4/3 in a homogeneous electron gas, and correlation energy, ec(n), determined

from Quantum Monte Carlo methods. It has been found that LDA usually underestimates

Ec by the same amount it overestimates Ex, (due to the exchange-correlation hole sum

rule), leading to solutions of the Kohn-Sham equations that are reasonable.[26] In the case

of GGA, the uniform electron gas restriction of LDA is removed, and a spatially varying

function of density is adopted. This leads to energies at any any point in space being a
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function of the density and the gradient of the density. Many such constructs have been de-

veloped including ones by Perdew, Burke, and Ernzerhof, Wu and Cohen, and Cooper.[27]

Energy equations for LDA and GGA respectively are:

ELDA
xc =

∫
d3rehomoxc (n(r)) (2.15)

EGGA
xc =

∫
d3re(n(r),∇n(r)) (2.16)

At this juncture, an unsolvable, multi-body problem has been made solvable by a decou-

pling of electron and nuclei motion (the Born-Oppenheimer Approximation), the adoption

of a single-body approach (Kohn-Sham Ansatz) which uses the density observable not only

as a substitute for, but as a determinant of, the ground state wavefunctions (Hohenberg-

Kohn Theorems), and with the many-body exchange-correlation term as the only term not

completely known with certainty, but well defined through LDA and GGA functional ap-

proximations in most cases. Yet, there are still two areas in which the calculation can be

made more efficient. The first is in the judicious decision on how to express wavefunctions

in a basis set. The second is in the use of the chemical knowledge that only valence elec-

trons are involved in creating chemical bonds. These two areas will be discussed in the

subsections below.

2.3.5 Plane Waves.

In crystalline systems, the lattice consists of continuous repeatable unit cells. As such, the

potential in a crystal is periodic. By Bloch’s theorem, a wavefunction can be represented

as the product of a cell-periodic function and a phase factor:[28]

ψnk(r) = unk(r)eik·r where unk(r + R) = unk(r) (2.17)
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where r represents any position in the lattice, R is any Bravais lattice vector, n is an occu-

pied energy band, and k is a wave vector.

The cell-periodic function can be represented as set of plane waves defined in reciprocal

space:

unk(r) =
∑
G

cnk(G)eiG·r (2.18)

where G is a reciprocal lattice vector. Substituting (2.18) into (2.17) the electron wave-

function becomes:

ψnk(r) =
∑
G

cnk(G)ei(k+G)·r (2.19)

Representation of the wavefunctions in this manner improves the speed of calculation in

a couple of ways. First, the form permits Fast Fourier Transforms (FFT). Second, as kinetic

energy is directly proportional to |k + G|2, the size of the calculation can be limited to a

maximum k by placing a maximum value permissible on kinetic energy, termed Ecut. As

well, grid steps sizes can be altered for better efficiencies. However, while lower rather than

higher values of Ecut and grid densities are preferred for computational speed, both should

be increased until convergence of results between successive iterations of both variables is

achieved.

2.3.6 Pseudopotentials.

Many solid state systems consist of unit cells in which there are hundreds of electrons, each

of which has a wavefunction and each of which contribute to T [n], U [n], V [n], and Exc[n].
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The size of this problem can be greatly reduced, however, by considering the chemical fact

that, in almost all cases, it is only the valence electrons of each atom that participate in

bonding. The core electrons can be considered tightly bound to the nucleus of an atom, and

the nucleus plus the core electrons can be modeled as an ion with an ionic potential replac-

ing a nucleonic potential, reducing the number of nuclei-electron Coulombic interactions,

to interactions of ions and valence electrons. Furthermore, instead of all electrons of a unit

cell interacting with one another, the core electrons have been completely localized to their

respective nuclei, and now only valence electron - valence electron interactions need to

be considered. The size of the computation is further reduced by modeling the wavefunc-

tion of the valence electrons such that their radial nodes are removed, thereby generating

a smooth wavefunction constructed from fewer plane waves with smaller kinetic energies.

The construct that embodies this weaker potential is called the pseudopotential.

Pseudopotential generation methods are not unique and are subject to different con-

struction constraints. In the work of this thesis, norm-conserving pseudopotentials are

used. With rc defined as the core radius of an electron from the nucleus, norm-conserving

pseudopotentials are designed with the following properties for each valence electron:

1. For the reference configuration, the eigenvalue energies of the pseudo-wavefunction

and the all-electron wavefunction from which it is derived are equal.

2. The integrated charge density generated by the pseudo wavefunction is equal to that

of the all-electron wavefunction from r = 0 to r = rc.

3. The pseudo wavefunction and the all-electron wavefunction, and their first and sec-

ond derivatives with respect to r, in the region r >= rc are exactly equal.

4. The first derivatives with respect to energy of the first derivatives with respect to r of

the pseudo wavefunction and the all-electron wavefunction must be equal as well for

all r > rc. [29, 30]
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The legitimacy of a pseudopotential can be judged in two ways: by comparing the results

of a DFT calculation using it to the results of a DFT calculation using all-electron wave-

functions, or by comparing the results (e. g. lattice parameters) to known experimental

values.

2.4 Using Post-DFT Methods to Calculate Electronic Prop-

erties of Crystals

2.4.1 Band Gap Methods.

It is widely known that DFT methods can underestimate band gaps of known materials, or,

even worse, calculate that a material is metallic when it is a semiconductor.[22, 31] The

source of this error lies in the formulation of the exchange-correlation term, Exc[n]. The

first derivative of this term, the exchange-correlation potential, vxc[r], can be expressed as:

vxc[r] = exc([n], r) + n(r)
∂exc([n], r)

∂n[r]
(2.20)

where exc([n],r) is the energy per electron at r that depends only on the n[r]. The derivative

in the second term signifies a change in the exchange-correlation hole with density. This

expression is discontinuous at the Fermi level. Both LDA and GGA – indeed even Kohn-

Sham theory with an exact expression for Exc – predict that this derivative is 0.[26] But it is

not.[26] Hence, the error in band gap prediction using these approximations in particular,

and the method in general.

Post-DFT methods have been devised to improve band gap results and predictions.

Three of these methods, LDA+U , PBE0, and GW, have been used to correct for LDA band
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gap underestimation. These methods will be discussed in the paragraphs below. They are

termed “post”-DFT as each uses the wavefunctions and eigenvalue energies generated by

DFT calculations as initial starting parameters for their respective iterative methods.

The LDA+U Method.

LDA+U has been developed as a method to take into account that d and f electron orbitals

are localized and, thus, on-site Coulombic interactions are screened. It represents an energy

correction to that determined solely by LDA:[32]

ELDA+U [n] = ELDA[n] + EHubU [nIm]− EDC [nI ] (2.21)

where nIm are the atomic orbital occupations experiencing the Hubbard effect, and the last

term removes double counting of Coulombic interactions contained in both the first two

terms.

This equation can be expanded in terms of U :[32]

ELDA+U [n] = ELDA[n] +
U

2

∑
i 6=j

ninj −
U

2

∑
i

ni(ni − 1) (2.22)

where U is called the Hubbard U term and represents the radial Slater integral value of F 0.

The orbital energies are the derivatives of ELDA+U [n] with respect to orbital occupa-

tions ni:

ei =
∂ELDA+U [n]

∂ni
= eLDA + U

(1

2
− ni

)
(2.23)
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The orbital dependent potential is represented similarly, but as an operation involving

the derivative of ELDA with respect to ni[r]:

Vi[r] = VLDA[r] + U
(1

2
− ni

)
(2.24)

These formulae show LDA orbital energies and the orbital dependent energies being shifted

by -U /2 for occupied orbitals (ni = 1) and by +U /2 for unoccupied orbitals (ni = 0). Thus

the additional energy separation achieved by this method is equal to U , which corresponds

to the U described for Mott-Hubbard insulators.

There are generally two ways to determine anU value for a substance. The first involves

known substances. In this scenario, various U values are substituted in the framework

described above and the U value chosen is the one for which the calculated band gap most

closely matches the experimental one. As this method cannot be appropriate for theoretical

substances or real substances whose band gaps have not been ascertained, another method

for determining U has proposed in the literature. This method assesses how the total energy

changes with respect to a variation of electrons in the localized orbits. This variation of

electrons does not involve an integral number increase or decrease, but a fractional value

change. U is defined as a response to the partial injection or partial removal of an electron

to/from a site in which an electron has been localized due to the application of an external

potential:[32]

U = (χ−10 − χ−1)ii, where χij =
∂ni
∂vj

(2.25)

Here, χ represents an interacting response, χ0 represents the Kohn-Sham non-interacting

response, ni represents the occupation number of the localized levels associated to site i,

and vj is the potential shift applied on the localized orbit at site j. Fractional occupations are
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reasonable in solids where hybridization of localized orbitals is probable, and this method

has been show to be useful for solids in which the nominal electronic configuration of the

atomic species to which one is considering placing a U value on is not d0, d10, f 0, or f 14.

For d0 and f 0, removal of partial electrons is not reasonable; and for d10 and f 14, addition

of partial electrons is not reasonable. Indeed, in work performed by Gou et al.[33] on the

compound PbTiO3, this method has led to a UTi = 4.75 eV, and a band gap of 2.17 eV; a

result which still severly understimates the experimental band gap of 3.4-3.6 eV.

The PBE0 Method: Accounting for Exact Exchange.

PBE0 is the name of the Perdew-Burke-Ernzerhof GGA functional that allows for the inclu-

sion of exact exchange energies. Perdew, Burke and Ernzerhof[34] based their functional

on the work of Becke. Becke proposed that the reason for the poor band gap estima-

tions lies in the strict adherence to the Born-Oppenheimer approximation for the exchange-

correlation energy. He sought to rectify this by creating a term which relies on partially

interacting systems of electrons:[35]

Exc =

∫ 1

0

Uλ
xcdλ (2.26)

in which λ is the interelectronic coupling strength parameter (the 1/r12 Coulomb repulsion

term), and Uλ
xc is the potential energy of the exchange correlation defined at different cou-

pling strengths. A λ = 0 indicates the completely non-interactive Kohn-Sham condition and

a value of 1 indicates a completely interacting system. Becke develops a semi-empirical

model defined as:
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Exc = ELDA
xc + a0(Ex − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c ) (2.27)

where a0, ax, and ac are determined by fitting the model to experimental data.

In the PBE0 model, this equation becomes:

Exc = EGGA
xc + a0(Ex − EGGA

x ) (2.28)

with ax = 1 - a0, ac = 1, and Exc = Ex + Ec. Perdew, Burke and Ernzerhof suggest at first

that a0 = 1/n, with n being an integer representing the lowest order of perturbation theory

that satisfactorily describes the shape of the λ dependence of the exact Exc,λ:[34]

Exc = EGGA
xc + (Ex − EGGA

x )(1− λ)n−1 (2.29)

They find that n = 4 provides calculated results that match experimental values of small

molecules (up to six atoms), n = 1 describes closed-shell ions, and n >= 4 is useful for

chemical conditions such as O3, where there are degenerate or nearly-degenerate ground

states.[34] However, perhaps realizing that their methodology only leads to less than sat-

isfactory results for other solids, they then relax the requirement that n must be an integer

and permit it to be any value greater than 1. This leads to continuous values of a0, but as

they note, is a speculative construct.[34] Thus, a0 becomes an arbitrary value. Unlike the

arbitrary application of U for known substances, a single value of a0 should be applicable

to those types of compounds that maintain similar spatial and chemical environments, as

Perdew, Burke and Ernzerhof showed for simple molecules or as should be expected for
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iso-electronic structures in the same phase space, with phase defined as atoms located at

the same Wyckoff positions of the same space group.

The GW Method.

The GW method is a many-body perturbation approach to solving valence and conduction

eigenvalue energies that seeks to improve on the Kohn-Sham single-body non-interacting

approach which is only valid for valence energies. The term “GW ” stands for the com-

bination of techniques its founder, Hedin, used in 1965 to overcome K-S limitations: the

“GW ” is the product of the “G”, a Green’s function that describes quasi-particle (in this

case electrons) energies, and the screened Coulomb interaction, W .[36] The Green’s func-

tion describes the probability over time that a hole or electron will propagate to a different

energy level. The many-body energy equation contains the same type and number of terms

as the K-S equation, but, importantly, the wavefunctions now embody many-body interac-

tions, and the K-S exchange-correlation energy is now termed a self-energy term defined

by the GW product – it is still similar in purpose to EKS
xc , but now affected by multiple

exchange-correlation energies of the system. In its formalism, this self energy is non-local,

non-Hermitian, and energy dependent with quasi-particle wavefunctions that are not or-

thogonal. Further, it leads to quasi-particle energies that have imaginary components.[31]

In order to overcome this imaginary aspect ofGW , certain approximation schemes have

been developed. The approximation used in this thesis is the self-consistent GW method,

sc−GW . In sc−GW , the complete dynamical matrix is constrained such that it becomes

static and Hermitian. The calculation proceeds from the LDA eigenvector wavefunctions

as opposed to the many more numerous wavefunctions from the pseudopotentials for all

of the electrons of each atom of the system, and iterates to a self-consistent solution of

many-body wavefunctions and energies.[37]
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2.4.2 Phonons.

Quantized lattice vibrations, due to temperature, are called phonons. Phonon frequencies

are an easily attainable DFT matrix quantity. The 3N matrix of frequencies, where N

represents the number of atoms in the system, are simply the second derivative of the total

energy with respect to small perturbations of each nuclei in the unit cell, at any point in the

Brillouin zone. There are higher terms present in the perturbation, but these are ignored

so that harmonic formulations and approximations can be made. Though simply attained,

phonons have a two-fold importance.

First, though the Kohn-Sham calculation leads to an energy minimum in terms of nu-

clei locations, it is important to assess whether this energy minimum represents, in the

least, a metastable state, or if, in fact, other configurations similar to the one found are

more stable. If the K-S calculated state produces a phonon frequency matrix in which the

second derivatives with respect to the perturbations are all positive, then that state is sta-

ble in the neighborhood of the nuclei locations. However, if a second derivative of energy

with respect to the perturbation is negative, then there exists a more stable configuration

somewhere in that neighborhood.

If the frequency matrix elements are all positive, (and hence the structure is stable),

then a second reason to define phonon frequencies is to determine the energy contribution

of lattice vibrations, because a DFT calculation alone only determines the enthalpy of the

lattice at 0 K. Consider Figure 1.4 and Figures 1.7-1.9. The four structures depicted are

common motives of ABX3 compounds. Figure 1.7 is arranged in a manner agreeing with

the Pbcm space group and has a structural motif of single chains of corner-connected BX4

tetrahedra. The image in Figure 1.9 belongs to P63/mmc space group and has face-sharing

BX6 octahedra. The arrangement of atoms in Figures 1.4 and 1.8 are of structures in the

Pnma space group, yet they are greatly different: the one in Figure 1.8 has a structural

motif of double rows of edge-connected BX6 octahedra, while the arrangement in Figure
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1.4 has corner-connected BX6 ocathedra. The different phase motifs stem from the dif-

ferent allowed Wyckoff arrangements of the atoms, and highlights the non-uniqueness of

compounds in terms of space group assignment. A DFT calculation of each is only a partial

assessment of the compound’s energy in each configuration. Without calculating the zero

point of energy and the phonon contribution to energy at T > 0 K, the energy assessment

of each phase is incomplete, and determinations of which phase is more likely, at any tem-

perature, cannot be made. In the paragraphs below, the method to obtain a complete energy

assessment of a compound in a particular structural arrangement is described.

The total energy of a system of phonons, which are boson particles, is represented

as:[38]

E({nk}) =
∑
k

~ωknk (2.30)

where the nk are the number of particles with energy ~ωk, and ωk is a boson frequency.

Using the partition function of the canonical ensemble:

Q(V, T ) =
∑
nk

e−E(nk)/kBT =
∑
nk

e
∑

k(−~ωknk/kBT ) (2.31)

where T is temperature and kB is Boltzmann’s constant. Simplifying, by understanding

that the number of bosons is not conserved:

Q(V, T ) =
∏
k

( ∞∑
n=0

e
∑

k(~ωknk/kBT )n
)

=
∏
k

1

1− e−~ωknk/kBT

)
(2.32)

In the canonical ensemble, the Helmholtz free energy is defined as F = -kBT ln(Q(V, T )).
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Thus, the boson contribution to energy is:

F (V, T ) = kBT
(∑

k

ln(1− e(−~ωknk/kBT )
)

(2.33)

The lattice contribution to energy,E(nj), for a crystal that hasN atoms, each with three

normal modes of translational freedom, is:

E({nj}) =
3N∑
j=1

~ωj(nj +
1

2
) (2.34)

where the nj are the number of particles in the jth state. This equation separates into two

terms. The first term is represented as a constrained form of (2.33), while the second term is

a constant applicable at all temperatures and is called the zero-point vibrational energy:[38]

Fvib(V, T ) = kBT
( 3N∑
j=1

ln(1− e(−~ωjnj/kBT )
)

+
3N∑
j=1

~ωj
2

(2.35)

where, strictly, ωj = ωj(V ). The dependence on volume is due to the expansion of the crys-

tal with increasing temperature (for most solids). In the less strict harmonic approximation

assumption, the phonon dependence on volume is dropped. Ashcroft and Mermin note that

computational schemes that include phonon frequency dependence on volume change due

to temperature change are suspect, more so if one considers that it is not even clear whether

or not the phases investigated are isotropic.[20] Indeed, even one of the calculation engines

(ABINIT) used for calculations in this thesis, states that their algorithmic design for com-

putation of thermodynamic properties represents the least stable and clean aspect of their

product.[27] Therefore, though phonon frequencies must depend on nuclei locations that
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change with lattice responses to temperature, the effects will be included as anharmonic

responses, and beyond the scope of this thesis.

A structure’s Helmholtz free energy is then the summation of the energy determined at

0 K from DFT and (2.35). A structure’s Gibbs free energy can be represented in terms of

the Helmholtz free energy asG =U - TS + PV = F + PV . In terms of the total differentials

of G and F , the relationship between the two energies is:

dG = dF + PdV + V dp (2.36)

In a constant pressure environment, V dp = 0. Further, though G includes PV , the

difference in the PV term between normalized unit cells, (cells with the same number of

atoms), of the same chemical formula are on the order of 0.0005 eV/unit cell at atmospheric

pressure. This difference is even smaller than the accepted limits of error resulting from

EDFT of 0.001 eV/unit cell. Therefore, when comparing energetics among phases of a

particular chemical formula, the PV term is ignored as well.
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Chapter 3

Density Functional Theory Study Of

Hypothetical PbTiO3-Based Oxysulfides

Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I. Grinberg, J. W. Bennett, M. Ruten-

berg Schoenberg, and A. M. Rappe, Physical Review B., 89, 195202, 2014. Copyright 2014

by the American Physical Society.

3.1 Abstract

Using density functional theory (DFT) within the local density approximation (LDA), we

calculate the physical and electronic properties of PbTiO3 (PTO) and a series of hypothet-

ical compounds PbTiO3-xSx x = 0.2, 0.25, 0.33, 0.5, 1, 2, and 3 arranged in the corner-

sharing cubic perovskite structure. We determine that replacing the apical oxygen atom in

the PTO tetragonal unit cell with a sulfur atom reduces the x = 0 LDA calculated band gap

of 1.47 eV to 0.43 - 0.67 eV for x = 0.2 - 1 and increases the polarization. PBE0 and GW

methods predict that the compositions x = 0.2-2 will have band gaps in the visible range.

For all values of x < 2, the oxysulfide perovskite retains the tetragonal phase of PbTiO3,
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and the a lattice parameter remains within 2.5% of the oxide. Thermodynamic analysis

indicates that chemical routes using high temperature gas, such as H2S and CS2, can be

used to substitute O for S in PTO for the compositions x = 0.2 - 0.5.

3.2 Introduction

In this paper, we use first principles calculations to study the physical and electronic prop-

erties of hypothetical polar oxysulfide perovskite solid solutions of the chemical formula

PbTiO3-xSx. We seek to identify new photovoltaic materials for efficient solar energy con-

version. Photovoltaic materials must have band gaps in the range 1.1 - 2 eV to provide

strong light absorption and energy conversion. The best single-junction materials, such as

silicon, CdTe, and copper indium selenide, exhibit gaps near the Shockley and Queisser

(SQ) detailed balance model optimal value of 1.3 eV. Photons with energies less than the

band gap will not promote electrons to the conduction band, while electrons absorbing

photons with energies greater than the conduction band minimum will lose energy as the

electrons decay to the band edge. To surpass the single-material SQ limit, photovoltaics

with a range of band gaps are arranged in multi-junction solar cells, e. g. CuInxGa1-xSe2

and InGaP/GaAs/InGaAsN/Ge.[39, 40] In addition to a good match between the band gap

and the solar spectrum, excited carrier recombination must be prevented in order to obtain

the photocurrent. This is typically done by an electric field generated at a p−n junction that

moves the holes and the excited electrons in opposite directions. Another recently studied

method has been to use ferroelectric materials, for which the strong inversion symmetry

breaking and spontaneous polarization give rise to the separation of charge carriers in the

bulk of the material (bulk photovoltaic effect). The known perovskite BiFeO3[41] and new

materials including [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x,[8] KBiFe2O5,[42] and Bi4Ti3O12-

LaCoO3[43] are examples of polar oxide materials with band gaps in the visible range in
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which the bulk photovoltaic effect has been observed.

We choose the classic PbTiO3 (PTO) ferroelectric perovskite oxide as a basis for al-

loying with sulfur on the oxygen sites. PTO is highly polar (P = 0.88 C/m2) and has

an indirect band gap of ≈3.45 - 3.6 eV.[44-47] Excitation across the gap is essentially a

charge transfer from the O 2p orbitals to the Ti 3d orbitals. Therefore, substitution of the

more electronegative oxygen by the less electronegative sulfur should lead to a lower band

gap, while possibly preserving the ferroelectricity. The substitution of oxygen by sulfur or

vice versa in order to tailor band gaps is well documented in other materials.[12-14] Unlike

replacement of oxygen with nitrogen or titanium with nickel to lower band gaps,[7, 48] the

substitution of isovalent sulfur in place of oxygen does not require vacancies to preserve

charge neutrality.

While simple corner-sharing oxysulfide perovskites have yet to be reported in the litera-

ture, closely related and more complicated oxysulfides do exist. They have been reported as

either Ruddlesden-Popper phases[49-51] or as layered materials with perovskite-like oxide

layers alternating with either antifluorite or rock salt sulfide layers.[52-55] Thus the cur-

rent work is novel in that it explores the feasibility of synthesizing a purely corner-sharing

perovskite phase.

3.3 Methodology

All density functional theory (DFT) calculations in this study are performed using the local

density approximation (LDA). The DFT packages we use in this study are ABINIT[56]

and Quantum Espresso.[57] The atoms are represented by norm-conserving optimized

pseudopotentials[58] generated using OPIUM, [59] and all, except oxygen, are further re-

fined using the designed non-local methodology.[30] We pseudize the following orbitals:

2s and 2p for O; 3s, 3p, and 3d for S; 5d, 6s, and 6p for Pb; and 3s, 3p, 3d, 4s, and 4p for
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Ti. The pseudopotentials are optimized for a 50 Ry plane-wave cutoff, and all solid-state

calculations use this value.

ABINIT is used for relaxation calculations, in order to determine unit cell parameters,

atomic positions, and relative energies. For the standard perovskite unit cell of five atoms,

a Monkhorst-Pack (MP) k-point grid[60] of 8×8×8 is used (though results using a 4×4×4

grid are quite similar to those using an 8×8×8 grid). For calculations requiring a doubling

of the unit cell in a Cartesian direction, the MP grid is set to 4 for that dimension.

In order to determine the preferred location of S atoms for PbTiO3-xSx with x = 1 and

x = 2, we perform two sets of calculations. In the first set, a five-atom unit cell is used.

We evaluate all the possible locations of a minority species anion in a tetragonal perovskite

cell. We also consider the paraelectric, cubic perovskite and displace the anions above and

below an imaginary center plane that intersects four of the six anions of the octahedron.

For initial cell parameters, we use two strain states as well: a compressed case and an

expanded case. For the compressed case, the cell parameters are a = 3.87 Å and c = 4.07 Å

for the tetragonal cells and a = 4.09 Å for the cubic cells. (As will be shown later, the cell

parameters used for the tetragonal/compressed case were calculated from a five-atom PTO

relaxation.) The a lattice parameter in the cubic case is determined by setting the Pb-O-

Pb face diagonal length equal to twice the sum of the ionic radii of a 12-coordinated Pb2+

(1.49 Å) and a six-coordinated O2- (1.40 Å). [61] For the expanded cells, cell parameters

are increased by a factor of 1.31, which represents the radius ratio of six-coordinated S2-

(1.84 Å) to six-coordinated O2-.[61]

For the second set of calculations, we consider ten-atom unit cells consisting of two

PTO unit cells with either the a or the c lattice parameter doubled. Ten-atom unit cells

also accommodate x = 0.5 concentrations. We evaluate all of the cases in which a S atom

may occupy any of the six O positions for the x = 0.5 system, and all of the ways that two

minority species anions may occupy the six anion locations for the x = 1 and x = 2 systems.
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The systems x = 0 and x = 3, with only one anion species, have only one configuration and

were relaxed from five-atom cubic unit cells with an initial starting a lattice parameter

derived from ionic radii sums.

In order to extend our analysis to lower concentrations of S, we create unit cells by

inserting one, two and three PTO layers into the relaxed x = 0.5 structure while keeping

the S atom confined to the (001). These compositions have x = 0.33, 0.25, and 0.2 re-

spectively. All systems are considered to be fully relaxed when successive self-consistent

iterations yield total energy differences less than 10-8 Ha/cell and atomic forces less than

10-4 Ha/Bohr. The FINDSYM package[62, 63] is used to determine the space groups

of the relaxed structures. In order to assess whether or not any of the systems prefer a

Glazer tilt system structure,[64] a set of relaxation calculations is performed on 40-atom

2×2×2 unit cells for the x = 0, 0.5, 1, 2, and 3 compositions. The starting locations

of the S atoms for x = 0.5, 1, and 2 are determined from the earlier five- and ten-atom

relaxations. Polarization calculations are carried out using ABINIT, while band gap and

projected density of states (PDOS) calculations are performed using Quantum Espresso

with 12×12×12 k-point grids. Post-DFT band gap investigation is carried out using the

PBE0[34] method as implemented in Quantum Espresso, and the GW [65] method as im-

plemented in ABINIT.[37, 66, 67] The nature of the bonding in x = 0, 0.5, 1, and 2 systems

is assessed using a Bader charge analysis package.[68, 69]
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3.4 Results and Discussion

3.4.1 Structural and electronic results for end-members PbTiO3 and

PbTiS3.

Our calculated results for the end member, PbTiO3, are in agreement with earlier published

theoretical work.[70-72] The relaxed lattice parameters are a = 3.87 Å and c = 4.07 Å,

yielding a c/a ratio of 1.05. We find an indirect (X-Γ) band gap of 1.47 eV and polarization

(strictly in the z direction) of 0.85 C/m2. These results, as well as all the physical and

electronic properties for PbTiO3-xSx x = 0 and x = 3 and high symmetry PbTiO3-xSx x = 0.2

- 2 are listed in Tables 3.1 and 3.2. Since the LDA calculated band gap underestimates the

experimental band gap, post-DFT methods must be applied. For PTO, we calculate a band

gap of 3.44 eV using the PBE0 method, (with the α parameter set to 0.25), and a gap of 4.10

eV by theGW method. To our knowledge, only one other theoretical study[33] has applied

the GW method to calculate the band gap in PTO and the calculations are consistent.

Since theGW result overestimates the experimental PTO band gap, we investigate whether

the semi-core states incur greater exchange-correlation errors by calculating the GW gap

without the semi-core states of Pb and Ti in the valence space. However, this leads to only

a 0.2 eV reduction in the PTO band gap. We therefore surmise that the PBE0 method is

probably a slightly better predictor of the band gap for the oxysulfide systems. We do not

use the LDA+U method, as an earlier paper reports a band gap of only 2.17 eV with this

technique.[33]

Within the cubic corner-sharing motif, PbTiS3 is found to be a a+b-b- tilt system with

a ≈ 12◦ and b ≈ 15◦, as determined from the 40-atom 2×2×2 relaxation. A further re-

laxation, this time on a standard 20-atom unit cell arranged in the Pnma structure, yields

the same structure as the 40-atom relaxation. Thus, we conclude that the ground state for

PbTiS3 arranged in the corner-sharing perovskite mode is Pnma. While the LDA elec-
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tronic structure calculations predict that it is metallic and nonpolar, the PBE0 calculated

gap is 0.86 eV. With the minimum representation for the Pnma tilt system being a 20-

atom unit cell, the GW method is not applied here as it is computationally expensive.

[33] Also, if we restrict the five atom unit cell to the P4mm space group, which is higher

in relative energy to the Pnma phase, even though an LDA band gap calculation again

shows the compound to be metallic, a gap of 1.60 eV is obtained by the PBE0 method

and a 1.19 eV gap by the GW method. With a band gap in the visible range and associ-

ated polarization stemming from its non-centrosymmetric nature, PbTiS3 arranged in the

P4mm space group has the properties required for a bulk photovoltaic effect material.

This contrasts with the low energy Pnma formation, which is centrosymmetric and thus

not suitable for bulk photovoltaic effect purposes. However, tempering these results is the

fact that PbTiS3 has not been made, and the only synthesized stoichiometries known for

the Pb-Ti-S system are misfit layered compounds with chemical formula (PbS)1.18(TiS2)

and (PbS)1.18(TiS2)0.8475.[73] In these compounds, distorted rock salt-like PbS layers are

intercalated with TiS2 edge-sharing sheets.

56



Table 3.1: Calculated structural properties for PbTiO3, PbTiS3, and high symmetry
PbTiO3-xSx x = 0.2 - 2. The c/a ratios are normalized according to the number of octahedra
in the unit cell. [Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I. Grinberg, J. W.
Bennett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical Review B., 89, 195202,
2014. Copyright 2014 by the American Physical Society.]

Unit Cell Lengths (Å)
(and Unit Cell Angles where 6= 90◦) c/a Space

x a b c Ratio Group
0 3.87 3.87 4.07 1.05 P4mm

0.2 3.86 3.86 21.70 1.12 P4mm
0.25 3.85 3.85 17.65 1.15 P4mm
0.33 3.85 3.85 13.57 1.17 P4mm
0.5 3.84 3.84 9.56 1.24 P4mm
1 3.78 3.78 5.64 1.49 P4mm
2 4.86 (α = 90.37◦) 4.86 (β = 89.63◦) 3.76 (γ=90.23◦) 0.77 P1
3 9.31 9.31 9.25 0.99 Pnma
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Table 3.2: Calculated electronic properties for PbTiO3, PbTiS3, and high symmetry
PbTiO3-xSx x = 0.2 - 2. For x = 0.5, 1, and 2, the LDA band gaps and total polarization
ranges for all ten-atom unit cells are included in parentheses. GW band gaps calculated
using pseudopotentials without semi-core states are listed in parentheses. In comparison,
the experimental band gap for x = 0 has been reported between ≈3.45 - 3.6 eV.[44-46]
[Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I. Grinberg, J. W. Bennett, M.
Rutenberg Schoenberg, and A. M. Rappe, Physical Review B., 89, 195202, 2014. Copy-
right 2014 by the American Physical Society.]

Band Gap (eV) Polarization (C/m2)
x LDA PBE0 GW P x P y P z P
0 1.47 3.44 4.10 (3.90) - - 0.85 0.85

0.2 0.45 2.08 - - 0.87 0.87
0.25 0.46 2.11 - - 0.87 0.87
0.33 0.48 2.12 - - 0.88 0.88
0.5 0.60 (0.60 - 0.89) 2.19 2.69 (2.50) - - 0.92 0.92 (0.92 - 1.13)
1 0.67 (0.14 -1.15) 2.25 2.60 (2.41) - - 1.11 1.11 (0.71 - 1.13)
2 0.33 (0.05 - 1.18) 1.77 1.38 (1.33) 0.24 0.23 0.27 0.43 (0.28 - 0.95)
3 0.00 0.86 1.19a - - - -
aBand gap evaluated for a five-atom unit cell arranged in the P4mm space group.
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3.4.2 Structural Properties of PbTiO3-xSx.

We find that S substitution x = 0.5 and 1 preserves the tetragonal P4mm structure and

leads to a small decrease of the a lattice constant and a considerable increase in the c lattice

constant and the c/a ratio, reaching c = 5.64 Å and c/a = 1.49 for x = 1. (See Table 3.1.)

For x = 0.5, the two octahedra differ, with one having c = 4.58 Å and the other having c

= 4.98 Å, as a result of different chemical environments. The large tetragonality values

are in agreement with octahedral cage sizes that have been observed experimentally in

oxysulfides. For example, in A2CoO2Cu2S2 (A= Sr, Ba) solid solutions, Smura et al.[55]

have found c/a ratios ranging between 1.52 and 1.66 for CoO4S2 octahedra. Similarly,

Ishikawa et al.[49] have found an average c/a ratio of 1.6 for Ln2Ti2O5S2 (Ln = Pr, Nd,

Sm, Gd, Tb, Dy, Ho, Er).

The preferred location for the substituent S atoms is apical for x = 0.5 and 1, such that

the B-S-B bonds are along the c-axis. This location for the S atom in x = 1 and x = 0.5 has

been observed experimentally in layered oxysulfide perovskites where the S-M -S bonds in

MO4S2 single octahedra[55] and the S-M -O-M -S bonds for pairs of octahedra of the form

MO5S connected by an oxygen,[49] are linear along the c axes of elongated octahedra. We

do not observe any octahedral tilting for these structures. The structures for x = 0, 0.5, 1,

and 2 are shown in Figure 3.1.
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a. b. c. d. 

Pb 

Ti 

O 

S 

Figure 3.1: Relaxed structures of PbTiO3-xSx: (a.) two unit cells of x = 0, (b.) one unit
cell of x = 0.5, (c.) two unit cells of x = 1, and (d.) one unit cell of x = 2. The view is of the
ac-plane. All dimensions and ionic radii are to scale, except the Ti ions which are enlarged
for clarity. Images created with VESTA.[2] [Reprinted from J. A. Brehm, H. Takenaka, C.
W. Lee, I. Grinberg, J. W. Bennett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical
Review B., 89, 195202, 2014. Copyright 2014 by the American Physical Society.]
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Relaxation calculations on compositions x = 0.2, 0.25, and 0.33 show that the a lattice

parameters are within 0.5% of each other and the x = 0 and x = 0.5 compositions, the c

lattice parameter increases by multiples of the length of the PTO unit cell, 4.07 Å, as one

would expect, and the high symmetry P4mm phase is maintained.

The PbTiO3-xSx compositions x = 0 - 1 have very similar cation-anion bond lengths.

These are reported in Table 3.3. Indeed, all Ti-O lengths are nearly equal to the PTO

values. In order to corroborate our Pb-S bond length results, we have also calculated the

lattice constant and Pb-S bond length for rock salt PbS. Our PbS lattice constant of 5.85 Å is

in excellent agreement with the previously reported theoretically calculated values.[74, 75]

Also, our Pb-S bond length of 2.93 Å is within 0.02 Å of the values reported in these works.

Thus, the compositions PbTiO3-xSx with x = 0 - 1 form crystals that maintain the nearest

neighbor (NN) cation-anion bond lengths of PTO and rock salt PbS.
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Table 3.3: Selected cation-anion bond lengths and z-displacements for PbTiO3-xSx x = 0
- 1. All lengths in Å. NN = nearest neighbor. For x = 0.20, 0.25, and 0.33, average values
for Pb - NN apical O, Ti - equatorial O, and Ti - NN apical O are tabulated. Pb - S and Ti
- NN S average values are also listed. ∆z is defined as the separation in the z coordinate
between two ions. [Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I. Grinberg, J.
W. Bennett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical Review B., 89, 195202,
2014. Copyright 2014 by the American Physical Society.]

Pb - NN apical O Pb-S Ti - equatorial O
x bond length ∆z bond length ∆z bond length ∆z
0 2.76 0.39 - - 1.96 0.30

0.20 2.76 0.40 2.92 1.05 1.95 0.32
0.25 2.75 0.40 2.92 1.06 1.95 0.32
0.33 2.75 0.40 2.92 1.06 1.95 0.33
0.50 2.75 0.41 2.93 1.10 1.95 0.35

1 - - 2.95 1.24 1.95 0.48
Ti - NN apical O Ti - NN S

x bond length bond length
0 1.78 -

0.20 1.78 2.31
0.25 1.78 2.31
0.33 1.78 2.31
0.50 1.77 2.30

1 - 2.25
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The results for the x = 2 composition differ markedly from the x = 0.5 and x = 1

systems. The x = 2 composition has very low symmetry (P1), c/a < 1, and lattice angles

that all differ from 90◦ by up to 0.37◦. Relaxation of the various ten-atom unit cells shows

the minority species anions, in this case O, again prefer to be located trans to each other,

forming ≈180◦ O-Ti-O angles. Relaxation of the 40-atom 2×2×2 unit cell does not result

in any tilting.

Further analysis of the atom locations in the x = 2 unit cell shows significant distinctions

from the x = 0 - 1 compounds. First, the anion displacement is no longer only in the z

direction. The S anions are displaced from high-symmetry positions up to ≈0.08 Å in

the x and y directions, and the O anion is displaced 0.04 Å in both x and y. Moreover,

while the short Ti - apical O bond length is 1.75 Å, which is almost identical to that for

compositions x = 0 - 1, (see Table 3), the displacement of the Ti atom relative to the

equatorial anions is much reduced relative to those other compositions. The x = 0 - 1

compositions have displacements strictly in the z direction with magnitudes monotonically

increasing from 0.30 to 0.48 Å; however the x = 2 system shows displacements in all three

Cartesian directions: 0.08 Å in x, 0.02 Å in y, and 0.20 Å in z. This leads to a total

displacement magnitude 0.22 Å. Unlike the x = 0 - 1 compounds, the Pb sublattice only

displaces by a relatively smaller 0.07 Å in the z direction, but it also displaces 0.19 Å in

the x and y directions. The total displacement of 0.27 Å is smaller than the 0.39 Å Pb - O

z displacement in PTO and much smaller than the Pb - S displacements in the compounds

with x = 0.2 - 1 (which are greater than 1 Å). The offset of Pb in the xy plane leads to

two distinct Pb - S bond lengths: one that averages 2.90 Å, and one much larger, averaging

3.21 Å. The smaller Pb - S bond length is in agreement with the data for the x = 0.2 - 1

compounds, and is only 0.03 Å smaller than the calculated Pb - S bond length for rock salt

PbS. The Ti - S bond lengths range from 2.40 Å to 2.48 Å. These bond lengths are basically

the sum of the ionic radii of Ti (0.605 Å) and S (1.84 Å).
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3.4.3 Electronic properties of PbTiO3-xSx.

Table 3.2 clearly shows that as x increases from 0 to 1, P = Pz, and P increases mono-

tonically from 0.85 to 1.11 C/m2. For x = 2, P is reduced to 0.43 C/m2, with significant

P components in each Cartesian direction of ≈0.25 C/m2. This suggests a morphotropic

phase boundary between x = 1 and x = 2, potentially leading to high piezoelectricity. The

reduced P for x = 2, with significant components in all three Cartesian directions, is con-

firmed by the smaller displacement vectors for Pb and Ti as described earlier.

As shown in Table 3.2, the LDA band gap results are all in the infrared range for x = 0.2

- 2. Each gap is X-Γ indirect, as seen experimentally for PTO. Band structure diagrams for

x = 0 and x = 1 are shown in Figure 3.2. The narrowing of the band gap for x = 1 relative

to x = 0 is evident. The conduction bands are moved up and the valence bands are moved

down to correct to the PBE0 values, due to the well-known LDA underestimation of Eg.

When PBE0 is applied to x = 0.2 - 2, and GW is applied to x = 0.5, 1, and 2, the calculated

gap magnitudes are well within the visible range.

The ranges of LDA band gap and polarization values for all relaxed ten-atom config-

urations for x = 0.5, 1, and 2 are also included in Table 3.2. However, except for one

configuration, the likelihood of achieving a different configuration, (and hence the associ-

ated electronic properties), than the high-symmetry one, is very small, as they have relative

energies greater than 0.27 eV/five-atoms higher than the respective ground state. The one

case, with S atoms sharing the edge of an octahedron in x = 1, has a relative energy 0.05

eV/five-atoms higher than the high symmetry ionic configuration and still has a significant

LDA band gap (1.15 eV) and polarization (0.83 C/m2). Therefore, we expect that replacing

O with S in these concentrations will lead to materials suitable for bulk photovoltaic use.
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Figure 3.2: LDA band structure with the conduction bands moved up and the valence
bands moved down to portray the PBE0 band gap: (a.) PbTiO3 (x = 0) and (b.) PbTiO2S
(x = 1). [Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I. Grinberg, J. W. Ben-
nett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical Review B., 89, 195202, 2014.
Copyright 2014 by the American Physical Society.]
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Atom-projected density of states calculations for x = 0.20, 0.25, and 0.33 are remark-

ably similar. A representative diagram is shown for x = 0.25 in Figure 3.3. The densities of

states show that the reduced band gap relative to PTO is a result of the higher energy S 3p

orbitals relative to O 2p orbitals. Note that the influence of S on the other atoms is limited

to its nearest neighbors. Specifically, the top of the valence band has contributions from the

3d orbitals of the NN and second NN Ti atoms, the 6s and 6p orbitals of the NN Pb atom,

and the 2p of the NN and second NN O atoms.
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Figure 3.3: Orbital-projected density of states plots for PbTiO3-xSx, x = 0.25, with the
conduction states moved up and the valence states moved down to portray the PBE0 band
gap of 2.11 eV. NN and 2nd NN stand for nearest neighbor and second nearest neighbor
of the species with respect to S. [Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I.
Grinberg, J. W. Bennett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical Review B.,
89, 195202, 2014. Copyright 2014 by the American Physical Society.]
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Bader charge analysis can be used to estimate the ionic charges of atoms in molecules

and compounds. The Bader charge analysis results, from calculations performed on wave-

functions generated with the post-DFT PBE0 method, are shown in Table 3.4. These data

show that as the sulfur concentration increases, there is a monotonic decrease in the ionic

charges of the cations and anions (with small exceptions) for the x = 0, 0.5, 1, and 2 compo-

sitions, as the compounds become less ionic and more covalent. This is due to the S being

less electronegative than O. Further, in x = 0.5, all atomic species closer to S display ionic-

ities smaller than their respective counterparts further away from S. Bader charge analysis

can also be used to confirm trends in band gaps of solutions. In general, our Bader charge

analysis results suggest that increasing the concentration of S will lead to compounds with

smaller band gaps through reduced overall ionicity. However, on increasing S from x =

0.5 to x = 1, the PBE0 band gaps are 2.19 and 2.25 eV but the overall ionicities are 3.54

and 3.46 . An examination of PDOS alleviates this inconsistency and suggests a different

correlation between ionicity and band gap. In x = 0.5, the PDOS indicates that electronic

states of the NN Ti to S occupy the conduction band edge, while the other Ti (in x = 0.5)

has conduction band states that are approximately 0.015 eV higher in energy. This NN Ti

to S also has a smaller ionicity of 2.16 as compared to the other Ti (in x = 0.5) which has an

ionicity of 2.26. More importantly, the ionicity of this NN Ti to S (in x = 0.5) has a smaller

ionicity than the Ti to S in x =1 by 0.03 units. Thus, these data indicate that the relevant

correlation is between NN Ti ionicity and band gap, since the orbitals of these atoms set

the edge of the conduction band.
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Table 3.4: Bader charge analysis results for x = 0, 0.5, 1, and 2. For x = 0.5, two data
entries are given per element: the ionicity value for those atoms farther away from the S
atoms is listed first. The summation of cation charges (or negative anion charges) per five
atoms is represented by

∑
iCi = -

∑
iAi. [Reprinted from J. A. Brehm, H. Takenaka, C.

W. Lee, I. Grinberg, J. W. Bennett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical
Review B., 89, 195202, 2014. Copyright 2014 by the American Physical Society.]

x
Species 0 0.5 1 2

Pb 1.43 1.39, 1.26 1.27 1.13
Ti 2.31 2.26, 2.16 2.19 2.05

Equatorial O -1.27 -1.27, -1.19 -1.25 -
Equatorial S - - - -1.02

Apical O -1.19 -1.18 - -1.14
Apical S - -0.99 -0.97 -

Charge sum 3.73 3.54 3.46 3.18
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3.4.4 Formation energy results for replacing O with S in PbTiO3

Our literature review finds that no PbTiO3-xSx have been made. Thus, in this section, we

evaluate whether such synthesis is energetically feasible. We consider replacing O with S

via gaseous reagents. While several experimenters have used H2S and CS2 to convert oxides

to sulfides,[76-79] Ishikawa et al. have succeeded in replacing just the apical O of the TiO6

octahedra with S to create ordered oxysulfides.[49] We calculate the standard Gibbs free

energy of reaction, ∆G0, of creating PbTiO3−xSx with x = 0.2 - 3 in the energetically

preferred configurations discussed above by comparing the sum of the G0 of the products

to that of the reactants for three different substitution scenarios:

PbTiO3(s) +
x

2
S2(g) → PbTiO3−xSx(s) +

x

2
O2(g) (3.1)

PbTiO3(s) + xH2S(g) → PbTiO3−xSx(s) + xH2O(g) (3.2)

PbTiO3(s) +
x

2
CS2(g) → PbTiO3−xSx(s) +

x

2
CO2(g) (3.3)

Here, standard state is defined as p0O2
= 1 bar = 0.987 atm. In order to compute ∆G0 we

use:

∆G0(T ) = [EDFT,solid + Fvib,solid(T ) +H0
gas − T (S0

gas)]products (3.4)

− [EDFT,solid + Fvib,solid(T ) +H0
gas − T (S0

gas)]reactants

+ ∆(pV )− T∆Sconf

where p is pressure, V is volume, and Sconf is configurational entropy. In a constant pres-

sure reaction, at 0 K and one bar, the difference in pV energy contribution of the solid

products and reactants is on the order of 1×10−5 eV/5-atom. At reaction temperatures,

the volume difference between the products and reactants is not expected to change much,
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leaving ∆(pV ) negligible, and it will not be considered further. For Sconf , only the solid

product needs to be considered as the solid reactant is a pure compound and the gaseous

species in both the reactant and product can be regulated to be predominantly the reactant

gas, as was the case in the experimental works cited above in which flowing reactant gas

was used.[79, 49] For calculation purposes, we assume an ideal solution, with no excess

free energy of mixing.

G0
solid(T ) is described as the sum of solid state DFT total energy (EDFT,solid) and the har-

monic vibrational Helmholtz free energy [Fvib,solid(T )]. The harmonic vibrational Helmholtz

free energy is the sum of the harmonic vibrational internal energy and the product of tem-

perature and the harmonic vibrational entropy:

Fvib,solid(T ) =
3N∑
s=1

{
~ωs
2

+ kBT ln
[
1− exp

(−~ωs
kBT

)]}
(3.5)

where N represents the number of atoms in the system, ωs represents a Γ-point normal

mode frequency, kB is the Boltzmann constant, and T is temperature.

For the gaseous species, the ∆G0(T ) values at finite temperatures are determined based

on their EDFT and the NIST-JANAF thermochemical tables of each species. We calcu-

late molecular total energies by summing atomic energies obtained from spin polarized

DFT calculations and the molecular atomization energies obtained from NIST.[80] Vi-

brational free energies of the gaseous species are determined using frequencies from the

NIST-JANAF thermochemical tables. As shown in Table 3.5, our calculations show that in

the temperature range 900 - 1300 K, replacing O with S in PTO is energetically favorable

in CS2(g) and H2S(g) environments for x = 0.2 - 0.5 at atmospheric pressure. At 1300 K,

S2(g) can be used to substitute O for S for x = 0.2 and 0.25.
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Table 3.5: ∆G0(T ) (eV/5-atom PTO unit cell) calculations for various oxysulfide com-
positions formed by replacing O with S in PTO using the reactant indicated at 900, 1100,
and 1300 K. [Reprinted from J. A. Brehm, H. Takenaka, C. W. Lee, I. Grinberg, J. W. Ben-
nett, M. Rutenberg Schoenberg, and A. M. Rappe, Physical Review B., 89, 195202, 2014.
Copyright 2014 by the American Physical Society.]

H2S CS2

x 900 K 1100 K 1300 K 900 K 1100 K 1300 K
0.2 -0.26 -0.40 -0.54 -0.35 -0.49 -0.63
0.25 -0.20 -0.33 -0.47 -0.31 -0.44 -0.58
0.33 -0.10 -0.21 -0.34 -0.25 -0.37 -0.49
0.5 0.11 0.01 -0.07 -0.12 -0.22 -0.31
1 0.74 0.74 0.74 0.29 0.28 0.28
2 1.08 1.01 0.95 0.17 0.10 0.02
3 1.81 1.74 1.66 0.46 0.36 0.26

S2

x 900 K 1100 K 1300 K
0.2 0.04 -0.10 -0.25
0.25 0.17 0.04 -0.10
0.33 0.39 0.27 0.14
0.5 0.85 0.75 0.65
1 2.24 2.21 2.19
2 4.03 3.94 3.85
3 6.24 6.13 6.00
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3.5 Conclusions

We have shown that for the perovskite structure evaluated in ten-atom unit cells, the lowest

energy state of PbTiO3-xSx x = 0.5, 1, and 2 is tetragonal with the minority species atoms

located on apical sites of the octahedra. The resulting structures for x = 0.5 and 1, as well

as for x = 0.2, 0.25, and 0.33, are tetragonal with a lattice parameters within 2.5% of the

parent, PbTiO3. Our results also show that the use of CS2(g) and H2S(g) to replace O with

S in PTO is a viable method to synthesize the compounds with x = 0.2 - 0.5. With respect

to electronic properties, the polarization values of the x = 0.2 - 1 materials are greater than

that of the parent PTO and increase with increasing S concentration. The band gaps of the

x = 0.2 - 2.0 systems were evaluated by the post-DFT method of PBE0, and, for x = 0.5, 1

and 2, by the GW method as well, and found to be in the visible range. Thus, PbTiO3-xSx

x = 0.2 - 2 are predicted to have significant polarization and low band gaps, and should be

considered solar bulk photovoltaic material candidates.
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Chapter 4

First-Principles Calculation of the Bulk

Photovoltaic Effect in the Polar

Compounds LiAsS2, LiAsSe2, and

NaAsSe2

Work completed in collaboration with S. M. Young, F. Zheng, and A. M. Rappe. Submitted

for peer review to the Journal of Chemical Physics on August 12, 2014.

4.1 Abstract

We calculate the shift current response, which has been identified as the dominant mech-

anism for the bulk photovoltaic effect, for the polar compounds LiAsS2, LiAsSe2, and

NaAsSe2. We find that the magnitudes of the photovoltaic responses in the visible range

for these compounds exceed the maximum response obtained for BiFeO3 by 10 - 20 times.

We correlate the high shift current response with the existence of p states at both the valence
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and conduction band edges, as well as the dispersion of these bands, while also showing

that high polarization is not a requirement. With low experimental band gaps of less than

2 eV and high shift current response, these materials have potential for use as bulk photo-

voltaics.

4.2 Introduction.

The bulk photovoltaic effect (BPVE) is the phenomenon in which electromagnetic radiation

imparted on a single-phase insulating or semi-conducting material leads to a zero-voltage

photo-current. Like traditional photovoltaics, (e. g. Si, CdTe, CIGS, and GaAs), in order

for a material to exhibit a significant BPVE response from sunlight and thus be useful as

a solar energy harvesting material, it needs to have a band gap in the visible spectrum (1.1

- 3.1 eV) or the near-infrared. Unlike traditional photovoltaics, which require an interface

between two materials, the BPVE is achieved through the broken inversion symmetry in a

single material.[81, 5, 3] Additionally, only materials with nonzero polarization can give a

current in response to unpolarized light, making them materials of interest for solar conver-

sion. This constraint stems from the physics of the non-linear optical process termed “shift

current,” which has been demonstrated in earlier theoretical works is the dominant mech-

anism for generating the BPVE in the ferroelectrics BiFeO3, BaTiO3 and PbTiO3[4, 81];

if a material is non-centrosymmetric but possesses no polarization, then the directions of

the generated shift currents from unpolarized light will sum to zero and produce no net

current.[1] Many oxide perovskites have both of these properties, and the BPVE effect has

been realized experimentally in them.[8, 82-87]

Further, based on the data from studies on BaTiO3 and PbTiO3, it was suggested that

materials with elemental combinations conducive to covalent bonding and delocalized elec-

tronic states can lead to large shift current effects.[81] Our data also indicated that the mag-
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nitude of polarization is not simply proportional to the shift current produced.[81] These

observations have shaped our materials search. We avoid AaBbXx compounds with B-

sites that have transition metals possessing localized conduction band electronic states, and

concentrate on compounds with B-X electronegativity differences less than one. A natural

set of B-X combinations that meet these criteria are compounds with B-sites from Groups

14 and 15, and X-sites from Groups 16 and 17, except for O and F which have too high

an electronegativity to meet the covalency requirement. In order to broaden the search, we

remove the perovskite requirement of a = b = 1 = x/3.

In the current work, we calculate the BPVE of three ternary compounds that meet these

criteria: LiAsX2 (X = S, Se) and NaAsSe2. All three have been synthesized in polar mon-

oclinic space groups: Cc for the first two and Pc for the third.[16] As well, all three com-

pounds have been documented as having experimental band gaps well within the visible

spectrum: 1.60 eV for LiAsS2, 1.11 eV for LiAsSe2, and 1.75 eV for NaAsSe2.[16] These

compounds are distinguished by their one dimensional infinite As-X chains, as shown in

Figure 4.1. The chains in LiAsX2 and NaAsSe2 are different. In LiAsX2, the chain atoms

are confined to planes not containing Li, and the Li atoms arrange themselves in a nearly

square planar arrangement with the remaining non-chain X atoms. On the other hand, in

NaAsSe2, the Na atoms do not form square planar arrangements with Se. The differences

in the cation arrangements and the chain are clearly visible in Figure 4.1. Additional chain

descriptions are detailed in Bera et al.[16] A final difference between the two types of com-

pounds is that the β angles, (between the a and c lattice vectors), in LiAsS2 and LiAsSe2 are

113.12◦ and 113.21◦, while β for NaAsSe2 is 90.45◦, making this crystal nearly orthorhom-

bic. In this paper, we report the bulk photovoltaic shift current and Glass coefficient of these

materials.
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Figure 4.1: Depictions of compounds a) LiAsS2 and LiAsSe2, and b) NaAsSe2. c) As-X
chain in LiAsX2. d) As-Se chain in NaAsSe2. The VESTA graphics software package was
used to create these images.[2]
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4.3 Methodology.

We use Quantum Espresso[57] to perform density functional theory calculations with the

generalized gradient approximation on the three compounds described above. We have

found that calculations using experimental geometries, where available, allow for more

faithful reproduction of electronic properties. We use the coordinates listed in the FIZ

Karlsruhe ICSD database for LiAsS2 and LiAsSe2.[88, 89] The coordinates for NaAsSe2

are taken from the supporting information of Bera et al.[16] The results of the SCF calcula-

tion are then used to calculate the partial density of states (PDOS) and band structure, and

the wavefunctions and energies are also used as inputs for the shift current calculation. We

use the nomenclature for the high symmetry points as found in the Bilbao Crystallographic

Server to create band diagrams.[90] We use ABINIT to calculate the polarization.[56]

Norm-conserving optimized pseudopotentials[58] were created using the OPIUM software

package.[59] All calculations use a plane-wave basis set with a 50 Ry plane-wave cutoff.

As explained in detail in References [81, 5, 3] the shift current density is derived using

time dependent perturbation theory under a dipole approximation treatment of the classical

electromagnetic field. With J as the current density due to illumination with electric field

strength E, the response tensor σ is expressed as:

Jq = σrsqErEs

σrsq(ω) = πe
( e

m~ω

)2 ∑
n′,n′′

∫
dk (f [n′′k]− f [n′k])

× 〈n′k| P̂r |n′′k〉 〈n′′k| sP̂s |n′k〉

×
(
−∂φn

′n′′(k,k)

∂kq
− [χn′′q(k)− χn′q(k)]

)
× δ (ωn′′(k)− ωn′(k)± ω) (4.1)
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in which n′, n′′, and k indicate band index and wavevector, f gives the occupation, ~ωn is

the energy of state n, φn′,n′′ is the phase of the momentum matrix element between state n′

and n′′, and χn is the Berry connection for this state.

For the monoclinic space group compounds in this study, the shift current tensor is

represented in two-dimensional matrix form as:

σ =


σxxX σyyX σzzX 0 σxzX 0

0 0 0 σyzY 0 σxyY

σxxZ σyyZ σzzZ 0 σxzZ 0

 (4.2)

When the material is thick enough to absorb all the penetrating light, the Glass

coefficient[91] is used to describe the current response, and in the following we report

only the terms diagonal in the field, from which the response to unpolarized light of an

arbitrary wavevector may be determined. The absorption coefficient enters the Glass coef-

ficient expression as Grrq = σrrq/αrr, where αrr is absorption coefficient tensor. The shift

current from a thick film can be expressed as:

Jq(ω) =
σrrq(ω)

αrr(ω)

∣∣∣E0
r (ω)

∣∣∣2W = Grrq(ω)Ir(ω)W (4.3)

where Ir(ω) is intensity and W is the sample width. Since we are, at present, concerned

only with response to unpolarized light, we ignore terms off-diagonal in the electric field,

as these cannot contribute to current. To see this, we compute the general response in the

Z direction for unpolarized light with wavevector along Y . For arbitrary decomposition of
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the unpolarized light we obtain two orthogonal components

E′ = E0 [cos(θ)x̂ + sin(θ)ẑ] and

E′′ = E0 [− sin(θ)x̂ + cos(θ)ẑ]

The current generated is then

Jz = [σxxZE
′
xE
′
x + σzzZE

′
zE
′
z + 2σxzZE

′
xE
′
z] + E0 [σxxZE

′′
xE
′′
x + σzzZE

′′
zE
′′
z + 2σxzZE

′′
xE
′′
z ]

Jz =E2
0

[
σxxZ cos2(θ) + σzzZ sin2(θ) + 2σxzZ cos(θ) sin(θ)

]
+

E2
0

[
σxxZ sin2(θ) + σzzZ cos2(θ)− 2σxzZ sin(θ) cos(θ)

]
Jz =E2

0 [σxxZ + σzzZ ]

Thus, for unpolarized light, elements off-diagonal in the field will give canceling contribu-

tions.

4.4 Results and discussion.

Tables 4.1 and 4.2 present the calculated maximum shift current density response and max-

imum Glass coefficient, as well as the calculated and experimental values for the band gap,

for the three compounds, ranked by maximum shift current response. In order to show

clearly the maximum responses, we rotate the lattices of the compounds counterclock-

wise in the x′z′-plane. We define γ to be the angle between the c lattice vector and the

z-component-aligned polarization of the incoming radiation at which maximum response

occurs. These values are also listed in the table. A cartoon of the orientation for LiAsX2

(X = S, Se) is provided in Figure 4.2. The nearly orthorhombic compound, NaAsSe2, has

its maximum shift current response at γ = 0◦, while the A = Li compounds, with nearly
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identical β angles of 113.12◦ and 113.25◦, obtain maximum shift current response at γ

= 11◦. BiFeO3 serves as a benchmark having been shown both theoretically and experi-

mentally as having a maximum current density of 5×10-4 (A/m2)/(W/m2) at 3.3 eV and a

maximum Glass coefficient of 5×10-9 cm/V at 2.75 eV.[4, 92] Each of the chalcogenide

compounds in this study has at least an order of magnitude greater shift current response

and Glass coefficient magnitude at least five times larger as well.
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Table 4.1: Calculated and experimental band gaps, polarization, and lattice β angle for
LiAsS2, LiAsSe2, and NaAsSe2. Values for BiFeO3 are also reported. The experimental
band gap values for the chalcogenide compounds are from Bera et al.[16]

Lattice Band Gap Polarization
β angle Calculated Experiment P x′ P z′

Compound (◦) (eV) (eV) (C/m2) (C/m2)
NaAsSe2 90.44 1.25 1.75 -0.13 -0.06
LiAsSe2 113.12 0.77 1.11 -0.15 0.06
LiAsS2 113.25 1.07 1.60 -0.18 0.06
BiFeO3 — 2.50[4] 2.67[41] 0 0.90[93]

Table 4.2: Maximum shift current response, relative angle (γ) between the c lattice vector
of the compound and z polarization of incoming light at this maximum, and the maximum
Glass coefficient at γ for LiAsS2, LiAsSe2, and NaAsSe2. Values for BiFeO3 are also
reported.

Max. Shift Max. Glass
Current Density γ Coefficient

Compound (×10-4 (A/m2)/(W/m2)) (◦) (×10-9 cm/V)
NaAsSe2 109 0 -35
LiAsSe2 -98 11 -42
LiAsS2 -49 11 -21
BiFeO3 5[4] — 5[4]
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x'

z'

x

z

γ = 11°

Figure 4.2: Rotation of the LiAsS2/LiAsSe2 crystal in the x′z′ plane relative to incoming
light for which the shift current response is a maximum. The lattice vectors ~a and ~c are
written in terms of x′ and z′, while the response and light polarizations are in terms of x
and z. The zzZ response is maximized when the z axis is rotated clockwise by γ = 11◦

from ~c.
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Figure 4.3: Shift current responses and Glass coefficients for LiAsS2, LiAsSe2, and
NaAsSe2. The shift current responses are in the left hand column with units of ×10-4

(A/m2)/(W/m2) and the Glass coefficient responses are in the right hand column with units
of×10-9 cm/V. The response curves have been adjusted to the right by the difference in the
experimental and calculated band gaps. The legend entries are interpreted as follows: zzZ
means polarized light from zz direction inducing a current in the Z Cartesian direction.
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Figure 4.4: PDOS for LiAsS2, LiAsSe2, and NaAsSe2. For uniformity, the PDOS results
are all relative to a 16-atom unit cell.
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Figure 4.5: Electronic band structures for LiAsS2, LiAsSe2, and NaAsSe2.

85



The total shift current responses and Glass coefficients are plotted in Figure 4.3 between

0 and 3.1 eV for ABX2. On each plot, the responses are shifted to the right by the under-

estimation of the experimental band gap. As depicted, the chalcogenides all show shift

current responses for photon energies approximately 1 eV lower than the onset of the re-

sponse for BiFeO3, due to their smaller band gaps. At all energies below≈2.9 eV, LiAsSe2

has a superior shift current response and Glass coefficient to LiAsS2 and NaAsSe2. Above

≈2.9 eV, NaAsSe2 has higher responses. The responses are labeled such that the double

small letters indicate the direction of the incoming radiation and the capital letter indicates

the direction of the induced current. (The reason for the two small letters is that the BPVE

is a second-order process in the E field.) With respect to BiFeO3 and its polarization value

of 0.9 C/m2,[93] these data clearly reinforce earlier work showing again that the magnitude

of shift current is not simply correlated with magnitude of material polarization.[81]

PDOS results in Figure 4.4 show that in each of the three compounds, the valence band

edge down to -3 eV is dominated by S 3p or Se 4p states, while the conduction band up to

3 eV is dominated by the As 4p states. Thus, all electron transitions from the valence to the

conduction band are overwhelmingly p - p. Band structures in Figure 4.5 indicate that these

three compounds all have direct band gaps. The two compounds with A = Li demonstrate

significant dispersion in the conduction band. Given the relative flatness of the conduction

and valence bands in the vicinity of the band gap for NaAsSe2, one would expect the other

two compounds to have both smaller hole and electron effective masses, and hence higher

mobility. Thus, of the three compounds, we would expect LiAsSe2 to produce the most

current of the three compounds.
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4.5 Conclusions.

We have calculated maximum shift current responses in the visible range, adjusted for theo-

retical underestimation of experimental band gaps, in the range of

49-109×10-4 (A/m2)/(W/m2) for LiAsS2, LiAsSe2 and NaAsSe2. The maximum shift cur-

rent response values for LiAsS2, LiAsSe2 and NaAsSe2 represent an order of magnitude

improvement in response to visible light in comparison to BiFeO3. Glass coefficient re-

sponses are 4 - 8 times greater than that of BiFeO3. With band gaps below 2 eV, these

non-perovskite, non-oxide compounds, with smaller polarization magnitudes than other

oxide perovskites for which the BPVE has been evaluated, not only offer a higher shift

current magnitude response, but capture more of the solar spectrum than BiFeO3 as well.
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Chapter 5

The Structural Diversity of ABS3

Compounds with d0 Electronic

Configuration for the B-cation

Reprinted from J. A. Brehm, J. W. Bennett, M. Rutenberg Schoenberg, I. Grinberg,and

A. M. Rappe, Journal of Chemical Physics, 140, 224703, 2014. Copyright 2014 by the

American Institute of Physics.

5.1 Abstract

We use first-principles density functional theory within the local density approximation to

ascertain the ground state structure of real and theoretical compounds with the formula

ABS3 (A = K, Rb, Cs, Ca, Sr, Ba, Tl, Sn, Pb, and Bi; and B = Sc, Y, Ti, Zr, V, and

Nb) under the constraint that B must have a d0 electronic configuration. Our findings

indicate that none of these AB combinations prefer a perovskite ground state with corner-

sharing BS6 octahedra, but that they prefer phases with either edge- or face-sharing motifs.
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Further, a simple two-dimensional structure field map created from A and B ionic radii

provides a neat demarcation between combinations preferring face-sharing versus edge-

sharing phases for most of these combinations. We then show that by modifying the com-

mon Goldschmidt tolerance factor with a multiplicative term based on the electronegativity

difference between A and S, the demarcation between predicted edge-sharing and face-

sharing ground state phases is enhanced. We also demonstrate that, by calculating the free

energy contribution of phonons, some of these compounds may assume multiple phases as

synthesis temperatures are altered, or as ambient temperatures rise or fall.

5.2 Introduction

In a key work, Muller and Roy used the crystal chemistry method of cation-anion coor-

dination to categorize many of the compounds found experimentally in the major ternary

structural families A2BX4, AB2X4, and ABX3 known at the time of its publication in

1974.[94] In their analysis of ABX3 compounds, they constructed structure field maps for

those compounds with anions X = O, F, and Cl. These maps plot structure as a function

of A and B ionic radii and often lead to regions on the diagrams where only certain phases

have been realized experimentally. From these maps, the structures for other A and B

pairs can be predicted. Absent from their analysis is any structure field map of ABS3 com-

pounds. Indeed, very few of the compounds listed in their ABX3 section have X = S, and,

for those that do, some of these have phases that were reported as not known with certainty

(e. g. the compounds CaZrS3 and SrZrS3 synthesized by Clearfield[95]).

Since Muller and Roy’s work, the number of synthesized ABS3 compounds has in-

creased substantially; these show a distribution of structural motifs that is in stark contrast

to their ABO3 analogs. Most ABO3 compounds show networks of corner-sharing BO6 oc-

tahedra and are commonly called perovskites. Several form in the ilmenite phase, in which
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layers of edge-connected AO6 octahedra are connected by faces and corners to layers of

edge-connected BO6 octahedra. As well several other ABO3 do not have any corner-,

edge-, or face- sharing designation, but are instead distinguished by BO3 B = B, C, N, S,

Cl, Br, and I anionic complexes. Pyroxenes are also a less common, but still noteworthy,

subclass of ABO3 types, in which BO4 tetrahedra are corner-connected. Only a couple

of ABO3 have been found in phases with solely face-sharing or edge-sharing BO6 octa-

hedral motifs. In contrast, ABS3 compounds are observed with networks of either solely

corner-, edge-, or face-sharing BS6 octahedral motifs. For example, BaZrS3 and CaZrS3

form as corner-sharing perovskites; PbZrS3 and TlTaS3 form the edge-sharing NH4CdCl3

phase; and BaTiS3, BaVS3, and BaNbS3 form face-sharing structures. Further, they are not

known to form pyroxenes and there are only two instances listed in FIZ Karlsruhe ICSD

database in which ABS3 have anionic complexes with the B mentioned above in ABO3:

RbBS3 and TlBS3.[88, 89] They do not form the layered ilmenite phase either, but there

are near stoichiometric compositions of ABS3 (denoted as misfit sulfides) with sheets of

edge-sharing BS6 octahedra sandwiching incommensurate rock salt-like AS layers. Two

examples of misfit layered compounds are (SnS)1.12TiS2 and (PbS)1.18TiS2.

Unlike their ABO3 analogs, ABS3 compounds are not neatly classified by the Gold-

schmidt tolerance factor,[17]

t =
rA + rX√
2(rB + rX)

(5.1)

where the various r represent the ionic radii of the constituent species. A t = 1 indicates

ideal packing in the cubic perovskite structure. As shown by Woodward for ABO3, the

corner-sharing perovskite phase is stable for ≈0.95 < t < 1.05, with most octahedral tilts

being observed for t < 1, and most untilted structures being realized for t > 1.[96] Coupled
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corner- and face-sharing phases (e. g. SrMnO3 and BaRuO3) begin to form when t > 1.04,

and completely face-sharing phases with no corner-sharing character form when t > 1.10

(e. g. BaMnO3). The solely edge-sharing phase is rare in ABO3 according to Goodenough,

and he lists just a single case in his extensive review of ABO3 compounds: RbNbO3 with t

= 1.085.[97] The ilmenites form with t <≈ 0.8. Except for one or two cases, the pyroxenes

and those ABO3 compounds with BO3 anionic complexes form with t greater than those

of the corner-sharing perovskites. Furthermore, except for a few compounds with B = S or

Cl, those compounds with anionic complexes having B = B, C, N, S, or Cl, have t factors

strictly greater than those of solely face-sharing structures. However, in the case of ABS3,

just for the compounds listed above, overlapping ranges are obtained: 0.88 < t < 0.95 for

corner-sharing structures, 0.92 < t < 1.01 for edge-sharing structures, and 0.98 < t < 1.03

for face-sharing structures.

In the early 1980s, Pettifor developed structure field maps in a different way from

Muller and Roy. Instead of using the ionic radii for the abscissa and the ordinate, he defined

a chemical scale based on the results of phase groupings of 574 binary compounds.[98] The

elements, from hydrogen through the actinides, were scaled in such a manner that the result-

ing list also mirrored, to a large extent, an ordering of the elements by electronegativity.[99]

In 1988, he applied his mapping method to various ternary formula families including

ABS3 compounds.[100] However, unlike the Muller and Roy maps of ABX3 X=O, F, and

Cl, Pettifor’s map did not lead to a good demarcation between edge-sharing compounds and

corner-sharing ones. Furthermore, if edge-sharing compounds not included in his figure

(such as PbSnS3, BaSnS3, PbZrS3, and SnZrS3) are also considered, demarcations between

phases of different motifs becomes even more blurred. Finally, the discovery of the stable

edge-sharing phase of SrZrS3 by Lee et al.[101] in 2005 also diminishes the distinction

between edge- and corner-sharing regions of his map.

In the current paper, we investigate the disagreement between t factor expectations and
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experimental phase results in ABS3 and develop a methodology for predicting the ground

state structures of ABS3 compounds and energetically competitive crystal structures that

could be reasonably stabilized. We also calculate the local density approximation (LDA)

band gap for the ground state phase and these alternate phases to highlight the structure-

property differences.

5.3 Methodology

In order to determine the ground state structural tendencies of ABS3 compounds, we first

construct a sample subset of 20 compounds. The A-sites considered are the Group 1 el-

ements K, Rb, and Cs, the Group 2 elements Ca, Sr, and Ba, the Group 13 element Tl,

the Group 14 elements Sn and Pb, and the Group 15 element Bi. To focus the study, Pe-

riod 4 and 5 B-site cations are chosen such that the electron configuration is d0: Sc, Y, Ti,

Zr, V, and Nb. While no combinations of Group 1 or Tl A-sites for ABS3 are known to

exist, (except for TlTaS3 with Ta outside the scope of this study), they are considered as

interesting extensions to various BaBS3 that do exist: all are as large or larger than Ba2+ in

12-fold coordination. Further, ABX3 oxides and halides with A = K, Rb, and Cs do exist.

For each of these compounds, we then arrange the atoms into 22 phases that ABX3 com-

pounds are known to assume. Then, using density functional theory (DFT) within the LDA

approximation, we calculate the relative energy of each phase with the ABINIT computing

package.[56]

The set of 22 phases chosen includes the most common experimentally found corner-

, edge-, and face-sharing BX6 octahedral structures. The corner-sharing arrangements

chosen are the cubic Pm3m, the tetragonal P4mm, the low temperature R3mR BaTiO3

phase and two tilt systems denoted by Glazer’s naming scheme:[64] the common a+b−b−

Pnma and the low temperature a0a0c− I4/mcm of SrTiO3.
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For edge-sharing systems, we consider four phases. The first, the commonly found

NH4CdCl3 Pnma phase, has as its defining pattern double columns of edge-sharing BS6

octahedra, with each octahedron sharing edges with four others. The second is the Pna21

phase, which differs from this first phase in that atoms are displaced from high symme-

try positions preserving a screw axis symmetry along the direction of the columns. The

third edge-sharing phase is similar to the second, but displacements of atoms in the plane

perpendicular to the screw axis are permitted. This phase is well known for the family of

YScS3 Pna21 structures, a group of compounds with lanthanide element A sites in which

the edge-sharing occurs for AS6 prisms and the BS6 are corner-connected. In order to

distinguish between these two phases, we term them E Pna21 and C Pna21 respectively,

with the E (edge) and C (corner) indicating the connectivity of the BS6 octahedra. The

remaining edge-sharing phase is a very low symmetry P1 phase found for RbNbO3.

Four of the face-sharing phases we consider are based on the research of Fagot et al.

and Ghedira et al.:[102, 103] the Cmcm, the C2221, the Cmc21, and the P63/mmc. Like

all face-sharing phases, they have separated single columns of face-sharing octahedra. The

first three have an orthorhombic lattice. Cmcm has B cations occupying high symmetry

coordinates (0 and 0.5) in all three Cartesian directions leading to collinear B cations in

the columnar direction; in C2221, the B cations are non-collinear and zigzag about one of

the directions perpendicular to the columns; and in Cmc21, the B cations zigzag in both

directions perpendicular to the columns. The P63/mmc phase is similar to the Cmcm

phase in that both have two mirror planes and one glide plane. They differ in that Cmcm is

an orthorhombic crystal system with a base-centered Bravais lattice, while P63/mmc is a

hexagonal crystal system with a simple Bravais lattice. P63/mmc is classified as a minimal

non-isomorphic subgroup of Cmcm. Two other hexagonal face-sharing phases, the P63cm

and P63mc, are also evaluated. P63mc differs from P63/mmc in that the former allows B

cation shifts from high symmetry positions in the column direction. For the P63cm phase,
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there are two distinct sets of columns of face-sharing octahedra which are offset by a 1/4

unit vector in the column direction. Thus, in total, six face-sharing phases are evaluated.

The remaining seven phases considered are either one of three types of mixed motif

phases, or a corner-sharing tetrahedral phase. Three mixed motif face-sharing and corner-

sharing phases are evaluated in this study and are labelled based on the fraction of face-

sharing octahedra per unit cell as 2/3, 1/2, and 1/3. They are most easily visualized by

considering their projections on the (110) plane: the first consists of stacks of three face-

sharing octahedra joined at a corner; the second consists of stacks of two face-sharing

octahedra joined at a corner; and the third consists of alternating stacks of two face-sharing

octahedra sharing a corner with a single octahedron. Respectively, these phases are known

by their structure type names as BaRuO3, BaMnO3, and BaFeO2+x. A second type of mixed

motif phase, one with mixed edge- and corner-sharing connectivity, is also considered. The

Cmcm phase of the compound CaIrO3, (which is proposed to exist under high pressures

for MgSiO3),[104] and its subgroup Cmc21, (in which atoms are no longer confined to

high symmetry positions along the z-axis),[105] have this motif and are respectively desig-

nated MM Cmcm and MM Cmc21, with MM signifying “mixed motif”. This phase is

characterized by planes of BS6 octahedra, in which the octahedra are connected by edges

in one direction in the plane, and by corners in the other planar direction. The last mixed

motif phase considered is the ilmenite. This phase, most often characterized by smallA and

B d-metal elements in ABO3, has alternating layers of edge-sharing AO6 octahedra and

edge-sharing BO6 octahedra. The layers are connected by both face- and corner- sharing

octahedra. This phase is designatedMM Ilmen. Finally, a pyroxene Pbcm phase consist-

ing of single columns of zig-zag corner-sharing tetrahedra is included, as all compounds

with the AVO3 (A = K, Rb, Cs, and Tl) chemical formula assume this structure.

The elements used in the study are represented in the DFT calculations by non-local,[30]

norm-conserving optimized pseudopotentials[58] created with OPIUM.[59] The plane wave
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cutoff energy used for both the pseudopotentials and the DFT calculations is 50 Ry. We

vary the Monkhorst-Pack (MP) grid[60] depending on the size of the unit cell. A k-point

mesh of 16 is used along the reciprocal lattice directions for which the lattice parameter

is ≈5 Å; 8 if it is ≈10 Å, and 4 if it is ≈20 Å. All hexagonal phases use grid shifts of

0×0×0.5; all others incorporate a shift of 0.5×0.5×0.5. Where an LDA band gap calcula-

tion is required on a relaxed structure for a particular compound, an unshifted MP grid is

used. We consider a structure to be relaxed when successive self-consistent iterations yield

total energy differences of less than 10−8 Ha/unit cell and and atomic forces less than 10−4

Ha/Bohr.

For each of the lowest energy phases of the 20 compounds, and for those phases nearest

to them in terms of relative energy, we obtain the entropy contribution to the free energy

and assess compound stability by calculating the phonon normal mode frequencies at the

Γ-point and then using the equation:

Fvib,solid =
3N∑
s=1

{
~ωs
2

+ kBT ln
[
1− exp

(−~ωs
kBT

)]}
(5.2)

where N represents the number of atoms in the system, ωs represents a Γ-point normal

mode frequency in the harmonic approximation, kB is the Boltzmann constant, and T is

temperature.

For the full set of 20 A-B combinations, we develop two structure field maps to eluci-

date sulfide structural preferences with respect to A and B cation sizes: one following the

method of Pettifor; the other the method of Muller and Roy. In the case of the Muller and

Roy type map, we combine the originally separated field maps for A1+B5+X3, A2+B4+X3,

and A3+B3+X3 into one plot for brevity. For all ionic sizes, except Sn2+, we use the data

found in Seshadri[61] and Shannon.[106] We use the value of 1.4 Å for the ionic radius
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for Sn2+ which was calculated by Bennett et al.[107] We use 12-fold coordination radii

for A, and six-fold coordination radii for B and S. Using these radii, we then reassess the

Goldschmidt t factor in light of the preferred phases found.

5.4 Results

The calculated ground state phases for the 20 ABS3 compounds are plotted on the Muller

and Roy ionic radii type structure field map in Figure 5.1 and the Pettifor type structure

field map in Figure 5.2. With the exceptions of two A = Tl based compounds, the Muller

and Roy type map demonstrates a well-defined demarcation between the face-sharing and

edge-sharing ground state structures. As with the ABO3 structure maps of Muller and Roy,

the face-sharing ground state phase is found only in the regions of large rA and small rB.

Significantly, no pure corner-sharing perovskite is calculated to be the ground state phase.

Only the predicted ground state of the mixed motif corner- and edge-sharing MM Cmc21

phase for CaZrS3 has any corner-sharing character. Even for this compound, the pure edge-

sharing phase is slightly favored over the pure corner-sharing phase by 0.007 eV/20-atom

unit cell. The Pettifor map improves on the Muller and Roy type map in the sense that

plotting the ground state structure in the Pettifor map leads to no overlap between the face-

and edge-sharing ground state structures. However, in the Pettifor map (Figure 5.2) the

mixed motif corner- and edge-sharing CaZrS3 falls within the edge-sharing region.
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Figure 5.1: Structure field map of ground state ABS3 structures with various BS6 oc-
tahedral motifs. All rA assume a coordination number of 12; all rB assume a six-fold
coordination. [Reprinted from J. A. Brehm, J. W. Bennett, M. Rutenberg Schoenberg, I.
Grinberg,and A. M. Rappe, Journal of Chemical Physics, 140, 224703, 2014. Copyright
2014 by the American Institute of Physics.]
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Figure 5.2: Pettifor chemical scale structure field map of ground state ABS3 structures
with various BS6 octahedral motifs. PA and P B represent the values of the scale assigned
to each element. The value assigned to each element approximates its electronegativity.
Further details as to the construction of this scale can be found in [99]. [Reprinted from J.
A. Brehm, J. W. Bennett, M. Rutenberg Schoenberg, I. Grinberg,and A. M. Rappe, Journal
of Chemical Physics, 140, 224703, 2014. Copyright 2014 by the American Institute of
Physics.]
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Tables 5.1 - 5.4 rank, for each compound, the lowest energy phases by motif as obtained

by DFT where EDFT = H(T = 0 K). The phonon assessment at the Γ-point shows that,

except for three compounds, (ANbS3 A = K, Rb, and Tl), all of the ground state phases

are stable with respect to relaxations within the designated space groups. For the three

cases where stability within the designated space groups was not established, we lifted the

space group restriction and perturbed coordinates to obtain relaxed structures that were

evaluated as stable. These were slightly lower in energy by at most 0.009 eV/20-atom

unit cell as compared to the higher symmetry structure. These lower symmetry structures

maintain the same motif as their higher symmetry parent structures. Addition of zero-point

energies (ZPE) to EDFT does not change the rankings. The T trans column indicates the

temperature at which the ground state compound and another listed compound have the

same free energies as a result of vibrational entropy differences. For many of these phase

transitions, the LDA calculated band gaps for the different phases are significantly different,

as can be seen for the compounds with A = Ba and B = Ti and Zr.
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Table 5.1: Ranking of phases by ∆E, the total energy per 20-atom cell for the fiveABS3 B
= Ti compounds described in the text. In addition to the ground state energy phase, phases
with different BS6 motifs are also presented if they are within ≈1 eV per 20-atom cell of
the ground state. C = corner-sharing, E = edge-sharing, E/C = edge- and corner-sharing,
and F = face-sharing. The number in the parentheses of the ∆E column is the difference
in energy when the zero point of energy (ZPE) obtained from the phonon calculation is
included. Structures that were found to be unstable due to negative phonon frequencies at
the Γ-point are indicated with NP. The Ttrans column indicates the temperature at which the
different structures have the same free energy relative to the ground state, and the system is
predicted to undergo a phase transition. For some phases, there is no transition temperature,
labelled NT. LDA band gaps (Eg) are listed and labeled with an I/D = indirect/direct. Please
refer to the Methodology Section for space group nomenclature. [Reprinted from J. A.
Brehm, J. W. Bennett, M. Rutenberg Schoenberg, I. Grinberg,and A. M. Rappe, Journal
of Chemical Physics, 140, 224703, 2014. Copyright 2014 by the American Institute of
Physics.]

Motif ∆E (+ZPE) Ttrans Eg
A (Sp. Grp.) (eV/unit cell) ( K) (eV)

A2+B4+

Ti
Sn E(Pnma) 0 (0) 0

E/C (MM Cmcm) 0 (NP) —— 0
C (Pnma) 0.87 (0.84) NT 0

Pb E (Pnma) 0 (0) 0.16 (D)
E/C (MM Cmcm) 0.26 (0.23) 1150 0

C (Pnma) 0.56 (0.55) NT 0
F/E/C(MM Ilmen)) 0.76 (0.79) >4000 0.32 (I)

Ca E (Pna21) 0 (0) 0
E/C (MM Cmc21) 0.11 (0.09) 305 0

C (Pnma) 0.16 (NP) —– 0.14 (D)
Sr E (Pna21) 0 (0) 0.15 (I)

C (Pna21) 0.37 (0.38) NT 0.54 (D)
E/C (MM Cmc21) 0.51 (0.50) NT 0

Ba F (C2221) 0 (0) 0
C (Pna21) 0.60 (0.57) NT 0.38 (D)
E (Pna21) 0.92 (0.93) NT 0.41 (I)
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Table 5.2: Ranking of phases by ∆E, the total energy per 20-atom cell for the five ABS3

B = Zr compounds described in the text. The information below is described in the caption
of Table 5.1. [Reprinted from J. A. Brehm, J. W. Bennett, M. Rutenberg Schoenberg, I.
Grinberg,and A. M. Rappe, Journal of Chemical Physics, 140, 224703, 2014. Copyright
2014 by the American Institute of Physics.]

Motif ∆E (+ZPE) Ttrans Eg
A (Sp. Grp.) (eV/unit cell) ( K) (eV)

A2+B4+

Zr
Sn E (Pnma) 0 (0) 0.65 (D)

E/C (MM Cmc21) 0.54 (0.49) 1075 0.55 (I)
C (Pnma) 1.03 (0.97) 2475 0.24 (D)

Pb E (Pnma) 0 (0) 0.88 (D)
E/C (MM Cmcm) 0.167 (NP) —— 0.76 (D)

C (Pnma) 0.48 (0.44) 2180 0.53 (I)
F/E/C(MM Ilmen)) 0.90 (0.89) 3750 0.65 (I)

Ca E/C (MM Cmc21) 0 (0) 0.10 (D)
E (Pnma) 0.23 (0.24) NT 0.27 (D)
C (Pnma) 0.23 (0.25) NT 0.96 (D)

F/E/C(MM Ilmen)) 0.85 (0.89) NT 1.67 (I)
Sr E (Pnma) 0 (0) 0.24 (D)

E/C (MM Cmc21) 0.16 (0.14) 1100 0.23 (D)
C (Pnma) 0.29 (0.27) 2050 0.96 (D)

Ba E (Pnma) 0 (0) 0.50 (D)
C (Pnma) 0.05 (0.01) 90 0.74 (D)

E/C (MM Cmcm) 0.49 (0.47) 2050 0.32 (D)
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Table 5.3: Ranking of phases by ∆E, the total energy per 20-atom cell for the fiveABS3 B
= V and Sc compounds described in the text. The information below is described in the cap-
tion of Table 5.1. [Reprinted from J. A. Brehm, J. W. Bennett, M. Rutenberg Schoenberg,
I. Grinberg,and A. M. Rappe, Journal of Chemical Physics, 140, 224703, 2014. Copyright
2014 by the American Institute of Physics.]

Motif ∆E (+ZPE) Ttrans Eg
A (Sp. Grp.) (eV/unit cell) ( K) (eV)

A1+B5+

V
K F (C2221) 0 (0) 0

C (Pna21) 0.23 (0.27) NT 0
E (Pna21) 1.34 (1.31) >4000 0.20 (I)

Rb F (C2221) 0 (0) 0
Cs F (C2221) 0 (0) 0

E (P1) 1.23 (1.26) >4000 0

Tl E (Pna21) 0 (0) 0
F (C2221) 0.12 (0.16) 1780 0

E/C (MM Cmc21) 0.46 (0.46) NT 0
F/E/C(MM Ilmen) 0.84 (0.82) >4000 0.07 (I)

A3+B3+

Sc
Bi E (Pnma) 0 (0) 1.23 (I)

C (Pnma) 0.11 (NP) —– 1.36 (D)
E/C (MM Cmc21) 0.38 (0.35) 1120 1.43 (I)
F/E/C(MM Ilmen) 0.84 (0.82) 2800 1.18 (I)
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Table 5.4: Ranking of phases by ∆E, the total energy per 20-atom cell for the five ABS3

B = Nb and Y compounds described in the text. The information below is described in the
caption of Table 5.1. [Reprinted from J. A. Brehm, J. W. Bennett, M. Rutenberg Schoen-
berg, I. Grinberg,and A. M. Rappe, Journal of Chemical Physics, 140, 224703, 2014. Copy-
right 2014 by the American Institute of Physics.]

Motif ∆E (+ZPE) Ttrans Eg
A (Sp. Grp.) (eV/unit cell) ( K) (eV)

A1+B5+

Nb
K E (Sp.Grp.14) 0 (0) 0.52 (I)

F (C2221) 0.31 (NP) —— 0
C (Pna21) 0.47 (0.52) NT 0

F/E/C(MM Ilmen) 0.54 (0.60) NT 1.05 (I)
Rb F (Sp.Grp.4) 0 (0) 0

E (Pna21) 0.26 (0.40) 3010 0.50 (I)
F/E/C(MM Ilmen) 0.60 (0.61) 2680 0.89 (I)

Cs F (Cmc21) 0 (0) 0.14 (D)
E (Pna21) 0.83 (0.80) NT 0.61 (I)

F/E/C(MM Ilmen) 0.91 (0.92) >4000 0.64 (I)
Tl E (Sp.Grp.14) 0 (0) 0.01

E/C (MM Cmc21) 0.44 (0.44) 1960 0
F (Cmc21) 1.26 (1.28) 3475 0

F/E/C(MM Ilmen) 1.05 (NP) 0.36 (I)
A3+B3+

Y
Bi E (Pnma) 0 (0) 1.26 (I)

C (Pna21) 0.41 (0.39) >4000 1.72 (I)
E/C (MM Cmc21) 0.42 (0.40) 1420 1.78 (I)
F/E/C(MM Ilmen) 0.50 (0.48) 2275 1.49 (I)
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As shown in Tables 5.1 - 5.4, for those compounds which favor the edge-sharing ground

state motif, none preferred the P1 phase. Of particular note, the mixed corner- and edge-

sharing phase is often found to have a relative energy between the lowest energy edge-

sharing phase and the purely corner-sharing phase, perhaps hinting at a transition path

between these two motifs. For those compounds which prefer the face-sharing ground state

motif, all prefer one of the two orthorhombic phases, C2221 or Cmc21, over the hexagonal

phases, excepting the low symmetry phase for RbNbS3 which is monoclinic with one unit

cell angle equal to 90.67◦. As well, of the compounds that prefer the face-sharing motif,

only BaTiS3 has the mixed motif face- and corner-sharing phases within 1 eV/20-atom unit

cell of the ground state phase. Indeed, BaTiS3 has the most phases within 1 eV/20-atom

unit cell of the ground state. An expanded view of its phases is shown in Table 5.5. No other

compound has the corner-sharing octahedral P4mm, Pm3m, and R3mR phases within 1

eV/20-atom unit cell of the ground state. Finally, absent from Tables 5.1 - 5.4 is the corner-

sharing tetrahedral Pbcm phase. All compounds evaluated in this phase had energies > 1

eV/20-atom unit cell relative to the ground state.
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Table 5.5: Expanded view of the phases of BaTiS3. All energies are with respect to a
20-atom unit cell, which is the number of atoms in the unit cell of the ground state, C2221.
NA = phonon frequency/stability not attempted. All other nomenclature as in Table 5.1.
[Reprinted from J. A. Brehm, J. W. Bennett, M. Rutenberg Schoenberg, I. Grinberg,and
A. M. Rappe, Journal of Chemical Physics, 140, 224703, 2014. Copyright 2014 by the
American Institute of Physics.]

Motif ∆E (+ZPE) Ttrans Eg
(Sp. Grp.) (eV/20-atom unit cell) (◦K) (eV)
F (C2221) 0.00 (0) 0
F (Cmc21) 0.01 (NP) —– 0
F (P63cm) 0.12 (NP) —– 0
F (P63mc) 0.20 (NP) —– 0

F (P63/mmc) 0.22 (NP) —– 0
F (Cmcm) 0.02 (NP) —– 0
F/C (2/3) 0.37 (NA) —– 0
F/C (1/2) 0.37 (NA) —– 0
F/C (1/3) 0.50 (NA) —– 0
C (Pna21) 0.59 (0.57) NT 0.38 (D)
C (Pnma) 0.65 (NP) —– 0
C(R3mR) 0.75 (0.46) 340 0
C (Pm3m) 0.75 (0.47) 340 0
C (P4mm) 0.80 (0.51) 375 0
E (Pna21) 0.92 (0.93) NT 0.41 (I)
E (Pnma) 0.95 (NP) —– 0.23 (I)
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In Table 5.6, the standard t for the set of 20 compounds used in this study is computed,

ranked, and compared to the ground state structural motif. As can be seen from Table 5.6,

there are no overlapping regions of t values for edge- and corner-sharing compounds, sim-

ply because there are no compounds which have been calculated to have a corner-sharing

ground state. With the exception of the Tl-based materials, the ground state face- and edge-

sharing phases can also be predicted using the standard t factor. We also define the “Petti-

for factor”, PetA/B = PA/PB, which we define as the ratio of the Pettifor’s chemical scale

values for A and B and rank the data accordingly. In this scenario, the A = Tl compounds

are no longer out of line. Moreover, for the set of compounds chosen for this study, there

is a very strong correlation between PA and the ranking of the compounds by PetA/B. As

mentioned in the Introduction, the standard t factor yields overlapping regions of edge-

and corner-sharing compounds while the Pettifor chemical scales yields multiple regions

of edge- and corner-sharing compounds. The reason ours do not is that existing materials,

which have been synthesized at high temperature, are not always created in the ground

state, unlike our DFT calculations which determine the ground-state energy at T = 0 K, as

will be discussed in the next section.
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Table 5.6: Ranking of compounds by the standard Goldschmidt factor, t, the ratio of
the Pettifor chemical scale values for A and B, termed here PetA/B, and a modified t′,
where t′ = t∆χ(S-A)/∆χ(O-A). χ represents the Pauling electronegativity. PA represents
the Pettifor chemical scale value for A. [Reprinted from J. A. Brehm, J. W. Bennett, M.
Rutenberg Schoenberg, I. Grinberg,and A. M. Rappe, Journal of Chemical Physics, 140,
224703, 2014. Copyright 2014 by the American Institute of Physics.]

A B t Motif A PA B PetA/B Motif A B t′ Motif
Bi Y 0.831 E Bi 2.04 Y 0.343 E Pb Zr 0.207 E
Ca Zr 0.878 EC Bi Sc 0.363 E Pb Ti 0.217 E
Bi Sc 0.881 E Sn 1.84 Zr 0.413 E Bi Y 0.328 E
Sn Zr 0.884 E Pb 1.80 Zr 0.422 E Bi Sc 0.347 E
Sr Zr 0.906 E Sn 1.84 Ti 0.429 E Sn Zr 0.370 E
Ca Ti 0.920 E Pb 1.80 Ti 0.439 E Sn Ti 0.388 E
Pb Zr 0.920 E Tl 1.56 Nb 0.526 E Tl Nb 0.532 E
Sn Ti 0.925 E Tl V 0.538 E Tl V 0.555 E
Sr Ti 0.949 E Ca 0.60 Zr 1.267 EC Ca Zr 0.569 EC
Ba Zr 0.953 E Ca Ti 1.317 E Sr Zr 0.593 E
Pb Ti 0.963 E Sr 0.55 Zr 1.382 E Ca Ti 0.596 E
K Nb 0.992 E Sr Ti 1.436 E Sr Ti 0.621 E
Ba Ti 0.998 F Ba 0.50 Zr 1.520 E Ba Zr 0.632 E
Tl Nb 1.009 E Ba Ti 1.580 F Ba Ti 0.661 F
Rb Nb 1.015 F K 0.35 Nb 2.343 E K Nb 0.667 E
K V 1.034 F K V 2.400 F Rb Nb 0.682 F
Tl V 1.052 E Rb 0.30 Nb 2.733 F K V 0.695 F
Rb V 1.058 F Rb V 2.800 F Rb V 0.711 F
Cs Nb 1.061 F Cs 0.25 Nb 3.280 F Cs Nb 0.716 F
Cs V 1.105 F Cs V 3.360 F Cs V 0.747 F
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The predictive ability of the tolerance factor can be further enhanced by taking elec-

tronegativity into account in a manner similar to Pearson,[108] and specifying a new gen-

eralized t factor, t′ = t∆χ(X-A)/∆χ(O-A), where ∆χ(X-A) is the electronegativity differ-

ence between X = (S, O) and A, and ∆χ(O-A) is the electronegativity difference between

O and A. This results in a ranking of the compounds found in the right side of Table 5.6.

The same ranking would also be found if the denominator of the ratio, ∆χ(O-A), was not

included in the formula. However, by including it, t′ remains equivalent to the original t

for oxides. A formulation of t′ with a denominator of the ratio set to ∆χ(F-A), would lead

to the same ranking again, but now be based on the absolute ranking of electronegativity

of the elements in which F has the most negative value. This formulation would be more

in the spirit of Pettifor’s chemical scale, but it would lose the transferability back to the

historic t factor values. Along these same lines, the
√

2 geometric factor in t is not needed

to produce the rankings for either t or t′, and it loses its significance in phases that have

edge-, face-, and mixed-sharing motifs. As with all t factors,[109] the t′ construct is not

perfect, as now the ranking of face-sharing BaTiS3 and edge-sharing KNbS3 with respect

to t′ is reversed (but only by 0.006 units).

5.5 Discussion

Several of the 20 compounds considered in our study have been found experimentally to

be in a different structural motif phase than the one we calculated as the ground state phase

(BaTiS3, AZrS3 with A = Ca, Ba, and the misfit ATiS3 with A = Sn, Pb, and Sr) and

others have not yet been synthesized (all A1+B5+S3 and A3+B3+S3). Nevertheless, there is

experimental evidence that supports our results, specifically that face-sharing ground state

phases have been attained for large A and small B cations, as well as the preponderance of

edge-sharing ground state phases for all other AB combinations.
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Our calculations show that the ground state phase of four out of the five B = Zr com-

pounds in this study is the edge-sharing NH4CdCl3 Pnma phase. Only the CaZrS3 ground

state is different, being of mixed edge- and corner-sharing motif and, even in this case,

the next higher energy state is predicted to be the edge-sharing NH4CdCl3 Pnma phase as

well. All five of these compounds have been synthesized: two in the edge-sharing Pnma

phase (PbZrS3 and SnZrS3),[110-112] two in the corner-sharing Pnma phase (CaZrS3 and

BaZrS3),[79, 95] and one in both phases (SrZrS3).[101] Prior theoretical calculations have

also shown that the NH4CdCl3 Pnma phase is the lowest energy perovskite phase for

BaZrS3.[113] Lelieveld et al. and Clearfield have also synthesized SrZrS3, but only in the

edge-sharing phase.[79, 95]

Our predictions of phase transformations due to small energy differences between the

phases provide the insight into the discrepancies between the SrZrS3 results of Lelieveld et

al.[79] and Clearfield[95] on the one hand and Lee et al.[101] on the other hand. In 2005,

Lee et al. synthesized edge-sharing SrZrS3 by mixing the constituent elements together in

stoichiometric proportions and then heating at 1120 K. Performing the same procedures at

1220 K led to the creation of a two-phase material with a major corner-sharing phase and

a minor edge-sharing phase.[101] In 1980, Lelieveld et al. flowed H2S gas over mixtures

of binary oxides at 1370 K to create a solely corner-sharing perovskite.[79] Thus, it is

probably the differences in processing temperatures and starting materials that led to the

different results between these two experiments. Interestingly, in 1963, Clearfield explored

the effect of temperature on the synthesis of BaZrS3, SrZrS3, and CaZrS3 in a manner

similar to that of Lelieveld et al. In Clearfield’s method, he first combined binary oxides

to form AZrO3, then used CS2 gas to replace O with S. He discovered that for synthesis

temperatures between 1020 - 1270 K, an unknown phase of BaZrS3 was present in sizable

amounts (10-15% composition of the product); and, for all three, at temperatures below

1270 K, found it impossible to state the space group with certainty.[95] Based on the work
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of Lee et al., we suggest that it is possible that Clearfield obtained both the corner- and

edge-sharing structures within each composition.

In our theoretical study, we show that for SrZrS3 the corner-sharing phase is preferred

at temperatures above 2050 K. With respect to Lee’s results, our transition temperature at

which the corner-sharing phase is preferred over the edge-sharing phase is approximately

900 K too high. Though we do calculate a phase change near 1200 K, it is for a change

to a mixed motif corner- and edge-sharing one, and not a completely corner-sharing phase.

Thus, as our calculation method involves only harmonic Γ-point phonon contributions to

energy, our errors can be attributed to not including full Brillouin zone averaging and anhar-

monic energy contributions. For PbZrS3 and SnZrS3, the phase changes from edge-sharing

to corner-sharing have similar crossover temperatures to SrZrS3. As they have been syn-

thesized as edge-sharing phases at 1070 K,[110-112] our study suggests that they can also

be made as corner-sharing phases by synthesizing at higher temperatures.

For BaZrS3, we calculate that the edge-sharing phase is energetically preferred below

90 K. As temperatures in the vicinity of 90 K are too low for synthesis, it would seem

that, by itself, a change in synthesis temperature will not lead to the formation of the edge-

sharing phase. While CaZrS3 has only been made in the corner-sharing phase, we have

shown that this phase is not energetically preferred over the edge-sharing phase or the

mixed motif phase at any temperature. Therefore, it should be possible to achieve these

other phases of CaZrS3 through either lower synthesis temperatures alone or in combination

with other changes in synthesis procedures such as increased pressure. Supporting this idea

is the existence of another ABX3 compound with A = Ca, CaIrO3, which is created in the

mixed edge- and corner-sharing phase through the use of elevated pressures.[105]

Next, we compare our theoretical space group and structure predictions of stoichiomet-

ric ternary sulfides in which theA cations have a lone pair electron configuration, (and with

B not equal to Zr), with experimental literature for those systems where non-stoichiometric
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phases are reported. For ABS3 with A cations that possess a lone pair, (Pb, Sn, and Bi), the

nonstoichiometric phases are chiefly composed of single sheets of edge-sharing BS6 octa-

hedra with a chemical formula of BS2 separated by single or multiple planes of distorted

rock salt AS.[114] An important point of agreement is that our calculations also predict an

edge-sharing structure for each of these. However, the stoichiometric phases prefer pairs

of columns of edge-sharing octahedra, rather than the sheets seen in the misfit compounds.

Despite this difference, there is experimental evidence that these two findings are compat-

ible. Wiegers and Meerschaut synthesized (LaS)1+xBS2 (B = Ti, V, and Cr) misfits under

atmospheric pressure conditions.[114] Kikkawa et al. formed stoichiometric LaBS3 in the

edge-sharing NH4CdCl3 phase for the same B species by applying high pressure to the

mixture of reactants.[115] Thus, the elevated pressure synthesis method of Kikkawa et al.

is probably necessary for the stoichiometric ABS3 formation of the systems containing A

= Pb, Sn, and B = Ti.

The compounds in our study in which the A cations have a lone pair configuration,

(and withB not equal to Zr), also have another common feature. Our calculations show that

several of them transition from the edge-sharing phase to the mixed motif edge- and corner-

sharing phases at similar temperatures: 1150 K, 1120 K, and 1420 K for PbTiS3, BiScS3,

and BiYS3 respectively. TlNbS3 has the same phase transition at a higher temperature,

1960 K. As well, CaTiS3, which does not have a lone pair for A = Ca, also exhibits the

potential for this transformation, at 305 K.

In order to evaluate our results for the six compounds which are found to have the

face-sharing motif as the lowest energy phase, we separate them into two groups: five with

Group I A = (Cs, Rb, and K), which have not been made experimentally in any phase,

and BaTiS3, which has been synthesized by multiple research groups. The face-sharing

ground state of these Group I compounds is similar to the related face-sharing structures

of ABCl3, with different B. They do not have the Pbcm structural motif of their ABO3
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analogs, (single columns of corner-sharing tetrahedra for B = V), nor the double columns

of edge-sharing octahedra for B = Nb. This indicates that the face-sharing motif is not

only a function of size of Group I A, but a function of the X size as well: both Cl- and S2-

are very large and quite close in size in different environments: their ionic radii are 1.81

and 1.84 Å respectively, when adopting a coordination of 6;[61, 106] and their covalent

radii are 0.99 and 1.02 Å respectively.[116] A notable difference between the sulfides and

their chloride analogs is that the latter form mostly in a hexagonal lattice, rather than an

orthorhombic one. An interesting exception is RbCrCl3, which is nearly orthorhombic

at room temperature with a monoclinic classification and an angle deviation from 90◦ of

≈3◦.[117] In conjunction with this observation, we have found that the lowest energy phase

for RbNbS3 is also monoclinic albeit with a smaller angle deviation from 90◦, 90.67◦.

For the lone Group II A that assumes a face-sharing ground state, BaTiS3, we find that

it prefers the orthorhombic C2221 space group. In the experimental literature, on the other

hand, it is listed in one of two hexagonal space groups, P63/mmc or P63mc.[95, 118, 119]

However, Clearfield has noted that at lower temperatures of synthesis (≈970 K), the com-

pound could be characterized with either orthorhombic or hexagonal indexing.[95] As the

synthesis temperature was increased to 1370 K, only hexagonal characterization was plau-

sible. Thus, similarly to SrZrS3, the structure of BaTiS3 is sensitive to changes in the

synthesis temperature. Further, both Fagot et al. and Ghedira et al. have shown exper-

imentally that an analog of BaTiS3, BaVS3, undergoes a phase change from hexagonal

P63/mmc phase to an orthorhombic phase (either Cmc21 or C2221) when temperature is

lowered below ≈250 K.[102, 103] Since our DFT calculations are performed at 0 K, our

BaTiS3 results are consistent with their findings and also explain the calculated preferred

orthorhombic phases as opposed to hexagonal phases for the Group I face-sharing com-

pounds. Fagot et al. proposed that BaVS3 changes to a C1m1 phase as the temperature

is lowered below 70 K.[102] To test whether this phase was possible for BaTiS3, we per-
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formed a relaxation of BaTiS3 assuming the C1m1 phase and found that it was slightly

lower in energy (∆E < 0.002 eV/20-atom unit cell) than the previously calculated C2221

ground state; however, the Γ-point phonon calculation showed that this phase was not sta-

ble at 0 K. These analyses also demonstrate one limitation of our work: when many phases

are similar in energy, our free energy approximation can reorder the phases.

As is shown in Table 5.5, the mixed motif face- and corner-sharing phases for BaTiS3

energy levels fall between the wholly face-sharing phases and the wholly corner-sharing

phases. The compound’s oxide analog, BaTiO3, is most often cited to be a corner-sharing

phase compound. It is worthy of note that BaTiO3 has also been processed in the 1/3 phase,

which is more formally known as the BaFeO2+x phase.[120-122] Thus, our results are con-

sistent with the literature analogs. More importantly though, our calculations indicate that

phase changes are possible from face- to corner-sharing motifs, as we calculate transition

temperatures from the C2221 phase to the R3mR, Pm3m, and P4mm phases in the 340-

375 K range. Based on the DFT calculations, we propose that BaTiS3 will be found to be a

highly structurally flexible material when synthesized by different experimental methods.

5.6 Conclusions

From a set of 22 phases known forABX3 compounds, we found that, forABS3 compounds

in which the B element has a d0 electronic configuration, the preferred phase for all but the

largestA cations and smallestB cations are the edge-sharing Pna21 and NH4CdCl3 Pnma

phases. These sulfides differ from their oxide counterparts, which favor corner-sharing

phases. To predict the preferred structural motifs, we developed a modified Goldschmidt

tolerance factor t′. This incorporates the electronegativity difference between the A cation

and S, but retains the original t for oxides, by normalizing the difference in electronegativity

between the A cation and O. This formulation leads to a neat demarcation between the
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compounds that prefer a face-sharing ground state and those that prefer an edge-sharing

one.

Several of the ABS3 combinations have phases with different motifs that are within 1

eV/20- atom unit cell of the energy of the ground state phase. Vibrational entropy calcula-

tions show that these phases might be achievable under different synthesis conditions than

the ones already present in the literature. For the smaller A and B cation combinations

in ABS3, high synthesis temperatures under ambient pressure conditions, often with ox-

ide intermediates or binary oxide starting materials, have led to products with the corner-

sharing motif forming or to incommensurate phases. Experimental evidence shows that

combinations of high pressure, lower processing temperatures, non-oxide starting materi-

als, and long processing times tend to favor the synthesis of the commensurate edge-sharing

motif. We suggest that two of the sulfides that are evaluated in this paper, (BaZrS3 and

CaZrS3), are candidate compounds that may be produced as edge-sharing phases in this

manner. Conversely, though PbZrS3 and SnZrS3 have been synthesized as edge-sharing

compounds, higher synthesis temperatures could produce corner- and mixed motif corner-

and edge-sharing phases. Lastly, BaTiS3 might achieve both hexagonal and orthorhombic

face-sharing motifs and corner-sharing motifs when subjected to different synthesis tem-

peratures. Thus, not only does the family of ABS3 compounds show structural diversity,

but even the individual ABS3 compounds themselves exhibit structural diversity with mul-

tiple stable phases.
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Chapter 6

Summary and Future Directions.

In two of the three cases that have been presented, it has been shown that compounds con-

taining the chalcogens S and Se have potential applications in the field of photovoltaics, as

they meet the symmetry and band gap requirements necessary to generate photo-currents

when subjected to solar energy within the visible spectrum via the phenomenon known

as the bulk photovoltaic effect (BPVE). In Chapter 3, it was shown that substituting S for

O to create solid solutions of PbTiO3−xSx reduces the band gap of the parent compound,

PbTiO3, into the visible range while maintaining the BPVE polarization requirement. In

Chapter 4, it was demonstrated that it may be very fruitful to use non-oxide, non-perovskite

polar materials for BPVE as they can be designed, through electronegativity considerations,

with band gaps that capture the majority of the solar spectrum, between 1-2 eV. The third

case presented demonstrated that sulfides in the ABS3 family of compounds may not be

fully characterized due to the use of oxide synthesizing conditions of high temperatures and

short hold times, and that the characterization statistic, the Goldschmidt tolerance factor,

does not describe this family in toto, but is a construct of only the oxide ABO3 family.

Using chemical knowledge of electronegativity, it was shown that a new statistic could

describe ABS3 while still describing ABO3: by expanding the range of elements and com-
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pounds considered for ABX3, hidden symmetries have been exposed. Further, it has been

shown that DFT is a useful tool that can be used to predict multiple stable phases of known

compounds. The discovery of the experimenters Lee et al.[101] in which the compound

SrZrS3 was made as an edge-sharing compound through the use of lower synthesis temper-

atures, in contrast to its prior characterization as solely a corner-sharing compound, lends

credence to this work.

Given the high shift current responses of the LiAsS2, LiAsSe2, and NaAsSe2 com-

pounds relative to the oxide perovskites, future work evaluating other already-synthesized

compounds in the polar monoclinic and triclinic phases is warranted. As well, theoretical

compounds – both oxide and non-oxide – should be considered in order to gain an under-

standing for what combinations of elements lead to high shift current responses. In this

manner, the hypothesis suggested in Chapter 4, that covalent interactions coupled to band

structures with disperse p-orbitals at the conduction and valence band edges play a major

role in obtaining high shift current responses, can be proven, or disproven. Further, it will

also provide the database required to ascertain whether or not chain-like motifs between

atoms play a role as well. Finally, a large enough database might provide enough informa-

tion to determine the size of polarization needed to produce a response: is there a limit to

how low the polarization can be?

The suggestion to evaluate theoretical compounds is not vacuous. As was shown in

Chapter 5, several sulfides classified as corner-sharing compounds in the literature actually

have ground states conforming to an edge-sharing phase. While these compounds with

the ground state edge-sharing phase are for the most part centrosymmetric Pnma, some

do have the polar phase Pna21. The point here is not that these compounds have BPVE

possibilities, though. It is that there exist other families of compounds which have related

polar and non-polar phases. Consider the polar monoclinic phases examined in this study,

Cc and Pc. Overall, there are another approximately 16 other compounds that have this
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phase. Yes, these should be evaluated for the BPVE. Just as importantly, though, there are

many compounds that have been synthesized in two centro-symmetric monoclinic space

groups, C2/c and P21/c which differ from Cc and Pc only in that the latter lack inversion

symmetry. A few compounds have even been synthesized in both the centrosymmetric

and non-centrosymmetric phases, e. g. the compound Cd2P3Cl. This compound has been

synthesized by chemical transport in both the C2/c and the Cc phases. The first phase was

achieved using starting chemicals Cd, P, and PCl3 with hot end/cold end temperatures of

700 ◦C/300 ◦C.[123] The second phase was achieved using starting chemicals CdCl2 and

CdP2 with hot end/cold end temperatures of 620 ◦C/590 ◦C.[124] As well, even one of

the compounds analyzed in this thesis, LiAsSe2 has been made both as a polar compound

and as a centrosymmetric compound: the former when slow a cooling rate is used; the

latter when quenched.[16] Thus, these two sets of experimental results suggest that perhaps

other compounds might be able to be made in other phases, too. The theoretician can

return the favor to the experimental community by providing guidance as to which of those

chemical formulae that have only been listed in centrosymmetric space groups or non-polar

piezoelectric space groups, should be attempted to be made in non-centrosymmetric polar

groups by showing which compounds in the non-centrosymmetric polar phase will have

worthwhile values for band gaps, polarization, and shift current responses.

Additionally as many compounds are being processed as thin films that are synthe-

sized on substrates with non-matching lattice sizes, they are often formed either tension

or compression states. Compressive strain conditions can lead to non-pyroelectric piezo-

electrics and centrosymmetric structures becoming polar, and thus, they might have sig-

nificant BPVE responses. These conditions are simple to model and evaluate with first-

principles calculation and post-DFT tools.

The suggestions for future work are enumerated as follows:

1. Investigate the BPVE response for the 16 other compounds in the Cc space group
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which have p-block B-sites.

2. Calculate the expected structure of those centrosymmetric compounds in the C2/c

and P21/c space groups. If they are determined to be polar, calculate the BPVE.

3. Expand the compound possibilities in the ABS3 study by allowing the B site to have

electron configurations other than d0 and permitting d-block elements with filled f -

shells.

In conclusion, solid state chemistry is a rich tapestry of variegated elemental threads –

but it is an unfinished tapestry. By stepping back from what has been woven, one can find

a bigger theme and weave new scenes.
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