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Abstract — The paper describes a unified for-
mal framework for designing and reasoning about
power-constrained, timed systems. The framework
is based on process algebra, a formalism which has
been developed to describe and analyze communi-
cating, concurrent systems. The proposed exten-
sion allows the modeling of probilistic resource fail-
ures and power consumption by resources within the
same formalism. Thus, it is possible to study sev-
eral alternative power-consumption behaviors and
tradeoffs in their timing and other characteristics.
This paper describes the modeling and analysis tech-
niques, and illustrates them with examples, includ-
ing a power-aware ad-hoc network protocol.

1 Introduction

In recent years, there have been great advances in wire-
less technology and portable computing. These ad-
vances have given rise to sophisticated devices and net-
work architectures which are becoming widespread not
only in the use of portable computers but also in em-
bedded systems, as for example exist on cellular phones
and digital cameras. A serious limitation of the above-
mentioned devices is the battery life available to them.
Although a great deal of power-intensive computation
has to be performed and efficiency has to be maintained,
this has to be done on a limited amount of power. To
cope with this fact, recently, a number of power-aware
algorithms and protocols have been proposed aiming to
make energy savings by dynamically altering the power
consumed by a processor while still achieving the re-
quired behavior. However, in time-constrained applica-
tions often found in embedded systems, applying power-
saving techniques can lead to serious problems. This is
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because changing the power available to tasks can af-
fect their execution time which may lead to violation of
their timing constraints and other guarantees. A chal-
lenge presented by such systems is the development of
robust algorithms that incorporate power-saving tech-
niques and task management. An example of such a
proposal can be found in [9].

The main purpose of this paper is to provide a unified
formal framework for designing and reasoning about
power-constrained, timed systems. The framework we
propose is based on process algebra a formalism which
has been developed to describe and analyze commu-
nicating, concurrently-executing systems. The most
salient aspect of process algebras is that they support
the modular specification and verification of systems
and they enable the verification of a whole system by
reasoning about its parts. Process algebras are being
used widely in specifying and verifying concurrent sys-
tems and they have been extended to take account of
phenomena such as time and probabilistic behavior.

In this paper we present the process algebra P2ACSR
which extends our previous work on formal methods for
real-time [6] and probabilistic systems [8] by incorpo-
rating the ability of reasoning about power consump-
tion. The Algebra of Communicating Shared Resource
(ACSR) [6] is a timed process algebra which represents a
real-time system as a collection of concurrent processes.
Each process can engage in two kinds of activities: com-
munication with other processes by means of instanta-
neous events and computation by means of timed ac-
tions. Executing an action requires access to a set of
resources and takes a non-zero amount of time mea-
sured by an implicit global clock. Resources are serially
reusable. The notion of a resource, which is already
important in the specification of real-time systems, ad-
ditionally provides a convenient abstraction mechanism
for capturing a variety of aspects of systems behavior.
One such aspect is the failure of physical devices: in a
probabilistic extension of ACSR, PACSR [8], resources
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were extended with the ability to fail, and were asso-
ciated with a probability of failure. In P?ACSR, the
resource model of PACSR, is further extended to rea-
son about power consumption. Resources in P2ACSR
specifications are accompanied with information about
the power consumption of each resource use. Thus, for
each execution step requiring access to a set of power-
consuming resources, we can compute the power con-
sumed by the step and similarly for a sequence of steps.

We are interested in being able to specify and verify
high-level requirements of P2ACSR, and in particular to
study their power-consumption behavior and tradeoffs
in their timing and other characteristics. To do this
we provide an operational semantics of P2ACSR via la-
beled concurrent Markov chains [12], which are transi-
tion systems containing both probabilistic and nonde-
terministic behavior. Probabilistic behavior is present
in the model due to resource failure and nondetermin-
istic behavior due to the fact that P2ACSR specifica-
tions typically consist of several parallel processes pro-
ducing events concurrently. We discuss possible anal-
ysis methods that can be carried out on this model
mostly based on extending and employing existing tech-
niques proposed in the literature such as model check-
ing, equivalence checking and long-run average behavior
computation, to allow reasoning about power consump-
tion properties. We illustrate the usefulness of the pro-
posed formalism for a number of examples including a
power-aware protocol for wireless ad-hoc networks [1].
In the latter example, we use resources to model power-
consuming nodes of a mobile network, where each re-
source can be used at different power levels on different
occasions. Furthermore, we account for the probabilis-
tic nature of message arrival in the network by employ-
ing probabilistic resources.

The rest of the paper is organized as follows: the
next section presents the P2ACSR syntax and seman-
tics. Section 3 discusses analysis techniques for P2ACSR
processes, and Section 4 presents the model of a power-
aware ad-hoc network protocol. We conclude with some
final remarks and discussion of further work.

2 The Syntax of P2ACSR

As in ACSR we assume that a system contains a finite
set of serially reusable resources drawn from a count-
ably infinite set of resources R. Resources can corre-
spond to physical entities, such as processor units and
communication channels, or to abstract notions such
as message arrival. They can have a set of numeri-
cal attributes that let us capture quantitative aspects
of resource-constrained computations. In general, re-
source attributes can be associated to the resource it-

self, or separately to each resource use. We illustrate
the use of both kinds of attributes. As in PACSR, one
attribute will capture the probability of resource fail-
ure, which will be constant throughout a system spec-
ification. A second attribute will represent power con-
sumption, which may be different in different uses of
the resource.

Probabilistic resource failures. As in PACSR, we
associate with each resource a probability. This proba-
bility captures the rate at which the resource may fail.
A failure may correspond to either a physical failure,
such as a message loss in a communication channel, or a
failure of some abstract condition, for example no mes-
sage arrival when one was expected. We assume that
in each execution step, resources fail independently. To
capture the notion of a failed resource we also consider
the set R that contains for each r € R, its dual ele-
ment 7, representing the failed resource r and write R
for RUR. Thus, for all r € R we denote by p(r) € [0, 1]
the probability of resource r being up in a given step,
while p(F) = 1 — p(r) denotes the probability of r fail-
ing in a given step. The use of failed resources is useful
when we need to specify a recovery from the failure.

Resources and power consumption. In order to
reason about power consumption in distributed set-
tings, the set of resources R is partitioned into a finite
set of disjoint classes R;, for some index set I. Intu-
itively, each R; corresponds to a distinct power source
which can provide a limited amount of power at any
given time. This limit is denoted by ¢;. Each resource
r € R; consumes a certain amount of power from the
source R;. As we will see below, the rate of power con-
sumption is specified in timed actions.

2.1 The Syntax

As PACSR, P?2ACSR has three types of actions: instan-
taneous events, timed actions, and probabilistic actions.
We discuss these three concepts below.

Instantaneous Events. Instantaneous actions are
called events. Events provide the basic synchronization
primitives in the process algebra. An event is denoted
by a label a drawn from the set L = LU LU {7}, where
if a € £, a € L is its inverse label. The special label 7
arises when two events with inverse labels are executed
concurrently. We let a, b range over labels. Further, we
use Dg to denote the domain of events.

Timed actions An action consists of several re-
sources, each resource being used at some level of power
consumption. Formally, an action is a finite set of pairs
of the form (r,p) where r is a resource and p is the
rate of power consumption. We let A, B range over
actions and Dg to denote the domain of actions. The
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restrictions on actions state that resources used simul-
taneously in an action must be distinct. We denote the
set of resources used in an action A as p(A4).

An  example of an action 1is given by
{(epu, 3),(msg,0)}. This action uses resource cpu,
which represents a processor unit, consuming three
units of power. The processor can fail with probability
p(cpu). This action also assumes that the processor
receives a message, represented by resource msg. The
fact that the message may or may not arrive is modeled
as a failure of resource msg. This is not a physical
failure, but rather a failed assumption. The action
takes place assuming that none of the resources fail.
On the other hand, action {(cpu,3),(msg,0)} takes
place given that resource msg fails and resource cpu
does not.

Probabilistic transitions. As already mentioned re-
sources are associated with a probability of failure.
Thus, the behavior of a resource-consuming system has
certain probabilistic aspects to it which are reflected in
the operational semantics of the algebra. For example
consider action {(cpu, 3), (msg, 0)}, where resources cpu
and msg have probabilities of failure 0 and 1/3, respec-
tively, that is p(cpu) = 1 and p(msg) = 2/3. Then the
action takes place with probability p(cpu) - p(msg) =

2/3 and fails with probability 1/3.
Processes We let P, (Q range over processes and we

assume a set of process constants each with an asso-

ciated definition of the kind X % P. The following

grammar describes the syntax of P2ACSR processes.
P := NIL|a.P|A:P|P+P|P|P|P\F|recX.P|X
Process NIL represents the inactive process. There
are two prefix operators, corresponding to the two types
of actions. The first, a. P, executes the instantaneous
event a and proceeds to P. The second, A : P, ex-
ecutes a resource-consuming action A during the first
time unit and proceeds to P. As we will specify pre-
cisely when we give the semantics of the language, an
action can take place if none of the resources used by
it fail and assuming that it does not violate the sys-
tem’s power constraints. Otherwise, A : P cannot ex-
ecute the action and behaves as NIL. As a shorthand
notation, we will write A™ : P for a process that per-
forms n consecutive actions A and then behaves as P.
Process P + (Q represents a nondeterministic choice be-
tween the two summands. Process P||@ describes the
concurrent composition of P and : the component
processes may proceed independently or interact with
one another while executing events, and they synchro-
nize on timed actions. In P\ F', where F' C L, the scope
of labels in F' is restricted to process P: components
of P may use these labels to interact with one another
but not with P’s environment. Finally, process rec X.P
denotes standard recursion.

As an example of a process, consider the process
def

P = {(cpu,3),(msg,0)} : P + {(cpu,2),(msg,0)} :
P> . Process P represents a processor that can accept
messages from a channel. We assume that reading the
message from the channel requires additional power.
Depending on whether the message arrives or not, P
has two alternative behaviors. If the message arrives,
that is, resource msg is up, the processor receives the
message, consuming 3 units of power, and proceeds to
process it as P;. Otherwise, if the message does not ar-
rive, msg is down and that action cannot proceed. This
is specified as msg is up, and the processor consumes
only 2 units of power and continues as Ps.

As a syntactic convenience, we allow P2ACSR pro-
cesses to be parametrized by a set of index variables.
Each index variable is given a fixed range of values.
This restricted notion of parameterization allows us to
represent collections of similar processes concisely. For
example, the parameterized process

Pt <25 a.Pyq, te{0.2}

is equivalent to the following three processes:

Py a.P, P,Yq,.P, P, NIL

2.2 Operational Semantics

The semantics of the process algebra is given opera-
tionally by a transition system that captures the nonde-
terministic and probabilistic behavior of processes. As
for PACSR, it is based on the notion of a world, which
keeps information about the state of the resources of
a process. Given Z C R, the set of possible worlds
involving Z is given by W(Z) = {Z' C ZUZ | z €
Z'"ift T ¢ Z'}, that is, it contains all possible combina-
tions of the resources in Z being up or down. Given a
world W € W(Z), we can calculate its probability by
multiplying the probabilities of every resource in W.
Behavior of a given process P can be given only with
respect to the world P is in. A configuration is a pair
of the form (P, W) € Proc x 2R, representing a P2ACSR
process P in world W. We write S for the set of all
configurations and we partition this set into the sub-
set of probabilistic configurations, Sp, and the subset
of nondeterministic configurations S,,. A configuration
(P,W) is in S, if every resource that can be used in a
first step of P is included in W and it is in .S}, otherwise.
The semantics is given in terms of a labeled transition
system whose states are configurations and whose tran-
sitions are either probabilistic or nondeterministic.
The intuition for the semantics is as follows: for a
process P, we begin with the configuration (P,0). As
computation proceeds, probabilistic transitions are per-
formed from probabilistic configurations to determine
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the status of resources immediately relevant for execu-
tion but for which there is no knowledge in the config-
uration’s world. Once the status of a resource is deter-
mined by some probabilistic transition, it cannot change
until the next timed action occurs. Once a timed ac-
tion occurs, the state of resources has to be determined
anew, since in each time unit resources can fail inde-
pendently from any previous failures. Nondeterminis-
tic transitions (which can involve events or actions) are
performed from nondeterministic configurations.

The transition relation for configurations (P,W) €
Sy is presented in Table 1. In this table and here-
after, we use «, 8 to range over Dg U Dg. Further, we
use the predicate valid(A4) to distinguish actions that
do not violate their power consumption requirements.
Specifically, valid(A) = A;c; (X, eri (rprycaPr < Ci)-
Note that the symmetric versions of rules (Sum) and
(Parl) have been omitted. The rules are the same
as for PACSR except from the action prefix operator
and the parallel composition operator. In both (Act2)
and (Par3), for an action to take place, in addition to
all other constraints, it must be valid according to the
power requirements.

We illustrate the rules of the semantics with an
example. Consider P def {(r1,1),(r2,2)} : P + e.Ps.
The relevant resources of P are {ry,r2}. From the
initial configuration, (P,0)) we have four probabilis-
tic transitions that determine the states of r; and

ro: (P0) PULBUD(poe )y, (Pp) PULBTR)
(P {r,7Y),  (P0)  PTCY (P, r})  and

(P, D) p(rﬂ(pw) (P, {71,73}). All of these config-
urations are nondeterministic since they contain
full information about the relevant resources.

Further, (P,{ri,72}) has two mnondeterministic
transitions: (P, {r1,m2}) {(Tl’ll(;;f’l)} (P1,0) and

(P, {ri,r2}) —>n (Ps,{r1,r2}). The other configura-
tions allow only the e-labelled transition since either r;
or ry is failed.

3 Analysis

In this section we discuss the types of analysis that
can be performed on P?ACSR specifications. We be-
gin by presenting the formal model underlying P2ACSR,
processes which is that of labeled concurrent Markov
chains [12].

Definition 3.1 A labeled concurrent Markov chain
(LCMCQ) is a tuple (S,, Sy, Act,—>p, —p, So), where
Sp is the set of nondeterministic states, S, is the set
of probabilistic states, Act is the set of labels, —,,C
Sp x Act x (S, U Sp) is the nondeterministic transi-

tion relation, —,C S, x (0, 1] x Sy, is the probabilistic
transition relation, satistying ¥, » e, 7 =1 for all
s € Sp, and 59 € S;, U S, is the initial state. O

We may see that the operational semantics of P2ACSR
yields transition systems that are LCMCs where Act =
Dg U Dg and the sets Sy, Sp, are the sets of nondeter-
ministic and probabilistic configurations, respectively.
In what follows, we let £ range over ActU [0, 1].
Computations of LCMCs arise by resolving the non-
deterministic and probabilistic choices: a computation
in T = (Sy,Sp, Act,—>pn, —p, So) is either a finite
sequence ¢ = Sof1 81 ...4 sE, or an infinite sequence
c=s9l1s1...0sy..., such that s; € S, US,, i1 €
Act U [0,1] and (s, €i41,8i41) €E—>p U —p, for all
0 <i. Given a computation ¢ = sgf; ... LS, we define

trace (¢) = {ly... 0] Act— {7},
time (C) = #(Zl ékr DR)
power (¢,j) = Z pow (¢;,7), where
0<i<k
. _ E(rp,,)el reR; Pr, if { € Dg
pow (£,5) = { 0, otherwise

To define probability measures on computations of
an LCMC the nondeterminism present must be re-
solved. To achieve this, the notion of a scheduler has
been employed [12, 5], which is an entity that, given a
partial computation ending in a nondeterministic state,
chooses the next transition to be executed. Each sched-
uler induces a probability space [4] on the set of compu-
tations allowed by the scheduler and allows us to con-
clude that the probability of all computations that are
a prefix of some partial computation sgfl1sq...0sy is
equal to the product of all probabilities arising along
the path, that is II{|¢; € [0,1] | 1 < i < kf}.

By using and appropriately extending techniques

known from the literature on LCMC, we can perform
various kinds of analysis on P2ACSR processes. We dis-
tinguish the following:
1) Model checking and Equivalence checking. Model
checking and equivalence checking are techniques that
have been proposed and developed in the last twenty
years, and are widely used for the verification of tran-
sition systems, including LCMCs. They can both be
usefully applied to P2ACSR processes.

On the one hand, model checking analysis is a veri-
fication technique aimed at determining whether a sys-
tem specification satisfies a property typically expressed
as a temporal logic formula. Specifically, one may cap-
ture desired liveness and safety properties in an appro-
priate logical framework, such as the presence of dead-
lock, and then test whether a P?2ACSR process satis-
fies the property by performing a search on the LCMC
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(Actl) (a.P,B) —%, (P, B) (Act2)

(P1,B) —%, (P,B")

(Sum) —
(Pl + PQ,B) —n (P, B’)

(Parl)

(A:P,B) A, (P, 0), if p(A) C B, valid(A)

(PlaB) _a)n (PivB,)
(P1||P2, B) —%, (P{||P2, B')

(PlvB) —a>n (PévB,)a (P2yB) _a)n (PévB,)

(Par2)

(Pil|P2, B) —5n (P{||P3, B')

(Par3) oA
(P1[|P2, B) =% (Py||P3, B')
a ! !
(Res2) (P,B) —n (P',B"), a g F (Re

(P\FaB) _‘l)n (P,\FvB,)

(P, B) —H (P, B'), (P2, B) =3, (P}, B)

p(Al) n p(AQ) =0 and vaIid(A1 U A2)

(Plrec X.P/X],B) —, (P',B)
(rec X.P,B) —%, (P',B")

Table 1: The nondeterministic relation

generated by the process. On the other hand, equiva-
lence checking is a verification technique aimed at de-
ciding whether one system implements another with re-
spect to different notions of implementation, Various
equivalence relations capturing notions of implementa-
tions have been explored for LCMCs. Among these,
strong and weak bisimulations have been defined and
algorithms given for their automatic verification (see
for example [7]). It has been shown that bisimulations
are useful for performing schedulability analysis of real-
time systems [2].

2) Probabilistic bounds on power consumption. To ex-
tend model-checking techniques for reasoning about
power consumption we may invest temporal logics with
power-consumption properties. One such property in-
volves testing whether, given a limit on the power con-
sumption on a specific power source, with some prob-
ability we can guarantee that the system does not ex-
ceed this limit. In particular we propose the formulas
PR(i,>< p,c) and PR(i,>< p,c,t) where e {<, >},
where the first formula expresses that for every pos-
sible scheduler of a system the consumption of power
from source i does not exceed limit ¢ with probability
> p and the second formula restricts the computation
of interest to the first ¢ time units.

Formally, given a LCMC T, and a scheduler of
T, o, letting Paths(T,i,0,c¢) be the set of computa-
tions e of T such that power(e,i) < c¢. T satisfies
PR(i,x p,c) if and only if, for all schedulers o of
T, P(Paths(T,i,0,c)) > p, where P is the probabil-
ity measure function induced by scheduler ¢. Like-
wise, T satisfies PR(i,t< p,c,t) if and only, if for all
schedulers o of T, P(TPaths(T,i,0,¢,t)) < p, where
TPaths(T,i,0,c,t) is the set of computations e of T' such
that power (e,7) < ¢ and time (e) < t.

3) Long-run average performance. It has already been
shown in the literature how to evaluate the long-run
average behavior of LCMC’s [3]. This is achieved by

specifying the experiment of which the average behav-
ior is to be determined and then computing this long-
run average by appropriately traversing the LCMC. An
experiment is described by specifying (1) the labels of
LCMC that mark the end of an experiment and (2) the
quantity to be measured during each an experiment for
which the average is to be computed. This quantity
is usually associated with labels of the LCMC under
study. Average behavior is particularly interesting for
power consumption studies. Average power consump-
tion can be computed per unit of time, or if desired, per
periods of interest as in the following example.

Example 1. Consider the two systems below requir-
ing the use of a resource. The first system, P, employs
a highly reliable resource r that never fails, p(r) = 1,
but consumes a large amount of power. The second
system, (), opts on using a less reliable resource r' with
pr(r’) = 1/2, but consumes less power. The LCMCs for
P and @ are given in Figure 1. @ keeps trying until r’
is up, consumes r’ and performs the event suce.

P« {(r,2)} : sSuce.P

Q = {1} :sweeQ +{(7,0)}:Q

We may see that although @ risks a delay in suc-
cessfully using resource ', on average, it consumes less
power than P per successful resource use: For exper-
iments whose outcome is the power consumed by all
actions of the experiment and whose end is marked by
the label suce, the the average power consumption of
(@ is 1. which is half of the long-run average consump-
tion of P for the same experiment. On the other hand,
considering experiments where the outcome is the time
taken by actions in the experiment and whose end is
again marked by the label Suce, the long-run average,
capturing the average time necessary for a successful
use of a resource, is 2 time units for ) and only 1 time
unit for P.
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(SueeP, 0
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{1}
(succQ. 0

Figure 1: The LCMCs of processes P and @)

Example 2. In this example we illustrate how we can
express tradeoffs in power-aware applications. Using
the technique of voltage scaling [9], embedded proces-
sors can reduce their power consumption at the cost
of a slower execution. Consider a periodic task with
period p and deadline that is equal to the period. As-
sume, for the sake of the example, that the processor
performs twice as fast when consuming twice the power.
The execution time of the task depends on the power
consumption of the processor. Let the task require e
time units when the processor executes at full power,
and 2 x e at low power. If the task shares the processor
with other tasks, it will have to idle while other tasks
execute and may miss its deadline.
Task= To,o
Ti; =j<p—{}:Tij+ i€{0..e—1},j€{0.p—1}
+i<eAj<p— {(cpu,low)} : Tit1,j+1
+i<eANj<p— {(cpu, hlgh)} tTig2 41

Tip =t 2>pANi=e— Task

Process T has two parameters. The first one is the
amount of execution time the task has accumulated in
the current period and the second is the time elapsed
since the start of the period. Note that when the pro-
cessor, represented as the cpu resource, executes at full
power, execution time increases more than when the
power is low. The task may begin a new cycle only if the
necessary amount of execution time has been accumu-
lated. Otherwise, it misses its deadline and is blocked.

Given a set of tasks represented in this way, we can
analyze whether the set is schedulable under a certain
scheduling policy. The correctness criterion being that
a resulting process does not deadlock can be checked
either by deciding the behavior equivalence of the pro-
cess to the process that idles forever, or by performing
model-checking on the process to search for deadlock
states. If we introduce a non-zero failure probability
for the cpu resource, we will be able to analyze fault-
tolerant scheduling algorithms (see, for example, [10]).

4 Example

In this section we illustrate the use of the pro-
posed formalism in the specification and analysis of

RP CFP

RR RA data transmissions

beacon interval

Figure 2: Structure of the Beacon Interval

power-constrained embedded systems by considering
the model of a power-aware protocol for wireless ad-
hoc networks, PARMAC, proposed in [1]. The proto-
col builds upon the idea of a beacon interval, a power-
saving approach utilized in the IEEE standard 802.11.
During a beacon interval, nodes of a network may send
and receive messages. In order to optimize power con-
sumption during this interval, a reservation-based ac-
cess mechanism is used. As shown in Figure 2, the
beacon interval is partitioned into a reservation period
(RP) and a contention-free period (CFP). During the
RP period, nodes exchange control messages, following
a three-way handshake protocol: when node 1 wants to
send data to node 2, it sends a reservation request (RR)
to node 2, listing available slots at node 1; node 2 re-
sponds with an acknowledgment (RA) that lists accept-
able slots; finally, node 1 selects an acceptable slot and
notifies node 2 with a second acknowledgement (RB).
Note that control messages are broadcast to all nodes
within the range (see Figure 3). When a node receives a
message that is not addressed to it, the message is dis-
carded. We assume that discarding a message is both
faster and takes less power than processing a message.

Once the RP elapses, the CFP begins, when nodes
send and receive messages according to the reservations
made during the RP. When a node is not scheduled to
send or receive, it goes to sleep until the next scheduled
reservation.

The PARMAC protocol features trade-offs between
power-efficiency and performance, which we capture in
our model. The relative duration of RP versus CFP
is a major factor. A longer RP may allow the nodes
to make more reservations and thus use the CFP more
efficiently. On the other hand, no data is transmitted
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Figure 3: Reservation protocol

during the RP, so if the RP is too long, the throughput
of the protocol may suffer. The optimal value of the
RP likely depends on the network load.

The following simplifying assumptions were used in
constructing the model. We assume that the trans-
mission of any control or data message uses one time
unit. All packets are real-time packets that have to be
transmitted in one beacon interval. Packets, for which
reservations have not been made in the current beacon
interval, are discarded. We also assume that all new
packages to be transmitted are given to the protocol at
the beginning of a beacon interval. Following [1], we
assume that message losses can occur only due to col-
lisions in the medium and that access control has been
performed by a higher-level protocol, so that reserva-
tions can always be made when requested.

The following parameters are used in the model. We
use one resource, called node, to represent the power
consumption of the network node in different modes.
We consider three power consumption levels. A node
can be sleeping, when it consumes the least power. An
operational node that does not transmit or receive mes-
sages is ¢dle. When a mode is sending, receiving, or
processing a received message, it consumes more power
and is considered active. A number of probabilistic re-
sources capture the load the node: in represents ar-
rival of a message from the network, tous represents
that the arrived message is addressed to this node, RR
represents that the arrived message is a reservation re-
quest, and RA represents that the arrived message is
an acknowledgement. The protocol description is pa-
rameterized by the durations of the RP, T}, and of the
CFP, T,sp, and by the number ny,, of new messages to
be transmitted in the next beacon intervall.

The model consists of two parts, corresponding to

We chose to fix this number for simplicity. It is straightfor-
ward to extend the model to attach a probability distribution to
the number of new messages.

the RP and CFP periods. We begin with the part that
describes the CFP. Since we are mainly interested in
the power consumption aspect of the protocol, we give
a simplified description of the period. Process C'F P,
represents the CFP in which n reservations have been
scheduled. Since we model only one node, we can as-
sume that all n messages are sent immediately and the
node sleeps for the rest of the period. Therefore, for
n € {0..Tcfp} we have:

CFpP, & {(node, active)}" : {(node, sleep)}Tfr~™ : RP.

Processes that represent the RP are parameterized by five
variables, where for a process of the form X, ...cwp,1,,, 7
is the number of messages that the node has to transmit
but has not yet reserved, m is the number of reservations
successfully made for this interval, CW is the value of the
backoff interval, b is the backoff value, and ¢ is the time
since the beginning of the interval. At the beginning of
the interval, the reservation table is empty, the number of
messages to transmit iS npeqw, there is no backoff and the
backoff interval has its minimum value of 1. The process
listens to the medium before starting its own transmissions:

def ..
RP = Lzstennnew ,0,1,0,0

For the duration of the RP, process Listen can either
receive a message from the medium, or not, as represented
by processes Receive and NoReceive, respectively:

. def . .
Listenn m,cw,p,: = Recetven m,cw,p,t + NoReceiven m,cw,b,t

When the RP is over, the process begins the CFP stage
for the established reservations:

. def
Lzstenn,m,cw,b,Tw = CFPm

Consider the Receive process. It corresponds to the case
when there is an incoming message from the medium, thus
the resource in is up. If the message is addressed to the
node, it is processed in the next time step. If the received
message has been a reservation request, an acknowledge-
ment is sent in the following time step and the reservation
table is updated with the new reservation. Otherwise, no
new reservation is made and the parameter m is unchanged.
If the message was not addressed to the node (tous is down)
it is discarded. Note that the node consumes less power, as
well as less time, to discard a message than to process it. In
the description below, we assume for the sake of simplicity
that ¢t < Ty, — 3. The other case can be obtained similarly.

Receiven m,cw,b,t & {(node, active), (in, 0), (tous,0)} :
({(node, active), (RR,0)}
: {(node, active)} : Listen, m+1,cw,b—2,64+3
+{(node, active), (RR,0)} : Listenn mt1,cW.b—1,t42)
+{(node, active), (in, 0), (tous, 0)} : Listen, m,cw,pt+1

We now turn to the case where a message is not received
in the current step. Then, the node has a chance to send.
NoReceive, m,cw,bt def (b=0An>0)— Sendn,m,cw,

+(b =0An=0)— {(node, idle),(in, 0)}

: Listeno,m,cw,0,t+1
+b > 0 — {(node, idle), (in,0)} : Listen,,m,cwb—1,t+1
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When the node can send, that is, it is not backed off
(b =0) and there are messages to send (n > 0), it performs
the Send operation. First, it waits to see that no other nodes
are sending with a delay of two time units. Then, the node
sends its message and waits to receive an acknowledgement.
The case analysis performed by the process in this case is
similar to Receive, only the process is looking for RA instead
of RR. If the acknowledgement is received, the number of
reservations is increased by one, and the number of messages
to transmit is decreased. If the medium is not idle long
enough, or the acknowledgement does not come in time, the
node assumes that a collision happens and backs off. In the
description below, we assume for simplicity that ¢t < T;., —6.

Sendnm.cws 2 (t < Trp) — {(node, idle), (in,0)} :
({(node, idle), (in,0)} : {(node, active)} :
({(node, active), (in, 0), (tous,0)} :
({(node, active),(RA,0)} : {(node, active)}
: Listenn —1,m+1,0w,0,t46
+{(node, active), (RA,0)} : Listen,m.cw.b—2.t+5)
+{(node, active), (in, 0), (fous, 0)}
: Listenn,m,cw,b—1,t+4
+{(node, active), (in,0)} : ...)
+{(node,idle), (in,0)} : Backoﬁn,m,ow,t_m)
When the process backs off, it doubles the backoff interval
and selects a random backoff value from the backoff interval.
This is expressed as a non-deterministic choice between all

possible backoff values.
def .
BGCkoﬁn,m,CW,t = Eo<b<2*CW Listenn,m,2«cw,b,t

Analysis. By using techniques already mentioned, we
can perform the following kinds of analysis on the proto-
col: 1) Probabilistic bounds on power consumption. Given a
limit on the power consumption, we can compute the proba-
bility that a computation will exceed this limit. 2) Average
power consumption. We can compute the average power
consumed by the node in one beacon interval. 3) Average
throughput. We can compute the average number of data
messages transmitted during one beacon interval. 4) Pro-
tocol comparison. Given specifications of several protocols
with different power management approaches, we can or-
der them according to their power usage. While the exact
definition of such ordering is in progress, intuitively, one pro-
tocol is more power efficient than another is if, for identical
loads in a beacon interval, the first protocol spends, on the
average, less power than the second one.

5 Conclusions

We have presented P2ACSR, a process algebra for resource-
oriented real-time systems. The formalism allows one to
model the power consumption of resources and perform
power-oriented analysis of a system’s behavior. We have
discussed techniques for analysing high-level properties of
P?ACSR. specifications that emanate from analysis tech-
niques of labeled concurrent Markov chains and we illus-
trated the utility of the proposed approach using a number
of examples.

As this is still work in progress a lot remains to be done.
We are currently extending the PARAGON toolset [11],
which allows the specification and analysis of ACSR and
PACSR processes, to handle the power consumption model
of P?’ACSR. This will allow the automatic verification of
P?ACSR processes and thus analyze and compare power-
aware protocols including obtaining resuts for PARMAC
protocol. We also aim to define ordering relations by which
to relate protocols that although behaviorally similar, differ
in their power consumption rates.
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