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Metamaterial-inspired model for electron waves in bulk semiconductors
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Based on an analogy with electromagnetic metamaterials, we develop an effective medium description for
the propagation of electron matter waves in bulk semiconductors with a zinc-blende structure. It is formally
demonstrated that even though departing from a different starting point, our theory gives results for the energy
stationary states consistent with Bastard’s envelope-function approximation in the long-wavelength limit. Using
the proposed approach, we discuss the time evolution of a wave packet in a bulk semiconductor with a zero-gap
and linear energy–momentum dispersion.
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I. INTRODUCTION

Despite the fundamental differences between photons and
electrons, such as mass, spin, and statistics, there are many
formal similarities between photonics and electronics,1–5

which ultimately result from the wave–particle duality of
fundamental particles. For example, an electron is charac-
terized by a de Broglie wavelength and thus can interfere
with itself, analogous to interference phenomena in classical
electromagnetism. Factors of significant relevance in the
context of this work are the many parallelisms between the
propagation of light and matter waves in periodic structures.1

Similar to the electron motion in a semiconductor, the light
propagation in a photonic crystal depends on a band structure,
such that for some frequencies (energy levels) propagation is
allowed, and for others it is forbidden.1,6,7 These analogies can
be refined in the case of propagation in bulk materials, wherein
the relevant physics are often determined by stationary states
associated with a wavelength much larger than the characteris-
tic spatial scale of importance. In the case of light, the complex
interactions between radiation and polarizable matter (e.g.,
bound charges in atoms) result in a propagation velocity lower
than in free space, and, within the framework of macroscopic
electrodynamics, this can be modeled by regarding the material
as a continuous medium with an electric permittivity and mag-
netic permeability that differ from those of vacuum. Similarly,
in case of a single electron propagating in an ionic lattice, the
effect of the ionic electrostatic potential on the characteristic
inertia of the electron can be described from a macroscopic
point of view by assigning an effective mass m∗ to the electron
that differs from its free rest mass m0,8 and this is instrumental
in the study of the electron transport in semiconductors.

These similarities are also manifested in the formal mathe-
matical structure of the equations used to calculate the station-
ary states of electronic and optical systems. For example, the
time-independent Schrödinger equation for a single electron
is analogous to the time-independent Helmholtz equation
that describes the dynamics of a single component of the
electromagnetic field in some scenarios.3,5

Despite these parallelisms, the theoretical frameworks
typically adopted to describe wave propagation in electro-
magnetic media and in semiconductors are usually rather
different. Macroscopic electrodynamics are based on the idea
of averaging out the strong fluctuations of the microscopic
electromagnetic fields in the vicinity of the polarizable

particles and on the introduction of effective parameters, so
that the dynamics of the wave propagation are formulated in
terms of macroscopic fields that vary slowly on the scale of the
microscopic unit cell.9 These ideas also apply to the case of
metamaterials, i.e., nanostructured composites synthesized by
tailoring the geometry of bulk metals and dielectrics.10,11 The
light propagation in a metamaterial relies on the introduction of
mesoscopic effective parameters, which result from averaging
out the fluctuations of the electromagnetic fields on a length
scale determined by the period of the metamaterial, rather than
by the atomic period as in natural media.12–17

Quite differently, the computation of the electronic structure
of semiconductors is typically based on perturbation methods,
usually designated by k·p methods.18–27 The k·p theory
relies on the knowledge of the electronic band structure of
highly symmetric points of the Brillouin zone and on the
symmetries of the associated wave functions (un0), which
are used as a basis of states. This theory is also useful to
model heterostructures, and in such problems the electron
wave function is typically described by a multicomponent
vector, which characterizes the wave function in the basis
un0. This is evidently quite different from the formalism of
macroscopic electrodynamics, which does not rely on any
form of “multicomponent vectors” but rather on macroscopic
fields that are smoothened versions of the microscopic fields.
Nevertheless, it should be mentioned that the concept of a
smoothened wave function is not strange to the semiconductor
field, and the envelope-function approximation developed by
G. Bastard20,28,29 is precisely based on such ideas. Even
more generally, the concept of an envelope-function can be
traced back to the pseudopotential method used in solid-state
theory.8 However, to the best of our knowledge, the connection
between the envelope-function approximation and the methods
of macroscopic electrodynamics has not been much explored
in the literature, apart from the theory formulated by Burt24

and some cursory recent discussions.3,5

The main objective of the present work is precisely to
demonstrate that the effective medium methods used in the
context of macroscopic electrodynamics and in the theory of
electromagnetic metamaterials can be extended to the case of
the one-body Schrödinger equation, and in particular to the
case of bulk semiconductors with a zinc-blende structure and
associated semiconductor superlattices. The theory is based on
our recent work,30 where a general effective medium theory
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that enables characterization of a wide range of physical
systems described by a Hamiltonian was developed. Here, we
show that such a formalism when applied to the case of a bulk
semiconductor yields an effective Hamiltonian that, within
some approximations, can be expressed in terms of an energy-
dependent effective mass and energy-dependent effective
potential. These two parameters are in some sense the semicon-
ductor dual of the magnetic permeability and electric permit-
tivity of an electromagnetic medium, respectively, as already
pointed out.3,5 Here, these ideas are rigorously derived from
first principles (using as a starting point Kane’s theory), and it is
proven that in the long-wavelength limit, our theory is closely
related to the Bastard’s envelope-function approximation.

As shown in Refs. 3 and 5, the proposed formalism enables
several interesting analogies to be made between electromag-
netic metamaterials and semiconductor superlattices. Super-
lattices were proposed by Esaki and Tsu more than forty years
ago,31 and can be regarded as the semiconductor counterpart
of electromagnetic metamaterials. In Ref. 3, we discussed
how such analogies permit envisioning novel semiconductor
materials with extreme anisotropy, such that the effective mass
is zero along some preferred direction of motion and infinite
for perpendicular directions. In Ref. 5, it was shown that
electron tunneling in semiconductor heterostructures is related
to light tunneling in electromagnetic metamaterials. One of the
motivations of the present work is to put the findings of these
previous studies into a more firm theoretical basis. In addition,
we discuss the time evolution of the envelope wave function
in zero-gap semiconductors with linear energy–momentum
dispersion. Graphene is also characterized by linear energy
dispersion;32,33 however, here we consider bulk materials,
rather than a one-atom-thick structure.

This paper is organized as follows. In Sec. II, we briefly
review the effective medium approach introduced in Ref. 30.
Then, in Sec. III, we show that for a bulk crystalline material,
the effective Hamiltonian resulting from the homogenization
of the potential of the ionic lattice can be written in terms
of the energy eigenstates. In Sec. IV, we derive an exact
formula for the effective Hamiltonian of bulk III-V and II-VI
semiconductor compounds with a zinc-blende structure under
the eight-band Kane’s approximation. In Sec. V, we use
the effective Hamiltonian to compute the energy stationary
states, and in Sec. VI, the similarities between the proposed
formalism and the theory of electromagnetic metamaterials are
highlighted. In Sec. VII, the time evolution of a “macroscopic”
electron wave packet in a semiconductor with a zero-bandgap
is discussed. The conclusions are drawn in Sec. VIII.

II. OVERVIEW OF THE EFFECTIVE MEDIUM APPROACH

In Ref. 30, an effective medium approach was developed to
characterize the stationary states and time evolution of systems
for which dynamics are described generically by Ĥψ =
ih̄ ∂

∂t
ψ . In the case of the one-body Schrödinger equation, ψ

corresponds to the wave function, and Ĥ corresponds to the
(microscopic) Hamiltonian of the system. This formalism also
applies to Maxwell’s equations.30

Our approach is based on the introduction of an effective
Hamiltonian Ĥef , such that the time evolution of electronic
states that are inherently “macroscopic” in the scale of the

periodicity of the structure is described exactly by a modified
Schrödinger equation. Specifically, we have:

(Ĥef�)(r,t) = ih̄
∂

∂t
� (r,t) , (1)

where �(r,t) ≡ {ψ(r,t)}av is the “macroscopic” wave func-
tion, which results from suitable spatial averaging of the exact
microscopic wave function ψ(r,t). The averaging operator {}av

is such that {eik·r}av = F (k)eik·r, with F (k) = 0 for k outside
the first Brillouin zone (associated with the unit cell of the
material or of the superlattice, depending on the structure of
interest), and F (k) = 1 otherwise. Thus, {}av corresponds to
an ideal low-pass spatial filter, and � (r,t) may be regarded
as a smoothened version of ψ (r,t), with the strong spatial
fluctuations on the scale of the unit cell filtered out. Notice
that the result of applying {}av to a given function of the spatial
coordinates is another function of the spatial coordinates. It
was proven in Ref. 30 that the general form of Ĥef is

(Ĥef�)σ =
∑
σ ′

∫
dNr′

∫ t

0
dt ′ hσ,σ ′(r − r′,t − t ′)�σ ′(r′,t ′),

(2)

where N represents the dimension of the system (N = 3 for
any bulk semiconductor or semiconductor superlattice), and
σ labels additional degrees of freedom of the electron wave
function associated, for example, with the electron spin.

We say that a state is macroscopic when it remains invariant
after spatial averaging {ψ}av = ψ . The remarkable property
of Ĥef is that the time evolution determined by Eq. (1) of any
initial macroscopic state �t=0(r) is coincident with the result
of applying the averaging operator to the microscopic wave
function ψ(r,t) obtained by solving Ĥψ = ih̄ ∂

∂t
ψ , with Ĥ be-

ing the “microscopic” Hamiltonian and ψt=0 = �t=0. In other
words, if ψt=0 = �t=0 and �t=0 is a macroscopic state, then for
all the later time instants t > 0, we have {ψ(r,t)}av = �(r,t)
and {Ĥψ}av = Ĥef�, where the time evolution of ψ is deter-
mined by the microscopic Hamiltonian Ĥ , whereas the time
evolution of � is determined by the macroscopic Hamiltonian
Ĥef . This property is illustrated schematically in Fig. 1.

As discussed in Ref. 30, in the Fourier domain, Eq. (2)
becomes a simple multiplication:

(Ĥef�)σ (k,ω) =
∑
σ ′

hσ,σ ′ (k,ω) �σ ′ (k,ω), (3)

FIG. 1. (Color online) Schematic relation between the time evo-
lutions provided by the macroscopic and microscopic Hamiltonians:
For an initial macroscopic electronic state, the effective medium
formulation ensures that � = {ψ}av for t > 0.
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where hσ,σ ′ (k,ω) = ∫
dNr

∫ +∞
0 dt hσ,σ ′ (r,t) eiωt e−ik·r is the

Fourier transform of hσ,σ ′ (r,t) (unilateral in time
and bilateral in space), and similarly �σ (k,ω) =∫

dNr
∫ +∞

0 dt �σ (r,t) eiωt e−ik·r. The effective Hamiltonian
is thus completely characterized by the matrix [hσ,σ ′(k,ω)],
the elements of which depend on the continuous parameters k
(the wave vector) and ω (the angular frequency).

For a fixed k in the first Brillouin zone, one can deter-
mine hσ,σ ′ (k,ω) by using the fact that for a (macroscopic)
initial state such that ψσ (r,t = 0) = eik·rδσ,s , we necessarily
have {ψ}av(r,ω) = ψave

ik·r and {(Ĥψ)}av(r,ω) = (Ĥψ)ave
ik·r

with:30

ψav(ω) = 1

Vc

∫
�

dNr ψ (r,ω)e−ik·r, (4a)

(Ĥψ)av(ω) = 1

Vc

∫
�

dNr Ĥψ (r,ω)e−ik·r. (4b)

where Vc denotes the volume of the unit cell of the direct space.
Hence, making use of {ψ(r,t)}av = �(r,t), {Ĥψ}av = Ĥef�

and Eq. (3), it follows that:

(Ĥψ)av = [hσ,σ ′(k,ω)] · ψav, (5)

where ψav(ω) and (Ĥψ)av (ω) are understood as vectors. Thus,
the matrix [hσ,σ ′(k,ω)] can be expressed symbolically as
follows:

[hσ,σ ′(k,ω)]

= [
(Ĥψ)(s1)

av ; . . . ; (Ĥψ)(sM )
av

] · [
ψ (s1)

av ; . . . ; ψ (sM )
av

]−1
, (6)

where the semicolon separates different columns of the M ×
M matrices, with M being the number of degrees of freedom
associated with σ . In the above, (Ĥψ)(si )

av and ψ (si )
av are vectors

defined as in Eq. (4), and the label (si) identifies the initial
macroscopic electronic state: ψ (si )

σ (r,t = 0) ∼ eik·rδσ,si
. Thus,

in general to fully characterize hσ,σ ′ (k,ω) for a fixed k, one is
required to solve M microscopic problems. We also note that
for k outside the Brillouin zone, hσ,σ ′ (k,ω) = 0.30

III. CRYSTALLINE MATERIALS

In what follows, we apply the outlined theory to electron
waves in a crystalline material. The particular case of III-V
and II-VI semiconductor compounds will be analyzed in
detail in the next section. It is assumed that the pertinent
microscopic Hamiltonian in the bulk crystal for the one-
electron Schrödinger equation is

Ĥ = Ĥ0 + h̄

4m2
0c

2
(σ × ∇V ) · p

= p2

2m0
+ V (r) + h̄

4m2
0c

2
(σ × ∇V ) · p, (7)

where m0 is the free electron mass, p = −ih̄∇, Ĥ0 = p2

2m0
+

V (r), V (r) is the periodic crystalline potential, and the third
term represents the spin–orbit interaction (σ = σx x̂ + σy ŷ +
σzẑ, with σx , σy , and σz being the Pauli matrices). The
potential V (r) includes both the potential from ionic lattice
and some averaged potential resulting from electron–electron
interactions.

To begin with, we note that the time-dependent one-body
Schrödinger equation Ĥψ = ih̄ ∂

∂t
ψ , with the given initial

time boundary condition ψt=0, reduces in the Fourier domain
[i.e., after a unilateral Fourier transform in the time variable:
ψ (r,t) ↔ ψ (r,ω)] to the time-independent equation,

(Ĥ − E)ψ(r,ω) = −ih̄ψt=0(r), (8)

where we put E = h̄ω and used the property ∂ψ

∂t
(r,t) ↔

−iωψ (r,ω) − ψt=0. From the discussion in Sec. II, it is
obvious that to compute the effective Hamiltonian, the initial
time boundary condition should be of the form ψt=0 ∼ eik·r.
For future reference, we also note that since ψ is a spinor,
it may be represented in vector notation as ψ = ( ψ↑

ψ↓ ) ≡
ψ↑|↑〉 + ψ↓|↓〉, where the two components of the spinor
are ψσ with σ = ↑,↓. As usual, |↑〉 and |↓〉 represent the
eigenstates of the Pauli matrix σz.

It should be apparent that the problem of calculation of
Ĥef from the knowledge of Ĥ is a quite formidable one, of
complexity comparable to the calculation of the electronic
band structure of the bulk material. Next, we derive a formal
expression for Ĥef written in terms of the periodic eigenstates
of the Hamiltonian Ĥ0 = p2

2m0
+ V (r). Specifically, let us

suppose that the eigenstates of Ĥ0 associated with the 	

point of the Brillouin zone are un0 (r) |σn〉, n = 1,2, . . . ,

where |σn〉 determines the spin state, and un0 (r) is a periodic
eigenfunction. Thus, we have

Ĥ0un0(r)|σn〉 = En0un0(r)|σn〉,
〈σm|σn〉 1

Vc

∫
�

u∗
m(r)un(r)d3r = δm,n, (9)

where � is the unit cell, and Vc is the corresponding volume.
In order to obtain the solution of Eq. (8) for an initial time
boundary condition such that ψt=0 ∼ eik·r, we expand the
microscopic wave function as follows

ψ (r,ω) = eik·r ∑
n

anun0 (r) |σn〉 , (10)

where an are some unknown coefficients. It is simple to check
that in these conditions, we have

Ĥψ = eik·r ∑
m

(∑
n

Hk,mnan

)
um0 (r) |σm〉, (11)

where

Hk,mn =
(

En0 + h̄2k2

2m0

)
δm,n + h̄

m0
k · pmn 〈σm|σn〉

+ h̄

4m2
0c

2
〈σm|σ · qmn|σn〉 , (12a)

pmn = 1

Vc

∫
�

u∗
m (r) p un (r)d3r, (12b)

qmn = 1

Vc

∫
�

u∗
m (r) (∇V × p) un (r) d3r. (12c)

To obtain this result, we used Eq. (9), and, similar to the usual
Kane’s formalism, the k-dependent spin–orbit interaction
( h̄

4m2
0c

2 (σ × ∇V ) · h̄k) was neglected because typically it is

negligibly small for the cases of interest (e.g., for binary III-V
compounds).21
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Let us suppose that the initial macroscopic state is such that
ψt=0 = 1

−ih̄
eik·r |s〉, where |s〉 determines the initial spin state.

It can be shown that the effective Hamiltonian calculated below
is totally independent of the normalization of the initial macro-
scopic state, and thus the adopted normalization is perfectly
legitimate. Substituting Eq. (10) and (11) into Eq. (8), and
calculating the product of both sides of the resulting equation
with 〈σm|u∗

m0(r), and integrating the result over the unit cell �

of the material, we obtain a linear system of the form:

(Hk − E 1) ·
⎛
⎝ a1

a2

. . .

⎞
⎠ =

⎛
⎝ b1

b2

. . .

⎞
⎠ , (13)

where 1 is the identity matrix, Hk = [Hk,mn], and
bm = 〈σm|s〉 u∗

m,av with

um,av = 1

Vc

∫
�

um0 (r)d3r. (14)

At this point, it is convenient to denote

χk,mn = Hk,mn − Eδm,n, (15)

and the corresponding inverse matrix by [χk,mn] =
(Hk − E 1)−1 = [χk,mn]−1. With these notations, the
solution of the effective medium problem (Eq. (13)) can be
formally written as

am =
∑

n

χk,mn〈σn|s〉u∗
n,av. (16)

In the remainder of this section, we use this result to obtain an
explicit formula for the effective Hamiltonian. From Eqs. (10)

and (11), it is evident that ψav (ω) and (Ĥψ)av (ω), defined as
in Eq. (14), are given by

ψav(ω) =
∑

n

anun,av|σn〉, (17a)

(Ĥψ)av(ω) =
∑
m

(∑
n

Hk,mnan

)
um,av |σm〉, (17b)

where um,av satisfies Eq. (14). On the other hand, in agreement
with Eq. (6), the matrix that characterizes the effective
Hamiltonian can be written as:

Hef(k,ω) ≡ [hσ,σ ′(k,ω)]

= [(Ĥψ)(↑)
av ; (Ĥψ)(↓)

av ] · [ψ (↑)
av ; ψ (↓)

av ]−1, (18)

where the semicolon separates different columns of the 2 ×
2 matrices, and (Ĥψ)(↑)

av and ψ
(↑)
av are defined as in Eq. (17)

for the case where the initial state is ψt=0 = 1
−ih̄

eik·r |s〉, with

|s〉 = |↑〉, and (Ĥψ)(↓)
av and ψ

(↓)
av are defined similarly. It is

useful to note that from Eqs. (13) and (17),

(Ĥψ)av(ω) = E ψav(ω) +
∑
m

〈σm|s〉|um,av|2|σm〉. (19)

Substituting this result into Eq. (18), it is seen that the effective
Hamiltonian can be written as:

Hef(k,ω) = E 1 +
[∑

m

〈σm|↑〉|um,av|2|σm〉;
∑
m

〈σm|↓〉|um,av|2|σm〉
]

· [ψ (↑)
av ; ψ (↓)

av ]−1. (20)

With the help of Eq. (17), each element of the matrices can be written explicitly as shown below:

Hef(k,ω) = E 1 +
[ ∑

m |〈σm|↑〉|2|um,av|2
∑

m 〈σm|↓〉〈↑|σm〉|um,av|2∑
m 〈σm|↑〉〈↓|σm〉|um,av|2

∑
m |〈σm|↓〉|2|um,av|2

] [∑
m a

(↑)
m um,av〈↑|σm〉 ∑

m a
(↓)
m um,av〈↑|σm〉∑

m a
(↑)
m um,av〈↓|σm〉 ∑

m a
(↓)
m um,av〈↓|σm〉

]−1

,

(21)

where a
(↑)
n is the solution of Eq. (13) when |s〉 = |↑〉, and a

(↓)
n is defined similarly. Using now Eq. (16), we obtain the following

formula for the effective Hamiltonian relative to the basis |↑〉 and |↓〉:

Hef(k,ω) = E 1 +
[ ∑

m |〈σm|↑〉|2 |um,av|2
∑

m 〈σm|↓〉 〈↑|σm〉 |um,av|2∑
m 〈σm|↑〉 〈↓|σm〉 |um,av|2

∑
m |〈σm|↓〉|2 |um,av|2

]

×
[∑

m,n χk,mnu∗
n,avum,av 〈σn|↑〉 〈↑|σm〉 ∑

m,n χk,mnu∗
n,avum,av 〈σn|↓〉 〈↑|σm〉∑

m,n χk,mnu∗
n,avum,av〈σn|↑〉〈↓|σm〉 ∑

m,n χk,mnu∗
n,avum,av 〈σn|↓〉 〈↓|σm〉

]−1

. (22)

The above result is exact when a complete set of eigen-
states of Ĥ0 is considered (un0 (r) |σn〉 n = 1,2, . . .). It
should be noted that in the spectral domain, the effective
Hamiltonian is represented by a 2 × 2 matrix. In the
next section, we obtain an explicit approximate analytical
formula for Hef for the case of III-V and II-VI binary
compounds.

IV. BULK III-V AND II-VI COMPOUNDS

Next, we consider the particular case of bulk III-V and II-VI
semiconductors with a zinc-blende structure. The zinc-blende
lattice consists of face-centered cubic lattice with two atoms
per elementary cell, and it is characteristic of binary III-V
compounds such as GaAs, GaSb, InSb, and II-VI compounds
such as HgTe and CdTe.18,20
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The exact effective Hamiltonian is written in terms of the
periodic eigenfunctions of Ĥ0 = p2

2m0
+ V (r) as in Eq. (22).

However, such Bloch functions are seldom known explicitly.
To make some progress, we need to introduce some simpli-
fying assumptions. Specifically, in the same spirit of k · p

theory, we suppose that in the energy range of interest, the
envelope of ψ can be written as linear combination of a few
energy-eigenfunctions of the Hamiltonian Ĥ0 = p2

2m0
+ V (r).

For semiconductors with the zinc-blende structure, there are
typically eight relevant crystal states of Ĥ0 for energies in the
range determined by the valence and conduction bands.18,20–22

Each state is doubly degenerate because Ĥ0 does not depend
explicitly on the electron spin. The relevant states are labeled as
|Sσ 〉, |Xσ 〉, |Yσ 〉, and |Zσ 〉, with σ = ↑,↓, and the associated
wave functions have the symmetries of the atomic s, x, y, z

functions under the operations of the tetrahedral group. The
states |Sσ 〉 are associated with the edge of the conduction
band (En0 = Es0), whereas |Xσ 〉, |Yσ 〉, and |Zσ 〉 are all
degenerate at the 	 point and are associated with the edge
of the valence bands (En0 = Ep0). Thus, in what follows, we
evaluate Eq. (22) restricting the summation to the contributions
of the above-mentioned eight crystal states. Notice that within
this approximation, the matrix Hk = [Hk,mn] Eq. (22) can
be identified with the usual Hamiltonian matrix used in the
context of Kane’s approach.18,20–22 (Actually, in the k · p

theory, typically the adopted basis of functions is not exactly
the one described above, but rather another equivalent basis for
which elements are linear combinations of |Sσ 〉, |Xσ 〉, |Yσ 〉,
and |Zσ 〉; obviously, the effective Hamiltonian is independent
of the considered basis).

Let us then consider the above-mentioned basis of expan-
sion functions, so that n,m = 1,2, . . . ,8 in Eq. (22). The first
important observation is that because of the symmetries of
|Xσ 〉, |Yσ 〉, and |Zσ 〉, it is evident that:

um,av = 0, for states of the form |Xσ 〉,|Yσ 〉, and |Zσ 〉.
(23)

On the other hand, for states of the form |Sσ 〉, we have
um,av ≡ us,av, where us,av is some constant. Substituting these
results into Eq. (22), and assuming that the eigenfunctions
|S↑〉, |X↓〉, |Y↓〉, and |Z↑〉 are associated with the indices
m = 1,2,3,4, respectively, and that |S↓〉, |X↑〉, |Y↑〉, and |Z↓〉

are associated with the indices m = 5,6,7,8, respectively, it is
readily found that:

Hef(k,ω) = E 1 + |us,av|2
[
χk,11|us,av|2 χk,15|us,av|2
χk,51|us,av|2 χk,55|us,av|2

]−1

= E 1 +
[
χk,11 χk,15

χk,51 χk,55

]−1

. (24)

Therefore, Hef(k,ω) is independent of us,av and is written
exclusively in terms of a few elements of the matrix [χk,mn] =
(Hk − E 1)−1 = [χk,mn]−1.

To determine the required elements of [χk,mn], first we will
evaluate explicitly Hk. To this end, we note that because of the
symmetries of band edge functions, the coefficients pmn, given
by Eq. (12b), vanish, except if one of the indices is associated
with a valence band state and another with a conduction band
state. Specifically, we have 〈m|p|m〉 = 0 with m = S,X,Y,Z,
〈m|p|n〉 = 0 with m,n = X,Y,Z, and 〈S|p|X〉 = 〈S|px |X〉x̂,
etc., with

P = −i
h̄

m0
〈S|px |X〉 = −i

h̄

m0
〈S|py |Y 〉 = −i

h̄

m0
〈S|pz|Z〉,

(25)

where P is Kane’s parameter.18,20–22 To see which elements
of qmn = 〈m|∇V × p|n〉 [Eq. (12c)] are different from zero,
we start by noting that the z-component of this vector
is (qmn)z = −ih̄〈m| ∂V

∂x
∂
∂y

− ∂V
∂y

∂
∂x

|n〉. Therefore, the operator
∇V × p changes both the parity of y and x of |n〉 and leaves
the parity of z unchanged. Thus, the only values of m,n =
S,X,Y,Z for which (qmn)z is different from zero are clearly (m =
X and n = Y ) or (m = Y and n = X). In conclusion, this
discussion shows that:

3ih̄

4m2
0c

2
(qmn)l = εlmn�, m,n,l = X,Y,Z, (26)

where εlmn is the Levi–Civita symbol, and � = 3ih̄

4m2
0c

2

〈X| ∂V
∂x

py − ∂V
∂y

px |Y 〉 is the spin–orbit split-off energy.18,20–22

Finally, we note that (qmn)l = 0 if either m or n is equal
to S. Based on Eqs. (25)–(26), it is possible to write Hk =
[Hk,mn] [Eq. (12a)] as follows (P and � can be assumed
real-valued):

[Hk,mn] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E′
s0 0 0 iP kz 0 iP kx iP ky 0

0 E′
p0 − �

3i
−�

3 −iP kx 0 0 0

0 + �
3i

E′
p0

�
3i

−iP ky 0 0 0

−iP kz −�
3 − �

3i
E′

p0 0 0 0 0

0 iP kx iP ky 0 E′
s0 0 0 iP kz

−iP kx 0 0 0 0 E′
p0

�
3i

�
3

−iP ky 0 0 0 0 − �
3i

E′
p0

�
3i

0 0 0 0 −iP kz
�
3 − �

3i
E′

p0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)
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where we put E′
s0 = Es0 + h̄2

2m0
k2, and E′

p0 = Ep0 + h̄2

2m0
k2,

with Es0 being the energy eigenvalue associated with the
conduction band of Ĥ0, and Ep0 being the energy eigenvalue
associated with the valence bands of Ĥ0. Again, we emphasize
that the above matrix differs from the standard Hamiltonian
matrix used in the k · p approach, simply because we are
considering the basis |S↑〉, |X↓〉, |Y↓〉, |Z↑〉, |S↓〉, |X↑〉,
|Y↑〉, and |Z↓〉.

Straightforward calculations show that [χk,mn] =
(Hk − E 1)−1 is such that χk,15 = χk,51 = 0 and
χk,11 = χk,55. Hence, from Eq. (24), it follows that,
somewhat surprisingly, despite the fact that the spin–orbit
interaction is considered, the effective Hamiltonian reduces
to a scalar Hef(k,ω) = E + 1/χk,11. Moreover, by inverting
Hk − E 1, we obtain the following explicit formula for the
effective Hamiltonian,

Hef(k,ω) = E + − 2
9�2Ẽs + (

Ẽp − �
3

)
(ẼsẼp − k2P 2)(

Ẽp − 2
3�

) (
Ẽp + �

3

) ,

(28)

where we defined Ẽs = Es0 − E + h̄2

2m0
k2 and Ẽp = Ep0 −

E + h̄2

2m0
k2, with E = h̄ω. Therefore, within the same approx-

imations that are usually considered in the k · p approach, our
effective medium theory predicts that the dynamics of the enve-
lope of the electron wave function can be described by a scalar
effective Hamiltonian, where the formula in the spectral do-
main is given by Eq. (28). This is the main result of this section.

It is convenient to introduce the notations εP = 2P 2m0/h̄
2,

Ev = Ep0 + �
3 , and Ec = Es0, so that the effective Hamilto-

nian becomes, after some simplifications:

Hef(k,ω) = E + Ẽc + h̄2

2
k2 εP

3m0

(−2

Ẽv

+ −1

Ẽv − �

)
, (29)

where Ẽc = Ec − E + h̄2

2m0
k2 and Ẽv = Ev − E + h̄2

2m0
k2. As

is well known (and will also be discussed in the next section),
Ec and Ev determine the energy levels at the edges of
the conduction and light-hole bands, respectively. It is also
interesting to point out that in case where the spin–orbit
coupling is neglected (� = 0), one has:

Hef(k,ω) = E + Ẽc − h̄2

2
k2 εP

m0

1

Ẽv

, for � = 0. (30)

V. STATIONARY STATES

The stationary states of the energy operator can be readily
obtained using the effective medium Hamiltonian. Indeed, it
was proven in Ref. 30 that the eigenvalues E of the microscopic
Ĥ Hamiltonian are the same as the eigenvalues of the exact
effective Hamiltonian Ĥef . (There can, however, exist some
isolated exceptions that are discussed below.) Within the
approximations made in the previous section, we can restate
this property as: the energy eigenvalues E computed using
the standard k · p approach based on a multicomponent wave
function are the same as the eigenvalues of the effective
Hamiltonian Hef given by Eq. (29).

To show this more explicitly, we note that for a wave
function � with a time variation of the form e−i E

h̄
t (an

energy eigenstate) and space variation of the form eik·r, the
homogenized Schrödinger’s equation (1) reduces to:

(Hef(k,E) − E) · � = 0, (31)

where, for simplicity, we replaced E = h̄ω in the argument
of Hef , so that it is regarded as a function of energy. Hence,
since in our case Hef is a scalar, from Eq. (29) we obtain the
following characteristic equation for the energy eigenstates:

Ẽc + h̄2

2
k2 εP

3m0

(−2

Ẽv

+ −1

Ẽv − �

)
= 0. (32)

It should be noted that the eigenfunctions associated with
the eigenenergies are doubly degenerate and are of the form
� = [�↑|↑〉 + �↓|↓〉]eik·r, where �σ indicates some con-
stants. These eigenfunctions are coincident with the spatially
averaged eigenfunctions determined using the standard k · p

approach, because it is evident from the previous section
[see Eq. (23)] that {|pσ 〉}av = 0 for p = X,Y,Z and σ = ↑,↓.21

Defining the bandgap energy Eg = Ec − Ev , Eq. (32) can
be recast into the form:

E′(E′ − Eg)(E′ + �) − k2P 2

(
E′ + 2�

3

)
= 0,

E′ = E − Ev − h̄2

2m0
k2. (33)

This is coincident with the secular equation derived originally
by E. Kane,21 which describes the dispersion of the conduction,
light-hole, and split-off band. For small values of k, the
corresponding solutions are:21

E = Ev + Eg + h̄2

2m0
k2

+ P 2
(
Eg + 2�

3

)
Eg(Eg + �)

k2, (conduction band) (34a)

E = Ev + h̄2

2m0
k2 − 2

3

P 2

Eg

k2, (light-hole band) (34b)

E = Ev − � + h̄2

2m0
k2 − 1

3

P 2

(� + Eg)
k2. (split-off band)

(34c)

It is interesting to note that our formalism does not predict
the heavy-hole band that is obtained (even with a physically
incorrect dispersion) within the k · p approach approximation.
Since we mentioned before that our formalism should predict
the same eigenvalues as the microscopic Hamiltonian, an
explanation is needed. The reason, as discussed in Ref. 30,
is that, strictly speaking, such a property only holds for
eigenstates |n〉 for which the projection into the subspace of
macroscopic eigenstates is different from zero. Specifically, if
we denote Ôav, the operator corresponding to the operation of
spatial averaging (see Ref. 30), and if Ĥ |n〉 = En |n〉, then it
is only possible to guarantee that En is an eigenvalue of the
effective Hamiltonian if Ôav |n〉 
= 0.

This readily explains why this theory does not predict the
heavy-hole band. Indeed, within the approximations of Sec. IV
(i.e., within the approximations of the k · p approach), the
eigenstates associated with the heavy-hole band are linear
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combinations of kets of the form |pσ 〉 with p = X,Y,Z and
σ = ↑,↓, and as discussed previously, all these states are
projected by Ôav into the null state. The states for which
Ôav |n〉 = 0 can be regarded as “dark” states (borrowing a
term conventionally used in photonics), in the sense that they
cannot be excited if the initial electron state is macroscopic. It
should, however, be noted that in the case where one considers
an extended set of expansion functions (rather than just eight as
in Sec. IV) to include the effect of remote bands, in principle,
the heavy-hole band should be predicted by our formalism,
because in principle, at least for k 
= 0, it is not expected that
Ôav |n〉 = 0 for the states associated with the heavy-hole band.

VI. LOCAL EFFECTIVE PARAMETERS AND ANALOGY
WITH ELECTROMAGNETIC METAMATERIALS

The effective Hamiltonian Hef , given by Eq. (29), depends
on the wave vector k ↔ −i∇r in a relatively complicated
manner. Hence, it is not straightforward to obtain a formulation
of the problem in the space domain, and even if we invert
the Fourier transform of Hef with respect to the wave vector,
the resulting expression may be too complicated to allow for
further progress. In this respect, the situation is quite analogous
to the case of electromagnetic metamaterials, which in general
must be described using a dielectric function of the form
εef (ω,k) to account for the effects of spatial dispersion.14,15,34

However, when the spatial dispersion effects are weak, it is
possible to characterize the mesoscopic response of the mate-
rial using local effective parameters, i.e., effective parameters
that are k independent.14,15,34 Knowledge of the local effective
parameters (if they can be defined) is of paramount importance
when one is interested in the study of wave phenomena in the
vicinity of an interface between two bulk materials, wherein
the formulation of boundary conditions is crucial.

For electromagnetic metamaterials (as well as for natural
media) characterized by weak spatial dispersion, the nonlocal
dielectric function can be approximated by:14,15,35

εef

ε0
(ω,k) ≈ εr + c2 k

ω
× (μr

−1 − I) × k
ω

, (35)

where I is the identity dyadic, and εr and μr are the local
effective permittivity and permeability tensors of the material,
respectively. In particular, it follows from the above expression
that the local effective permittivity is related to the nonlocal
dielectric function as,14

εr (ω) = 1

ε0
εef (ω,k = 0) , (36a)

whereas the zz component of the magnetic permeability
can be written in terms of the derivatives of the nonlocal
dielectric function with respect to the wave vector (evidently,
it is possible to write similar formulas for the remaining
components of the permeability tensor):14

μzz

μ0
≡ μr,zz(ω) = 1

1 − (
ω
c

)2 1
2ε0

∂2εef,yy

∂k2
x

∣∣
k=0

. (36b)

Thus, in case of weak spatial dispersion, it is possible to
determine the local effective parameters directly from the
spatially dispersive dielectric function.14

Can these ideas be adapted to the case of electron waves?
The generalization is straightforward: Indeed, typically the
relevant physical phenomena in the II-VI and III-V binary
compounds considered in this work are mainly determined by
the form of the electronic structure in the vicinity of the 	

point. Thus, to study such phenomena, it is enough to consider
small values of k, and this idea is actually already implicit in
the approximations made in section IV. Hence, we can expand
the effective Hamiltonian in a Taylor series in powers of k.
Since Hef is an even function of k, it follows that:

Hef (k,E) ≈ Hef (k = 0,E) + 1

2

∑
i,j

∂2Hef

∂ki∂kj

kikj . (37)

If we introduce an effective potential Vef such that

Vef (E) = Hef (k = 0,E) , (38)

and an effective mass tensor Mef such that

M−1
ef (E) = 1

h̄2

[
∂2Hef

∂ki∂kj

∣∣∣∣
k=0

]
, (39)

the effective Hamiltonian may be rewritten as,

Hef (k,E) ≈ h̄2

2
k · M−1

ef · k + Vef (E) , (40)

which justifies the used nomenclature. Comparing the above
formulas with Eq. (40), it should be clear that Vef (E) plays
a role similar to εr in the electromagnetic problem, whereas

Mef plays a role similar to μr . This will be further elaborated
shortly.

The effective parameters Vef and Mef are by definition
independent of the wave vector, and hence are local
parameters. However, they may depend on the energy
E = h̄ω. Based on Eq. (40), we can readily invert the Fourier
transform with respect to the wave vector in Eq. (3), to find
that in the space domain:

(Ĥef�)(r,E) = −h̄2

2
∇ · [

M−1
ef · ∇�(r,E)

]
+Vef(E)� (r,E) . (41)

In particular, the energy eigenstates are solutions of the
following time-independent Schrödinger-type equation(
Ĥef�

)
(r,E) − E � (r,E) = 0, or equivalently:

−h̄2

2
∇ · [

M−1
ef · ∇�

] + Vef (E) � = E�. (42)

Let us now discuss what this theory gives us for the particular
case wherein the Hamiltonian is described by Eq. (29).
Straightforward calculations show that the effective potential
is a constant (independent of energy)

Vef (E) = Ec, (43)

whereas the effective mass is a scalar such that

1

Mef
= 1

m0
+ v2

P

(
2

E − Ev

+ 1

E − Ev + �

)
, (44)

where we defined vP = √
εP / (3m0), which has dimensions

of velocity.
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We note that Ev = E	8 is the (light-hole) valence band edge
energy, and Ec = E	6 is the conduction band edge energy.
Hence, within the approximation implicit in Eq. (37), the
dynamics of the electron wave function can be described
simply in terms of an energy-dependent effective mass and
in terms of an effective potential. Curiously, formula (44) is
well known in the context of Bastard’s envelope-function ap-
proximation [Ref. 20, p. 88]. Here, we rediscovered the result
of Bastard based on the effective medium approach proposed
in our earlier work.30 We believe that this analysis puts into
a more firm standing the actual physical meaning of Mef as
a component of an effective Hamiltonian with the properties
described in Sec. II, and also highlights the analogies with the
homogenization of electromagnetic metamaterials.14,15

It is interesting to point out that in the case of narrow-gap
semiconductors, � is typically at least a few times larger than
|Eg|. Thus, for such materials and for energies in the interval
defined by Ec and Ev , only the first term inside brackets in
Eq. (44) is relevant. In these conditions, the dispersive effective
mass may be approximated by

Mef ≈ E − Ev

2v2
P

. (45)

To further explore the similarities between the electronic
and photonic problems, next we outline an elementary cor-
respondence between the solutions of the Schrödinger and
Maxwell’s equations, which agrees with what has already
been reported.3,5 To this end, we consider the propagation
of electromagnetic waves in a two-dimensional structure
for which permeability μr = μxx x̂x̂ + μyy ŷŷ + μzzẑẑ and
permittivity εr are independent of y. Furthermore, we assume
that the electromagnetic fields do not vary with y and that the
electric field is polarized along y: E = Ey ŷ. In such conditions,
the electromagnetic field is completely characterized by Ey ,
which satisfies:

∇ ·
[(

1

μzz

x̂x̂ + 1

μxx

ẑẑ
)

· ∇Ey

]
+ ω

c2

2
εrEy = 0. (46)

Comparing this formula with the time-independent
Schrödinger equation (42), it is possible to make the following
correspondences (for a fixed frequency ω): ψ ↔ Ey ,

√
2 1

h̄
↔

ω
c

, and, most importantly,

E − Vef ↔ εr

M−1
ef ↔ −ŷ × μ−1

r × ŷ. (47)

Obviously, we do not attribute any physical meaning to
these correspondences, and regard them only as a tool to
transform solutions of one of the problems into solutions
of the other problem. The correspondences can be useful
to better understand wave phenomena, and suggest that, for
such purposes, E − Vef may be regarded as the dual of the

electric permittivity, whereas M−1
ef can be regarded as the dual

of −ŷ × μ−1
r × ŷ. In the isotropic case, we can simply state

that Mef is the dual of μr . Evidently, this type of analogy is not
new, and similar (and sometimes equivalent) ideas have been
considered in other works.4,5

To illustrate the typical dependence of E − Vef and Mef

on the energy, we show in Fig. 2 the effective parameters of
several semiconductor binary compounds with a zinc-blende

structure. Without loss of generality, Ev = E	8 is taken equal
to zero in these plots. The points where E = Ev and E = Ec

are marked with dashed vertical gridlines in Fig. 2, and these
represent the edges of the light-hole valence and conduction
bands, respectively. As seen, at the edge of the light-hole
valence band, the dispersive effective mass, Mef , crosses zero,
whereas the parameter E − Vef crosses zero at the edge of the
conduction band. It is important to stress that Mef = Mef (E)
is totally different from the effective mass M∗ = [ 1

h̄2
∂2E

∂ki∂kj
]−1

calculated from the curvature of the energy dispersion, i.e.,
from Eq. (34). In particular, at the edge of the valence band,
Mef crosses zero, but M∗ is obviously different from zero.
It is also interesting to mention that Mef also crosses zero at
E = Ev − � (see Fig. 2), which corresponds to the edge of
the split-off valence band.

For the binary compounds InAs, GaSb, and CdTe, the edge
of the conduction band lies above the edge of the light-hole
valence band. This corresponds to a positive bandgap Eg =
Ec − Ev > 0, which is the typical situation in most semicon-
ductors. For these materials, Mef > 0 and E − Vef < 0 in the
bandgap, and thus in such energy range, the semiconductor
has a behavior similar to a metamaterial with μ > 0 and ε < 0
(ε negative-ENG-material).3,5 In the valence and conduction
bands, the signs of Mef and E − Vef are the same: In the
conduction band, the semiconductor has a behavior analogous
to a metamaterial with μ > 0 and ε > 0 (double positive-DPS-
material), whereas in the valence band, it is analogous to a ma-
terial with μ < 0 and ε < 0 (double negative-DNG-material).

On the other hand, the semimetal HgTe has the unusual
property that Eg = Ec − Ev < 0, i.e., it has a negative
bandgap energy, so that the band with s-type symmetry lies
below the bands with p-type symmetry. Due to this inverted
band structure, in Fig. 2(d) the edge of the valence band (where
Mef = 0) lies above the edge of the conduction band. In the
bandgap, we have Mef < 0 and E − Vef > 0, and thus this
material may behave similar to a metamaterial with μ < 0
and ε > 0 (μ negative-MNG-material).3,5 For energy levels
immediately below the lower edge of the bandgap, both
effective parameters are simultaneously negative, whereas for
energy levels above the upper edge of the bandgap, both
effective parameters are simultaneously positive.

In the framework of the model based on the parameters Vef

and Mef (E), the energy stationary states can be determined by
solving Eq. (42), which for the case of Bloch modes in a bulk
material (associated with the quasimomentum k) reduces to:

h̄2

2

k2

Mef
+ Vef = E. (48)

In Fig. 3, we depict the electronic band structure calculated
by solving the above equation with respect to E for HgTe
and for the ternary alloy Hg0.75Cd0.25Te. The bandgap energy
Eg = Eg,x of the ternary compound Hg1−xCdxTe is calculated
using Hansen’s formula at zero temperature,37,38 where x

represents the mole fraction. Thus, the effective potential of
each material can be written as Vef,x = Ev,x + Eg,x . On the
other hand, the valence band offset 
 (x) = Ev,x=0 − Ev,x

between Hg1−xCdxTe and HgTe can be estimated to vary with
the mole fraction as 
 (x) = 0.35x [eV ],39 so that Ev,x =
Ev,HgTe

− 
 (x). The value of Ev,HgTe
can be arbitrarily chosen
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FIG. 2. (Color online) Effective parameters of several bulk semiconductors as a function of the energy E. The energy level of the edge of
the valence band is taken arbitrarily equal to zero in all cases (Ev = 0). Blue (dark gray) lines (associated with left-hand side scale of the plots):
mef/m0; green (light gray) lines (associated with right-hand side scale of the plots): E − Ec in [eV ]. The dashed vertical gridlines indicate the
edges of the light-hole valence and conduction bands, and delimit a bandgap. The parameters of the semiconductors are taken from Refs. 36
and 37.

and fixes the reference energy. In this work, Ev,HgTe
is set equal

to zero. The velocity vP = √
εP / (3m0) can be estimated equal

to vP = 1.06 × 106 m/s, and the spin–orbit split-off energy
can be estimated as � = 0.93 [eV ]. These two parameters are
to a first approximation independent of the mole fraction.37

The black lines in Fig. 3 represent the solution of Eq. (48),
using the “exact” formula for Mef given by Eq. (44), which is

practically coincident with the result obtained with standard
k·p theory (blue lines). As expected, in agreement with Sec. V,
three bands are found: a conduction band (solid curves), a light-
hole valence band (dashed curves), and a split-off spin–orbit
valence band (dot-dashed curves). On the other hand, the green
curves in Fig. 3 represent the solution of Eq. (48) obtained with
the linear dispersive mass approximation [Eq. (45)]. Because

0.0 0.2 0.4 0.6 0.8 1.01.5

1.0

0.5
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0.5
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0.0 0.2 0.4 0.6 0.8 1.01.5
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0.5
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1.0

FIG. 3. (Color online) Electronic band structure of Hg0.75Cd0.25Te (left panel) and HgTe (right panel), calculated with the envelope-function
approximation. The quasimomentum k is normalized to atomic lattice constant as = 0.65nm.37 Black lines: calculated with Mef defined
as in Eq. (44); blue (dark gray) lines: Result obtained with standard k·p theory [Eq. (27)]; green (light gray) lines: linear dispersive mass
approximation [Eq. (45)]. The linear dispersive mass approximation does not predict the spin–orbit split-off (	7) band. The heavy-hole band
is not shown.
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FIG. 4. (Color online) Left-panel: Electronic band structure of Hg1−xCdxTe for different values of the mole fraction. The quasimomentum k

is normalized to atomic lattice constant as = 0.65nm.37 The solid curves represent the conduction band (	6), whereas the dashed lines represent
the light-hole valence band (	8). For x ≈ 0.17 (dot-dashed blue curves), the two bands are in contact and m∗

c = m∗
lh = 0. Right panel: Bandgap

energy for Hg1−xCdxTe as a function of the mole fraction, following Hansen’s formula.37,38

this approximation assumes that the spin–orbit split-off energy
is very large, only the conduction and light-hole valence bands
are predicted. Thus, the linear dispersive mass approximation
is effectively a two-band model. As seen, this approximation
can be quite accurate for low-energy excitations with k close
to the 	 point.

It is interesting to further discuss the properties of the
electronic structure, as predicted by the linear dispersive
mass approximation. For Mef = E−Ev

2v2
P

= E−Vef+Eg

2v2
P

, where
Eg = Ec − Ev = Vef − Ev , the bandgap energy, Eq. (48), is
equivalent to

(h̄kvP )2 = (E − Vef)(E − Vef + Eg), (49)

which is evidently a quadratic function of E. Solving with
respect to E, it is found that:

E − Vef = −Eg

2
±

√(
Eg

2

)2

+ (h̄kvP )2. (50)

For h̄kvP � |Eg|/2, one can write E ≈ Vef + (−Eg

2 ±
|Eg

2 |) ± (h̄kvP )2

|Eg | , and this yields the following approximate
dispersions for the conduction and light-hole bands

E|c ≈ Vef + (h̄kvP )2

Eg

, E|lh ≈ Vef − Eg − (h̄kvP )2

Eg

, (51)

respectively. Therefore, within the indicated approximations,
the valence and conduction bands are exactly symmetric with
respect to the center of the gap, being each the mirror of
the other. The standard (“group”) effective masses for the
conduction band, m∗

c ≡ [ 1
h̄2

∂2E|c
∂ki∂kj

]−1, and for the valence band,

m∗
lh ≡ −[ 1

h̄2
∂2E|lh
∂ki∂kj

]−1, satisfy:

m∗
c = m∗

lh = Eg

2v2
P

. (52)

This result is consistent with the fact that for narrow-gap
semiconductors, m∗

c ≈ m∗
lh.36 Notice that m∗

c and m∗
lh are

negative when the bandgap energy is negative (e.g., for
HgTe).36 Evidently, the energy dispersion in Eq. (51) can also
be obtained directly from Eqs. (34a)–(34b) by neglecting the
small term h̄2

2m0
k2 and considering the limit �/|Eg| → ∞.

The previous discussion assumes implicitly that the
bandgap energy is different from zero. If Eg = 0, it is found

from Eq. (50) that:

|E − Vef| = h̄kvP . (53)

In these conditions, the relation between energy and quasimo-
mentum becomes linear. This is similar to graphene,33 except
that here we have a bulk three-dimensional semiconductor.
Notice that vP plays a role analogous to the Fermi velocity in
graphene.33 The possibility of the emergence of a zero-gap in
bulk semiconductor alloys and in semiconductor superlattices
has been discussed in many works.40–45

In particular, a zero-bandgap may occur for a specific value
of the mole fraction of the ternary alloy Hg1−xCdxTe.38,43 Ac-
cording to Hansen’s formula,37,38 the bandgap energy should
vanish at x ≈ 0.17 in the zero-temperature limit (right-hand
side panel of Fig. 4). In this case, the “group” effective mass
vanishes, m∗

c = m∗
lh = 0, and the electronic transport may be

mainly determined by the velocity vP = 1.06 × 106 m/s. In
the left-panel of Fig. 4, we depict the electronic band structure
of Hg1−xCdxTe for different values of the mole fraction. The
results were computed using Eq. (48) with the linear dispersive
mass approximation. In agreement with the previous discus-
sion, for x ≈ 0.17, the energy-momentum relation becomes
linear, which is consistent with the fact that the mobility of
HgCdTe compounds may be remarkably high.37,42,43

VII. TIME EVOLUTION OF A MACROSCOPIC
WAVE PACKET IN A ZERO-GAP STRUCTURE

The previous sections were mostly focused on the electronic
band structure. However, as discussed in Sec. II and in Ref. 30,
our theory can also be applied to study the dynamics in time
of the wave function, and ensures that for initial macroscopic
states, the effective medium theory describes exactly the time
evolution of the envelope of the microscopic wave function
(Fig. 1).

To further highlight these properties, next we consider
a hypothetical bulk semiconductor with a zero-gap. As
mentioned previously, a ternary alloy of Hg1−xCdxTe with
x ≈ 0.17 may be an example. In the zero-gap case, using the
linear dispersive mass approximation [Eq. (45)], the effective
Hamiltonian Eq. (40) can be written explicitly as:

Ĥef (r,E) = − h̄2v2
P

E − Vef
∇2 + Vef . (54)
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Thus, using the Fourier transform pair 1
E−Vef

↔ 1
ih̄

e−i
Vef
h̄

t u (t),
where u (t) is the Heaviside step function, it is possible to write
in the time domain that [compare with Eq. (2)]:

(Ĥef�) = ih̄v2
P e−i

Vef
h̄

t

∫ t

0
dt ′ ei

Vef
h̄

t ′∇2�(r,t ′) + Vef�(r,t),

t > 0. (55)

Strictly speaking, the above manipulations are only possible if
Eq. (54) is valid for arbitrary E, whereas, in practice, we
know that it is only valid for energies such that E ∼ Vef .
Nevertheless, our approximation may be acceptable if the
Fermi level of the system is close to Vef .

Within the considered model, the effective medium
Schrödinger equation (1) in the time domain becomes:

ih̄
∂�

∂t
(r,t) = ih̄v2

P e−i
Vef
h̄

t

∫ t

0
dt ′ ei

Vef
h̄

t ′∇2�(r,t ′)

+Vef�(r,t), t > 0. (56)

This equation can be solved univocally for a given initial time

boundary condition �t=0 (r). Defining φ (r,t) = ei
Vef
h̄

t� (r,t),
it is straightforward to verify that φ satisfies,

∂φ

∂t
= v2

P

∫ t

0
dt ′ ∇2φ

(
r,t ′

)
, t > 0. (57)

Differentiating both sides of the equation with respect to time,
one sees that φ (r,t) satisfies the wave equation

1

v2
P

∂2φ

∂t2
− ∇2φ = 0. (58)

This was in part expected because of the assumed linear
energy–momentum relation in the spectral domain [Eq. (53)].
Thus, we can obtain the time evolution of the system
by simply solving the wave equation. The initial time
boundary conditions are φ(r,t = 0) = �t=0(r) and ∂φ

∂t
(r,0) =

∂
∂t

[ei
Vef
h̄

t�(r,t)] = ei
Vef
h̄

t ∂
∂t

[i Vef
h̄

�(r,0) + ∂�
∂t

(r,0)]. However,
from Eq. (56), it follows that ∂�

∂t
(r,t = 0) = −i Vef

h̄
�(r,t = 0),

and hence we conclude that

φ (r,t = 0) = �t=0 (r) and
∂φ

∂t
(r,t = 0) = 0 (59)

are the initial time boundary conditions. Notice that even
though the wave equation is of second order in time, there is
only one nontrivial initial time boundary condition, consistent
with the fact that the effective medium Schrödinger equation
[Eq. (56)] is a differential equation of first order in time.

To see the implications of these findings, we consider a
simple one-dimensional problem such that the wave function
is independent of the coordinates y and z and �t=0 (r) =
�t=0 (x), where �t=0 (x) is a given complex function. The
solution of the wave equation subject to the initial time
boundary conditions Eq. (59) can be integrated explicitly
and is:

φ(x,t) = 1
2 [�t=0(x − vP t) + �t=0(x + vP t)]. (60)

In particular, one sees that if the initial electronic macroscopic
state is localized in space, let us say close to the origin, it
will be split into two wave packets that propagate exactly with
velocity vP along the positive and negative x axis, respectively.

This is evidently very different from the dynamics of a free
electron subject to the standard Schrödinger equation, because
in the zero-gap system, for sufficiently large t , the wave packet
is effectively split into two, as if we had two particles moving
in opposite directions. This result may appear paradoxical,
but it is actually a direct consequence of the fact that in the
time domain, our theory only applies to macroscopic states.
As proven next, in a zero-gap semiconductor, a macroscopic
state is such that the probability of the electron energy being
in the conduction band is exactly the same as probability of
the electron energy being in the valence band.

To prove this, let us consider first that the initial state is
ψt=0 (x) = eik·x , where k is arbitrarily fixed. As before, the
microscopic wave function is denoted by ψ . Evidently, ψt=0

can be written as a linear combination of the energy Bloch
eigenstates of the microscopic Hamiltonian associated with
the wave vector k:

eik·x =
∑

n

cnψnk (r). (61)

In the above, ψnk (r) are the microscopic energy eigenstates,
and cn are the coefficients of the expansion. Within our two-
band model, there are only two such microscopic states: one
associated with the conduction band (ψc,k(x)) and another
with the valence band (ψv,k(x)). Thus, within the microscopic
theory, the initial state should be regarded as a superposition
of the states in the conduction and valence bands: ψt=0 =
cEψc,k(x) + cH ψv,k(x). It is shown in the Appendix that for
a bulk semiconductor with a zero-gap, the coefficients cE and
cH are such that cE = −cH . Hence, we have

eik·x ≈ cE[ψc,k(x) − ψv,k(x)]. (62)

Thus, the macroscopic state ψt=0 is a superposition with equal
weights of eigenstates of the conduction and valence bands.
Note that ψc,k (x) and ψv,k (x), i.e., the microscopic eigenstates
associated with the conduction and valence bands, in general
are not macroscopic states (i.e., ψ 
= {ψ}av).

Next, we consider a general localized initial macroscopic
state. This state is necessarily a superposition of plane waves
(with k in the first Brillouin zone), and, hence from Eq. (62),
it is of the form:

ψt=0 (x) ≈
∫

dk ck[ψc,k(x) − ψv,k(x)]. (63)

This formula confirms that the probability of the electron being
in the conduction band is exactly the same as that of being in
the valence band, and in essence this is why a macroscopic
localized electron wave packet splits into two. Indeed, each
plane wave of the wave packet is a sum of conduction (forward
electron wave propagating with velocity +vP ) and valence
(backward electron wave propagating with velocity −vP )
eigenstates [see Eq. (62)], such that the probability of the
electron being in either the conduction or valence band is the
same. For completeness, next we re-derive Eq. (60) directly
from the microscopic theory.

To do this, first we note that the result of averaging a Bloch
mode is simply a plane wave.30 Hence, it is possible to write

{ψi,k(x)} = �i,ke
ikx, i = c,v (64)
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for some constants �i,k . Because the initial state is macro-
scopic, ψt=0 (x) = {ψt=0(x)}av ≡ �t=0 (x), it follows that

ψt=0(x) ≈
∫

dk ck(�c,k − �v,k)eikx. (65)

This formula will be useful later. From Eq. (63), it is clear that
the wave function as a function of time is given by:

ψ(x,t) ≈
∫

dk ck

(
ψc,k(x)e−i

Ec,k
h̄

t − ψv,k(x)e−i
Ev,k

h̄
t
)
. (66)

where Ec,k and Ev,k are the energy dispersions of the
eigenstates. In particular, the spatially averaged wave function
� (x,t) = {ψ(x,t)}av satisfies:

� (x,t) ≈
∫

dk ck

(
�c,ke

−i
Ec,k

h̄
t − �v,ke

−i
Ev,k

h̄
t
)
eikx . (67)

We prove in the Appendix that for the considered
basis, �c,k = −�v,k . Hence, using Ec,k − Vef = −Ev,k +
Vef = h̄|k|vP [Eq. (53)] and (e−i

Ec,k
h̄

t + e−i
Ev,k

h̄
t )eikx =

e−i
Vef
h̄

t (eik(x−vP t) + eik(x+vP t)), it is found that:

�(x,t) = e−i
Vef
h̄

t

∫
dkck�c,k(eik(x−vP t) + eik(x+vP t))

= e−i
Vef
h̄

t

∫
dk ck(�c,k − �v,k)

× 1

2
(eik(x−vP t) + eik(x+vP t))

= 1

2
e−i

Vef
h̄

t [ψt=0(x − vP t) + ψt=0(x + vP t)]. (68)

This completely agrees with the result obtained using the
effective medium theory [Eq. (60)], as we wanted to prove.

From a more fundamental perspective, one may also
say that the form of the solution to Eq. (60) is in some
sense a consequence of the uncertainty relations, which are
preserved by the effective Hamiltonian description. Indeed, a
solution of the form φ(x,t) = �t=0(x − vP t) would allow for
both the localization in space and for the knowledge of the
velocity of the particle (+vP ), which contradicts the essence
of nonrelativistic quantum mechanics when the Hamiltonian
is such that the velocity operator is proportional to the
momentum: v = dr

dt
= i

h̄
[Ĥ ,r] = p

m0
. This is the case for our

microscopic Hamiltonian, provided the contribution of the
spin–orbit coupling term to the velocity operator is small (in
such a case, Ĥ ≈ p̂2

2m0
+ V̂ ). When v = p

m0
, the velocity and the

position (r) operators cannot be simultaneously known with
arbitrary accuracy, as follows from the Heisenberg uncertainty
relations for p and r. Because for the one-dimensional problem
v can only assume two values in case of a zero-gap material
(±vP ), the knowledge of the direction of propagation (and
thus of the velocity with no uncertainty) precludes any type
of localization of the wave packet. The solution to Eq. (60)
is consistent with such a fundamental restriction. This also
highlights that the effective medium Schrödinger equation
[Eq. (56)] is fundamentally different from the wave equation
(58), because the latter admits solutions that enable both
the localization of the position and of the velocity of the
wave packet, whereas the former does not. It is important to
emphasize that the effective medium Hamiltonian only enables
the time evolution of “macroscopic states” to be characterized,

and thus many relevant initial time states [for which the time
evolution is not consistent with Eq. (60)] are out of reach of
the effective medium description. The most notorious example
is the energy eigenstates, which evidently do not vary in
time as predicted by Eq. (60). We note that for a zero-gap
semiconductor, the energy eigenstates are not “macroscopic
states.” The restrictions on the use of the effective medium
Hamiltonian in the calculation of the electronic band structure
are less severe than in the time evolution problem, and, as
discussed previously, it holds enough information to calculate
exactly the energy dispersion of the stationary states.

To conclude, we would like to note that the time evolution of
the initial state �t=0(x) does not preserve the norm

∫
d3r|�|2.

Obviously, at the “microscopic level,” the time evolution of
the exact wave function ψ preserves the norm

∫
d3r |ψ |2. The

reason for the discrepant behavior was already mentioned in
Ref. 30 and is related to the fact that � = {ψ}av does not
imply that |�|2 = {|ψ |2}av, and hence in general |�|2 does
not correspond to the spatially averaged probability density. It
will be proven elsewhere that for stationary states, the spatially
averaged probability density can be written in terms of � and
of the effective medium Hamiltonian.

VIII. CONCLUSION

Using the effective medium approach derived in our
previous work,30 we calculated from “first principles” the
effective Hamiltonian of a bulk material. Within the eight-
band Kane approximation, the effective Hamiltonian for bulk
semiconductor compounds with a zinc-blende structure can
be calculated explicitly and is a scalar operator given by
Eq. (29). For excitations associated with energies close to the
edges of either the conduction or valence bands, the effective
Hamiltonian reduces to the simpler form Hef(−i∇,E) ≈
− h̄2

2 ∇( 1
Mef

∇) + Vef(E), which is consistent with the formalism
of G. Bastard, i.e., with the envelope-function approximation.
Our results highlight that the envelope-function approximation
is related to the effective medium theory used in the con-
text of electromagnetic metamaterials. Using the developed
theory, we discussed the electronic structure of several bulk
semiconductor compounds, emphasizing the analogies with
electromagnetic metamaterials. Finally, we discussed the time
evolution of a macroscopic electron wave in a zero-gap
semiconductor with a linear energy–momentum relation, and
that the dynamics of the effective medium Hamiltonian are
consistent with the uncertainty relations.
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APPENDIX

Here, we derive the relation between the coefficients cE and
cH in the expansion ψt=0 = eik·r ≈ cEψc,k (r) + cH ψv,k (r)
considered in Sec. VII. Using the ket notation, we denote
|E1k〉 and |H1k〉 as the states associated with ψc,k (r) and
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ψv,k(r), respectively (the spin quantum number is omitted in
some formulas for simplicity). From Sec. IV, it is clear that
|E1k〉 and |H1k〉 can be written in terms of the kets |Sσ 〉, |Xσ 〉,
|Yσ 〉, and |Zσ 〉. In case the split-off energy � is much larger
than the bandgap energy, it is possible to write [see Eqs. (14)
and (17) of Ref. 21; only one of the degenerate states is shown]:

T−k |E1k〉 = ac |iS↓〉 + bc

∣∣∣∣ 1√
2

(X − iY ) ↑
〉
+ cc |Z↓〉 ,

(A1)

T−k |H1k〉 = av |iS↓〉 + bv

∣∣∣∣ 1√
2

(X − iY ) ↑
〉
+ cv |Z↓〉 ,

(A2)

where

ac =
(

η + Eg

2η

)1/2

, bc =
(

η − Eg

6η

)1/2

,

cc =
(

η − Eg

3η

)1/2

, (A3)

av = −
(

η − Eg

2η

)1/2

, bv =
(

η + Eg

6η

)1/2

,

cv =
(

η + Eg

3η

)1/2

, (A4)

and η is a (k-dependent) parameter defined in Ref. 21.
The operator T−k is such that 〈r|T−k|θ〉 = e−ik·rθ (r) with
θ (r) = 〈r|θ〉.

The important point is that if the bandgap energy Eg van-
ishes (a zero-gap semiconductor), we have ac = −av = 1/

√
2,

bc = bv = 1/
√

6, and cc = cv = 1/
√

3. Thus, the initial time
macroscopic state |ψ〉 = cE |E1k〉 + cH |H1k〉 is such that:

T−k|ψ〉 ≈ (cE − cH )
1√
2
|iS↓〉 + (cE + cH )

× 1√
6

∣∣∣∣ 1√
2

(X − iY ) ↑
〉
+ (cE + cH )

1√
3

|Z↓〉 .

(A5)

Since ψ(r) = eik·r, if we calculate the scalar product of both
sides of the equation with a ket of the form | 1√

2
(X − iY )↑〉 (or

alternatively |Z↓〉), it is immediately found that (cE + cH ) =
0. This is so because the kets |Xσ 〉, |Yσ 〉, and |Zσ 〉 have the
same symmetry as p-type orbitals, and hence 〈m|T−k|ψ〉 = 0
with m = X,Y,Z. Thus, it follows that cE = −cH , which gives
the desired relation between the two coefficients.

We also note that because the result of spatial averaging
of the kets |Xσ 〉, |Yσ 〉, and |Zσ 〉 is zero [Eq. (23)], one can
write �c,ke

ik·r = {ψc,k}av = iace
ik·rus,av, where us,av is some

nonzero constant, defined as in Eq. (14) for m = S. Similarly, it
is easy to check that �v,ke

ik·r = {ψv,k}av = iave
ik·rus,av. Since

for a zero-gap semiconductor ac = −av , we finally conclude
that �c,k = −�v,k.
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