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Abstract

Social learning and adoption of new behavior govern the rise of a variety of be-

haviors: from actions as mundane as dance steps to those as dangerous as new ways

to make IED detonators. However, agents in immersive virtual environments lack

the ability to realistically simulate the spread of new behavior. To address this gap,

a cognitive model was designed that represents well-known socio-cognitive factors

of attention, social influence, and motivation that influence learning and adoption

of a new behavior. To explore the effectiveness of this model, simulations modeled

the spread of two competing memes in Hamariyah, an archetypal Iraqi village de-

veloped for cross-cultural training. Diffusion and clustering analyses were used to

examine adoption patterns in these simulations. Agents produced well-defined clus-

ters of early versus late adoption based on their social influences, personality, and

contextual factors such as employment status. These findings indicate that the spread

of behavior can be simulated plausibly in a virtual agent society and has the potential

to increase the realism of immersive virtual environments.

1 Introduction

Virtual environments are approaching a paradigm shift from virtual agents to virtual agent soci-

eties. This is a transition toward rich modeling of the interactions between virtual agents, rather

than just agent-user interaction and agent-environment interaction. This shift has already started
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in industry and research applications. The next step is to utilize full-fledged virtual agent soci-

eties in immersive environments, as used by training, teaching, and gaming applications.

Game environments and agent-based frameworks have steadily expanded their models

of social interaction between virtual agents. Popular open-world game environments such as

Skyrim, Fable, and The Sims use social ties and interactions to drive agent behavior. SOAR and

other long-standing agent architectures have more recently been used to model social agents

(Li et al., 2008). Newer cognitive agent architectures such as Construct, CLARION, and PMF-

Serv implement social dynamics off-the-shelf (Schreiber & Carley, 2007; Sun, 2007; Silverman,

Bharathy, Nye, & Eidelson, 2007)

With agents becoming visually and conversationally realistic, the next frontier of behav-

ioral realism is the interaction between virtual agents. Most commonly, multi-agent immersive

environments are populated by behaviorally identical archetypes, scripted individuals, or a hy-

brid of these types. This leads to noticeable repetition and monotony. A longitudinal examination

of human-agent interaction by Bickmore, Schulman, and Yin (2010) identified repetitiveness as

a primary user complaint in dealing with a virtual agent. The traditional solution to repetition is

costly: adding more behaviors for agents.

Worse, more behaviors do not equal more realism. Reliance on static action sets inherently

reduces the realism of virtual agents in immersive environments: real societies go through trends

with emergent cliques participating in similar behaviors. Expanded action sets alone cannot in-

troduce such trends. As such, adding more behaviors makes the virtual agents more real but does

nothing to improve the realism of the virtual agent society. Rather than adding behaviors, social

ties between virtual agents can be used to make behavior more dynamic.

Social learning and adoption of new behavior can be used to represent a more realistic vir-

tual agent society. Learning makes action sets dynamic, allowing new behaviors to supplement

and replace old ones. It also allows dynamics such as competing behaviors to emerge. This pro-

cess can increase realism in game environments and extend social simulation to new problems.

Agents in virtual environments lack these capabilities for two primary reasons:
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1. Lack of support by agent architectures

2. Fear of “losing control” of the agents

First, agent architectures typically used to drive virtual agents lack key mechanisms sup-

porting the adoption of new behavior. Commercial virtual environments, such as open-world

games, often treat interaction between virtual agents as window-dressing rather than a mecha-

nism driving game state. Social network simulations model adoption in terms of structural fac-

tors and use very simple agents, if any (Delre, Jager, Bijmolt, & Janssen, 2010; Centola, 2010).

Complex adaptive systems models, such as Rogers, Medina, Rivera, and Wiley (2005), model

diffusion patterns due to social factors but utilize higher-level anthropological and sociological

mechanisms (e.g., homophilly) rather than lower-level cognitive mechanisms (e.g., attention pro-

cesses). Cognitive agents capture these lower-level mechanisms, but their application to studying

the spread of behavior has been limited. Overall, social network models that utilize social factors

have not been extensively applied to immersive environments, except for mechanisms such as

flocking or social contagion.

Second, F. Dignum (2012) hypothesizes that developers of virtual environments, such as

game designers, are concerned about “losing control of the game.” Agents learning and adopting

new behavior poses a clear risk in this regard: if an agent might learn any arbitrary action, what

would prevent it from acting erratically? Given that established agent architectures have not yet

answered this question convincingly, this is a genuine concern. Random or unrealistic adoption

trends will hinder immersion in the virtual environment.

To implement the believable spread of behavior in an immersive virtual environment, the

question is: “what factors drive social learning by humans?” From the standpoint of an agent,

this boils down to who it learns from, what actions it prefers to learn, and how this information

reaches the agent. While these mechanisms are not well-explored in virtual agents at the cog-

nitive level, a large body of literature studies the factors that drive social learning in humans

(Bandura, 1986). This literature was used to develop a biologically-inspired cognitive model for

agents. This model emulates the mechanisms that determine who humans learn from and what
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actions they tend to adopt.

Building on this model, a set of agent-based simulations explores the advantages of this ap-

proach. These simulations model two competing actions spreading in Hamariyah, a virtual Iraqi

village based on human terrain data provided by the US Marine Corps (Silverman, Pietrocola,

et al., 2009). These simulations extend the NonKin village framework (Silverman et al., 2012),

using the new cognitive model to drive agents. In this paper, NonKin is used as a simulation en-

vironment to examine adoption patterns. However, the NonKin framework is primarily used to

drive agents in immersive training environments and the results demonstrated here can be directly

ported into an interactive real-time 3D environment. These simulations highlight the potential

for cognitive agents to enhance the realism and analytical power of agent-based simulations for

studying the spread of behavior.

2 Socially Learned Behavior: Prior Work

Prior work on adoption of behavior by agents has not focused on immersive virtual environments,

so this review examines a broader range of socially learned behavior by agents. Additionally,

this research focuses on descriptive modeling of human social learning so this literature review

only considers systems that model one or more theories of human social cognition. This is an

important distinction, since normative agents model optimal behavior (a rational agent) while

descriptive agents model human behavior. Existing work falls into two main categories: social

network simulation and teachable agents.

Social network simulations have recently been applied to model the spread of healthy be-

havior in online communities, meme utterances, and diffusion of innovations (Centola, 2010;

Gruhl, Guha, Liben-Nowell, & Tomkins, 2004; van Eck, Jager, & Leeflang, 2011). Pure social

network simulations lack a complete virtual environment: agent properties, social ties, and update

rules comprise the full simulation state. In some social simulations, network topography is the

only independent variable so the models are sometimes “agent-based” in name only. One notable

exception is Construct, a multi-layered social network architecture (Schreiber & Carley, 2007).
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Since Construct models agent communication of information, new behavior is one type of infor-

mation Construct agents can learn. Construct agents are part of the larger class of organizational

modeling (see V. Dignum (2009) for an overview of related approaches). However, as an orga-

nizational model, Construct agents focus on high-level group dynamics rather than individual

behavior in a virtual environment.

Complex adaptive systems (CAS) also move beyond basic networks, using adaptive agents

within social network simulations. As a theoretical concept, complex adaptive systems cover

most meaningful agent-based simulations with any degree of adaptation or emergence (Holland,

1998). However, from a literature standpoint, CAS simulations that include social learning typ-

ically use lightweight agents and depend on one or two simple mechanisms that implement nor-

mative theories, such as game theoretic agents (Panait & Luke, 2005). Voting mechanisms, so-

cial norms, and coordination games have frequently been modeled using these approaches (Lim,

Stocker, Barlow, & Larkin, 2011; Van Segbroeck, de Jong, Nowe, Santos, & Lenaerts, 2010).

CAS approaches are seldom designed to withstand scrutiny as individual agents: their power lies

in their emergent patterns (Railsback, 2001). For an immersive simulation, individual differences

between agents are pivotal because users will interact with them and develop expectations. Cog-

nitive agents more commonly model these aspects and have been used to drive virtual agents

(Sun, 2007; Silverman, Bharathy, Johns, et al., 2007; Laird, 2008). However, these agents have

not focused extensively on the spread of behavior, as this is typically studied at the societal or

organizational level.

Teachable and imitative agents are a second major topic in social learning of behavior

(Knox, Fasel, & Stone, 2009). Agents are taught behaviors for two primary reasons: to teach

the teacher (teachable agents) or to teach the agent (imitative agents). Unlike social simulations,

teachable agents often represent a range of domain behaviors that are taught through dyadic

interaction or small societies. For learning environments, teachable agents help the user solidify

knowledge and skills through a pedagogy known as “learning by teaching.” Such agents are

increasingly common and have been applied to instruct math, language, and meta-cognitive skills
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(Pareto et al., 2011; Blair, Schwartz, Biswas, & Leelawong, 2007).

In robotics, learning behavior in a physical environment is a difficult task. To address this

challenge, imitative robots have been designed to learn from demonstrations by a human or an-

other robot performing the action (Billard & Dautenhahn, 1999). In some cases, imitative robots

only learn affordances (opportunities for action) while in other cases they infer intentionality and

model true imitation (Zentall, 2007). Multi-robot teams have also used communication-based

imitation to speed up learning of the behavior space (Barrios-Aranibar, Alsina, Nedjah, Coelho,

& Mourelle, 2007). In virtual worlds, teachable agents have similarly been taught language and

been trained to recognize behaviors (Kerr, Hoversten, Hewlett, Cohen, & Chang, 2007; Kerr, Co-

hen, & Adams, 2011).

Table 1: Coverage of Contemporary Agents for Learning New Behavior
Level of Analysis

Behavior Learned Dyadic Micro/Meso Macro
Skills (How To) Imitative Agents Imitative Teams -

Teachable Agents
Affordance (What) Imitative Agents Agent-Based Simulation Social Simulation

Imitative Teams
Intentionality (Why) Imitative Agents - -

Table 1 summarizes the type of behavior learned by different types of agents and its level

of analysis. Agents socially learn three distinct but related aspects of behavior: skills (how to do

it), affordances (what can be done), and intentionality (why to do it). This research focuses on

the center of the table: using agent-based simulation to model individual and group-level social

learning of affordances. Socio-cognitive agents are used to model appropriate behavioral inter-

actions between agents (micro-level) and the emergent spread of behavior by groups of agents

(meso-level). These agents are designed to learn new affordances: opportunities for action.

Based on these targets, this research attempts to satisfy three conditions:

1. Realistic agent actions

2. Social learning about new action opportunities (affordances)

3. Realistic adoption of actions by agent network clusters/groups
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The first condition is well-addressed by current lines of research: many projects exist to

make the actions of an individual agent visibly, audibly, and rationally plausible. While major

challenges remain for bringing individual agents to the next level, this class of problems has been

explored extensively. This research builds on NonKin village, a framework that connects to 3D

environments and models patterns of daily life (Silverman et al., 2012). NonKin was developed

as a training environment for cultural skills, handling action representation and presentation capa-

bly. As such, this research focuses on the second and third conditions.

On its own, the second condition is nearly trivial: it is easy to support affordance learning

by virtual agents, so long as you don’t care about who learns or adopts the new actions. Simple

social contagion mechanisms are sufficient to satisfy this condition. However, such mechanisms

violate Dignum’s constraint since they “lose control of the game” (F. Dignum, 2012).

The third condition imposes this constraint: adoption patterns must be plausible. Unlike

the other challenges, realistic adoption patterns by cognitive agents is a relatively new area. Prior

work has not shown that the spread of behavior in an virtual agent society can be modeled such

that agents continue to act coherently with their track record of actions. This paper approaches

that problem by developing an agent-based cognitive model intended to support realistic social

learning and adoption of affordances within an immersive virtual environment.

3 Modeling Affordance Transmission

Figure 1: Relationship Between Affordances and Perception. Adapted from Gaver (Gaver, 1991)
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To model the spread of behavior, this research focuses on socially transmitted affordances.

The ecological approach to perception posits that the environment is perceived in terms of the af-

fordances that it offers, referred to as direct perception. Affordances always exist: they represent

the potential for action (Gibson, 1986). For example, a human has the affordance to swing a ham-

mer. A goldfish does not have this affordance, as it has no hands. Autonomous agents often fit

this ecological model: they typically have a static set of capabilities, but may have a wide variety

of opportunities for action in their environment. As such, agents are commonly not learning ac-

tions in terms of behavioral movements but are instead discovering affordances: their possibilities

for action in an environment.

Affordances are not always known, however. As shown in Fig. 1, Gaver (1991) framed

this issue using two orthogonal aspects: 1. Is an affordance available? and 2. Is the affordance

perceptible? For example, a hidden light switch always offers the affordance to be turned on by

pressing it. However, until the switch is identified it represents a “hidden affordance.” A hid-

den affordance is a potential for action that an organism is not aware of yet. By learning an af-

fordance, an agent moves from having a hidden affordance to having a perceptible affordance

(known affordance). In this way, an agent becomes aware of a new action opportunity. Social

learning of affordances is important because the space of possible actions can be vast.

3.1 A Memetic View of Affordance Learning

For modeling purposes, socially learned affordances were framed as a type of meme. A meme

is a unit of cultural information that spreads by repeated reproduction from one agent to another

(Dennett, 1995). A model for meme transmission was synthesized from Bandura’s Social Learn-

ing Theory and Shannon’s Information Theory as shown in Fig. 2 (Bandura, 1986; Shannon,

1948).

These theories provide complementary processes for examining the flow of information be-

tween and within individuals, respectively. The Social Cognitive Theory establishes the necessary

stages for an agent to repeat socially learned behavior: attention to the behavior, retention of the
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Figure 2: Systems Model for Meme Transmission

affordance, motivation to repeat the behavior, and physical production of the behavior (Bandura,

1986). However, Social Cognitive Theory offers little insight for the transmission of information

through the environment. Information Theory addresses transmission through an environment

explicitly, where a source transmits through a medium to a receiver to reach a destination.

This framework offers a comprehensive view of meme transmission in terms of agents

sharing a common environment. It is particularly well-suited to modeling the spread of socially

learned affordances, as the information of an affordance directly corresponds to behavior. Addi-

tionally, the separation between Bandura’s four cognitive phases of adopting new behavior help

ensure coherent agent behavior. Since learning a new action does not entail motivation to repeat

it, an agent learning a new, unattractive behavior would never reproduce it. This has the dual ef-

fect of keeping individual behavior realistic, while also slowing the diffusion of that behavior to

that agent’s social ties.

Notably, this framework does not explicitly address directed communication: agents telling

each other about an affordance. This is by intention: agent communication is a behavior. Addi-

tionally, the mirror neuron hypothesis posits that language emerged from observational learning

(Arbib, 2011). As such, verbal communication may best be viewed as a second-order process for

transmitting affordance information. Many agent-based frameworks represent communication
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as a separate process that is not subject to the same restrictions as a standard action (Schreiber

& Carley, 2007; Panait & Luke, 2005). This framework takes the opposite view: communica-

tion is a behavior that must compete with the agent’s other opportunities. By implication, this

means that communication may be ignored by its intended recipient or observed by unintended

recipients. Framing communication as a behavior allows the agent’s environment to determine

its affordances for communication opportunities (e.g., who they can talk to, the mediums avail-

able, etc). While this paper focuses on observational learning, the framework naturally extends to

communication as well.

3.2 Cognitive Agent Architecture

Based on this systems model for affordance transmission, a cognitive model was created using

the PMFServ socio-cognitive architecture. PMFServ implements cognition using a model-of-

models approach: integrating best-of-breed social science models and performance moderator

functions (PMFs) to form a cognitive model (Silverman et al., 2012). These models incorpo-

rate the OCC cognitive structure of emotions (Ortony, Clore, & Collins, 1988), GLOBE cultural

traits (House, Hanges, Javidan, Dorfman, & Gupta, 2004; Hofstede, 2003), Hermann’s leadership

traits (Hermann, 2005), affordance-based perception (Gibson, 1986), subjective utility (Damasio,

1994), and multiple other well-supported moderators of cognition and decision-making. While

reviewing its existing features in detail is beyond the scope of this paper, PMFServ has a long

track record for modeling decision-making and has been used to drive agents in crowd envi-

ronments (Silverman, Johns, Cornwell, & O’Brien, 2006), leader decision games (Silverman &

Bharathy, 2005), and country stability simulations that had an accuracy of over 85% (Bharathy &

Silverman, 2010; O’Brien, 2010).

An attractive feature of the PMFServ framework is that agents employ affordance-based

perception (Silverman et al., 2006). However, PMFServ’s standard agent perceives all of the af-

fordances of its environment and lacks any cognitive mechanisms for managing attention and

retention of new affordances. To simulate affordance transmission, significant additions to the
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PMFServ model base were required. The following section discusses the theories implemented

as models, how these theories interact with existing PMFServ models, and how these models help

model social learning and adoption of new behavior.

3.3 Attention Mechanism

Attention is a fundamental mechanism for social learning and the spread of new behavior. With-

out attention, a cognitive agent cannot demonstrate the “Cocktail Party Effect” and other cases

where an agent differentially processes to some stimuli over others (Cherry, 1953). In social net-

work models, attention is often represented as relatively random. However, a multitude of find-

ings demonstrate that the cognitive mechanisms for attention to events are far from uniformly

random. As such, attention was driven by a mixture of cues that will be described in the follow-

ing section.

This attention model corresponds to a series of winner-take-all competitions for attention

between simultaneous events, a process which has some support in neurological research (Lee,

Itti, Koch, & Braun, 1999). Attentional salience determines the probability that an agent will at-

tend to an event. This is accomplished by first calculating a salience for each event occurring dur-

ing a time step. An additional salience term exists to represent inattention salience: the salience

of background events not simulated that might be attended to instead of the simulated events.

This vector of saliences is normalized to form a probability vector, from which a finite number

of events are chosen. Each event is chosen without replacement, except for inattention, which

always remains an option.

Algorithm 1 Attention Algorithm

EAtt = { }
for i = 1 to N do

ATTENDED EVENT = X(E, EAtt)
if ATTENDED EVENT != No Event Attended then

EAtt = EAtt ∪ { ATTENDED EVENT}
end if

end for

The algorithm for drawing the set of attended events is displayed as Alg. 1, where N is the
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maximum simultaneous events attended, E is the set of all current observable events, EAtt is the

set of currently attended events, and X(E,EAtt) is a random variable returning at most one unat-

tended event from the set E\EAtt . The output of this algorithm is EAtt , the total set of attended

events. If X(E,EAtt) returns no event, this represents inattention and one less total event will

be attended. This attention algorithm is effectively an iterated drawing from the yet-unattended

events, with some probability of no event being attended. Attended events are processed by the

learning model, which can learn new affordances.

P(e,E,EAtt) =


se

sI+∑e∈E\EAtt
se

if e ∈ (E \EAtt)

sI
sI+∑e∈E se

No Event Attended

0 if e ∈ EAtt

(1)

The probability that an event (e) receives enough attention to be processed cognitively is deter-

mined by the distribution of X(E,EAtt) and will be referred to as P(e,E,EAtt). The probability

distribution for choosing an event to attend is shown in Eqn. 1, where E is the set of all simul-

taneously observable events, EAtt is the set of events already attended to, se is the salience of an

individual event e, and sI is the inattention salience. Events with higher salience are more likely

to be selected, as they fill a greater fraction of the probability vector. However, for attention to

work realistically, it must be based on appropriate cues from cognitive and social psychology.

3.4 Attention Cues

Attentional salience is calculated as a function of attentional cues. Any action involves an actor

(source), behavior (action), and some outcomes (results). Theories of attention and persuasion

both indicate that attentional salience is influenced by central and peripheral cues (Treisman &

Gelade, 1980; Petty & Cacioppo, 1986). Fig. 3 displays how an observing agent breaks an event

down into a set of cues that are used to determine attentional salience. Due to space limitations,

each cue will only be described at a high level but further theoretical and technical details on their

implementation are contained in Nye (2011).
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Figure 3: Event Attention Cues

For an affordance, central information includes direct information about the associated be-

havior. These include whether an agent can perform the observed action, if the action resulted

in appealing outcomes, or if the action seems new. These influences are known as transferabil-

ity (Bandura, 1986), motivated attention (Fazio, Roskos-Ewoldsen, & Powell, 1994), and novelty

(James, 1890). Selective attention was also used as a cue, so agents could choose to pay more

attention to a particular agent (Simons & Chabris, 1999).

Peripheral cues such as social factors cues are equally important for directing attention,

however. Social influence is commonly implemented in social networks, but is often represented

as a single intrinsic agent property. The problem with this approach is that social influence is a

multi-faceted, relational construct. To address this issue, social influence was represented by im-

plementing multiple established theories of social influence.

The social cues implemented were authority (Mantell, 1971), conformity (Tanford & Pen-

rod, 1984), similarity (Platow et al., 2005), valence (Hilmert, Kulik, & Christenfeld, 2006), in-

groups (Tajfel, 1982), and reference groups (Kameda, Ohtsubo, & Takezawa, 1997). These cues

represent some of the most well-established factors of social influence. Authority influence is the

additional influence due to an actor’s leadership or authority positions. Conformity is the added

impact of observing multiple actors performing the same behavior. Valence is the amount that an

observer likes the actor performing a behavior. Ingroup influence is the additional weight given to

a member of the same group. Reference group influence is the additional weight based on mem-
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bership in a group that an agent compares themselves against (e.g., keeping up with the Jones’).

The following subsections discusses each of these factors in further detail.

The total salience of each event is calculated using a linear weighted sum of these cues (i.e.,

se = w1 ∗Authority+w2 ∗Conformity+ ...+w10 ∗Transferability). Since the relative strengths

of these factors are not well-studied, “best guess” weights were calculated from their observed

effect on either attention, perception, or retention. A linear sum was chosen based on the KISS

principle, as it was the simplest way to combine cues into a total salience (Axelrod, 1997). While

there are good reasons to believe that some of these factors interact, psychology literature has not

yet produced the studies that demonstrate how these factors interact.

3.4.1 Novelty (Central)

The three central cues modeled were novelty, motivated attention to outcomes, and transferability.

Novelty indicates how “new” a stimulus appears (James, 1890). Novelty decreases with respect

to the number of prior exposures stored (Johnston, Hawley, Plewe, Elliott, & DeWitt, 1990). To

model this, novelty is calculated as a function of an agent’s familiarity each action and agent

present in an event. The novelty model calculates this based on familiarity levels from memory

model, which will be described later in Section 3.5.

For any given event, the novelty is calculated as the root-mean-squared of the familiarity

values of the actor of the event and the action of the event. The novelty calculation for an event is

shown in Eqn. 2, where fActor is the familiarity of the event’s actor and fAction is the familiarity of

the event’s action according to the memory model.

Novelty(Event) =
√

0.5((1− fActor)2 +(1− fAction)2) (2)

This representation was chosen because it allows a high degree of novelty if either component

is novel. This dynamic was chosen because it allows representation of processes such as disha-

bituation, where adding an additional stimulus can restore responding to a habituated (familiar)

stimulus. In this context, the response of interest is active attention. This implementation allows
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a return to novelty when a highly familiar person suddenly engages in a totally new action. Con-

versely, if a straight average was used, then a completely familiar person could be at most 50%

novel. Alternatively, taking the maximum novelty component would give no extra credit for a

new person taking a new action. A root mean square parsimoniously represents these important

dynamics within the simulation.

3.4.2 Motivated Attention (Central)

Motivated attention refers to the tendency of humans to pay more attention to objects or events

that are relevant to their goals or needs (Fazio et al., 1994). For example, a hungry person is more

likely to notice someone eating. Motivational cues are handled by allowing agents to analyze the

outcomes of events that occur in their presence.

PMFServ’s core cognitive models evaluate their potential actions based upon “activations”

that determine the attractiveness of that action, as mediated by their values and beliefs (Silverman

et al., 2006). These mechanisms for motivation will be discussed in Section 3.6. To calculate a

factor for motivated attention, an agent processes an event that results from some other agent’s

action. In processing this event, the agent calculates their own subjective expected utility (SEU)

as if had they been the actor in that event and the outcomes were the same. So, for example- if

agent B is eating a sandwich, the motivational salience for agent A is a function of the subjective

benefit for agent A eating that sandwich (even if no more sandwiches currently exist to eat).

MotivatedAttention(Event) = 0.5∗ (1+ sgn(SEUEvent)∗ (|SEUEvent |0.25)) (3)

Eqn. 3 displays the central motivated attention calculation for an agent observing a given event

(Note: the ‘sgn’ symbol represents the sign function, producing -1 for negative values and 1 oth-

erwise). SEUEvent represents the subjective expected utility (SEU) of activations that the perceiv-

ing agent would receive had they been the actor in that event and the outcomes were the same.

An adjustment to the raw utility rescales the value from utility’s range of [-1,1] to [0,1]. The sec-

ond rescaling factor takes the fourth root of the absolute SEU value. This factor was introduced
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during model calibration to adjust the small range over which SEU typically operates in PMF-

Serv (about [-0.05, 0.05]) to cover a motivation range closer to [0.25, 0.75].

3.4.3 Transferability (Central)

The third central cue modeled was transferability. Transferability influence refers to the addi-

tional influence conferred by an agent who has similar capabilities and does actions that one

could imitate. Often, this trait is studied in children at different developmental stages. Children

have a preference to attend to and imitate those of similar ability level on tasks (Bandura, 1986).

The transferability influence model allows agents to process an observed event and deter-

mine if they could do the same action at the current time. This determination is only based upon

the agent’s current affordances at the particular moment, not any past or potential affordances.

This implementation has the advantage of easily classifying events into those which they could

imitate (Transferability=1) and those that they could not (Transferability=0).

3.4.4 Authority (Peripheral)

Six peripheral cues were also incorporated into the model, representing social cues. The au-

thority influence model represents the additional influence conferred by a position of authority.

The effects of authority on behavior have been well documented by Milgram (Milgram, 1963)

and Mantell (Mantell, 1971). PMFServ represents the authority of agents within their respective

groups (Silverman et al., 2006). Since this factor is already represented, the authority submodel

wraps this factor for use as a social cue.

3.4.5 Conformity (Peripheral)

The conformity model has its theoretical roots in the seminal work done by Asch (Asch, 1955).

Later work by Tanford and Penrod (Tanford & Penrod, 1984) proposed the Social Information

Model (SIM), a probabilistic conformity influence function. Their analysis produced a curve as

stated in Eqn. 4, where S is the number of conforming sources and T is the total number of non-

conforming targets.

Con f ormityIn f luence(S,T ) = e−4∗e
−S1.75

T (4)
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The implemented conformity model uses this equation verbatim. However, the context of its us-

age is slightly different than that of the original SIM model. While that model assumed a set of

confederates, these models assume agents act based upon their own opinions but still exert in-

fluence. As such, any set of agents engaged in a particular activity forms a group of influence

sources (S). The remaining agents involved in other activities are the target group (T ). As such,

agents can calculate the conformity influence of any activity in the simulation for any given ac-

tion occurring at the time.

3.4.6 Similarity (Peripheral)

The similarity model calculates a social influence factor based upon how much an agent feels

it has in common with another agent. The influence of similarity on attention and influence has

been an influential topic in the domains of social psychology and social network analysis (Platow

et al., 2005). PMFServ contains a model that estimates a proxy for similarity, known as Goals,

Standards, and Preferences (GSP) congruence (Silverman et al., 2006). This estimate is based on

the GSP personality model, which is described later in Section 3.6.1. The GSP model expresses

an agent’s personality as a tree of traits connected by weighted links. Each weight determines

the importance of a child trait toward a parent trait (e.g., 40% of an agent’s “Goals” focus on

“Safety”). GSP congruence is calculated by transforming agents’ GSP trees into vectors of nor-

malized linear weights and calculating the nearness between these vectors. The standard GSP

congruence function is shown in Eqn. 5, where −→w is the perceiving agent’s GSP vector,
−→
w∗ is the

observed agent’s GSP vector, and N is the number of elements in −→w .

GSPCongruence(−→w ,
−→
w∗) = 1− ∑

N
i=1(
−→wi−

−→
w∗i )

2

∑
N
i=1(
−→wi)2 +(

−→
w∗i )2

(5)

The similarity influence model builds off of the GSP congruence model, using GSP congruence

as a similarity term. By allowing agents to detect this factor without noise, the model assumes

that the agents generally estimate an accurate perception of similarity. This model is best ap-

plied when agents have prior knowledge about other agent’s personalities or quickly assess other
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agents’ personalities. Even where agents are not familiar, it provides a useful first order estimate

of the perceived similarity.

3.4.7 Valence (Peripheral)

Valence influence is caused by general like or dislike of another person or group. This is related

to the “halo effect,” whereby an attractive person appears more competent (Kelley, 1955). Ex-

periments such as Hilmert et al. (2006) have experimentally shown that valence affects social

influence. PMFServ valences are directed properties of one agent toward another entity. Valence

influence exposes these properties as cues for attention. Since valence ranges from [-1,1] in PMF-

Serv and all cues are fitted into a range of [0,1], a small transform is applied to valence values to

rescale and shift it into the appropriate range.

3.4.8 In-Group (Peripheral)

The in-group influence model represents the social influence based on membership in a mu-

tual group or clique (Tajfel, 1982). PMFServ has a structure for representing group member-

ship, which allows members to be part of a group. This cue determines if agents share a common

group (ingroup=1) or share no common groups (ingroup=0).

3.4.9 Reference Group (Peripheral)

Reference group influence represents the influence based on an agent belonging to a group

against which an agent compares themself, such as a desirable group (Kameda et al., 1997).

PMFServ has an analogous factor within its model set that is an agent’s “internal membership”

with a group (Silverman et al., 2006). Internal membership measures how much an agent desires

to participate and support a group. As this measure is explained by Silverman, Bharathy, Nye,

and Eidelson (2007), it will not be covered in detail here.

Reference group influence uses a variant of PMFServ internal membership that has been

scaled to fit into a range of [0,1]. This model can report back the desire to belong in any given

agent’s group (if they belong to a group). This value can be independent of in-group influence,

since people are not always a member of their preferred group.
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3.4.10 Selective Attention

Selective attention is a construct that refers to the additional probability of perceiving events

performed on an object that an agent actively perceives, as opposed to other peripheral events

(Simons & Chabris, 1999). Selective attention is implemented by having agents keep a record of

the objects and agents they are actively attending to at the current time. PMFServ agents are able

to actively take actions on other agents, including actions of active perception (watching).

SelectiveAttention(x) =


1
N if x ∈ XTargeted

0 if x /∈ XTargeted

(6)

As such, the selective attention model records all entities that an agent is currently engaged in

action upon. This means that selective attention is focused on any targets being watched or acted

upon by an agent. Selective attention is spread uniformly across these targets as noted in Eqn. 6.

This allows agents to choose who will be the target of their selective attention, as is observed in

the cocktail party effect (Cherry, 1953).

3.5 Retention Mechanisms

Since this cognitive model was primarily intended to address the issue of “who” learns and

adopts new affordances, the memory model was kept as simple as possible. Many affordances

of interest are relatively simple and memory effects are not the main barrier to adoption. As

such, memory was implemented as a simple associative structure. Associative memory works

by strengthening connections between elements, stimuli, or constructs due to repeated pairing

(Mackintosh, 1983).

This information is used for two purposes. Firstly, this memory model supports affordance

learning. Once an action in stored in the agent’s memory, the affordance for that action becomes

known. As such, attending to an event with a new behavior will let the agent learn this behavior.

Secondly, the model is used to calculate familiarity because this is needed to determine the nov-
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elty of events.

Familiarity(Entity) = 1− e−r f ∗NE (7)

The familiarity equation is stated in Eqn. 7. The input to the equation, Entity, is an action, agent,

or other entity contained within a learned pattern. NE is the number of exposures to that entity

and r f is a familiarity rate that determines the steepness of the curve. Within the current imple-

mentation, r f was set to 0.2 as this allows familiarity to reach 95% after 15 exposures. Empirical

research indicates that the exposure effect hits its maximum after between 10 and 20 exposures,

so this seemed to be a reasonable familiarity rate (Bornstein, 1989).

3.6 Motivation Mechanisms

Motivation to perform an action is controlled by PMFServ’s decision model. As PMFServ’s de-

cision model has undergone over ten years of development, fully understanding these processes

requires careful reading of a number of prior papers (Silverman et al., 2006; Silverman, Bharathy,

Johns, et al., 2007; Silverman, Bharathy, Nye, & Eidelson, 2007). PMFServ agent motivation is

driven by a process known as “cognitive appraisal theory.” In cognitive appraisal, an actor has a

set of three models: a Goals, Standards, and Preferences (GSP) personality model, an emotion

model, and a subjective expected utility (SEU) decision model. While the models that drive moti-

vation were not modified for this research, they are used by the motivational attention model and

also determine agent adoption decisions. Due to their importance in determining what actions are

expressed, the mechanisms of motivation will be discussed in this section.

3.6.1 Goals, Standards, and Preferences (GSP) Model

From the standpoint of affordance adoption, the most important model is the Goals, Standards,

and Preferences (GSP) model that stores an agent’s personality. Specifically, a personality is

modeled by a tree of weights (Bayesian prior odds) that represent the relative importance of each

GSP node (trait) to that person. The GSP nodes used in the experiments in Section 4 are listed

in Table 2. The nodes in this tree are based on Maslow’s Hierarchy (Maslow, 1943), cultural di-

mensions of organizations (Hofstede, 2003; House et al., 2004), and Hermann’s trait analysis of
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leadership styles (Hermann, 2005). Nodes are split into three main branches: goals (short term

goals), standards (how to accomplish things), and preferences (long term wishes).

GSP tree factors are based on trait theories, which posit that personality traits are relatively

stable over time. As such, this model captures individual differences between agents and deter-

mines the outcomes they prefer. However, even agents with the same GSP tree often display very

different behavior due to different experiences (e.g., observed events, emotional states), knowl-

edge (e.g., affordances, familiarity), and external contexts (e.g., different roles, economic condi-

tion, location). This results in path-dependent behavior, particularly in a multi-agent system. For

example, if two initially identical agents compete in a race, one agent will experience winning

and the other will experience losing. The agents’ behavior will diverge due to the different expe-

riences and any external changes (e.g., prizes, rewards, changes in perception by other agents).

Agents evaluate their experiences in terms of activations. Activations are part of the out-

comes of actions that are afforded to agents. Each activation positive or negatively targets a

single GSP node. For example, gaining money creates positive activations for a “Materialis-

tic” preference. An action that results in pain for the agent will give negative activations for

a “Safety” goal. Similar to attention, social models also impact motivation. As noted earlier,

agents have models for group membership and valence (like/dislike) toward other agents and

groups. Actions that affect an agent’s ingroup will activate nodes such as “Own People” and

“For The Group.” Similarly, an agent’s valence toward an agent or group influences the activa-

tions on the “Be Relationship Focused” node produced by action outcomes (e.g., hostile actions

toward friends create negative activations on this node).

3.6.2 OCC Emotion Model

The emotion model calculates a set of emotions based on the activations to different parts of the

GSP tree (Silverman et al., 2006). The emotions calculated by this model are based on the OCC

(Ortony et al., 1988) formalization of emotions. Joy, Distress, Pride, Shame, Liking, Disliking,

Gratification, and Remorse are emotions considered by the decision model. Pairs of positive and
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Table 2: GSP Personality Factors
Node Name Description of Trait
Goals: Short term goals, which connect to joy and distress
Individual Overall Individual goals, e.g., Maslow (1943) hierarchy
- Belonging Social acceptance and feeling situated among peers
- Esteem Feeling of self-efficacy and respect
- Physiology Basic bodily needs, such as eating and sleeping
- Safety Personal safety and well-being
Standards: Standards for behavior, how an agent prefers to accomplish tasks. Connects to Pride and Shame.
Conformity Assertiveness Overall importance of conformity and individuality
- Assert Individuality Expressing individuality
- Conform to Society Conforming to culture
- Respect Authority Showing respect for authority figures
Exercise of Power and Culture Overall importance of power balances in actions
- Be Controlling Controlling others by using power
- Be Open Being open to others, allowing freedom
Honesty Overall importance of honesty and dishonesty
- Keep Ones Word Keeping promises, being honest
- Use Duplicity Lying for its own sake
Humanitarian Sensitivity Overall importance of considering lives and showing respect for life
- Respect For Life Respecting and being sensitive to lives of others
- Disregard For Life Disregarding and being insensitive to others’ lives
Military Doctrine Overall importance of adhering to military codes
- Shun Violence Avoiding violence
- Use Asymmetric Attacks Attacking unevenly, even unfairly
- Use Conventional Attacks Use of force-on-force conventional tactics
Scope of Doing Good Overall importance of doing good to others
- Bring About Greater Good Doing good in the world, in general
- Look After Narrower Interests Only looking after one’s own interests
Task Relationship Balance Balancing tasks and relationships
- Be Task Focused Concentrating on tasks only
- Be Relationship Focused Building relationships or social networks
Treatment Of Outgroups Overall importance of interaction with outgroups
- Outgroups Are Legitimate Targets Targeting outgroups for discrimination
– Enemy Is Outgroup Targeting one’s enemies negatively
– Friend Is Out Group Targeting one’s friends negatively
– Neutral Is Out Group Targeting neutral parties negatively
- Treat with Fairness Treating everyone equally
Preferences: Long term wishes for the world state. Connect to Like and Dislike emotions.
Desirable Future Actions that produce good outcomes, by scope
-For Everybody Benefit for everyone in society
-For The Group Benefit to one’s immediate ingroup(s)
-For The Self Benefit for one’s self
People Long term outcomes for specific people, by relationship
-Enemy Faction Long term outcomes for enemy factions
-Friendly Faction Long term outcomes for friendly factions
-Own People Long term outcomes for own group
-Other Groups Long term outcomes for neutral groups
Places and Things Actions impacting objects or states of the world
- Materialistic Property and monetary objects
- Symbolistic Symbolic outcomes, principles being maintained
- Wholistic Spiritualistic Religious or spiritual matters
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negative emotions are determined by positive or activations to a each branch of the GSP tree:

Goals (Joy/Distress), Standards (Pride/Shame), and Preferences (Liking/Disliking). Each of these

emotions is a normalized vector projection of activation values onto their corresponding node

weights (e.g.,
−−−−−→
Weights·−−−−−−−→Activations). Gratification and Remorse are compound emotions based on

the other emotions. Emotions accumulate as a result of events and decay over time. For example,

as goals are satisfied the agent will receive less emotional impact from them, allowing the agent

to focus on other goals.

3.6.3 Decision Model

The decision model calculates an agent’s subjective expected utility (SEU) for each afforded ac-

tion based on these emotions (Silverman et al., 2006). The SEU of an action is determined by

calculating the expected change in emotions from the activations of an action. Eqn.8 displays

how the decision model calculates a subjective utility based on the emotions. The expected util-

ity is otherwise calculated in the typical way, based on the probability of action outcomes with

different activation sets.

Utility(Emotions) =
1
4
((Joy−Distress)+(Pride−Shame)+

(Liking−Disliking)+(Grati f ication−Remorse))
(8)

Agents decide on their actions by selecting the option with the highest SEU in the simulations

described in Section 4. This means that actions compete against each other to be an agent’s top

decision choice. Since an agent’s emotions depend on their GSP model, agents with different

GSP weights tend toward different types of behavior. Finally, agents can only consider actions

that they perceive as affordances, so the new attention and memory models also influence action

choices. Until an agent learns about an affordance, they cannot calculate its utility or choose that

action.
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3.7 Production Mechanisms

Production mechanisms in PMFServ are represented by the actions associated with affordances.

These actions depend on the specific scenario and generate observable events when they occur.

The ability to perform an action requires a valid affordance for that action in the environment.

As such, the ability to produce an action is atomic – an agent is either able or unable to perform

an action. As noted earlier, agents are unable to perform an action unless they are aware of its

affordance. This makes intuitive sense, as an agent cannot initiate an action without recognizing

the possibility of performing that action (i.e., the affordance).

4 Hamariyah Iraqi Village Simulation

Agents using this cognitive model were used to populate Hamariyah, an archetypal Iraqi village

based on a human terrain data set. The scenario examines the spread of adoption of two compet-

ing behaviors: giving information to the US-backed government and volunteering to plant an IED

by a government building. Since this framework had pre-existing actions, the spreading behaviors

competed against each other and against the existing action set, which primarily models daily life

activities. These simulations were performed to examine if the cognitive agents could fulfill the

three requirements listed at the end of Section 2: realistic agent actions, social learning of new

actions, and realistic adoption clusters.

Figure 4: NonKin 3D Environment Screenshot

This scenario was generated using the NonKin village framework and data provided by
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the US Marine Corps (Silverman, Pietrocola, et al., 2009). NonKin village is a virtual village

engine based on PMFServ agents (Silverman et al., 2012). The NonKin village can drive agent

behavior in a 3D environment or run faster-than-realtime as a simulation without graphical

support. Fig. 4 shows a screenshot of agents congregating in the NonKin immersive environ-

ment. This archetypal village was intended to be representative of a village in Iraq. The human

terrain data set includes agents’ names, familial ties, group memberships, group roles, special

skills, key personality traits, land ownership, and employment. Groups in the region are also

described, with a focus on their valence relationships (like/dislike) and historical backstory.

Given the scope of the NonKin Village project, it is infeasible to explore every aspect in detail.

Instead, the following sections will highlight the key scenario features and extensions that were

necessary to study competing behaviors within the village. For more detailed information about

the scenario, Silverman, Pietrocola, et al. (2009) discusses the human terrain data for Hamariyah

and Silverman et al. (2012) discusses the architecture and advanced features. However, the work

described in Silverman, Pietrocola, et al. (2009) used an older version of the NonKin village

architecture so Hamariyah was re-generated from the original Marine Corps data.

4.1 Hamariyah Scenario

The Hamariyah scenario contains 72 agents from the Marine Corps human terrain data. This data

was used to determine the initial values for all simulations, which will be described here. These

agents belong to three distinct ethnic groups: 11 Heremat members, 38 Shumar members, and

23 Yousif members. As group ties are established by ethnicity, these memberships are static. In

addition to agents being members of groups, structures in the NonKin village are tagged by their

group affiliation. This allows agents to see if buildings belong to their group, a group they like, or

an unfriendly group. These relationships are determined by the group to group valences, whose

starting values are shown in Fig. 5. Agents can also be employed at a job or can be unemployed.

The Heremat group is generally friendly to the US and controls the local police force, but is not

a very big group. The Shumar ethnic group is primarily Sunni and unfriendly toward all other
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groups, especially the US Group. It is the largest group, with a majority of its members working

as merchants or tradesmen. The Heremat and Shumar ethnic groups both have members working

as part of the local government. The Yousif ethnic group is a primarily Shia group, with higher

than 60% unemployment and religious leaders in higher positions of authority. Employment and

group valences may change due to simulation events (e.g., group to group attacks, shops closing,

etc).

Figure 5: Hamariyah Group Valence Starting Values

Hamariyah contains over fifty standard actions which can be taken by agents, on a vari-

ety of targets. The availability and attractiveness of opportunities depends on the context (e.g.,

location, role, nearby agents), current internal state (e.g., emotions, hunger, etc), and their cur-

rent information (e.g., known affordances, familiarity). Nothing is scripted and agents choose

actions autonomously. These actions range from complex multi-stage actions (i.e., go to market

and buy food) down to niche actions for forcing entry into a building. The original set of actions

was not modified, as it provided the contextual backdrop for examining the spread of behavior.

The most common actions agents take within Hamariyah village are those related to daily life.

These actions include moving from one building to another, entering/exiting buildings, buying

food, working, socializing, praying, sleeping. Agents are also able to take less common actions

such as attacks, shootings, and hiring/firing employees.

4.2 Socially Learned Behavior (Memes)

To examine socially learned behavior, two new behaviors were added to the Hamariyah Iraqi

village: Give Information and Plant IED. Both of these behaviors could only be performed on

the “Government Meme Target” structure. The GiveInformation action represents acting as an

informant to the US. Give Information is the learned affordance that an agent can go to the US

structure to inform on dangerous members in the village. PlantIED is an opposite and competing
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action. This action involves volunteering to help plant an IED in the vicinity of the US structure

(just volunteering, not actually performing an action to emplace an IED). Both actions have in-

herent risks that give negative activations for personal safety.

Both simulations were run to convergence, a length beyond where full learning was typi-

cally observed. This modeling choice means that the experiments underestimate the number of

holdouts: agents that would never learn or express the action. However, this allows for better ex-

amination of relative expression rates and diffusion. By making agents more likely to learn and

perform the action at some point in the scenario, the differences between late adopters can be

identified instead of clumping into a large class of agents that never perform the action.

4.3 Iraqi Village Experimental Cases

The Hamariyah scenario was run under two experimental conditions: a Hypothesis case and a

Randomized case. These conditions were used to examine differences in patterns between a care-

fully selected set of innovators and patterns from random sets of innovators. The Hypothesis case

assumed that a particular set of 6 agents initially knew each behavior, based upon their roles in

society. Table 3 shows some basic demographic information about the agents in the Hypothesis

condition. In the hypothesis case, Give Information was initially known by six agents chosen be-

cause they were members of the local police or involved with the local government. Agents in

the police force and government could be expected to be aware of how and where to provide in-

telligence to the US forces in their area. GiveInformation innovators are primarily Heremat and

slightly like the US group. PlantIED was initially known by six agents categorized as anti-US

and their Kinetic Special Skills listed them as a “IED Maker” or “IED Emplacer.” The PlantIED

innovators are primarily tradesmen or unemployed, and they greatly dislike the US. This scenario

was intended to represent the transmission of competing behaviors under realistic conditions.

The Randomized Condition started with a random set of agents aware of each affordance,

so there was less initial predisposition to spread the behavior but it might reach a wider variety of

agents. At the start of each run, 6 agents were randomly chosen to start with the GiveInformation
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Table 3: Hypothesis Condition: Innovator Agent Demographics
Demographics GiveInformation PlantIED

% Shumar Ethnic Group 1 agent 2 agents
% Heremat Ethnic Group 4 agents 0 agents
% Yousif Ethnic Group 1 agent 4 agents

% Employed 4 agents 3 agents
Avg. Valence Toward US (in [-1,1]) 0.07 -0.6

Authority (in [0,1]) 0.17 0.0

affordance and another 6 agents were randomly chosen to start with the PlantIED affordance.

This condition was intended to examine the patterns of behavioral transmission that exist when

actions are available to agents that would not normally be expected to carry them.

4.4 Example of Affordance Transmission

The cognitive model explained in Section 3.2 determines how agents spread these behaviors in

the Hamariyah village. To help ground this process, this section offers a small example of an

agent socially learning and adopting the PlantIED behavior. Assume three agents: a Shumar

Baathist militant, a Shumar Al Qaeda Iraqi (AQI) insurgent, and a Heremat shopkeeper. Initially,

only the Baathist is aware of the PlantIED affordance.

4.4.1 Attention Example

The Baathist performs a PlantIED volunteering behavior where both the insurgent and shop-

keeper might observe this action. The attention model for each of these observers breaks down

this event into attention cues, as shown in Table 4. This table demonstrates that the AQI agent

has many more cues that would lead it to pay attention to the Baathist’s action. Motivated atten-

tion, valence, ingroup membership, and reference group cues are all fairly high for the AQI agent,

but low for the shopkeeper. Motivated attention is higher because the AQI agent would also be

interested in taking a PlantIED action. Valence is high because those two specific agents were

designated as friendly during the design of the village. Ingroup and reference group values are

high because the Baathist and AQI agent are both part of the Shumar ethnic group.

Novelty, transferability, selective attention, authority, conformity, and similarity were fairly
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Table 4: Attention Cues for Observers of Baathist PlantIED
Cue Heremat Shopkeeper AQI Insurgent
Novelty 1.0 = 1.0
Motivated Attention 0.34 < 0.64
Transferability 0.0 = 0.0
Selective Attention 0.0 = 0.0
Authority 0.0 = 0.0
Conformity 0.19 = 0.19
Similarity 0.61 ≈ 0.62
Valence 0.0 < 0.5
InGroup 0.0 < 1.0
Reference Group 0.35 < 0.46

similar for both agents. This is because neither observer knows the affordance (high novelty),

neither agent is currently in a position to perform the action (not transferable), and neither agent

is actively paying attention to the Baathist agent (no selective attention focus). Authority is zero

for both because the Baathist does not have authority in any group. Conformity is low because

the Baathist agent is the only one performing PlantIED out of the three agents (e.g., S=1, T=2

for Eqn. 4). Finally, similarity is comparable because both observers have personalities that are

equally different from the Baathist.

These cues determine the salience for the attention model. The attention model probabilis-

tically determines if each observer pays attention to the Baathist’s action. These cue sets mean

that the AQI agent is approximately twice as likely to attend to the PlantIED action. As such, for

further discussion it is assumed that the AQI agent paid attention to the action but the Heremat

shopkeeper did not.

4.4.2 Retention Example

Since the AQI agent attended to the PlantIED action, this agent learns from this event through

its memory model. Two changes occur for the agent. First, the AQI agent can now perceive the

PlantIED affordance. The agent permanently learns this knowledge and will select PlantIED

at any time where the action is afforded and is the action choice with the highest subjective ex-

pected utility (SEU). Secondly, the agent becomes more familiar with the PlantIED action and

has a lower novelty toward that action (from 1.0 to about 0.9).

29



4.4.3 Motivation Example

The AQI agent is then able to select the PlantIED action during its decision process, since it is

now aware of the affordance. When it evaluates the action, its activations depend on the expected

outcomes. PlantIED means volunteering for a violent asymmetric attack so the action provides

success activations for Disregard For Life, Use Asymmetric Attacks, and Be Task Focused.

Similarly, it has negative activations on Safety, Respect For Life, and Shun Violence. Since the

AQI agent has a low valence toward the US Group, PlantIED also generates success activations

on For The Group and Enemy Is Outgroup.

The AQI insurgent’s GSP model strongly matches these activations. Its personality gives a

high weight to violent traits (Disregard For Life, Use Asymmetric Attacks, Enemy Is Outgroup)

and low weight to non-violent traits (Respect For Life, Shun Violence). The AQI agent also

places a very low weight on Safety goals, so it is willing to take engage in high-risk actions. This

means that the AQI agent should be highly motivated to select the PlantIED action. The results

discussed later in Section 5.3.2 confirm this expectation, as AQI agents were among the earliest

adopters of PlantIED.

For comparison, the Heremat shopkeeper would be a poor match for the PlantIED activa-

tions. As the shopkeeper has a positive valence toward the US Group, it does not receive any

activations for nodes such as Enemy Is Outgroup. The GSP for the shopkeeper also has a high

weight for nodes such as Safety, Respect For Life, and Shun Violence. As such, the shopkeeper

would have a negative subjective utility for the PlantIED action and this action would not gener-

ally perform this action.

However, it should be noted that all agents must perform an action regardless of how bad

their options are. So then, if the shopkeeper’s only action choices were to volunteer to plant an

IED or to suffer some cruel fate with worse activations, PlantIED could still be selected. As such,

expressing an action depends not only on its activations but also on the activations of other ac-

tions available. This also means that seemingly unrelated GSP nodes can prevent selecting the

PlantIED action by leading an agent to prefer other actions, even if they have a positive utility for
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PlantIED. This means that the converse also holds: AQI agents might not select PlantIED due to

focusing on actions they prefer more across the simulation. These decisions depend on the com-

plex system of agents and their environment, so they cannot be directly known apriori.

4.4.4 Production Example

When the AQI agent decides to perform the PlantIED action, they restart this cycle by performing

the action where it might be attended by observers. These observers process that event using the

processes described in this example, allowing the affordance to spread as a meme through the

village.

5 Iraqi Village Simulation Analysis

The Hamariyah Iraqi Village environment models competition between the spread of behaviors:

providing intel to the US (GiveInformation) and volunteering help anti-US elements plant an IED

on a US-owned building (PlantIED). The simulation runs were used to examine three questions

about the realism:

1. Diffusion Dynamics - Does social learning follow social ties?

2. Cluster Formation - Do agents form clusters of adopters?

3. Cluster Comparison - What traits determine membership in clusters?

Data from the simulation runs was analyzed to examine each of these questions in Sections

5.1, 5.2, and 5.3 respectively.

5.1 Diffusion Dynamics

The simulation dynamics give an overview of how the behaviors spread. Behaviors spread in two

phases: learning the affordance and expressing the action. Both behaviors spread fast enough

to approach equilibrium within the simulation time horizon, as noted earlier in Section 4.2. The

learning curve of each behavior follows a punctuated version of the Rogers (1995) diffusion of

innovations process, shown in Fig. 6. These patterns indicate a progression of innovators, early
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Figure 6: Diffusion of Innovations Curve

adopters, early majority, late majority (late adopters), and laggards. Holdouts are individuals that

never adopt and cause the curve to saturate at less than 100% adoption.

Figure 7: % of Group Learned GiveInformation (Hypothesis Condition)

Fig. 7 shows the percentage of each group that learned GiveInformation over time, as the

mean of the 20 runs done in this condition. The x-axis shows the total number of all events that

occurred within the simulation, which correlates with time passing. Events are used because

agents can only learn by observing some event. The y-axis shows the fraction of agents who
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Figure 8: % of Group Learned GiveInformation (Randomized Condition)

have learned the behavior. To avoid bias from the initial set of agents aware of the behavior, this

chart only considers agents who did not start knowing it. To help examine the learning region,

this chart is truncated at the point where saturation was typically reached (all agents aware of the

action). Next to it, Fig. 8 shows this same statistic for the Randomized Condition.

Figure 9: % of Group Learned PlantIED (Hypothesis Condition)

Comparing Fig. 7 and Fig. 8, it is evident that changing the initial set of agents changes

the learning curve of each group. Under the Hypothesis condition, GiveInformation is initially

known by a significant number of Heremat agents. Due to this initial advantage, other Heremat
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Figure 10: % of Group Learned PlantIED (Randomized Condition)

agents tend to learn the behavior faster. In the Randomized Condition, this learning advantage

reverses and Yousif group members and the Shumar group members have advantages in learn-

ing GiveInformation. In both conditions, the difference in learning only holds through the early

adopter and early majority phases. Once the late majority phase starts, no particular group shows

a significant advantage. Despite which group has an advantage, the diffusion rate is fairly similar-

reaching saturation after approximately the same number of events.

The same comparison is shown for the PlantIED action, shown in Fig. 9 (Hypothesis)

and Fig. 10 (Randomized). In both conditions, the Yousif group had an advantage in learning

rate. For the Hypothesis condition, a significant number of the initial carriers are members of

the Yousif group. This allows them to better spread the behavior among their own group. In the

Randomized condition the Yousif group was slightly favored in learning PlantIED also. This

indicates that the Yousif are in general more likely to learn this behavior. Additionally, the rate of

learning PlantIED was greatly impacted by the starting condition. When given to a random set of

agents, learning takes twice as long to saturate the population and diffusion is more homogenous

across groups (e.g., very similar curves in Fig. 10). It is also slower during the steeper part of the

learning curve, consistently lagging behind. This means that the starting set for PlantIED is more
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successful in getting awareness of that meme to the population than a random subset of agents

would be.

PlantIED was also learned faster than GiveInformation, generally. This may be due to

PlantIED occurring more frequently than GiveInformation. A t-test was run to test for the prob-

ability that there were more PlantIED actions than GiveInformation actions for both experimen-

tal conditions. The t-test strongly indicates PlantIED was more common than GiveInformation

(p < 0.01, 19 degrees of freedom). A second t-test also confirmed that the Hypothesis Condition

has a higher frequency of PlantIED than the Randomized Condition, explained by the Hypothesis

innovators being more likely to perform PlantIED than a random set of agents.

5.2 Cluster Formation of Adopters

This section examines if agents formed clusters of adopters and what characteristics made these

clusters distinct. Agents were classified based on two adoption factors: average time of first

learning and average time of first expression. Since agents may not learn or express the behavior,

not all agents or clusters have a numeric time value. When an agent was a non-adopter, the learn-

ing and/or expression time value was technically “Never” during that run. However, averages and

charts require numeric values. Rather than exclude non-adopters from such analyses, time values

of “Never” were replaced by the final simulation step (step 3456). As such, agents and clusters

displayed as adopting on the final time step should be considered non-adopters.

Using these factors, the mClust clustering algorithm was used to generate an optimal set of

Gaussian expectation-maximization clusters based upon the pair of variables (Fraley & Raftery,

2003). Gaussian clustering was applied for this purpose because the clusters formed fairly reg-

ular elliptical patterns that were well-classified using this technique. Clusters will be referred to

by their central means during the discussion, in the form (First Learning Time, First Expression

Time). Also, it should be noted that some clusters appear as lines when charted because they have

little variance on one axis. This is most notable for the holdout and early adopter clusters that

form at the edges when graphed.
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5.2.1 Cross-Cluster Analysis

Table 5: Demographic Properties for Cross-Cluster Analysis
Property Data Type Description
Group Valences
- Valence(US Group) Continuous Like/dislike toward the US group
- Valence(Heremat Group) Continuous Like/dislike toward the Heremat group
- Valence(Shumar Group) Continuous Like/dislike toward the Yousif group
- Valence(Yousif Group) Continuous Like/dislike toward the Yousif group
Group Memberships
- Member of Heremat Dichotomous True only if agent in Heremat faction
- Member of Shumar Dichotomous True only if agent in Shumar faction
- Member of Yousif Dichotomous True only if agent in Yousif faction
Social Properties
- Authority Continuous Authority of the agent in his/her group
- EmploymentLevel Dichotomous If True, agent is employed and typically goes

to work during the day
GSP Personality Factors Continuous Personality traits

To examine the differences between these clusters, a set of demographic properties was

collected from the agents belonging to each cluster. The set of properties used for clustering are

shown in Table 5. These properties include GSP personality factors, group memberships, va-

lences toward other groups, authority, and employment level. These factors are introduced in

Section 3.6.1, Section 3.4.8, Section 3.4.7, Section 3.4.4, and Section 4.1 respectively. Due to

the large number of GSP nodes, each node will be briefly described in-text if it has a particular

significance for analysis or the reader can refer back to Table 2 for the full set. Sections 5.2.2 and

5.2.3 examine cluster formation at a high level and focus on individual cluster characteristics.

Clusters were contrasted against other clusters in the same condition. For continuous prop-

erties, a one-way ANOVA was run to detect any significant differences between clusters. For

dichotomous variables, a chi-squared test was run to detect significant differences. After this, a

Scheffe post-hoc test was applied to examine the specific differences between individual clusters.

A very large number of differences were significant (p < 0.05), so only key identifiers that were

most unique to each cluster will be discussed. Each key identifier was significant at the 0.05 level

in differentiating a particular cluster, based upon the Scheffe post-hoc test. Section 5.3 contains
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the key indicators for learning and adoption that were discovered through cross-cluster analysis.

5.2.2 GiveInformation Cluster Formation

The clustering results for GiveInformation in the Hypothesis and Randomized Conditions are

shown in Fig. 11 and Fig. 12, respectively. The difference between these conditions is different

not only in the members of the clusters, but in the number of clusters overall. The Hypothesis

condition shows five clusters, while the Random condition shows only two.

The cluster in the lower left hand (0,256) is the initial set of agents aware of the behav-

ior, who tend to express it relatively early. At the upper right hand of the graph (517,3448) is

a significant number of agents who learn GiveInformation late and most never express it. Of

the remaining three clusters, the those centered at (517,993) and (487,2580) were diffuse but

(581,1284) was very dense. The Randomized condition was much simpler- containing only two

diffuse groups for learning and expression located at (412,956) and (419,2983). Interestingly,

both clusters have similar learning times but very different expression times.

Table 6 shows the basic information about each cluster in the Hypothesis condition, includ-

ing its size and dominant groups represented. Also, each cluster is categorized into its adoption

category. One notable category is the Holdout set. These agents generally did not express the

behavior at all. In this respect, they were not laggards but were typically holdouts for GiveInfor-

mation. The Randomized condition washed out most of these clusters, with later adopters and

holdouts in one cluster and early adopters in another cluster.
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Figure 11: GiveInformation Clusters (Hypothesis Condition)

Figure 12: GiveInformation Clusters (Randomized Condition)
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Table 6: Demographics for GiveInformation Clusters (Hypothesis)
Cluster Primary Learning Expression

Cluster At Size Groups Adoption Adoption
(0,256) 3 Heremat Innovator Early Adopter
(517,994) 27 Shumar Late Majority Early Majority
(581,1284) 12 Yousif Laggard Late Majority
(487,2580) 19 Shumar, Heremat Early Majority Laggard
(517,3448) 11 Yousif, Shumar Late Majority Holdout

5.2.3 PlantIED Cluster Formation

PlantIED shared some similarities in its learning and first expression dynamics. Fig. 13 and

Fig. 14 show the mClust cluster graphs for PlantIED for the Hypothesis and Randomized con-

ditions, respectively. As with the GiveInformation, the Hypothesis Condition showed cleaner

clusters than the Randomized Condition.

Figure 13: PlantIED Clusters (Hypothesis Condition)
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Figure 14: PlantIED Clusters (Randomized Condition)

Table 7 shows the basic demographics for the Hypothesis clusters and their approximate

adoption positions. Even more so than GiveInformation in the Hypothesis condition, the clusters

closely correlate with group membership. The majority of Shumar and Heremat learn the be-

havior later and wait much longer to express it, if at all. Conversely, a subset of the Shumar and

Yousif quickly move to express the behavior. PlantIED is interesting in this condition because

learning and first expression track each other quite closely. The agents who are last to learn this

behavior are also the least likely to want to express it. This is at a contrast with GiveInformation,

where expression holdouts still learned it about as fast as other agents. In this case, attention cor-

relates well with the motivation to imitate.

The Randomized Condition for PlantIED shows interesting behavior. Table 8 shows the

basic demographics for the PlantIED action under the Randomized Condition. While GiveIn-

formation was reduced to two clusters, PlantIED still displays five clusters in the Randomized

condition. However, these are not the same five clusters. For many of the cases, this is a small

re-shuffling, but some agents expressed at different times due to the changes in learning patterns.
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For example, the Hypothesis cluster at (117,2931) breaks into two smaller clusters. One of those

clusters (160,3183) has a much longer amount of time before first expression while the other in-

cludes four additional subjects (142,1861).

Table 7: Demographics for PlantIED Clusters (Hypothesis Condition)
Cluster Primary Learning Expression

Cluster At Size Groups Adoption Adoption
(0,116) 6 Yousif, Shumar Innovator Early Adopter
(113,361) 30 Shumar, Yousif Early Adopter Early Majority
(117,2931) 23 Shumar, Heremat Early Majority Late Majority
(124,Never) 13 Shumar, Heremat Late Majority Holdout

Table 8: Demographics for PlantIED Clusters (Randomized Condition)
Cluster Primary Learning Expression

Cluster At Size Groups Adoption Adoption
(146,190) 17 Yousif, Shumar Early Majority Early Adopter
(154,417) 15 Shumar, Yousif Late Majority Early Majority
(142,1861) 14 Shumar, Heremat Early Majority Late Majority
(160,3183) 11 Mixed Late Majority Laggard
(159,Never) 15 Shumar, Heremat Late Majority Holdout

While Randomized innovators compress the differences in learning, small differences per-

sist for PlantIED. The Randomized condition shows a correlation between the time that a clus-

ter learns and when it adopts the action. This means that agents who are more likely to perform

PlantIED also learn it quicker, regardless of who initially spreads the behavior. These differences

are likely due to factors such as Motivated Attention and differences in group size.

5.3 Cross-Cluster Comparison Results

The prior analysis demonstrated that distinct clusters of agents exhibited different learning and

adoption patterns. This section examines the identifying features that differentiated particular

clusters, based on the ANOVA and Scheffe tests described in Section 5.2.1.

5.3.1 GiveInformation Cluster Identifying Features

For GiveInformation, group membership and GSP factors were the strongest determinants of

cluster membership. In the Hypothesis condition, the clusters can be thought of as following

three main behavioral patterns: innovators (0,256), holdouts (517,3448), and fence-sitters (the
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middle three clusters). The innovator cluster at (0,256) was small and not very influential. No-

tably, it does not even include all the agents who start with the GiveInformation action. This clus-

ter has high valence toward the US Group, while all other clusters have low valence toward the

US. The innovators are mainly Heremat, but most Heremat members are part of the (487, 2580)

cluster, making them fence-sitters and late adopters. These agents are some of the first ones to

learn the behavior but among the last to try it. One of the differences between the innovator group

and this cluster is that the innovators give a higher weight to Be Relationship Focused in their

GSP.

The holdout cluster at (517,3448) lies at the opposite end of the spectrum. Intuitively, one

might assume that the holdouts dislike the US group. Intuition would be wrong: the holdouts

are not very different from the fence-sitting clusters in their group membership or valence. The

ANOVA analysis indicates that holdouts place a very high value on personal interests and safety

(high Safety and For the Self GSP weights). They also have a much lower inclination to control

their environment, as shown by low importances for Esteem and Be Controlling nodes. Overall,

this cluster of agents shares a personality type that is not inclined to take risks. Considering that

becoming an informant is a dangerous endeavor, these agents would simply rather stay home.

The fence-sitting clusters for the Hypothesis Condition differ mainly by group membership.

(517,994) is a Shumar-dominated group and (581,1284) is a Yousif-dominated group, and (487,

2580) is mostly Heremat. The difference in learning times is explained by relationship each clus-

ter and the Heremat group, who dominate the innovators. These clusters largely disappear in the

Randomized condition, where initial knowledge is randomized. The meaningful social patterns

seen in the Hypothesis condition disappear in this condition. Without the initial social biases, be-

havior is learned across groups more evenly.

5.3.2 PlantIED Cluster Identifying Features

PlantIED had a sharp distinction between each cluster in the Hypothesis condition. These four

groups can be thought of as innovators, would-be innovators, late majority, and holdouts. The

(0,116) innovators of the PlantIED action were prone to expressing the action because they feel it
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will benefit their group’s future (For The Group, Own Group), as well as to satisfy their Esteem

goals and Assert Individuality standards. They also place a low weight on Safety. They are also

primarily Yousif group members, and share a negative valence toward the US Group.

The early adopters at (113,361) can be considered would-be innovators, due to their strong

similarity with the agents in (0,116). They mainly differ because they need to learn the affor-

dance before performing it. Their long term preferences are oriented toward Symbolic nodes

rather than Materialism or For Own Group nodes. This difference appears to be influence of Al

Qaeda Iraqi (AQI) members in the cluster. Overall, these agents waste little time between learn-

ing the affordance before volunteering to plant an IED.

The late majority and holdouts are distinct. The (117,2931) cluster, which is partially re-

sistant to expressing the action, is business-oriented and pro-US. It places high importance on

growing economic resources (Materialism), conforming to society (Conform to Society, and pos-

itive outcomes for the self (For The Self). It also places a higher importance on Safety than the

IED-active clusters, but not as high as the other resistant cluster at (124,Never). It is also the only

cluster that conclusively has a high valence the US Group.

The holdouts at (124,Never) are self-interested good guys. They have many good-guy per-

sonality traits and are less Materialistic and have a high value on For The Greater Good. How-

ever, key primary identifying characteristics are high value to Safety and Respect For Life. As a

result, this cluster has a major overlap with the resistant agents for GiveInformation. Overall, the

holdouts have low valence toward the US but are simply unwilling to take risky actions.

The Randomized Condition shifts the identifying features of the cluster slightly. For exam-

ple, the cluster at (142, 1861) has a higher EmploymentLevel and Authority level compared to

other groups. Additional work responsibilities may play a role in that subgroup’s delay in first ex-

pression. Most of the prior indicators of early or late first expression still hold. The next section

summarizes the indicators that were reliable for both the Hypothesis Condition and Randomized

Condition, for learning and first expression times. These will be referred to as the Key Indicators

for the type of agent and situation which leads agents to adopt GiveInformation or PlantIED.
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5.3.3 Key Indicators: Summary

A summary of the key indicators that differentiated early learners versus late learners is listed in

Table 9, for GiveInformation and PlantIED. From this analysis, the early learners were differen-

tiated primarily by their social cues (e.g., ingroup, reference groups, valence) which account for

most of the variance in learning. Motivated attention was a secondary influence on top of this for

PlantIED. Attention cues such as novelty, selective attention, and transferability did not strongly

influence learning times between clusters. Primarily, these factors were not indicators because

they can vary over an individual agent’s trajectory rather than differ greatly between agents. As

such, patterns of social learning in this virtual environment reflect the pre-existing structure of

social cues.

Table 9: Key Indicators for Determining Social Learning
Give Information PlantIED Learning

Key Indicator Learning Time Change Time Change
Same Ingroup as Innovators Faster Learning Faster Learning
High Valence toward Innovator’s Group Slightly Faster Learning Slightly Faster Learning
Low Motivated Attention to Action No Clear Connection Slightly Slower Learning
Innovators Express Earlier Faster Learning Faster Learning

The Randomized Condition cases showed that a purely random subset of innovators sig-

nificantly equalizes the learning rates, on average. This confirms that social cues (who does the

behavior) provide more consistent indicators than central cues (what kind of behavior occurred).

Finally, all agents learned earlier if the innovators expressed earlier. Since agents cannot learn

about the new behavior except when other agents express it, this relationship was expected.

On the converse, early expression of behavior is dominated by personality factors. Table 10

shows the key indicators that help determine if an agent will express a behavior earlier or later.

Valence toward the US Group is the only consistent non-personality key factor that influences ex-

pression of either behavior in this simulation. Employment may have also been an environmental

influence that delayed PlantIED, but was not consistently statistically significant. Otherwise, ex-

pression was almost entirely determined by the personality factors. Safety goals were a key limit-

ing factor for both behaviors, an obvious connection for dangerous actions. However, seemingly
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Table 10: Key Indicators for First Expression (Adopting Behavior)
Give Information First PlantIED First

Key Indicator Expression Time Expression Time
↑ Valence Toward US Earlier expression Later expression (or None)
GSP Goals (Short Term Values)
↑ Safety Prevents expression Prevents expression
↑ Esteem - Earlier expression
GSP Standards (Preferred Methods)
↑ Assert Individuality Earlier expression Later expression
↑ Be Task Focused Later expression Earlier expression
↑ Be Relationship Focused Earlier expression Later expression
↑ Be Controlling Earlier expression Earlier expression
↑ Bring About Greater Good Earlier Expression -
↑ Use Asymmetric Attacks - Earlier expression
GSP Preferences (Long Term Wants)
↑ For Own Group - Earlier Expression
↑ For the Self Later expression Later expression
↑Materialistic Later expression Later expression
↑ Symbolic Earlier expression Earlier expression

unrelated factors such as long term preferences For The Self and Materialism had a significant

influence as well. This indicates that these behaviors are competing with day to day activities and

pursuing economic endeavors.

6 Discussion

Experiments with Hamariyah demonstrated the feasibility of representing realistic adoption pat-

terns of new behavior in a virtual world. Rather than “losing control” over the virtual environ-

ment, agents produced well-formed patterns of learning and adoption of behavior. These patterns

were produced by a double-compete process that mediated the spread of behavior. Competition

at the attention level produced learning patterns that were based on social cues and motivated at-

tention to the behavior. Competition at the decision level produced patterns in adopting each new

behavior based on an agents’ social ties (group valence) and motivation (personality factors).

6.1 Realistic Spread of Behavior

The NonKin simulation fundamentally works as a complex system, with significant probabilistic

and path-dependent effects on adoption. Nominally, these effects prevent predictive and repeti-
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tive behavior that users cite as a problem with virtual agents (Bickmore et al., 2010). However,

users of a virtual environment will lose their sense of immersion if the overall patterns of adop-

tion fail to follow reasonable patterns. Three aspects of the patterns will be discussed here: diffu-

sion, cluster detection, and cluster prediction.

The diffusion patterns indicated that the behaviors spread plausibly through the population.

The high-level dynamics demonstrated a punctuated version of the adoption curve expected for

diffusion of innovations (Rogers, 1995). These patterns also indicate that the spread was more

realistic when the initial innovators were chosen based on their personal traits and social ties,

rather than chosen randomly. This indicates that social learning effectively helped agents transmit

behavior within their group and to friendly agents. These patterns also indicate that PlantIED

was a more popular action than GiveInformation. As noted previously in Fig. 5, most agents in

the simulation have a low valence toward US Group so negative actions against them should be

more common. Agents were also slightly more likely to learn actions they preferred, showing the

influence of motivated attention.

Analysis to detect adoption clusters also yielded a positive result: agents produced well-

formed clusters of behavior based on their social influences, personality, and context (e.g., em-

ployment level). These clusters represent clear patterns of early versus late adoption, as well as

innovators and holdouts. Agents display reasonable patterns of agents gravitating toward either

GiveInformation or PlantIED, as well as patterns of holdouts avoiding both behaviors entirely.

Comparison of the Hypothesis and Randomized conditions demonstrated that meaningful selec-

tion of the behavior innovators makes these clusters better-defined and more plausible.

Finally, statistically comparing the clusters produced indicators with predictive value about

an agent’s cluster. These indicators are based on the scenario’s initial values rather than its run-

time values, which may change over time. The key indicators for these patterns had a high degree

of face-validity, such as holdouts being unwilling to take dangerous actions. Identifying key in-

dicators means that a virtual society designer can predict when different agents would learn and

adopt a behavior. For a larger multi-agent environment, a smaller set representative agents can be
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evaluated to examine the cluster indicators. These indicators can be used to classify new agents

added to the virtual society, to estimate their expected adoption behaviors.

As such, the spread of behavior can be modeled with high fidelity with respect to who

learns and adopts new behavior. This analysis showed that the model was effective for repre-

senting competition of behaviors spreading within the fictional Hamariyah Iraqi village. It was

possible to determine not only the diffusion of each behavior within the population but also the

key identifying factors that determined why agents adopted a given behavior.

6.2 Modeling and Simulation Findings

While these simulations used a fictional village, the cognitive model was also designed to simu-

late real-world scenarios (Nye, 2012). As such, social simulations based on this model could of-

fer insight into the real life adoption patterns. Even for the Hamariyah village, the key indicators

gave some interesting insights that connect with theories of counter-insurgency.

GiveInformation adoption was associated with a low weight for personal safety and a high

weight for relationship-oriented problem solving. However, based on the personality traits used

to create the scenario, agents who valued relationship-oriented problem solving also valued their

personal safety highly. This implies that adequate security is pivotal to securing informants. This

finding is supported by some counter-insurgency analysts, who view security as essential even in

a “hearts and minds” campaigns (Krepinevich Jr, 2005). Secondly, employment level was not

found to be a significant factor for volunteering to participate in IED activities. While work-

related tasks might delay volunteering slightly, if an agent is willing to risk their lives they are

also willing to find time to do so. This is concordant with research such as Berman, Felter, and

Shapiro (2009), who state that higher employment does not appear to decrease the likelihood of

violent rebellion activities that result in civilian deaths.

While it is important not to extrapolate too much from the results of a virtual training sce-

nario, these findings indicate some potential for significant analytical value by applying this ap-

proach to real-life scenarios. For this potential to be realized, a village would need to be cali-
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brated and validated using data based on a specific real-life scenario. Additionally, second-order

effects such as external influences and communication mediums would be important for study-

ing a village situated in a larger social system. While gathering data for modeling a specific case

study is challenging, other projects based on the PMFServ architecture have previously used a

system of structured subject-matter experts and databases to generate scenarios for forecasting

purposes (Silverman, Bharathy, & Kim, 2009; Bharathy & Silverman, 2010; O’Brien, 2010).

7 Conclusions and Future Directions

This research is part of a larger class of topics that increase realism by focusing on the realistic

patterns of a virtual agent society, rather than on an individual agent. This paradigm shift from

virtual agents to virtual agent societies is a significant trend within virtual environments. Rep-

resenting and studying the spread of behavior among virtual agents is an important direction for

the realism of immersive environments. Using cognitively-based agents, this work demonstrated

that plausible patterns of learning and adoption of behavior can be added to an immersive training

environment.

An open question is how to extend this work to model abandonment of behavior, which

has recently been explored by social psychologists (Berger & Heath, 2007). Real societies are

dynamic, with new trends and cliques of behavior forming and disbanding. Cognitive models that

emulate human abandonment of behavior would be a logical next step for supporting dynamic

trends in behavior by virtual agents. Particularly for long-running immersive environments, such

as Massively Multiplayer Online (MMO) systems and virtual worlds, extinction of behavior may

be equally important as adoption.

This model should also have value for social simulation. Observational learning, multi-

layered social cues, and contextual social learning have not been well-examined using social sim-

ulations. A significant challenge to such research is the amount of data necessary to initialize de-

tailed agents, who require numerous measures of personality and social relationships. However,

given the potential benefits of using social simulation to predict classes of adopters down to the
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individual level, this direction fills a role not fully addressed by existing approaches.

A final direction is to survey user reactions to these adoption patterns, studying user per-

ceptions of immersion in NonKin environment. This work demonstrates that cognitive agents can

plausibly model adoption patterns, rather than relying on static action sets or simple random pat-

terns. However, the level that these patterns improve realism and reduce perceived repetition must

still be explored. Presence questionnaires and other measures can provide valuable insight into

these issues (Witmer & Singer, 1998; Jennett et al., 2008). Perceptions of system efficacy, such

as immersion, have been shown to influence performance outcomes in training environments (Jia,

Bhatti, & Nahavandi, 2012). Quantifying the impact of behavioral trends on immersion would

help define their role in training and gaming environments.
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