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Using density-functional theory, we computed all the independent elastic constants of coesite, a
high-pressure polymorph of silica, as functions of pressure up to 15 GPa. The results are in good
agreement with experimental measurements under ambient conditions. Also, the predicted
pressure-dependent elastic properties are consistent with x-ray data in the literature concerning
lattice strains at high pressures. We find that coesite, like quartz, exhibits a gradual softening of a
shear modulus B44 with increasing pressure, in contrast to the rising bulk modulus. © 2008
American Institute of Physics. �DOI: 10.1063/1.2888558�

I. INTRODUCTION

The behavior of silica �SiO2� under pressure is of con-
siderable interest in geophysics and materials science. De-
spite its simple chemical composition, silica shows rich poly-
morphism at elevated pressures and temperatures. Thus the
phases of silica serve as model systems for studying high-
pressure and/or high-temperature phase transitions, including
amorphization. Here we focus on the coesite crystal struc-
ture, originally discovered in the laboratory1 under 3.5 GPa
pressure at 750 °C. Later, coesite was also found in rocks
inside the Barringer Meteorite Crater in Arizona, as well as
near nuclear explosion sites, suggesting formation under im-
pact. Coesite, like quartz and cristobalite, consists of tetrahe-
dral units of silicon surrounded by four oxygen atoms. Of all
the silica polymorphs, coesite is the highest density tetrahe-
drally coordinated form. It has 16 formula units of SiO2 in a
monoclinic unit cell that is nearly hexagonal.2

Despite its obvious importance, not much is known
about the elasticity of silica under high pressure, since mea-
surement of elastic constants is challenging under these
conditions.3 In particular elastic anisotropy, characterized by
the difference in acoustic velocity in various directions, has
not been systematically studied. On the other hand, a number
of molecular dynamics and first-principles calculations have
been performed on various high-pressure and/or -temperature
silica phases, including coesite �see, for example, Refs.
4–11�. However, a systematic study has not been performed
on the pressure evolution of the complete set of elastic con-
stants of coesite.

In the present article, we report the complete set of high-
pressure elastic constants of coesite as determined from first-
principles density-functional-theory �DFT� calculations. The
data thus obtained can be compared with numerous experi-
mental compressibility data and also the single-crystal elastic
constants reported by Weidner and Carleton.12

II. SIMULATION TECHNIQUES

First-principles total-energy calculations under hydro-
static pressure ��ij =−P�ij, unit-cell geometries are relaxed�
are performed using the Vienna Ab-initio Simulation Pack-
age �VASP�.13 We apply the projector-augmented-wave
�PAW� method14,15 and the Ceperley–Alder exchange-
correlation potential16 in a local-density approximation
�LDA�, which is parametrized by Perdew and Zunger.17 The
calculations employ the primitive cell of coesite �space
group C2 /c�,2,18,19 containing 48 atoms. A plane-wave basis
set with 1400 eV kinetic energy cutoff is adopted. We also
employ a 2�2�2 Monkhorst–Pack20 k mesh �two irreduc-
ible k points� for carrying out the Brillouin-zone integration,
using the tetrahedron method with Blöchl correction.21 We
increase the pressure in 5 GPa increments for pressures up to
20 GPa. Forces on atoms and internal Cauchy stresses are
calculated, and atomic positions and cell geometries are al-
lowed to relax using a conjugate gradient technique until
their residual forces have converged to less than
0.0005 eV /Å.

In strained crystals, the acoustic velocities correspond to
the elastic stiffness coefficients or Birch coefficients �see, for
example, Refs. 22 and 23�. The definition of elastic stiffness
coefficients Bijkl�X� at a finite-stress state X is given as the
linear expansion coefficient of stress versus strain,24

�ij�Y� � �ij�X� + Bijkl�X���X
Y�kl + O���X

Y�2� , �1�

where �X
Y is the Lagrangian strain connecting states X and Y,

and ��X�, ��Y� are the Cauchy stresses of X and Y. In our
calculations, a complete set of Bij’s �in Voigt notation� are
computed from numerical derivatives of the internal Cauchy
stress with respect to strain. The crystal structure of coesite is
monoclinic, which means there exist 13 independent elastic
constants. The total energy and internal stress are calculated
in the strained lattice for several values of the magnitude of
the linear strain �. Generally three values of � are chosen,
�=0.005, 0.0075, and 0.01. The unit cell is slightly deformed
with every � in different directions, each corresponding to a
certain component of elastic constants, and then the atomica�Electronic mail: kimizuka@me.es.osaka-u.ac.jp.
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coordinates are allowed to relax. Bij’s are then obtained by
fitting a line to the internal stress � as a function of ����, and
then taking the slope �� /��.

III. RESULTS AND DISCUSSION

A. Structural variations with pressure

The lattice parameters �a, b, c, and �� and unit-cell vol-
ume ��� of coesite at ambient pressure are evaluated. The
obtained values are a0=7.084 �7.1366� Å, b0

=12.327 �12.3723� Å, c0=7.157 �7.1749� Å, �0

=120.5° �120.33°�, and �0=538.5 �546.81� Å3, where the
numbers in parentheses are the experimental values19 at
room temperature. For the present method, the calculated
unit-cell parameters are slightly smaller �within 0.8% for a0,
b0, c0 and 1.6% for volume� but fairly close to those obtained
from the x-ray diffraction data.19 The slight underestimation
of the lattice constants at zero pressure is partly attributed to
the LDA and partly to zero-temperature �static� calculations.

With increasing pressure from 0 to 20 GPa, the unit-cell
parameters decrease continuously. Figure 1�a� shows the vol-
ume compressibility curve, along with the x-ray diffraction
data from Refs. 18, 25, and 19. Note that our theoretical data
obtained from the DFT calculations show good agreement
with the experimental data above 20 GPa. Figure 1�b� shows
the axial compressibility curves for the a, b, and c axes. The
a axis is most compliant among the three axes, and the com-
pressibility of coesite is highly anisotropic in the a-c plane.
This behavior is due to the aligned silicate chains that run
parallel to c.18 The chains are relatively stiff along their
lengths, but the structure is relatively flexible in the a direc-
tion, largely inclined from the chains. Our theoretical data
are found to agree well with the experimental data all for a,
b, and c, as indicated in Fig. 1�b�. This result suggests that
our calculations have the ability to satisfactorily reproduce
the anisotropic compression behavior of coesite.

B. Elastic constants

The elastic stiffness coefficients �Bij� of coesite are
evaluated under pressure from 0 to 15 GPa using the DFT
calculations �Table I�. We have included the experimental
values12 at ambient pressure for comparison, which were de-
termined from Brillouin scattering measurements. Whereas
B11, B22, and B33 are within 12−15% off the experimental
values, the deviation for B44, B12, and B13 is larger, around
24−33%. This large deviation may be understood from the
fact that these three elastic constants have relatively low
magnitudes. The rank order of the 13 elastic stiffness coeffi-
cients is largely preserved.

Figure 2 displays the pressure evolution of the Bij’s. A
similar monotonous pressure dependence is observed, how-
ever their magnitudes are quite different. With increasing
pressure up to 15 GPa, the B11, B22, and B33 values increase
significantly and their pressure dependence is nonlinear,
whereas B55 and B66 change little and are almost constant in
this pressure range. In particular, it is noteworthy that B44

manifests negative pressure slope. This behavior of the elas-
tic constants indicates the possibility that the high-pressure

phase transition in coesite will be driven by softening of the
shear modulus B44, and the shear instability occurs at high
pressure.

The bulk modulus �K� of monoclinic crystals depends on
a combination of elastic compliance constants Sij, the inverse
of the Bij matrix,26

K−1 = S11 + S22 + S33 + 2�S12 + S13 + S23� . �2�

FIG. 1. Pressure evolution of the �a� unit-cell volume and �b� lattice con-
stants of coesite. �a� The open diamonds represent data from the DFT cal-
culations. The x-ray diffraction data �solid symbols� are from Refs. 18, 25,
and 19. �b� The open squares, triangles, and circles represent normalized
lattice lengths a /a0, b /b0, and c /c0 obtained from the DFT calculations,
respectively. The x-ray diffraction data �solid symbols� are from Refs. 18
and 19.
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According to Eq. �2�, the K values derived from the Bij’s
�via the Sij’s� at various pressures are also tabulated in Table
I. By another way, we can determine K from fitting a poly-
nomial to the pressure dependence of ln �, based on Fig.
1�a�. With the best-fit coefficients of a third-order polyno-
mial, K ��−dP /d ln �� is calculated as a function of P. The
obtained values are 89.6, 111.2, 135.2, 159.7, and 183.9 GPa
at pressures of 0, 5, 10, 15, and 20 GPa, respectively. Figure
3 shows the pressure evolution of the bulk modulus obtained
in the analysis. The numerical derivative of pressure with
respect to volume �−dP /d ln �� is shown as a solid curve as
a function of P, based on the theoretical volume compress-
ibility data, also along with the x-ray experimental data
�open circles� from Refs. 18, 25, and 19. It is noteworthy that
the K values derived from our Bij’s are consistent with these
volume compressibility data.

C. Linear compressibility

The pressure dependence of the lattice parameter is also
related to a combination of elastic constants, and thus we can
make use of the linear compressibility k to check the validity
of the calculated Bij’s. In monoclinic crystal, the axial com-
pressibilities ka, kb, and kc are of the form26

ka = − d ln�a�/dP = S11 + S12 + S13,

kb = − d ln�b�/dP = S12 + S22 + S23,

kc = − d ln�c�/dP = S13 + S23 + S33. �3�

Here the ratios ka /kb and kc /kb reflect the anisotropy of
the linear compressibility. On the other hand, we can deter-
mine ka /kb and kc /kb by fitting a polynomial to the evolution
of ln�a� and ln�c� with respect to ln�b� at various pressures.

Thus we could examine the consistency between the k ratios
derived from the strained lattice parameters and those de-
rived from the calculated Bij values.

Figure 4 displays the relations among the three axial
compressibilities for coesite, along with the diffraction data
from Refs. 18 and 19. As clearly shown in Fig. 4, the loga-
rithms of a and c change linearly with ln�b /b0� both for the
DFT and experimental data, and the slopes of their least-
squares fits are almost the same: 1.87 and 0.948 for the DFT
data on ln�a /a0� and ln�c /c0�, and 1.85 and 0.795 for the
experimental data on ln�a /a0� and ln�c /c0�, respectively.

Our predicted Bij’s for coesite as listed in Table I yield
the ratio of k values at various pressures. At ambient pres-
sure, the ka /kb and kc /kb values derived from the DFT data
and the experimental data12 agree well with one another. At
above 5 GPa, the ka /kb values �ranging from 1.54 to 2.30�
and kc /kb values �ranging from 0.99 to 1.30� apparently co-
incide with the above k ratios over the pressure range up to

TABLE I. Calculated values for elastic stiffness coefficients �Bij in GPa�,
bulk modulus �K in GPa�, and the ratio of linear compressibilities �ka /kb and
kc /kb� of coesite, together with experimental values.

P=0 �GPa� 5 �GPa� 10 �GPa� 15 �GPa�
Expt.a Calc. Calc. Calc. Calc.

B11 160.8 142.0 153.3 185.4 212.4
B22 230.4 199.6 240.8 263.6 290.4
B33 231.6 197.5 214.6 241.7 268.7
B44 67.8 45.1 40.5 27.4 21.9
B55 73.3 70.2 72.1 75.0 78.0
B66 58.8 58.7 58.1 54.7 54.8
B12 82.1 57.3 69.8 87.0 102.8
B13 102.9 78.1 85.5 109.8 127.1
B15 −36.2 −29.8 −30.2 −24.5 −21.6
B23 35.6 39.0 58.8 73.5 92.3
B25 2.6 13.4 16.1 14.1 14.9
B35 −39.3 −33.0 −28.6 −20.1 −15.9
B46 9.9 10.2 10.3 4.2 5.3

K 109.1 93.1 108.0 133.4 154.8
ka /kb 1.60 1.71 2.34 1.66 1.54
kc /kb 1.11 1.10 1.30 1.03 0.99

aReference 12.

FIG. 2. Pressure evolution of the elastic stiffness coefficients of coesite. �a�
Diagonal components; B11 �solid square�, B22 �solid circle�, B33 �solid tri-
angle�, B44 �open square�, B55 �open circle�, and B66 �open triangle�. �b�
Off-diagonal components; B12 �open square�, B13 �solid square�, B15 �solid
diamond�, B23 �solid circle�, B25 �open diamond�, B35 �open inverted tri-
angle�, and B46 �solid inverted triangle�.
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15 GPa. This suggests that the present Bij’s are consistent
with the compressibility behavior, both for the experimental
and DFT data.

IV. CONCLUSIONS

We have obtained the high-pressure elastic constants of
coesite via first-principles density-functional-theory calcula-
tions. Our results are consistent with not only the elastic

constants obtained from Brillouin scattering measurements at
ambient pressure, but also the x-ray diffraction data concern-
ing the volume and axial compressibilities in high-pressure
experiments. The present calculations provide insight into
the elastic behavior of coesite at high pressure, and help us
better understand the physics of solid silica.
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FIG. 3. Pressure evolution of the bulk modulus of coesite. The DFT values
derived from Eq. �2� are indicated as solid squares. Solid curve represents
the numerical derivative, −dP /d ln �, based on the DFT P-V curve. For
comparison, the experimental −dP /d ln � values are plotted as open circles,
based on the x-ray diffraction data.18,25,19

FIG. 4. Plot of logarithmic lattice lengths as a function of ln�b /b0� for
coesite. Open squares and open circles represent the DFT data for ln�a /a0�
and ln�c /c0� in this study, and the solid lines are the best fit with the slope
1.87 and 0.948, respectively. The x-ray diffraction data �small solid sym-
bols� are from Refs. 18 and 19 and the dotted lines are the best fit with the
slope 1.85 and 0.795 for ln�a /a0� and ln�c /c0�, respectively.
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