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Quantum Percolation in Magnetic Fields
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A generalized average inverse participation ratio, for the one-electron wave functions of a dilute
tight-binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields. Ex-
tended wave functions appear above a quantum threshold bond concentration, p~, This threshold
decreases at small magnetic fields, and shows a periodic dependence on the magnetic flux through a

basic plaquette, with period Pp=ltcle Ext. ended states appear and disappear periodically even at
0 = 2.

PACS numbers: 71.50.+ t

The effects of magnetic fields on the metal-insulator
Anderson transition have been the subject of much
speculation, some experimental work, and little de-
tailed theoretical understanding. ' 3 In the absence of
the field, some wave functions become localized be-
cause of destructive interference of waves along paral-
lel routes. These cancellations are eliminated when
the phases of the functions are modified by the mag-
netic flux through loops, and therefore one expects
that weak fields may delocalize the wave functions,
yielding a negative magnetoresistance 'It . is also be-
lieved that critical exponents may have different
values for finite fields. 4 A strong magnetic field, on
the other hand, may shrink the wave functions and
thus decrease the conductivity. 2

In an apparently different direction, much recent ef-
fort has been invested in the understanding of the
periodic dependence of the conductivity of a simple
ring on the magnetic flux through it. ' " Depending
on the size of the ring and on the method of averaging
over the randomness, physical properties of the ring
show periodicity in the flux with a period of either

@o tc je or @—o—/2. '-"
In the present paper we combine these iwo

phenomena by studying the effects of a magnetic field,
H, on quantum percolation. 'z '6 Considering a dilute
tight-binding one-electron model on a d-dimensional
hypercubic lattice, with a concentration p of nonzero
nearest-neighbor off-diagonal transfer energy ele-
ments, we calculate the quantum threshold pp(H)
above which extended states begin to appear. Our
results, shown in Fig. 1 for d =3, indicate a periodic
dependence of p~ on P, with period go. Here and
below fields H are measured by their flux p= Haz
through a unit cell, where a is the lattice constant.
Although the results are not periodic with period P,/2,
there is a significant increase in pp also for half-integral
values of $/$o, when the magnetic phase factors are
real.

The oscillation of pp with H implies a range of con-
centrations in which a periodic sequence of metal-
insulator transitions should be observed as function of
H. Unfortunately, if the lattice constant is 1 A then
the period in H is of order 109 Oe. Reasonable periods
may be realized for larger lattices, e.g. , of granular
units. In any case, the decrease in pq for small finite H
should be observable experimentally.

Although our results in d =2 are somewhat less ac-
curate, we find there, too, finite regions in H (around
Pj@o-0.2) where pp(H) decreases (from 1) down to
about 0.7. Hopefully, this is also observable (at least
in computer experiments?).

The usual H =0 quantum percolation Hamiltonian
is written as

where ~i) is the state on the site i of the lattice, while
the nearest-neighbor transfer energy tjo (for the elec-
tron to hop from i to j) is equal to 1 (with probability
p) or to 0 (with probability 1 —p). Unlike the earlier
work, 'z '6 we now introduce also very small random
diagonal energies, e;, with zero average. These re-
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FIG. 1. The quantum threshold p~ as function of the
magnetic flux $/$p, for d = 3. The graph repeats periodical-
ly, with period 1.

1986 The American Physical Society



VoLUME 56, NUMaER 9 PHYSICAL REVIEW LETTERS 3 M&RcH 1986

move the degeneracies of the eigenstates, and thus
simplify the choice of the inverse participation ratio
(see below). They have no other effect on the results
[except in the close vicinity of $/fo —0, —, , where

e, = sin(2n @/@,) l.
Earlier work on (1)' ' showed that the electronic

wave functions are all localized for p & pq, and some
extended state appeared above the quantum threshold

p~ (which is higher than the geometrical one, p, ). In
particular, no extended states were found for any

p & 1 at d =2. In the present work we present a re-
finement of Ref. 16, in which the problem with degen-
erate eigenstates is removed by the diagonal e s. We
calculate a modified average inverse participation ratio
as a power series in p, and show that it diverges for
p p~ as (p~ —p) ~. For H=0, our new results
agree qualitatively with the previous ones, and we find

pq 0 35+002 0 22 0 16 0 13 0 11 and 009 (with
errors of + 0.01) and y = 2.2+ 0.2, 1.4, 1.2, 1.1, 1.0,
and 1.0 (with errors of + 0.1) for d = 3, 4, 5, 6, 7, and
8, respectively. The values of p~ agree with those of
Refs. 15 and 17.

The magnetic field is introduced into the Hamiltoni-
an (1) via phase factors on t,, '9

where A is the magnetic vector potential. In three
dimensions, with the magnetic field H along the z

direction, and in the Landau gauge, this becomes

i,, = t,oexp(iHay/ito) (3)

if r;~ is along the x direction, ' and lj = tj otherwise.
In two dimensions we take the field to be perpendicu-
lar to the xy plane. It is not trivial to generalize these
rules to d & 3. For the purpose of the present calcula-
tion we chose to use the algorithm (3) for all d, i.e., to
project loops on a single (xy ) plane.

As explained in Ref. 16, we now solve the Hamil-

tonian (1) on finite clusters, with up to eleven bonds,
and find the eigenvalues E and the (normalized)
eigenfunctions tliF (i ) (which are now nondegenerate).
These are then used to calculate the inverse participa-
tion ratio, defined as

P2 d X/dp + P t X = Po, (5)

Pp, Pt, and P2 being polynomials of degrees L, M, and
iV. With the assumption that X —(p~ —p) ~, the ratio
P„/P2 is an approximant for y/(p~ —p). The esti-
mates for 3 & d & 8 were quoted above. We found no
indication of a singularity below p=1 at d=2. We
also note that our results are inconclusive as to the
identification of the upper critical dimension, at which

y becomes equal to unity (this could happen anywhere
for d ~ 6).

We now turn to nonzero fields. We first note that the
phase factors (3) do not affect any physical property of
clusters which contain no loops. One can always
choose new phases for ilia(i ), which will absorb those
arising from the fields, and ~tlirt(i ) ~

will not be affect-

for the cluster I . If the eigenstate is extended,
ilia (i) —1/JN (N is the number of sites on I ), then
y(l ) —Wz. For a localized state, QF(i) —8;, and
y(I ) —N. We averaged y(I ) over many realizations
of the random (small) e, 's, and found a rather fast
convergence to a sharp average value. We next
weighted the average y (I ) by p '(1 —p) ', where Nb

and N~ are the numbers of bonds inside and adjacent
to I', and find the average X(p), which is expected to
diverge if y (I ) —Nz. '

For H = 0 we found eleven terms in the new series
for X(p), and analyzed them using inhomogeneous
differential approximants. 'o In the (L,M, N) approxi-
mant we solved the linear equation

FIG. 2. The inverse participation ratio y(I') for the clus-
ter shown in the inset.

FIG. 3. An example of different clusters which have the
same topology.
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TABLE I. Coefftctents ok in &(p ) = 1+6p + 5p + 180p —862.15p + gakp" for d = 3, and estimates for p and y (based on
averages over Pade approximants of eight-term series).

0/4o

0
1

I

11 S00.3
11 490.0
11 464.4

—104 700.0
—104 420.S

—104 628.0

1093056.4
109S 779.2
109S 962.9

—10 94S 648.0
—11 001 494.9
—10 987 386.0

0.3S+0.02
0.32 + 0.03

0.3S + 0.02

2.2+0.2
2.7+ 0.4
2.2+ 0.2

ed. On clusters which contain loops, the phase which
accumulates after one goes around a loop is equal to
2m//Qo, where @ is the magnetic flux through the pro-
jection of the loop on the xy plane. For example, if
the cluster shown in the inset in Fig. 2 lies in the xy
plane then its Hamiltonian is

0 t010
t" 0 1 0 0

0 1011, (6)
1 0100

, 0 0100,
t = exp(i4/@o). The eigenvalues are 0

+ [5+ (&+8cos@/@o)'t'1', and the dependence of
y(I') on H is shown in Fig. 2. Note that y(I') is
periodic in @, with period go, and symmetric under

—H. The same is true for all y(I )'s, and thus
also «r )t(p). We also note that two clusters which
are topologically the same, and which have the same
projected loop areas on the xy plane, have the same
values of y(I'), although their Hamiltonian matrices
look different; a unitary transformation always exists
to map the wave functions on each other. The results
change, of course, if the projections on the xy plane
change. Thus, the clusters of Figs. 3(a)-3(c) all have
the same y(I'), but those of Figs. 3(e)-3(g) have a
different value, and the value changes again (back to
the H=0 value) if the whole cluster lies in the xz
plane.

Since only clusters with loops yield modified values
of y(I ), we had to repeat the calculation outlined
above only for these clusters. A detailed list of these,
up to eight bonds, appears in the work of Aharony and
Binder. zt However, we had to weight the different
y (I' )'s according to the different orientations of the
loops relative to the xy plane. For example, the cluster
in Fig. 2 has weight (~z)(8d —8)P (I —P)'o 'o, and
the fraction of cases in which the loop lies in the xy
p»ne I»/(dz).

Table I shows, as an example, the coefficients of our
series for d =3, for one set of random energies. %e
analyzed these series using the same method as out-
lined above, and we show p~ vs @ from one of our
Pade estimates in Fig. 1. Similar results were found
for d & 3. The exponent y also sho~ed a periodic

variation with H, exhibiting decreasing values as $/@o
varied from 0 to —,. Since this is an effective exponent,
in a crossover regime, it is difficult to say if all the
points with noninteger @/go belong to a new universal-
ity class. If they do, the new value of y is lower than
that for H =0.

The statements in Ref. 11, which predict an exact
periodic behavior with period who/2, are not correct for
complex loops or for loops with dangling bonds. Our
series probes a significant number of these configura-
tions and we see no evidence that such periodicity be-
comes more nearly realized as the length of the series
is increased. However, we note that there is a signifi-
cant increase in pe at half-integral values of @/$o. In
particular, we could not trace extended states at d = 2
for these odd values.

In conclusion, the magnetic field dependence of the
localization threshold is found to be periodic, with an
anomalous increase in pe for @=—,$o, a behavior
which is very different from that of random continu-
um models. ' 3 %e hope that the results of this paper
will stimulate searches for this anomalous field-
dependent behavior.
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