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Abstract 

Image intensity and edge are two major sources of information for estimating the motion in the 

image plane. The 2-D motion obtained by analyzing the deformation of intensity and/or edges is 

used to recover the 3-D motion and structure. In this paper we show that the motion defined by 

the image intensity differs from the motion revealed by the (zerocrossing) edge. Understanding 

of this discripancy is important since most of the 3-D motion recovery algorithms reported so far 

require accuarate 2-D motion as their input. 

We begin the discussion by assuming t i l e  invariance of intensity, that the evolution of image 

intensity manifests the underlying transformation of the image due solely to the motion of objects. 

We then raise the question if the zerocrossing of the Laplacian operating on the image intensity 

is invariant too. The change of perspective view due t o  relative motion results the zerocrossing 

not being preserved as the image evolves, thereby deteriorating the accuracy of the 2-D motion 

obtained from the zerocrossing contour. TjTe derive how much the zero-crossing contour deviates 

from its "correct" position due to motion. The result may be used to  determine the reliability of 

the zerc~crossing contours for the purpose of the motion estimation. 



1 Introduction 

The Analysis on the time-varying imagery often involves the ~ rob l em of estimating the 2-D motion 

in the image plane. Rlany existing algorithms that attempt to  recover the 3-D structure and motion 

assume the availability of accurate estimate for the 2-D motion in the form of the disparity vector 

[ll] or the image flow field [12], although some algorithms bypass this intermediate step and 

compute the 3-D motion directly from the image intensity [lo] or from contours [8]. Still, the 

problem of image motion estimation is an important one in many other applications such as 

object tracking and motion compensation for the efficient image transmission [7]. 

In computing the 2-D motion, two popular appoaches worth mentioning are the intensity- 

based method and tlie edge-based method. Intensity-based methods analyze the raw or filtered 

intensity across two or more image frames. While the image motion may be estimated in the 

frequency domain [5], from spatio-temporal derivatives [6] or by the intensity correlation [I], all 

the approaches rely on the same assumption (called ihe convected-invariance of intensi fy)  that the 

intensity of physical point does not change in time, in the Lagrangian sense. 

Edge-based methods compare the edge profile obtained by applying the edge detector to the 

image intensity. The correspondence between edge contours is established at every edge point [4] or 

at the entire contour [13], after imposing additional constraints to overcome the Aperture Problem. 

One must notice that any edge-based method inherently assumes the convected-invariance of edge, 

namely, edges are preserved in time while undergoing deformation so that the deformation of edges 

manifests the underlying deformation of image due solely to the 3-D motion. 

In this paper we show that these assumptions on invariance of intensity and edge contour 

do not go along together; if intensity is invariant, contour is not; if contour is invariant, the 

convected invariance of intensity cannot hold. This suggests that the motion estimates obtained 

from two different approaches do not agree with each other. However, our analysis will show that 

such disagreement is relatively small when the edge strength is large. This effect becomes visible 



when the edge is weak, and motion estimates obtained from the weak edge tend to be erroneous. 

This argument agrees with the heuristic control strategy often adopted in many motion estimation 

algorithms, in which weak edges are to be discarded below certain threshold. Care must be given to 

the motion estimation scheme which utilizes multi-resolution representation, since the smoothing 

increases the dynamic range of motion vector while decreasing the edge strength. 

We are interested specifically in contours generated by the Rfarr-I-Iildreth edge operator [9] 

because of its popularity and some desirable properties discovered by several researchers [14,17, 21. 

Image is smoothed by the Gaussian Go, convolved with the Laplacian V, then the zerocrossing 

is traced. Throughout the rest of paper contour refers to  the zerocrossing of v 2 G ,  * I, unless 

otherwise stated. 

Figure 1 shows a typical procedure for the edge-based method. f ( x )  is the original gray level 

image of a scene and M f ( x )  is the gray level image of the same scene after motion, where M is 

the 2-D motion induced by the 3-D rigid body motion of the scene relative to the camera, which 

needs to  be recovered. G and E  are smoothing and edge detection operators, respectively. 

One can readily see at the bottom of the figure that the procedure seeks for MI, the motion 

between contour, instead of M. A[' is defined as M 1 ( E G f ( x ) )  = EGA4f(x) .  The necessary and 

sufficient condition for A t 1  = M is that EGM = MEG.  Only under this condition the deformation 

of contour will represent the underlying motion of image itself. But the condition may not always 

be satisfied. For example, Figures 3.a and 3.b show two consecutive image frames which contain 

the projection of a curved surface with a two-dimensional sinusoidal pattern undergoing a small but 

non-trivial 3-D motion relative to the viewer. The relative motion between two images is depicted 

by the vector field of Figure 3.e. Zerocrossing contours obtained from these images are sllo~vn in 

Figures 3.c and 3.d. If the zerocrossing contours evolve in the same way as the image intensity 

does, the contours in Figure 3.c will be deformed as the dashed curve in Figure 3.f according to the 

transformation shown in Figure 3.e. The solid curves depict the actual zerocrossings of Figure 3.d 

for comparison. \,lTe observe that 



The predicted contour does not coincide with the actual contour. i . e . ,  EGA4 # IIIEG. 

On large part of the contours, they do coincide to  each other (or the deviation is small 

enough), so they can be used as features for the purpose of motioll estimation. 

Large deviations occur at those portions of contour where variations of the intensity are 

small, 2.e. at weak edges. 

We are going to investigate the difference between the measured contour, EGM and the pre- 

dicted one, MEG where E is the zero-crossing edge operator, G is the Gaussian convolution and 

M represents the image transformation such that M f ( x )  = f (T- 'x ) ,  where T is the afine trans- 

formation. The analysis is based on the assumption that tlle intensity of a physical point does not 

change due to motion. 

The issue on the deviation of zerocrossing edges in a single image has been studied by several 

researchers. li'uille and Poggio considered tlle deviation in edge location as a function of the 

Gaussian scale factor [17]. Clark discussed the same problem in the context of stereo vision, 

treating the deviation of the edge location as the result of a changing Gaussian scale factor [3]. In 

our case, as we shall see, the deviation of the zerocrossing edge caused by motion is the result of 

both the changing Gaussian scale factor and the shape of the edge detection operator used. 

The reason that tlle motion causes the edge deviation is because the smoothing operation and 

the edge detection are both neighborhood operation. Since the image transformation induced by 

the 3-D motion is non-Euclidean transformation in general, the shape and the area of a neighbor- 

hood are not preserved under the transformation. As an operator with the same kernel is applied 

to the original and trailsformed images, and the transformed image actually covers different phys- 

ical area, it produces different results. In Section 2 we will investigate separately two effects of the 

motion which cause the zerocrossing edge to  deviate from its "correct" position. In Section 3 and 

4 we will combine two effects to estimate the total deviation of the edge position. ITTe \\-ill also 

give the estimate of the change in the edge strength. These estimates could serve as a criterion 



to determine whether a contour segment should or should not be used in the 2-D motion recovery 

procedure. 

2 The Motion-Compensated Edge Operator and Gaussian 

Scale Matrix 

Suppose f ( x )  and f ( i )  are the gray level images of a scene before and after a motion, respectively. 

We denote j ( 2 )  A l f ( x ) ,  where A l  is the image transformation operator correspolldillg to  the 

motion from f ( x )  to f ( 2 ) .  The explicit relation between f ( x )  and f ( 2 )  is determined by many 

factors - illumination, reflectance function of the object surface, the 3-D shape of object, the 

relative motion between the scene and the camera, etc. However, if the motion is small, we may 

assume that the intensity of a physical point does not change during the motion. The image 

transformation is describe by a pure geometrical operation which is completely determined by 

the 3-D motion and the structure of scene, z.e., M f ( x )  = f ( T - l x ) ,  where T is the geometrical 

transformation induced by the 3-D motion such that 2 = T x .  For example, Waxman and LVohn 

has shown that the second-order deformation is a good approximation for the motion of smooth 

surfaces [13]. Tie, hoivever. assume that T is approximated as the aEne transformation in a sinall 

neighborhood since, although the second-order model may provide the better approsimation to 

the real motion, second-order terms are relatively small within a local neighborhood. Thus, 

where A is a 2 by 2 matrix which describes the linear deformation of image, and b is a 2 by 1 

column matrix which specifies the average translation. As for the usefulness of this assumption, we 

have reported an algorithm that recovers the 3-D motion and structure from the afine parameters 

at two consecutive frames [15]. Assuming the inverse transformation of T  exists, we see that 

~ l f - ~ f ( x )  = f (T-  'x) holds. 



2.1 The Motion-compensated Edge Operator 

'IVe investigate the effect of motion on the edge position. As mentioned earlier, we consider the 

zerocrossing of the Laplacian of gray image. The edge strength is given as the magnitude of the 

gradient of Laplacian. Let Z(x) be the Laplacian image of f(x). Applying the zero-crossing edge 

operator E to a gray level picture f (x) we get the edge image: 

where Zx is the derivative of Z with respect to  x. The contour (edge) I? is defined as 

Likewise, applying E to the second image hi f (x) obtain 

The contour obtained by applying the edge operator E to Ai f (x) is 

We would like to see if contours are invariant with respect to motion, nanlely, all the points on 

contour r have their corresponding points on contour F.  This property may be called "convected 

invariance of zerocrossings" referring to the similar property of intensity. One necessary condition 

for the convected invariance of zerocrossings is that f', when it is brought back to the initial frame 



via the inverse transformation of T, must coincide with r .  

In general Z1(x) (defined in Equation (4)) does not agree with Z(x) (defined in Equation (2)) .  In 

fact one can show that 

where k and F are determined by the transformation T. The zerocrossing - being the root of the 

above equation - is affected by the presence of F(x), whereas k is a scalar constant which does 

not change the root. At this point, we could proceed to estimate the deviation of edge position by 

studying the difference between I? and I". Instead, we postpone the analysis on the zerocrossing 

and move our focus to  another source of edge deviation due to the Gaussian smoothing, since in 

practice edges are extracted from the Gaussian-convolved image, rather than the original one. The 

exact formulars for k and F will be given later as we combine two sources of deviation together. 

At this moment, we simply observe that r is identical to I" iff F(x) = 0. This result may be 

paraphrased as; T h e  image motion ilf and the edge detector E do not  commute ,  i .e. ,  E M  # ME. 

It is interesting to ask if there exist an edge detector commutable with any affine transformation 

T. If so, we call apply this operator to a pair of intensity images to yield the matching pair of 

invariant contours. Unfortunately, it is unlikely that such operator esists since characteristics of 

the intensity profile (such as inflection points, maxima, minima) which are related to  the edge 

profile change as the image undergoes the (affine) transformation. At best, we can conceive an 

edge detector ~vhicll changes itself according to the image transformation so that edges extracted 

from one frame are preserved in other frames. 



Definition 1 ~lfotion-compensated Edge Operator 

We call the e d g e  operator E' = M-'EM the motion-compensated edge  operator for the motion U. 

We also define the motion-compensated e d g e  function as the corresponding functional form Z t ( . ) .  

From this definition, it is easy to show that ME' = E M .  The net result of applying E' followed 

by the transformation M is identical to the edge profile obtained from the transformed image. 

In practice, the operator E' is of little use since the motion M must be known prior to  the edge 

detection. However, it will serve as  a key concept later in Section 3 as we analyze the total 

deviation due to  the edge detection and the Gaussian smoothing together. 

2.2 Motion-coillpensated Gaussian Scale Matrix 

In order to study the effect of the Gaussian smoothing on edge position we define the generalized 

Gaussian convolution of a gray level image as 

where C is a 2 by 2 matrix which we call a Gaussian scale matrix. In case C = a" 1 O 1,we 

call C an isotropic Gaussian scale matrix and u the scale factor. 
L o  l'1 

The convolution of the transformed image Mf(x) with the Gaussian kernel defined by the 

same scale matrix is 

Again, we bring G x  11f f (x) back into the original frame: 

~ i l - ' G ~ n f  f (x) = G ~ z a t f  (x). 



We can see that A4-'Gcfi4 still defines the Gaussian convolution but with a different scale matrix, 

and that the Gaussian-smoothed image is not invariant with respect to motion since GACAi # GC 

in general. Thus we have 

Proposition 1 Motion-compensated Gaussian Scale Alatriz 

If Gz is  a Gaussian convolution and M is defined as in  Equation ( I ) ,  then Gc, = M-lGzM is 

still a Gaussian convolution with a differen-t scale matrix C' = ACAt. We call C1 the motion- 

compensated Gaussian scale matrix for the motion. 

Notice that C' is not necessarily isotropic even if C is. 

3 The Deviation of the Edge 

We are now ready to consider the total deviation for the zerocrossing contour of Gaussian-smoothed 

image. The approach is similar to that of Section 2.1 except that we are now dealing with the 

Gaussian convolved image. The presence of the Gaussian introduces additional complexity to our 

derivation. The new quantities defined in the previous section enables us to simplify the derivation 

quite elegantly. By using Definition 1 and Proposition 1 we have 

Thus, tlie edge image obtained by smoothing a transformed image with the Gaussian mask and 

then applying the edge operator can also be obtained by smoothing the original image with 

the Gausssian mask determined by the motion-compensated Gaussian scale matrix, applying 

the motion-compensated edge operator, and then transforming the resulting image (EGzM = 

M EIGc,). 

Let I' be the edges of tile original image; 



In order to estimate the deviation, we bring the edges of the transformed image back to the original 

image frame. Let us call such edge I?'. (See Figure 2). Using tlle results me obtained from the 

previous sections and combining the effects of El and C' together, we have 

i r1 = {X 1 ZI(X,CI) = 01 

Z 1 ( x ,  C )  = k[Z(x, C') + F ( x ,  C')], 

where k and F( . )  are determined by C and transformation T (see Equation (1)). If we denote 

then one can show that 

Jxr J z y  

(XJ) 

Notice that ai's are determined solely by the motion whereas Jij's are functions of image intensity 

and the Gaussian scale. For a given motion, if I? = r1 for a particular image then we say the 

zero-crossing contours of tlle image are invariant under the motion; if it holds for all images then 

we say that the zero-crossing edge operator is invariant under the motion. I t  is clear that the 

zero-crossing edge operator is invariant if F ( . )  = 0 and C' = C .  

Propos i t ion  2 

The zero-crossing edge operator is invariant under the (2-D) rotation and the ( 2 - 0 )  translalion 

if an isotropic Gaussian scale matrix is used. 

Proof: From Equation (11) it is trivial to show that F( . )  = 0 and X' = C. So Z(x) = 0 and 

Z1(x) = 0 define the same contour. 1 

I11 general r f I". The size of the deviation between the co~ltours gives us a measure of 

the variation of the zero-crossing contour under the motion. (See Figure 2 ) .  \Ire use the normal 

dzstance as the ineasure of the deviation between two contours: 



Definition 2 (Deviation) 

For every point xo on I?, let l be the line perpendicular to  the tangent o f r  a t  xo and let X' be 

the point where 1 intersects I". TVe define the deviation a t  xo t o  be the distance between xo and 

X' . 

4 Estimation of the Deviation 

Using Proposition 2 we can simplify Equation (1) by dropping the 2-D translational and rota- 

tional parts of the transformation, since any 2 x 2 matrix A-' can be decomposed as A-' = 
r 1 

R(%)DR(-$)R(B), where the R's are rotational matrices and D = I * 1 is a diagonal 

L o  d 2 1  
matrix. Let p = (dl + d2)/2 and v = ( d l  - d 2 ) / 2 ;  dropping R(O), Equation (1) becomes 

where [ s i n c u ]  
I = S, = 

sin cu - cos cu 

i r e  can see that the transformation represented by A-I is basically a dilation with p as the average 

scale factor, and v is the relative difference of the scale factors in the two principle directions, these 

two directions are obtained by rotating x and y axes by a/2. 

4.1 Estimation of Deviation when the Motion is S~llall 

In case the motion is small. we can write 

p = 1 + 6 and Ivl, 161 << 1 



Suppose the original image f and the transformed image hif are both convolved with the mask 

determined by the Gaussian scale matrix Co = $1. Then we will have I? and K" defined by 

where 

k = p2 + v 2  

F(x,  C) = +[cos a (J,, - Jyy) + sin a J z y ) ] ( X , ~ )  

C' = k (Co  +AX) 

where AX E f i ( c o S o  + S,&). 

Now let xo be a point on r and x' = xo + Ax be the corresponding point on r'. Expanding 

Z(xi, C') at  (xo, Co): 

where Zc is a row vector of partial derivatives of Z with respect to the elements of C and AX is 

written as a column vector. Substituting the above into Equation (14) and omitting the higher 

order terms we get 

Zx(x0, &)AX x F(xi, C')  - Zc(x0, Xo)AC (16) 

On the other hand, by the definition of the deviation (see Figure 2) ,  the vector Ax is perpen- 

dicular to  the tangent vector Zx (xo, Co), so 

We can solve for Ax from Equations (16) and (17): 

F(x', C') - Zc(xo, Co)AC 
Ax 5z 

IZx(x0, C0)l2 
Zx(x0,Co) 

Thus we get the estimate of the deviation: 



where F(') is evaluated at  (XI, C') and Zx(0) and Zc(0) are evaluated at  (xo, Co). 

JVe also can estimate the edge strength of I?' at x': 

J Z ~ ( T X ~ , Y ~ ) ~  = I . - ~ - ~ Z ~ ( X ' , C ' ) I  

= IA-~Z: (XI ,  

x k3I2 /ZX(0) + ZXX(O)AX + ZXC + F(') I 

The ratio of the edge strength is 

J $ ? u ( ~ ~ ' . ~ . ) l  ~ 3 / 2 ~ Z x ( 0 ) + ~ x x ( 0 ) ~ ~ + ~ x , ~ 0 ~ ~ ~ + ~ ( ' ) L  
I~x(X0,~o)I  Izx(o)l 

k31211+ ~z_xx(o~~x+z,,(o~~c+F('ll IZx(0)l I 
4.2 Special Cases 

4.2.1 One-dimensional case: 

Let T-'x = px;  where p = 1 + 5; 16) << 1. The 1-D Gaussian scale matrix is just a scalar u2 ,  so 

we can reparameterize Z(x,  C) as Z(x, a). The relation between the edge functions is 

Z1(x, ul) = p 2 2 ( x ,  pu) .  

Thus the deviation is given by: 

It is caused purely by the change of the effective Gaussian mask size, and is proportional to the real 

mask size uo used to convolve tlle images. Jlre can compare Equations (21) and (22) to Equations 

(4) and (19) of Clark [3] - setting p = (1 +PI) ,  6 = PI, and Z,/Z, = 7n - where the equations 

are for the edge deviation in tlle case of stereo vision. Our result can also be compared to that of 

Yuille [17], which gives the deviation of edge location with respect to the change in the Gaussian 

scale factor. 

The ratio of the edge strength in this case is 

Z,, (0)Ax - Zz, (0)bao 

2 4 0 )  



4.2.2 u = 0 case : 

In this case A = P I ,  and the transformation is an isotropic dilation. If the original Gaussian scale 

matrix C is isotropic, i.e., Co = agl, then C' is still an isotropic matrix. So we can parametrize 

the scale matrix by a scale a. Equation (15) becomes 

The deviation estimate is 

and the ratio of the edge strength is 

All results are the same as in the 1-D case except that x is a vector. 

4.2.3 cr = 0 case : 

In thiscase,A = uI+vSO = , the transformation is a dilation but wit11 different 

scale factors along the x and y axes. For an original Gaussian scale matrix Co = g a l ,  C' is a 

diagonal matris, so we can use a vector E = [:I to parameterize the Gaussian scale matrix. 

Thus Equation (15) becomes 

C 

b = ,u2 + v 2  

F ( . )  = +(Jm - Jgy) 

60. 

\ 

Tile deviation estiimate is 



where Ac = [*I:]-. 
5 Experiment and Discussion 

5.1 Experiment on Synthetic Images 

To check the soundness of our theory, we conducted an experiment on sythetically generated 

images (Figures 4). Figures 4.a and 4.b are two 256 by 256 images which contain the projection 

of a planar surface with a two-dimensional sinusoidal pattern undergoing a non-trivial 3-D motion 

relative to the viewer. The 2-D image transformation induced by this 3-D motion is an affine 

transformation with: 

A =  [ ' 0 ' 5 ] ;  and b =  1 1 1 ,  
-0.5 0.9 

A Gaussian convolution with u = 2 is applied to these images and followed by the zerocrossing 

edge detection. The results is shown in Figure 4.c - edge obtained from the original image and 

4.d - edge obtained from the transformed image. To compare the results, we apply the affine 

transformation (Equation (27)) to the countour in Figure 4.c to get Figure 5.a. Figure 5.b is the 

superimposition of Figure 5.a and Figure 4.d. iTe can see the deviations on part of the countour. 

The countour in Figure 5.c is obtained from the transformed image (Figure 4.b) by locating 

the zero-crossings with the motion-compensated Gaussing scale mask and motion-compensated 

edge operator as discribed in the Section 2. Again we superimpose Figure 5.c on top of Figure 

5.a (shown as Figure 5.d). We can see that with motion-compensated operators the countour 

obtained is much closer to the "correct" position. 

TVe showed that the invariance of intensity and the invariance of zerocrossing contours conflict 

with each other. The image motion revealed by the intensity cl~ange does not agree with the 



motion revealed by the contour evolution in general. Assuming that intensity is invariant we 

derived the formular for the size of deviation in localizing contours. The deviation consists of two 

parts, one contributed by the change of the motion-compensated Gaussian mask, and the other 

by the change of the motion-compensated edge operator. Both changes reflect the fact that image 

transformation induced by the 3-D motion are non-Euclidean and does not preserve shape and 

area of a neighborhood. Therefore, any edge detector which does not change itself adaptively to  

the underlying motion possesses this undesirable property, although the exact size of deviation 

may differ from what we have derived in this paper. A special case of changing the Gaussian mask 

is that of changing the mask size but keeping the mask isotropic; this effect has been dicussed in 

detail by Yuille and Poggio [17]. 

Both the deviation of the edge location and the change of the edge strength are related to 

the transformation parameters, the Gaussian mask parameters and the the intensity derivatives. 

In general the transformation parameters are unknown, but if we have an estimate of these pa- 

rameters, ( a s  in the iterative procedure [16], we can use the parameters obtained in the previous 

step as the estimate of this step), then we can estimate the deviation of the contour by using 

Equation (18). If this deviation exceeds the maximum deviation allowed in the 2-D motion com- 

putation procedure, one can simply discard the corresponding segment of the contour from the 

matching process. JVe can also see that the deviation is inversely proportional to IZx(0)l, the 

strength of the edge at this point. So, as me mould expect, a strong edge is much more reliable 

than a weak one. In particular, F ( . )  and AC both contain a factor of fi << I ,  SO if IZx(0)l is 

not too small the deviation will not be too large. This is why strong zero-crossing contours can 

be used as features for the purpose of recovering the 2-D motion. 
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Figure 1: A typical procedure for a contour-based method. 



Figure 2: r, f' and I" 



Figure 3: The  variation of the zerocrossing contour. 



Figure 4: Experiment on sythetic images. 



Figure 5: Experiment on sythetic images. 


