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ABSTRACT 

 

Optimization of Multidimensional Nuclear Magnetic Resonance Spectroscopy, for 

Resolution and Sensitivity, through Application of Radial Sampling 

John M. Gledhill, Jr. 

Dr. A. Joshua Wand 

 The high probability of degenerate frequencies in NMR spectra of complex 

biopolymers such as proteins presented a great barrier to detailed analysis. The 

combination of multidimensional NMR spectroscopy and high magnetic field strengths 

has overcome the resulting resonance assignment problem for proteins less than 50 kDa. 

However, as protein size increases the sampling and sensitivity limited regimes become 

apparent. As a consequence, the orthogonal linear sampling requirements of conventional 

multidimensional NMR spectroscopy, combined with increased signal averaging require 

a longer acquisition time than is feasible. To overcome these limitations, radial sampling 

of the indirect dimensions of multidimensional experiments is utilized. It is demonstrated 

here, that through optimization of radial sampling acquisition parameters, it is possible to 

escape the linear sequential sampling requirements of Cartesian sampling, which allows 

for the collection of a high resolution spectrum in reduced acquisition time. Further, by 

exploiting a fundamental statistical advantage of radial sampling, it is possible to obtain a 

signal-to-noise advantage, over the traditional methodology. The approach is generalized 
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by developing an all inclusive NMR data processing package and associated programs to 

optimize radial sampling acquisition parameters. An example, which utilizes the 

resolution and sensitivity advantages, to collect a novel application of a high resolution 

four-dimensional 13C, 15N edited NOESY is presented in support. 
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CHAPTER 1 

Introduction and Objectives 

1.1 Introduction 

 In general terms, a protein's function is completely determined by its structure. 

Understanding protein structure, in many cases, can elucidate functional understanding of 

the protein at a mechanistic level. Stucture-function analysis has proven particularly 

important in such topics as catalysis, ligand binding, molecular transport and signaling 

cascades[1]. Protein structure has also played a pivotal role in understanding protein-drug 

interaction and substantial effort has been applied to rational drug design[2, 3].  

 Crystallography and nuclear magnetic resonance (NMR) are the primary 

techniques used to determine protein atomic structure. While crystallography has 

outpaced NMR in the number of protein structure determined, the additional functionality 

of NMR makes it appealing in many cases[4]. Namely, NMR allows for biophysical 

characterization of proteins at site resolved resolution while the protein is in solution. 

Though NMR has many appealing properties, until recently, the size range of proteins 

amenable to analysis by NMR is not as broad as the size of proteins that are desirable to 

study. 

 The disparity between proteins amenable to NMR analysis and those desired to be 

studied arises from physical properties of the molecule and means by which NMR signal 

is acquired. As protein size increases the molecule reorientation time increases and 
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accordingly the spin-spin relaxation rate, T2, decreases. An increase in T2 relaxation 

results in broadened lineshapes and decreased scaler coupling transfer efficiency. 

Unfortunately, these results decrease the signal to noise of the spectrum and limit the 

application of some pulse sequences from the reduced coupling efficiency. Combined, 

these effects have limited protein analysis beyond 35kDa.  

 Multiple methods have been developed in order to reduce the problematic effects 

of slow molecular tumbling. The most effective have been extensive deuteration[5-7], 

TROSY[8] pulse sequence optimization and reverse micelle technology[9]. Extensive 

deuteration of the protein reduces the dipolar field surrounding the remaining protons and 

in turn, eliminates many of the spin-spin relaxation modes. With application of deuterium 

decoupling, this technique has allowed for application of multidimensional NMR 

experiments to proteins in the 20kDa range[5-7]. TROSY (transverse relaxation 

optimized spectroscopy) pulse sequences increase the functional protein size by selecting 

for constructive interference between dipole-dipole relaxation, which arises from slow 

molecular tumbling, and intrinsic chemical shift anisotropy. Cancellation of the 

relaxation components allows for selection of a narrow lineshape component. This 

technique has successfully been applied to proteins beyond 40kDa[10, 11]. The final 

method to increase the amenable protein size range is application of reverse micelle 

technology. Reverse micelles are created by encapsulating a protein, which is dissolved 

in a small pool of water, inside a surfactant micelle that is dissolved in a non-polar, low 

viscosity, solvent. By using a low viscosity solvent the molecular tumbling time of large 
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proteins is reduced. In turn, all traditional NMR methodology is applicable. This method 

has been successfully applied to proteins great than 50 kDa[12](unpublished data). 

 Although the technology is available to study large proteins with NMR, the size 

range, of protein structure determined by NMR, is not comparable to the size range of 

proteins of interest. This disparity is apparent if the size of protein structures determined 

by NMR[13] is compared to the size of protein drug targets[14], Figure 1.1. 

 

Figure 1.1 A comparison of the molecular weight of protein structures determined by NMR with the 

molecular weight of protein drug targets, is shown here. The relative frequency versus protein molecular 

weight demonstrates the  disparity, in protein size, between proteins currently being studied and the size of 

proteins with desirable properties to study. NMR structure information was obtained from the PDB[13] and 

edited for redundancy. Drug target information was obtained from DrugBank[14]. 

 

 The lag in protein structure size can be rationalized with the following two reasons: First, 

the NMR methods available for large proteins function by decreasing the linewidth of the 

resulting spectra which increases the signal to noise (S/N). These techniques, however, 
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do not account for the added complexity that arises from the increased the number of 

signals in large proteins. Second, these methods often function at limited sensitivity 

compared to traditional techniques. 

 Spectral complexity increases with increasing protein size. In general, NMR 

spectra contain at least one peak per amino acid residue of the protein. Although in many 

experiments, such as a NOESY, multiple peaks per residue are present. The dispersion of 

chemical shifts does not increase coincidently with increasing protein size. Therefore, an 

increase in the number of peaks directly increases the number of peaks per spectral 

volume and results in decreased spectral resolution. Spectral complexity is decreased by 

increasing the dimensionality of the spectrum. Additional dimensions are added by 

correlating additional atoms in the magnetization transfer pathway. This serves to reduce 

the degeneracy of the spectrum by increasing the spectral area while retaining a constant 

number of peaks. This concept is illustrated in Figure 1.2. Here, the number of peaks 

remains constant but the dimensionality of the spectrum increases. Ubiquitin is used to 

show the effect of increasing the dimension of the experiment. When one dimension is 

evolved, amide protons in this case, very few of the peaks are resolved. Evolving two 

dimensions, Figure 1.2b, resolves a large fraction of the peaks but degeneracy is still 

present in the spectrum. When three dimensions are evolved all of the degeneracy is 

resolved because each peak has a unique set of chemical shifts. 
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Figure 1.2 An example of increasing the dimension of a NMR experiment to increase the resolution of the 

experiment is shown here. Ubiquitin is used in all three panels. A one-dimensional amdie 1H spectrum , 

panel a, a two-dimensional 15N-HSQC[15], panel b and a three-dimensional HNCO[16] resolve an 

increasing number of peaks as the dimensionality increases. 

 

Increasing the dimensionality of an experiment comes at the expense of 

acquisition time. The total acquisition time of an experiment is estimated from the 

product of the number of data points collected in each dimension, the number of transient 

scans averaged per FID, the interscan, magnetization recovery, delay and the acquisition 

time of each scan.  

1

1
1

N

fid j s a
j

n n n d t
−

=

= ∏  

Here nj is the total number of points in dimension j of N total dimensions, ns is the 

number of transients, and d1 and ta are the recyle delay and acquisition times respectively. 

The length of the pulse sequence is comparatively small and ignored. Assuming minimal 

acquisition time per increment, one transient and 16 increments per dimension; the total 
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acquisition time quickly increases beyond a reasonable range as the dimensionality of an 

experiment is increased. Using the above parameters a 3D experiment would require .5 

hour, a 4D 9 hours, 5D 12 days and a 6D 1.1 years[17]. Even using a minimal acquisition 

scheme the total acquisition time expands beyond a feasible range beyond four 

dimensions. Collectively this regime is known as the sampling limit[18]. In this regime 

acceptable resolution determines the total acquisition time.  

 Sensitivity is the second limiting parameter to large protein structure 

determination. Limiting sensitivity arises from dilute samples and/or complex sample 

preparation protocols. In the case of large proteins, the problems are further compounded 

by the technologies employed to circumvent tumbling limitations. Extensive, or factional, 

deuteration decrease the dipolar field but limit the concentration of observable signal by 

randomly exchanging the observable proton with a non-observed deuterium[6]. TROSY 

techniques achieve a narrow peak by splitting the signal into four components and 

selecting for one of the four components that has ideal relaxation parameters, in turn, 

decreasing the observed signal by 75 percent[8]. Reverse micelles decrease the molecular 

reorientation time by dissolving the protein in a low viscosity solvent. To minimize the 

reorientation time, short chained hydrocarbons are used as a solvent. These solvents 

require pressuring the sample in a special apparatus which limits the sample volume. 

Some high-pressure NMR tubes limit volume by 67.5%[19]. Further, the concentration of 

protein filled reverse micelles is limited by the amount of surfactant that can be added 

without deleteriously increasing the viscosity of the solvent[20].  
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 Typically, when large protein techniques are used, sensitivity is increased by 

averaging additional transients at the expense of additional measurement time. The 

variance sum law dictates that doubling the number of transients averaged, which doubles 

the acquisition time, will increase the signal to noise by the square root of 2. This regime 

is known as the sensitivity limit[18]. Here the minimal acquisition time is determined by 

the sensitivity of the experiment. Resolution is also typically limited in this regime 

because time is spent collecting a large number of scans rather than an increasing number 

of increments.   

 In light of the sampling and sensitivity limits, approaches are necessary to collect 

data with increased resolution, without an exponential increase in acquisition time while 

achieving a concomitant increase in sensitivity. Recently, various methods have been 

introduced to speed acquisition. However, no new approaches are available to increase 

the sensitivity of multidimensional NMR experiments.  

 All of the recent methods to speed acquisition rely on sparse sampling. In general, 

sparse sampling speeds acquisition by reducing the number of data points collected in the 

indirect dimensions. Typically, an order of magnitude time savings is possible using 

sparse sampling.  

1.2 Objectives 

 The primary objective of this thesis is to alleviate the resolution and sensitivity 

limitations, imposed by large proteins on NMR, through application of sparse sampling. 
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The efforts are threefold: First the general application of sparse sampling is improved by 

developing and extending current methodology. This includes a multidimensional NMR 

processing program, designed to efficiently process sparse sampled data, chapter 3; novel 

means to phase correct sparse sampled data, chapter 4; and an optimized sampling angle 

selection routine for radial sampling, chapter 5. Second, means to obtain an increase in 

sensitivity are developed. Termed, Sensitivity Enhanced n-Dimensional NMR (SEnD), 

the approach is presented in chapter 6. Finally, focusing on the resolution and speed of 

data acquisition, when radial sampling is employed, a new methods is developed. A novel 

method to collect a 4D 13C, 15N edited NOESY spectrum is presented in chapter . The 

results presented here are general and will facilitate development of additional novel 

applications that exploit the acquisition speed, resolution and sensitivity advantages 

achieved through application of sparse sampling.  
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CHAPTER 2 

SPECTRAL ESTIMATION AND SPARSE SAMPLING 

 

2.1 Introduction 

 In chapter 1 the sampling and sensitivity limited regimes[21] were presented. In 

order to overcome these limits, new methods that increase the resolution and sensitivity 

without a concomitant increase in acquisition time are needed. Of late, substantial work 

has been performed to alleviate the sampling limits imposed by the strict linear sequential 

sampling requirements of the standard fast Fourier transform.  The majority of the new 

techniques are base on sparse sampling. Sparse sampling decreases acquisition time by 

selectively skipping acquisition of points in the indirect dimension. A substantial time 

savings can be achieved by skipping acquisition points, but this comes at the expense of 

spectral artifacts. Various spectral estimation methods have been developed to account 

for or eliminate these artifacts. The various sampling schemes and processing techniques 

will be reviewed here to determine which is most suitable for our applications.  

Prior to reviewing the sparse sampling and data process techniques a review of 

spectral estimation is presented. This review will serve to further clarify the fundamental 

limitations imposed by traditional technology. 
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2.2 Spectral Estimation Review 

 NMR signal arises from the evolution of transverse magnetization[4]. As the 

magnetization evolves a time-varying current is generated. This current is measured as a 

time series of exponentially decaying sinusoid by the spectrometer.  The time series data 

can be represented as: 

0 1 1, ,   , Md d d −=d …  (2.1)

Where M is the total number of points sampled. In most cases a uniform increment is 

used between data points to make the data amenable to processing techniques that will be 

presented below. In all but the simplest cases, determining the underlying frequency 

components is impossible from direct inspection. Therefore, the time data is converted to 

the frequency domain using one of the various spectral estimation techniques. Estimation 

of the frequency domain data from the time domain is represented as: 

↔d f  (2.2)

Converting the data to the frequency domain allows for a measure of the frequency 

components to be read directly from the resulting spectrum. The frequency series can be 

represented as: 

0 1 1, ,   , Nf f f −=f …  (2.3)
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Where N is the total number of frequency components determined from the data. An 

example of converting the time series data to the frequency domain is shown in Figure 

2.1.  

 

 

Figure 2.1 An example of spectral estimation is shown for generated data containing two peaks of varying 

intensity. The time series of an exponentially decaying sinusoid is shown on the left. Only the cosine 

modulated component is shown for clarity. Application of the Fourier transform to estimate the frequency 

spectrum produces the spectrum shown on the right.  

 

Here an exponentially decaying sinusoid, of generated data containing two frequency 

components of different amplitudes is shown. The frequency components are not easily 

determined from visual inspection of the time data. Estimation of a frequency spectrum 

allows for direct inspection of the frequency components. Additionally, the frequency 

spectrum, allows for the relative intensity of the frequency components to be directly 

assessed. This feature is particularly important when there is a large noise component in 

the data.  



12 
 

 The Fourier transform (FT)[22] is the most common method for spectral 

estimation. The FT is appealing because it is a linear transform, which allows for the data 

quality to be directly assessed from the noise level of the spectrum. It is also fast and has 

no adjustable parameters, making application easy.  

 Efficient application of the FT requires that the data is sampled at a constant 

interval. Utilizing a constant interval the data series is written formally as a summation of 

sinusoids encompassing all of the detectable frequencies multiplied by an exponential 

decay parameter, T2k.  

2

1
/

0

cos(2 ) k

N
m T

k k
k

A m e τπω τ
−

Δ

=

= Δ∑d
 

(2.4)

Where N is the total number of frequency components that can be determined, Ak is the 

amplitude term of a given component k, with frequency ωk. m is the series point of M 

total points and Δτ is the sampling increment. The sampling increment determines the 

detectable frequency range as dictated by the Nyquist theorem[23]; which states that the 

range of detectable frequency is ½ the inverse of the time increment. Therefore, if the 

data is centered at zero frequency the detectable band of frequencies is: 1sw
τ

=
Δ

. In 

order to determine if a frequency component is positive or negative with respect to the 

carrier quadrature detection is employed. Quadrature detection is accomplished by 

collecting two data components, one modulated by cosine and the other sine[4]. The real 
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and imaginary pair is stored as a series of complex numbers. Using the Eulers identity 

and assuming the summation, the data series is written as: 

1 1 2/i n n TAe ω τ τ− Δ + Δ=d  (2.5)

 Having defined the possible frequency range of the data series, it is possible to 

determine all frequencies are present in a given spectrum. The FT solves for the 

amplitude of each frequency component by first generating a model sinusoid at the given 

frequency using the same time points as the data. Then the amplitude is determined by 

summing the product  of the data and the sinusoid. The FT of the frequency series is 

written as:  

1
2 /

0

1 M
kn M

k
k

e
M

π
−

=

= ∑nf d
 

(2.6)

The various terms have the same meaning as above. This representation utilizes the fact 

that the time and frequency components do not need to be explicitly defined. If the 

Nyquist sampling theorem is applied then the frequency and time points are both a 

function of the sweep width and the two terms are reduced to nk
M

.  This generalization 

assumes that the same number of frequency terms are determined as there are number of 

data points and the points are equally distributed in the sweep width range. If 16 points 

are collected, show in black, then the spectrum with broad lines is generated, black as 

well. If an additional 48 points are collected, resulting in 64 total points then the resulting 

spectrum in grey is generated with a much narrower line shape. When this concept is 
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expanded to multiple dimensions the limitations of Cartesian sampling are immediately 

apparent.  

When a multiple dimension experiment is collected, each dimension is sampled 

independently and sequentially using a Cartesian basis. The resulting data is a product of 

all of the time domains that are evolved.  

1 1 2 2 2 2/ /i n n T i n n TAe eω τ τ ω τ τ− Δ + Δ − Δ + Δ=d  (2.7)

Sampling each dimension independently allows each dimension to be processed 

independently. For example, in the case of a 2D experiment the data is collected with 

respect to two incremented times 1 2( , )d t t . This data is first Fourier transformed with 

respect to t2, resulting in a mixed time-frequency spectrum 1 2( ) ( )d t f ω . The matrix is 

then Fourier transformed with respect to t1, resulting in the frequency domain spectrum

1 2( , )f ω ω . The independence of each dimension requires that a sufficient number of data 

points be collected to achieve suitable resolution, as discussed above. In turn, increasing 

the dimensionality of the experiment exponentially increases the required acquisition 

time.  

 Collecting a larger number of data points increases the digital resolution of the 

frequency spectrum. As a secondary effect, the linewidth of peaks in the frequency 

spectrum are also decreased.  Typically, the time data is apodized prior to FT. 

Apodization is the process of multiplying the data series by a decaying time function to 

bring the last points of the data to zero[24]. Apodization has the advantage of reducing 
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truncation artifacts and provides a more satisfactory line shape.  When more data points 

are present the apodization function brings the data to zero slower, which, when Fourier 

transformed, results in a narrowed line. This concept is illustrated in Figure 2.2. To 

circumvent an exponential increase in acquisition time alternate sampling and processing 

schemes have been presented.  

 

 

Figure 2.2 Increasing the number of time domain points acquired (left) directly increases the resolution of 

the frequency domain spectrum (right). The linewidth in the frequency spectrum is substantial decreased by 

increasing the number of points from 16 to 48. 

 

2.3 Sparse Sampling 

 Sparse sampling decreases the acquisition time of multidimensional NMR 

experiments, by reducing the number of points collected in the indirect dimensions.  The 

design of the spectrometer allows for the directly acquired dimension to be collected in 

real time so only points in the indirect dimensions are sparsely sampled. Various sparse 

sampling acquisition schemes are available, all of which are designed to provide a 
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suitable level of information while not reducing the spectral resolution. As a result of 

incompletely sampling each dimension, the sparsely sampled dimensions contain 

artifacts. The artifacts are directly dependent on the sampling scheme used, as well as the 

method used to process the spectrum. A review of the various sample schemes and the 

resulting artifacts are presented here. The sampling schemes are presented first, followed 

by a discussion of the processing methods.  

 

Figure 2.3 Sampling scheme comparison. The indirect dimension of four sparse sampling approaches are 

shown here compared to Cartesian sampling, a. In all cases 2500 sampling points are used. One of the 

primary advantages of sparse sampling is that it is capable of sampling much longer evolution times 

compared to Cartesian sampling. In the sparse sampling schemes 2500 points were plotted over the area of 

16000 Cartesian sampled points. Radial sampling is demonstrated in, b, where 20 sampling angles are used 

and 128 points per angle. Uniform random sampling is shown in c. Gaussian distributed random sampling 
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in d and optimized random sampling is shown in e. In all schemes a 2000 Hz sweep width was used in both 

dimensions.  

 A collection of the various sampling methods are shown in Figure 2.3. The plots 

only show the sampling pattern for the indirect dimensions of a 3D experiment. As 

above, the directly acquired dimension is sampled traditionally. All plots in the Figure 

use the same number of sampling points, 50x50 over the two indirect dimensions. 

However, all of the sparse sampling schemes are collected over the time domain space 

equivalent to 128x128. This corresponds to a 6-fold time advantage for sparse sampling. 

The sampling schemes can be divided into two main categories, radial sampling and 

random sampling. Radial sampling, Figure 2.3b, is achieved by linking two or more of 

the indirect dimensions and linearly sampling a vector at an angle (α) with respect to the 

two orthogonal time domains. In the case of a three dimensional experiment, this is 

achieved by collecting the directly detected time domain signal normally and linking the 

indirect dimensions by defining t1 = τ cos(α )  and t2 = τ sin(α )  and linearly sampling the 

time period τ[25]. In this case, only one time vector is sampled per two time dimensions. 

Multiple angles are collected to resolve the degeneracy of collecting data in a lower 

dimensional space. 

Random sampling is the second class of sparse sampling schemes[26]. This 

method is achieved by using a pseudo-random number generator to choose the 

acquisition time points in the indirect dimensions. Typically the maximum evolution of 

each domain is selected depending on the relaxation properties of the atom evolved in a 
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given time domain dimension. The first application of random sampling used a uniform 

distribution of sampled points in the indirect time domains[26, 27], Figure 2.3c. Initial 

applications of uniform random sampling demonstrated that a significant resolution 

advantage can be achieved with this sampling protocol because only a gentle apodization 

function is required to remove truncation artifacts. Additionally, in many cases the data 

points are sampled at increments less than the Nyquist frequency which allows for more 

accurate detection of chemical shifts. Although a higher resolution spectrum was realized 

with uniform radial sampling artifacts were immediately apparent in the spectrum. 

Details regarding the artifacts are discussed below. To reduce the detrimental effects of 

the artifacts more sophisticated schemes have been proposed. These include Gaussian 

weighted random sampling[28], Figure 2.3d. Here, a probability bias is applied to the 

pseudo-random number generator. Weighting the distribution of sampled points reduces 

the effects of the artifacts. Optimally, a Gaussian distribution would be used that matches 

the decay properties of the nuclei evolved in the indirect dimensions. 

Random sampling is further optimized by distributing the data points closer to a 

Cartesian basis, while still retaining a level of random sampling.  Optimized random 

sampling[29], Figure 2.3e approaches a Cartesian approximation by placing additional 

restraints on the time points sampled. When Optimized random sampling is used, a grid is 

generated over the two indirect evolution time dimensions. The area of each cell in the 

grid increases with a Gaussian weight as the evolution times increase. This sampling 

scheme allows for collection of a higher density of points at shorter evolution times while 
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still sampling enough points to avoid truncation artifacts. One data point is selected per 

grid cell. Again this sampling method improved artifacts.  

Further normalization of the sampling pattern led to the creation of concentric 

shell sampling[30]. This sampling scheme produces an artifact free spectrum if specific 

criteria are met. The sampling scheme functions by collecting data points that are equally 

spaced on rings with expanding radii. The spacing of the points and rings are dependent 

on the required sweep width of interest. This sampling scheme requires an equivalent 

number of points as Cartesian sampling and therefore is not analyzed further here. 

However, the number of sampling points can be reduced systematically to produce a 

randomized scheme that is comparable to the optimized random sampling approach.  

Regardless of the sampling scheme utilized, quadrature detection is still required 

to determine the sign of a peak relative to the carrier frequency. This is achieved by 

acquiring both a  real, or cosine modulated component, and an imaginary, or sine 

modulated component, per dimension. In the case of a 3D experiment, four quadrature 

components are collected for the two indirect dimensions at each sampling time 

point[25]. The four data components, represent all combinations of the even and odd 

functions, which are Cos-Cos modulated, Cos-Sin, Sin-Cos and Sin-Sin. All four of the 

components are used in the processing techniques that will be discussed.  

 Traditional sequential 1D Fourier transform data processing methods are no 

longer applicable when data is sampled outside of the Cartesian basis. In turn, there are 
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two main classes of processing technology to deal with sparse sampled data: projection 

reconstruction[25] and numerical estimation based[16, 17, 31-36]. The objectives of the 

projection reconstruction techniques are to generate a final spectrum directly from the 

data. Numerical estimation based techniques are generally designed to generate a list of 

the spectral features, then either use the information to create a peak list or generate a 

final spectrum. Projection reconstruction based techniques are only amenable to radial 

sampling, while numerical estimation methods are amenable to both radial and random 

sampling.  

2.4 Projection Reconstruction 

 Application of projection reconstruction to NMR originated as an extension of 

computerized tomography techniques[37]. In computerized tomography techniques, 

multiple 2D ‘tilted plane’ projections of a 3-dimensional object are recorded as a function 

of sampling angle. The 2D projections are then used, through application of the Radon 

transform[38], to regenerate a representation of the 3D object. In the case of NMR 

experiments, radial sampling is used to collect tilted planes of time domain data, which is 

Fourier transformed to generated tilted planes in the frequency domain. However, unlike 

tomography, NMR spectra contain discrete peaks rather than continuous objects. Discrete 

peaks require fewer angles planes to regenerate a final spectrum. An example of the 

projection reconstruction approach is shown in figure 2.4.  
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Figure 2.4 Schematic of the projection reconstruction approach to NMR. Radial sampling is use to sample a 

spectrum, a. To accomplish this, the directly acquired dimension, t3, is sampled using a Cartesian pattern. 

The two indirect dimensions, t1 and t2, are linked and sampled simultaneously at an angle α (see text for 

details). The directly detected dimension is processed with standard Fourier transform technology. The 

indirect dimension cannot be processed directly. From the four quadrature components, sum and 

differences, employing double angle identities, of the various components are used to generate two 

complex pairs. The two complex pairs are Fourier transformed, generating two spectrum with the signals 

modulated by the sum and difference of the frequency components. These spectra are the tilted planes.  The 

sum and differences are shown in panels b and c, respectively. Each indirect vector of the two spectra are 

projected into the frequency components at 90± α. The two dashed lines in b and c indicate the example 

vectors used for reconstruction in d. Here, additive back projection is used to resolves the degeneracy of the 

individual spectra. The vectors are aligned from the carrier frequencies and projected along the 

perpendicular into the two frequency domains. The intensity from each point on the tilted plane vector is 

added to the existing intensity in the frequency domains. This generates a ridge of intensity perpendicular 

to peaks. The peak chemical shift is located at the intersection of the ridge components. 

 

Here, the directly acquired dimension is collected using Cartesian sampling while the two 

indirect dimensions are sampled using a 30 degree sampling angle, Figure 2.4a. The 
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directly detected dimension is processed using standard Fourier transform methodology. 

This results in a 2D mixed mode spectrum, where d1 is frequency and d2 is an 

interferogram of time domain data (not shown). The 2D plane is tilted between the two 

indirect time dimensions. There are no means to distinguish a positive sampling angle 

from a negative sampling angle. Therefore, double angle identity linear combinations of 

the quadrature component spectra are calculated to separate the sum and difference of the 

two frequency domain components[39]. The positive and negative frequency component 

spectra are then used as a Fourier transform quadrature pair to generate the positive tilt 

angle spectra, Figure 2.4b, and the other two used to generate the negative tilt angle 

spectra, Figure 2.4c.  

Information is not available to determine the peak location orthogonal to the tilted 

spectrum plane. Two methods are commonly used to resolve the degeneracy: additive 

back-projection and lower magnitude comparison[25]. Additive back-projection (ABP), 

the equivalent of the radon transform, sums all of the component spectra with the 

intensity, from the tilted plane spectrum projected along a vector orthogonal to the point 

in the tilted plane[40]. This method produces a ridge of intensity wherever there are 

peaks in the tilted plane spectrum, Figure 2.4d. When both the sum and difference 

components are projected into the same spectrum, the ridge intensity constructively sums 

at the location of ridge intersections. When there is only one peak, in the indirect plane, 

the intersection of the two ridges corresponds to the chemical shift of the peak. When 

there are more than one peak in the indirect plane, the ridges intersect at both of the peak 
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chemical shifts, as well as an artifact peak location. Ridges always intersect at the 

chemical shift of a peak, independent of the sampling angle. Multiple sampling angles are 

added into the spectrum to determine authentic peaks from artifact peaks. Adding more 

sampling angles to a spectrum will always reinforce peak intensity, while the artifact 

peak will remain at a baseline level. This method is capable of producing a readable 

spectrum, but suffers from severe baseline artifacts. The baseline artifacts can be 

removed using lower value (LV) method[25]. This method generates a back-projected 

spectrum for each of the component angles. The individual angle components are 

compared on an element basis retaining the minimum magnitude intensity value at each 

point. This removes all of the ridge intensity other than that from the authentic peaks, 

because only the peaks will have a non-baseline value as the sampling angle is varied. An 

example of the LV comparison is shown in Figure 2.5.  
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Figure 2.5 Demonstration of the lower value comparison. Panel shows a lower value comparison in 1D. 

The two spectra, 1 and 2, are compared point-to-point, and the smallest magnitude value is retained and 

stored in a third spectrum, labeled lower value. Note by comparison artifact peaks are removed. A 2D 

example, using a 3D radial sampled HNCO of Ubiquitin, is shown in b and c. (b) Four angle spectra are 

generated using ABP for each sampling angle; 0, 30, 45 and 90. (c) All four of the angle spectra are 

compared using the lower value to generate a final spectrum, which resolves all of the peaks.  

 

The LV method efficiently removes artifacts from the spectrum, but has the potential to 

remove authentic peaks from the spectra if the intensity of a peak falls into the noise for a 

single sampling angle.  
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Two additional methods are also available to reconstruct a spectrum from the 

component angle spectra: hybrid reconstruction[41] and distribution reconstruction[42]. 

Both of these methods were developed to avoid some of the pitfalls of ABP and LV. 

When the S/N of the component spectra is limiting, peaks can potential be removed 

during LV comparison. Hybrid reconstruction uses a combination of ABP and LV. 

Starting with a set of component spectra sampled at various angles, the hybrid method 

generates ABP spectra from a subset of the component spectra. The sub-group ABP 

spectra are then used as input for a LV comparison to generate a final spectrum. 

Generating sub-group ABP spectra prior to LV, the peak intensity is increased prior to 

the LV, which decreases the likelihood that a peak will be inadvertently removed. The 

distribution method functions by creating a histogram of intensity values from each of the 

component spectra at the equivalent positions. A Gaussian is fit to the histogram and the 

intensity value at the max value of the Gaussian is selected for the final spectrum. This 

method proposes to avoid some of the flaws that are inherent to the other methods, but it 

is much more computationally intensive.  

 Projection reconstruction techniques are digitally limited when projecting the 

tilted planes into the final spectrum. Often, the data points of the tilted plane do not align 

with the data points in the final spectrum. Points on the tilted plane must be interpolated 

in order to determine the intensity values at the points in the final spectrum. This problem 

is illustrated in Figure 2.6.  
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Figure 2.6 Demonstration of the fundamental limitation of projection reconstruction. To demonstrate the 

problem, the projected vectors are overlaid on a Cartesian sampled spectrum to indicate the chemical shift. 

To generate a frequency spectrum, data points from the projection vector are extended into the frequency 

plane. Often the points of the tilted projection vector and the frequency plane do not coincide, because both 

the projection vector and frequency plane are discretely sampled. The red circles indicate two points that do 

not fall on the projected intensity. To determine the intensity value at these points, the intensity at the 

intersection of the dashed line and the projection vector need to be interpolated. The interpolation process is 

inaccurate and time consuming.  

 

Two studies, APSY[43] and HIFI[44], have proposed to avoid reconstruction by only 

using the peaks of a tilted plane spectrum. Under appropriate conditions these methods 

have been successfully applied. However, by not generating a final spectrum all of the 

existing analysis methodology is dismissed. Therefore, new means to directly solve for 

the intensity values in the final spectrum without having to interpolate data points on the 
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tilted plane, have been presented to circumvent this limitation. This method realized that 

the summation used in ABP is essentially a direct multidimensional Fourier transform[26, 

45, 46].  

2.5 Direct Two-Dimensional Fourier Transform 

 The direct multidimensional Fourier transform (2D-FT) functions by 

simultaneously transforming multiple indirect dimensions as opposed to transforming the 

dimensions sequentially. The discrete 2D –FT can be described as [45-47]: 

1max 2max

1 2 1 1 2 2 1 2 1 2 1 2
1 0 2 0

( , ) exp( ) exp( ) ( , ) ( , ) ( , )
t t

t t

S i t j t f t t g t t w t tω ω ω ω
= =

= − −∑ ∑  
(2.8)

Where i and j are quarternion numbers; t1, t2 are the incremented times, ω1 and ω 2 

comprise the frequency pair being determined, 1 2 1 1 2 2( , ) exp( )exp( )f t t i t j t= − Ω − Ω  is the 

data being transformed, Ω1 and Ω2 are the chemical shifts for time domain t1 and t2 

respectively, w(t1,t2) is a weighting factor to account for the unequally spaced sampling 

of the time domain and is typically applied as a two dimensional apodization function, 

and 1 2( , )g t t  describes the lifetime of the signal, which we will subsequently ignore. In 

the case of radial sampling 1 cost τ α=  and 2 sint τ α=  where τ is the incremented time 

and α is the sampling angles.  

 An example of using the direct 2D-FT on generated data is shown in Figure 2.7. 

The peak position for the data sets was set at (-300 Hz, 75 Hz) and the sampling angle set 
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to 45 degrees. The linewidth was adjusted to 10 Hz by multiplying the data sets by an 

exponential decay. Further details using this same example are revisited in chapter 4. 

 

 

Figure 2.7 An example of the resulting spectrum after a single step two-dimensional Fourier transform. The 

data was generated with spectral parameters similar to that found in a radial sampled HNCO experiment. 

The sweep widths were set to 2000 and 1500 Hz for the t1 (carbon) and t2 (nitrogen) dimensions 

respectively. One peak was simulated at -300, 75 hertz with a linewidth of 10 Hz. Radial sampling was 

realized by incrementing the time in the first dimension as 1 1( )cost n sw α=  and the second dimension 

as 2 2( )sint n sw α= .  

Here, all of the points in the frequency domain were solved for rather than projected from 

tilted planes. This avoids problems associated with interpolation of data points. However, 

similar to the projection reconstruction approach, ridges still extend from the peak 

chemical shifts. All of the methods to remove the ridges presented for projection 

reconstruction are applicable here. 
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2.6 Comparison of Sparse Sampling Schemes 

The direct multidimensional FT has an additional advantage over projection 

reconstruction, namely it is amenable to any sampling scheme, not just radial sampling. 

This occurs because the time points are explicitly defined in the 2D-FT, whereas, the PR 

techniques use the FFT which assumes equally spaced time points. This allows for a 

direct comparison of the various sampling schemes. Figure 2.8. shows the resulting 

spectrum when the various sampling schemes are applied to a generated data set.  

 

Figure 2.8 Processed spectrum sampling scheme comparison. The reference Cartesian sampled spectrum is 

shown in a. The radial sampled spectrum processed with ABP and LV are shown in b. and c., respectively. 
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The uniform random, Gauss weighted random and optimized random samped spectra are shown in d., e. 

and f., respectively. All spectra were generated from 2500 points using the sampling time points shown in 

Figure 2.3. The data points for each spectrum were generated using Equation 2.7 using a summation of the 

ten frequency components seen in panel a. A 0.02 second T2 was used when generating the data for both 

dimensions. All spectra were processed using a 2D-FT after applying apodization with a cosine squared 

function to remove truncation artifacts.  

 

The Cartesian sampled spectrum is shown in Figure 2.8a for comparison. In all of the 

experiments, the equivalent number of points were generated in order to keep the 

potential signal volume constant. No noise was added to the generated data, this allows 

for any baseline artifacts to be directly visible. A 1D slice is shown in all of the spectrum 

to reference the baseline artifacts. Inspection of the spectrum for all of the sampling 

schemes demonstrates that all of the peaks are accurately represented, while the baseline 

artifacts vary for each method. All of the random sampling schemes produce baseline 

artifacts that appear as noise. Randomized concentric ring sampling also produces 

baseline artifacts (results not shown). Radial sampling also has baseline artifacts from the 

ridges extending from all of the peaks, as a function of sampling angle, when no ridge 

removal technique is applied. When LV comparison is applied the baseline artifacts are 

removed. To determine the effect of baseline artifacts on the spectrum the signal to noise 

for the various sampling methods spectra are plotted as a function of data points sampled, 

Figure 2.9. This figure illustrates the advantage of radial sampling over all of the other 

sampling schemes, especially when the LV is employed.  



31 
 

 

 

Figure 2.9 Sensitivity Comparison of the various sampling schemes as a function of number of points 

acquired. The S/N of each spectrum shown in Figure 2.8 is analyzed here.  Each point is the average S/N of 

all 10 peaks in the spectra averaged. When Cartesian sampling was measured the number of points was 

always increased equally in both dimensions, retaining a square grid. When analyzing radial sampling the 

number of angles was increased, using approximately 100 points per angle. For the other sampling schemes 

the points were distributed according to the probability distribution of each sampling type.  

 

2.7 Numerical Methods of Spectral Estimation 

Numerical methods are also available to perform the spectra estimation of a 

frequency domain spectrum on sparse sampled data[16, 17, 31-36]. The general objective 

of numerical methods is to solve for the spectral parameters, such as the peak chemical 

shifts, then use the information to generate a final spectrum. In many cases, it is very 

difficult to generate an accurate representation of the spectrum because the data is 

corrupted with noise; therefore a deterministic solution is nontrivial. Furthermore, the 
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generated spectrum is not a transform and therefore nonlinear, so the reliability of the 

chemical shifts is no longer assessable from the noise level in the final spectrum. With 

this said, methods based on a least-squares fit of estimation parameters to the data have 

had limited success when the noise level increases; although multiple applications have 

proven useful when the noise of the spectrum is limited. The successful applications 

include filter diagonalization[16, 33], maximum likelihood[25, 31], MDD[34] and 

GFT[17]. One additional method, Maximum Entropy[24], attempts to account for the 

problems associated with least squares fit, and has had slightly broader success.  

Although many successful applications of the various numerical methods have 

been presented, the application of each technique is dependent upon the data quality and 

the type of experiment being collected. In order for the work here to be generally 

applicable the direct multidimensional FT is used here. In most cases numerical methods 

can also be substituted when applicable.  

2.8 Conclusion 

Traditional Fourier transform technology requires a large number of data points to 

achieve a high resolution spectrum. When multiple dimensions are required to resolve 

spectral degeneracy, the time required to satisfy the linear sampling requirement 

increases beyond the stability of the spectrometer. Application of sparse sampling allows 

circumvention of the time limitation of high dimensional NMR experiments. The 2D-FT 

is used here to process sparse sampled data because of the flexibility to process data 
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collected with any sampling scheme and its ability to directly access the data quality 

through the noise level of the spectrum.  

Comparison of the sampling schemes spectra demonstrate that radial sampling is 

preferred because of the predictability and ease of removal of the artifacts. Also, the 

smooth baseline outside of the artifact ridges have superior spectral characteristics 

compared to the artifacts from random sampling that appear as baseline noise. Finally, 

comparing the S/N of processed spectra from the various sampling schemes demonstrate 

that there is a possible sensitivity advantage when using radial sampling combined with 

artifact removal procedures.    
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Chapter 3 

Al NMR: A Multidimensional NMR Data Processing Package for Cartesian 

and Arbitrarily Sampled Data 

 

3.1 Introduction 

 From the previous chapters it should be apparent that the time and resolution 

advantages of sparse sampling make its general application very appealing. This is 

especially true in the case of large proteins. As protein molecular weight increases, quite 

often spectral degeneracy increases concomitantly. Sparse sampling offers an increase in 

acquisition time which enables higher dimensional experiments to be collected in the 

same time as the lower dimensional analog.  

 Although methodology has been developed that utilizes the gains of sparse 

sampling processed with a direct multidimensional Fourier transform (2D-FT)[27, 48-

50]. There is no program available generally available to handle all aspects of sparse 

sampled data processing. Typically a combination of current processing programs and an 

external 'in-house' program is utilized for processing. Subsequently, convential programs 

are available to display and analyze the data, such as, Sparky[51] or Felix (Felix NMR, 

San Diego, CA). 
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 Two programs are used to process the data because the directly detected 

dimension is processed with traditional fast Fourier transform methodology, while the 

indirect dimensions, that utilized a sparse sampling pattern, are processed with a direct 

multidimensional Fourier transform. In order to process all aspect of sparsely sampled 

data, including the direct and indirect dimensions, a new data processing package is 

presented here.  

 Al NMR incorporates all traditional NMR data processing methodology and new 

multidimensional Fourier transformed based methodology. The processing program is 

based on the python scripting language which is becoming one of the standard languages 

in scientific data analysis. Further, multiple programs, XPLOR-NIH[52] and Sparky[51], 

familiar to most NMR spectroscopists, utilized the python language.  

3.2 Sparse sampling data processing with direct 2D-FT 

 To demonstrate the processing procedure, a simple example, employing radial 

sampling[25] for generated (3,2) data set is presented. Here radial sampling is 

accomplished, in the case of a 3d experiment, by simultaneously evolving both 

dimensions while collected the directly detected dimension normally. The simultaneously 

evolved dimensions are set such that the incremented times are t1=τcos(a) and t2=τsin(a). 

Where t is a common, linearly incremented time and a is the radial angle between the two 

orthogonal time domains. An example of the time points sampled by radial sampling, for 

a single angle is shown in Figure 3.1. Here, the data was generated using a 45° sampling 
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angle between the two indirect dimensions. For each sampling point in the time domain 

in Figure 3.1 there are 8 corresponding quadrature components, a real and imaginary for 

each dimension.  

 

Figure 3.1 Radial sampling data processing example for a 3D spectrum of generated data, with a single 

peak. a. The time points are collected using a Cartesian basis with respect to the directly acquired 

dimension. Radial sampling is used in the indirect dimensions by sampling t1=τcos(a) and t2=τsin(a). A 45° 

sampling angle is used. b. The directly acquired dimension is processed using a FFT which results in a 

mixed mode, frequency, ω3, time, tα spectrum. c. The direct 2D-FT is used to process the two indirect 

dimensions which generates the final frequency domain spectrum.  

  

 To process the data set, the directly detected dimension, t3, which was collected 

traditionally, is processed using traditional Fourier transform methodology[22]. Each 

vector along, t3, is processed separately, as is typically done, including convolution, 

apodization, zerofilling and Fourier transformation. Processing of t3 produces a mixed 

mode spectrum, Figure 3.1b. The spectrum is in the frequency domain along w3 and the 

indirect dimensions are still in the time domain. The intensity of the peaks along w3 is 

modulated according to the frequency of the peak in the indirect dimensions. This 
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produces an interferogram along the radial sampling angle. For clarity, only one of the 

four quadrature components is shown in the Figure.  

 After the directly detected dimension is processed, the two indirect dimensions 

are processed simultaneously using the direct 2D-FT[45-47]. The 2D-FT generates a 2D 

frequency matrix for each vector perpendicular to w3. Typically, each vector is apodized, 

using a 2D apodization function, or weighed[27] before processing with the direct 2D-

FT. The resulting 3D spectrum, after all processing, is shown in Figure 3.1c. As a result 

of the indirect time domains being underdetermined artifact ridges extend from the 

authentic peak chemical shifts at 90 +/- the sampling angle. The artifact removal methods 

for projection reconstruction can be applied here to generate a final, artifact free, 

spectrum.  

 The direct 2D-FT is discrete, which requires, that all of the time points and 

frequency pair values are supplied to the function. By supplying all of the necessary 

parameters allows the 2D-FT to process data regardless of the sampling scheme 

employed.    

 Randomly sampled data is processed using the same flow of operations as 

presented for radialy sampled data. The random sampled data is collected traditionally in 

the directly detected dimension and processed with the FFT. The indirect dimensions are 

sampled simultaneously by randomly selecting coordinate times in the evolution domains 

of the two indirect dimensions. The time point schedule is recorded and utilized by the 



38 
 

2D-FT to generate a final frequency domain spectrum. Prior to application of the direct 

2D-FT the data can be weighted or apodized to increase the resulting spectrum quality. 

The random time point selections can be modified by weighting the selection criteria to 

reduce artifacts that are intrinsic to the sampling scheme.  

 

3.3 Al NMR Program Architecture 

 Al NMR is designed to be a standalone processing package. It does not depend on 

any of the currently available processing packages for functionality. By designing the 

program in a self contained manner, allows for increased flexibility to process data 

collected with arbitrary sampling schemes and dimensions. Additionally, the program is 

designed to be extendable, by the end user, to develop new methodology. To achieve this 

flexibility Al NMR uses a Python interface[53]. Python is an established, efficient 

scripting language. The language is easily learned. Currently, multiple programs, 

designed for NMR utilize a Python interface. By designing the program as a standalone 

module data processing is streamlined. Raw data is read directly from the spectrometer 

and a processed output spectrum is generated. Utilizing Python no scripts needs to be 

compiled. 

 The program architecture is shown in Figure 3.2. All aspects of the program are 

controlled by the user, either through the command line or by a user supplied script. The 

script or command is passed to the python interrupter which commands subsequent 
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functionality of the program. Typically a script will, at a minimum, load the Al NMR 

module, read the data from the spectrometer file, process the time domain data into the 

frequency domain and generate a processed matrix file. All of these commands, listed in 

the script, are parsed by the python interrupter and passed to the python engine. The first 

step when a script is executed is to load the Al NMR module. The module extends 

pythons functionality to include reading, writing and processing NMR data. All of the 

standard python functionality is retained. With direction from the script, the program 

reads the NMR data file and creates a data object. The data object includes all of the 

relevant acquisition parameters and access to the FIDs. Currently, the program supports 

either Varian or Bruker data files. Further direction of the script controls access of FIDs 

from the data object and process of the FIDs. In many cases each FID is processed 

identically. This step can be performed in a parallel using built-in python functions. 

Finally, the script controls creation of a matrix file object which interfaces with a final 

matrix file. Currently, either a Sparky or Felix matrix file can be written.  
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Figure 3.2 Al NMR program architecture. 

 

 Python makes up the core of the processing program. Python is one of the most 

popular, cross platform scripting languages available. Because it is a scripting language 

the end user doesn’t need compile scripts and scripts are easily shared with a colleague 

using a different operating system. Further, because of the popularity of python there is a 

large body of tutorial and books available to learn the language. Additionally, when 

debugging a script the large support environment is advantageous as compared to a 

scripting language developed specifically for data processing.  
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 Technically, python is desirable because it takes care of all of the overhead in 

developing a scripting package. It includes means for command interpretation on the 

command line and through scripts. All methods of looping and computational details 

such as memory allocation are available. Additionally, utilizing python, scripts can 

developed easily that include technically complicated concepts such as queuing and 

multithreading. Finally, utilizing python the core functionality can be expanded with a 

library of user developed codes. This allows for the package to be extended to meet any 

users needs.  

3.4 Python introduction 

 An introduction to the python scripting language is presented here to assist the 

user with developing scripts. Only salient features of the scripting language are presented. 

The user is referred to many good online tutorials for a complete introduction 

(www.python.org). The core python functionality contains all of the typical data types, 

such as int, float, etc. All variables in python are dynamically defined, that is, no memory 

needs to be reserved prior to using a variable. For example a variable x is defined by x = 

5. When x is defined, python parses the data type, integer in this case, and reserves the 

appropriate amount of memory. Along with the standard data types, python also includes 

a set of container types, such as lists. Lists contain an ordered group of elements. The 

elements in a list can be any standard or user defined type. Brackets are used to define a 

list. For example angles=[10,45,90]. Here angles is the list which contains three 



42 
 

elements. An element of the list is accessed by using the list name and element number: 

angles[1] returns 45. All lists start at the zeroth element.  

 Lists also contain a built in methods to loop through all of the elements. Which is 

accomplished by using a for loop. All loops in python are defined by formatting blocks. 

After a for statement the block of subsequent steps in the loop are defined using 

indentation. For example the elements of the list angles are iterated over, 5 added, and 

then printed to standard output by the following.  

for x in angles: 
 x=x+5 
 print x 
 

Loops can also be defined using a while statement as shown here: 

while a < 3: 
 x=angles[a]+5 
 print x 

 

 This example also uses a built in logic operator to define the loop. Logic code blocks are 

defined with the same indentation procedure.  

 Python is amenable to user extension of the language by importing modules. 

Modules expand python by declaring new data types, objects and functions. A module is 

imported my declaring the statement: 

 import alnmr 
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 Here the alnmr module is imported to provide all of the NMR data processing 

functionality to python. In order to use the functions included in the module the 

interpreter needs to be directed that the function is located inside of the module. The dot 

operator is used to specify this to the interpreter, this is demonstrated in the example: 

alnmr.fft(data) 

This command instructs the interrupter that fft is a function found in the alnmr 

module. Multiple modules can be loaded during execution of a single script. Using the 

import command, a user created library of functions can be imported  

 

3.5 Al NMR Data Processing Module 

 As stated above, when a module is imported, new data types, objects and 

functions are added to the standard functionality of python. Upon importing Al NMR two 

new data objects are available and all of the data processing functions. The data objects 

handle all aspects of reading data files and writing matrix files. All of the data processing 

functions are shown in Appendix 1. It is important to note that NumPy was utilized in 

developing this module[54]. 

 There are two types of data objects, one for NMR data files and the other for 

writing matrix files. Data objects are created to access NMR data files. Currently, both 
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Bruker and Varian data files are supported. To create a data object, one of the following 

commands is issued for Bruker or Varian data respectively:  

datobj  = alnmr.readbruker(‘data directory’) 

datobj = alnmr.readvarian(‘fid directory’) 

For both functions datobj is the name of data object that is created to access the data 

files. This name is arbitrary. The data and fid directories need to contain complete the 

path to the specified directories. If the directory or expected files inside of the directory 

do not exist, an error is returned. There is no limit to the number of data objects that can 

be created simultaneously to access multiple data files. Working with multiple data 

objects is particularly import when processing multiple radial sampled angle spectra.  

 The data object performs all aspects of reading fids from the file. When a data file 

object is created two event occur: First a file stream is created to access the data matrix. 

Second, all of the relevant parameters from either the acqu or procpar file, depending on 

the type of spectrometer used to collect the data, are read and stored. A complete list of 

the parameters recorded is listed in Appendix 1. The parameters are accessed from the 

data object in the same manner that functions are accessed from the module, using the dot 

operator. For example after a data object is created the total number of data points for 

each dimension is accessed by the following command: 

tdlist=datobj.td 
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This command returns a list of the total data points for each dimension. The length of the 

list is equal to the dimension of the experiment.  

 FIDs are accessed from the data object using the alnmr.readfid() 

command. This command reads one FID from the file and returns the  data as a list. 

When the data object is created, the data file position is set to the first FID. The file 

position is advanced to sequential FIDs each time the readfid command is issued. The 

read FID command can be  directed to read non default fid numbers if the ‘fidnum’ 

option is used as an argument when the command is issued. The fid number can range 

from 1 to the the total number of fids in the file. Two other options are available for the 

readfid command, byteswap and resize. The byteswap option corrects for a 

difference in the endianess of the data collected and the system architecture used to run 

Al NMR. Resize removes any trailing zeros that might be included in the fid. Trailing 

zeros arise from Bruker digital to analog data format conversion.  

 Matrix output file objects are created in a similar manner to input data file objects. 

Currently, two output matrix formats, Sparky and Felix, are supported. The commands to 

create the matrix objects for the two formats are: 

matrix_obj=alnmr.sparkymat(‘filename’,[d1,d2,d3,…,dn]) 

matrix_obj=alnmr.felixmat(‘filename’,[d1,d2,d3,…,dn]) 

When the command is issued a matrix file, as specified by the filename option, is 

either opened or created. The program decides to either open the file or create it 
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depending if the optional matrix dimensions, [d1, d2, d3], arguments are supplied. 

If dimensions are supplied than a matrix file is created. Else the program attempts to open 

the matrix file. If no file exists, then an error is returned. Like the data file objects, there 

is no limit to the number of matrix file objects that can be used simultaneously. Again, 

this is particularly appealing when dealing with radial sampled data. A unique matrix can 

be created and accessed, simultaneously, for each sampling angle collected.  

 When the matrix object is created all of the necessary parameters are either read 

from the preexisting matrix or generated. A complete list of all the objects parameters is 

listed in Appendix 2. These parameters are accessed in the same manner as the data 

object, using the dot operation. For example the size of each matrix dimension is 

accessed with the following command: 

dimlist=matrix_obj.matdim 

Here the returned value is a list of the size of each matrix dimension. The length of the 

list is equal to the dimension of the matrix.  

 After the matrix object is established the matrix_obj.read(c1,c2,…,cn) 

and matrix_obj.write(data, c1,c2,…,cn) commands are used, respectively, 

to read and write information to and from the file. In the case of the read command the 

arguments are the coordinates of a point or vector to read. The coordinates are supplied as 

sequential integers with one value for each dimension, (c1,c2,…,cn). Each 

dimensions numbering starts at 1, which corresponds to the first point. If one of the 
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dimension points is specified as zero then a vector of data, spanning the dimension, is 

returned. Only one dimension can be set to zero for each read command. The write 

command address the coordinates of points and vectors the same way as the read 

command. When this command is issued, an additional variable, data, is supplied. The 

data variable is either a point or vector of data. A data point or vector are supplied as a 

real integer or float.  

 The program optimizes access to the matrix file using the same block format 

present in Sparky and Felix. All interaction with the blocks is preformed automatically. 

Reading and writing to the files has been optimized using a memory buffer system. All of 

the parameters, regarding the blocks in each dimension, are accessible using the dot 

operator as before. Again, the parameters are listed in Appendix 2. It is important to note 

that because a buffer system is used, changes to the buffers have to be committed to the 

file with the matrix_obj.update() command. 

 All of the data processing functions are listed in Appendix 3. Functions are 

available for all standard data processing steps, such as: FID manipulation, (i.e. adding 

fids and zerofilling ; convolution; apodization; linear prediction; Fourier transform and 

phase correction). Most functions take a fid as input and return the modified data. For 

example, the following command takes a fid, generated from issuing the readfid(), 

command to act on the data object, the Fourier transform of the fid is preformed and a 

new data list is returned.  
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ftdata=alnmr.fft(fid1) 

All of the traditional processing functions, which act on one dimensional data, accept 

either real or complex data as input. When quadrature detection is employed the data is 

stored in a complex list. The real component of the list is the cosine modulated data and 

the imaginary component is the sine modulated data. The functions that act on either 

random or radial sampled data use a sequential format because there are four quadrature 

components. There are typically two quadrature components per dimension. Each of the 

quadrature components are list sequentially as real floats in the data list. When two 

dimensions are co-evolved the expected data order is cos-cos, sin-cos, cos-sin, sin-sin.   

 The analogous, processing functions are available for coevolved 2D data. The 

primary difference of these functions is that they are discrete, unlike 1D data, there are no 

assumptions that the data is equally spaced. Therefore, all sampling time points, 

frequency components and sampling angle, if applicable, are specified. For example the 

arbitrary sampled 2D sinebell squared apodization function function is called with the 

following command: 

2d_data=alnmr.ss2dgen(data, sampling_time_points, t1max,  
  t2max, shift1, shift2) 

Here, data is a list of data with four quadrature components per sampling increment. 

The sampling_time_points is a list containing the t1 and t2 sampling times 

selected for each increment. The list contains two elements, listed sequentially, for each 

incremented point sampled. The t1 time point is listed first, followed by the t2 time point.  
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T1max and t2max are the maximum evolution time used for the two time domains. These 

times are included to specify the times where the apodization function is set to zero. 

Finally, shift1 and shift2 are the analogs to the 1D sinebell squared shifts with respect to 

the two dimensions. 

3.6 Direct 2D-FT 

 Defining all of the direct two dimensional functions discretely adds significant 

complexity to application of these functions compared to the 1D functions. However, the 

added complexity enables a substantial increase in flexibility of the functions. This is 

particularly true in the case of the direct two-dimensional Fourier transform (2D-FT). The 

2D-FT is called using the following command: 

2dmat=alnmr.ft2d(data, sampling_time_points, freq1, freq2,  

  [ph0a, ph1a, ph0b, ph1b]) 

As before, data and sampling_time_points are one dimensional lists that contain 

time domain data and sampling points respectively. freq1 and freq2 are the frequency 

ranges that the data is Fourier transformed into. Typically, the two frequency domains are 

defined as a list spanning the sweep width used for sampling centered upon zero. 

Practically this accomplished by setting the first point of the list to 
2

sw−  and the last 

point to 
2

sw . The number of points in the list is defined by the user by is typically at least 

two times the number of increments sampled to achieve the same effect as zerofilling 1D 
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data. Therefore the increment of the list is 
2
sw
ni

. The frequency lists can be generated 

automatically, by supplying the number of sampling points and sweep width to the 

following command: 

freqlist=alnmr.ftfreq(np,sw) 

The final arguments supplied to the 2D-FT are the zero and first order phase corrections 

for both the t1 and t2 sampling domains. The zero order phase corrections are supplied as 

degrees and the first order phase corrections are supplied as time values. By default the 

values, if not supplied, are set to zero. Details of how to determine phase correction for 

two dimensional data is presented in Chapter 4.  

 Defining the frequency ranges values to the 2D-FT, the programs allows any 

region of a spectrum to be processed. As demonstrated in Figure 3.3, an entire sweep 

width range for both dimension can be utilized or just a sub region of each frequency 

range. Additionally, single pairs of frequencies can be supplied to generate the Fourier 

transform at a single point. In turn, generating single points allows for a vector of points 

to be specified that span across a spectrum, Figure 3.3c. Generating the Fourier transform 

of a vector is particularly appealing when radial sampled data is analyzed or integrated.  
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Figure 3.3 A demonstration of the intrinsic flexibility of the 2D-FT to process any region of a spectrum is 

shown here. The negative 45° sloped ridge component spectra, contain two peaks of generated data, is used 

for this example. 1000hz sweep width were used for both dimensions. a. The full sweep width was used 

during processing. b. only a sub-2D window of frequency components were supplied, defined the inset box 

of a. c. A 1D vector of frequency components are transformed. The frequency components used are shown 

in a as the dashed line.  

  

3.7. Example Data Processing Scripts 

 In this section examples of using Al NMR to process both traditionally Cartesian 

sampled and sparse sampled NMR data are presented. The script codes are supplied in 

the Appendices 4-6. Three examples were chosen to demonstrate the flexibility of the 

program. The first example demonstrates how to process a 15N HSQC. An example 

demonstrating how to phase correct the spectrum is then presented, which utilizes the 

interactive phase correction interface. Finally, an example demonstrating how to process 

a 3D radially sampled HNCO is presented.  

3.7.1 15N HSQC Processing Example 
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 A flow chart of the processing script is shown in Figure 3.4. The source code for 

this script is supplied in Appendix 4. This example was selected because it incorporates 

all of the essential concepts of processing Cartesian sampled data.  

 The first step in all Al NMR processing scripts is to import the alnmr package. 

Additional packages can also be imported, here the python os module is imported to 

allow for easy file path modification across multiple operating systems. Using the os 

module to define the paths simplifies migration across multiple operating systems. The 

nested directory names, for the input data file and output matrix file are supplied as 

sequential elements of a list. The elements of the list are used subsequently to define the 

path using the os.path.join command. Prior to generating the paths final output 

name of the matrix and the matrix dimensions are defined. In this case, only directory 

names are modified and not the forward or backward slashes used when creating the 

directory. Next, all of the referencing values that the experiment was collected with are 

supplied. The phase corrections are also defined. Means to determine the appropriate 

phase corrections are presented in the following example. The script then generates the 

paths for both the input data file and the output matrix. After the paths are generated a 

data object, bdat, and matrix object, smat, are created. As above, the dimensions are 

supplied when the matrix file object is created which generates a new matrix file. When 

the matrix file is created, all of the points in the matrix are initialized to zero. 
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Figure 3.4 15N HSQC processing script flow chart. 

 Having established objects for reading and writing the data, the script now 

processes the data.  Each fid is processed by using a for loop to iterate over all of the fid 

numbers. The list of fid numbers is generated using the built-in range function. Al 

NMR relies solely on instruction from the processing script. There are no built-in 

functions for choosing the appropriate processing functions for a given quadrature mode. 

Although, it is possible to generate scripts that utilizes the acquisition parameter read in 
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the data object  to automatically process the data. This processing script is designed for a 

sensitivity enhanced, gradient selected experiment[15]. In order to process such data, two 

FIDs are read then added and subtracted, to select the appropriate components. Because 

two fids are read at a time, the number of steps in the loop is half of the total number of 

increments.  There is a 90˚ phase difference between the two components as a result of 

the sensitivity enhanced data acquisition[55]. This is corrected by exchanging the real 

and imaginary components using alnmr.exchange() and taking then negating the 

imaginary component by taking the complex conjugate of the data with 

alnmr.conjugate().  

 After the two sensitivity enhanced FIDs are generated, the two fids are processed, 

independently, using traditional methodologies[24]. The processing steps include 

subtracting a polynomial, using alnmr.polysub, for water signal removal, 

apodization by multiplying a shifted sinebell squared function using, alnmr.ss1d(), 

zerofilling with alnmr.zerofill() and Fourier transforming the data. All of the 

processing steps, including the Fourier transform, accept a complex fid and return a 

modified complex FID. In the case of the Fourier transform a complex data list is 

returned with the FT absorptive spectrum stored in the real values and the dispersive 

spectrum stored in the imaginary values. When both the absorptive and dispersive 

components are available they are used for phase correction of the data using the 

alnmr.phase() command.  
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 The final steps of processing the directly acquired dimension of this experiment is 

to discard the downfield half of the spectrum, which, if the carrier frequency is set on 

water, does not contain any amide proton chemical shifts. This data is deleted using the 

alnmr.delete() command. The dispersive component spectrum is discarded using 

the alnmr.reducecomplex() command. Finally, the two fids are written to 

sequential positions in the matrix file, as temporary storage, prior to processing the 

indirect dimension. All of the elements of the fid are wrote at once by supplying 0 for d1 

point at indirect dimension points command. The FIDs are committed to the matrix with 

matobj.update() command.  

 The indirect dimension is processed by iterating over each vector, which spans the 

indirect dimension, for each point in the d1 dimension. As before, a for loop is used by 

iterating through the elements of a list generated with the range function. Each vector is 

read from the matrix by supplying zero as an argument for the read function in the d2 

dimension. In this case there are more points in the matrix than there are data points. The 

points that do not contain any information are deleted with the alnmr.delete 

command. Unlike the directly acquired data, which is always read from the file as 

complex, when the indirect vector is read the data is returned as a real values with the real 

and imaginary components interleaved. The interleaved data is converted to complex 

with the alnmr.complexdata command.  The final step before the fid is processed is 

to multiply the first complex point of each interferogram by .5 to correct for baseline 

offset associated with using a zero delay for the first point. This data set was collected 
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using gradient selection for quadrature determination[56]. If the data was collected using 

States-TPPI[57] then a correction, by multiplying every other complex point by negative 

one should be performed at this step. The command indvec[1::2]*=-1 performs 

this operation.  

 After the complex fid has been read and corrected, the data is processed in a 

similar manner to the directly acquired dimension using apodization, zero filing and then 

Fourier transforming. This script does not include a linear prediction step, but the 

package does include linear prediction using either the alnmr.lpinv or 

alnmr.lpsvd commands.  The two commands use matrix inversion and singular value 

decomposition, respectively, to determine the linear prediction coefficients[24]. The final 

step of processing the indirect dimension is to write the vector back to the same location 

in the matrix. After all vectors have been processed the matrix access is closed using the 

mat_obj.close() command. When the matrix object close command is issued all 

changes are committed to the file prior to it actually closing. Therefore the 

matobj.update command does not need to be issued. Access to the data file is also 

closed at this point. The final step in processing the matrix is to update the referencing 

information for both of the dimensions using the alnmr.refsparky command.   

 This script only processes two dimensions, additional dimensions would be 

processed using a similar routine for each of the indirect dimension. In the case of a three 

dimensional experiment, an additional level of nested loops are needed to cycle through 

all of the vectors. The vectors would be accessed using three coordinates rather than two. 
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The general processing routine of reading, processing and writing back to the matrix will 

remain the same.  

 

3.7.2 Interactive Phase Correction Example 

 In the 15N HSQC processing script, a phase correction was applied to the data 

after Fourier transforming. Here a script to determine the appropriate phase correction is 

presented. The script is shown in Appendix 5. Prior to using this script a spectrum is 

processed without application of any phase correction. The spectrum is inspected with 

appropriate NMR analysis software and a vector to use for phase correction is noted. An 

example spectrum, without any phase correction, is shown in Figure 3.5. The dispersive 

lineshape along the proton dimension indicates that phase correction is necessary. The 

dashed line indicates a selected vector for phase correction.  

 

Figure 3.5 An example of the effects of using the Al NMR interactive phase correction interface. a. A 15N 

HSQC spectrum of ubiquitin with no phase correction along the proton dimension. A vector for phase 

correction is selected, indicated by the dashed line. The vector is supplied to the phase correction interface, 
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b. The sliders are adjusted to determine the necessary phase corrections. c. The phase corrections are used 

to reprocess the spectrum. 

 Once a vector has been selected, the coordinates of the vector are supplied to the 

phase correction script. When the script is run, it first imports the necessary modules and 

defines the path where the spectrum is stored. A matrix object, smat, is created to access 

the file. The selected vector is read from the matrix using the smat.read() command. 

As described in the HSQC processing macro, when the data is stored the imaginary 

component is discarded prior to storage. Therefore, when the vector is read, it only 

contains the real component. The imaginary component is generated by a Hilbert 

transform, using the command alnmr.hilbert(). The resulting complex vector 

contains both the real and imaginary components which are 90 degrees out of phase. Both 

complex components are needed for the alnmr interactive phase correction interface. The 

interface is started with the command, alnmr.interactivephase(). When the 

interactive phase command is issued two windows are opened, as seen in Figure 3.5b. 

The top, display, window contains the vector selected for phase correction and the 

bottom, control, window contains the real-time phase correction interface. Changes in the 

slider positions are represented in the display window. Zero and first order phase 

corrections are adjustable with the sliders or by direct input into the text boxes. The first 

order pivot is adjusted by the third slider. Changing the pivot value moves the red 

indicator line in the display window. 
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 After the phase corrections have been determined, the values can be substituted 

into the processing macro to reprocess the data. The resulting spectrum is shown in 

Figure 3.5c. Inspection of the lineshape indicates that no additional phase correction is 

necessary for this spectrum. If needed, this script can also be used for the indirect 

dimension by modifying the vector coordinate values.  

 To avoid reprocessing all dimensions of a spectrum, a script could be generated to 

read every vector of a selected dimension, perform a Hilbert transform, phase correct 

using the alnmr.phase() command and write the phase corrected vector back to the 

matrix. This approach is especially appealing for experiments with three dimensions and 

greater.  

3.7.3 3,2 Radial Sampled HNCO Processing Example 

 The two previous scripts have described means to process and phase correct 

Cartesian sampled spectra. Here, a script to process radial sampled data, that exploits the 

versatility of Al NMR,  is described. The general processing scheme is depicted in the 

flow chart of Figure 3.6. The complete processing script is included in Appendix 6.  
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Figure 3.6 Flow diagram of the processing operations for a 3D radial sampled experiment. 

 The script is designed to process radial sampled data where multiple sampling 

angles have been collected independently, using separate experiments. There are four 

primary sections of the script. The first section initializes all of the appropriate variables 
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and defines the necessary paths. Section two processes the directly acquired dimension 

for each angle data set. Subsequently, section three processes the two radial sampled 

dimensions for each of the angle ridge components. The final section performs a lower 

value comparison using all of the angle matrices processed in section three. Spectra are 

generated for each of the angle ridge components, as well as for the lower value.  

 Similar to the HSQC example, the first step of the script is to load the alnmr and 

os modules. Paths and variables are defined, including a list of the sampling angles and 

corresponding experiment numbers. These lists are stored using the angles and 

expnum variable names. After the appropriate definitions are made the script processes 

the directly acquired dimension.  

 In the case of a 3D radial sampled experiment two of the dimensions are 

coevolved at a supplied sampling angle. In practice this results in the collection of a 2D 

matrix of data points, where one dimension is directly acquired and the second is the 

coevolved dimensions. To process the directly acquired data, each FID is read from the 

data object is processed and stored to an intermediate 2D matrix. To accomplish this, the 

script builds a 2D matrix for each sampling angle. Then a loop is used to process each fid 

storing the results in the 2D matrix. As described above, each radial sampled increment 

contains four quadrature components. Each set of quadrature components are processed 

simultaneously to allow for the appropriate gradient sorting to be performed. Subsequent 

steps in processing are equivalent to the directly detected dimension of the HSQC, 
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including, convolution, apodization, zero filling and Fourier transformation[24]. The four 

processed quadrature component FIDs are stored sequentially in the 2D matrix.  

 After processing the directly detected dimension, the two indirect dimensions are 

processed simultaneously. Each radial sampled dimension can be separated in a positive 

and negative ridge component using a combination of matching and non-matching 

Fourier transforms, as described in chapter 4. To isolate the angle component spectra 

each angle is processed independently using a for loop. Two matrix objects are created 

for each angle, as well as, an object for the appropriate 2D matrix that contains the 

processed directly detected dimension.  

 Each vector of the directly detected dimension is processed independently using a 

for loop. Similar to the HSQC example an entire vector of data is read from the 2D file 

and then trailing zeros are removed. Unlike the HSQC example the data is not converted 

to complex, rather each of the four quadrature components are left sequential in the 

vector. The first incremented time point is scaled by multiplying each of the first four 

elements by .5. Accordingly, the States-TPPI[57] correction acts on every other four 

components. The data is then apodized using the alnmr.ss2d function. The 

component angle spectra planes are then generated using the alnmr.ft2dplus 

function. Finally the data is stored to the appropriate 3D spectra.  

 To generate a final spectrum, absent of any ridge artifacts, the lower value (LV) 

comparison is employed. Al NMR has an optimized lower value comparison that acts on 
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the entire matrix simultaneously, as opposed to comparing individual vectors 

sequentially. The results of the lower value comparison are stored in a new matrix. First, 

the two component angle spectra are compared and stored to the LV matrix. 

Subsequently, all of the component angle spectra are compared to the LV spectrum, and 

the new results are used to replace the old values in the LV spectrum. After LV 

comparison is completed, all of the spectra, including the LV spectrum, are appropriately 

referenced using the supplied valued.  

3.8 Conclusion 

 In conclusion, a complete data processing package has been presented. This 

package enables a user to directly process both Cartesian and sparse sampled data. Core 

to the package are the necessary features to read FIDs directly from the spectrometer 

format, process the data and write a spectrum directly to an analysis program file format. 

Currently, the program is capable of reading both Varian and Bruker data formats. All of 

the traditional data processing functions are available, as well as, the equivalent functions 

for sparse sampled data. The package is capable of creating spectra files that amenable to 

direct analysis with either Sparky[51] or Felix. Finally, this program will serve to make 

sparse sampling generally applicable and facilitate development of a broad range of 

applications that utilize sparse sampling to decrease acquisition time.  
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Chapter 4 

Phasing Sparse Sampled Multidimensional NMR Data 

 

4.1 Introduction 

 In the previous chapter, a new data processing program was presented. The 

program utilizes the direct 2D-FT to process sparsely sampled data. When radial 

sampling is employed, the transformation results in a fundamental artifact manifested as a 

ridge of intensity extending through the peak positions perpendicular to +/- the radial 

sampling angle. The package includes a number of methods to remove the fundamental 

ridges artifacts, but as we will emphasize below, successful removal of the ridge artifacts 

requires absorptive line shapes. 

Unfortunately, no general procedure for phasing radially sampled NMR data has 

been presented. Indeed, the emphasis thus far has been on the collection of time domain 

data that is free of phase distortion or error. Obviously a procedure for retrospective 

phase correction of radially sampled data is a distinct advantage. Here we present two 

methods capable of phase correcting arbitrarily sampled NMR data as a solution to this 

problem. 

 

4.2 Theory 
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As above, the discrete 2D-FT can be described as[45-47]: 

 

1max 2max

1 2 1 1 2 2 1 2 1 2 1 2
1 0 2 0

( , ) exp( )exp( ) ( , ) ( , ) ( , )
t t

t t
S i t j t f t t g t t w t tω ω ω ω

= =

= − −∑ ∑   (4.1) 

 

Where i and j are quarternion numbers; t1, t2 are the incremented times, α1 and α 2 

comprise the frequency pair being determined, 1 2 1 1 2 2( , ) exp( )exp( )f t t i t j t= − Ω − Ω  is the 

data being transformed, Ω1 and Ω2 are the chemical shifts for time domain t1 and t2 

respectively, w(t1,t2) is a weighting factor to account for the unequally spaced sampling 

of the time domain and is typically applied as a two dimensional apodization function, 

and 1 2( , )g t t  describes the lifetime of the signal, which we will subsequently ignore. In 

the case of radial sampling 1 cost τ α=  and 2 sint τ α=  where τ is the incremented time 

and α is the sampling angles.  

 In accordance with standard Fourier transform quadrature theory, if the carrier 

frequency is set in the middle of the spectral ranges, eight pieces of data must be 

collected in order to determine the sign of the frequency components for a three-

dimensional spectrum. Typically the proton dimension is processed separately; therefore 

we will only deal with the indirect evolution terms here. This simplification leaves four 

terms that are modulated by a mixture of cosine and sine as presented below. 
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)cos()cos(),( 221121 ΩΩ= ttttfCC   (4.2a) 

)sin()cos(),( 221121 ΩΩ= ttttfCS   (4.2b) 

)cos()sin(),( 221121 ΩΩ= ttttf SC   (4.2c) 

)sin()sin(),( 221121 ΩΩ= ttttf SS   (4.2d) 

 

 Four real Fourier transformations can be used to process the four data sets, which 

we term the cos-cos Fourier transform (CC-FT), the cos-sin Fourier transform (CS-FT), 

the sin-cos Fourier transform (SC-FT) and the sin-sin Fourier transform (SS-FT). The 

CC-FT is used to transform the cos-cos modulated data set (Equation 4.2a), the CS-FT to 

transform the cos-sin modulated data set (Equation 4.2b), and so on. For example, the 

CC-FT becomes: 

1max 2max

1 2 1 1 2 2 1 2 1 2
1 0 2 0

( , ) cos( )cos( ) ( , ) ( , )
t t

CC
t t

S t t f t t w t tω ω ω ω
= =

= ∑ ∑   (4.3) 

The three remaining transformations are similarly defined[45, 47].  

In order to select the appropriate quadrature image the four resulting spectra, 

1 2( , )ccS ω ω , 1 2( , )csS ω ω , 1 2( , )scS ω ω  and 1 2( , )ssS ω ω  are summed, canceling the 

quadrature images and artifact peaks.  
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1 2 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )RR CC CS SC SSS S S S Sω ω ω ω ω ω ω ω ω ω= + + +   (4.4) 

 

To demonstrate the four Fourier transforms and summing procedure, we use four 

computer generated radially sampled time domain data sets modulated by a mixture of 

cos and sin as dictated by Equations 4.2a-d with one peak. The peak position for the data 

sets was set at (-300 Hz, 75 Hz) and the sampling angle set to 45 degrees. The linewidth 

was adjusted to 10 Hz by multiplying the data sets by an exponential decay. The data sets 

were Fourier transformed with their respective transform as outlined by Equation 4.3. 

Sixteen peaks are visible in the 1 2( , )ccS ω ω  spectrum. Four peaks are the quadrature 

images at ± 300, ±75 Hz and the twelve arise from intersection of the ridge artifact 

appearing at ±400, 0; ± 200, 0; 0, ±300; 0, ±150, ±100, ±225. The other three spectra 

1 2( , )csS ω ω , 1 2( , )scS ω ω  and 1 2( , )ssS ω ω  have the same four quadrature image peaks with 

varying signs. The variation in signs causes the artifact patterns to change. In the case 

where two negative ridges intersect a negative artifact peak is present, when two ridges of 

varying sign intersect no peak is present. When all four spectra are summed the variations 

in sign of the quadrature and artifact peaks cause them to cancel resulting in a spectrum 

with just the authentic peaks remaining (Figure 4.1).  



68 
 

 

Figure 4.1 An example of how quadrature images are resolved for computer generated radial sampled data 

processed with a single step two-dimensional Fourier transform. The data was generated with spectral 

parameters similar to that found in a radial sampled HNCO experiment. Four data sets (A-D) were 

generated according to Equations 4.7a,b and 4.8. The sweep widths were set to 2000 and 1500 Hz for the t1 

(carbon) and t2 (nitrogen) dimensions respectively. One peak was simulated at -300, 75 hertz with a 

linewidth of 10 Hz. Radial sampling was realized by incrementing the time in the first dimension as 

1 1( )cost n sw α=  and the second dimension as 2 2( )sint n sw α= . The four data sets were processed 

with their matching Fourier transform, for example the cos-cos modulated data set was processed with the 

CC-FT, A. sin-cos with the SC-FT, B. cos-sin with the CS-FT, C. and sin-sin with the SS-FT. Inset E 

shows the sum of A-D, resolving the appropriate quadrature image.  

 

In addition to the authentic peaks, ridges also extend from the peak at the 

sampling angle in the ),( 21 ωωRRS  spectrum. Most often one wishes to remove the ridges 
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and in the case where signal to noise is not limiting the lower value (LV) algorithm is 

preferred[25]. Here multiple data sets are collected at various sampling angles and the 

data is Fourier transformed independently. Subsequent to the transforms the intensities of 

multiple ),( 21 ωωRRS  spectra are compared point-wise and the smallest magnitude value 

at each point is kept in a separate spectrum. If a sufficient number of angle data sets are 

collected a final spectrum free of ridges is generated.  

 Providing the data is free of phase error, the above Fourier transform method 

combined with the lower value algorithm works quickly and accurately to generate a 

ridge free frequency spectrum. However, this approach is severely limited by its inability 

to deal with phase distorted data. If a phase error is present the lowest value algorithm 

will delete authentic peaks. This occurs because the lineshape of dispersive peaks causes 

the intensity to be zero inside the linewidth of the peak. The zero values are different for 

each sampling angle, therefore when multiple angles are compared by the LV algorithm 

the peak will be eliminated.  

 In order to circumvent this shortcoming, the current strategy is to optimize data 

collection to reduce phase distortions. Nevertheless, non-ideal spectrometer performance 

and inherent limitations of pulse sequences often preclude the collection of time domain 

data free of phase error. Because of the effective convolution of phase error across the 

various incremented time domains traditional approaches to phase correction are not 

applicable for radially collected data. As we will illustrate below, the presence of phase 

distortions severely degrade the quality of the resulting spectrum.  
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 To solve this problem we have developed two novel phase correction methods. 

The first method presents a correction that is applied in the frequency domain by 

generating absorptive and dispersive components with the 2D-FT. The second method 

applies corrections by adding constants to the 2D-FT, essentially applying a correction in 

the time domain. 

The phase corrections in the frequency domain are applied by utilizing properties 

of the discrete Fourier transform to generate absorptive and dispersive components. 

Namely an absorptive spectrum is generated by applying a real cos Fourier transform to 

cos modulated data and a dispersive spectrum is generated if a real sin Fourier transform 

is applied to the same cos modulated data.    

 In the case of the 2D Fourier transform we can generate four spectra: real-real, 

absorptive with respect to both the 1ω  and 2ω , frequency domains, real-imaginary, 

absorptive with respect to the 1ω  and dispersive with respect to 2ω , and so on. The 

process for generating these components is summarized in Table 1. For example, the pure 

absorption spectrum, 1 2( , )RRS ω ω , is generated by transforming the four data components 

with the matching Fourier transforms. That is, the cos-cos modulated data is transformed 

with the CC-FT, the sin-cos modulated data set is transformed with the SC-FT, the cos-

sin with the CS-FT and the sin-sin with the SS-FT. The four resulting spectra are summed 

producing the 1 2( , )RRS ω ω  spectrum. Similar procedures lead to the remaining three 

necessary spectra: 1 2( , )RIS ω ω , 1 2( , )IRS ω ω  and 1 2( , )IIS ω ω .  
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Table 4.1 Procedure for Generating Absorptive and Dispersive Spectra

 

 The four resulting spectra are shown in Figure 4.2 for the one peak generated data 

set with a sample angle of 45º. From initial inspection it might appear that these 4 spectra 

are sufficient to allow for phasing the two dimensional spectrum. This is not the case. 

The signs of the phase correction relative to the +α and –α ridges are opposite and 

requires that the +α and –α components be isolated and phased separately.  

 

Figure 4.2 An example of how the 2D-FT can be used to generate absorptive and dispersive spectra with 

respect to t1 (ω1) and t2 (ω2). Inset A shows the real-real spectra, )),( 21 ωωRRS , generated when the 
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matching Fourier transform is used, i.e. CC-FT for cos-cos modulated data. Inset B shows the imaginary-

real spectra, )),( 21 ωωIRS , generated by not matching the FT with respect t1 (ω1) while matching it with 

respect to t2 (ω2), i.e. SC-FT for cos-cos modulated data. Insets C and D show the other two spectra that can 

be generated 1 2( , )RIS ω ω and 1 2( , )IIS ω ω , respectively. Table 1 outlines the complete procedure. The 

data was generated in the same way as in Figure 4.1 and plotted to view only the area centered on the peak 

at -300,75 Hz.  

 

 The +α and –α real and imaginary components are generated by taking 

combinations of 1 2( , )RRS ω ω , 1 2( , )RIS ω ω , 1 2( , )IRS ω ω  and 1 2( , )IIS ω ω  as shown below.  

 

),(),( 2121 ωωωωα
IIRR SSR +=−   (4.5a) 

),(),( 2121 ωωωωα
RIIR SSI −=−   (4.5b) 

 

),(),( 2121 ωωωωα
IIRR SSR −=+   (4.6a) 

),(),( 2121 ωωωωα
RIIR SSI +=+   (4.6b) 

 

The ±α real and imaginary components are illustrated in Figure 4.3. 
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Figure 4.3 An example of the pure ±α real and imaginary component spectra used for phase correction in 

the frequency domain. Insets A and B show the real and imaginary + α spectra, while insets C and D show 

the real and imaginary – α spectra. Combinations of the + α and – α components are generated 

independently and subsequently summed to produce a phased spectrum. 

  

 With the real and imaginary components of +α and – α separated the two phased 

spectra can finally be generated and subsequently summed to produce a phase corrected 

spectrum, i.e.  
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  (4.7b) 

 

Where 1
0
tφ , 2

0
tφ , 1

1
tφ and 2

1
tφ  are the t1 and t2 zero and first order corrections. Also note that 

a factor of two was included in the first order terms to make setting the first order 

correction independent of the zero order terms. For example, if the pivot is set in the 

middle of the spectrum and one adds a half dwell to the incremented time period   ±90° 

phase corrections are needed at the edges of the spectrum. Traditionally the zero and first 

order phase corrections are set to 90°,-180°. By including the factor of two the phases can 

be set to 0°,-90°. Therefore only one parameter needs to be adjusted if only a first order 

phase correction needs to be applied.    

 To generate a final spectrum, the α+S  and α−S  are summed (Equation 8).  

)),(),(),( 212121 ωωωωωω αα −+ += SSS   (4.8) 
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Alternatively, the α+S  and α−S  can be used separately in the lower value-back 

projection algorithm[41]. This would give an advantage over summing the spectra 

because more combinations would be available for comparison.  

Practically, the zero and first order phase corrections are empirically determined 

from either an indirectly detected plane of the 3d spectrum with a single peak, so the 

analysis isn’t confused by artifacts, or from the 0° and 90° tilt angle spectra. For the 

single peak case, four spectra are first generated, as outlined in Table 1. Next, the sum 

and difference spectra are generated as in Equations 4.5 and 4.6. Finally, the four phase 

corrections are applied as outlined in Equation 4.7. Here the phases are searched for by 

varying each phase term until an absorptive spectrum is produced.  Else the phase 

corrections can be determined independently from the 0° and 90° sample angle planes. 

The 0° and 90° sample angles allow the phase corrections to be isolated for either t1 or t2 

respectively. In these spectra only one indirect time domain is evolved causing the data to 

be sampled in Cartesian space. Therefore traditional phasing techniques are applicable so 

the phase corrections can be determined by employing a Hilbert transform to generate the 

dispersive components[58].  After the phase corrections are determined from the 0° and 

90° sample angle planes, they are applied to all angles using Equation 4.7.  

When only zero order corrections are needed it is equally feasible to determine 

them from a one peak plane or from the 0° and 90° tilt angle spectra. However when any 

first order correction needs to be applied, it is much easier to determine the phase 

corrections from the 0° and 90° sample angle spectra. The isolation of the t1 and t2 phase 
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correction components by the 0° and 90° sample angle spectra significantly simplify the 

problem. It is also important to note when first order corrections are applied the ridges do 

not phase with the peaks. This occurs because of the frequency dependence of the first 

order correction. Therefore the ridges will in phase proximal to the peak but dispersive as 

they move further away. Although this might sound problematic, robust schemes are 

available to remove the ridges if the peaks are properly phased.  

 Phase corrections can also be applied in the in the time domain by adding 

constants to the 2D-FT (Equation 4.9).  

 

∑∑
= =

++−++−=
max
1

max
2

2211

01 02
21210122011121 ),(),())(exp())(exp(),(

t

t

t

t

tttt ttwttftjtiS φφωφφωωω   (4.9) 

 

Here, 1
0
tφ , 1

1
tφ , 2

0
tφ  and 2

1
tφ  are the zero and first order phase corrections for the 

incremented time domains 1t  and 2t , respectively. This method directly extends from the 

definition of phase error in time domain data, 

 

))cos(())cos((),( 2211
0212011121
tttt

CC ttttf φφφφ +Ω++Ω+=   (4.10) 
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and properties of the discrete Fourier transform. Namely a nonzero Fourier series 

coefficient is determined if the function generated by the Fourier transform matches the 

data function. We have simply extended this concept to include phase corrections so the 

function generated by the Fourier transform better matches the experimental data. In turn, 

an absorptive lineshape is generated upon transformation. 

 As above the phase corrections are determined empirically from either a plane 

with one peak or from the 0° and 90° sample angle spectra. Once the phase corrections 

are determined the data is retransformed with the appropriate corrections applied to 

Equation 4.9.  

 It is important to point out that phasing in the time domain has not previously 

been presented because of inherent limitations of the fast Fourier transform (FFT) 

algorithm[59]. This can most easily be explained by first inspecting the discrete one 

dimensional Fourier transform (Equation 4.11).  

∑
=

−=
max

0
)()exp()(

t

t
tftiS ωω   (4.11) 

From inspection it is clear that 2N  operations are required to compute )(ωS . This is 

obviously undesirable if a large number of data points are collected. However, if an 

extension of the Yates algorithm is applied, the 2N  operations can be reduced to 

NN 2log  operations[59]. This is accomplished by iteratively dividing the data to smaller 

and smaller groups until N groups of size 1 are present. At this point the 1 data point 



78 
 

groups can be Fourier transformed and combined in the manner presented by Cooley and 

Tukey[59].  

Properties of the one point Fourier transform are essential to this algorithm. In 

particular, the Fourier transform of one data point is itself independent of frequency. This 

is true because t=0 and therefore exp( ) 1i tω− =  However, if phase corrections are 

incorporated, t is no longer equal to zero and the Fourier transform is no longer frequency 

independent and the FFT algorithm is no longer applicable.  

 

4.3 Results 

This procedure is illustrated in Figure 4.4 using a standard HNCO[60] modified for radial 

sampling, such that )cos(11 αtt =  and ( )2 1 1 2 sin( )t t sw sw α= , on a 1mM 1:1 complex 

between calcium-saturated calmodulin and a peptide corresponding to the calmodulin 

binding domain of phosphodiesterase 1A.  In order to demonstrate the ability to apply a 

first order phase correction the experiment was setup with a half dwell added to both the 

t1 and t2 increments.  Accordingly, the spectra required first order corrections of -90º for 

both the t1 (ω1) and t2 (ω2) dimensions. Additionally the spectrum required a zero order 

correction of 36° in the t1 dimension.  
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Figure 4.4 Comparison of the same indirect dimension plane for a spectrum processed with no phase 

correction (Panel A) and with phase correction (Panel B). The phase corrected spectrum shows all peaks at 

the correct frequencies with the appropriate intensities. The spectrum with no phase correction is missing 

numerous peaks, as emphasized by the overlaid 1D spectra. Ten sample angle data sets were collected on a 

1:1 complex between calcium-saturated calmodulin and a peptide corresponding to the calmodulin binding 

domain of phosphodiesterase using a HNCO modified for radial sampling. The individual sampling angles 

were processed separately and compared using the Al NMR implementation of the lower-value algorithm.  

 

4.4 Discussion & Conclusions 

 The need to have properly phased multidimensional frequency space data is 

essential to the general application of radial sampling and the 2D-FT. As demonstrated by 

the HNCO spectrum with no phase correction shown in Figure 4.4a, when a lower 

magnitude comparison is performed for a data set without phase correction authentic 

peaks will incorrectly be removed. In many cases, phase error cannot be avoided and 

explicit phase correction will be required. We have devised two approaches to the 

phasing of such data, either by manipulation in the frequency domain or in the time 

domain. The choice of method, time or frequency phase correction, is dependent upon the 
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application at hand. For example, phasing in the frequency domain will be important 

upon the advent of a fast 2D-FT algorithm. Whereas, phasing in the time domain will 

easily be implemented in higher dimensional Fourier transforms. 

 

4.5 Methods 

 NMR data was collected on a ~ 1mM 1:1 complex between calcium-saturated 

calmodulin and a peptide corresponding to the calmodulin binding domain of the 

phosphodiesterase at 35º C on a Varian INOVA 600 MHz spectrometer, equipped with a 

triple-resonance cryogenic probe. The CaM-PDE complex was prepared in 10 mM 

imidazole pH 6.5, 6mM CaCl2, 100mM KCl and 0.04% azide. Ten sample angles were 

collected from 0° to 90° degrees in 10° degree increments. Each spectrum was derived 

from data sets composed of 384 FIDs, four quadrature components at 96 increments. 

Each FID contained 1024 complex points and was the average of eight scans. The 

spectral width was set to 14 ppm in the proton dimension. The spectral widths for the 

indirect dimensions were chosen to assure no peaks were folded and set to 40 and 12 ppm 

in the nitrogen and carbon dimensions, respectively. The ten angle spectra were 

processed independently and compared using a lower magnitude algorithm to remove the 

ridge artifacts. All processing and comparisons were done using Al NMR. 
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Chapter 5 

Optimized Angle Selection for Radial Sampled NMR Experiments 

 

5.1 Introduction 

As outlined in Chapter 2, radial sampling of the indirect evolution domain is 

shown to be appealing under the appropriate conditions because of the smooth baseline 

compared to the aliasing artifacts of random sampling and the potential for a sensitivity 

advantage. The ridge artifacts, that are inherent to radial sampling, are easily removed if 

an efficient set of sampling angles are collected. Further, if quantitative information is to 

be extracted from the radial sampled spectra it is essential that the ridge intensity only 

have a contribution from a single peak; as compared to, two peaks lying on the same 

ridge vector. Therefore, the utility of radial sampling is dependent upon the radial 

sampling angles chosen during data collection. 

In order to increase the utility of the radial sampling approach we present methods 

to optimize the set of sampling angles employed. The approaches can be classified into 

two general situations.  The first is when the peak resonance frequencies are known and 

need to be resolved from artifact, and the second is when the peak resonance frequencies 

are not known and need to resolved and assigned. The former case corresponds to a need 

to measure variation in intensity such as in a hydrogen exchange or classical relaxation 

experiment.  For this, two algorithms have been developed. One determines the minimum 
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set of angles necessary to distinguish authentic peak intensity from artifactual intensity 

introduced by the Fourier analysis of radially sampled data (i.e. the ridges). The second 

algorithm determines the fewest angles needed to produce an artifact free spectrum when 

a lower value[25] comparison is preformed. Alternatively, if the peak resonance 

frequencies are not known, an algorithm is developed to provide for iterative post-

acquisition determination of the optimal sampling angles to collect and to provide a 

definitive conclusion regarding the separation of authentic peak intensity from ridge 

artifacts. This type of algorithm is essential for the optimized application of radial 

sampling of data to be employed for de novo resonance assignment. Both algorithms are 

tested in the context of a radial sampled HNCO processed with the direct 

multidimensional Fourier transform[45-47] combined with lower value comparison, but 

are applicable, with minor modifications to the selection criteria, to more sophisticated 

artifact removal schemes.  

5.2 Theory 

 When radial sampled data is transformed with the 2D-FT the resulting spectrum is 

effectively underdetermined and produces ridges that extend through the spectrum where 

Equation 5.1 is satisfied.  

1 1

2 2

tan( )ω α
ω

− Ω =
− Ω

 
(5.1) 
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This relationship is true when α is either positive or negative, leading to two ridges 

extending from the each peak in the spectrum, one with a positive slope and the other 

with a negative slope.  

 We define an ordered triple with the directly detected dimension, ω3, in the first 

position and the two linked indirect dimensions, ω1 and ω2, in the second and third 

positions respectively. The following linear equation describes the ridge extending from a 

peak located at point P1 in a (3,2) radially sampled experiment where we employ the 

nomenclature of Szyperski[21]. 

 

1 (0,cos( (90 )),sin( (90 )))P P n α α= + ± − ± −  (5.2) 

 

P represents a point on the ridge, α is the sampling angle and n is a scalar. As before, the 

+/- sign is included because two ridges extend, one with a positive slope and another with 

a negative slope. In the case of a (4,2) radially sampled experiment four ridges would 

extend from each peak. In this case, Equation 5.2 is expanded to account for two 

sampling angles, α and β, as described by Equation 5.3.  

1 (0,cos( (90 ))cos( (90 )),
            sin( (90 ))cos( (90 )),sin( (90 )))
P P n α β

α β β
= + ± − ± −

± − ± − ± −
 

(5.3) 
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These basic descriptions allow the determination of whether two peaks are resolved at a 

given sampling angle and where all of the potential artifact positions are located. Further, 

this description allows all peaks to be analyzed simultaneously, regardless whether they 

are resolved in the directly detected dimension.  

5.2.1 Peak – Peak resolution 

 Two peaks in a radially sampled experiment are not resolved if the ridge from one 

of the peaks intersects the second. To determine if two peaks are resolved the distance 

from one of the peaks to the closest points on the positive and negative ridge components 

of the other peak is determined.  If both distances are greater than a specified cutoff 

(chosen to reflect a finite line width), the peak is considered resolved. The distance 

measurement is illustrated in Figure 5.1A, where the peaks are represented by points P1 

and P2.  
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Figure 5.1 Illustration of the peak to ridge distance in 2D space (A). Given two peaks, located at P1 and P3, 

the shortest distance is calculated between the peak located at position P3 and the nearest point on the 

ridge, extending from the peak at position P1, located at point P. See text for details regarding this distance 

calculation. If the distance is greater than a specified cutoff the two peaks are resolved at the given 

sampling angle α. Illustration of the ridge to ridge distance (B).  The ridge to ridge distance is used to 

determine if an artifact is generated from the intersection of ridges extending from peaks at locations P1 

and P3. Additionally, if the distance between the two ridges is less than a specified cutoff, the artifact 

position is determined as the average of the closest points PA and PB.  See text for details regarding this 

calculation.  

 

For clarity only one of the ridge components is shown in the figure. The distance between 

P2 and the ridge from P1 is determined by applying the point to line distance algorithm 

commonly encountered in computer graphics[61].  Here we generalize this approach. The 
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first step is to define an equation in order to solve for point Pmin, the closest point on the 

ridge to the peak located at P2. 

min 1 1( )P P u P P= + −  (5.4) 

 

To determine P an arbitrary non-zero scalar n is used. When the distance between point 

P2 and Pmin is minimized the vector from Pmin to P2 is perpendicular to the ridge. 

Therefore the dot product of the two vectors is zero. 

2 min 1( ) ( ) 0P P P P− − =i  (5.5) 

In order to solve for the point Pmin, Equation 5.4 is substituted into the dot product 

relationship and the scalar u is determined.  

2 1 1 1

1 1

( ) ( )
( ) ( )

P P P P P Pu
P P P P

− − −=
− −

i i
i

 
(5.6) 

Finally the expression for u is used to determine the point Pmin.  

2 1 1 1
min 1 1

1 1

( ) ( ) ( )
( ) ( )

P P P P P PP P P P
P P P P

− − −= + −
− −

i i
i

 
(5.7) 

 

The distance between Pmin and P2 is then 

min 2 2Distance = ( ) ( )P P P P− −i  (5.8) 
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The distance defined above corresponds to an infinitely narrow line. To 

accommodate consideration of a finite linewidth the effective width along the line 

connecting the two points of interest must be determined. This is accomplished by setting 

the origin of the Cartesian basis at point P then defining two angles between points Pmin 

and P2 that would be used to describe the latter’s position with respect to the former in a 

polar basis. These two angles are defined as: 

min 1 2 1
1

min 3 2 3

( ) ( )arctan
( ) ( )

P P
P P

ω ωα
ω ω

−=
−

 
(5.9a) 

 

min 2 2 2
2 2 2

min 1 2 1 min 3 2 3

( ) ( )
arctan

( ( ) ( )) ( ( ) ( ))

P P

P P P P

ω ω
α

ω ω ω ω
−

=
− + −

 
(5.9b) 

 

Here the subscript defines the Cartesian chemical shift components of vector Pmin and P2. 

Note that the angle is set to 90° if the denominator is zero. The linewidths along the 

specified distance line can be determined using the above defined angles as follows: 

1 1 1 2(  )(sin )(cos )linewidth cartesian linewidthω ω α α=  (5.10a)

2 2 2(  )(sin )linewidth cartesian linewidthω ω α=  (5.10b)

3 3 1 2(  )(cos )(cos )linewidth cartesian linewidthω ω α α=  (5.10c)
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The effective linewidth for a peak along a given vector is then the Euclidean distance of 

the scaled components. 

1 2 3

1
2

2

, ,
q

q
linewidth linewidth

ω ω ω=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑  

(5.11) 

The same scaling components can be used for both the peak at P2 and the ridge at Pmin 

because of the mirror symmetry between them.  Note that the linewidth at point Pmin is 

the same as the linewidth at peak P1. Finally, a measure of resolution is obtained by 

subtracting the two linewidths from the distance measured above. 

1 2
 P Presolution distance distance linewidth linewidth= − −  (5.12) 

The correction for finite line width in a higher dimensional experiment expands 

accordingly while the minimum distance algorithm remains unchanged. In the case of a 

(4,2) experiment four linewidths will be scaled using three angles defined in the same 

manner as Eq. [5.9a] and [5.9b]. The four scaling components are: 

1 2 3(sin )(cos )(cos )α α α , 2 3(sin )(cos )α α , 3(sin )α  and 1 2 3(cos )(cos )(cos )α α α  for the ω1, 

ω2, ω3 and ω4 respectively. Where ω1, ω 2 and ω 3 are the indirectly detected dimensions 

and ω4 is the directly detected dimension. Additionally, this treatment also provides a 

mechanism for filtering a peak list to allow for authentic peaks that will never be resolved 

to be treated as one peak. For example, one peak that encompasses two non-resolved 

peaks can be set to have a peak position equal to the average of the two peaks and a 

broader linewidth to account for both peaks. 
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5.2.2 Potential artifact positions 

 The lower value algorithm efficiently removes ridge artifacts if an appropriate 

combination of angle spectra are compared[25]. In instances where an inappropriate 

(insufficient) number of angle spectra are employed, ridge intensity may be present at 

positions in the spectrum not corresponding to authentic peak intensity and represents an 

artifact in the spectrum. The artifacts occur at locations when multiple ridges intersect. 

Therefore, determining all possible ridge intersection points can lead to the identification 

of artifact peaks. If the ridge linewidths were infinitely narrow the potential artifact 

locations would be the solution to the set of linear equations describing the ridges. In 

order to accommodate finite linewidths a ridge to ridge distance algorithm is used. The 

algorithm is an application of the general line to line distance algorithm also often used in 

computer graphics[61]. If the distance between two ridges is less than a specified cutoff, 

the average of the two closest points on each ridge is marked as a potential artifact. This 

procedure is illustrated in Figure 5.1b. Here two ridges extend from points P1 and P2 and 

points PA and PB represent the closest points between the two ridges. This figure 

illustrates only one of the ridge components from each peak. The total number of ridges 

is defined by the sampling scheme as discussed above.  

The two ridges of Figure 5.1b are represented by the linear Equations 5.13a and b: 

1 2 1( )AP P a P P= + −  (5.13a)

3 4 3( )BP P b P P= + −  (5.13b)
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Here, P1 and P3 are the positions of authentic peaks. Points P2 and P4 are defined as a 

function of the sampling angle, as presented in Equations 5.2 and 5.3 for a non-zero 

scalar n. a and b are the scalars used to define points the closest points PA and PB. A 

vector W can be defined between the two closest points as:  

A BW P P= −  (5.14) 

 

As before, in order to solve for PA and PB the scalars a and b must be determined.  W 

becomes 

1 2 1 3 4 3( ) ( )W P a P P P b P P= + − − − −  (5.15) 

 

For clarity we can define a vector from the peak at P1 to the peak at P3. 

0 1 3W P P= −  (5.16) 

 

The simplified expression for W is presented by substituting 5.16 into 5.15. 

0 2 1 3 4 3( ) ( )W W a P P P b P P= + − − − −  (5.17) 

From the definition of two skew lines we know the vector describing the line between the 

closest points is the only line uniquely perpendicular to both the lines describing the 
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ridges. Therefore the dot product and unit vectors 2 1( )P P−  and 4 3( )P P−  that describe the 

two ridges is zero. 

2 1( ) 0W P P− =i  (5.18a)

 

4 3( ) 0W P P− =i  (5.18b)

Substituting the expression for W into the dot product definitions puts the equations in 

terms of the scalars a and b: 

0 2 1 2 1 4 3 2 1 2 1( ) ( ) ( ) ( ) ( )W P P b P P P P a P P P P− = − − − − −i i i  (5.19a)

0 4 3 4 3 4 3 4 3 2 1( ) ( ) ( ) ( ) ( )W P P b P P P P a P P P P− = − − − − −i i i  (5.19b)

 

For clarity the following scalars are defined: 0 2 1( )h W P P= −i , 2 1 2 1( ) ( )i P P P P= − −i , 

2 1 2 1( ) ( )j P P P P= − −i , 0 2 1( )k W P P= −i  and 4 3 4 3( ) ( )l P P P P= − −i . Substituting into 

Equations 5.19a and 5.19b gives: 

2

ki hla
jl i

−=
−

 (5.20a)

2

jk hib
jl i

−=
−

 (5.20b)

Upon substitution of Equations 5.20a and 5.20b into Equations 5.13a and 5.13b, the 

points PA and PB become: 
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1 2 12 ( )A
ki hlP P P P
jl i

−= + −
−

 (5.21a)

3 4 32 ( )B
jk hlP P P P
jl i

−= + −
−

 (5.21b)

The Euclidean distance between points PA and PB is defined as: 

( ) ( )A B A Bdistance P P P P= − −i  (5.22) 

In order to determine if an artifact is present the distance is scaled for the line widths in 

the same manner as in the peak to ridge distance. If the scaled distance is less than a 

specified cutoff a potential artifact is located at the average of points PA and PB. Again, 

this algorithm is also applicable to higher dimensional experiments. 

We now have the tools necessary to optimize the collection of radially sampled data.  

5.2.3 Minimum angles to resolve peak intensities 

 The first case that we consider is the situation where the positions of authentic 

peaks are known. This would be encountered during the collection of three-dimensionally 

resolved relaxation or hydrogen exchange data, for example. Here the goal is to collect 

data as efficiently as possible such that all authentic peaks are free from contaminating 

artifact intensity. Importantly, in this situation, artifact intensity that is resolved from 

authentic peak intensity is of no consequence.  

 Relaxation rates vary as a function of angle for radial sampled experiments 

because the data is a product of two relaxation components, one from each of the two 
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indirectly evolved dimensions (spins). The variation in relaxation can be eliminated by 

using a single sampling angle for a series of experiments. In turn, treating the angles 

independently, allows for the ridge intensity to be left in the spectrum, skipping any 

lower value comparison. To increase the number of peaks resolved at a sampling angle 

the positive and negative ridge components are isolated and analyzed separately. The 

ridge components are isolated in the same manner as Chapter 4.   

 If all authentic peaks are not resolved from ridge intensity with a single sampling 

angle, multiple sampling angles can be used but the resulting data should be treated 

independently. Treating the angle spectra independently, allows for a simple algorithm to 

determine the optimal sampling angles. The first step in the algorithm is to edit the peak 

list grouping authentic peaks that are not resolved from each other as opposed to resolved 

from artifactual peak intensity. Unresolved authentic peaks will not be resolved by any 

sampling angle and are therefore treated as a single peak with a linewidth that spans the 

group of peaks. After the peak list has been edited every combination of peaks is tested 

for resolution from artifact intensity using the peak to ridge distance algorithm for a 

selected series of angles. The peak to ridge distance accounts for a difference of the 

chemical shifts in the directly detected dimension avoiding the need to sort the peaks to 

assure they are in the same indirect plane of the spectrum. This step generates two lists of 

peaks for the sampling angle tested, one for the peaks resolved in the positive slope 

component spectrum, and another for the peaks resolved in the negative slope component 

spectrum.  
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 The results of a series of sampling angles can be sorted to determine the minimum 

number and identity of the sampling angles needed to resolve the intensity of all of the 

authentic peaks in a spectrum. The two lists of resolved peaks at each angle are combined 

and any redundancy removed; some peaks will be resolved in both of the component 

spectra. The angle that resolves the most peaks is then found. If the selected angle fails to 

resolve all of the peaks additional angles are selected on the basis of resolving the most 

peaks. 

 This procedure was tested with a simulated data set consisting of 10 peaks, all 

located in the same plane. The peaks were randomly distributed in two dimensions, with 

the criteria that they would not be resolved by only one of the two dimensions. The 

results are shown in Figure 5.2. For comparison the same peak frequencies and 

linewidths were used to generate a Cartesian sampled data set resulting in the spectrum 

shown in Figure 2a. Analysis of the peak list concluded that an 85° sampling angle would 

resolve all of the peaks. The positive slope ridge component of the 85° spectrum is shown 

in Figure 5.2b. For clarity the Cartesian sampled spectrum is overlaid in gray.  
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Figure 5.2  Comparison of Cartesian and radial sampled spectra illustrating how appropriate angle selection 

can speed data collection. Spectrum A shows the comparison Cartesian sampling spectrum. Spectrum B 

demonstrates the selection of the minimum angles needed to resolve all of the peak intensities. For this set 

of peaks the positive slope component of 85° sampling angle resolves all of the peaks. The data was 

processed with the matching and non-matching direct two-dimensional Fourier transform to isolate the 

positive ridge component. For clarity the Cartesian sampled spectra was overlaid in gray. Spectrum C 

demonstrates selecting the minimum angles to produce a spectrum with no artifact peaks. Here data was 

generated with two radial sampling angles, 6° and 85°. The data was processed with the matching and non-

matching direct two-dimensional Fourier transforms to isolate the positive and negative ridge components 

of the two angles generating four spectra. The four spectra were compared with the lower value algorithm 
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to produce an artifact free spectrum. A slice take at 60 Hz is overlaid, with slight offset for clarity, 

demonstrates an artifact free baseline. 

 

5.2.4 Minimum sampling angles to generate an artifact free spectrum 

 In the second scenario that is likely to be encountered, an artifact free spectrum is 

desired. To produce such a spectrum the lower value algorithm is used to remove the 

artifacts, the success of which is dependent upon the collection of an appropriate set of 

sampling angles. If suboptimal sampling angles are used intensity can remain at non-

authentic peak locations. In a manner similar to above, we apply the ridge to ridge 

distance algorithm to determine all of the potential artifact positions, and subsequently 

apply the peak to ridge distance algorithm to determine if potential artifact positions are 

resolved in at least one of the selected sampling angles and will consequently be removed 

by the lower value algorithm.  

 As before, the first step is to edit the peak list to combine truly unresolved peaks. 

Sets of unresolved peaks are replaced by a single peak with an adjusted linewidth to 

account for their unresolved components. Unlike for the previous case described above, 

the sampling angles are no longer independent, which requires sets of angles to be 

selected. The number of angles and which angles selected can be definitively determined. 

If some angles must necessarily be collected, such as the 0° and 90° used to determine 

phase corrections(Chapter 4), they can be included in every set of angles tested. 



97 
 

Typically, initial tests use a small number of angles and increase the number if all of the 

artifacts are not removed after a given number of trials.  

 For a given set of test angles, all of the artifact positions are determined through 

application of the ridge to ridge distance algorithm. This is accomplished by iterating 

over each set of angles for each peak against every other ridge. For example, in the case 

where there are two peaks, P1 and P2, and two sampling angles, α1 and α2, the ridge 

extending from peak P1 at +α1 would be tested against the -α1 ridge of P2 and both the + 

and -α2 ridge of P2. The other three ridge components of P1 are tested in the same manner. 

To speed the analysis, only those peaks that are not resolved in the directly detected 

dimension are tested. The list of all potential artifacts is then edited to remove peaks that 

are in the same location as the authentic peaks. If the primary concern is to determine the 

chemical shifts, removing the overlapping artifacts from the list will not affect the final 

spectrum, it can only affect the peak intensities. If the intensities are a concern the 

minimum angle to resolve peak intensity algorithm can be run first to select the angles 

that resolve intensities. The intensities can then be extracted from the appropriate angle 

spectra.  

 The final step is to determine if the potential artifacts will be removed during 

lower value comparison. This is accomplished by applying the peak to ridge distance 

algorithm. The ridges will only extend from the authentic peaks, and not the potential 

artifact positions. Accordingly, the potential artifact positions are tested against all of the 

ridges extending from the authentic peaks. If an artifact position is resolved in one of the 
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angles, the potential artifact will be removed during the lower value comparison. A list of 

unresolved artifacts is thereby compiled. If the number or location of the remaining 

artifacts is unsatisfactory a new set of angles is then tested.  

 This algorithm was test against same 10 peak generated data test case used in the 

previous algorithm. Analysis of the peak list concluded that two sampling angles, 6° and 

85° are needed to remove all of the artifacts. The results are shown in Figure 5.2c. 

Comparison with the Cartesian sampled spectrum indicates that only authentic peak 

intensity remains after the lower value comparison.  

5.2.5 Spectrum analysis and iterative data collection 

 In the two previous scenarios, the peak positions are known and the appropriate 

angles to either resolve peak intensities or resolve all of the artifacts can be determined 

unambiguously. In situations where the position of the authentic peaks are not known 

rather than testing for sampling angles that resolve the potential artifacts, the remaining 

peak intensity in a lower value comparison spectrum needs to be tested. Without knowing 

the location of the authentic peaks, all intensity in a lower value spectrum must be treated 

as a potential peak until it is determined to be authentic. If the intensity in a lower value 

spectrum is resolved in at least one angle, the peak must be authentic. If two peaks are 

not resolved they are marked as potential artifacts until additional data resolves them.  

 The first step in this analysis is to collect an initial data set, process the angles 

separately, compare them with the lower value algorithm and generate a peak list. All 
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such peaks are considered potentially authentic at this point. The peak to ridge distance 

algorithm is applied to test if a potential peak is resolved from the ridges from all of the 

other potential peaks. The ridges are generated at each of the sampling angles used. If a 

peak is not resolved at any of the sampling angles, it is marked as a potential artifact. 

After a list of potential artifacts is generated, the set of minimum angles to resolve all of 

the potential peak intensities is determined as described above. Additional data is then 

collected at the suggested angles. The data is processed and compared, using the lower 

value algorithm, to the previous spectrum. A new peak list is created and analyzed and 

the process is repeated until all of the intensity is resolved, or the remaining potential 

artifacts don’t complicate further analysis.  

 Figure 5.3 demonstrates this method of iterative analysis and data collection. Here 

the same 10 peak test case was used as before. For the first round of data collection, data 

was generated at 0° and 90°, processed independently and compared with the lower value 

algorithm. The resulting lower value spectrum is shown in Figure 5.3a. As anticipated, it 

is impossible to determine the 10 authentic peaks from the 100 potentially authentic 

peaks. Analysis of the peak list generated from the spectrum in Figure 5.3a led to the 

conclusion that a sampling angle of 35° was optimal. An additional data set was 

generated at 35°, processed and compared using the lower value algorithm to the 0° and 

90° lower value spectrum. As shown in Figure 5.3b, inclusion of the additional sampling 

angle removed a large number of the additional of the potential artifact peaks, leaving 11 

peaks in the spectrum. The one artifact in the spectrum is circled to highlight that without 
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the analysis described here it is impossible to distinguish it from an authentic peak. A 

subsequent iteration determined that a sampling angle of 73° would resolve all of the 

remaining peaks, removing any potential artifacts. Generating the additional data set, 

processing and comparison to the 0, 90 and 35 lower value spectrum produces the 

spectrum shown in Figure 5.3c. Analysis of this spectrums peak list determines that all of 

the peaks must be authentic because they are all resolved from ridge artifacts.  
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Figure 5.3 Demonstration of iterative angle selection and spectrum analysis. Spectrum A. shows the lower 

value comparison of the face, 0 and 90 sampling angle, spectra. The peak list of the spectrum A was 

analyzed and a 35° sampling angle was determined to remove the most artifacts. Spectrum B shows the 

lower value comparison of the 0°, 35° and 90° sample angle spectra.  The circled peak indicates a peak in 

the spectrum that was determined to be a possible artifact. The overlaid slice demonstrates the relative 

intensity of the possible artifact peaks. Analysis of the peak list from this spectrum determined that a 

sampling angle of 73° would remove any remaining artifacts. Spectrum C shows the lower value 
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comparison of the resulting spectra from sampling angles at 0°, 35°, 73° and 90°. Analysis of the peak list 

from this spectrum determines that all peaks are resolved at least one of the sampling angles and therefore 

must be authentic peaks and not artifacts. The overlaid slice demonstrates the removal of the artifact peak. 

Both the slices in B and C are slightly offset for clarity.  

 

3. Results 

 We have essentially described three algorithms: finding a minimum set of 

sampling angles to resolve authentic intensities from ridge artifact intensity; finding a 

minimum set of sampling angles to remove all ridge artifacts from the spectrum; and an 

iterative analysis and data collection procedure for obtaining an artifact free spectrum 

when the positions of authentic peaks are not known a priori. Each procedure was tested 

in the context of the HNCO spectrum of recombinant human ubiquitin. The results are 

illustrated in Figure 5.4-5.6.  To establish the minimum set of sampling angles to resolve 

authentic intensity, an initial peak list was derived from the conventional Cartesian 

sampled HNCO spectrum (Figure 5.4a) though such a 15N,13C list could be taken from 

any reliable source. This spectrum also served as a comparison with equivalent resolution 

to the radial sampled spectrum. High resolution was achieved by collecting 64 increments 

in both indirect dimensions. Accordingly, the data collection time was approximately 36 

hours. Analysis of the peak list suggested sampling angles of 36° and 90° would resolve 

all authentic peak intensity from artifactual intensity. Indirect dimension slices of the 

single step two dimensional FT of the positive slope component of 36° and 90° sampling 

angle data sets are shown in Figure 5.4b and 5.4c. Total data collection time for the two 
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angle planes was 51 minutes corresponding to a 43 fold time advantage over Cartesian 

sampling. These slices are all taken at 8.15 ppm in the 1H acquisition dimension (ω3). 

Importantly, when measuring peak intensities it is clearly advantageous to separate the 

spectrum into the individual ridge components. This aids in determining the intensity 

because distracting artifact peaks are not present. Additionally, by separating the 

spectrum into its ridge components fewer sampling angles need to be collected. The 

spectra are not symmetrical so each ridge component contains unique data. Separating the 

ridges also aids in removing artifact peaks if the lower value algorithm is applied. In 

summary, these spectra demonstrate the successful resolution of authentic peak intensity 

from artifactual ridge intensity in a deterministic manner. Analysis of the entire 3D 

spectrum derived from the two sampling angles confirmed that all of the peak intensities 

are resolved (data not shown). 
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Figure 5.4 Demonstration of the minimum angles needed to determine the peak intensities for ubiquitin 

using a HNCO. Peak list analysis determined that sampling angles of 36° and 90° would resolve all of the 

peak intensities. Shown here are the 13C- 15N indirect planes of three HNCO spectra  at 1H shift of 8.15 

ppm. Spectrum A shows Cartesian sampled experiment as a reference. Spectra B shows the 90° sampling 

angle spectra while spectrum C shows the positive ridge component of the 36° sampling angle. Note that 

the peaks that are not resolved at 90° are resolved at 36°. 

 

The two angles selected to resolve peak intensities are not a unique solution. 

However, the combination of 36° and 90° was selected for multiple reasons. First, it is 
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advantageous to include the 0° or 90° projections or “faces” as they are needed to 

determine the phase corrections (Chapter 4). Additionally, the 0° and 90° faces can be 

collected with two quadrature components as compared to four needed for other angles. 

Finally, the faces are only affected by relaxation arising from spins associated with only 

one incremented time domain.  

In cases where the spectrum is especially complex, it might not be possible to 

choose a set of angles that resolve all peak intensities. In this circumstance either a subset 

of peaks must be focused on or an alternate experiment must be chosen. When a subset of 

the peaks are focused on, the sorting routine can be modified to include a weighting term 

to favor the angles that resolve the peaks of interest.  While the time savings occurred by 

radial sampling make it appealing, the algorithm described here allows a definitive 

mechanism for deciding whether radial sampling is applicable.  

The same approach was used to test the procedure for defining the minimum set 

of angles necessary to remove all artifacts from the spectrum. Analysis of the peak list 

concluded that three sampling angles (0°, 35° and 90°) would suffice. The total 

measurement time for the three angles is 68 minutes corresponding to 32 fold time 

advantage over equivalent resolution Cartesian sampling. A representative slice of the 

HNCO spectrum illustrates that only the desired authentic intensity is present (Figure 

5.5).  Again, the three angles selected by the algorithm to remove all of the artifacts are 

not unique; other combinations of angles would produce the equivalent results. In this 

case the 0° and 90° sampling angles were required to be in the angle set in order to 
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determine the necessary phase corrections(Chapter 4). Other additional angles could be 

included in the angle set. Time is the only disadvantage to including more angles if the 

minimum angles are known. Including additional angles will not produce ridge artifacts.  

 

Figure 5.5 An example of calculating the fewest angles needed to generate an artifact free HNCO spectrum 

of ubiquitin is shown here. Spectrum A shows the comparison Cartesian sampled spectrum at 1H 8.71ppm 

and Spectrum B shows the same indirect slice of the radial sampled experiment using the calculated 

sampling angle of 0°,36° and 90°. The overlaid slice demonstrates the typical baseline quality for the entire 

3D spectrum.  

 

The number of angles needed to remove all of the artifacts can be decreased by 

reducing the linewidth of the peaks. The algorithm is based on a distance measurement; 

therefore the effective distance between the peaks is optimized by reducing the 

linewidths. Standard methods can be used to decrease the linewidths. Increasing the 

number of increments if relaxation isn’t limiting or using constant time approaches where 

the line widths is adjusted by the convolution and apodization functions are two obvious 

options. Effective use of linear prediction adapted to radial sampled experiments would 
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also decrease the linewidths with a concomitant reduction in the minimum number of 

sampling angles required.  

The final example illustrates the iterative data analysis and collection procedure 

used to faithfully reveal authentic peaks while suppressing artifactual intensity without 

prior knowledge of the peak positions. Figure 5.6 shows a representative indirect plane of 

the HNCO generated from lower value comparison of three sampling angles (0°, 45° and 

90°). This was used as a starting point. Analysis of the peak list determined that a 

sampling angle of 67° would resolve the most additional peaks in the spectrum. The 67° 

sampling angle spectrum was collected and processed and compared to the (0°, 45° and 

90°) lower value comparison spectrum. A representative slice is shown in Figure 5.6. 

Analysis of the resulting peak list concluded that all of the peaks were resolved and 

therefore authentic. 
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Figure 5.6 Demonstration of the use of iterative angle selection to generate an artifact free HNCO spectrum 

of ubquitin with radial sampling. For comparison spectrum A shows an indirect slice of the Cartesian 

sampled HNCO at 1H 8.49 ppm. Spectrum B shows the same indirect plane as A for the radial sampled 

data generated from  the lower value comparison of 0°, 45° and 90° sampling angle spectra. Analysis of the 

peak list for the entire 3D experiment concludes that a sampling angle of 64° will remove the most 

remaining artifacts, if any. Spectrum B shows the lower value comparison of 0°, 45° and 90° with a newly 

collected 64° spectrum. Notice the removal of one artifact peak, as demonstrated by the overlaid slices. 

Analysis of this peak list concludes that all peaks in the spectra are resolved and therefore authentic. 

5.4. Discussion 

The three algorithms described here provide a means to confidently collect 

radially sampled multidimensional NMR data that such that the integrity of peak intensity 
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is maintained (algorithms 1 and 2) or the spectrum entirely free of artifacts arising from 

ridge intensity inadvertently surviving the lower value data reduction (algorithm 3). The 

retrospective spectrum analysis described here removes all uncertainty as to whether a 

peak is authentic or artifact through a quantitative measure of resolution.  Furthermore, 

the approach optimizes the data collection by reducing, if not eliminating, the collection 

of unnecessary data and identifying when sufficient data has been collected to produce a 

suitable spectrum. From a practical point of view, any inefficiency that is introduced by 

the analysis during data collection can be overcome by collecting angles of other 

experiments while it is being performed. Typically assignment experiments are run as 

pairs, so a second experiment is collected concurrently. Regardless, the analysis is rapid 

and not computationally intensive. Additionally, once the first peak list from the initial 

data set is generated, additional rounds or analysis are much faster. Automation could be 

applied to this step very easily. Though only a (3,2) radially sampled HNCO spectrum 

was used to illustrate the potential of the three algorithms described here, all of the 

methods presented are directly amenable to higher dimensional experiments. Iterative 

data analysis and collection is particularly appealing in high order nD experiments where 

sensitivity and resolution are generally limiting. While radial sampling affords an easy 

method to increase the resolution of such experiments, optimal data collection allows for 

less angles to be collected and more time to be used for signal averaging with the 

attendant gain in signal-to-noise. Future work will assess optimized radial sampling in 

sensitivity limiting cases and in the case of 4-dimensional spectra. 
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5.5. Methods 

All simulated data was created using a set of ten peaks distributed in two dimensions to simulated 

the two linked indirect dimensions of a (3,2) sampled experiment. The randomly assigned resonance 

frequencies of the ten peaks are: (248.9, -503.4); (-97.7, -387.2); -(226.5,  -844.5); (67.6, -263.5); (462.7, 

845.5); (-407.8, 58.3); (194.1, -649.1); (380.9, 224.9); (47.9, 269.3) and (-727.8, -806.1) Hz. The linewidths 

of all of the peaks was set to 50 Hz in both dimensions.  The spectral width was set to 2000 Hz in both 

dimensions. Each sampling angle used was the result of four quadrature data components collected with 

128 increments.  

NMR data was collected on a 900 μM 13C, 15N uniformly labeled sample of human ubiquitin at 

25° C on a Varian INOVA 500 MHz spectrometer. The sample conditions consisted of 50mM phosphate 

buffer pH 5.5, 50mM NaCl and 0.04% Azide. Recombinant ubiquitin was prepared as described[62]. NMR 

data was collected using a standard HNCO[60] or a modified version for radial sampling, such that 

)cos(11 αtt =  and ( )2 1 1 2 sin( )t t sw sw α= with the following experimental conditions. For radial 

sampled data each sampling angle, other than 0 and 90, was collected with four quadrature components at 

64 increments composing 256 FIDs. The 0 and 90 sampling angles were collected with two quadrature 

components at 64 increments composing 128 FIDs. Cartesian sampled data was collected with equivalent 

resolution using 4 quadrature components at 64 increments in both indirect dimensions composing 16384 

FIDs. In both sampling schemes each FID contained 512 complex points and was the average of eight 

scans, the minimum number of phase cycling steps stated in the original reference. Using a 1.0 second 

interscan delay the measurement times for 0 and 90 sampling angles was 17 minutes. The measurement 

time for all other angles was 34 minutes. The measurement time for the Cartesian sampled spectrum was 

36.4 hours. The spectral width was set to 12 ppm in the proton dimension. The spectral widths for the 

indirect dimensions were chosen to assure no peaks were folded and set to 17.5 and 40 ppm in the carbon 

and nitrogen dimensions respectively. With the corresponding carrier frequencies set at 176 and 119 ppm. 
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The angle spectra were processed independently using a direct 2D Fourier transform. Prior to Fourier 

transforming the data was apodized and zero filled. A cosine squared apodization function was applied to 

remove truncation artifacts and to approximate the correction for unequal spaced data. Subsequently the 

angle spectra were compared using the lower value (magnitude) algorithm to remove the ridge artifacts. 

The Cartesian sampled data was processed with corresponding techniques in one dimension. All processing 

was done using Al NMR and visualized using Sparky[51].  

 

 

  



112 
 

Chapter 6 

SEnD NMR: Sensitivity Enhanced n-Dimensional NMR 

6.1 Introduction 

 As presented in Chapter 1, application of NMR to large proteins is inhibited by 

both resolution and sensitivity. Through application of sparse sampling, the resolution 

limitation is alleviated. Here the alternative situation is considered, where the goal is to 

increase the sensitivity of a given spectrum. Briefly, to accomplish this we will use a 

combination of radial sampling[25] and a previously unexploited statistical property of 

the data. Chapter 5 demonstrated that the defined pattern of artifacts arising from the 

multidimensional FT of radial sampled data allows the definition of a set of algorithms to 

optimize angle selection. As we demonstrate here, optimized angle set collection for 

radial sampling provides significant freedom for the further optimization of 

multidimensional NMR spectra with respect to signal-to-noise (S/N). We will first 

present the theory and resulting criteria that suggests how data optimized for S/N should 

be collected. We then illustrate how an inherent feature of radial sampling provides the 

subsequent opportunity to utilize non-linear statistical methods to exponentially reduce 

the noise without introduction of artifact. Providing the criteria underlying the basic 

approach are met, a substantial sensitivity advantage can be achieved. 

6.2 Theory 
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 Here we are initially interested in the strength of the signal obtained by radial 

sampling versus that obtained by normal orthogonal (independent) Cartesian (uniform 

linear) sampling of the time domains t1  and t2 . Consider heteronuclear spins that are J-

coupled. The maximum signal, Smax, subsequent to Fourier transform[63] of the Cartesian 

sampled data for the incremented time domains where J-coupling is suppressed during 

evolution is: 

  
Smax = cos2 2πω1t1( )

t1

t1
max

∑
t2

t2
max

∑ cos2 πω1t1 / 2t1
max( )cos2 2πω2t2( )cos2 πω2t2 / 2t2

max( ) (6.1) 

 

where the various terms have their usual meanings. Apodization is included as a cosine 

squared function. This is compared to the maximum signal intensity of radial sampled 

data by substituting the two incremented time variables for one variable τ, such that 

1 cos( )t τ α=  and 2 sin( )t τ α= , in both the signal and apodization terms. Replacement of 

the two incremented time variables with one term results in only a single summation: 
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2 2 max
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2 2 max
2 2

cos 2 cos cos cos / 2 cos

cos 2 sin cos sin / 2 sin

S
τ
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πω τ α πω τ α τ α

πω τ α πω τ α τ α

=

×

∑
 (6.2) 

 

In both cases, the effects of relaxation are not included for clarity. 
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Figure 6.1 demonstrates how the maximum signal intensity ratio changes as a 

function of the number of incremented points assuming the case that the line shape is 

dictated by the apodization function. A 45 degree sampling angle was used in this 

example. The captured volume ratio shows a non-linear dependence because the effects 

of apodization do not scale the signal intensity in radial sampling as substantially as when 

Cartesian sampling is used. This nonlinear effect is accentuated further if relaxation is 

included. Additionally, if multiple angles are collected a higher density of points are 

collected at short evolution times, while the density decreases at long evolution times. 

The difference in density, between Cartesian sampling and radial sampling produces 

nearly a 70% gain in total signal intensity if the same numbers of points are evaluated 

using equally distributed angles.  

 

Figure 6.1 The ratio of maximum signal intensity of Cartesian sampling to radial sampling is demonstrated 

here as a function of number of increments. This plot was generated by solving for the quotient of 
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equations 1 and 2.  The Cartesian data was generated as a NxN grid of points, with the square root of the 

total number of points indicated. This is compared to the radial sampled data generated at a 45 degree 

sampling angle. Both data sets were multiplied by a cosine squared apodization function and the real 

Fourier transformed to calculate the maximum signal intensity. The plot indicates the nonlinear change in 

volume as the number of sampling points is varied. 

 

The number of transients per free induction decay (FID) and the total number of 

increments of the time domains influence the signal-to-noise for both Cartesian and radial 

sampling, the latter in less obvious ways than the former. Consider well-behaved noise 

described by a Gaussian distribution with a standard deviation, σ, with a probability 

distribution function described by: 

p x( )=
1

σ 2π
e

− x2

2σ 2  (6.3) 

Where σ is the standard deviation of uncorrelated noise distributed about zero. The 

breadth of the noise changes as the square-root of the number of data points acquired: 

σ i+ j = σ i n j  (6.4) 

Here σ i  is the starting standard deviation of the noise and σ i+ j  is the standard deviation 

of the noise after adding j points to the original i points. Obviously using radial sampling 

fewer increments are necessary, per angle, and less noise is introduced into the spectrum. 

This equation does not account for the change in noise as a function of apodization. The 

dependence of the noise on the square root of the number of increments is a result of the 

Fourier transform rescaling the noise of each point as a function of the summation over 
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all of the data points. Each data point measured has a distribution of noise centered on the 

data point. The distribution is scaled depending on the incremented time value that it is 

being multiplied by the Fourier transform coefficients. The mean value of the Fourier 

transform coefficients is cos π / 4( ). Using the sum of the variance law, the standard 

deviation of the noise after the Fourier integral is n cos π / 4( ) and n sin π / 4( ) for the 

real and imaginary components, respectively. Summing the two Fourier transform 

components results in the general form shown in equation (6.2).  

 The noise term as a function of the number of transients is commonly thought of 

in terms of the variance sum law; which concludes the noise decreases by the square root 

of 2 as the number of transients doubles. Written as a continuous function it takes the 

form:  

σ i+ j = σ i 2( )− log2
ni +nj

ni

⎛

⎝⎜
⎞

⎠⎟  (6.5) 

 

As before, σ i  is the standard deviation of the noise after ni  transients and σ i+ j  is the 

standard deviation of the noise after ni+ j  transients.  

 The lower magnitude algorithm was originally introduced for the processing of 

two-dimensional 1H-1H spectra where the asymmetrical features of prominent artifacts 

such as “t1 noise” could be used to distinguish them from authentic peaks[64]. The same 

algorithm has been employed in projection reconstruction spectra with a similar 
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intent[25]. For both projection reconstruction and its direct multidimensional Fourier 

transform counterpart, the lower magnitude comparison is used to remove ridge artifacts 

from the spectrum. A complete description of the ridge artifacts is available in Chapter 5. 

Briefly, the lower magnitude algorithm compares each equivalent data point of spectra 

obtained with different radial sampling angles and selecting the lowest magnitude value. 

Because the ridge artifacts are dependent upon the sampling angle, this comparison 

efficiently removes them. Importantly, because the ridge artifacts are limited to the 

vectors extending from authentic peaks, the baseline noise is reduced through the 

comparison. This is the key to a significant S/N advantage offered by the appropriate use 

of radial sampling and the lower value algorithm. 

 A formal analysis of the statistical properties of the lower magnitude algorithm 

has not been described. Typically, it is effectively assumed that the average deviation 

decreases linearly as a function of the number of angles employed[65]. This description is 

insufficient to provide means to analyze the change in the standard deviation of the noise. 

The change in the noise standard deviation can be analyzed by inspection of the 

probability density function. To determine the probability density, the probability 

distribution is first derived for the lower magnitude comparison. The lower magnitude 

comparison compares the absolute magnitude of the values and selects for the minimum 

magnitude value after n comparisons of different spectra. Assuming a normal Gaussian 

distribution of noise, the probability distribution for a single angle may be written as: 
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1( ) 1
2 2

xP x X erfα

σ
⎛ ⎞⎡ ⎤≤ = +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (6.6) 

To account for the magnitude comparison of the lower value (LV) algorithm, we define

y x= . The LV algorithm compares values from n trials and selects the single lowest 

magnitude value. To determine the probability for a single value of y ≤ Y, after n trials, 

we employ the fact that the probability that a single value that satisfies y ≤ Y is the 

complement probability that the same value satisfies y ≥ Y.  

( ) 1 ( )P y Y P y Yα α≥ = − ≤  (6.7) 

where Pα is the probability for a given angle spectrum. Multiple independent sampling 

angles are compared, making the probability of each event exclusive and therefore the 

probability that all trials fulfill y ≥ Y is expressed as the joint probability of each event. 

Thus the probability that all values are greater than or equal to Y across the n radial 

angles is: 

( ) ( )(1 )LV nP y Y P y Yα≥ = − ≤  (6.8) 

The complement of this expression, the probability that a value approaches zero, is then: 

( ) ( )1 1
nLVP y Y P y Yα⎡ ⎤≤ = − − ≤⎣ ⎦  (6.9) 

The symmetric property of PLV y( )allows the probability distribution to be converted 

back into a continuous function in terms of x. The probability of P(x) is written as:  
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1( ) 1         0
2 2

n
LV xP x erf x

σ
⎛ ⎞⎡ ⎤= − ≥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (6.10a)

1( ) 1 1      0
2 2

n
LV xP x erf x

σ
⎛ ⎞⎡ ⎤= − − <⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (6.10b)

Having determined the probability distribution for the lower magnitude comparison of n 

angles, the probability density and subsequently the standard deviation change are can 

now be written. The derivative of equations 6.10a and b is the probability density 

function[66]. 

p x( )=
dPα x ≤ X( )

dx
 (6.11) 

The probability density function can then be applied to determine how the noise changes 

as a function of the number of angle spectra compared[66]. 

σ = x2∫ p(x)dx  (6.12) 

The probability distribution function and probability density functions are plotted as a 

function of angle comparisons in Figures 6.2a and b.  The resulting change in the 

standard deviation of the noise is shown in Figure 6.2c. The exponential decrease in the 

noise demonstrates that it can be efficiently reduced with a relatively small number of 

angle comparisons. For example, collecting five angle spectra and processing them into 

the positive and negative component spectra (Chapter 4) for each angle and then 

comparing the resulting ten component spectra would reduce the standard deviation of 

the noise by 84%, as demonstrated in Figure 6.2c. 
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Figure 6.2 The effect of the lower magnitude comparison on the noise is demonstrated as a function of 

number of angle spectra compared. The probability distribution function is shown in Panel A. The 

cumulative probability is plotted against the noise intensity for 1 (no comparison), 2, 3, 5 and 10 angle 

spectra comparisons. The corresponding probability density plots are shown in Panel B for the same 

numbers of angle comparisons. The change in the standard deviation of the noise is plotted against the 

number of angle spectra compared in Panel C.  

 

This initial result might suggest that it is advantageous to collect a large number of 

angles, with minimal transients, in order to take advantage of the exponential decay of the 

noise standard deviation. However, because the lower magnitude comparison is 

nonlinear, using a large number of angles collected with fewer transients and attendant 

lower S/N can potentially significantly degrade the quality of the final spectrum since the 

distributions of noise and authentic peak intensity may overlap. In order to avoid this 

situation a requisite signal-to-noise of the angle spectra needs to be defined. For example, 

a S/N value of 6 will assure that a peak will essentially never be eliminated during lower 

magnitude comparison as 99.7% of a Gaussian distribution is contained within 3 standard 
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deviations of the mean. The concept is illustrated in Figure 6.3 which depicts the 

probability density of signal intensity and noise density of a single angle spectrum and 

the final lower magnitude spectrum from the comparison of 10 angle spectra. This is the 

essence of the Sensitivity Enhanced n-Dimensional NMR (SEnD) strategy. 

 

Figure 6.3 A graphical representation of the probability density analysis to retain a peak is shown here. The 

distributions for peak intensity, and noise intensity before and after lower magnitude comparison are also 

indicated. The lower magnitude probability density was generated assuming the comparison of 10 angle 

spectra. 

 

6.3 Results 

The SEnD NMR strategy was tested with the HNCO experiment using a 20 µM 13C,15N-

ubiquitin sample[62]. Three HxCO projections or faces of the HNCO[60], corresponding 

to a radial sampling angle of zero, were collected with 4, 8 or 16 transients (Figures 6.4a-

c). The corresponding full radial sampled three-dimensional experiments with ten angles 

equally distributed between 0 and 90 were collected to demonstrate the effects of varying 
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S/N on the final lower magnitude spectrum. Representative two-dimensional slices of 

these spectra are shown in Figures 6.4d-f. For this particular sample, use of four 

transients per FID resulted in an average cross peak S/N of 3 . This is well below the 

necessary S/N required by the SEnD approach and authentic peaks were indeed removed 

during lower value comparison (Figure 6.4d). In the case of the spectrum obtained with 

eight transients the average S/N of peaks was 5.5. Since this is slightly below the SEnD 

criterion of 6 particular attention would need to be paid to the weakest peak. This is 

demonstrated in the Figure 6.4e where the lower magnitude processed spectrum contains 

all of the peaks but the intensities and lineshapes are not uniformly accurate. When 16 

transients are used all of the peaks have a signal-to-noise greater than the SEnD minimum 

of 6 and all are accurately represented accurately represented in the lower value 

processed three dimensional spectrum (Figure 6.4f).  
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Figure 6.4 The influence of minimum signal-to-noise to retain a peak is demonstrated here using 20 μM 

ubiquitin. HxCO faces of the HNCO are used to assess the signal to noise of the radial sampled angle 

planes. The S/N was varied by changing the number of transients. 4, 8 and 16 transient spectra are shown in 

spectra A, B and C respectively. One-dimensional slices are overlaid to illustrate the quality of the data. 

The average S/N of the three planes was 3 for 4 transients, 5.5 for 8 transients and 8.2 for 16 transients. 

Stacked plots of representative indirect planes of the lower magnitude spectra when 10 angles were 

compared are shown for each of the three settings of transients employed. The n=4 transient/FID spectrum 

is shown in Panel D, 8 transient spectrum in Panel E and 16 transient spectrum in Panel F. 
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Statistical theory predicts that a significant sensitivity advantage over Cartesian sampling 

can be achieved for a fixed unit of acquisition time by applying the SEnD criteria to 

radial data acquisition. This was tested by varying the number of transients while 

concomitantly changing the number of angles and keeping the total experiment time 

constant. The results are shown in Figure 6.5. Here four radial angle experiments were 

collected on a 1mM 13C,15N-ubiquitin sample , each requiring 7 hours of data collection. 

A corresponding traditional Cartesian sampling spectrum was also obtained. The radial 

sampled experiments were collected with equivalent resolution to the Cartesian 

experiment but varied the number of transients and radial angles as follows: 32 transients 

with 5 angles, 16 transients with 9 angles, 8 transients with 18 angles, and 4 transients 

with 36 angles. Each radial sampled data set equally distributed the angles used between 

0 and 90. A substantial S/N advantage is achieved over Cartesian sampling when a large 

number of angles are used. This advantage is achieved because of the reduction in noise 

from the lower value comparison. When a smaller number of angles are used the S/N is 

comparable to Cartesian sampling. This indicates that when only a small number of 

angles are available Cartesian sampling might be desirable. 
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Figure 6.5 The advantage of optimizing data collection parameters is shown here. Five experiments were 

collected on 1 mM ubiquitin, all requiring 7 hours of measurement time. One experiment employed 

Cartesian sampling while the other 4 utilized radial sampling. The resolution was held constant by 

collecting 32 complex in both of the indirect dimensions of the Cartesian experiment, and 32 quatrion 

points for each angle in the radial sampled experiments. The four radial sampled experiments 

concomitantly varied the number of transients and angles to keep a constant experiment time. The four 

combinations used were 32 transients and 5 angles; 16 transients and 9 angles; 8 transients and 18 angles 

and 4 transients and 32 angles. The average S/N of all the peaks in the resulting lower magnitude spectra 

are plotted with the average S/N of the Cartesian experiment shown for reference. 

 

To further illustrate the advantage of SEnD optimization equivalent resolution HNCO 

spectra were collected on a 20 μM ubiquitin sample. When Cartesian sampling was used 

the total measurement time was 7 hours and employed 4 transients and 36 complex 

increments in each of the indirect dimensions. For SEnD optimization experiment 5 

angles, 32 transients and 36 quatrion data points were used for each angle. The requisite 

sensitivity of each angle spectrum was determined by collecting the HxCO face as a 
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function of transients. The minimum number of transients required to satisfy the SEnD 

S/N criterion of 6 was determined to be 16, as demonstated by figure 6.4c.Thirty-two 

transients were used to ensure that the SEnD criteria was met for all peaks in order to 

account for any variation in peak intensity as a function of sampling angle. This defines 

the total number of angles for the fixed total acquisition time to be 6, including 0 and 90 

which require half of the quadrature components and therefore require half of the 

measure time as compared to all other angles. The 6 angles were equally distributed 

between 0 and 90. Subsequent to generation of the final spectrum the spectrum was 

analyzed using the algorithms we have previously presented in Chapter 5 and all peaks 

were determined to be resolved. Comparison of the conventional Cartesian spectrum and 

the SEnD optimized spectrum clearly indicates the advantage of SEnD optimization 

(Figure 6.6). Analysis of the SEnD optimized spectrum allowed all expected peaks to be 

identified and had S/N distributed between 13 and 25. The equivalent peaks in the 

Cartesian spectrum has a S/N distribution between 4 and 10, further demonstrating the 

advantage of SEnD optimization. 
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Figure 6.6 Comparison of SEnD optimized radial sampling (Panel A) and Cartesian sampling (Panel B) of 

an HNCO spectrum obtained on a 20 µM ubiquitin. Both spectra required 7 hours of acquisition time and 

were collected with equivalent resolution parameters. In the example shown, the SEnD spectrum has 

identifiable peaks while the corresponding peaks in the Cartesian spectrum are obscured by noise. 

6.4 Discussion 

 Various parameters are associated with the final sensitivity of a multidimensional 

NMR spectrum. Here we have demonstrated a method, employing radial sampling, to 

optimize the sensitivity of a multidimensional NMR experiment. This method exploits 

the redundancy of the data collection, providing that a minimum S/N is achieved in each 

component radial spectrum. This provides assurance that authentic peaks will survive 

application of the lower value algorithm. Generally, a minimum signal-to-noise of 6, for 

each angle spectra, is sufficient. Effectively time allocated to increasing S/N in 

conventional experiments is redistributed to the collection of additional angle spectra that 

can be used to exponentially decrease the noise of the spectrum. Clearly the availability 

of cryogenically cooled probes and preamplifiers allows for the minimum S/N of 

individual angle spectra to more easily reached and emphasizes the synergy between high 
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sensitivity probes and the SEnD methodology developed here. From a practical point of 

view, it is important to emphasize that it is possible to test for the satisfaction of the 

SEnD S/N criterion prior to acquisition of an entire data set. This is most easily 

accomplished by collecting a two-dimensional face of a three-dimensional experiment or 

the three-dimensional equivalent of a four-dimensional experiment. The projections allow 

one to conclude at the outset whether SEnD radial sampling is preferable to conventional 

Cartesian sampling with respect to final signal-to-noise.  

The SEnD approach is generally applicable to all NH-based backbone resonance 

assignment experiments. Additionally, as we will report elsewhere, the sensitivity gain 

offered by the SEnD approach provides the opportunity for higher sensitivity and better 

digital resolution four-dimensional NOESY spectra to be obtained. The application of the 

SEnD approach in the context of quantitative or even semi-quantitative analysis of NOE 

peak intensities will require special consideration. This is because the largest negative 

deviation from a peaks mean is selected for during the lower magnitude comparison of all 

angle spectra. However, after application of the SEnD method to identify peaks, 

analyzing the individual angle spectra and treating them with the usual statistics for 

redundant measurement can recover accurate intensities. This will be described in more 

detail elsewhere. 

 Finally, our objective here has not been to carry out a comparison of all of the 

sparse sampling and processing methods available. Rather we have focused on exploiting 

the redundancy of the data, unique to radial sampling, in a manner to substantially reduce 
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the spectrum noise and aid in peak identification. Nevertheless, the SEnD criteria be 

employed in conjunction with other methods capable of processing radial sampled 

data[34, 36, 43, 44].  

 

6.5 Methods 

 NMR data was collected on either a 20μM or 1mM 13C, 15N uniformly labeled sample of human 

ubiquitin at 25°C on a Bruker Avance III 500 MHz NMR spectrometer equiped with a 5 mm triple 

resonance TCI cryogenic probe. The sample was prepared in 50 mM potassium phosphate buffer pH 5.5 

with 50 mM NaCl and 0.04% sodium azide. Recombinant ubiquitin was prepared as described[62]. NMR 

data was collected using a standard HNCO[60] or a modified version for radial sampling, such that 

)cos(11 αtt =  and ( )2 1 1 2 sin( )t t sw sw α= . The Cartesian experiment was collected using 36 

complex points in both of the indirect dimensions for a total of 5184 FIDs. Each fid was the average of 4 

transients and contained 512 complex points requiring approximately 7 hours of measurement time. The 

spectral width was set to 12 ppm, 30 ppm and 12 ppm for proton, nitrogen and carbon respectively. The 

carriers for each dimension were set to 4.682 ppm, 114.93 ppm and 174 ppm for proton, nitrogen and 

carbon respectively. The maximum acquisition times for the nitrogen and carbon dimensions were 0.0237 

and 0.0239 seconds, respectively.  In the case of radial sampling all experimental parameters were set to 

equivalent values as the Cartesian experiment unless otherwise noted in the main text. All of the radial 

sampled experiments utilized 36 quatrion data points, requiring 4 quadrature components per data point 

expect for the 0 and 90 spectra which only require 2 quadrature components. In the case where 4 transients 

were used, each sampling angle plane required 12 minutes of measurement time.  The angle spectra were 

processed independently using a direct 2D Fourier transform. Prior to Fourier transforming the data was 

apodized with cosine squared function to remove truncation artifacts and to approximate the correction for 
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unequal spaced data[46]. The data was zero filled to at least twice the number of incremented points. 

Following processing, individual angle spectra were compared using the lower value (magnitude) algorithm 

to remove the ridge artifacts[25]. The Cartesian sampled data was processed with corresponding 

apodization and zero filling. The fast Fourier transform was used in place of the direct 2D Fourier 

transform. All processing was done using an in-house program and visualized using Sparky[51].
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Chapter 7 

A Novel Approach to Radially Sampling the 4D 15N, 13C edited NOESY 

 

7.1 Introduction 

 As presented in Chapter 1, as the molecular weight of a protein increases there is 

often a concomitant increase in spectral complexity. The complexity is particularly 

apparent in NOESY experiments[67], where spectral degeneracy of aliphatic protons 

makes obtaining, well resolved, structural restraints difficult. High resolution four 

dimensional NOE spectra often resolve the degeneracy and are therefore essential to 

structural analysis of larger proteins. The 13C, 15N edited 4D NOESY[68] is particularly 

appealing because it correlates one amide nitrogen atom to multiple aliphatic protons 

which are then resolved through evolution of the attached  Carbon. A new application of 

radial sampling, which expands a 15N edited NOESY[69] to a 15N, 13C edited NOESY is 

presented here. The approach relies on the technology developed in the previous 

Chapters. Particularly, the angle selection algorithm of Chapter 5 and the capabilities of 

Al NMR, Chapter 3, are utilized.  

This application uses a peak list from an existing 3D experiment peak list to 

optimally select sampling angles for a 4,3 radial sampled 15N, 13C edited experiment. The 

4,3 experiment resolves degeneracy present in the existing 3D experiment. Starting from 

existing information is advantageous because radial sampling angle selection can be 
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optimized using the algorithm presented in Chapter 5. In turn, by optimizing acquired 

data points, this experimental scheme allows for collection of a high resolution 4D 

experiment. 

To efficiently use the selected sampling angles a modified version of the 4D 15N, 

13C edited experiment is presented. This experiment reverses the typical acquisition order 

of the experiment evolving the Nitrogen dimension first and the Carbon dimension after 

the NOESY mixing period. Means to accurately integrate the radial sampled experiment 

are also discussed. 

  

7.2 Methods 

7.2.1 Angle Selection 

One of the substantial challenges of applying radial sampling to any Cartesian 

sampled experiment is selecting appropriate sampling angles. Without efficient angle 

selection time is potentially wasted by collecting angles that do not uniquely resolve all 

of the peaks in the spectrum. A deterministic method for efficient angle selection based 

on a starting peak list is presented in Chapter 5. This technology is applied to the 4,3 15N, 

13C edited NOESY experiment here. Starting with a peak list from a 3D 15N edited 

NOESY[69] peak list a minimum set of angles is selected. The objective of angle 

selection is to select a set of angles that uniquely resolves all of the peaks in at least one 

angle. Appropriate angle selection ensures that accurate peak intensities can be 
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determined from the angle spectra. If inappropriate angles are selected analysis will be 

obscured. If two peaks fall on the same ridge than the ridge intensity is the summation of 

both of the individual peak intensities.  

To select appropriate sampling angles the peaklist from a 3d 15N filtered NOESY 

is used as a starting set. Typically, the two indirect dimensions are used for radials 

sampling angle selection. In the case of a 3D 15N filtered NOESY experiment the indirect 

NOE proton dimension is not suitable for radial sampling. The difficulty arises because 

of the number and distribution of peaks. An example 1H NOE plane is shown in figure 

7.1.  

 

Figure 7.1 An example of the difficulty of using the indirect proton dimensions of the 3D 15N filtered 

NOESY experiment for angle selection is shown here. An example plane, which demonstrates the complex 

pattern and number of peaks, of the indirect, aliphatic, proton dimension is shown on the left. This is 

compared to the directly acquired proton - nitrogen plane of the same experiment (right). The resolution 

and decreased number of peaks makes the amide proton - nitrogen plane appealing for radial sampling 

angle selection.  
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In this experiment the two indirect dimensions are the NOESY 1H and 15N. From 

inspection of planes between these two dimensions it is clear that selecting appropriate 

angles would be very difficult because of the large number of peaks per plane and 

additionally because all of the peaks are distributed along a given NH chemical shift. It is 

not possible to choose a unique set of angles that would resolve all of the peaks. Since 

this experiment is not used for radial sampling, the two indirect dimension do not need to 

be used for radial sampling. Other planes can be inspected. There are relatively few peaks 

in the amide 1H - 15N planes. The peaks are distributed and therefore, angle selection 

would be much more efficient. A typical amide 1H - 15N plane is shown in figure 7.1b. 

Few angles are needed to resolve all of the peak intensities in this plane.  These two 

dimensions should be used for radial sampling.  

7.2.2 Pulse Sequence 

 The tradition 13C, 15N edited NOESY[68] pulse sequence is not directly amenable 

to radial sampling if the amide 1H and 15N dimensions are to be used for radial sampling. 

In the traditional pulse sequence, the amide 1H dimension is directly detected  and it is 

not possible to co-evolve this dimension with the nitrogen dimension. In order to radial 

sample these two dimensions together, the pulse sequence is modified, reversing the 

acquisition order of the various nuclei. The modified pulse sequence is shown in figure 

7.2.   
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Figure 7.2 The modified 13C, 15N edited NOESY pulse sequence is shown here. Filled and unfilled 

rectangles indicate 90° and 180° pulses, respectively. The filled shaped pulses on the Carbon channel are 

180° adiabatic Chirp pulses. This pulse sequence evolves 15N during the first incremented delay, t1, and 

amide 1H during the second incremented delay t2. To achieve radial sampling t1 and t2 are evolved as a 

function of the cos(α) and sin(α), respectively. 13C is evolved in the third incremented delay t3. Phase error 

is eliminated during all 3 incremented delays by refocusing any inadvertent evolution using the Δ delays. 

This assures that the first time point is set to zero. Decoupling during evolution of the indirect dimensions 

is achieved using 180° pulses. Hard pulses are used on both the 1H and 15N channels, a Chirp pulse is used 

on the 13C channel. An INEPT transfer is used to initially transfer magnetization from 1H to 15N with τa set 

to 1/(4JNH). The same delay is used for the reverse INEPT. The NOESY mixing time, τm, was set to 120 ms. 

An HMQC transfer was used to transfer magnetization of 1H to 13C. The HMQC transfer delay, τb, was set 

to 1/(2JCH). Quadrature detection was achieved using echo/ anti-echo gradient selection in the 15N 

dimension and States-TPPI for the amide 1H and 13C dimensions. E/A selection was achieved by 

modulating the sign of g1, for the 15N dimension. States-TPPI was achieved by modulating the phase of the 

pulses prior to the t2 and t3 evolution delays. Artifact suppression was achieved through a combination of 

phase cycling and gradient pulses. The relative gradient strengths used were; g1:80, g2:47.1, g3:50, g4:5, 

g5:9, g6:39. Water suppression was achieved using presaturation during the interscan delay, D1 and z-filter 

gradient during the NOESY mixing delay.  

 

The new magnetization pathway is as follows: 

1 1 1 11 15 1 1 13 1
1 2 3 4( ) ( ) ( ) ( )NH NH CH CHJ J J JNOE

NH CHH N t H t H C t H t⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→  
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Unlike the traditional pulse sequence, the N and NH dimensions are evolved prior to 

carbon evolution. This allows for radial sampling of the NH plane, using the sampling 

angles that were determined from the 3D experiment. The 13C dimension is then sampled 

using Cartesian sampling scheme. Radial sampling of the amide 1H and 15N allows for a 

large number of increments to be collected in these dimensions. To best utilize the 

potential for high resolution these two dimensions are evolved using a HSQC[15]. 

Alternatively, a HMQC[70] is used in the carbon dimension. This dimension is Cartesian 

sampled, and the line width of the peaks in this dimension will most likely be dictated by 

the apodization function. Further, the beneficial relaxation parameters and ease of 

calibration make the HMQC appealing. Quadrature selection is achieved in the 15N 

dimension using a echo/anti-echo gradient selection[56] scheme and using States-

TPPI[57] in the other two indirect dimensions. Presataturation[4] water suppression is 

utilized during the inter-scan delay and durint the NOESY mixing time. The selectivity of 

presaturation minimizes the saturation of Ca attached protons. Additional water 

suppression is performed through application of Z filter[4] during the NOESY mixing 

delay.  

 Compared to the traditional pulse sequence this acquisition scheme has two main 

advantages: First, resolution in the proton dimensions is optimized and secondly, the 

carbon dimension is amenable to folding of signals. Sampling the aliphatic 1H dimension 

directly, decreases the line widths of the aliphatic protons and potentially resolves 

degeneracy. Additionally, a much smaller indirect proton sweep width is needed to be 
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sample the 1HN dimension. To take advantage of the decreased sweep width the proton 

carrier is shifted to the center of the amide 1H chemical shifts and returned to water for 

detection of the aliphatic protons.   

On spectrometers that reverse the sign of folded peaks, it is not feasible to narrow 

the sweep width in carbon, folding a large fraction of the peaks, when radial sampling is 

applied. If the carbon dimension, with opposite sign folded peaks, was evolved prior to 

the radial sampled dimension, the opposite signs of peaks could cause peaks to cancel if 

the ridges overlapped. In this pulse sequence the carbon dimension is evolved subsequent 

to the radial sampled dimension. This allows for optimization of the 13C sweep width.  

7.2.3 Spectrum Analysis 

Application of radial sampling to 4D experiments has the potential to dramatically 

increase the resolution of the experiment but this comes at the expense of increasing 

matrix sizes. For example, if a radial sampled 4D data set required to 1024 points in the 

directly detected dimension and 256 points in each of the 3 indirect dimensions, to 

digitally optimized the resolution, the resulting matrix would be 68 gb. Additionally, if 

the equivalent sized matrix was generated for each sampling angle component another 

two-fold increase in storage per angle is necessary. Even if data storage isn’t limiting, 

there is a substantial time requirement to process these matrices. To alleviate the time and 

storage requirement a directed processing scheme is presented here. This processing 

scheme exploits the fact that while a 4d matrix contains all of the potential correlation 
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space, only a small fraction of the spectrum actually contains useful information. The rest 

of the spectrum is noise and doesn’t need to be processed.  

 To reduce the spectrum size only regions of interest are processed. This is 

accomplished by using an amide 1H 15N peak list as a guide and only processing regions 

of the spectrum where there is information. A unique spectrum is generated for each 

amide HSQC region.  There is no prior information on the 13C or aliphatic 1H dimensions 

so the entire sweep width ranges are processed using traditional fast Fourier transform 

methodology. The 15N and 1H N, radial sampled, dimensions are processed using a direct 

multidimensional Fourier transform. Using the direct multidimensional Fourier transform 

the frequency range of the two dimensions can be explicitly determined. Note, care 

should be taken to process the sub-4D spectrum with high enough resolution to account 

for the inherent resolution of the data[49].   

Two sub-4D spectra are generated for each amide residue, one using the additive 

back-projection (ABP)  method and the other using a lower magnitude (LM) 

spectrum[25]. Both spectra are used simultaneously to analyze the presence of cross 

peaks. Analysis is simplified by using the 3D 15N edited spectrum as a guide, where the 

sub-4D matrix is compared to the appropriate plane of the 3D in order to resolve the 

degeneracy in the 3d experiment. In many cases it is best to use the ABP spectra as the 

direct comparison and then use the LM spectrum in order to test for authenticity of a 

peak. Angles are selected to assure unique resolution of a peak, therefore, the LM 

spectrum will not contain any false positive peaks. However, if the sensitivity is limiting 
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care should be included to avoid false negatives. False negatives arise when a peak falls 

into the noise in one angle spectra and is removed by the LM comparison. The peak 

chemical shift can be cross referenced with the assignment peak list to further assess the 

authenticity.   

The ABP and LM spectra are useful for analyzing the spectrum in terms of peak 

chemical shift, but they are not suitable for integration. In the case of the ABP spectrum 

the integral of a peak is only relevant if a peak is resolve in all of the component angle 

spectra. If the peak is resolved in all of the angle spectra then it should be filtered prior to 

integration (zhou ref). Even if a peak is resolved in all of the component angle spectra, 

the lm spectra are not suitable for integration. The lower magnitude algorithm functions 

by comparing all of the component spectra, on a point to point basis, and selecting for 

lowest intensity at each point. When the comparison is performed on a peak, the intensity 

values selected are those with the largest deviation from the mean intensity. Selecting for 

intensities with the largest deviation decreases the accuracy of the integral value.  

The component angle spectra, that resolve a peak, should be used to accurately 

integrate the peaks. The angle spectra that peaks are resolved in is determined during 

angle selection. Often multiple angles resolve a given peak. This allows for multiple, 

redundant, volume measurements to be extracted from the data. To determine the volume 

Gaussians are fit to the two Cartesian sampled dimension of the peak. Subsequently, a 

Gaussian is fit to a vector perpendicular to the ridge, in the radial sampled plane, 

intersecting the peaks chemical shift. To avoid interpolating points the perpendicular 
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vector is generated using the direct 2D-FT[45-47]. The vectors coordinates are generated 

using the same equations that describe the ridge. The Gaussian fit, to the radial sampled 

dimensions, is scaled to avoid error when the volume of the peak is determined. This 

accounts for the different, angle dependent, sweep widths of the vector. Once the 

individual fit parameters are determined for each of the three domains the standard 

equation for the area of a Gaussian is utilized to determine the volume. 

2nV A b π= ∏  

Where A is the amplitude of the peak and b is the line width of dimension n.  The 

redundant volumes, for each peak, can be treated with typical statistical analysis.  

Determining the peak volumes using the angle spectra is easily automated. After 

the chemical shifts are determined from the ABP and LV spectra, the peak list and the 

resolution information is used as input for the fitting routine.  

 

7.3 Results 

 To demonstrate the application presented here the methodology was applied to 

1mM 13C, 15N labeled ubiquitin. The sample was prepared in the same manner as Chapter 

6. First a traditional 3D 15N edited NOESY was collected. The spectrum was processed 

and analyzed to generate a peak list for angle selection. Using our angle selection routine 

we concluded that 5 angles would resolve 98% of the peaks in the spectrum in at least 
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one angle. These five angles were applied to collect five (4,3) radial sampling 

experiments using the pulse sequence above. When setting the parameters for the pulse 

sequence an attempt was made to balance sensitivity and resolution. Sufficient sensitivity 

is required for application of the lower magnitude comparison during data processing. 

Without suitable sensitivity authentic peaks can be removed during the magnitude 

comparison. To this end, 8 transients were averaged per FID. 9216 fids were collected, 48 

and 192 total points in 13C and the radial sampled dimension, respectively. Data 

acquisition required approximately 5 days. Acquisition time could be decreased further 

by biasing angle selection, collecting only data with objectives of resolving degenerate 

aliphatic protons, as determined by the 15N edited NOESY. 

 Post acquisition, each angle spectra was processed separately. The Cartesian 

sampled dimensions, aliphatic 1H and 13C, were processed traditionally using the fast 

Fourier transform. A previously collected 15N HSQC was used as a guide to determine 

the sub spectrum regions to process the amide 1H, 15N planes. Sub 4D spectra were 

generated for each amide group separating the positive and negative ridge components 

into separate spectra. In this application, the sub 4D spectra used 16 points per dimension 

of the 1H-15N planes with frequency range of .25 ppm and 1 ppm for 1H and 15N, 

respectively.  The sweep width ranges were centered at the amide groups chemical shifts.  

The sweep width and number of points were selected to account for the intrinsic 

resolution of the spectrum. Each group of sub 4D angle spectra was then used to generate 

a lower magnitude spectrum and a summation spectrum.  
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 An example of a sub 4D spectra compared to the equivalent plane of a 15N edited 

NOESY spectra is shown in figure 7.3.  

 

 

Figure 7.3 An example of using the 4D radial sampled 13C, 15N edited NOESY pulse sequence to resolve 

the degeneracy present in a 3D 15N edited NOESY spectrum. A reference 1H-1H region of 3D 15N 

NOESY experiment is shown on the top with the Nitrogen shift fixed. The equivalent plane of the 4D ABP 

spectrum is shown below. The amide 1H and 15N are fixed at the same plane, the comparison regions of 

the aliphatic 1H and 13C region are shown. All expected peaks are shown. Potential artifact peaks, defined 

inside of the dashed line box, are resolved by comparison with the LV spectrum. Three of the peaks are 

present in the LV spectrum indicating that the fourth peak is a potential artifact.  

 

This example demonstrates how the 4D spectrum is easily analyzed by comparing it to 

the 3D experiment. Here a 1H- 1H plane, of the 3D spectrum, is shown in panel a. There 

are 5 peaks resolved in the aliphatic proton dimension. By comparison of the 3D with the 
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ABP 4D sub spectrum the carbon chemical shifts are directly read from the ABP 

spectrum for the three downfield peaks. The two upfield peaks, selected inside the box, 

require comparison to the lower magnitude spectrum to determine which of the peaks are 

authentic. There are two peaks resolved in carbon for each of the proton shifts. 

Comparison with the lower magnitude, inset spectrum b., shows that three of the four 

peaks are authentic. Furhter, to assure that the proposed artifact peak is not a false 

negative, in the LM spectrum, the peaks chemical shifts are compare to the assignment 

list. Comparison with aliphatic proton assignments further confirms that three of the four 

peaks are authentic. 

 After resolving all of the chemical shifts, each peak was integrated. A Gaussian 

was first fit to the peak in the aliphatic 1H and the 13C dimensions. Then using the 

chemical shifts a vector of data was extracted from the amide 1H, 15N dimension for 

fitting of a Gaussian to the ridge. An example of the extracted vector is shown in figure 

7.4a, for the negative sloped ridge component spectra. Here the dashed line extends 

perpendicular to the authentic peak chemical shifts.  A vector is generated for each 

component angle spectra that resolves the peak. Typical fits of a Gaussian to the angle 

vector are shown in Figure 7.4b. The fit parameters for each peak in the component angle 

spectra are then used to determine the volume components for each peak.  
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Figure 7.4 An example of extracting vectors from the individual component angle planes is shown here. 

The entire sweep width range of amide 1H and 15N dimensions are shown on the left. The peak of 

interested is located at the intersection of the dashed line and the most intense ridge component. The vector 

proximal to the peak chemical shift is generated and plotted for each of negative sloped ridge component 

on the right. A Gaussian is fit to the individual components.  

 Fitting the peaks separately assures that only resolved components contribute to 

the integral value. Additionally, this method leads to multiple redundant measurements 

which are amenable to statistical analysis. A simple average of the component volumes is 

compared to the intensity values from the traditional 3d spectrum in Figure 7.5. 
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Figure 7.5 A comparison of normalized peak intensities from both the traditional 3D experiment and the 

average fit intensity from the 4D experiment for residue E64. The volumes from the 4D experiment are 

shown in blue, those of the 3D are in red. The peak volumes for both experiments were normalized to the 

most intense peak. 

 

 

7.4 Conclusion 

 Four dimensional experiments are becoming commonplace as analysis of large 

proteins with solution state NMR increases. Expanding traditional 3D experiments, 

especially in the case of NOESY, resolves much of the degeneracy present in the lower 

dimensional spectrum. Ideally, it is desirable to increase the dimensionality of the 

experiment without concomitantly increasing the acquisition time. The methodology 
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presented here expands existing information from a 3D experiment to 4D while 

minimizing additional acquisition time. 

 In order to develop this scheme the traditional 4D 15N, 13C pulse sequence was 

modified in order to optimize angle selection. Modifying the pulse sequence has the 

advantage of optimizing the resolution of the experiment by collecting the aliphatic 

proton dimension directly as compared to collecting the amide proton dimension with 

direct acquisition. Although the resolution is optimized, the sensitivity of the experiment 

is decreased, in comparison with the traditional pulse sequence. This arises from 

eliminating the PEP[55] to transfer the evolution from 15N back to 1H for detection. In 

many cases the disparity in sensitivity is offset by the increasing sensitivity of 

cryogenically cooled preamplifiers and probes. Additionally, if the appropriate criteria 

are met, the sensitivity disparity can be more than accounted for using the SEnD 

methodology presented in Chapter 6. A trade between resolution and sensitivity is 

necessary. Application of optimized radial sampling affords an increase in resolution, and 

in many cases, a higher resolution spectrum can be generated, compared to the Cartesian 

sampled analog, while still collecting enough transients to offset the sensitivity decrease.  

 Further, the reversed acquisition order presented here could also be applied to the 

3D 15N or 3D 13C NOESY[69] experiments. Reversing the acquisition order a higher 

resolution experiment, optimized for radial sampling can be collected. By radial sampling 

the equivalent of the hsqc dimension of these experiments iterative angle selection could 
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be employed and generating the final spectrum would not be complicated by the dynamic 

range of the auto peaks and NOE cross peaks.  

  



148 
 

Chapter 8 

Conclusion 

 The primary of objective of this thesis was to extend the capabilities of NMR to 

analyze large proteins. Though untested for all aspects of biomolecular NMR, this goal 

was largely accomplished. To accomplish the objective, technology was developed, a 

sensitivity gain achieved and a novel application presented.  

 A direct two-dimensional Fourier transformed based processing program, Al 

NMR, was presented in Chapter 3 to allow for general application of sparse sampling. 

This program includes all of the necessary functionality to process both Cartesian and 

sparse sampled NMR data, including reading and writing the appropriate file types and, 

most importantly, all of the necessary processing functions. Further, the program contains 

a graphical interface to real-time phase correct spectra. This program will be distributed 

and should serve as an integral tool to the field. Currently no other NMR data processing 

package contains the equivalent functionality.  

 The second step in generalizing sparse sampling was to develop means to phase 

correct the spectra. The limitations of sparse sampling was immediately apparent without 

ability to phase correct spectra. This is especially true when radial sampling is processed 

using a lower value comparison. As a result of phase error, the lower value comparison 

often removes authentic peaks. To circumvent this, the relevant theory was analyzed and 

two novel phase correct routines were presented. The first demonstrates means to correct 
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the spectrum retrospective of processing by isolating absorptive and dispersive 

components and solving for linear combinations of the two components with absorptive 

properties. The second method exploits the flexibility of the 2D-FT, and applies a phase 

correction in the time domain. Both of these methods are available in Al NMR.  

 With capabilities to process and phase correct radial sampled data in hand, my 

efforts turned to optimizing data acquisition. This was accomplished by developing the 

methodology to minimize the number of sampling angles acquired. The necessary criteria 

to define a minimum number of sampling angles was defined for two cases; first, when 

all of the chemical shifts are known and second, if the resonance frequencies are not 

known. Both cases were successfully tested both computationally and experimentally. 

This methodology will also be available to the public via the Al NMR distribution. As an 

aside, the angle set selection was further optimized as a collaboration between myself and 

another graduate student. This work will be presented in a forthcoming issue of  Journal 

of Biomolecular NMR by Gledhill, Walters and Wand.  

 Optimization of the radial sampling angle set has led to further optimization of 

sensitivity parameters associated with collection of radial sampled data. In Chapter 6, 

Sensitivity Enhanced n-Dimensional NMR  (SEnD) is presented. Here, all of the relevant 

theory and criteria is presented to achieve upwards of a three-fold S/N advantage over the 

equivalent Cartesian sampled experiment. As demonstrated, this methodology will prove 

particularly import under sensitivity limiting conditions.  



150 
 

 Finally, with all of the technology in place, an example is presented to 

demonstrate the advantages of radial sampling. The example, Chapter 7, a novel method 

to collect a 4D 13C, 15N edited NOESY is presented. This study demonstrates the distinct 

advantage of radial sampling to speed acquisition allowing for collection of a high 

resolution, high dimensional spectrum. Preliminary evidence is shown to demonstrate the 

functionality of this method using ubiquitin as a test case.  

 The sum of the technology presented here provides the necessary foundation for 

general application of sparse sampling, especially to large proteins. Optimization of 

resolution and sensitivity parameters is now available. Therefore, the limitations of the 

sensitivity and sampling limited regimes are reduced. Further, the example presented here 

is general and should serve as a foundation for a broad array of technology yet to be 

uncovered through application of sparse sampling.  

 Finally, with regard to resolution and sensitivity, the methodology presented here 

can be used to achieve a substantial advantage over Cartesian sampling. The combined 

effect of increased resolution and sensitivity will potentially allow for more accurate: 

structure calculation, by resolving more restraints, and measurement of biophysical 

properties of large proteins. The advantages of optimized radial sampling are dependent 

upon a large number of parameters, such as sample concentration, protein size and 

spectrum resolution. Future work will serve to better define the advantages demonstrated 

here.   
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Appendices 

 
Appendix 1. 
 
Al NMR Data File Object Properties 
 
Data File 

 Data Object Initialization 

  data_object=alnmr.readbruker(‘data_directory’) 

  data_object=alnmr.readfelix(‘fid_directory’) 

   These commands initialize a NMR data directory for reading the fids. In the case 

of readbruker, the experiment number directory is passed and for readfelix the 

experiment .fid directory is passed. A data object is created from the data file by 

reading the associated parameter files within the passed data directory. 

 Data Object Parameters 

  data_object.currentfid 

   Current fid number location in file. This is the next fid that will be read. When the 

file is initialized this parameter is set to 1. 

  data_object.dname 

   Directory path of the ser/fid file that is currently being read 

  data_object.td[] 

   List containing the total number of data points in each acquisition dimension. The 

list is ordered such that td[0], td[1],... are the first and second dimension points 

respectively.  

  data_object.fnmode[] 

   List containing the quadrature mode for each dimension. The default Bruker 

numbering is used; 0-6: undefined, QF, QSEQ, TPPI, States, States-TPPI, Echo-

Antiecho. This parameter is only available for Bruker Data. 

  data_object.angle 

   Sampling angle from a radial sampled experiment. Assumes that the default 

Bruker parameter constant 51 is used to set the sampling angle.  
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  data_object.numfids 

   The total number of fids collected in the experiment.  

  data_object.filefidsize 

   The fid size in the file, defined in number of bytes. In some cases the fid in the file 

contains trailing zeros which make the expected fid size larger.  

 Data Object Commands 

  fid=data_object.readfid([fidnum=n, byteswap=True/False, 

resize=True/False]) 

   Read one fid from the file. If no options are supplied, defaults are substituted.  

fidnum=n; where n is the desired fid to read. The default fidnum is the next fid in 

the file. byteswap=True/False; default = False. Converts endianess of the fid when 

reading. resize=True/False; default=True. Resizes the fid when reading to remove 

any trailing zeros. 

  data_object.movetofid(fid number) 

   Moves the file pointer to the beginning of the specified fid number. A subsequent 

readfid issue will read the designated fid.  

  data_object.close() 

   Closes the fid or ser file and removes the data_object 
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Appendix 2. 

Al NMR Matrix File Object Properties 

 

Matrix File 

 Matrix Object Initialization 

  matrix_object=Al.SparkyMat(‘filename’,[d1,d2,d3,...,dn]) 

  matrix_object=Al.FelixMat(‘filename’, [d1,d2,d3,...,dn]) 

   Initialize the matrix object while creating or opening the matrix file. If no options 

are supplied then it is assumed that the matrix file exists. The file is opened and all 

parameters are intialized from the file. If optional dimensions, d1,d2...dn, are 

supplied then a new matrix file is generated using the supplied matrix dimensions.  

 Matrix Object Parameters 

  matrix_object.blockdim[n] 

   List containing the number of points in one block of the matrix. The list is ordered 

corresponding to the dimensions where the zero element is the first dimension. 

  matrix_object.matdim 

   List containg the matrix dimensions. The list order is the same as blockdim. 

  matrix_object.bsize 

   Total number of points in one block of the matrix.  

  matrix_object.filename 

   The filename of the corresponding matrix file.  

  matrix_object.dim 

   Dimension of the matrix.  

  matrix_object.nblocks[n] 

   List containing the total number of blocks in each dimension. The list order is the 

same as blockdim.  

  matrix_object.bstride[n] 

   List containing the number of bytes that need to be skipped in the file  to move 

one block for each of the dimensions.  

  matrix_object.pstride[n] 
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   List containing the number of bytes that need to be skipped in the file to move one 

point for each of the dimensions.  

  matrix_object.curblocks[] 

   Transient list that is used to define a list of blocks that are read per data vector. 

  matrix_object.blockinmem[] 

   List of the current data blocks being stored in memory. 

  matrix_object.newread 

   Bool flag that specifies if a new set of blocks need to be read for a different data 

vector or point.  

  matrix_object.datablocks[n] 

   Storage list for all of the blocks being held in memory. This is where the actual 

data is transiently stored. The order of this list corresponds to the blockinmem list.  

 

 

 

 Matrix Object Functions 

  matrix_object.write(data, c1, c2, ..., cn) 

   Write data to the matrix file. data is either a data point or vector. If a data point is 

supplied, the matrix coordinate points c1,c2,... are supplied as integers. Where the 

first point coordinate is 1. If a data vector is supplied, then the coordinate that the 

vector spans across is set to 0. data is always supplied as a real, not complex, 

floats. Complex data should be converted to interleaved real data prior to writing. 

Errors will occurs if more than one dimension is set to 0. Or if a data vector 

greater than the matrix size is supplied.  

  data=matrix_object.read(c1, c2, ... , cn) 

   Read a point or vector from a matrix file. Coordinate points, c1,c2,...,cn are define 

in the same manner as write. If all coordinates points are nonzero then a data point 

is return. If one dimension of the coordinate points is set to zero then a real data 

vector that spans the matrix size is returned. 

  matrix_object.update() 
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   Commit changes to the matrix file from the blocks that are stored in memory.  

  matrix_object.close() 

   Close the matrix file and remove the matrix_object. 

 Matrix Operation Functions 

  alnmr.lv(input matrix file 1, input matrix file 2, output 

matrix file) 

   A lower value (magnitude) comparsion is performed between each set of 

corresponding  elements in the two input matrix files. The results are written in the 

third file name passed. All three files must exist prior to usage.  

  alnmr.matadd(input matrix file 1, input matrix file 2, 

output matrix file) 

   Each corresponding set of elements in the two input matrix files are summed. The 

results are written to the output matrix file.  

  alnmr.refsparky(matrix file name, reference dimension, 

Nucleus frequency (Mhz), sweep width (hz), carrier (ppm), 

title) 

  alnmr.reffelix(matrix file name, reference dimension, 

Nucleus frequency (Mhz), sweep width (hz), center point 

chemical shift (ppm), title) 

   These commands reference either a sparky or felix matrix file passed to the 

command. The reference dimension parameter is the matrix dimension that will be 

acted upon, 1 is the first dimension. The nucleus frequency of the dimension is 

passed to the command in Mhz and the sweep width is passed in hz. The spectrum 

is referenced to the center point of the spectrum. This chemical shift is passed in 

ppm. title is the name of the nucleus: '1H', '13C', '15N', etc. This variable is a 

string.  

The command is repeated seperately for each dimension that is to be referenced.  
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Appendix 3. 

Al NMR Matrix File Object Properties 

 

Data Processing Functions 

    

 Data Operation Functions 

  data=alnmr.add(fid1, fid2) 

   Add two fids on an element basis. The function excepts either complex or real 

data. The corresponding type is returned. The two fids must contain the same 

number of elements. 

  data=alnmr.sub(fid1, fid2) 

   Subtract fid2 from fid1 on an element basis. As in the add function, the type 

returned is the same as the type of fid1 and fid2. The fids must contain the same 

number of elements.  

  data=alnmr.interleave(fid1, fid2) 

   Interleave the elements of fid2 between the elements of fid1. It is assumed that 

each fids data type is real (not complex). The two fids must contain the same 

number of elements. This function is typically used to combine real and imaginary 

components that are separated. Following interleaving the data, the data is 

converted to complex using the complexdata function.  

  data=alnmr.complexdata(fid1) 

   Convert interleaved, real and imaginary, data to complex data. The first, and every 

other element, are the real components while the second, and others, are the 

imaginary components of the data vector returned.  

  data=alnmr.reduce (fid1) 

   Reduce a complex fid to just a real fid. The imaginary component is discarded.  

  data=alnmr.conjugate (fid1) 

   Take the complex conjugate of each element in the fid. This negates the imaginary 

component of the complex data.  

  data=alnmr.exchange(fid1) 
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   Exchange the real and imaginary component of a complex fid.  

  data=alnmr.reverse(data) 

   Reverse the order to the data vector that is passed to the function. The data that is 

passed can be either real or complex.  

  data=alnmr.delete(fid1, first point, last point) 

   Delete a selection of points from the fid data that is passed to the function. First 

point is inclusive the last point is exclusive. Fid element numbering starts at 0. For 

example if one desired to delete the first four points of a fid the first point is set to 

0 and the last point is set to 4 (which is actually the fifth element).  

  data=alnmr.lowervalue(fid1,fid2) 

   The lower value (magnitude) comparison is performed between the corresponding 

elements of the two fids that are passed to the function. It is assumed that the two 

fids are real, not complex. If a complex fid is passed only the real component is 

used in the magnitude comparison. The number of elements in the two fids passed 

are assumed to be equal. 

  data=alnmr.zerofill(fid1, output fid size) 

   Append the appropriate number of zeros to the fid to make the resulting fid the 

specified size. The returned data type is equivalent to the type passed.   

 Apodization Functions 

  data=alnmr.ss1d(data,shift) 

   Apply a shifted sinebell (sine-squared) apodization to the 1d data supplied. The 

shift is supplied in degrees. 

  data=alnmr.hann1d(data) 

    Hann window function applied to 1d data. 

  data=alnmr.hamming1d(data) 

   Hamming window function applied to 1d data.  

  data=alnmr.gauss1d(data,width) 

   Gaussian window function. Width is relative to the number of elements in the 1d 

data that is passed. The value of width should be set less than .5.  

  data=alnmr.em(data,line broadening (hz)) 
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   Multiply the 1d data by an exponential decay to achieve line broadening by the 

specified hz. value.  

  data=alnmr.ss2d(data,angle, shift1, shift2) 

   Shifted sinebell apodization on radial sampled data. The data is assumed to 

contain four quadrature components per increment which are listed sequentially in 

the data vector passed to the function. Angle is the sampling angle the data was 

sampled at. Shift1 and shift2 are the sinebell shifts for each of the indirect 

dimensions.  

  data=alnmr.ss2dgen(data,time points, ni1max, ni2max, sw1, 

sw2, shift1[=90], shift2[=90]) 

   Shifted sinebell apodization for random sampled data. The function assumes that 

the data contains four quadrature components per increment, which are listed 

sequentially in the data vector passed to the function. The function generates a 2d 

decaying apodization function using the shifts supplied from 0 to the maximum 

incremented delays. The time points of the sampling scheme are passed to the 

function in order to determine where on the apodization function surface the point 

is located.  

 Fourier Transform Functions 

  data=alnmr.fft(data) 

   Fast Fourier transform. The function assumes that the passed data is complex. The 

data vector returned is in decreasing frequency order (sw/2 to -sw/2).  

  data=alnmr.ft1d(data, time point list, frequency list, 

zero order phase correction,first order phase correction) 

   Discrete Fourier transform. The data passed to the function is complex. The time 

points are defined as a list corresponding to the points which the data was 

collected at. The frequency list are the frequency the Fourier transform intensities 

are determined at. A zero and first order phase correct can be applied during the 

Fourier transform. The zero order phase correction is supplied in degrees. The first 

order phase correction is supplied as a time. Typically the time correction is a 

fraction of one increment.  

  data=alnmr.ft2d(data, time, freq1, freq2, [ph0a, ph1a, 
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ph0b, ph1b]) 

   Discrete direct two dimensional Fourier transform. The data passed to the function 

is supplied as a real list with four components, one for each of the four quadrature 

components, per sampling point. The time points supplied correspond to the 

sampling times for the two indirect dimensions. The two times are list sequentially 

in the time point list. The two frequency lists, one for each of the indirect 

dimensions, are the values the Fourier transform intensities are solved at. The 

range of the list should be determined with respect to the sweep widths used, but 

can be any range of interest. The zero and first order phase corrections are 

supplied separately for the two dimensions. The zero order phase corrections are 

supplied in degrees. The first order phase corrections are supplied as time values.  

A two dimensional matrix is returned, where the first and second dimensions are 

the freq1 and freq2 values respectively.  

  data=alnmr.ft2dsep(component, data, time, freq1, freq2, 

[ph0a, ph1a, ph0b, ph1b]) 

   Discrete direct two dimensional Fourier transform that separates the positive and 

negative ridge component spectra when radial sampling is used. When the 

component variable is set to 1 the positive ridge component 2d matrix is returned. 

When set to 2 the negative ridge component spectrum is returned. When set to 3 

both components are returned. In this case two variables are returned (data1, 

data2=Al.ft2dsep(3...)) 

  data=alnmr.hilbert(data) 

   Hilbert transform. This function generates an imaginary component from a real 

data vector. A complex vector is returned. 

 Frequency List generators 

  data=alnmr.ftfreq(np,sw) 

   This function generates a list of frequencies given the number of sampling points 

collected and the sw. The order of the list is in decreasing order (-sw/2 to sw/2). 

The list are the reference values for the fft function.  

 Phase Correction 

  data=alnmr.phase(data, zero order correction, first order 
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correction [, pivot]) 

   Phase correct a complex supplied complex data vector. The zero and first order 

corrections are both supplied in degrees. The pivot value is optional, by default it 

is set at the center point of the spectrum. 

  alnmr.interactivephase(data) 

   This function starts the interactive phase correction interface. The data passed is 

complex.  

  data=alnmr.phase2d(data, d1 zero order, d1 first order, d2 

zero order, d2 first order) 

   This function phase corrects radial sampled spectra. 

 Sampling generator 

  timepoints=alnmr.maketime (sw,ni, [angle1, sw2, angle2, 

sw3]) 

   This function generates a time point list for either the discrete 1d Fourier 

transform or the discrete direct two dimenional Fourier transform, when radial 

sampled data is used. When a frequency list is desired for a 1d data set the sweep 

with and number of complex increments are supplied. This returns a list with one 

time point per data point.  

When used for radial sampling angle1 and sw2  are also supplied. This generates a 

time point list with two elements per number of points. The first element is the 

sampling point for the first indirect dimension and the second element is the time 

point for the second indirect dimension. The elements are calculated from 

t1=(n/sw1)cos(a) and t2=(n/sw2)sin(a).  

    

 Digital Water Suppression Functions 

  data=alnmr.conv(data,window size, convolution filter 

function) 

   Convolution water suppression. window size is the number of data points 

surrounding the current point that are averaged and subtracted from the current 

point. convolution filter is the weighting of the convolution data points 

  data=alnmr.polysub(data, polynomial order, sweep width) 
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   This function fits a polynomial to every data point in a FID and subtracts the 

resulting polynomial from the fid to suppress water signal.   

 Linear Prediction Functions 

  data=alnmr.lpinv(data, coefficients, number of predicted 

points) 

   Extend the current data through linear prediction. The number of coefficients is 

supplied, simple matrix inversion is used to solve for the coefficients. The 

coefficients are used to generate the number of predicted points.  

  data=alnmr.lpsvd (data, coefficients, reduced order 

parameter, number of predicted points) 

   This function also performs linear prediction, but uses singular value 

decomposition to solve for the coefficients. 

  data=alnmr.lpsvdrad (data, coefficients, reduced order 

parameter, number of predicted points) 

   This functions performs linear prediction on radial sampled data using singular 

value decomposition to determine the coefficients of each angle.  

  data=alnmr.averagelp (data, coefficients, reduced order 

parameter, number of predicted points) 

   This functions performs linear prediction on radial sampled data. The details will 

be presented in the forthcoming Gledhill, Kasinath and Wand to be submitted to 

Journal of Magnetic Resonance. 
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Appendix 4. 

2D Gradient Selected, Sensitivity Enhanced, 15N HSQC Processing Script 
 
#import necessary packages 
import alnmr 
import os 
 
#define directory paths 
datapath=['C:\\', 'alnmr_process', 'data'] 
datadir=['example_hsqc_dir'] 
 
matrixpath=['C:\\', 'alnmr_process', 'matrix'] 
matrixdir=['example_hsqc_dir'] 
expnum=[102] 
 
#define output matrix name and dimensions 
matrixname='example_hsqc.ucsf' 
 
d1=2048 
d2=512 
 
 
#reference information 
frequency=[749.613, 75.9662] 
sw=[14.0,24.0] 
carrier=[4.538, 117.0] 
nucleus=['1H','15N'] 
 
#phase corrections 
d1phase=[50.2, 0, 0] 
 
#generate data path using os.path 
datdir='' 
for p in datapath: 
    datdir=os.path.join(datdir,p) 
for p in datadir: 
    datdir=os.path.join(datdir,p) 
datname=os.path.join(datdir,str(expnum[0])) 
 
#generate matrix path and define name 
outdir='' 
for p in matrixpath: 
    outdir=os.path.join(outdir,p) 
for p in matrixdir: 
    outdir=os.path.join(outdir,p) 
name=os.path.join(outdir,matrixname) 
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#initialize nmr data object 
bdat=alnmr.readbruker(datname) 
 
#initialize matrix object and build matrix 
smat=alnmr.SparkyFile(name,d1,d2) 
 
 
#process the directly detected dimension 
print 'process d1' 
 
for a in range(bdat.td2/2): 
    r1=bdat.readfid() 
    r2=bdat.readfid() 
     
    se1=alnmr.add(r1,r2) 
    se2=alnmr.sub(r2,r1) 
 
    se2=alnmr.exchange(se2) 
    se2=alnmr.conjugate(se2) 
         
    se1=alnmr.polysub(se1,5,sw[0]*frequency[0]) 
    se2=alnmr.polysub(se2,5,sw[0]*frequency[0]) 
     
    se1=alnmr.ss1d(se1,90) 
    se2=alnmr.ss1d(se2,90) 
     
    se1=alnmr.zerofill(se1,d1*2) 
    se2=alnmr.zerofill(se2,d1*2) 
     
    se1=alnmr.fft(se1) 
    se2=alnmr.fft(se2) 
     
    se1=alnmr.phase(se1,phase[0], phase[1],phase[2]) 
    se2=alnmr.phase(se2,phase[0], phase[1],phase[2]) 
         
    se1=alnmr.delete(se1,d1,d1*2) 
    se2=alnmr.delete(se2,d1,d1*2) 
     
    se1=alnmr.reducecomplex(se1) 
    se2=alnmr.reducecomplex(se2) 
     
    smat.write(se1,0,(a*2+1)) 
    smat.write(se2,0,(a*2+2)) 
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#commit changes to the matrix file 
smat.update() 
 
 
#process indirect dimension 
print 'process d2' 
 
for a in range(d1): 
    a+=1 
    indvec=smat.read(a,0) 
    indvec=alnmr.delete(indvec,td2,len(indvec)) 
    indvec=alnmr.complexdata(indvec) 
     
     
    #multiply every other point for states-tppi 
    #indvec[1::2]*=-1 
 
    indvec[0]=indvec[0]*.5 
 
    indvec=alnmr.ss1d(indvec,85.0) 
    indvec=alnmr.zerofill(indvec,d2) 
    ft=alnmr.fft(indvec) 
    smat.write(ft,a,0)         
 
smat.close() 
bdat.close() 
 
alnmr.refsparky(name,1,frequency[0],(sw[0]*frequency[0])/2, 
carrier[0]+(sw[0]/4),nucleus[0]) 
alnmr.refsparky(name,2,f2,(sw[1]*frequency[1]), 
carrier[1],nucleus[1]) 
 

 



165 
 

Appendix 5. 
Phase Correction Macro 
 
#import necessary packages 
import alnmr 
import os 
 
vecpt=[0,52] 
 
matrixpath=['C:\\', 'alnmr_process', 'matrix'] 
matrixdir=['example_hsqc_dir'] 
 
#define output matrix name and dimensions 
matrixname='example_hsqc.ucsf' 
 
#generate matrix path and define name 
outdir='' 
for p in matrixpath: 
    outdir=os.path.join(outdir,p) 
for p in matrixdir: 
    outdir=os.path.join(outdir,p) 
name=os.path.join(outdir,matrixname) 

#initialize matrix object and build matrix 
smat=alnmr.SparkyFile(name) 
 
#read vector 
vect=smat.read(vecpt[0],vecpt[1]) 
 
#hilbert transform 
vect=alnmr.hilbert(vect) 
 
#phase correction interface 
alnmr.interactivephase(vect) 
 
smat.close() 
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Appendix 6. 

3,2 Radial Sampled Processing Script 

 

This script is designed to process data that has been collected using gradient selection, 

and sensitivity enhancement in the Nitrogen dimension and States-TPPI selection in the 

Carbon Dimension 

 
import alnmr 
import os 
 
datapath=['C:\\','alnmr_process', 'data'] 
matrixpath=['C:\\','alnmr_process','matrix'] 
 
datadir=['example_radial_3d'] 
matrixdir=['example_radial_3d'] 
 
prefix=['example_3drad_'] 
 
#experiment data directories and corresponding angles 
expnum=[1004, 1005, 1006] 
angles=[5, 10, 15] 
 
d1phase=[49.2,0] 
 
#output matrix size 
d1=1024 
d2=128 
d3=128 
 
#total number of radial sampled points 
td3=128 
 
#spectrum referencing information 
sw1=11.9903 
sw2=27.0 
sw3=35.0 
 
f1=498.81 
f2=50.55 
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f3=125.43 
 
#proton carrier (discard the downfield component) 
c1=4.702+sw1/4 
carrier=[str(c1),'118.0','54.0'] 
nucleus=['1H','15N','13C'] 
 
#set the paths for the data and matrix directories 
datdir='' 
for p in datapath: 
    datdir=os.path.join(datdir,p) 
for p in datadir: 
    datdir=os.path.join(datdir,p) 
 
matdir='' 
for p in matrixpath: 
    matdir=os.path.join(matdir,p) 
for p in matrixdir: 
    matdir=os.path.join(matdir,p) 
 
 
#process the directly acquired dimension 
for x in range(len(angles)): 
    print angles[x] 
 
    #build a temporary matrix to hold d1 processed data 
    name=prefix[0]+str(expnum[x])+'_n'+str(angles[x])+'c.ucsf' 
    name=os.path.join(datdir,name) 
    smat=alnmr.SparkyFile(name,d1,d2) 
 
    #create the data object for the angle data set 
    datdirname=os.path.join(datdir,str(expnum[x])) 
    bdat=alnmr.readbruker(datdirname) 
 
    #process all of the FIDs 
    for a in range(bdat.td3/4): 
        r1=bdat.readfid() 
        r2=bdat.readfid() 
        r3=bdat.readfid() 
        r4=bdat.readfid() 
         
        #p/n selection 
        se1=alnmr.add(r2,r1) 
        se2=alnmr.sub(r2,r1) 
        se3=alnmr.add(r3,r4) 
        se4=alnmr.sub(r4,r3) 
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        #conjugate and exchange 
        se2=alnmr.exchange(se2) 
        se2=alnmr.conjugate(se2) 
        se4=alnmr.exchange(se4) 
        se4=alnmr.conjugate(se4) 
         
 
        #convolution - polynomial subtraction 
        se1=alnmr.polysub(se1,5,sw1*f1) 
        se2=alnmr.polysub(se2,5,sw1*f1) 
        se3=alnmr.polysub(se3,5,sw1*f1) 
        se4=alnmr.polysub(se4,5,sw1*f1) 
         
        #apodization 
        se1=alnmr.ss1d(se1,90) 
        se2=alnmr.ss1d(se2,90) 
        se3=alnmr.ss1d(se3,90) 
        se4=alnmr.ss1d(se4,90) 
 
        #zerofill 
        se1=alnmr.zerofill(se1,d1*2) 
        se2=alnmr.zerofill(se2,d1*2) 
        se3=alnmr.zerofill(se3,d1*2) 
        se4=alnmr.zerofill(se4,d1*2) 
         
        #fourier transform 
        se1=alnmr.fft(se1) 
        se2=alnmr.fft(se2) 
        se3=alnmr.fft(se3) 
        se4=alnmr.fft(se4) 
         
        #phase 
        se1=alnmr.phase(se1,phased1[0],phased1[1]) 
        se2=alnmr.phase(se2,phased1[0],phased1[1]) 
        se3=alnmr.phase(se3,phased1[0],phased1[1]) 
        se4=alnmr.phase(se4,phased1[0],phased1[1]) 
 
        #delete  
        se1=alnmr.delete(se1,d1,d1*2) 
        se2=alnmr.delete(se2,d1,d1*2) 
        se3=alnmr.delete(se3,d1,d1*2) 
        se4=alnmr.delete(se4,d1,d1*2) 
 
        #reduce complex data 
        se1=alnmr.reducecomplex(se1) 
        se2=alnmr.reducecomplex(se2) 
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        se3=alnmr.reducecomplex(se3) 
        se4=alnmr.reducecomplex(se4) 
      
        #write to data matrix 
        smat.write(se1,0,(a*4+1)) 
        smat.write(se2,0,(a*4+2)) 
        smat.write(se3,0,(a*4+3)) 
        smat.write(se4,0,(a*4+4)) 
             
    smat.close() 
    bdat.close() 
 
 
#process the radial sampled dimensions 
     
#freq list for 2dft 
freq1=alnmr.ftfreq(d2,sw2*f2) #nitrogen 
freq2=alnmr.ftfreq(d3,sw3*f3) #carbon 
 
#loop over all angles 
for x in range(len(angles)): 
    #sampling points list 
    timepoints=alnmr.maketime(ni,sw2*f2,angle,sw3*f3) 
 
    #build matrix objects for the angle components 
    prname=os.path.join(outdir,prefix[0]+str(expnum[x])+ 
                        '_n'+str(angles[x])+'c_pr.ucsf') 
    outmatpr=alnmr.SparkyFile(prname,d1,d2,d3) 
 
    mrname=os.path.join(outdir,prefix[0]+str(expnum[x])+ 
                        '_n'+str(angles[x])+'c_mr.ucsf') 
    outmatmr=alnmr.SparkyFile(mrname,d1,d2,d3) 
     
    #data matrix directory 
    inname=os.path.join(datdir,prefix[0]+str(expnum[x])+ 
                        '_n'+str(angles[x])+'c.ucsf') 
    inmat=alnmr.SparkyFile(inname) 
     
    #loop over all of the d1 points 
    for d1p in range(d1): 
        print d1p 
         
        #read vector 
        data=inmat.read(d1p+1,0) 
        data=alnmr.delete(data,td3,len(data)) #delete zeros       
 
        #multiply first point by 1/2 
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        data[0]=.5*data[0] 
        data[1]=.5*data[1] 
        data[2]=.5*data[2] 
        data[3]=.5*data[3] 
 
        #states tppi on bruker correction 
        data[4::8]*=-1 
        data[5::8]*=-1 
        data[6::8]*=-1 
        data[7::8]*=-1 
 
        #apodize 
        data=alnmr.ss2d(data,angle,90,90) 
         
        ftp,ftm=alnmr.ft2dplus(3,data,timepoints, 
                               freq1,freq2,0.0,0.0,0.0,0.0) 
 
        for y in range(d2): 
            outmatpr.write(ftp[y],d1p+1,y+1,0) 
            outmatmr.write(ftm[y],d1p+1,y+1,0)    
             
 
    #outmatmr.close() 
    outmatpr.close() 
    outmatmr.close() 
    inmat.close() 
 
#lower value comparison 
 
#build lv matrix 
print 'build' 
lvname=os.path.join(outdir,prefix[0]+'lv_3d.ucsf') 
lvmat=alnmr.SparkyFile(lvname,d1,d2,d3) 
lvmat.close() 
     
#compare components of the first angle 
name1=os.path.join(outdir,prefix[0]+str(expnum[0])+ 
                   '_n'+str(angles[0])+'c_pr.ucsf') 
name2=os.path.join(outdir,prefix[0]+str(expnum[0])+ 
                   '_n'+str(angles[0])+'c_mr.ucsf') 
 
#lower value 
alnmr.lv(name1,name2,lvname) 
 
#compare all of the remaining angles 
for x in range(len(angles)-1): 
    name=os.path.join(outdir,prefix[0]+ 
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                      str(expnum[x+1])+'_n'+ 
                      str(angles[x+1])+'c_pr.ucsf') 
    alnmr.lv(lvname,name,lvname) 
    name=os.path.join(outdir,prefix[0]+ 
                      str(expnum[x+1])+'_n'+ 
                      str(angles[x+1])+'c_mr.ucsf') 
    alnmr.lv(lvname,name,lvname) 
 
 
#reference all of the spectra 
for x in range(len(angles)): 
    name=os.path.join(outdir,prefix[0]+str(expnum[x])+ 
                      '_n'+str(angles[x])+'c_pr.ucsf') 
    alnmr.refsparky(name,1,f1,(sw1*f1),float(carrier[0]), 
    nucleus[0]) 
    alnmr.refsparky(name,2,f2,(sw2*f2),float(carrier[1]), 
    nucleus[1]) 
    alnmr.refsparky(name,3,f3,(sw3*f3),float(carrier[2]), 
    nucleus[2]) 
     
    name=os.path.join(outdir,prefix[0]+str(expnum[x])+ 
                      '_n'+str(angles[x])+'c_mr.ucsf') 
    alnmr.refsparky(name,1,f1,(sw1*f1),float(carrier[0]), 
    nucleus[0]) 
    alnmr.refsparky(name,2,f2,(sw2*f2),float(carrier[1]), 
    nucleus[1]) 
    alnmr.refsparky(name,3,f3,(sw3*f3),float(carrier[2]), 
    nucleus[2]) 
 
alnmr.refsparky(lvname,1,f1,(sw1*f1),float(carrier[0]), 
    nucleus[0]) 
alnmr.refsparky(lvname,2,f2,(sw2*f2),float(carrier[1]),  
    nucleus[1]) 
alnmr.refsparky(lvname,3,f3,(sw3*f3),float(carrier[2]), 
    nucleus[2]) 
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