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We study two geometrical factors needed for the correct construction of statistical en-

sembles of surfaces. Such ensembles appear in the study of fluid bilayer membranes, though

our results are more generally applicable. The naive functional measure over height fluctu-

ations must be corrected by these factors in order to give correct, self-consistent formulas

for the free energy and correlation functions of the height. While one of these corrections —

the Faddeev-Popov determinant — has been studied extensively, our derivation proceeds

from very simple geometrical ideas, which we hope removes some of its mystery. The other

factor is similar to the Liouville correction in string theory. Since our formulas differ from

those of previous authors, we include some explicit calculations of the effective frame ten-

sion and two-point function to show that our version indeed secures coordinate-invariance

and consistency to lowest nontrivial order in a temperature expansion.
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1. Introduction and Summary

Amphiphilic molecules in water tend to aggregate into thin flexible bilayers, which in

turn form a wide variety of nearly two-dimensional structures with characteristic size of

order microns [1]. The study of these structures may become significant for biology: they

are certainly important technologically as the underlying elements of microemulsions and

other complex fluids.

To understand the static and dynamic properties of bilayer membranes, and the tran-

sitions between different morphologies, we must first understand the role of thermal fluc-

tuations in two-dimensional surfaces, a subtle problem in statistical mechanics. Thermal

fluctuations are important because regardless how stiff a membrane may be, very long-

wavelength undulations in its shape are always allowed; on long enough length scales any

membrane will appear flexible and will undulate significantly, a phenomenon first described

in the cell walls of red blood cells in the 19th century [2].1

Since the length scales we wish to study are much larger than the size of the constituent

molecules, we expect that a membrane will be characterized by just a few effective param-

eters, summarizing the effects of the complicated molecular forces. Indeed, the famous

Canham-Helfrich model[4] describes the equilibrium statistical mechanics of membranes in

terms of just two parameters: a chemical potential for the addition of surfactant molecules,

which we will call µ0, and a bending energy coefficient, the stiffness κ0. (Another param-

eter, the gaussian stiffness κ̄0, only enters when we consider topology change.) The bare

coefficients µ0, κ0 are not directly observable, but from them we can derive some more rel-

evant phenomenological parameters. We will mainly study the “frame tension” τ , which is

the free energy per unit area of the fluctuating membrane, and the two-point correlation

〈h(u)h(0)〉 of the height h(u) of the membrane from its average plane, which we fix by

fixing the edges of the membrane to lie on a square frame. The leading behavior of this

two-point function at small wavenumber defines another phenomenological parameter, the

“q2 coefficient” r via

〈h(q)h(−q)〉 =
ABT

rq2 + O(q4)
, (1.1)

where AB is the area of the frame, T is the temperature (we set Boltzmann’s constant kB

equal to one), and q is a wavenumber. Another reason to introduce r is that in dynamics

1 Strictly speaking we are here talking about “fluid membranes,” those with no internal struc-

ture or order within the surface. In this paper we discuss only fluid membranes, but our measure

factors can be used in more complicated situations too [3].
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problems we can still calculate correlation functions like (1.1), while there is no analog of

the free energy from which to compute τ . Two of us study the dynamical problem in [5].

In this paper we will explore the relation between the various coefficients µ0, κ0, τ ,

and r. More generally, on long length scales the precise size of the constituent molecules

is immaterial: we can get the same answers using molecules of size a with coefficients µ0,

κ0 or with rescaled molecules of size b−1a, b < 1, and effective coefficients µeff (b), κeff (b).

The scale dependence of κeff is well known [6]–[11], but various answers for µeff have been

given (for example, see [8][9][11]–[15]). In part the differences reflect convention, but there

is a key physics point which we will address: to get correct answers we must define our

functional measure properly. Two of us have already discussed such matters in [3], but

here we will add a number of points, as follows.

We first introduce the effective action Γ[h̄] of the fluctuating membrane and recall the

argument of [3] that its form is constrained by the coordinate invariance of the underlying

theory. In particular we show in sect. 2 that the coefficients r and τ defined above must be

equal. We then set up a naive, uncorrected, calculational scheme which yields (consistent

with [15])

τ = µ0 +
T

2

∫ Λ d2q

(2π)2
log

[
(µ0q

2 + κ0q
4)
a2λ2

2πT

]
, (1.2)

where Λ = 2π/a and a is the linear size of the constituent molecules. Following Morse and

Milner we have introduced the thermal de Broglie wavelength

λ = h/
√

2πmT , (1.3)

where m is the mass of a surfactant molecule [16]. The same calculational scheme however

yields a very different formula for r. In fact (1.2) is our final result, but clearly we need to

work a bit harder to understand r.

The first correction factor, the “Faddeev-Popov” factor, is well known. In [3] we gave

a formula for this factor which differs from the one given by David [14]; here in sect. 3

we give a simple geometrical motivation followed by a derivation of our formula which is

simpler than the one in [3]. While unimportant in the calculation of τ , this factor does

modify the naive calculation of r (and higher correlation functions too), yielding an rFP

which still disagrees with τ .

Next in sect. 4 we argue that another correction factor is needed. Physically our

membrane consists of constituent molecules each occupying a fixed area a2 in physical

3-space. As the surface bows outward away from its flat equilibrium configuration its area
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increases and additional molecules must be brought in from solution, effectively increasing

the number of degrees of freedom in the membrane problem. A statistical measure with

variable number of degrees of freedom, depending on the configuration itself, is rather

complicated. We would prefer a measure with fixed number of degrees of freedom, as indeed

we used implicitly in the naive derivation of rFP. Since changing the number of degrees of

freedom, or equivalently the ultraviolet cutoff, can be compensated by renormalizing the

bare energy, we expect that a counterterm correction will need to be added to the naive

derivation.

We fix this counterterm by requiring consistency between two different Monge-gauge

calculations of the free energy (in the Appendix we give a different strategy). The required

counterterm turns out to make a contribution precisely changing the q2 coefficient from

rFP to r = τ .

The introduction of our second correction factor may seem like ad hoc wish-fulfillment,

but in the Appendix we give some detailed calculations showing how it and the Faddeev-

Popov factor together are crucial to obtain consistent answers; in particular we show that

the specific coefficient of the counterterm implied by consistency is the right one to get

r = τ . Furthermore, an analogous correction is well known in the string theory literature,

where it is called the “Liouville factor” [17][18]. This factor sometimes appears in the

previous membrane literature (e.g. [19]), but one gets the impression that it matters only

in the low-stiffness regime beyond the persistence length; again, we will see that it is

needed to get the correct correlation functions even in the more physical stiff regime. Our

correction differs in detail from the Liouville factor because the latter is appropriate for

conformal gauge, but in each case the motivation is the same. We will also argue that the

usual interpretation of the Liouville factor as a Jacobian is misleading; really as argued

above it reflects renormalization.

Again our counterterm is important because without it, ordinary diagrammatic pertur-

bation theory gives incorrect results due to the subtlety in the statistical measure discussed

above. Finally we conclude in sect. 5.

2. General Arguments

We will consider fluid membranes, those with no internal order or structure. Real

membranes are typically fluid at temperatures high enough to destroy in-plane order,

but in any case such order can easily be incorporated into the argument below [3]. The
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constituents of a membrane have a preferred spacing, with a high energy cost for local

deviations from that density. Thus, in this regime the free energy cost of a membrane

configuration depends only on its shape.

As mentioned in the Introduction, we can thus capture the physics of length scales

much longer than the constituent molecule size by regarding the surface as continuous and

using the Canham-Helfrich free energy [4]

H = µ0

∫
dS +

κ0

2

∫
dS

(
1

R1

+
1

R2

)2

. (2.1)

Here dS is the element of surface area,
∫

dS is the total area of the surface, and R1, R2 are

the principal radii of curvature of the surface. The two coefficients µ0, κ0 are respectively

the area cost and bending rigidity.

The form of (2.1) is severely constrained by the requirement that the free energy

depend only on the membrane’s shape, and not on how one chooses to label points on

the surface. While this property is manifest in (2.1), to do calculations a more explicit

version of this equation proves necessary, in which we do choose coordinates u = (u1, u2)

to label points R(u) of the surface. As usual, we then get tangent vectors ea = ∂aR ≡
∂R/∂ua at u and a metric tensor gab = ea · eb at each point. The unit normal is then

n = (e1 × e2)/|e1 × e2|, and the curvature tensor is Kab = n · ∇a∂bR, where ∇a is the

covariant derivative associated to the metric gab. Letting g ≡ det [gab], [gab] = [gab]
−1,

and Ka
a ≡ gabKab, eqn. (2.1) becomes

H = µ0

∫
d2u

√
g +

κ0

2

∫
d2u

√
g (Ka

a )2 . (2.2)

If we change the coordinates from ua to ũa = ũa(u) we just relabel points in the plane.

For an infinitesimal change ũa = ua + εa(u) we get a new R̃(ũ) = R(u) describing the

same surface:

R̃(u) = R(u) − εa(u)ea(u) . (2.3)

The change of R is a tangential motion; conversely, tangential changes of R are not physical

changes to the shape of the surface and ought not to be counted separately in the statistical

sum. We thus need to supplement (2.2) by choosing a protocol for assigning a single

coordinate system to each shape, and a procedure for discarding every surface R(u) not

parameterized in this way. Any such choice is called a “gauge-fixing” procedure.
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A popular class of gauge-fixing procedures are the so-called “normal gauges.” Suppose

we have arranged that configurations very close to one reference surface will dominate the

statistical sum (by stretching the membrane across a fixed frame, for instance). We choose

once and for all a parameterization R0(u) for this reference surface and compute its unit

normal n0(u). Then other nearby surfaces can be written as

R(u) = R0(u) + h(u)n0(u) (2.4)

where the height field h at any point is uniquely defined as the normal distance from that

point to the reference surface. We thus describe each distinct surface once when we sum

over all functions h(u). Of course the point of this paper is that the correct definition of

this sum is a tricky business, but let us proceed formally to obtain some general properties

constraining the correct prescription.

Let us consider a membrane confined to span a square, flat frame of area AB . We

suppose surfactant molecules can join or leave the membrane with a fixed cost in free

energy of µ0 per added area (one can easily pass to an ensemble with a fixed number of

molecules by a Legendre transformation). The full free energy of our system Z(AB) then

depends on the base area, and implicitly on µ0, the stiffness κ0 appearing in (2.1), the size

a ≡ 2π/Λ of the constituent molecules, and the temperature T .

Since our frame is flat, the equilibrium (zero-temperature) surface will be flat too, and

so it is convenient to work in Monge gauge, a normal gauge with R0(u) the surface spanned

by the frame, with Cartesian coordinates ua running from zero to
√
AB . In addition to

Z(AB) we will find it convenient to introduce the “effective action” Γ[h̄]. To define Γ[h̄]

we introduce a forcing term into H, Hj = H−
∫
h̄j, and adjust j to ensure that 〈h(u)〉 is

the desired function h̄.2 Computing the partition function

Z[AB, j] =

∫
[Dh]e−H/T e(1/T )

∫
hj , (2.5)

we then let

Γ[h̄] ≡ −T logZ(AB, j) +

∫
h̄j . (2.6)

2 This is a formal trick to obtain correlations of height; we do not imagine j as coming from

any physical force. Mathematically j = j12d2u is a density on parameter space, so that δ/δj(u)

is a scalar. For more details see [3].
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The frame tension is the free energy per area of the unforced membrane, so we have

τ = − T

AB

logZ(AB) =
1

AB

Γ(h̄ = 0) ≡ 1

AB

Γ(0) . (2.7)

Physically there is nothing special about Monge gauge. Even if we agree to work in

Monge gauge there is nothing special about a reference surface R0(u) coinciding with the

plane of the frame; a tilted reference surface must give the same free energy. All that

matters is the physical area of the frame. Thus the terms of Γ[h̄] involving at most first

derivatives of h̄ (higher derivatives are insensitive to tilting) must enter in the combination
∫

d2u
√
ḡ, where

ḡab = δab + ∂ah̄∂bh̄

is the induced metric and ḡ = det ḡab as usual. In other words,

Γ[h̄] = τ

∫
d2u

(
1 + 1

2 (∂h̄)2 + · · ·
)

+ · · · , (2.8)

where the first ellipsis involves O(h̄4) while the second involves more derivatives than h̄’s.

We gave a more detailed argument for this conclusion in [3].

Whatever the precise form of the measure [Dh] appearing in (2.5), it does not depend

on j, and so the first moment

〈h(u)〉j ≡
∫

[Dh]e−H/T e(1/T )
∫

hjh(u) = TZ−1 δZ[j]

δj(u)
. (2.9)

Differentiating (2.6) and using 〈h〉j = h̄, we find

δΓ

δh̄(u)
= j(u) − TZ−1

∫
δj(u′)

δh̄(u)

δZ

δj(u′)
+

∫
δj(u′)

δh̄(u)
h̄(u′) = j(u) . (2.10)

Differentiating again and using 〈h̄〉j=0 = 0, we see that

〈h(u)h(u′)〉j=0 = Z−1T 2 δ2Z

δj(u)δj(u′)

∣∣∣∣
0

= Z−1T
δ

δj(u)

∣∣∣∣
0

(
Zh̄(u′)

)

= T
δh̄(u′)

δj(u)

∣∣∣∣
0

= T

[
δj(u)

δh̄(u′)

∣∣∣∣
0

]
−1

= T

[
δ2Γ

δh̄(u)δh̄(u′)

∣∣∣∣
0

]−1

.

(2.11)

Thus the inverse of the two-point function is just the quadratic part of the effective action.

We have repeated the above well-known argument to make a point: It in no way de-

pended upon the niceties of the measure [Dh]. Any exotic gauge-fixing or cutoff-stretching
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factor which we may eventually fold into [Dh] will not alter the above conclusion, though

they can and will affect the relation of the quadratic part to the constant part Γ(0). Com-

bining (2.11) with (2.8), (1.1) at once shows that the q2 coefficient r equals the frame

tension τ .

Let us make a first attempt at calculating r and τ . If the temperature T is small we

can expand everything around the equilibrium configuration h = 0. The energy functional

(2.2) then becomes [11]

H = µ0

∫
d2u

(
1 + 1

2 (∂h)2 − 1
8 (∂h)4

)

+
κ0

2

∫
d2u

[
(∂2h)2 − 1

2
(∂h)2(∂2h)2 − 2(∂2h)∂ah∂bh∂a∂bh

]
+ O(h6) .

(2.12)

In this formula ∂a = ∂/∂ua, ∂2 = δab∂a∂b is the flat laplacian, and all indices are contracted

with the Kronecker symbol. Thus all h-dependence is explicitly in view in (2.12). To

calculate Z(AB) we need a proposal for [Dh]. The simplest choice is to choose a mesh of

grid points {uij} on u space, spaced by a, and let

[Dh]naive =
∏

ij

(dh(uij)/λ) . (2.13)

We introduced the thermal wavelength λ here to render the measure properly dimension-

less.3 We will argue later that [Dh]naive is wrong, but for now we take it as our starting

point.

For low temperature we approximate Z(AB) as e−µ0AB/T times a gaussian integral.

Collecting the quadratic terms of (2.12) and writing
∫

d2u = a2
∑

ij we find

Γ(0) ≡ −T logZ(AB) = µ0AB +
T

2

∑
log

[
λ2a2

2πT

(
µ0q

2 + κ0q
4
)]

.

Now the sum is over the points q of reciprocal space. The upper limit of this sum is related

to the constituent size a; for example, if in (2.13) we choose points on a square grid, then

our Brillouin zone is a square of length 2π/a. Thus we recover the announced formula

(1.2).

3 In [15] and [3] this scale was taken to be the molecule size a or a constant multiple of it.

This is legitimate when we do not care about the bare chemical potential, for example when we

just want to dial µ0 to zero physical tension. But µ0 does have physical meaning, and Milner and

Morse have argued that the factor in (2.13) is the correct choice [16].
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Next we turn to the two-point function, which we provisionally define as

〈h(u)h(0)〉naive = Z−1

∫
[Dh]naivee

−H/Th(x)h(0) . (2.14)

This time however the constant term of (2.12) drops out, the quadratic term gives the

leading contribution 〈h(q)h(−q)〉0 = TAB

µ0q2+κ0q4 , and the quartic terms yield the desired

thermal correction to 〈hh〉0 via Wick’s theorem. To shorten the formulas, in the rest of

this paragraph we will drop all factors of AB, or set AB = 1. Retaining only those terms

contributing to r we get

〈h(u)h(0)〉naive =〈h(u)h(0)〉0

+
µ0

8T

{
4

∫
d2u′ 〈h(u)∂ah(u

′)〉0〈h(0)∂ah(u
′)〉0〈∂bh(u

′)∂bh(u
′)〉0

+ 8

∫
d2u′ 〈h(u)∂ah(u

′)〉0〈h(0)∂bh(u
′)〉0〈∂ah(u

′)∂bh(u
′)〉0

}

+
κ0

4T
2

∫
d2u′ 〈h(u)∂ah(u

′)〉0〈h(0)∂ah(u
′)〉0〈∂2h(u′)∂2h(u′)〉0

+
κ0

T
2

∫
d2u′ 〈h(u)∂ah(u

′)〉0〈h(0)∂bh(u
′)〉0〈∂a∂bh(u

′)∂2h(u′)〉0 ,

or

〈h(q)h(−q)〉naive =
T

κ0q
4 + µ0q

2

[
1 +

T

κ0q
4 + µ0q

2

∫
d2q′

(2π)2

3
2κ0(q

′)4 + µ0(q
′)2

κ0(q
′)4 + µ0(q

′)2

]

=T

{
µ0q

2 − Tq2

2

∫
d2q′

(2π)2

(
3 − µ0(q

′)2

κ0(q
′)4 + µ0(q

′)2

)
+ O(q4)

}−1

,

so

rnaive = µ0 −
T

2

∫ Λ d2q

(2π)2

(
3 − µ0q

2

κ0q
4 + µ0q

2

)
. (2.15)

Eqn. (2.15) is essentially the result of Meunier [13]. It certainly does not equal (1.2),

notwithstanding our formal argument that r = τ .

3. Gauge Fixing

Apparently our troubles stem from (2.13). How should we sum over all configurations?

We will return in the next section to the question of the spacing of grid points, but even

with this choice made correctly, eqn. (2.13) is not correct. Consider the two surfaces R,
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R+ dR in Fig. 1. According to (2.4), we describe the displacement from R to R+ dR by

an increment δh(u) in h(u). But this displacement is only partly physical, i.e., only partly

normal to R, since it is along n0(u), which is not equal to the normal n(u) at R(u). The

actual normal displacement from R to R + dR is simply n(u) · n0(u)δh(u), and we need

to replace [Dh]naive in (2.13) by J [h][Dh]naive where

J [h] ≡
∏

ij

(
n(uij) · n0(uij)

)
. (3.1)

The Jacobian J [h] is the first correction factor (the “Faddeev-Popov determinant”) men-

tioned in the Introduction.

R0

R
0

R+dR

n

h n0

δh n

Fig. 1: Two surfaces R,R + dR described in the normal gauge associ-

ated to R0.

Our derivation of (3.1) was heuristic. Nevertheless the result agrees with a more

formal derivation which we will give in a moment, and the heuristic discussion gives J [h]

a very simple geometric meaning. The formula (3.1) also agrees with the approach based

on metrics on field space [3]. For example, taking R0(u) to be flat we have n ·n0 = g−1/2,

and J is the Monge gauge factor found in [3]. It is not unity, contrary to ref. [14]; while it

does not affect the one-loop renormalization of κ0, it will be crucial for r, as shown below

and in [3].

Our second derivation of (3.1) is couched in language familiar from gauge theories [20].

It is more precise than the motivation just given for eqn. (3.1), and again reproduces the

answer given in [3]. We think that each derivation sheds light on (and increases our

confidence in) the final answer. In order to form a statistical sum over distinct surfaces we

imagine integrating over all parameterized surfaces, with a correction factor to eliminate

overcounting. Thus, we write the partition function as

Z =

∫
[DR]

(
1

vol[R]

)
e−H/T . (3.2)

9



Here [DR] just describes the possible displacement of the individual mass-points on the

surface and vol[R] is a factor to be discussed below. All we will need to know for the

moment is that the measure [DR] must be coordinate-invariant, since no preferred coor-

dinate system is given on a fluid membrane; [DR] must also be invariant under spatial

translations and rotations.

To finish specifying (3.2) we need to specify the extra volume factor vol[R] appearing

there. Starting from any surface R(u) and applying all possible reparameterizations we

sweep out a subspace of all parameterized surfaces. The volume vol[R] of this “orbit”

may well depend on which surface we start with, but it cannot depend on how R(u) is

parameterized.

Since it proves inconvenient to include vol[R] explicitly in (3.2), we now fix a coordi-

nate choice by introducing two constraints on R(u) at every point u:

fa(R(u)) = 0 a = 1, 2 .

For example, in normal gauge we require

fa(R(u)) ≡ λ−2ea,0(u) · (R(u) − R0(u)) = 0 . (3.3)

We have introduced a factor of λ−2 (see (1.3)) to make fa dimensionless. Any length scale

will do here since our answers will be altogether independent of our choice of fa. We now

define the Faddeev-Popov determinant ∆f [R] via

1 ≡ ∆f [R] ·
∫ ′

[DR̃] δ[fa(R̃)] . (3.4)

The integral is only over the space of R̃’s which are reparameterizations of R; hence we

also have

vol[R] =

∫ ′
[DR̃] . (3.5)

To keep vol[R], and hence (3.2), dimensionless we include two factors of λ−1 at every point

in (3.5). Since every R̃(u) = R(Ω(u)) is related to R by a reparameterization, ua 7→ Ωa(u),

we can also write
∫ ′

[DR̃] as
∫

[DΩ]D[Ω,R], where formally D[Ω,R] = det d(R(Ω))
dΩ

is a

Jacobian factor related to the change of variables. Let us now insert (3.4) into (3.1) to get

Z =

∫
[DR]

(
1

vol[R]

)
e−H[R]/T ∆f [R]

∫
[DΩ]D[Ω,R]δ[fa(R(Ω))] .

10



Since a reparameterization Ω has meaning independent of the surface R we apply it to,

we can do the Ω integral last. Letting R̃ = R(Ω), we use the fact that [DR], H, vol[R]

and ∆f are reparameterization invariant to rewrite Z as

Z =

∫
[DΩ]

∫
[DR̃]

(
1

vol[R̃]

)
e−H[R̃]/T ∆f [R̃]δ[fa(R̃)]D[Ω,R] .

Also, the fact that [DR] is coordinate-invariant means that small displacements of Ω sweep

out equal volumes no matter where on a given orbit they act, i.e. D[Ω,R] = D[Ω, R̃].

Renaming R̃ as R and using (3.5) we thus get

Z =

∫
[DR]e−H[R]/T ∆f [R]δ[fa(R)] . (3.6)

The only configurations entering (3.6) are those obeying the gauge condition, as desired,

but now we must compute ∆f [R] from the definition (3.4).

While (3.6) is quite general, we will now specialize to the normal gauge (2.4) associated

to a surface R0. The functional delta-function in (3.6) tells us we need only to examine

∆f [R] for R obeying the normal-gauge condition; the delta-function in (3.4) then tells

us we need only study R̃ infinitesimally close to R. Thus we write R̃ in the form (2.3),

R̃(u) = R(u) − εa(u)ea(u). A reasonable choice4 for [DR̃] near a given R is then

[DR̃] ≡
∏

ij

(d3R̃(uij)/λ
3) . (3.7)

In (3.7) we imagine that whatever coordinate system we choose, a grid has been laid down

with each point carrying constant mass. Since each constituent molecule occupies a fixed

physical area, we can equivalently specify that each grid cell of size (∆u1,∆u2) occupy

equal areas in 3-space. (This, in turn, typically means that the ∆ua themselves are not all

the same.) With this understanding [DR̃] is indeed coordinate-invariant.

Submitting R to an infinitesimal coordinate transformation ua 7→ ua + εa(u), we see

that at each uij R(uij) moves in the tangent plane; the measure d3R̃(uij)/λ
3 in (3.7),

restricted to this plane, becomes

λ−2|e1 × e2|d2ε(uij) = λ−2
√
g(uij)d

2ε(uij) . (3.8)

4 The nonlinear measure correction to be discussed in the next section will not affect our

answer; see the Appendix.
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We can now evaluate (3.4):

∆f [R]−1 =

∫ ∏

ij

(λ−2√gd2ε(uij))δ
(2)(fa(R(ua

ij + εa(uij))))

=

∫ ∏

ij

(λ−2√gd2ε(uij))det−1[Jab(uij)]δ
(2)(εa(uij)) ,

where Jab(u) = ∂fa(R(u+ ε))/∂εb = λ2ea,0 · eb in normal gauge using (3.3). Thus

∆f [R] =
∏

ij

det e0
a · eb√
g

. (3.9)

To finish our job of getting an explicit expression for the partition function, we now

express [DR]δ[fa(R)] appearing in (3.6) in terms of the nonredundant height variable h(u)

appearing in (2.4). We can conveniently express an arbitrary R in terms of a height change

plus the rest:

R(u) = R0(u) + h(u)n0(u) + ea,0(u)v
a(u) . (3.10)

The calculation is not quite the same as the one leading to (3.8); instead of infinitesimal

reparameterizations εa from an arbitrary normal-gauge surface R, now we have displace-

ments from the fixed reference surface R0. Accordingly, instead of (3.8) we find

d3R(u) =
√
g0(u)d

2vdh . (3.11)

Next, (2.4) with (3.10) gives fa(R) = λ−2ea,0 · eb,0v
b, or with (3.10) δ(2)(fa(R)) =

λ2det −1(ea,0 · eb,0) · δ(2)(va). We can now do the va integrals to get from (3.6) to

Z =

∫ [∏

ij

λ−1dh(uij)

]
∆̃e−H/T , (3.12)

where

∆̃ =
∏

ij

det (ea,0 · eb)√
g
√
g0

=
∏

ij

n · n0(uij) . (3.13)

It is understood that H and ∆̃ are evaluated on the surface given in terms of h(u) by (2.4).

The last step follows because det (ea,0 · eb) = (e1,0 × e2,0) · (e1 × e2) =
√
g0n0 ·

√
gn. Note

that each factor in (3.12) is explicitly coordinate-invariant, in contrast with the analogous

formula in [14].
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Eqns. (3.12)–(3.13) are our final form for the partition function. We see that (3.13)

indeed does agree with our heuristic formula (3.1). Specializing to Monge gauge, n0 = ẑ,

we recover the result of [3], ∆̃ =
∏

ij g
−1/2.

An alternate form for ∆̃ can be obtained using

eb = ∂bR = eb,0 + ∂b(hn0) = eb,0 − hec
0Kbc,0 + ∂bhn0 , (3.14)

where Kbc,0 is the curvature tensor of the background surface. From this we find

∆̃ =
∏

ij

det (gab,0 − hKab,0)√
g0
√
g

= exp
∑

ij

(
−1

2∂
ah∂ah+ O(h4)

)
, (3.15)

which again differs slightly from the formula in [14]. We see that getting the correct
√
g

factors in the denominator is crucial to avoid a spurious term linear in h.

Returning to the unhappy ending of sect. 3, we now see that the Monge-gauge Faddeev-

Popov factor

∆̃ = exp


− 1

T

∑

ij

T

2
log
(
1 + (∂h)2

)

 = exp


− 1

T

∑

ij

T

2
(∂h)2


 (3.16)

effectively contributes a new term to (2.12), one which is already of order T . Following

the steps leading to (2.15), we get the corrected version

rFP = µ0 −
T

2

∫ Λ d2q

(2π)2

(
1 − µ0q

2

κ0q
4 + µ0q

2

)
. (3.17)

On the other hand ∆̃ cannot contribute to our calculation of τ since being already of order

T we simply evaluate it at h = 0, where it equals one. We still have the problem that

rFP 6= τ .

4. Nonlinear Measure

To see where we have erred, let us first give another derivation that r = τ . Note that

there are many different Monge gauges corresponding to projections to various reference

planes.5 So far we have used a reference plane coinciding with the plane of the frame

5 Recall that a Monge gauge is a normal gauge where the reference surface R0 in Fig. 1 is flat.

Alternatively we could imagine two different physical surfaces related by a rotation, both viewed

in the same Monge gauge.
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holding the membrane, so the equilibrium configuration is h̄ = 0, but we could instead

choose R′
0 tilted by a small angle ψ. We will always work to lowest nontrivial order in ψ. In

the new coordinate system the same equilibrium surface is now described by h̄′(u) = ψu1

(Fig. 2); furthermore the projected area has been foreshortened in one direction, giving

A′
B = AB cosψ = AB(1− 1

2ψ
2). Since the two calculations compute the same quantity we

must have that
Γ[AB; h̄ = 0] ≡ τAB

= Γ[AB − 1
2
ψ2AB; h̄′(u) = ψu1]

= τAB − τ 1
2ψ

2AB + r 1
2ψ

2AB .

(4.1)

In the last step we wrote the O(h̄′2) term of Γ in terms of r(∂h̄′)2 = rψ2. Thus we again

conclude r = τ , contrary to our still incomplete calculation.

ψ

A’B

A B

Fig. 2: Tilting the reference surface foreshortens both the base area

and the coordinate cutoff.

What have we done wrong? Throughout our discussion of the previous section we

assumed that the measure [DR], and its reduction [Dh], were invariant under changes of

parameterization of the surface. But the choice made in (2.13) does not have this property.

We chose the grid points {uij} evenly spaced in the coordinates ua, which has different

meaning for different coordinate systems. In particular for our second description we have

a total of A′
B/a

2 degrees of freedom, which is different from the true number AB/a
2 of

mass points! More formally, eqn. (3.7) tells us to use grid cells of constant metric area

∆u1∆u2 = a2/
√
g, while (2.13) specifies constant coordinate area ∆u1∆u2 = a2. We can

easily show that this error accounts for the remaining discrepancy between τ and rFP,

eqns. (1.2) and (3.17).

Let us denote by ΓFP[AB,Λ
1,Λ2; h̄] the effective action calculated with the correct

Faddeev-Popov factor J but still using the naive (coordinate-dependent) measure (2.13).

We momentarily allow an anisotropic cutoff (Λ1,Λ2), which we write explicitly; at the end

of the discussion we will set Λ1 = Λ2 = 2π/a. The foregoing discussion implies that we
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may use ΓFP if we remember to foreshorten the spacing of constituents (increase Λ1) as

well as the base plane (Fig. 2), so (4.1) becomes

ΓFP

[
AB,

2π

a
,
2π

a
, h̄ = 0

]
= τAB

= ΓFP

[
AB − 1

2ψ
2AB , (1 + 1

2ψ
2)

2π

a
,
2π

a
; h̄′(u) = ψu1

] (4.2)

or

τAB = τAB − 1
2τψ

2AB + 1
2rFPψ

2AB + 1
2ψ

2 2π

a

∂ΓFP[AB,Λ
1,Λ2, h̄ = 0]

∂Λ1

∣∣∣∣
Λ1=Λ2=2π/a

,

(4.3)

since rFP is the q2 coefficient we calculated with the naive measure. Thus we find

τ = rFP +
∂τ

∂ log Λ1
, (4.4)

which really is obeyed by our calculated expressions (1.2), (3.17).

We have thus identified the problem: the naive measure spreads mass points evenly in

coordinate space, not in real space. For flat equilibrium surfaces (h linear in ua), the right

prescription was easy to find: we keep the grid points uniform but change their density to

get the RHS of (4.2). Clearly for nonflat h(u) we will have to be more clever, since here

the cutoff is nonuniform and indeed field-dependent: the desired measure [Dh] is nonlinear

in h. Incidentally, the same problem we face here arises again in the dynamics context [5],

where a naive calculation gives the two-point function controlled by our rFP.

We hinted at the answer in the Introduction: a change in the cutoff, even a spatially-

varying change, amounts to a local change in the number of degrees of freedom. We can

imagine passing from the desired nonlinear [Dh] to the convenient [Dh]naive by a sort of

decimation procedure, where we integrate e−H/T over the discrepant degrees of freedom to

obtain e−Heff/T . The difference δH = Heff −H is simply a counterterm; while in general

it is a nonlocal functional of h, still when we ask long-scale questions it may be replaced

by a renormalizable truncation, just as we did for H itself.

We therefore seek a correction factor δH with the property that

“ [Dh] = e−δH[h]/T [Dh]naive ” . (4.5)

This equation is in quotes because as it stands it makes no sense: we cannot equate

two measures with different numbers of degrees of freedom. In particular δH is not a
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Jacobian factor, as often asserted6, but rather is a counterterm. As such it can and will

depend on H itself. Eqn. (4.5) is not a change of variables but rather an assertion about

renormalization, namely that each side when weighted by e−H/T yields identical moments

of h, at least for long wavelengths. The usual miracle of renormalization is that adjusting

just a few coefficients in δH suffices to make all the moments agree.

What is δH? We have argued that it is renormalizable. Since it arises from fluctuations

it will be explicitly of order T , like the Faddeev-Popov correction, and so we will only need

its form to O(h2) in order to calculate 〈hh〉 to one loop. (In the Appendix we show how

to do better than this.) Dimension counting says it can have at most four derivatives;

translation invariance requires at least two. Furthermore δH should depend on h only via

the induced metric g = 1 + (∂h)2, since it reflects a change of cutoff controlled by this

metric, and in particular δH should vanish at h = 0, since here gab = δab is the metric

assumed in [Dh]naive. Putting all these arguments together we can only have

δH = 1
2
Tµ1

∫
d2u (∂h)2 + O(h4) , (4.6)

where µ1 is some cutoff-dependent constant we are to find. (The reader who is uncomfort-

able with the logic of this paragraph will find in the Appendix a more deductive derivation

of δH obtained by matching two calculations of Γ[h̄].)

We remark that our δH is analogous to the “Liouville correction factor” familiar from

the string-theory literature [17][18]. In these papers the authors argue in analogy with the

conformal anomaly [21] that a covariantly cut-off measure (typically the measure for the

scale factor eσ of an internal metric) “equals” a measure cut off by a fixed metric (g0)ab

times a correction:

“ [Dσ] = eδH[σ]/T [Dσ]g0
” ,

where

δH[σ] = T

∫ √
g0d2u

[
α((∂σ)2 +R0σ) + µ1e

σ
]

(4.7)

and R0 is the gaussian curvature of g0. We are not using an internal metric, but our (4.6)

is reminiscent of the last term of (4.7) (plus a constant).

The pleasant feature of our approach is that fixing the coefficient µ1 by comparison to

a simple situation then lets us compute Γ[h̄] in any situation. The simple situation we have

in mind is the tilted but flat reference surface appearing on the RHS of (4.2); δH[h̄ = ψu1]

6 We thank J. Distler for emphasizing this point.
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is supposed to reproduce the effect of cutoff-stretching, which we introduced by hand via

the last term of (4.3). Thus we choose µ1 = ∂τ
∂ log Λ1 , or

µ1 =
T

2

∫ Λ d2q

(2π)2

[
log
(
µ0q

2 + κ0q
4
)(aλ)2

2πT
+ 1 − µ0q

2

κ0q
4 + µ0q

2

]
. (4.8)

Eqn. (4.8) fixes the effective Hamiltonian to order h2. Since (4.6) is effectively just

an additional contribution to the q2 coefficient of 〈hh〉, we see that indeed the choice (4.8)

required by rotational invariance is also the choice which secures r = τ . To calculate

four-point correlators, or two-loop corrections to the effective couplings µeff , κeff we would

need also the O(h4) terms of (4.6); see the Appendix.

5. Conclusion

If we have explained ourselves clearly the reader may find our analysis somewhat

tautological. After all, we uncovered a paradox, only to eliminate it with a mysterious

counterterm chosen solely for that purpose! Let us now comment on the real content of

our analysis.

We have studied the construction of statistical ensembles of random surfaces made out

of fixed-size constituents. Such ensembles are good models for the long-scale behavior of

fluid bilayer membranes, though it is straightforward to introduce in-plane order as well.

The correct statistical weight for such an ensemble involves a subtle nonlinear measure

[Dh] not directly suited to diagrammatic perturbation theory. We have argued that this

measure may be replaced by a simple one if we incorporate two correction factors into an

effective Hamiltonian.

We have given simple geometrical interpretations to the two correction factors, as

follows: the Faddeev-Popov term describes how a change δh of the normal displacement

may not itself be a normal displacement (Fig. 1). The Liouville term describes how the

molecules of a surface, projected down to a reference plane, seem to crowd together in

regions where the surface is tilted relative to that plane (Fig. 2). These simple pictures,

plus some general arguments, enabled us to write down the complete form of the effective

Hamiltonian up to terms of order T . This accuracy sufficed to show these corrections are

crucial to secure the covariant form of the effective action argued on general grounds in

sect. 2. Besides being satisfying, the geometrical arguments made it easier to get the right

answers than other more formal arguments.

17



Our argument feels tautological because we used one consistency condition (r = τ) to

fix one counterterm (µ1). In the appendix we sketch how to fix the rest of δH to one loop

accuracy, but to go farther we would need to fix its form in advance by imposing some sort

of Ward identity, perhaps along the lines of [18]. This task we leave for future work.
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Appendix A. Some Calculations

In Section 4 we used rotational invariance to fix the value of part of the cutoff-

stretching factor; here we present another approach. Our strategy is to compute the

effective action in two different ways; demanding that the results of these calculations

agree determines the cutoff-stretching factor to one-loop accuracy, i.e. leading nontrivial

order in T .

We follow the standard procedure for computing the one-loop effective action, Γ[h̄]

[21]. We write h as h̄ + δh, expand the energy functional to quadratic order in δh, and

drop the term linear in δh. Then we do the gaussian integral over δh to get the one-loop

contribution δΓ[h̄] to the effective action. Our key observation is that for gaussian integrals

we don’t really need a measure on field space, since in the end we just compute functional

determinants, and for this we need only a metric on fluctuations δh about the given h̄.

Equivalently, to one-loop accuracy we make no error if we replace the full measure [Dδh],

which is nonlinear in δh, by the cut off measure

[Dδh]ḡ =
∏

ij,ḡ

dδh(uij)

λ
, (A.1)

where the notation “ij, ḡ” means that the grid points are spaced uniformly in terms of the

distance given by the background metric ḡab = δab + ∂ah̄∂bh̄, with density a−2 = (Λ/2π)2.
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As we emphasize below this does not necessarily mean the points are spaced uniformly in

any given coordinate system. The measure (A.1) is independent of δh, unlike the desired

[Dδh], but both correspond to the same metric on fluctuations about h̄.

Stated succinctly, in our first calculation we cut off using ḡ and no cutoff-stretching

correction (though we do need the Faddeev-Popov factor as usual).

It is a bit unsatisfying to have to use a different measure (A.1) for every background

h̄. Moreover, while we succeeded in determining the free energy for various backgrounds

h̄, this is not quite the same as finding the correlations of height; for the latter, the

δh-dependence of the true measure omitted from (A.1) will matter. So in our second

calculation we replace [Dδh] not by [Dδh]ḡ but by

e−δH[h]/T [Dδh]g0
. (A.2)

Here [Dδh]g0
is defined analogously to (A.1) except that now g0,ab = δab is the usual flat

metric, so there is no explicit dependence on the background h̄: we have one measure from

which we compute the various Γ[h̄]. Since g0 is flat, in this calculation the grid points really

are spaced uniformly in the coordinates ua. On the other hand, now we have to expect

a correction δH as discussed in the text. We will find δH to one loop by recomputing

Γ[h̄] and comparing to the first calculation; it turns out that a single universal δH secures

agreement with all the different Γ’s in the first calculation, which used a different measure

for each h̄. With δH in hand we can then proceed to the calculation of 〈hh〉.
We begin our calculations by quoting some Monge gauge formulas. We have the

following expressions for the volume element, the inverse metric, and the mean curvature

[11]:
√
gd2u =

√
1 + (∂h)2d2u , (A.3)

gab = δab −
∂ah∂bh

1 + (∂h)2
, (A.4)

TrK =
−∂2h√

1 + (∂h)2
+

∂a∂bh∂ah∂bh

(1 + (∂h)2)3/2
. (A.5)

The energy functional (2.2) becomes

H =
κ0

2

∫
d2u

{
(∂2h)2√
1 + (∂h)2

− 2∂2h∂ah∂bh∂a∂bh

(1 + (∂h)2)3/2
+

(∂ah∂bh∂a∂bh)
2

(1 + (∂h)2)5/2

}

+ µ0

∫
d2u

√
1 + (∂h)2 .

(A.6)
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We work to all orders in the height.

We are now ready for the first of our two calculations. Following the above program,

we replace h by h̄+ δh and retain the terms quadratic in δh. In the following we drop all

terms that do not contribute to the frame tension renormalization, i.e. terms with more

derivatives than h̄’s, though it’s not much harder to retain them. We then have the

quadratic bit of H,

HII =
κ0

2

∫
d2u

√
ḡδh

{
1

ḡ
∂4 − 2∂ah̄∂bh̄

ḡ2
∂2∂a∂b +

∂ah̄∂bh̄∂ch̄∂dh̄

ḡ3
∂a∂b∂c∂d

}
δh

+
µ0

2

∫
d2u

√
ḡδh

{
−1

ḡ
∂2 +

∂ah̄∂bh̄

ḡ2
∂a∂b

}
δh .

(A.7)

Note that we have pulled out a factor of
√
ḡ so that upon discretizing this integral (A.7)

the grid points are spaced with uniform density according to the metric ḡab (see (A.1)).

The result of this gaussian integration is

δΓgaussian[h̄] =
T

2
Trḡ log

(κ0λ
2a2

2Tπ

)1

ḡ

[
(ḡab∂a∂b)

2 +
µ0

κ0

(ḡab∂a∂b)

]
. (A.8)

In this equation the symbol “Trḡ” means that we evaluate the trace of the following oper-

ator using a cutoff equivalent to the point spacing specified in (A.1). In momentum space

this means that we find a basis of eigenmodes of the covariant laplacian ∆̄ = 1√
ḡ
∂aḡ

ab√ḡ∂b,

then sum over all modes with eigenvalues less than (Λ)2. This prescription is coordinate-

invariant; if ḡab = δab then it just amounts to integrating over a circular Brillouin zone as

usual. We have simplified (A.8) by factoring out the constants and one power of ḡ−1.

Eqn. (A.8) is easy to work with because we can now write ḡab∂a∂b as ∆̄ plus terms

with more derivatives than h̄’s, which we are dropping:

δΓgaussian[h̄] =
T

2
Trḡ log

κ0(λa)
2Λ4

2πT
− T

2
Trḡ log ḡ +

T

2
Trḡ log

(
∆̄2 − µ0

κ0

∆̄

)
Λ−4 . (A.9)

To this expression we must add the contribution from the Faddeev-Popov factor
∏

ij,ḡ ḡ
−1/2,

which we write as exp
[
− 1

T

(
1
2TTrḡ log ḡ

)]
:

δΓ[h̄] =
T

2
Trḡ log

κ0λ
2a2Λ4

2πT
+
T

2
Trḡ log ḡ − T

2
Trḡ log ḡ +

T

2
Trḡ log

(
∆̄2

Λ4
− µ0

κ0Λ
4
∆̄

)
.

(A.10)

Note that the noncovariant Faddeev-Popov factor exactly cancels with the noncovariant

factor of ḡ−1 from the expansion of the energy functional, leaving us with a contribution
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to the effective action which is covariant to all orders in the height h̄. It is easy to evaluate

the first trace:

Trḡ log
κ0λ

2a2Λ4

2πT
= log

κ0λ
2a2Λ4

2πT

∑

q

1 . (A.11)

The sum is just the total number of mass points a−2
∫

d2u
√
ḡ, which we will write as

=

∫
d2u

√
ḡ

∫ Λ d2q

(2π)2
log

κ0λ
2a2Λ4

2πT
. (A.12)

To make the last term of (A.10) tractable we will now specialize to a special class of

backgrounds h̄ for which we know the eigenmodes of ∆̄ explicitly, namely h̄(u) linear in

ua. Examining this case suffices to let us extract the coefficients of all the (∂h̄)n terms.7

For such a ḡab we have

Trḡ log
(
∆̄2 − µ0

κ0

∆̄
)
Λ−4

=

∫
d2u

∫

qaqbḡab<Λ

d2q

(2π)2
log

(
(qaqbḡ

ab)2 +
µ0

κ0

qaqbḡ
ab

)
Λ−4 .

(A.13)

After a linear transformation of integration variables we get

=

∫
d2u

√
ḡ

∫

k2<Λ

d2k

(2π)2
log

(
k4 +

µ0

κ0

k2

)
Λ−4 .

The final result for the renormalized frame tension is thus

τ = µ0 +
T

2

∫ Λ d2q

(2π)2
log

λ2a2

2πT
(κ0q

4 + µ0q
2) , (A.14)

which is indeed the contribution to (1.2) due to the modes in question, and agrees with

[15].8

We now turn to our second derivation described above: we compute the part of the

effective action involving the renormalized frame tension using the measure cut off by a

fixed metric g0,ab = δab. To space the grid points with uniform density according to g0,ab,

we write (A.7) as

HII =
κ0

2

∫
d2u

√
g0δh

1√
g0ḡ

(
∆̄2 − µ0

κ0

∆̄

)
δh . (A.15)

7 Alternately we could simplify the sum by considering only the contribution from a thin shell

in momentum space.
8 We have corrected an error in the formula following (B.2) in [3]; it had an extra factor of

√

ḡ

(cf. (A.13)).
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While the laplacian ∆̄ associated to ḡ (not g0) again appears in (A.15), now our gaussian

integral is cut off using a basis of eigenmodes of the flat ∂2:

δΓ̃gaussian =
T

2
Trg0

log
κ0λ

2a2

2πT

1√
g0ḡ

(
∆̄2 − µ0

κ0

∆̄
)

. (A.16)

To (A.9) we must add the Faddeev-Popov factor and the cutoff-stretching factor. Both of

these are already O(T ), so to one loop we simply evaluate them at h̄:

δΓ =
T

2
Trg0

log
κ0λ

2a2

2πT

1√
g0ḡ

(
∆̄2 − µ0

κ0

∆̄
)

+ δH[h̄] +
T

2
Trḡ log ḡ . (A.17)

It is now easy to see what factor e−δH[h]/T belongs in (A.2). δH[h] should be the

functional of h which, when evaluated at h̄, reconciles (A.17) with (A.10):

δH[h] =
T

2

(
Trg − Trg0

) log
κ0λ

2a2

2πTg

(
∆2 − µ0

κ0

∆
)
− T

2
Trg0

log

(
g

g0

)1/2

. (A.18)

We have written the correction factor this way to emphasize how at least part of it (the

first term of (A.18)) is clearly a result of decimation. As in (A.13) we can write the first

term of (A.18) as the difference of the integral over an elliptical Brillouin zone minus the

integral over a smaller, circular, zone with the same density of points AB (Fig. 3). Thus

the first term of (A.18) may be written as

(∫
d2u

∫

BZ′

d2q

(2π)2
−
∫

d2u

∫

BZ

d2q

(2π)2

)
log

λ2a2

2πT

(
κ0(g

abqaqb)
2 + µ0g

abqaqb
)

(A.19)

where q is in BZ ′ if qaqbg
ab < Λ2 and q is in BZ if q2 < Λ2.

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

Λ

Λ'

Fig. 3: The origin of the cutoff-stretching counterterm as a difference

between two Brillouin zones. The stretched cutoff Λ′ equals Λ/ cosψ if

the background surface h̄ is a flat plane tilted by an angle ψ relative to

the reference plane.
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We can recast (A.18) as follows:

δH[h] =
T

2

∫
d2u

√
ḡ

∫
d2q

(2π)2
log

λ2a2

2πT

(
κ0q

4 + µ0q
2
)

− T

2

∫
d2u

∫
d2q

(2π)2
log

λ2a2

2πT

(
κ0(g

abqaqb)
2 + µ0g

abqaqb
)

− T

2

∫
d2u

√
ḡ

∫
d2q

(2π)2
log ḡ

(A.20)

In this form we can readily see that the second line contributes a term to the free energy

cancelling the contribution from Feynman diagrams, the third line cancels the contribution

from the Faddeev-Popov determinant, and the remaining first line is covariant as required.

From this form one can show that all the terms of δH proportional to (∂h)n are just what

are needed to satisfy the Ward-like identity (4.1) to all orders in the angle ψ.

Finally, we can expand (A.18) in terms of h; the first couple of terms are

δH[h] =
T

2

∫
d2u

∫ Λ d2q

(2π)2

[
log

λ2a2(κ0q
4 + µ0q

2)

2πT
+ 1 − µ0q

2

κ0q
4 + µ0q

2

]
· 1

2 (∂h)2

+ O(h4) ,

(A.21)

in agreement with (4.8).

To conclude our analysis, we finally compute the last correction to the q2 coefficient

r. As mentioned earlier, the O(h2) term of (A.21) leads to a new correction to 〈hh〉, not

accounted for in the steps leading to (3.17). Since this term is O(T ), it gives a new tree

Feynman graph, which when added to the 1-loop part of (3.17) gives r = τ .

23



References

[1] See for example Statistical mechanics of membranes and surfaces, D. Nelson et al.,

eds (World Scientific, 1989).

[2] E. Browicz, Zbl. Med. Wiss. 28 (1890) 625.

[3] P. Nelson and T. Powers, “Renormalization of chiral couplings in tilted bilayer mem-

branes,” J. Phys. France II 3 (1993) 1535.

[4] P. Canham , J. Theor. Biol. 26 (1970) 61; W. Helfrich, Naturforsch. 28C (1973) 693.

[5] W. Cai and T.C. Lubensky, “Covariant hydrodynamics of fluid membranes”, preprint

(1993).

[6] P.G. de Gennes and C. Taupin, J. Phys. Chem. 86 (1982) 2294.

[7] W. Helfrich, J. Phys. (Paris) 46 (1985) 1263; ibid. 47 (1986) 321.

[8] L. Peliti and S. Leibler, “Effects of thermal fluctuations on systems with small surface

tension,” Phys. Rev. Lett. 54 (1985) 1690.

[9] D. Förster, “On the scale dependence, due to thermal fluctuations, of the elastic

properties of membranes,” Phys. Lett 114A (1986) 115.

[10] A. Polyakov, “Fine structure of strings,” Nucl. Phys. B268 (1986) 406.

[11] H. Kleinert, “Thermal softening of curvature elasticity in membranes,” Phys. Lett.

114A (1986) 263.

[12] H. Kleinert, “The membrane properties of condensing strings,” Phys. Lett. 174B

(1986) 335.

[13] J. Meunier, J. Phys. (France) 48 (1987) 1819.

[14] F. David, in [1].

[15] F. David and S. Leibler, “Vanishing tension of fluctuating membranes,” J. Phys. II

France 1 (1991) 959.

[16] D. Morse and S. Milner, “Fluctuations and phase behavior of surfactant vesicles,”

Preprint 1993.

[17] F. David, “Conformal field theories coupled to 2-D gravity in the conformal gauge,”

Mod. Phys. Lett. A3 (1988) 1651; J. Distler and H. Kawai, “Conformal field theory

and 2-D quantum gravity,” Nucl. Phys. B321 (1989) 509.

[18] J. Polchinski and A. Strominger, “Effective string theory,” Phys. Rev. Lett. 67 (1991)

1681.

[19] M. Cates, “The Liouville field theory of random surfaces,” Europhys. Lett. 8 (1988)

719.

[20] V. Popov, Functional Integrals in Quantum Field Theory and Statistical Mechanics

(Riedel, 1983).

[21] A. Polyakov, Gauge fields and strings, (Harwood, 1987).

24


