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ABSTRACT 

 

Overall, the paper explored the discrete buy-till-you-die process by incorporating covariate 

effects and non-parametric priors. In doing so, the paper hopes to enrich the space of customer 

lifetime value modelling. Using a simulation-based approach, the paper found that models with 

non-parametric priors is capable of adequately picking up simplified parametric distribution 

shapes without drastically overfitting and offer some predictive improvement in cases where a 

multi-modal distribution exists. In addition, the paper also found that models missing covariate 

specification, when such effect is present, may generate systematic upward bias to the parameter 

values. Such bias will lead to a bad aggregate level model performance even when such 

covariates are missing in the future while also causing the model to underpredict individual and 

aggregate conversions when covariates are in fact present. The paper also performed a market 

simulation that showed how the covariate effect extracted from the models can help firms better 

perform targeted marketing to improve its ROI. 

 

Keywords: Customer Lifetime Value, Marketing, Dirichlet Process, Covariate Marketing Mixes, 

Probability Models 

  



INTRODUCTION AND EXISTING STUDIES BACKGROUND 

Customer lifetime value has long been discussed both academically and within the industry as it 

has huge implications across various business functions. Having an accurate customer lifetime 

value measurement for customers allows us to benchmark the appropriate customer acquisition 

cost for various cohorts and craft customer targeting strategies. In addition, there has also been a 

new wave of academic research that seeks to create forecasting based financial models to value a 

company based on the values of the customer.   

 

The challenge of CLV models is particularly pertinent in cases where customer churn is not 

directly observable and when the transaction is not contractual in nature. The absence of 

observable churn meant that the CLV model would have to guess not just when customers are 

likely to purchase a product but also whether the customer is still active. This paper will focus on 

the non-contractual set of CLV models. However, within the non-contractual setting, there are 

two additional case that needs to be considered.   

• Continuous Time Contractual Case: This refers to transactional events that are not 

subscription based (it could terminate anytime) and could happen at any time (there is no 

fix opportunity for the transaction)  

o  Examples: Online Grocery Purchases, Hotel Visits   

• Discrete Time Non-Contractual Case: This refers to transactional events that are not 

subscription based (it could terminate anytime) but could only happen at fixed period 

(there is fix opportunity for the transaction) 

o Examples: Event Attendance, Charity Drives  

  



What underpins all the applicability of CLV models is the inherent ability of the models to 

predict customer values. This may not strictly be the customer lifetime values per se, since in the 

non-contractual case, it may not be directly observable. Instead, it could be the customer values 

in terms of what we expect the customers to do in the next period, the next five periods or later. 

In lieu of that, there has always been interest in improving the models we have in accurately 

predicting customer lifetime values to better perform the tasks highlighted earlier.  

  

Classic CLV Model  

Different kind of CLV models have been created to tackle these scenarios. For the Continuous  

Time Non-Contractual case, the known models include Pareto-NBD (Pareto-Negative Binomial  

Distribution) model (Schmittlein, Morrison and Colombo, 1987), while for the Discrete Time 

Non-Contractual case, the known models include BGBB (The Beta-Geometric Beta-Binomial) 

model (Fader, Hardie and Shang, 2009). Both models mentioned model customer behavior from 

two lenses/processes: the ‘Buying’ story and the ‘Dying’ story. On an individual level, both 

models assume that every customer has some inherent buying propensity. For the discrete case, 

in each discrete period, the customer is said to have some probability of making a purchase (i.e., 

Binomial Distribution), whereas in the continuous case, customers are said to have a purchasing 

rate that governs their purchasing propensity in a unit time (i.e., The Poisson Distribution). 

Similar, every customer is also assumed to have some inherent dying/churning propensity where 

in, for the discrete case, at each discrete period, they may end up churning away from the 

company with some probability (the Geometric Distribution) and for the continuous case, at 

every single period, they may end up churning based on some churning rate (The Exponential 

Distribution). It can also be inferred here that the Poisson Distribution and Exponential 



Distribution are respectively a generalization of the Binomial Distribution and Geometric 

distribution, where the number of opportunities becomes infinitely large and the propensity at the 

single opportunity becomes increasingly small.  

  

To collectively model this for all individuals/the population, the models assume that every single 

customer draws their respective buying and dying propensity from a beta distribution for the 

discrete case and the gamma distribution for the continuous case. These two distributions are 

chosen since the beta distribution is nicely bounded between zero and one (a measure of 

propensity) and have a conjugacy relationship with the Binomial and Geometric distribution, 

while the gamma distribution is bounded between zero and infinity (a measure of rate) and have 

a conjugacy relationship with the Exponential and Poisson distribution. It is important to note 

here that these propensities are not observable but are in fact latent. These traits can be then later 

backed out through empirical data.   

  

Together, the buying model (The Beta Binomial model for the discrete case, and the Negative 

Binomial Model for the continuous case) and the dying model (The Beta Geometric model for 

the discrete case, and the Pareto II Model for the continuous case) forms a collective model that 

allows us to predict future collective purchases. Furthermore, through conditional expectation it 

also allows us to extrapolate individual level inferences.1  

  

Pitfall of the Classic Models  

 
1 Negative Binomial Model is a mixture model made from a Poisson and Gamma mixture; Pareto II is a mixture 
model made from an Exponential and Gamma mixture  



As can be seen earlier, the classic CLV models such as Pareto-NBD and BGBB, along with its 

other variants: BG/NBD (Fader, Hardie and Lee, 2005) and PDO (Jerath, Fader and Hardie, 

2011), focus on extrapolating some latent characteristics about the customers (the dying and 

buying propensity) whereby each of these characteristics is defined by a distribution. The 

characterization through a form of predisposed distribution (or what we refer to as the prior 

distribution) is why this school of model is often referred to as a parametric form of model. 

While the parameterization (and conjugacy) allows for ease of estimation and straight forward 

model inferences, it does impose a flexibility constraint on how the latent characteristic of 

customers may look like. In particular, the distribution chosen to represent the latent traits (Beta 

Distribution & Gamma Distribution) tends to be either unimodal or bimodal in shape, which may 

not be a realistic characterization of underlying customer traits.  

  

In addition to the rigidity of prior distribution, classic CLV models also do not have a 

straightforward integration of covariates. This poses a serious challenge for the adoption of these 

models as external events such as marketing campaigns or macro level market sentiment, and 

simple demographic information can affect customer behaviors and hence their value. The 

integration of marketing mix covariates, such as active promotions, loyalty programs and other 

methods that aim to boost customer activity and retention, could also help companies quantify 

the effectiveness of these strategies in terms of boosting customer values.   

 

Existing Work  

The two subfields are not entirely novel as existing literatures have made progress around both 

areas (i.e., non-parametric/semi-parametric priors & covariate integration).  



  

On nonparametric priors, one notable paper focused on utilizing the Gaussian Process prior in 

customer base analysis (Dew and Ansari, 2018). This paper specifically challenged the lack of 

flexibility in parametric models and in how it fails to capture potential seasonality and calendar 

events that may be crucial for forecasting customer behavior. This paper posited that the use of a 

non-parametric dynamic prior such as Gaussian Process will allow marketers to preserve the 

principled approach to utilizing latent traits but also incorporate calendar time events. This paper 

concluded by showing how the use of such a non-parametric distribution was indeed able to 

improve the model performance when benchmarked against its parametric predecessors.  

  

Another paper that also took advantage of the flexible non-parametric distribution involved using 

a Dirichlet Process prior in place of the Gamma distribution (present in the Pareto NBD model) 

for customer lifetime value predictions (Quintana and Marshall, 2014). This paper directly 

tackled how the commonly used distributions in parametric CLV models assume a rather 

unrealistic and simplistic view of how customer traits are distributed. To address that, the paper 

incorporated the Dirichlet Process prior, which does not assume anything about the latent traits 

of the customer in place. The other assumptions that extended from the Pareto NBD model are 

still persistent with this new model. The proposed model was compared to the Pareto NBD 

model in two different datasets and was able to outperform the parametric counterpart in both.  

  

On the covariate side, one paper brought in the use of time invariant covariates into the Pareto 

NBD model like that of an NBD regression model (Singh, Borle and Jain 2009). The covariate 

effects, which in this case are constant through time, were brought in directly to the underlying 



parameters of the Pareto distribution and the NBD distribution. This method allows the model to 

capture an additional level of observed heterogeneity in addition to the unobserved heterogeneity 

intrinsic within the prior distribution. The model outperformed the vanilla Pareto-NBD model in 

both its predictive abilities but also its potential for targeting the most valuable customers  

  

Another notable set of papers took a different but complementary approach to bring in time 

variant covariates into probability models. One example of such is the paper by Gupta (Gupta, 

1991), where he integrated time varying covariates into adoption/inter-purchase processes 

models such as Pareto II and Erlang 2-Gamma. The crucial assumption laid out in the paper is 

that the covariate effect is typically fixed for a certain duration until such covariate changes. This 

allows the modelling process to be easier as modelers can then partition the inter-arrival process 

to individual periods before the covariates change. It also is logically sound as covariate effects 

such as marketing mix are not expected to materialize immediately due to for instance lagging 

exposure to the marketing mix or physical constraint that delays the purchase. The integration of 

the covariate itself within their fixed interval can be thought of as a stretching of time, where a 

positive covariate effect is thought to be equivalent to an individual having a longer period to 

decide whether he/she wants to purchase the product.   

  

This general modelling philosophy around partitioning the inter-purchase process by covariate 

changes and modelling covariate as a stretching of time is later adopted by Schweidel and Knox 

(2010). They utilized a similar modelling philosophy except this time bringing such covariates 

into the both components of the Pareto-NBD model, where the dying process is imagined to be a 

single Pareto distribution with covariates and the buying process that of one which is analogous 



to the inter-arrival process described earlier. Both papers found that the integration of covariates 

yield a significant effect and improved the modelling performance.  

  

Contribution  

The above literature, and the wide array of other literature on the area all tend to focus on the 

Pareto-NBD model (and hence the continuous time non-contractual case). This paper would like 

to contribute and broaden the scope of existing literature by integrating on-parametric priors and 

time-varying covariates into the discrete time non-contractual case   

  

While Discrete Time Non-Contractual models may not be as prominent as its continuous 

counterpart, it can still nonetheless be used in a wide array of settings. These includes two main 

cases, with the first being inherently discrete transactional activities such as responding to email 

campaigns (where the opportunity is discrete when the email is sent) and event/concert 

attendances (where joining the event is a discrete scenario). The second case would be 

discretized continuous settings such as modelling non-contractual yearly retention and spending. 

For the discretized continuous case, the pro of using discrete time models is that it produces 

parameters that are easier to interpret than its continuous counterpart through the forms of 

probability. It also is generally more convenient to estimate.  

  

MODEL FORMATION MATHEMATICAL FORMULATION OF BGBB 

Before moving to discuss the novel model formation proposed in this paper, it is important to 

discuss the mathematical details of the BGBB model, starting from the individual level 

distribution. As aforementioned, the individual level model of a discrete time non-contractual 



process includes a ‘buying’ story and ‘dying’ story, represented by a binomial distribution and 

geometric distribution respectively. This can be concretized with an example. Assuming we 

observe a customer for ten periods and this customer has made a purchase on fifth and seventh 

period, from an individual model point of view, there are several cases that are possible to 

represent such an observable data:  

• this customer could have made a purchase on the fifth and seventh period and 

immediately churned in the next period (eighth period)  

• this customer could’ve made a purchase on the fifth and seventh period, stayed with the 

company but didn’t purchase on the eighth period, and churned on the ninth period  

• this customer could’ve made a purchase on the fifth and seventh period, stayed with the 

company but didn’t purchase on the eighth and ninth period, and churned on the tenth 

period  

• this customer could’ve made a purchase on the fifth and seventh period, stayed with the 

company but didn’t purchase on the eighth, ninth and tenth period, and didn’t churn at all 

Mathematically, if assume this customer has p as his purchasing propensity at every 

period and u as his dying propensity every period, the aforementioned scenario can be 

summed into a likelihood expression:  

  

𝐿(𝑝, 𝑢	|	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔	5𝑡ℎ	𝑎𝑛𝑑	7𝑡ℎ	𝑝𝑒𝑟𝑖𝑜𝑑, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑓𝑜𝑟	10	𝑝𝑒𝑟𝑖𝑜𝑑𝑠) 

= (1 − 𝑝)!𝑝(1 − 𝑝)𝑝(1 − 𝑢)"𝑢 + (1 − 𝑝)!𝑝(1 − 𝑝)𝑝(1 − 𝑝)(1 − 𝑢)#𝑢 

+	(1 − 𝑝)!𝑝(1 − 𝑝)𝑝(1 − 𝑝)$(1 − 𝑢)%𝑢 

+	(1 − 𝑝)!𝑝(1 − 𝑝)𝑝(1 − 𝑝)&(1 − 𝑢)'( 



= (1 − 𝑝)#𝑝$(1 − 𝑢)'( +?(1 − 𝑝))*+𝑝$(1 − 𝑢)"*+𝑢
$

+,(

 

 

What we can notice here is that the above likelihood is only affected by the recency and 

frequency of purchase. Thus, more generally, for a customer who has been observed for n 

periods, who purchased x times and who’s last purchase is on the t-th period, his/her likelihood 

would be:  

 

𝐿(𝑝, 𝑢	|	𝑥, 𝑡, 𝑛) = (1 − 𝑝)-./𝑝/(1 − 𝑢)- + ? (1 − 𝑝)0./*+𝑝/(1 − 𝑢)0*+𝑢
-.0.'

+,(

 

 

Above forms the individual distribution. To then integrate the prior distribution to incorporate 

heterogeneity across the population, a beta distribution is assumed for both then p and u 

propensity of every individual, that is:  

 

𝑓(𝑝|𝑎, 𝐵) = 	
𝑝1.'	(1 − 𝑝)2.'

𝐵(𝑎, 𝐵)  

	and  

𝑓(𝑢|𝛾, 𝛿) = 	
𝑢3.'	(1 − 𝑢)4.'

𝐵(𝛾, 𝛿)  

 

𝑎,	𝐵,𝛾,	𝛿 are the so called hyperparameters that governs that distribution of the buying and dying 

propensities, these are also the parameters that needs to be changed in order for us to maximize 

our likelihood based on the data. Since p and u are not observable on a per individual basis, the 



joining of the individual model and the prior distribution would require the integration of the 

individual likelihood over the prior distribution for both parameters.  

 

𝐿(𝑎, 𝐵, 𝛾, 𝛿|	𝑥, 𝑡, 𝑛) = D D 𝐿(𝑝, 𝑢|𝑥, 𝑡, 𝑛) ∗ 𝑓(𝑝|𝑎, 𝐵) ∗ 𝑓(𝑢, 𝛾, 𝛿)𝑑𝑝𝑑𝑢
'

(

'

(
 

= F
𝑛
𝑥G
𝐵(𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥)

𝛽(𝛼, 𝛽) 	
𝐵(𝛾, 𝛿 + 𝑛)
𝐵(𝛾, 𝛿)  

+?J
𝑖
𝑥K

-.'

+,/

𝐵(𝛼 + 𝑥, 𝛽 + 𝑖 − 𝑥)
𝛽(𝛼, 𝛽) 	

𝐵(𝛾 + 1, 𝛿 + 𝑖)
𝐵(𝛾, 𝛿)  

 

Non-Parametric Priors  

In principle, the non-parametric priors are supposed to add additional flexibility to the 

distribution of the latent characteristic to accommodate multi-modal cases. More generally, what 

the paper poses is that the distribution of latent traits is not something that is immediately 

obvious a priori – thus the best forms of model to represent such latent traits should be one that 

can adapt and thereby assimilate various forms of latent trait distribution.  

  

For this reason, the Dirichlet Process prior is chosen. There are several ways that the DP prior 

can be illustrated mathematically, the formulation chosen here follows from (Neal, 2000). 

Generally, if we want to apply a DP Prior to data y1, y2…yn, such prior can be thought of as:  

 

𝑦+ 	|	𝜃+~	𝐹(𝜃+) 

𝜃+ 	|	𝐺	~	𝐺 

𝐺~	𝐷𝑃(𝐺(, 𝑎) 



  

Where 𝐺0 is the base distribution and 𝑎 is the concentration parameter. To further contextualize 

this distribution, one can analyze such a prior on 𝜃𝑖 as a successive conditional distribution 

(Blackwell and MacQueen, 1973):  

 

𝜃+ 	|	𝜃+ …𝜃+.'~	
1

𝑖 − 1 + 𝑎?𝛿(
+.'

5,'

𝜃5) +
𝑎

𝑖 − 1 + 𝑎 𝐺( 

 

Where 𝛿(𝜃𝑗) refers to the distribution concentrated at 𝜃𝑗. Inference from the above formulation 

sheds light on how the Dirichlet Process Prior operates. What this above formulation indicates is 

that a successive draw from the Dirichlet Process prior, would be dependent on where the past 

draws are and what the base distribution indicates. a, the concentration parameter, is meant to 

indicate how close should the distribution lie relative to the base distribution.  

  

An alternative formation of Dirichlet process prior, may further clarify its use in the context of 

this paper:  

	

𝑦+ 	|	𝑐+ , 𝝓	~	𝐹(𝜙6!) 

𝑐+ 	|	𝒑	~	𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑝', … , 𝑝7) 

𝜙6 	~	𝐺( 

𝒑	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(
𝑎
𝐾 ,… ,

𝑎
𝐾) 

  



In this formulation, 𝑐𝑖 refers to a latent class that is associated with an observation. The above 

formulation, after taking K to infinity will yield a Dirichlet Process prior (Neal, 2000), 

illustrating the nature of Dirichlet Process prior as a distribution of distributions, or in other 

words an infinite mixture. Because of such a characteristic, Dirichlet Process prior have been 

used in various marketing literature (Kim, Menzefricke and Feinberg, 2004) to approximate 

distributional forms that are initial unknown.  

  

 

Figure 1: Dirichlet Process Priors ability to approximate various distribution (Taken from Kim, 

Menzefricke and Feinberg, 2004) 

  

For this paper, the Dirichlet Process formulation attempted will take the form of hierarchical 

model analogous to the one posted by (Gelman, Carlin, Stern, and Rubin, 2014):  

 

𝑥+ , 𝑡+ 	|	𝑝+ , 𝑢+ , 𝑛	~	(1 − 𝑝+)-./!𝑝+
/!(1 − 𝑢+)-! + ? (1 − 𝑝+)0!./!*5𝑝+

/!(1 − 𝑢+)0!*5𝑢+

/!.0!.'

5,(

 

  



 

𝑝+~𝐵𝑒𝑡𝑎(𝑎+ , 𝐵5) 

𝑢+~𝐵𝑒𝑡𝑎(𝛾+ , 𝛿5) 

 

𝑎+ , 𝐵5 , 𝛾+ , 𝛿5~𝐷𝑃(𝐺(, 𝑀) 

𝐺(	~	𝑈𝑛𝑖𝑓(𝑎+|𝑎(, 𝑎') ∗ 𝑈𝑛𝑖𝑓(𝐵+|𝐵(, 𝐵') ∗ 𝑈𝑛𝑖𝑓(𝛾+|𝛾(, 𝛾') ∗ 𝑈𝑛𝑖𝑓(𝛿+ , 𝛿(, 𝛿') 

 

Where 𝑈𝑛𝑖𝑓(𝑎𝑖|𝑎0,	𝑎1) refers to a uniform distribution bounded by 𝑎0	and 𝑎1. Analogously yet 

differently for this formulation, what is suggested is that there will be various latent classes of 𝑎𝑖,	

𝐵𝑗,𝛾,	𝛿, such that each latent class with have a different value for 𝑎𝑖,	𝐵𝑗,𝛾,	𝛿. An individual 

belonging to one of such latent class, will then use these values to generate its 𝑝𝑖 and 𝑢𝑖 through 

the familiar Beta distribution. Simply put, this formulation poses an infinite mixture of Beta 

distribution for both the dying and buying propensity.  

  

It can be hypothesized that the DP model will do a better job that a BGBB in capturing various 

shape that the distribution may take but may also be more prone to overfitting due to its 

flexibility. Regardless, given this change, the parameter optimization, and subsequently the 

process of obtaining a posterior distribution for the parameters and individual inferences, will no 

longer yield a solved closed-form solution but will instead need to be maximized through the 

Monte Carlo Markov Chain. This model will be referred to as the DP-G DP-B model from here 

on onwards. 

  



Covariates  

This paper will primarily examine time-varying covariates as such brings non-stationarity into 

the observable process (often more crucial to model). Unlike the continuous time model, where 

the covariates could be introduced to stretch the time period in place (Gupta, 1991; Schweidel 

and Knox, 2010), the integration of covariates on the discrete time model is equally challenging. 

Given that in a discrete time case, the action itself can only happen at a specific time period, the 

stretching of time analogy would cease to make sense.   

  

However, given that in the discrete time case, whatever covariates have occurred between an 

action interval and the next is only really factored in when the next action is being casted, the 

covariate values in between action periods can be combined into a lump sum effect that carries 

over to the next action periods.   

  

This paper poses that this lump sum effect can be created in two different ways. Firstly, it can be 

brought in as a binary variable (i.e., whether an email campaign is sent) or Secondly in a fashion 

like a regression formula with a discount factor such that values closer to the action period are 

weighted more (i.e., how many email campaigns are sent where recent emails are weighted 

more). For simplicity, the paper will investigate primarily the binarized method. In addition, this 

effect will only be introduced into the buying story of our model, as the dying/attrition story is 

truly unobservable and therefore may allow the model to be overly parametrized and thus easily 

overfit.  

  



This paper hypothesized that the lump sum effect mentioned earlier can be used to scale the 

individual’s buying propensity. One can think of the base buying propensity as the intercept and 

the lump sum effect as a coefficient in a logistic regression to return a value bounded between 0 

and 1. It is important to note that while an individual is still thought to have his own p, since the 

covariates is time varying, the buying propensity per period will no longer be homogenous for a 

customer and the individual level buying distribution could then no longer be easily represented 

as a Binomial distribution. Instead, it is more useful to imagine that every single buying choice 

will be an independent Bernoulli distribution with possibly a different p due to the covariate 

effect.   

  

In order to properly integrate the covariates in a logistic regression set up, a transformation is 

first needed. That is, we first need to transform an individual’s original p into a logit link set up:  

 

𝑝 = 	
1

1 + 𝑒.(2")
 

− log J
1
𝑝 − 1K = 𝐵(	 

 

We can then introduce the covariates into the purchasing propensity, let us define Z, whether an 

individual purchases in the next period, as a Bernoulli random variable, where p is his/her 

inherent buying propensity:  

 

𝑍~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝+) 

𝑝+ 	~	
1

1 + 𝑒.(. :;<=
'
>.'?*𝑩∗𝑿)

 



  

B, above, is a vector of coefficient corresponding to the number covariates present and X is the 

vector of the lump sum effect derived from the covariates observed between the previous period 

and this period. Notice that if B equals to 0 then 𝑝𝑖 will collapse back to p. The formulation of X 

in a binary case would then simply be 1 when a marketing action is casted and 0 otherwise.  

  

The extension from this single period formation to the individual level likelihood is 

straightforward but cumbersome. As opposed to being able to roll up the distribution by only 

accounting for recency and frequency, the integration of covariates means that one would need to 

account for the per period observations. Taking the example above:  

 

𝐿(𝑝, 𝑢	|	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔	5𝑡ℎ	𝑎𝑛𝑑	7𝑡ℎ	𝑝𝑒𝑟𝑖𝑜𝑑, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑓𝑜𝑟	10	𝑝𝑒𝑟𝑖𝑜𝑑𝑠) 

= (1 − 𝑝!)(1 − 𝑝")(1 − 𝑝#)(1 − 𝑝$)𝑝%(1 − 𝑝&)𝑝'(1 − 𝑢)'𝑢 

                               +(1 − 𝑝!)(1 − 𝑝")(1 − 𝑝#)(1 − 𝑝$)𝑝%(1 − 𝑝&)𝑝'(1 − 𝑝()(1 − 𝑢)(𝑢 

                               +(1 − 𝑝!)(1 − 𝑝")(1 − 𝑝#)(1 − 𝑝$)𝑝%(1 − 𝑝&)𝑝'(1 − 𝑝()(1 − 𝑝))(1 − 𝑢))𝑢 

                               +(1 − 𝑝!)(1 − 𝑝")(1 − 𝑝#)(1 − 𝑝$)𝑝%(1 − 𝑝&)𝑝'(1 − 𝑝()(1 − 𝑝))(1 − 𝑝!*)(1 − 𝑢)!* 

                                

 

= (`𝐼+

'(

+,'

+ b(−1 ∗ 𝐼+) ∗ 𝑝+c) ∗ (1 − 𝑢)'( +?` 𝐼+
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𝐼+~d
1	𝑖𝑓	𝑝𝑒𝑟𝑖𝑜𝑑	5	𝑎𝑛𝑑	7

0	𝑖𝑓	𝑛𝑜𝑡  



 

Where 𝐼𝑖 indicates if an individual has a made a purchase in this period and 𝑝𝑖 the purchasing 

propensity at period i. Such expansion is necessary due to the non-homogenous nature of the 

buying process. However as one would expect the dying process remains unchanged. More 

generally:  

 

𝐿(𝑝, 𝑢	|	𝑥, 𝑡, 𝑛) 

 

= (`𝐼+

-

+,'

+ b(−1 ∗ 𝐼+) ∗ 𝑝+c) ∗ (1 − 𝑢)- + ? `𝐼+

-.5

+,'

+ ((−1 ∗ 𝐼+) ∗ 𝑝+)) ∗ (1 − 𝑢)0*5𝑢
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'
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𝐼+~ d
1	𝑖𝑓	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑	𝑎𝑡	𝑝𝑒𝑟𝑖𝑜𝑑	𝑖

0	𝑖𝑓	𝑛𝑜𝑡  

  

As opposed to the classic model where a closed form result can be nicely integrated, this method 

would also require the use of Monte Carlo Markov Chain to account for the heterogeneity 

indicated by:   

 

𝑓(𝑝|𝑎, 𝐵) = 	
𝑝1.'	(1 − 𝑝)2.'

𝐵(𝑎, 𝐵)  

and 



𝑓(𝑢|𝛾, 𝛿) = 	
𝑢3.'	(1 − 𝑢)4.'

𝐵(𝛾, 𝛿)  

 

Non-Parametric Priors and Covariates  

The final model proposed, DP-G DP-B with covariates that includes both non-parametric finite 

beta prior and covariate would can be seen as  

 

𝑥+ , 𝑡+ 	|	𝑝+,𝑢+ , 𝑛 

= (`𝐼D

-

D,'

+ b(−1 ∗ 𝐼D) ∗ 𝑝Dc) ∗ (1 − 𝑢+)- + ? `𝐼D

-.5
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1	𝑖𝑓	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑	𝑎𝑡	𝑝𝑒𝑟𝑖𝑜𝑑	𝑧

0	𝑖𝑓	𝑛𝑜𝑡  

 

𝑝+ 	~	𝐵𝑒𝑡𝑎b𝑎+ , 𝐵5c 

𝑢+ 	~	𝐵𝑒𝑡𝑎b𝛾+ , 𝛿5c 

 

𝑎+ , 𝐵5 , 𝛾+ , 𝛿+ 	~	𝐷𝑃(𝐺(, 𝑀) 

𝐺(	~	𝑈𝑛𝑖𝑓(𝑎+|𝑎(, 𝑎') ∗ 𝑈𝑛𝑖𝑓(𝐵+|𝐵(, 𝐵') ∗ 𝑈𝑛𝑖𝑓(𝛾+|𝛾(, 𝛾') ∗ 𝑈𝑛𝑖𝑓(𝛿+|𝛿(, 𝛿') 

 

METHOD 



The paper will implement an iterative modelling process, where the paper will show the baseline 

performance of the classic BGBB, BGBB with covariates, DP-G DP-B with a non-parametric 

prior, and end with DP-G DP-B with a non-parametric prior and covariates.  

  

The DP formulation will utilize Algorithm 8 from Neal (2000) due to its lack of conjugacy. The 

algorithm is a generalization of the MCMC algorithm that utilizes the Chinese Restaurant 

Process sampler. The fitting of the model will be done in Stan. 

 

To gauge the efficacy of adding nonparametric priors and covariates into the model, a simulation 

analysis is used with three goals in mind: 

 

• First, to understand whether or not the model in question is capable of recovering the 

‘true parameters’ that are known a-priori. In a business context, this is useful in 

understanding the population distribution of consumer propensity, providing firms with a 

best guess of how valuable a new customer will be, and projecting out macro adoption 

trends. 

• Second, should the model be mis-specified or underspecified, how bad would it do in 

terms of forecasting the individual future behavior of a customer. This in a business 

context is useful as it gauges the efficacy of the models in providing individual level 

estimates and subsequently the ability of the model to target specific customers. 

• Thirdly, to understand how the estimated covariate effect of the model can be used to 

design a more effective marketing campaign scheme. 

 



The paper solicited several scenarios that are to be simulated: 

 

• A near homogenous scenario where all individuals to be simulated have the same buying 

and dying propensity with no covariate effect. 

• A heterogeneous scenario where individuals to be simulated each have a different buying 

and dying propensity drawn from a unified beta distribution with no covariate effect. 

• A heterogenous scenario where individuals to be simulated each have a different buying 

and dying propensity drawn from a unified beta distribution with a homogenous covariate 

effect. 

• A heterogenous scenario where individuals to be simulated each have a different buying 

and dying propensity drawn from a unified beta distribution with a heterogenous 

covariate effect drawn from a normal distribution. 

• A heterogeneous scenario where individuals to be simulated each belong to 1 or 2 

segments and have a different buying and dying propensity drawn from their respective 

segment’s beta distribution with no covariate effect. 

• A heterogeneous scenario where individuals to be simulated each belong to 1 or 2 

segments and have a different buying and dying propensity drawn from their respective 

segment’s beta distribution with heterogeneous covariate effect drawn from a normal 

distribution. 

 

200 customers over 20 periods are being simulated from these datasets to ensure computational 

efficiency. The covariates to be simulated can be imagined as a company-initiated marketing 

campaign. Two such covariates will be simulated with varying degrees of effects on the 



consumer. During the training period, the covariates are assigned in a random Bernoulli process 

to represent a ‘test marketing’ phase, where the companies randomly assign marketing 

campaigns to gauge its efficacy.  

 

The detailed parameters used to simulate the dataset can be found through the table below:  

 

 Buying propensity (q) Dying propensity (p) Covariate effect (b) 

Homogenous Scenario q ~ Beta (150,150) p ~ Beta (50,350) 
𝐵% ~ 0 

𝐵& ~ 0 

Heterogenous Scenario q ~ Beta (1.5,1.5) p ~ Beta (0.5,3.5) 
𝐵% ~ 0 

𝐵& ~ 0 

Heterogenous Scenario 

with Homogenous 

Covariate Effect 

q ~ Beta (1.5,1.5) p ~ Beta (0.5,3.5) 
𝐵% ~ 0.3 

𝐵& ~ 0.6 

Heterogenous Scenario 

with Heterogeneous 

Covariate effect 

q ~ Beta (1.5,1.5) p ~ Beta (0.5,3.5) 
𝐵% ~ Normal (0.3,0.2) 

𝐵& ~ Normal (0.6,0.2) 

Heterogenous 

Segmented Scenario 

q | seg 1 ~ Beta (4,8) 

q | seg 2 ~ Beta (10,2) 

P (seg 1) ~ 0.45 

p | seg 1 ~ Beta (0.5,3.5) 

p | seg 2 ~ Beta (3.5,7) 

P (seg 1) ~ 0.45 

𝐵% ~ 0 

𝐵& ~ 0 

Heterogenous 

Segmented Scenario 

q | seg 1 ~ Beta (4,8) 

q | seg 2 ~ Beta (10,2) 

P (seg 1) ~ 0.45 

p | seg 1 ~ Beta (0.5,3.5) 

p | seg 2 ~ Beta (3.5,7) 

P (seg 1) ~ 0.45 

𝐵% ~ Normal (0.3,0.2) 

𝐵& ~ Normal (0.6,0.2) 



with Heterogeneous 

Covariate Effect 

Figure 2: Parameters for the Simulated Dataset 

 

In addition to the proposed model illustrated in the earlier sections, additional models were also 

run to better benchmark the results. The list of models included the following: 

 

• Homogenous Geometric Binomial Model 

• Vanila Beta-Geometric Beta-Binomial Model 

• Beta-Geometric Beta-Binomial Model with homogenous covariate effect 

• Beta-Geometric Beta-Binomial Model with heterogeneous covariate effect 

• Vanila DP-Geometric DP-Binomial Model 

• DP-Geometric DP-Binomial Model with homogenous covariate effect 

• DP-Geometric DP-Binomial Model with heterogeneous covariate effect 

 

The models listed above were fitted on the first ten periods of the data using an MCMC of 500 

iterations to obtain the posterior mean and interval. 

 

RESULTS 

The parameter values obtained from the list of models under the different scenarios can be found 

in the appendix (Figure 3).  

To reference the objectives listed earlier, the model results will be analyzed in three different 

fashions. 



 

Firstly, the paper will compare the estimated distribution of the buying and dying propensity 

from each of the models to the expected distribution of such propensities using the actual 

parameters of the simulations. To further concretize any deviation, the paper will analyze the 

expected per period conversion and the expected spread of conversion per individual as 

suggested by the model. Mathematically, the two can be illustrated as follow: 

 

𝑋+0 = 𝑊ℎ𝑒𝑡ℎ𝑒𝑟	𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙+ 	𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑎𝑡	𝑝𝑒𝑟𝑖𝑜𝑑0 

𝐼 = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

𝑁 = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑒𝑟𝑖𝑜𝑑𝑠 

 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛	𝑎𝑡	𝑝𝑒𝑟𝑖𝑜𝑑	𝑇 =
∑ 𝑃(𝑋+0|𝑡 = 𝑇)G
+,'

𝐼  

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛	𝑓𝑜𝑟	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑄 =
∑ 𝑃(𝑋+0|𝑖 = 𝑄)H
0,'

𝑁  

 

The calculations for the above quantities were done in a Monte-Carlo simulation of 200 

iterations for each model. The output of the expected per period conversion can be viewed as an 

incremental tracking plot over 20 periods, whereas the expected spread of conversion per 

individual can be seen as a histogram bounded by the number of opportunities (20 periods). Note 

that this estimation does not require the individual level posterior distribution but only the 

aggregate level parameters. 

 



Secondly, the paper will compare the conditional expectation of each model for the 200 

individuals that were simulated. The conditional expectation computed will be using the 

posterior distributions obtained by the model when it was fitted in the using the data points from 

the first 10 period. The conditional expectation will then be compared to the actual number of 

conversions that an individual made in the 11th to 20th period. The calculation of the conditional 

expectation can be represented as follow: 

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑄 = 𝑃(𝑄	𝐴𝑙𝑖𝑣𝑒	𝑎𝑡	𝑡 = 10) ∗ 	 ? 𝑃(𝑋+0|𝑖 = 𝑄)
H

0,'(

 

 

Thirdly, the paper will demonstrate how such covariate effect can be used to boost marketing 

ROI. In particular, the paper will attempt to simulate a marketing policy, starting the 10th period, 

based on the model specific posterior distribution of the 200 individuals and the model estimated 

covariate effect. The paper will do so primarily for the homogenous covariate case but will also 

provide a guideline as to how can such effect be extended to the heterogenous case.  

 

Population-Wide Propensity 

 

Homogenous Population 

 



 

Figure 5: Estimated Dying Propensity for 

Homogeneous Population 

Figure 6: Estimated Buying Propensity for 

Homogeneous Population 

 

Comparing the results of true underlying buying propensity and dying propensity, one could note 

that all the flexible models (BGBB to DP-G DP-B) seem to over inflate the heterogeneity in the 

dying propensity, whereas the GB homogenous model, as expected, understates it.  The flexible 

models however were better at picking up the shape of the buying propensity with the BGBB 

model particularly fitting the supposed shape most closely.  

 



  

Figure 7: Incremental Plots for Homogeneous 

Population 

Figure 8: Histogram for Homogeneous 

Population 

 

The above trend is further confirmed by the incremental plots and histogram. However, while the 

flexible model beats its homogenous counterpart, it also caused the incremental plots to slightly 

deviate from the actual result and the histogram over-stretched out due to its overstated 

heterogeneity.  

 

Heterogenous Population 

The results from the heterogenous are roughly like the homogenous case, with the exception that 

the more flexible models can perform even better in this dataset. Noting from the graphics 



below, the flexible models are now able to capture the span of the churning propensity rather 

well in addition to the buying propensity as well.  

 

 

Figure 9: Estimated Dying Propensity for 

Heterogenous Population 

Figure 10: Estimated Buying Propensity for 

Heterogenous Population 

 

In a similar fashion, the incremental plots and histograms generated showed a much better fit. It 

was, however, worth noting that the vanilla BGBB model and the DP-G DP-B model with 

heterogenous covariate both showed slight deviation from expectation in the incremental plot. 

 



 

Figure 11: Incremental Tracking Plots for 

Heterogenous Population 

Figure 12: Histogram for Heterogenous 

Population 

 

Heterogeneous Population with Homogenous Covariate Effect 

Model misspecification when a covariate effect is present did seem to introduce some bias to the 

estimation of the buying propensity. In the graphics below, one can clearly see that for the 

models without covariate effect (in particular, the BGBB and DP-G DP-B model), the estimated 

distribution of the buying propensity is inflated upward, whereas for the models where a 

covariate effect is estimated, the shape is more moderate and closer to the expected spread of the 

parameter.  

 



 

Figure 13: Estimated Dying Propensity for 

Heterogenous Population with Homogenous 

Covariate 

Figure 14: Estimated Buying Propensity for 

Heterogenous Population with Homogenous 

Covariate 

 

To gauge how the deviation plays out, two scenarios were simulated using the incremental plot 

and histogram. The first is where every period is assumed to have both covariate effects. Under 

such conditions, the incremental plots of the model without the covariate effect showed 

systematic underestimation of conversion, which naturally also translated to the histograms 

being overly left-skewed.  



 

Figure 15: Incremental Tracking Plot for 

Heterogenous Population with Homogenous 

Covariate (All Periods Assumed to Have 

Covariates) 

Figure 16: Histogram for Heterogenous 

Population with Homogenous Covariate (All 

Periods Assumed to Have Covariates) 

 

The second scenario assumes that the covariate effect is completely taken away. The simulation 

is now solely dependent on how good the models were at stripping away the non-stationarity 

introduced by the covariate. 

 



 

Figure 17: Incremental Tracking Plot for 

Heterogenous Population with Homogenous 

Covariate (All Periods Assumed to not Have 

Covariates) 

Figure 18: Histogram for Heterogenous 

Population with Homogenous Covariate (All 

Periods Assumed to not Have Covariates) 

 

Interestingly, apart from the initial bump for the BGBB and DP-G DP-B model along with the 

slight trace of over-estimation towards the tail of the histogram, both models were rather 

adequate at recovering the base adoption levels and spreads albeit not having directly accounted 

for the covariate effect. That said, the best performing model overall even after the covariate 

effect is removed still appears to be the BGBB model with a homogenous covariate effect. 

 

Heterogeneous Population with Homogenous Covariate Effect 



The overarching picture when a heterogenous covariate effect is present is also rather analogous 

to the homogenous case. The models without the covariate effect once again shifted the buying 

propensity estimation unnecessarily to the right.  

 

  
 
 

Figure 19: Estimated Dying Propensity for 

Heterogenous Population with Heterogenous 

Covariate 

Figure 20: Estimated Buying Propensity for 

Heterogenous Population with Heterogenous 

Covariate 

 

Using a similar procedure indicated in the homogenous case, the incremental plots and histogram 

for a scenario where a covariate is assumed to exist throughout or when a covariate is assumed to 

not exist at all, generally reflected a similar phenomenon. Where, in the former, the model 



without the covariate effect appeared to be underestimating consistently and, in the latter, the 

under-specified model performed better but still not as good as the properly specified model.  

 

In this case, one may also additionally compare the BGBB with homogenous covariate model 

and the BGBB with heterogenous covariate model. While both models are similar when no-

covariate effects are present, the BGBB model with heterogenous effect can capture the spread 

of the histogram better than its counterpart. In other words, it is capable of accounting for the 

marketing lovers whose propensity moves drastically with marketing action. Similarly, this can 

be said for the DP-G DP-B model with heterogenous covariate effect. 

 

  
 
 



Figure 21: Incremental Tracking Plot for 

Heterogenous Population with Heterogenous 

Covariate (All Periods Assumed to Have 

Covariates) 

Figure 22: Histogram for Heterogenous 

Population with Heterogenous Covariate (All 

Periods Assumed to Have Covariates) 

 

  
 
 

Figure 23: Incremental Tracking Plot for 

Heterogenous Population with Heterogenous 

Covariate (All Periods Assumed to not Have 

Covariates) 

Figure 24:  Histogram for Heterogenous 

Population with Heterogenous Covariate (All 

Periods Assumed to not Have Covariates) 

 

Finite Mixture Population 



Given the flexibility of the DP-G DP-B model, the paper further attempts to gauge its efficacy 

when it is being applied to a population that has bi-modal propensities (often called finite 

mixtures). Graphically, compared to earlier models such as the BGBB model, the DP-G DP-B 

model was able to infer the existence off bi-modalities in the data and does an adequate job 

extracting the location of the modes. Visibly however, the inference is not perfect, while the DP-

G DP-B model can infer the modal location, it does a poor job inferring the heights or the 

volume at the modes. 

 

 
 

Figure 25: Estimated Dying Propensity for 

Finite Mixture Population 

Figure 26: Estimated Buying Propensity for 

Finite Mixture Population 

 



More interestingly, while the graphs above may suggest that the DP-G DP-B model should offer 

a superior performance, at least compared to the BGBB models, it actually does not. Examining 

the incremental plots and histograms suggests that the DP-B DP-G model is generally at par with 

the BGBB model in terms of aggregate level predictions.  

 

 
 
 

Figure 27: Incremental Tracking Plots for 

Finite Mixture Population 

Figure 28: Histogram for Finite Mixture 

Population 

 

Breaking the tracking plots down can shed further insights into the root of the issue. One can 

note that, in the earlier parts of the tracking plot, the DP-G DP-B model appears to perform 

better, however in the later parts it appears to overestimate the number of purchases that exists. 



This can be explained by the fact the DP-G DP-B model appears to all have an over-estimated 

mode towards the end of distributions (specifically it estimates more individuals to have a low 

dying propensity). 

 

Finite Mixture Population with Heterogenous Covariate Effect 

 

Adding in covariates appears to impose additional difficulty for the model to infer the varying 

modality in the dataset. As seen below, while the DP-G DP-B model can still do a satisfactory 

job in distinguishing modality within the dying propensities, it fails to do so in the buying 

propensity (where the covariates are being introduced). That said, the model with the lack of 

covariate specification still causes the entire buying propensity distribution to shift rightward as 

seen before. 

 

  



 
Figure 29: Estimated Dying Propensity for a 

Finite Mixture Population with Heterogenous 

Covariate Effect 

Figure 30: Estimated Buying Propensity for a 

Finite Mixture Population with Heterogenous 

Covariate Effect 

 

Like the previous case where a covariate effect is not included. The DP-G DP-B model does not 

seem to offer much direct benefits in terms of the aggregate level forecasting both when the 

covariate effect exists or presumed to not exist in the holdout. The same problem of over-

estimation towards the tail-end of the distribution does seem to exist. While the DP-G DP-B 

model with covariate specification outperforms its counterpart (vanilla DP-G DP-B model) when 

covariate is included, it does not seem to be able to outperform the BGBB model with covariates.  

 

 



Figure 31: Estimated Dying Propensity for a 

Finite Mixture Population with Heterogenous 

Covariate Effect 

Figure 32: Estimated Buying Propensity for a 

Finite Mixture Population with Heterogenous 

Covariate Effect 

 
 

 
Figure 33: Estimated Dying Propensity for a 

Finite Mixture Population with Heterogenous 

Covariate Effect 

Figure 34: Estimated Buying Propensity for a 

Finite Mixture Population with Heterogenous 

Covariate Effect 

 

Conditional Expectation 

Moving from aggregated metrics to individualistic metrics, a table of the RMSE and Correlation 

between actual purchases of an individual and his/her conditional expectations from the different 

models were calculated. 

 



Homogeneous Population 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 1.719366 1.440016 1.412318 1.360742 1.365648 1.457408 1.407426 
Correlation 0.8480558 0.8691005 0.8785887 0.8799905 0.8745955 0.866822 0.8768652 

Figure 35: Conditional Expectation Homogenous Population 

 

Looking at the conditional expectation table, the results show that the more flexible models 

performed better than the homogenous model. Across all flexible models, the performance was 

rather alike. The added parameters required by the DP models and the models with covariate did 

not appear to hurt the model’s ability to extract individual estimates. 

 

Heterogeneous Population 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 2.442325 1.411642 1.514979 1.581499 1.294719 1.513064 1.561295 
Correlation 0.8591819 0.9412351 0.9374091 0.9369156 0.9390811 0.9398021 0.9397667 

Figure 36: Conditional Expectation Heterogenous Population 

The conditional expectations in a heterogenous case show a similar trend whereby the flexible 

model in general was able to cut down prediction error by about 40% compared to the 

homogenous model. The DP model once again had the smallest error in this case, but all flexible 

models are similar in terms of their correlation. 



Heterogeneous Population with Homogenous Covariate Effect 

The two-part approach highlighted earlier is once again deployed to analyze how models with 

and without the covariate effects lines up with the actual results. 

 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 2.843113 2.319876 2.141549 2.142731 2.292693 2.113183 2.16437 
Correlation 0.8953664 0.8639988 0.8715751 0.8746352 0.8569674 0.8701586 0.8668317 

Figure 37: Conditional Expectation Heterogeneous Population with Homogeneous Covariate 

Effect (All Periods Assumed to Have Covariates) 

 

In the case where all periods are assumed to have a covariate, we can see that the conditional 

expectation of a model with covariate is much better. This is consistent with what was shown in 

the incremental plots and histograms.  

 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 2.130536 1.659542 1.778731 1.728162 1.652276 1.743756 1.801642 
Correlation 0.8645569 0.8663232 0.8717127 0.8783012 0.8610834 0.8703882 0.8672899 

Figure 38: Conditional Expectation Heterogeneous Population with Homogeneous Covariate 

Effect (All Periods Assumed to not Have Covariates) 

 



However, in the case where all periods are assumed to not have a covariate, the conditional 

expectation trend reverses. The paper notes that the models where a covariate effect is explicitly 

included, performed worse at extrapolating the conditional expectation. 

 

This seems at odds with the results from earlier, however such trends could be explained as a 

fashion of the model shrinkage. When a regression was performed using the conditional 

expectation derived from the vanilla BGBB model on the conditional expectation derived from 

BGBB model with covariates, the coefficient on the former is 0.899, with an intercept of -0.049. 

This shows that as a result of the covariate, a greater deal of shrinkage was applied to the 

individual posterior distribution. 

 

This can be further confirmed as one map out the RMSE of the conditional expectation to the 

number of actual purchases an individual has made. 

 

Actual 

Purchase 

Geometric 

Binomial 

Model 

BGBB 

Model 

BGBB Model 

with 

Homogenous 

Covariate Effect 

BGBB Model with 

Heterogeneous 

Covariate Effect 

DP-B DP-

G Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

0 0.1201433 0.1765802 0.1237080 0.1271203 0.1778210 0.1267892 0.1267261 

1 0.6328762 0.6191557 0.5245666 0.5266561 0.6363961 0.5536761 0.5950663 

2 1.4639951 1.4666284 1.2692820 1.2603956 1.5407170 1.3107225 1.2461962 

3 0.6622704 1.2831748 1.1807558 1.1584580 1.3073565 1.1360962 1.1236677 

4 1.1720362 1.2620026 1.4566571 1.3882110 1.2335151 1.4978200 1.2687121 

5 2.0087548 1.6194656 1.7914512 1.7611822 1.7448578 1.7314956 1.7786899 

6 2.6888763 1.9190891 2.3203265 2.3294735 1.8849135 2.2206763 2.3637779 

7 3.7972386 2.6742871 3.1378772 2.9692742 2.7056807 3.0042329 3.1672809 

8 4.9795783 2.4219743 3.2187693 3.0160751 1.9950378 2.9686381 3.2817686 



9 5.4158333 2.9066667 3.3291667 3.0675000 2.6141667 3.1016667 3.2600000 

10 6.5575000 3.7475000 4.0891667 3.9833333 3.5300000 3.8900000 4.3800000 

Figure 39: Conditional Expectation Heterogeneous Population with Homogeneous Covariate 

Effect RMSE  

 

One can note that while the model with covariate has a smaller error compared to the models 

without covariates in the case where actual purchases are small, they have bigger errors when the 

actuals purchases are higher. In other words, the high buying propensity individual’s parameter 

was dragged down towards the population more in the case where the model has a covariate. 

 

Heterogeneous Population with Heterogenous Covariate Effect 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 2.943017 2.167765 1.846482 1.868942 2.069687 1.923118 1.833032 
Correlation 0.878269 0.9051894 0.9052252 0.9003293 0.9069125 0.9099661 0.900733 

Figure 40: Conditional Expectation Heterogeneous Population with Heterogeneous Covariate 

Effect (All Periods Assumed to Have Covariates) 

 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 2.510003 1.635307 1.749004 1.798962 1.512732 1.823507 1.777798 
Correlation 0.9014604 0.9467363 0.9494087 0.9423995 0.9509425 0.9507007 0.9460763 



Figure 41: Conditional Expectation Heterogeneous Population with Heterogeneous Covariate 

Effect (All Periods Assumed to not Have Covariates) 

 

One notes a similar case when the covariate effect is heterogenous. In the event where covariates 

were assumed to be present for all the next periods, the conditional expectation of the models 

with covariate is lower, whereas in the case where there were all covariates were set to zero, the 

model with covariate specification has a higher error. The outlier to this rule was the DP-G DP-B 

model that heavily mis-specified the dying propensity. 

Actual 

Purchase 

Geometric 

Binomial 

Model 

BGBB 

Model 

BGBB Model 

with 

Homogenous 

Covariate Effect 

BGBB Model with 

Heterogeneous 

Covariate Effect 

DP-B DP-

G Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

0 0.1519867 0.2124084 0.1967911 0.2072406 0.2119224 0.1847676 0.2025492 

1 0.9618575 0.7810794 0.8179763 0.7305601 0.7179148 0.6829032 0.7376075 

2 1.1842742 0.7994661 0.9412082 0.8931397 0.8730521 0.9972347 0.8457544 

3 1.7744037 1.3441695 1.6142952 1.5019506 1.3410309 1.6725185 1.4936687 

4 1.6490247 1.1544075 1.5289808 1.6089570 1.1599600 1.8939617 1.4952576 

5 2.0602090 1.4465055 1.7508411 1.7325126 1.3962849 2.1927845 1.8031171 

6 2.5855598 1.7091363 2.0457002 2.0658841 1.7679790 2.5141580 1.9462954 

7 3.7301549 2.3787095 2.6928943 2.8052084 2.3254803 3.2326982 2.8047324 

8 4.6530571 2.7493220 2.9238034 3.0100608 2.6144867 3.5391391 3.1396423 

9 5.4876826 3.1395974 3.2660863 3.2998524 2.9035924 3.9804337 3.5243004 

10 6.4400000 3.3161111 3.4261111 3.6066667 2.2600000 3.6055556 3.3744444 

Figure 42: Conditional Expectation Heterogeneous Population with Heterogeneous Covariate 

Effect RMSE 

 

The shrinkage pattern noted earlier was also present in this case, where the models with 

covariate effect again performed worse when actual purchase is larger. 



 

Finite Mixture Population 

 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 1.950064 1.91723 1.902247 1.904884 1.886151 1.870595 1.836944 
Correlation 0.8782898 0.8183846 0.8178485 0.7994399 0.7200887 0.7436967 0.7353538 

Figure 43: Conditional Expectation Finite Mixture Population 

 

In the finite mixture case, the DP-G DP-B model overperformed all other models in terms of 

RMSE but underperformed compared to all other models in terms of the out of sample 

correlation. This could be explained since the DP-G DP-B model shrinks the posterior 

distribution of an individuals to their closest mode thereby homogenizing groups of individuals 

propensities further. Such homogenization may lead to better prediction performance due to its 

shrinkage but could also lessen the variation across individuals thereby decreasing the 

correlation. 

 

Finite Mixture Population with Heterogenous Covariate Effect 

 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 



RMSE 1.935816 1.815185 1.685702 1.727486 1.819086 1.720643 1.72891 
Correlation 0.8580906 0.784386 0.8289517 0.7919509 0.7696435 0.759704 0.7573393 

Figure 44: Conditional Expectation Finite Mixture Population with Heterogeneous Covariate 

Effect (All Periods Assumed to Have Covariates) 

 

 

Geometric 

Binomial 

Model 

BGBB Model 

BGBB Model 

with 

Homogenous 

Covariate 

Effect 

BGBB Model 

with 

Heterogeneous 

Covariate Effect 

DP-B DP-G 

Model 

DP-B DP-G 

Model with 

Homogenous 

Covariate 

DP-B DP-G 

Model with 

Heterogenous 

Covariate 

RMSE 1.935816 1.815185 1.902253 1.946367 1.819086 1.914204 1.906634 
Correlation 0.8580906 0.784386 0.8022488 0.7887746 0.7696435 0.7543559 0.7708036 

Figure 31: Conditional Expectation Finite Mixture Population with Heterogeneous Covariate 

Effect (All Periods Assumed to not Have Covariates) 

Analyzing the finite mixture case with covariates reveals that even in a case where we presume 

there to be modalities in the distribution, the effect of covariates significantly outweighs the 

effect of a flexible prior in the context of individual level prediction. Like the earlier cases, the 

models with covariate (regardless of whether its BGBB or DP-G DP-B) performs much better 

than its vanilla counterpart when the covariate effect is presumed to exist, and worse when the 

covariate effect is absent (attributable to the shrinkage effect mentioned earlier). 

 

Comparing the DP-G DP-B model to the BGBB model, it seems like the most parsimonious 

BGBB model with homogenous covariate offers superior performance than its counterpart. 

While more simulation-based analysis may need to be done to offer conclusive finding, this does 

shed light in how extremely flexible models may not necessarily to achieve good model 

performance. 



 

Marketing Simulation 

Going back to the functional form of how the covariates are included, the paper notes that the 

form used, being analogous to logistic regression, implies that the same covariate will vary in 

effectiveness for different individuals. Much like the sigmoid, the functional form dictates that 

the effect will be stronger for individual whose propensities hovers around 0.5 whereas it will 

basically be ineffective for those whose propensities are extremely low of extremely high. 

Principally, such effect makes sense as well, for individuals who are extremely likely to buy a 

product, the marketing campaign will be useless to them. The same also holds for the low 

propensity individuals.  

 

Under this condition, this means that not all marketing efforts should be made equal. The paper 

assumes, as earlier, that there exists a homogenous covariate effect for all individuals. In the 

simulation, the paper introduces two covariates, both can be thought of as marketing campaigns 

rendered by a firm. The two campaigns vary in effectiveness, with the first having a coefficient 

of 0.6 on an individual’s buying propensity and the second having a coefficient of 0.3. Due to the 

disparity in the effectiveness of the campaign, the two campaigns also have different costs. The 

first campaign cost $14 dollars per individual whereas the second campaign cost $6 dollars. Lets 

further assume whenever an individual converts, he/she brings in a fixed amount of $100. For 

the purpose of the simulation a discount rate of 0.1 per period will be used. 

 

To establish some benchmarking, a couple of scenarios were first simulated. 



• Scenario 1: Firm sends both marketing campaign to an individual if the probability that 

an individual is alive is greater than 0.5. 

• Scenario 2: Firm does not send any marketing campaign at all 

• Scenario 3: Firm sends only the $14 marketing campaign to an individual if the 

probability that an individual is alive is greater than 0.5. 

• Scenario 4: Firm sends only the $6 marketing campaign to an individual if the probability 

that an individual is alive is greater than 0.5. 

 

The parameters used to simulate the dying propensities are the posterior distribution obtained 

from the vanilla BGBB model. 

 

The results can be found in the table below: 

Scenarios Quantiles 
Net Present Value of an Individual’s contribution 

(discounted conversion value less marketing expenses) 

Scenario 1 

Mean 109.955541404643 

0% Percentile 92.6653165368367 

25% Percentile 106.578594189838 

50% Percentile 110.726396780109 

75% Percentile 113.614003099488 

100% Percentile 121.456948207978 

Scenario 2 

Mean 116.586431462874 

0% Percentile 102.13460740616 

25% Percentile 113.427281826067 



50% Percentile 116.6062990329 

75% Percentile 119.745068037335 

100% Percentile 129.79965402895 

Scenario 3 

Mean 112.353258599838 

0% Percentile 95.7806332783563 

25% Percentile 109.411826560278 

50% Percentile 112.544822762004 

75% Percentile 115.329098084899 

100% Percentile 125.147052394333 

Scenario 4 

Mean 117.63622211443 

0% Percentile 101.25029595083 

25% Percentile 113.703745434894 

50% Percentile 117.640978529918 

75% Percentile 121.555979866937 

100% Percentile 132.237725843504 

 

To reflect the point of how the ROI of a marketing campaign (even under a homogenous 

condition) is different depending on the innate propensity of an individual, the graphics below 

shows the true increase in purchasing propensity (using the 0.6 and 0.3 parameters) given the 

different form of marketing campaign ran scaled up by the fixed payment of 100. 



 
 

One can obtain the net effect of such a marketing campaign by subtracting the cost of the 

campaign from the monetary gain. To gauge the efficacy of our model in this setting, the net 

effect graphics were also generated using the estimated covariate effect obtained from the BGBB 

with homogenous covariate effect model and the DP-G DP-B with homogenous covariate effect 

model. 

 
 



Note that using the net effect graphics, a frontier emerged as to what the optimal marketing 

policy for individuals at the who has differing buying propensity. One can further note that while 

there exist discrepancies across models with regards to the exact monetary value of each policy, 

each model was able to identify the $6 dollar marketing campaign as an implementable policy 

with the BGBB with covariate model, further identifying a 2-campaign approach analogous to 

the simulated result from the original model. 

 

Using the boundaries identified above, a simulation is ran with the targeting policy of both the 

BGBB with homogenous covariate model and the DP-G DP-B with homogenous covariate 

model. The posterior distribution used to gauge an individual’s probability of being alive were 

also from these models respectively. 

 

Scenarios Quantile 
Net Present Value of an Individual’s contribution 

(discounted conversion value less marketing expenses) 

BGBB With Cov 

Mean 119.130883672808 

0% Percentile 105.973969392344 

25% Percentile 115.215392234813 

50% Percentile 119.55656589691 

75% Percentile 122.781467463989 

100% Percentile 136.069683103909 

DP-G DP-B 

With Cov 

Mean 119.536046163425 

0% Percentile 105.524181835381 

25% Percentile 115.911177039566 



50% Percentile 119.632257746352 

75% Percentile 123.503792216649 

100% Percentile 133.890119962238 

 

As noted above, the targeting policies obtained from the model were both able to beat the best 

blanket strategies above by 2 dollars per individual. It is worth noting however, that the targeting 

strategy also greatly depends on the ability of the model to estimate whether an individual is 

alive, which may have been why DP-G DP-B model was able to obtain a slightly higher ROI 

despite having a worse targeting tactics.  

  

 

DISCUSSION 

 

Through the model and scenarios surveyed, one can note a couple of key takeaways. Firstly, the 

heavily parametrized models particularly the BGBB with covariate model, the DP-G DP-B 

model and the DP-G DP-B model with covariates, were all rather stable at recovering the 

parameters of rather simple scenarios. There were minimal signs of overfitting and the models 

were all rather desirable at predicting both the aggregated and individual level trend. 

Furthermore, in cases where a multi-modal distribution is presumed for individuals the DP-G 

DP-B model seems to extract conditional expectations with less error. 

 

However, comparing across the heavily specified model, the DP-G DP-B model class does 

appear to be less stable more often. As seen through the simulated example, the DP based 



models tend to have deviations in estimating the parameters of interest more frequently than the 

parametric models. This may partially be a result of the small sample (200 individuals) that were 

provided to the model but also the relatively short MCMC iteration. Nonetheless, the heavier 

parametrization of the model could have also contributed to this phenomenon.  

 

In addition to that, in contrary to expectation, while the DP-G DP-B model can infer the presence 

of modalities in propensities, it offers rather limited improvement in terms of the aggregated 

level predictions and forecasting due to issues such as overfitting (particularly at the tail-end of 

the distributions). In the individual case, while the DP-G DP-B model produces results with less 

error, the prediction seems to correlate less with the actual result, which may be a cause of 

concern. 

 

Secondly, model misspecification when a covariate effect is missing leads to a biased parameter 

estimates where in the presence of a positive covariate will lead to the buying propensity being 

overly inflated. In the case where such a covariate is present in future occurrences, this will 

cause the model to under-predict the number of conversions on both an individual and 

aggregated context. 

 

Furthermore, even when the covariate is no longer present in the future, the upward bias of the 

parameter will still cause the model to underperform on aggregate. The model will overstate how 

many high buying propensity customers there is out there and overstate the initial adoption. 

 



The covariate effects extracted can also be further used to perform consumer targeting. The 

paper experimented with the case where a homogenous covariate effect is assumed and found 

that by using the covariate effects in conjunction with the posterior distribution of an individual’s 

propensities, firms can better target who to offer marketing activities to and boost their revenue 

per individual. Optimization done in this manner outperforms blanked based approach based on 

our simulation. 

 

It is worth noting, however, that such a covariate-based model also comes with a trade-off of its 

own. When such covariate effects are included, the posterior distribution of individuals will be 

pulled more towards the mean since the effect of the covariate will account for some of the 

conversion. This means the posterior update process will be slower overall for individuals which 

may lead to the model performing worse when projecting out conditional expectation for high 

propensity individuals. That said, with enough observation, this issue should cease to exist. 

 

Thirdly, while the combination of the DP prior and covariates offers a good theoretical model 

that can be extremely flexible in various cases, the simulation revealed that such model may 

offer rather little benefits in both aggregate and individual level predictions. Due to the presence 

of covariate effects the DP model often fails to identify the modalities in the buying propensities. 

This coupled with the fact that the DP model is already prone to overfitting issues causes the 

predictions to generally be about the same quality as the other models, while requiring more 

training time. 

CONCLUSIONS AND NEXT STEPS 

 



The models presented in this paper offers another dive at enriching the customer lifetime value 

modelling toolkits. However more work could be done to further explore the efficacy of this 

model. A natural extension for this paper would be to apply this model to an empirical dataset to 

test how useful such model is in a real-life setting. 

 

In addition to added level of robustness check, more exploration could also be done at the point 

of incorporating correlations across model parameters. Past work (Fader, Hardie and Shang, 

2009) have found that such correlation exists which can further boost the flexibility of the model 

and make it even more generalizable. 

 

The covariate effect presented in this paper can also be further explored via marketing-based 

simulation. For instance, with the estimated covariate effect, one can devise a dynamic 

marketing strategy that takes advantage of the different level of customer sensitivity to 

marketing along with how effective the marketing is relative to an individual’s innate 

parameters. 

 

Lastly, covariate integration can also be attempted at the attrition level, as indicated earlier, 

certain marketing methods such as loyalty program is aimed at lowering the attrition propensity 

of individuals. Covariate integration at the attrition level could be more effective at accounting 

for these intricacies. 

  



APPENDIX 

 

Incorporating Covariates 

To include the covariates in a non-binarized case where the magnitude of the covariates are 

considered one can imagine a diagram as follow: 

 

 

In such a continuous case however, the X vector used in the likelihood calculation would depend 

on the discount functions chosen. For instance, if straight-line discounting is used, then the 

formulation will be as follows: 

 

𝑋IJK =	
𝑡'
𝑇 𝐶𝑜𝑣0' +⋯+

𝑡-
𝑇 𝐶𝑜𝑣0- 

  

Where 𝐶𝑜𝑣𝑡1	…	𝐶𝑜𝑣𝑡𝑛, are the different values of a covariate that were observed between the 

previous period and this, 𝑡1	…	𝑡𝑛 represents the time when the covariates occurred and let T be 

the time between the previous period and the next. 

  
Figure 33 :  Visual  Illustration of Covariate Effect   

  



 

Note that the discounting is necessary here as if one imagine a truly discrete buying process, one 

expects the recency effect to kick in closer to the period when the purchase can happen. 

However, if this model was applied to the discretized yearly retention case, one may reasonably 

think that discounting should not be used as covariate at every period should increase the 

customer’s propensity to purchase in a specific period.  

 
Model Parameters 
 

 

GB BGBB 

BGBB with 

Homogenous 

Cov Effect 

BGBB with 

Heterogenous 

Cov Effect 

DP-B DP-G Model 

(3 clusters) 

DP-B DP-G Model 

with Homogenous 

Covariate (3 clusters) 

DP-B DP-G Model with 

Heterogenous Covariate 

(3 clusters) 

Homogenous 

Scenario 

p ~ 0.13 

q ~ 0.49 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(1.49,7.43) 

q ~ Beta 

(61, 64.55) 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(1.39,6.9) 

q ~ Beta 

(24.48, 24.07) 

𝐵! ~ -0.07 

𝐵" ~ -0.07 

p ~ Beta 

 (1.18, 5.52) 

q ~ Beta 

 (23.8, 25.12) 

𝐵! ~ Normal 

(0.02, 0.28) 

𝐵" ~ Normal 

(-0.03, 0.11) 

p | seg 1 ~ Beta 

(2.38, 2.81) 

p | seg 2 ~ Beta 

(0.55, 1.09) 

p | seg 3 ~Beta 

(1.42, 7.77) 

 

q | seg 1 ~ Beta 

(7.63, 5.5) 

q | seg 2 ~ Beta 

(0.59, 1.11) 

q | seg 3 ~ Beta 

(28.27, 28.76) 

 

P (seg 1) ~ 0.08 

P (seg 2) ~0.03 

P (seg 3) ~ 0.89 

 

𝐵! ~ 0 

𝐵" ~ 0 

p | seg 1 ~ Beta 

(1.54, 8.17) 

p | seg 2 ~ Beta 

(1.94, 2.19) 

p | seg 3 ~ Beta 

(1.83, 1.47) 

 

q | seg 1 ~ Beta 

(36.44, 35.58) 

q | seg 2 ~ Beta 

(0.65, 1.46) 

q | seg 3 ~ Beta 

(0.44, 0.36) 

 

P (seg 1) ~ 0.96 

P (seg 2) ~0.02 

P (seg 3) ~ 0.02 

 

𝐵! ~ -0.06 

𝐵" ~ -0.06 

p | seg 1 ~ Beta 

(1.66, 1.91) 

p | seg 2 ~ Beta 

(0.1, 0.21) 

p | seg 3 ~ Beta 

(1.83, 1.47) 

 

q | seg 1 ~ Beta 

(0.22, 0.41) 

q | seg 2 ~ Beta 

(1.27, 1.97) 

q | seg 3 ~ Beta 

(38.27, 37.51) 

 

P (seg 1) ~ 0.04 

P (seg 2) ~0.03 

P (seg 3) ~ 0.93 

 

𝐵! ~ Normal 

(-0.07, 0.32) 

𝐵" ~ Normal 

(-0.06, 0.46) 



Heterogenous 

Scenario 

p ~ 0.11 

q ~ 0.54 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(0.85,6.97) 

q ~ Beta 

(1.21, 1.4) 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(0.46,2.83) 

q ~ Beta (1.54, 

1.42) 

𝐵! ~ -0.39 

𝐵" ~ -0.15 

p ~ Beta 

 (0.81, 6.68) 

q ~ Beta 

 (1.26, 1.27) 

𝐵! ~ Normal 

(-0.32, 0.17) 

𝐵" ~ Normal 

(-0.14, 0.71) 

p | seg 1 ~ Beta 

(0.42, 3) 

p | seg 2 ~ Beta 

(0.61, 1.1) 

p | seg 3 ~Beta 

(0.38, 0.35) 

 

q | seg 1 ~ Beta 

(1.47, 1.7) 

q | seg 2 ~ Beta 

(0.44, 0.33) 

q | seg 3 ~ Beta 

(0.76,0.5) 

 

P (seg 1) ~ 0.9 

P (seg 2) ~0.05 

P (seg 3) ~ 0.05 

 

𝐵! ~ 0 

𝐵" ~ 0 

p | seg 1 ~ Beta 

(0.51, 3.46) 

p | seg 2 ~ Beta 

(0.86, 0.92) 

p | seg 3 ~ Beta 

(0.09, 0.3) 

 

q | seg 1 ~ Beta 

(2.01, 1.83) 

q | seg 2 ~ Beta 

(0.4, 0.44) 

q | seg 3 ~ Beta 

(0.2, 0.2) 

 

P (seg 1) ~ 0.9 

P (seg 2) ~0.04 

P (seg 3) ~ 0.62 

 

𝐵! ~ -0.38 

𝐵" ~ -0.14 

p | seg 1 ~ Beta 

(0.07, 0.24) 

p | seg 2 ~ Beta 

(1.06, 2.24) 

p | seg 3 ~ Beta 

(1.13, 8.77) 

 

q | seg 1 ~ Beta 

(1.41, 1.5) 

q | seg 2 ~ Beta 

(1.39, 1.24) 

q | seg 3 ~ Beta 

(2.14, 1.87) 

 

P (seg 1) ~ 0.15 

P (seg 2) ~0.22 

P (seg 3) ~ 0.64 

 

𝐵! ~ Normal 

(-0.36, 0.3) 

𝐵" ~ Normal 

(-0.15, 0.41) 

Heterogenous 

Scenario with 

Homogenous 

Covariate Effect 

p ~ 0.11 

q ~ 0.64 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(0.65,4.58) 

q ~ Beta 

(1.36, 1.0) 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(0.72,5.14) 

q ~ Beta  

(1.11, 1.07) 

𝐵! ~ 0.27 

𝐵" ~ 0.58 

p ~ Beta 

 (0.69, 4.78) 

q ~ Beta 

 (1.2, 1.1) 

𝐵! ~ Normal 

(0.21, 0.41) 

𝐵" ~ Normal 

(0.49, 0.19) 

p | seg 1 ~ Beta 

(2.38, 2.81) 

p | seg 2 ~ Beta 

(0.55, 1.09) 

p | seg 3 ~Beta 

(1.42, 7.77) 

 

q | seg 1 ~ Beta 

(7.63, 5.5) 

q | seg 2 ~ Beta 

(0.59, 1.11) 

q | seg 3 ~ Beta 

(28.27, 28.76) 

 

P (seg 1) ~ 0.14 

P (seg 2) ~0.07 

p | seg 1 ~ Beta 

(0.73, 5.33) 

p | seg 2 ~ Beta 

(0.83, 5) 

p | seg 3 ~ Beta 

(0.12, 0.31) 

 

q | seg 1 ~ Beta 

(1.44, 1.35) 

q | seg 2 ~ Beta 

(0.16, 0.18) 

q | seg 3 ~ Beta 

(1.19, 0.95) 

 

P (seg 1) ~ 0.91 

P (seg 2) ~0.03 

p | seg 1 ~ Beta 

(0.88,7.02) 

p | seg 2 ~ Beta 

(0.25, 0.41) 

p | seg 3 ~ Beta 

(0.1, 0.22) 

 

q | seg 1 ~ Beta 

(1.12,1.02) 

q | seg 2 ~ Beta 

(12.62, 18.17) 

q | seg 3 ~ Beta 

(0.22,0.41) 

 

P (seg 1) ~ 0.92 

P (seg 2) ~0.05 



P (seg 3) ~ 0.79 

 

𝐵! ~ 0 

𝐵" ~ 0 

P (seg 3) ~ 0.05 

 

𝐵! ~ 0.26 

𝐵" ~ 0.55 

P (seg 3) ~ 0.03 

 

𝐵! ~ Normal 

(0.27, 0.61) 

𝐵" ~ Normal 

(0.57, 0.32) 

Heterogenous 

Scenario with 

Heterogeneous 

Covariate effect 

p ~ 0.1 

q ~ 0.62 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(1.01,7.91) 

q ~ Beta 

(2.71, 1.9) 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(0.67,4.74) 

q ~ Beta  

(2.36, 2.17) 

𝐵! ~ 0.17 

𝐵" ~ 0.55 

p ~ Beta 

 (0.69, 4.91) 

q ~ Beta 

 (2.33, 2.13) 

𝐵! ~ Normal 

(0.18, 0.61) 

𝐵" ~ Normal 

(0.54, 0.22) 

p | seg 1 ~ Beta 

(0.25, 2.35) 

p | seg 2 ~ Beta 

(0.7, 1.19) 

p | seg 3 ~Beta 

(1.45, 11.99) 

 

q | seg 1 ~ Beta 

(1.19, 0.58) 

q | seg 2 ~ Beta 

(2.98, 1.52) 

q | seg 3 ~ Beta 

(4.33,3.09) 

 

P (seg 1) ~ 0.14 

P (seg 2) ~0.12 

P (seg 3) ~ 0.74 

 

𝐵! ~ 0 

𝐵" ~ 0 

p | seg 1 ~ Beta 

(4.72, 56.54) 

p | seg 2 ~ Beta 

(3.51, 2.61) 

p | seg 3 ~ Beta 

(0.95, 1.3) 

 

q | seg 1 ~ Beta 

(3.16, 3.38) 

q | seg 2 ~ Beta 

(1.9, 1.57) 

q | seg 3 ~ Beta 

(0.95, 1.3) 

 

P (seg 1) ~ 0.82 

P (seg 2) ~0.05 

P (seg 3) ~ 0.13 

 

𝐵! ~ 0.18 

𝐵" ~ 0.55 

p | seg 1 ~ Beta 

(0.69, 5.21) 

p | seg 2 ~ Beta 

(0.13, 0.31) 

p | seg 3 ~ Beta 

(0.25, 0.72) 

 

q | seg 1 ~ Beta 

(2.83, 2.74) 

q | seg 2 ~ Beta 

(0.59, 0.59) 

q | seg 3 ~ Beta 

(0.6, 0.49) 

 

P (seg 1) ~ 0.91 

P (seg 2) ~0.03 

P (seg 3) ~ 0.96 

 

𝐵! ~ Normal 

(0.19, 0.71) 

𝐵" ~ Normal 

(0.58, 0.46) 

Finite Mixture 

Population 

p ~ 0.16 

q ~ 0.47 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(1.91,8.42) 

q ~ Beta 

(1.36,1.55) 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(2.43,11.4) 

q ~ Beta  

(1.48, 1.74) 

𝐵! ~ 0.08 

𝐵" ~ 0.02 

p ~ Beta 

 (0.69, 4.91) 

q ~ Beta 

 (2.33, 2.13) 

𝐵! ~ Normal 

(0.18, 0.61) 

𝐵" ~ Normal 

(0.54, 0.22) 

p | seg 1 ~ Beta 

(0.07, 0.35) 

p | seg 2 ~ Beta 

(9.37, 23.68) 

p | seg 3 ~Beta 

(0.61, 0.35) 

 

q | seg 1 ~ Beta 

(5.36, 11.09) 

p | seg 1 ~ Beta 

(5.12, 11.77) 

p | seg 2 ~ Beta 

(0.44, 0.28) 

p | seg 3 ~ Beta 

(0.33, 3.43) 

 

q | seg 1 ~ Beta 

(2.54, 0.87) 

p | seg 1 ~ Beta 

(0.26, 1.52) 

p | seg 2 ~ Beta 

(3.36, 7.17) 

p | seg 3 ~ Beta 

(0.79, 0.45) 

 

q | seg 1 ~ Beta 

(3.27,6.38) 



q | seg 2 ~ Beta 

(4.84 1.82) 

q | seg 3 ~ Beta 

(0.22,0.34) 

 

P (seg 1) ~ 0.36 

P (seg 2) ~0.57 

P (seg 3) ~ 0.07 

 

𝐵! ~ 0 

𝐵" ~ 0 

q | seg 2 ~ Beta 

(0.12,0.37) 

q | seg 3 ~ Beta 

(5.18, 10.29) 

 

P (seg 1) ~ 0.5 

P (seg 2) ~0.06 

P (seg 3) ~ 0.44 

 

𝐵! ~ 0.09 

𝐵" ~ 0.02 

q | seg 2 ~ Beta 

(1.25,0.54) 

q | seg 3 ~ Beta 

(1.07,1.17) 

 

P (seg 1) ~ 0.45 

P (seg 2) ~0.49 

P (seg 3) ~ 0.06 

 

𝐵! ~ Normal 

(0.12, 0.47) 

𝐵" ~ Normal 

(-0.04, 0.91) 

Finite Mixture 

Population with 

Heterogeneous 

Covariate effect 

p ~ 0.18 

q ~ 0.61 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(1.68,6.68) 

q ~ Beta 

(1.32,0.99) 

𝐵! ~ 0 

𝐵" ~ 0 

p ~ Beta 

(2.45,10.8) 

q ~ Beta  

(0.84, 0.93) 

𝐵! ~ 0.34 

𝐵" ~ 0.67 

p ~ Beta 

 (0.69, 4.91) 

q ~ Beta 

 (2.33, 2.13) 

𝐵! ~ Normal 

(0.18, 0.61) 

𝐵" ~ Normal 

(0.54, 0.22) 

p | seg 1 ~ Beta 

(0.47, 0.44) 

p | seg 2 ~ Beta 

(0.17, 0.5) 

p | seg 3 ~Beta 

(3, 9.66) 

 

q | seg 1 ~ Beta 

(1.47, 0.89) 

q | seg 2 ~ Beta 

(1.39, 1.93) 

q | seg 3 ~ Beta 

(2.45,1.07) 

 

P (seg 1) ~ 0.11 

P (seg 2) ~0.25 

P (seg 3) ~ 0.64 

 

𝐵! ~ 0 

𝐵" ~ 0 

p | seg 1 ~ Beta 

(0.18,0.75) 

p | seg 2 ~ Beta 

(1.49, 2.01) 

p | seg 3 ~ Beta 

(2.09, 7.03) 

 

q | seg 1 ~ Beta 

(1.05, 2.05) 

q | seg 2 ~ Beta 

(0.81, 0.4) 

q | seg 3 ~ Beta 

(1.21, 0.96) 

 

P (seg 1) ~ 0.27 

P (seg 2) ~0.14 

P (seg 3) ~ 0.6 

 

𝐵! ~ 0.34 

𝐵" ~ 0.64 

p | seg 1 ~ Beta 

(0.89, 3.83) 

p | seg 2 ~ Beta 

(1.27, 0.29) 

p | seg 3 ~ Beta 

(6.7, 17.49) 

 

q | seg 1 ~ Beta 

(1.39, 1.64) 

q | seg 2 ~ Beta 

(0.83, 1.16) 

q | seg 3 ~ Beta 

(0.59, 0.28) 

 

P (seg 1) ~ 0.72 

P (seg 2) ~0.05 

P (seg 3) ~ 0.23 

 

𝐵! ~ Normal 

(0.25, 0.4) 

𝐵" ~ Normal 

(0.66, 0.91) 

Figure 3: Actual Parameter Values Generated by the Model when Fitted onto the Datasets 
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